
Univ
ers

ity
 of

 C
ap

e T
ow

n

LI NEAR LIBRARY

C01 0068 1239

I II I I II

XSNAP: A QUEUEING NETWORK ANALYSIS PACKAGE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE,

FACULTY OF SCIENCE

AT THE UNIVERSITY OF CAPE TOWN

IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Hylton Donnelly

September 1992

Supervised by

Prof P.S. Kritzinger

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Abstract

This dissertation describes the design and implementation of a sophisticated X-Windows

based modelling package called XSnap, which can be used to solve product-form mixed

multi-class queueing networks. A Graphical User Interface allows interactive network

specification, whilst the modeller can also define complex network experiments and request

customised output through the use of a language called SnapL.

The solution modules used by XSnap are grouped together to form the Calculation

Modules ToolBox (CMTB), which can be easily integrated into any modelling package

which provides an appropriate user interface. Solution statistics are found using Reiser's

Mean Value Analysis (MVA) algorithm, which has been extended to allow for the approx

imate solution of networks with PRIORITY servers or non-integral closed chain popula

tions. A routing validation algorithm is used to validate the routing information for the

network to be solved, and equations defining the relative throughput (or visit ratio) of

each class at each centre in the network, are solved using a version of LU-Decomposition

called Crout's method with partial pivoting.

The dissertation also includes a study of a number of other available modelling pack

ages. The choice of features included in the XSnap GUI has been largely influenced by

this study. A number of different algorithms for solving product-form queueing networks

are also discussed, and relevant points from this discussion are presented as part of the

motivation for using the MVA algorithm for finding solution statistics.

11

Acknowledgements

For their involvement and association with this study I would like to express gratitude to:

• My fellow graduate students at UCT, who have often helped me in one way or

another. Special thanks to Guido Zsilavecz (who taught me to RTFM), Quinton

Hoole, Stephen Donaldson, Julian Hansen and Grant Wyatt. Your help was much

appreciated.

• My girlfriend, Tan Lowe, who so sweetly offered to wade through the early drafts of

this dissertation , correcting grammar and spelling.

• Andrew Hutchison, who has given me valuable feedback regarding MicroSnap.

• Prof. Kritzinger, who has managed to help and guide me in preparing this disserta

tion, despite being so many miles away.

Ill

Contents

Abstract ll

Acknowledgements Ill

1 Introduction 1

1.1 What is X Snap? 0 •• 0 0 0 • 0 0 0 1

1.2 XSnap and Performance Modelling 1

1.3 Dissertation Overview •• 0 0 0 2

1.4 The Development Environment 3

1.5 Main Results 0 • 0 • 0 3

2 Performance Modelling 4

2.1 The need for Performance Modelling 4

2.2 Simulation and Analytic Techniques 4

2.3 Solution Methods 5

2.3.1 Product-form Queueing Networks. 5

2.3.2 Direct Markovian Analysis 6

2.3.3 Convolution algorithm 7

2.3.4 Mean Value Analysis . 7

2.3.5 LBANC 7

2.3.6 RECAL 8

2.3.7 Algorithm Extensions 8

2.4 Existing Modelling Packages . 8

2.4.1 RESQ 9

2.4.2 HIT 9

2.4.3 MAC OM 10

2.4.4 MicroS nap 11

2.4.5 Other packages and references . 12

iv

3 The XSnap Solution Algorithms 13

3.1 The MVA Calculation Modules Toolbox (CMTB) . 13

3.2 Applications using the CMTB 13

3.3 Models that can be solved by the CMTB 14

3.4 What's in the CMTB? 15

3.5 Model Definition and Manipulation Routines 17

3.5.1 Interfacing with the CMTB 17

3.5.2 Memory Allocation . . 18

3.5.3 User-defined variables 18

3.5.4 Model data structures 18

3.6 Model Validation and Solving Relative Throughputs 20

3.6.1 Model Validation . . . 20

3.6.2 Relat ive Throughputs 20

3.7 The MVA algorithm 21

4 Route Validation and Relative Throughputs 23

4.1 Preliminaries .. 23

4.2 Route Validation 25

4.2.1 Restating Rule 1 26

4.2.2 Restating Rule 2 27

4.2.3 Flooding 27

4.2.4 The Route Validation Algorithm 28

4.2.5 Implementation of the algorithm 29

4.3 Solving relat ive throughputs . . 30

4.3.1 Introducing nodes ... 30

4.3.2 One workload at a time 31

4.3.3 Open chains . 31

4.3.4 Closed chains 32

4.4 Checking for infinite queues 33

4.5 Solving linear equations .. 33

4.5.1 Using two solution algorithms . 33

4.5.2 The Conjugate Gradient Method 34

4.5.3 LU-Decomposition 35

4.6 Solving sets of linear equations in the MVA algorithm 36

5 MVA and Statistical Measures 37

5.1 Introduction to the Mean Value Analysis algorithm . 37

5.2 The Algorithm 37

v

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

5.2.9

Outline of the algorithm

Storing intermediate results at each population vector i
Step 1 - Initialisation

Step 2 - Looping over all closed population vectors

Step 3 - Looping over all closed chains

Step 4 - Computing average waiting times Wi'k(i) .

Step 5 - Computing the relative chain throughputs Tk,({) .
Step 6a - Computing Qi(i)

Step 6b - Estimating Wir for priority service centres i and cus-

38

38

40

41

41

41

43

44

tomers of class r from open chains 44

5.3 Storing the values Wir for PRIORITY centres i and classes r belonging to

open chains

5.4 Interpolation of the MVA results

5.4.1 The interpolation algorithm

45

46

46

5.4.2 Collecting the MVA results for interpolation . 4 7

5.4.3 Interpolating the values Wir for PRIORITY centres i and classes

r belonging to open chains

5.5 Dynamic memory allocation in the MVA algorithm

5.5.1 Delet ing old solution results

5.5.2 Storage for interpolation . .

5.5.3 The function startup mva()

5.5.4 The function shutdown mva()

5.6 The function checkmodelsoln() in the module "stat4l.c"

5.6.1 The function check priority centres() .

5.7 Statistical measures

5.7.1

5.7.2

5.7.3

5.7.4

5.7.5

5.7.6

5.7.7

5.7.8

Notes on the statistical measures formulae .

Average queue length . .

Average throughput rate.

Average waiting time

Average queueing time .

Average cycle time (Closed Chains)

Average turnaround or residence time (Open chains)

Average utilisation

6 Designing the XSnap User Interface

6.1 Requirements of the Interface

6.2 Constructing Models

VI

48

48

48

49

49

50

50

50

51

51

52

52

53

53

53

53

54

55

55

56

60201

60202

60203

602.4

60205

60206

The Canvas 0 0 0

Default Settings

Variables and Expressions

Workloads 0

Centres

Paths 0

603 Saving and Retrieving Models

6.4 Textual Representation of the Model

605 Solution Statistics 0 0 0 0 0

60501 Generating Solutions

60502 Viewing Solution Statistics

60503 Saving Solution Statistics 0

606 Repetitive Model Evaluation

60601 Background to the SnapL language 0

60602 The definition and evaluation sections

60603 Editing Evaluation Code 0

6o6.4 Parsing Evaluation Code

7 Implementing XSnap

701 The Development Environment

701.1 Choosing C as a programming langauge

701.2 X-Windows 0 0 0 0 0 0 0 0 0

7 02 Components of the XSnap package

7 03 The XSnap G UI 0 0 0 0 0 0 0 0 0 0

70301 The XSnap GUI data structures

70302 Managing the Canvas

70303 Solving the Model 0 0

7o3.4 Evalution-section code

7.4 The SnapL parser 0 0 0 0 0 0 0

7.401 Backus Naur Form of the SnapL language

7.402 Lexical Analyzer

7.403 The Parser 0 0 0

8 Performance a n d Testing

801 Performance Analysis

801.1 Performance criteria

801.2 MVA Memory Requirements

8ol.3 MVA Time Requirements

VII

57

59

59

59

61

63

66

66

67

67

67

68

68

69

69

70

70

71

71

71

72

73

74

75

75

76

77

77

77

81

81

84

84

84

85

88

8.1.4 Some sample models . 90

8.1.5 Adding Open Chains to the model 90

8.1.6 Relat ionship between memory and time requirements of the MVA

algorithm 91

8.1.7 Solving Relative Throughputs .

8.2 Testing XSnap

8.2.1 Testing the CMTB solution results

8.2.2 Testing the XSnap GUI .

8.2.3 Testing the other modules

8.2.4 Results of the testing procedures

9 Conclusion

9.1 Successes

9.2 Shortcomings

9.3 Further Research

A Sample Evaluat ion-Code Output

A.1 Evaluation Code

A.2 The output produced by XSnap .

B Sample output generated using "CMTB Text"

Vlll

92

93

93

98

98

99

100

100

101

101

103

103

104

110

List of Tables

1

2

3

4

5

6

MVA memory requirements 0

Time and space requirements for solving a number of simple models

Results for t he M/M/1 Queue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CPU Statistics in the Central Server model 0 0 0 0 0 0 0

Statistics for Disk A (or B) in the Central Server model

Throughput and Solution Times for the Central Server model

ix

86

90

95

96

96

96

List of Figures

1 The Calculation Modules Toolbox 16

2 The CMTB model data structure . 19

3 The MVA algorithm for solving multiclass open and closed queueing networks. 39

4 The XSnap screen with sample model . 57

5 A 'zoomed-in' model .. 58

6 The Workload Manager 60

7 The Centre Manager . . 62

8 The Path Manager . . . 65

9 Sample workload solution statistics 67

10 Sample centre solution statistics 68

11 The X-Windows Architecture .. 72

12 Components of the XSnap package 74

13 M/M/1 Queue. 94

14 The Central Server Model. . 95

15 Sample Model 'ex.xsn' .. . 98

X

Chapter 1

Introduction

Welcome to XSnap. This dissertation has been submitted along with the source code for

XSnap Vl.O in fulfillment of the requirements for the degree of Master of Science at the

University of Cape Town, South Africa.

1.1 What is XSnap?

XSnap is a Queueing Network Analysis package which can be used to analyse product

form multi-class queueing networks. The letters "Snap" in the title stand for Stochastic

Network Analysis Package, and the prefix "X" has been added in reference to the fact that

the networks are defined and manipulated using a sophisticated Graphical User Interface

(GUI) running under the UNIX based X-Windows environment.

XSnap uses the Mean Value Analysis (MVA) algorithm (i.e. an analytical approach)

for finding solution st atistics to queueing networks.

A number of service disciplines, including priority servers, are supported by the solu

tion modules. Furthermore, both open and closed chains are allowed and these may be

combined to form mixed queueing networks.

1.2 XSnap and Performance Modelling

A large number of analysis packages already exist for use in the field of Performance Mod

elling. These packages are typically used to analyze and to help predict the performance

of real systems. In order to carry out such analyses, the real system is normally modelled,

and this model is then either simulated or solved using analytical techniques . Modellers

typically use modelling packages to carry out this Performance Modelling since the cal

culations and theory needed to conduct simulations and to find analytical solutions are

quite rigorous.

1

CHAPTER 1. INTRODUCTION 2

XSnap represents a new tool that can be applied in this field of Performance Modelling.

The development of the package has been largely an engineering exercise, with the primary

goal being to develop a user-friendly and powerful package based on current knowledge of

queueing network product-form solvers. Furthermore, the package has been designed to

represent and improvement over similar existing packages.

1.3 Dissertat ion Overview

Any description of a modelling package would clearly be lacking unless it was comple

mented by an overview of Performance Modelling in general. The choice of solution algo

rithms used to solve the underlying queueing network will also be motivated, as will the

nature of the GUI that has been developed .

To this end the dissertation has been divided into three parts:

• Chapter 2 : Performance Modelling and Solution Methods

An introduction to Performance Modelling and an overview of different analytical

solution algorithms used for solving product-form queueing networks. This part

provides interesting background to Performance Modelling in general and includes

a description of a number of other modelling packages currently available.

• Chapters 3, 4 and 5 : The XSnap Solution Modules

A detailed description of the solution algorithms used in XSnap including some

notes on the implementation of these modules. The first chapter in this section

describes how the solution modules were first implemented by the author in another

package called MicroSnap. These modules have been grouped together into a toolbox

called the MVA Calculation Modules Toolbox (CMTB) . Chapter 3 also gives an

overview of the CMTB modules and shows how they may be integrated into any

modelling package. Of particular interest in this part are the algorithms used for

Route Validation, the calculation of Relative Throughputs and Mean Value Analysis.

• Chapters 6, 7 and 8 : The XSnap graphical user interface

The design and implementation of the XSnap GUI. This interface is used to de

fine and manipulate the queueing networks that are solved by the XSnap solution

modules. Of particular interest in this section is the design of the Graphical User In

terface, and the choice of features that have been implemented to make the package

easy to use, practical and attractive . Chapter 8 gives an analysis of the performance

of XSnap, and also describes the testing procedures used to test XSnap.

CHAPTER 1. INTRODUCTION 3

1.4 The Deve lopment Environment

The solution algorithms implemented in XSnap were originally written in TURBO_C as

part of a package called MicroSnap . This package ran under DOS and is described in more

detail in Chapter 3.

When moving to t he UNIX environment, these modules were ammended slightly. The

X-windows GUI has also been written in C.

The development environment and, more specifically, the choice thereof, will be dis

cussed in more detail later in the dissertation. Suffice it to say, at this point, that the

system was implemented using the C programming language under UNIX and X- Windows.

1.5 Main R esults

The main result of the study is obviously the finished XSnap package.

Other significant results include the new Routing Validation Algorithm, developed by

this author, which can be implemented as part of any similar package.

The implementation of the XSnap package also lends itself well to further extensions,

and the solution modules used in XSnap can be easily integrated into other packages (as,

indeed, they have already formed part of MicroSnap and XWan, both of which will be

described later in this dissertation) .

The dissertation also forms a useful reference, describing many factors relevant to the

implementation of an analytically based queueing network solver, as well as the design

and implementation of a Graphical User Interface.

Chapter 2

Performance Modelling

This chapter will discuss the different approaches that can be taken in Performance Mod

elling, and will then go on to describe a number of different solution algorithms that can

be used to solve product-form queueing networks.

A study of a number of existing modelling packages that can be used to solve product

form queueing networks will also be presented.

2.1 The need for Performance Modelling

Computers and communications are expensive. It is therefore obviously important to be

able to quantify the performance of such systems, both those already existing as well as

those still being designed.

Analysis of an existing system can be used to predict the efficiency of the system under

different workload conditions, and also to model the effect of changes made to the system

in an effort to optimise its performance.

When designing new systems, a cost/benefit type analysis can be used to choose be

tween different design alternatives . Typical questions asked while designing a system may

include: What is the likely throughput rate, and what can we charge per transaction?

Will the use of two disk drives be more effective than the use of a single, more expensive

model? What response time can be expected for simple queries in the system? How large

must our buffer be for packets in a packet-switched network?

2.2 Simulation and Analytic Techniques

There are three main approaches to Performance Modelling. The first is to build the new

or modified machine, the performance of which can then be tested using a standard set

of tasks . This is called benchmarking. Clearly, this option is very expensive since it may

4

CHAPTER 2. PERFORMANCE MODELLING 5

not always be possible to borrow the new machinery. Also there is a significant overhead

in installing and configuring the machine. Strictly speaking, this method does not really

fall under the heading Performance Modelling, but rather under the heading Performance

Analysis, since no model of the system is defined.

The second approach is to write a computer program to simulate the new system.

This approach has the advantage and disadvantage that the system can be written with

an arbitrary amount of detail. Unfortunately, such simulations typically include too much

low level detail making them slow to run. These simulations also often need to be left

running for a good number of hours to allow the system to settle down. Once in a "steady

state", the necessary statistics can be captured, and paramaters defining the system can

be changed and the simulation allowed to run again so that an impact analysis can be

performed.

The third approach to Performance ModelJjng is to build a mathematical model of the

system. This model can then be validated and evaluated - usually in a fraction of the

time needed to run a simulation. Model parameters can be changed easily making impact

analysis investigations easier to perform. This approach does, however , require that the

modeller is skilled enough to define a model which can be solved and which captures the

significant behaviour of the system.

Although the firs t of the above three methods would be impractical in most circum

stances, is it difficult to motivate convincingly which of the other two methods is the

better. Each has its own advantages and disadvantages, the study of which is beyond the

scope of this dissertat ion.

For the remainder of this chapter we will focus on the last of the three approaches (i.e.

an analytical approach) to modelling computer systems.

2.3 Solution Methods

This section will describe a number of different solution algorithms that are available for

solving product-form queueing networks.

The purpose of this section will be to allow the reader to compare the capabilities ,

advantages and disadvantages of each of the solution algorithms.

2.3 .1 Product-form Q ueu eing Networks

For many years now , the predominant technique used for analytical modelling has been

the use of queueing theory.

The most common queueing networks are called BCMP-networks, named after Baskett,

Chandy, Muntz and Palacios-Gomez who are the four authors of the seminal work on the

CHAPTER 2. PERFORMANCE MODELLING 6

topic (see [Baskett 75]). These networks have also come to be known as product-form

networks since the solution of the queueing network is given by

1
Pr(S = (ki,k2,k3, ... ,kM)) = Gd(S)fi(ki)h(k2)h(k3) ... fM(kM) (1)

where Pr(S = (kb k2 , k3, ... , kM)) is the probabilHy that the network is in a steady state

(k1 , k2 , k3, ... , kM), d(S) is a function of the number of customers in the system, and fi(ki)

is a function which depends on the customers present at node i and the service discipline

of the node. G is called the normalisation constant and has an arbitrary value ensuring

that the probabilities Pr(S = (k1, k2, k3, ... , kM)) sum to 1.

Some aspects of real systems cannot be modelled accurately using exact product-form

queueing networks. Examples of these are:

• batch arrivals of customers

• forking or joining of customers

• congestion leading to blocking and customer loss

• state dependent routing

• simultaneous resource possession

None the less, product-form queueing networks can be used to represent most features of

real systems and are therefore still a popular vehicle for Performance Modelling.

2.3.2 Direct Markovian Analysis

The theory of mixed multiclass product-form queueing networks is well established, and

the form of the probability function for a particular state of the network (as shown above)

is well known. However, solving the probability density function for a particular network

is a different problem altogether, and is a purely computational one.

Since product-form queueing networks are made up of Markov Chains they can, admit

tedly, be solved using direct Markovian Analysis (MACOM1 is one example of a tool which

uses this method). However, one could quite arguably call this the naive approach since in

the larger models the state-space can easily become too large to use this method. Even if

the state probabilities could be calculated for all states in a large model, the accumulated

round-off error in the normalistaion constant G would make the results meaningless.

A significant redeeming feature of the method is that one is able to encompass a

much wider modelling domain which includes some of those features listed in the previous

section, such as forking or joining of customers; these features cannot be represented in

BCMP networks. The method cannot, therefore, be altogether disregarded.

1 MACOM is decribed in more detail in section 2.4.3.

CHAPTER 2. PERFORMANCE MODELLING 7

2.3.3 Convolution algorithm

The Convolution Algorithm was developed by Buzen [Buzen 73] and is concerned primarily

with the calculation of the normalisation constant G shown in equation 1. Fortunately, all

performance measures that are of interest can be calculated as a side effect of calculating

G.

Although this was one of the first really fast algorithms, the algorithm often suffered

from numerical overflow when implemented. Futhermore, most of the calculation effort

goes into the valuation of normalisation constants which have no simple interpretation in

terms of the system being modelled.

2.3.4 Mean Value Analysis

In 1978 Martin Reiser [Reiser 81] proposed a solution algorithm which· is now known

as Mean Value Analysis, or MVA for short. This algorithm proved at worst to be as

computationally inefficient as the Convolution Algorithm, and moreover did not suffer

from any under or overflow problems.

MVA depends on Little's theorem and on the so-called 'Arrival Theorem' which states

that a job in a closed queueing network, when it enters a queue, observes the mean state

of the queue with itself removed. One of the other main differences between Convolution

and MVA is that while the main iteration in the Convolution algorithm is over nodes, the

main iteration in MVA is over different network populations.

For networks consisting of only load-independent servers or server-per-job nodes, the

MVA algorithm is easier to implement than Convolution. Unfortunately, MVA is un

suitable for networks with load-dependent servers, due to errors introduced through the

subtraction of nearly equal numbers. Reiser has addressed this problem by producing an

other algorithm called Augmented MVA. This algorithm requires that MVA is performed

2m times when solving the model, where m is the number of queue-dependent servers in

the model.

A number of other extensions have been made to MVA over the years, and these

include tree-MVA and Mean Value Analysis by Chain (MVAC). Readers are referred to

the excellent book by Peter King [King 90] for more information regarding MVA.

2.3.5 LBANC

Yet another algorithm used for solving product-form queueing networks is LBANC, which

stands for "Local Balance algorithm for Normalising Constants" (see [Chandy 80]).

This algorithm is similar to Convolution in that it is used to calculate the normal

isation constant G. However, the main iteration in the algorithm is over the different

CHAPTER 2. PERFORMANCE MODELLING 8

customer populations (as for MVA) rather than over the different nodes in the network

(as for Convolution), and LBAN C therefore has a mixture of the properties of MVA and

Convolution.

The algorithm is perculiar in that it works with unnormalised probabilities, which

are the probabilities given by equation 1 when G equals 1. Unfortunately, this algorithm

suffers from the same numerical problems as MVA when dealing with load-dependent

servers .

Lam [Lam 83] has shown that each of the Convolution algorithm, MVA and LBANC

is derivable from any one of the others. This confirms that they are all equally powerful.

2.3.6 RECAL

RECAL (Recursion by Chain method) is one of the more recent algorithms derived for

solving product-form networks. This algorithm was discovered by Conway and Georganas

(see [Conway 86]) in 1986, and relates the normalisation constant G of a network with r

classes, to the normalisation constant with one class removed .

When compared to RECAL, the MVA algorithm has still proved to be equally as

efficient. Readers are referred to the study done by Renate Schmidt [Schmidt 89] on the

comparison between RECAL and MVA when implemented under MicroSnap.

2.3. 7 A lgorithm Extensions

Each of the above algorithms have been extended in numerous ways over the years. Of

particular relevance are the extensions to allow for the solution of Mixed Networks, which

are networks consisting of both open and closed chains. A closed chain is a chain with

a finite customer population, while an open chain accepts customers from and releases

customers to the external environment.

2.4 Existing Modelling P ackages

There is currently quite an array of different modelling packages available which have been

designed to solve models depicting computer performance. Clearly, it would be impractical

(and futile) to try to list them all here. Rather it has been decided to describe only four

of these packages, enough to give one a flavour of the different types of package available.

Only packages which can be used to find analytical solutions to models have been chosen.

CHAPTER 2. PERFORMANCE MODELLING 9

2.4.1 RESQ

An interesting alternative to finding a numerical solution to a mathematical model of a

queueing network, is to simulate the queueing network. It should be noted that this is

not the same as a simulation of the actual system itself.

The Research Queueing Package (RESQ) [Sauer 81] can be used to simulate extended

product-form queueing networks. These extended networks allow simultaneous resource

possession, parallelism and synchronisation and are therefore, strictly speaking, not product

form networks at all.

One can use extended queueing networks to distinguish between passive and active

queues and to allow for the forking and joining of customers.

When using RESQ, one can specify the models to be solved by using either an in

teractive dialogue facility, or by constructing a description of the model using a model

specification language. Unfortunately, the user interface is sadly unsophisticated and it is

often difficult to follow the logic of model specifications. One is thus very likely to make

mistakes, especially when defining large models.

2.4.2 HIT

HIT is a comprehensive modelling tool designed to allow the model- based evaluation of

the performance of computer systems.

HIT has been under development at the Universitiit Dortmund since 1983, and is

continually being updated [Beilner 90]. An especially interesting feature of the package

is that it allows the modeller to solve a model using any one (or even a combination) of

different evaluation techniques. The model specification is independent of the technique

to be used and the modeller can therfore apply any of the different solution techniques to

the same single model specification.

The different evaluation techniques currently offered include:

• exact product-form solutions for seperable queueing networks.

• numerical evaluation for Markov Chain representations of general models.

• approximation techniques for large seperable networks.

• approximations for certain non-seperable networks including multiclass FCFS and

priority stations.

• stochastic discrete-event simulation with appropriate statistical result estimation.

Sub-model analysis is also possible, and different evalution techniques can be used for

each of the different sub-models.

CHAPTER 2. PERFORMANCE MODELLING 10

HIT models are defined using a specification language called HI-SLANG. A seper

ate utility called HITGRAPHIC can be used to automatically generate HI-SLANG code,

thereby enabling interactive model construction. However, HITGRAPHIC can only be

used to specify the higher level components of the model, and the more detailed, spe

cialised characteristics of the model need to be included using HI-SLANG. This is actually

quite an attractive approach since the modeller is able to benefit from the high-level view

offered by HITGRAPHIC, without sacrificing any of the power or fle:xlbility offered by the

HI-SLANG specification language.

2.4.3 MACOM

MACOM is a software tool being developed at the Universitat Dortmund by Sczittnick

and Muller-Clostermann, and the Deutsche Bundespost [Sczittnick 90]. This package is

used to solve performance models of complex computer systems .

MAC OM runs under Sun View, and allows the modeller to build up a graphical repre

sentation of the model to be solved. This package uses direct Markovian Analysis to solve

models and thus a large set of simultaneous linear equations needs to be solved in order

to find solution statistics.

By using direct Markovian Anaylsis, MACOM has been able to model systems which

include features which cannot be modelled using exact product-form queueing networks.

Such features includ forking or joining of customers, and congestion leading to customer

loss. Unfortunately, a major weakness of the approach is the fact that models with too

many states can easily become intractable.

Small systems of equations are solved using an algorithm developed by Grassmann,

Kumar and Billinton [Grassmann 87]. This algorithm avoids the subtraction of near equal

numbers and is therefore more stable than the conventional Gaussian elimination method.

For larger matrices, a Gauss-Seidal technique, or successive over-relaxation is used. While

the results generated by MACOM are theoretically exact, in practice the potential for

rounding errors is significant.

Since MACOM uses Direct Markovian Analysis it is able to accomodate models which

include state-dependant routing, and centres in the model can have any one of a wide

array of service disciplines. Blocking can also be modelled since the modeller is able to

specify the capacity (i.e. the number of customers that can be held simultaneously) of

each server. Arrivals to a network can have exponential or phase-type Co:xlan interarrival

time distributions.

One of MACOM 's predominant features is its attractive graphical user interface. This

interface is used to create, edit and solve models. A discussion of the strengths and

weaknesses of this interface is given in chapter 6 along with the motivation for the features

CHAPTER 2. PERFORMANCE MODELLING 11

that have been implemented in the XSnap graphical user interface.

MACOM does not support closed chains.

2.4.4 MicroSnap

MicroSnap has been developed at the University of Cape Town as a tool for modelling com

puter systems, and can used to solve models consisting of multi-class mixed product-form

queueing networks. Although MicroSnap was originally written as a PC-based system, it

has also been ported to UNIX.

MicroSnap is in fact an interpreter of a high level programming language called SnapL

(Stochastic Network Analysis Programming Language) 2 • The MicroSnap interpreter is

batch-oriented, and t akes as input a program written in SnapL, interprets it and produces

output resulting from that program. If the program is syntactically and semantically

valid, and furthermore specifies a valid queueing network, then the results produced by

the program may be in the form of tables, reports etc. as specified using high-level language

constructs in the program.

If the program does not meet any one of these conditions then error information de

tailing the error(s) detected will be produced. The user is offered various options in terms

of the statistics produced and whether the results should be either printed or plotted.

MicroSnap is described more fully in the MicroSnap User Manual [MSnap 90].

Each SnapL program used in MicroSnap is divided into a definition-section and an

evaluation-section. T he former contains a specification of the model, whilst the latter can

contain loops so that the model is repeatedly modified and re-evaluated. The evaluation

section can also be use to produce customized output . A SnapL program can be edited

using any text editor .

The first version of MicroSnap was developed in 1987, but was unfortunately not

completely robust and would fail when used with some models . This version was also

relatively slow and very space innefficient.

The most recent version of MicroSnap was written by this author entirely from scratch,

using new data structures, lexical analyzer and parser. The solution modules developed

for the package are also more comprehensive than those offered by earlier versions. In

particular, the latest version includes an original routing validation algorithm developed

by this author. Furthermore, the implementation of the MVA algorithm in the latest

version allows for the solution of open chains and the approximate solution of networks

having PRIORITY servers; these features of the MVA algorithm do not represent original

work, but are rather an engineering success in that they are especially tricky to implement

2SnapL is introduced more formally in Chapter 6. A subset of the language is used in XSnap to allow
the user to modify and solve models in batch mod e.

CHAPTER 2. PERFORMANCE MODELLING 12

efficiently.

Although MicroSnap is a very fast and accurate tool, it has often been critisized for

its primitive user interface. Models can only be solved using batch-runs, and no facility

exists to allow interactive model development. The MicroSnap parser is also relatively

in-advanced and will simply abort on finding even the first error (after the error has been

reported, of course). The modeller would then need to correct the SnapL program, and

then re-run MicroSnap.

2.4.5 Other packages and references

As mentioned before, there are many other modelling packages that do exist; some of

which, such as QNAP, are widely used.

Literature describing these packages is somewhat scattered over various journals and

conferences, but the proceedings of the "Tools and Techniques" conferences would provide

readers with a useful starting point; see [Pooley 92], [Balbo 92] and [Tuig 89].

Chapter 3

The XSnap Solution Algorithms

The preceding chapter has described a number of different methods that can be used to

solve queueing networks. XSnap uses an analytical approach which has been achieved

using the MVA Calculation Modules Toolbox (CMTB).

3.1 The MVA Calculation Modules Toolbox (CMTB)

The solution modules used by XSnap were first implemented by the author as part of

MicroSnap.

Of importance is that the solution modules were written so that they could be used

by any appropriate interface. One may like to view this set of modules as a toolbox that

can be integrated quickly and easily into any application to be used to find an analytical

solution to queueing networks.

The CMTB includes procedures that allow the calling interface to define, query and

modify the model and, of course, request solution statistics. The toolbox also ensures that

the defined model is valid and will return relevant error messages to the calling procedures

when appropriate.

3.2 Applicat ions using the CMTB

As evidence of the portability of the CMTB, the solution modules have already been

successfully used by three applications - MicroSnap, XWan and XSnap.

XWan1 is an X-Windows based application used to model the performance of Wide

Area Networks. However, the package is different to XSnap in that only a subset of the

1 X Wan was developed by Andrew Hutchison of the University of Cape Town and formed part of his
dissertation for the degree of Master of Science.

13

CHAPTER 3. THE XSNAP SOLUTION ALGORITHMS 14

features offered by the toolbox have been used and the XWan application interface restricts

the types of networks that can be defined.

3.3 Models t hat can be solved by the CMTB

The CMTB is able to solve multi-class queueing networks consisting of open and/or closed

chains in the same network.

Resources in the real system are represented as centres in the model, and the load by

customers within the network. Customers are grouped into chains which may be open

or closed. Open chains accept customers from (and release customers to) the external

environment, while closed chains each have a finite customer population. Customers within

each chain can be of different classes, and can change class whilst routing between the

different centres in the model.

Centres can be of one of the following service disciplines:

• FCFS (First-Come-First-Served)

Customers receive service in the same order that they enter the queue.

• L C FSP R (Last-Come-First-Served-Preemptive-Resume)

Customers arriving at the centre enter service immediately. The customer receives

service until completion of its request or until another customer arrives at the centre.

If another customer arrives, the customer which was in service is taken out of service

and put at the front of the queue of customers waiting to be served. Once the

interrupting customer has completed service, the customer at the front of the queue

then resumes service.

• PS (Processor-Sharing)

Customers arriving at a centre receive service immediately. However, if n customers

are all being served, then each customer receives service at 1/n times the rate at

which one customer would receive service.

• DELAY (Infinite Server)

This service discipline assumes that there is always a server available to serve each

customer at the centre. The customer will only be delayed for a time equal to the

service it demands at the centre, and no longer.

• MICRO

This is not a service centre in the true sense since customers do not queue or receive

service at the centre . Rather, the centre is used merely as a reference point in the

network, usually to measure the throughput on a particular route.

CHAPTER 3. THE XSNAP SOLUTION ALGORITHMS 15

• PRIORITY

Two levels of priority are supported (i.e. customers are either priority customers

or they are not) . Customers are served on a FCFS basis taking into account their

priority status. Since BCMP networks do not support priority servers, the results

are approximate.

Neither state-dependant routing nor stats-dependant service requirements are sup

ported by the CMTB.

3.4 What 's in the CMTB?

The remainder of this chapter describes briefly each of the algorithms and modules that

make up the CMTB, while the remaining chapters in this part 2 of the dissertation describe

in more detail the mathematical bases underlying each of the algorithms and give detailed

notes on the implementation of these in the CMTB.

The functions provided by the CMTB can be divided into 4 main groups:

• functions to allow the definition and manipulation of models.

• functions to validate the routing information, and to find the relative throughput of

each class at each centre in the model.

• functions to return solution statistics for the defined model.

• functions to erase an old model definition so that a new model can then be defined.

Although each of these components of the CMTB will be described in the following sections

of this chapter, chapters 4 and 5 will be used to describe more fully the algorithms for

route validation, solving relative throughputs and Mean Value Analysis . The remaining

sections of the this chapter, therefore, are meant to provide only a top-level view of the

CMTB.

A diagrammatic view of the CMTB is given in figure 1. From this diagram it can be

seen that there are 7 modules in the CMTB, four of which provide interfacing functions

to the rest of the modelling package.

Model definition and manipulation is performed by "book4l.c" which is responsible

for setting up (or modifying) the CMTB representation of the model using the CMTB

data structures.

The route validation algorithm is also contained in "book4l.c", and the relative through

puts are solved by "through.c" . The module "ludcmp.c" is used to perform L U-Decomposition

on the set of simultaneous linear equations defining relative throughputs .

2 Chapters 3 through to 5. See Chapter 1, the Introduction .

CHAPTER 3. THE XSNAP SOLUTION ALGORITHMS 16

New

Model K)
Definition BOOK4l.C c

M
T
B

Solve K)
T HROUGH.C D Relative

I I Throughputs LUDCMP.C A
T
A

r-4 r MVA4l.C s
T

I-- I
R

PARAM.C I u Solution I
STAT4l.C c

Statistics

K) T
u
R
E
s

Erase

Model SCRAPMOD.C K >

The CMTB

Figure 1: The Calculation Modules Toolbox

CHAPTER 3. THE XSNAP SOLUTION ALGORITHMS 17

Once a model has been defined, solution statistics can be requested using functions

provided by the module "stat4l.c". This module will invoke the MVA algorithm con

tained in "mva4l.c" (unless the model has already been solved) and return the statistics

calculated. "param.c" is used to perform some preliminary calculations before the MVA

algorithm is initiated.

When solving models which include both PRIORITY servers and open chains, the

MVA algorithm needs to solve numerous sets of simultaneous linear equations . These are

solved using the LU-Decomposition algorithm provided by the module "ludcmp.c".

A final module called "scrapmod.c" has been included to allow the application to

discard a previously defined model. This module did not form part of the original CMTB

implemented under MicroSnap, since that package would only be used to solve a single

model each time the program was run .

3.5 Model Definition and M a nipulation Rout ines

Before a model can be solved, it needs to be represented in the CMTB data structures.

A special 'bookkeeping' module called 'book4l.c' included in the CMTB is responsible for

populating these data structures.

The following paragraphs describe briefly the interaction between the user interface

and the CMTB 'bookkeeper', and also give an overview of the data structures used by the

CMTB to represent a model.

3 .5.1 Interfacing with the CMTB

Models are built up piece by piece by making appropriate calls to functions in "book4l.c".

Functions are provided for adding workloads (chains), centres and routing information

to the model. Seperate functions are used to change the actual model parameters of each

of these defined workloads, centres or paths, so that one can also modify an existing model

using these routines. Each function used to define or modify a model includes appropriate

checks to ensure that the model is not invalid. For example, one cannot define service

requirements for a class of customer that has not be included in any workload definition

in the model.

Information is oft en passed to the CMTB using linked lists. These lists are easy to

contruct using special routines provided by the CMTB, and are especially convenient for

user interfaces which rely on a textual model specification which needs to be parsed. A

number of different types of lists are provided to carry different kinds of information (eg.

strings or values). These lists are replaced by dynamically allocated arrays in the CMTB

data structures which are more space efficient .

CHAPTER 3. THE XSNAP SOLUTION ALGORITHMS 18

In the CMTB, all centres and classes are allocated centre and class numbers. Functions

are provided for converting these numbers into centre names or workload:class names,

and vice versa. Th se numbers (rather than names) are used when requesting solution

statistics.

3.5.2 Memory Allocation

"book41.c" provides a special function to be used for dynamic memory allocation which

keeps an account of memory usage by the system. In this way the CMTB is able to

provide a summary of the amount of memory used by the calculation routines and by the

application as a whole.

3.5.3 User-defined variables

The CMTB also includes a number of routines for manipulating user-defined variables,

and will keep a symbol table of all variables and allocate space for storing the values of

these variables. These functions can be used by any interface when parsing expressions

containing user-defined variables. Such expressions would commonly be used to define

service rates, routing probabilities or the like.

3.5.4 Model dat a structures

Figure 2 gives a diagrammatic representation of the CMTB data structures used to store

the model. Centres and workloads in the model are stored in alphabetically sorted binary

trees, which can be searched quickly using a binary-search algorithm. Once a model has

been defined, an additional mapping is created to each of the centres and workloads using

arrays of pointers indexed by centre and workload numbers. This allows the solution

algorithms to run more quickly.

Routing information is stored using a sparse matrix representation to take advantage

of the fact that nodes in a network are very rarely fully connected. This results in a

significant space saving in the CMTB .

Service rates for the different classes at each centre in the model are included with the

information defining each centre. This information is also copied to a single array holding

all the service rates, primarily to speed up the solution algorithms.

Solution statistics calculated using the MVA algorithm are tagged onto the model data

structure so that they may be used by the functions in "stat4l.c".

It should be noted that any user interface (such as the GUI in XSnap) that requires a

more sophisticated representation of the model, has to use its own data structures when

CHAPTER 3. THE XSNAP SOLUTION ALGORITHMS

Name

Number of Open Chains

Number of Closed Chains

Number of Centres

Number of Classes

Service Rates - - - - - - - - - - - - - - - ~ Class@ Centre

Open chain Arrival Rates -------- -> I Open chain

Centres
~ _..()

- - - - - - - - - - - - - - - - f- - - - -> 0-- -- 0
0--0

~_,' _..()
Workloads --------------r-----> (}---~ _.- 0

\ }---
~,

\.-

Routing Information ------- --- ->
c::::J
0

0

c::::J

Chain throughput rates ----- --- ~ 1'-_c_h_ai_n ____J

Waiting Time----------------~
Class@ Centre

Queueing Time - - - - - - - - - - - - - - ~ I Centre
'------------1

Relative Throughputs ------ ---~
Class@ Centre

The CMTB Model

Figure 2: The CMTB model data structure

19

CHAPTER 3. THE XSNAP SOL UTION ALGORITHMS 20

building and manipulating models. The model is then simply 'copied' to the CMTB before

it is solved, by using the appropriate functions provided by "book4l.c" .

3.6 Model Validation and Solving Relative Throughputs

Once a model has been set up, we need to firstly validate the routing information, and

then solve the relative throughputs. This must be done before the MVA algorithm can be

used to find any solution statistics.

3 .6 .1 Model Validation

A route validation algorithm is needed within the CMTB to ensure that the defined routing

information is valid. Examples of invalid routing descriptions include:

• Nodes in a closed chain which can be reached from the external environment.

• Routes from a node in a closed chain to the external environment.

• Nodes in an open chain which cannot be reached from the external environment.

• Nodes in an open chain which have no route to an exit point.

• Nodes which are visited in a network, but which are never left.

• Nodes which are left, but never visited.

If a model has invalid routing information, then the relative throughputs of each class at

each centre in the model has no unique solution.

In section 4.2, an algorithm is presented which can be used to check the validity of

a network's routing information. A significant feature of the algorithm is that it is O(n)

where n is the number of nodes in the model. The implementation of this algorithm in

the CMTB is also described.

3.6.2 Relative Throughputs

Central to the solution of product-form queueing networks is the solution of the rela

tive throughputs (or the visit ratio) of each class at each centre in the network. This

information is needed by the MVA algorithm before any solution statistics can be found.

The solution of these relative throughputs involves solving a set of simultaneous, sparse

linear equations. Two methods for solving such a set of simultaneous equations have been

implemented in the CMTB. They are:

CHAPTER 3. THE XSNAP SOLUTION ALGORITHMS 21

• The Conjugate Gradient Method

This method takes advantage of the sparse-nature of the set of linear equations to

be solved and requires no extra storage. Unfortunately, although very quick, this

method generates an unacceptably large sum of square errors when used on large

matrices (say, 100 by 100 elements). The algorithm has been retained, none the less,

since it is apparently possible to increase the accuracy by manipulating the original

matrix. This would require further research beyond the scope of this dissertation.

In any event, t he method is available as an option, and can be used by setting the

appropriate boolean variable in the CMTB.

• LU-Decomposition

Due to the 'failure' of the Conjugate-Gradient method, another algorithm has been

implemented in the CMTB . This algorithm is called LU-Decomposition, and the

version of the algorithm used in the CMTB is called Crout's method with Partial

Pivoting. Although this algorithm does require extra storage, and does not take

advantage of the sparse-nature of the set of simultaneous linear equations to be

solved, it is n vertheless very accurate. The algorithm is therefore the default for

solving relative throughputs in the CMTB.

Both the Conjugate-Gradient Method and LU-Decomposition are discussed in [Recipes 87],

and their implementation in the CMTB is described more fully in section 4.3 .

3.7 The MVA algorithm

The CMTB uses the Mean Value Analysis algorithm for finding solution statistics for

queueing networks. The discussion given in the previous chapter has shown that MVA

still represents one of the better algorithms for solving product-form queueing networks,

especially those with no state-dependent routing. MVA overcomes the numerical under

and overflow problems often experienced with Convolution and is no less efficient than

any of the other algorithms presented.

The MVA algorithm implemented in the CMTB can be used to solve multi-class mixed

queueing networks. The algorithm has also been extended to allow for non-integral pop

ulation levels in closed chains, and to calculate approximate solutions when the model

includes centres with PRIORITY service disciplines 3 .

The implementation of the MVA algorithm is described in detail in Chapter 5 of the

dissertation. Significant features of this particular implementation of MVA are:

3 The reader will remember that PRIORITY servers cannot be represented exactly using product-form
queueing networks .

CHAPTER 3. THE XSNAP SOLUTION ALGORITHMS 22

• the optimal use of dynamically allocated storage for recording intermediate solution

results.

• the integration into the algorithm of approximation methods for PRIORITY servers.

• the interpolation algorithm used to find solutions for networks involving chains with

non-integral MPL levels.

Chapter 5 also sets out the mathematical formulae used for finding solution statistics based

on the MVA solution results. Such statistics include average utilisations, queue lengths,

throughput rates, waiting times, queueing times, cycle times and residence times. The

functions calculating these statistics are included in "stat4l.c".

Chapter 4

Route Validation and Relative

Throughputs

This is the first of two chapters which will describe the algorithms implemented in the

CMTB in more detail.

This chapter describes the algorithms for

• route validation, and

• computing the relative throughput solut ion.

Solution of linear equations in general is also discussed in this chapter.

4.1 Preliminaries

This section will introduce some of the notation used throughout the following sections.

The notation adopted in this dissertation is very similar to that in [Schmidt 89] and

[Krit 82], and the equations presented in this section are also taken from these works

referenced.

There are N service centres and J closed chains. There are](chains and R classes

in total.

A centre can have any one of the following disciplines:

• FCFS (first come first served)

• LCFSPR (last come first served, preemptive resume)

• PS (processor sharing)

• D (delay)

23

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 24

• R (priority server - there are only 2 priority levels)

• M (micro server)

Let L = (Lt, ... , LJ) denote the closed chain population vector where Lk is the integral

number of customers in chain k.

The routing of customers is defined by a transition matrix given by the probabilities

Pir;js, where Pir;js denotes the probability of a customer of class r at centre i, moving

instantaneously to centre j as a member of class s, after being served.

by

The visit ratio ~ir (also called the relative throughput) of class r at centre i is given

N R

~ir = Pout ;ir + L L Pjs ;ir~js
j=1s=1

(2)

where Pout;ir is the probability that a customer of class r will route to centre i on its

arrival into the network. For classes r belonging to closed chains the value Pout;ir is zero

for all (i,r).

Note that for closed chains all the values Pout ;ir are zero and that the values ~ir could

therefore all be multiplied by a scaling factor without affecting the validity of the above

balance equations. In order to obtain a solution we need to introduce an extra equation. I

have added the const raint I:f:1 LrEEk ~ir = 1, where Ek is a closed chain. Another way

to obtain a solution would have been to set one of the values, ~11 say, to some arbitrary

constant and then to derive each of the other ~i•· values using the balance equations. Since

we are interested only in the relative values its makes little difference which method is

used.

The following intermediate results must also be defined:

/ir {

Finally we need the equation

Pik = 2:: / ir
r:(i ,r)EEk

k for Ek a closed chain
Jl.ir

_\k
k J.Lir

for Ek an open chain

=-ik 2:: ~i r
r :(i, r)EEk

K

Pi = L Pik
k=J+l

(3)

(4)

(5)

(6)

Although many of the above results are stored by the CMTB for use in further cal-

culations, the values /ir are not stored. These can be easily calculated as needed, and

J

CHAPTER 4. RO UTE VALIDATION AND RELATIVE THROUGHP UTS 25

would also take up much more space than any of the other values if they were stored. The

other values Pik , p; and 3;k are calculated and stored by the module "param.c" .

rho_chain [i] [k] ("param.c") stores the values Pik

rho_centre [i] ("param.c") stores the values Pi

xL chain [i] [k] ("param.c") stores the values 2;k

4.2 Route Validation

It was decided t hat a "Route Validation Algorithm" should form an integral part of the

CMTB to ensure that the model definition (and solution results) are valid in all instances .

Since no existing algorithms for validating queueing networks could be found by this

author, the algorithm presented in this section has been developed from scratch, and

therefore represents original work .

For convenience we will consider class@centre combinations as nodes. Routing infor

mation is represented as di rected paths between nodes . In the following discussions we

refer only to those class@centre combinations for which routing information exists . If a

class does not visit or leave a centre then that class@centre combination (or node) does

not exist in the chain.

Before a model can be solved, the CMTB must ensure that the routing information is

valid. T he rules defining the validity of a network are:

• Rule 1 (closed chains)

In a closed chain we require that each node must be connected by some route to

all other nodes in the chain, otherwise there can be no steady state solution for

the network . To show this, we consider a chain with some node a that cannot be

reached by any path from some other node bin the chain. Under this scenario, any

customer visiting node b will be forever trapped in that part of the network which

excludes node a. Over t ime, as more and more customers visit node b, they too will

become trapped in that part of the network which excludes node a, until eventually

no customers are able to visit node a ever again. Every time another customer visits

node b for the fi rst time, thus becoming "trapped", the nature and relative loads

in the different parts of the network will change. The state of the network is thus

always changing until no more customers are able to route to node a. Clearly, it

could take an almost infinite amount of time for this state to be reached, and there

is therefore no useful "steady-state" solution for the network .

• Rule 2 (open chains)

Each node in an open chain must be connected by some route to at least one exit

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 26

point, and must be reachable from an entry point. If this were not true then either

customers entering the network would not be able to reach the given node, or those

that did visit the node would never be able to leave the network.

• Rule 3 (closed chains)

By definition, closed chains cannot accept customers from the external environment,

and cannot release customers to the external environment.

Should the model route descriptions prove invalid the model cannot be solved. A valid

routing definition also ensures that the relative throughputs matrix (described in the next

section) has a unique solution.

The most obvious approach to testing Rule 1 (or Rule 2 in the case of open chains),

would be to write a function that could find all the nodes (or exit points in the case of

open chains) that could be reached from a given start node. One could then use this

function repeatedly with each different node in the chain as the starting node. At each

call, the function would need to visit all the other nodes in the network, and this approach

is therefore 0(n 2).

While this may be the easiest and obvious, it is definitely not the best approach. The

CMTB actually uses an 0(n) algorithm to show that a network satisfies all of Rules 1 to

3. This algorithm is derived below.

4.2.1 Restating Rule 1

To understand the algorithm it is necessary to restate Rule 1 as two seperate conditions:

• Condition 1

For any given arbitrarily chosen starting node, there must exist a path to all other

nodes in the chain. This follows directly from the fact that each node must be

reachable from every other node in the chain.

• Condition 2

For each node in the network a route must exist leading back to the original start

node above. Once again, since each node must be reachable from every other node

in the chain, the starting node must be reachable from all the other nodes.

Under condition 2 each node that can be reached from the starting node has a path

leading back to the starting node, which in turn, under condition 1, has a path leading

to every other node in the chain. Thus, each node in the network has a path leading to

every other node, and the network therefore observes Rule 1.

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 27

4.2.2 Restating Rule 2

As with Rule 1, Rule 2 can also be divided into 2 parts:

• Condition 1

Every node in t he open chain must be reachable from the entry point.

• Condition 2

For each node that can be reached from the entry point a route must exist to an

exit point.

These conditions taken together are clearly equivalent to Rule 2.

4.2.3 Flooding

Before we can describe the routing validation algorithm used to test the above conditions,

it is necessary to introduce the concept of flooding, which forms an integral part of the

algorithm.

4.2.3.1 Forward-flooding

Forward-flooding involves visiting each and every node reachable from a given node ac

cording to the routing information provided for the particular chain. Each node visited

can be tagged so that we know that the node can be reached from our original "start"

node.

Forward-flooding can be implemented using recursion.

• If the current node is already tagged then do nothing. Otherwise,

1. tag the current node, and

2. for each other node that can be reached from the current node repeat the

above steps by recursively calling the forward-flooding procedure passing the

next node in the path as the new "current" node.

• If there are no paths leaving the node then we detect an error.

• If a path leads from this node to the external environment and the chain is a closed

chain then detect an error (by Rule 3).

After forward-flooding the network, one can simply check the tags to see which nodes,

if any, cannot be reached from the original start node (or entry point in the case of open

chains). If all the nodes are tagged then we have satisfied the first condition needed to

show that our network satisfies Rule 1 (or Rule 2 in the case of open chains).

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 28

Since each node is visited only once , forward-flooding is O(n) where n is the number

of nodes in the chain.

4.2.3.2 Reverse-flooding

Another version of the flooding algorithm described above is one which floods the network

finding all nodes that can route to a given node. I will call this type of flooding 'reverse

flooding'.

• If the current node is already tagged then do nothing. Otherwise,

1. tag the current node, and

2. for each other node that has a path leading to the current node repeat the

above steps by recursively calling the reverse-flooding procedure passing the

other node as the new "current" node.

• If there are no paths leading to the node then we detect an error .

• If a path leads to this node from the exte rn al environment and the chain is a closed

chain then detect an error (by Rule 3).

Reverse-flooding is O(n) where n is the number of nodes in the chain, provided that

routing information is stored in a form that allows us to know immediately which nodes

route to the current node. Otherwise, at each node we would need to consider all other

nodes to see whether they have a path leading to our current node, thereby making the

algorithm 0(n2)!

4.2.4 The Route Validation Algorithm

The route validation algorithm involves one forward-flood and one reverse-flood to show

that a given chain sat isfies Rules 1 to 3. Since both forward-flooding and reverse-flooding

(given the appropriat e populated data structures) are O(n) the algorithm is then itself

also 0(n), where n is the number of nodes in the chain.

During forward-flooding temporary data structures are built up to record for each

node, a list all other nodes which have routing information leading to that specific node.

This data is needed to allow the reverse-flooding to be performed in O(n) rather than

O(n2).

The complete validation algorithm can be described as follows:

4.2.4.1 Open Chains

For each node accepting customers routing from the external environment

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 29

• Test Condition 1

Forward-flood the network from each entry point and then check that each node in

the network has been tagged. This means that all nodes in the network are reachable

from the entry node.

• Test Condition 2

Reverse-flood the network from each exit point and then check that each node in

the network has been tagged. This means that each node in the network has a path

leading to an exit point.

If no entry points .or exit points exist we detect an error.

4.2.4.2 Closed Chains

Using any node in the chain as the start node,

• Test Condition 1

Forward-flood the network from the chosen start node. Check that each node in the

network has been tagged to ensure that all nodes can be reached from the chosen

start node.

• Test Condition 2

Reverse-flood the network from the chosen start node. Check that all nodes have

been tagged to ensure that the start node can be reached from all other nodes in

the network.

If no nodes have routing information we detect an error .

4.2.5 Implement ation of the algorithm

The route validation algorithm was developed in conjunction with the routing data struc

tures used in the CMTB. As can be seen from the above description of the algorithm,

tagging requires one extra storage space for each node in the network.

Furthermore, to allow reverse-flooding we need to allocate extra temporary storage for

each node in the network, listing all the nodes which have a path leading to the current

node. This information is recorded in linked lists, and there is one linked list for each node

in the network.

The algorithm has been divided into three main functions: validateworkld() which

will validate a specific workload, forwardflood () to perform the forward-flood and reverseflood ()

to preform the reverse-flood. All three functions can be found in the module "book4l.c" .

One other function, validateroutes () ,can be used to check all workloads at once. This

function merely calls validateworkld() for each workload in the model.

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 30

4.2.5.1 The funct ion validateworkld()

Calls are made to the function forwardflood() and reverseflood() to flood the network

from a specified start node (or entry point in the case of an open chain).

A call t o the function reset tags() resets the tags to FALSE for a specific workload,

while a call to checkt ags () will return the node number of any node which has not been

tagged, or -1 if all nodes are tagged.

4.2.5.2 The funct ions fowardflood() a nd reverseflood()

These function use r cursion to flood the network starting at a specific node, and operate

exactly as described in sections 4.2.3.1 and 4.2.3 .2.

4.3 Solving r elative throughputs

In Section 4.1 the concept of relative throughputs was introduced. The values ~ir must be

solved before the model solution statistics can be found by the MVA algorithm.

Relative workload throughputs are solved in the module "through.c" by a call to the

function solve_thr u_workload(). Alternatively all workloads can be solved by a call

to solve_thru_each_workld() . The throughputs are solved using either the Conjugate

Gradient Method, or LU-Decomposition, both of which are described in section 4.5 .

This section will describe how the linear equations are set up for solving these relative

workload throughputs.

4.3.1 Introducing nodes

The reader is reminded of the equation defining the values ~ir - the relative workload

throughputs of class r customers at the centre i.

This equation can also be represented as

max

~u = Pout ;u + L ~vPv;u
v=l

(7)

where L::uEEk ~u = 1 for each Ek which is a closed chain. In the above equation we have

replaced the subscript ir by a single variable u which represents a single class@centre

combination. This is done so that the equation is more easily understood, and since this

representation matches that used in the CMTB code more closely. Using this notation

Pu;v represents the probability that a customer at node u will route immediately to node

v once being served. The value max is the totaJ number of nodes in the network.

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 31

4.3.2 One workload at a time

While equation 7 can be used to solve the relative throughputs for all the chains in the

model simultaneously, it is more economical if we restrict our attention to a single workload

at a time. This is especially advantageous when routing information for only one workload

has been changed, since it prevents us from re-solving the relative throughputs for all the

chains in the model.

Even when solutions have to be found for all workloads, solving the equations one

workload at a time can be quite significantly faster. Consider a network with J closed

chains, and where each workload j has kj nodes (class@centre combinations). If we solve

the set of simultaneous equations for all workloads combined, the solution time is O((k1 +
k2 + k3 + ... + kJ)3

) . Solving the equations one workload at a time, on the other hand,

is O(kr + k~ + k~ + ... + k}). This difference in the solution times is especially marked

when J and each of the kj are large.

4.3.2.1 Notation

When we restrict our attention to single workloads the notation for classes, centres and

nodes becomes much more complicated, since the nodes in a workload (ie. all class @

centre combinations , where the class is a member of the workload in question) do not

come from one continuous subset of the complete set of nodes in the model.

For convenience, the formulae and matrix representations used in the following sections

will use node numbers running from 1 through to n. These numbers do not represent the

actual node number in the model, but rather an enumeration over the subset of nodes

that have routing information and which belong to the particular workload. We exclude

all nodes in the workload for which no routing information exits, since these nodes will

all have a relative throughput of zero. In this interpretation n represents the number of

nodes in a single workload for which routing information exits, and not the total number

of nodes in the model.

4.3.3 Open chains

In the case of open chains we note that there is no added constraint for equation 7. Instead

the equation has a unique solution.

The equation can be translated into

n

Pout;u = ~u - L ~vPv;u
v =l

which can be represented quite simply as the following matrix equation

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 32

(1 - Pt;t) -P2;1 -P3;1 -Pn;l 6 Pout;!

-Pt;2 (1- P2;2) -P3;2 -Pn;2 6 Pout;2

-Pt;3 -P2;3 (1- P3;3) -Pn;3 6 Pout;3

-Pl;n -P2;n -P3;n (1- Pn;n) ~n Pout;n

which we recognise as having the form A· x = b. In this form this set of equations is easily

solved using either of the algorithms described in Section 4.5.

4.3.4 Closed chains

In the case of closed chains the equation governing relative throughputs is subject to the

constraint that all throughputs (for that workload) sum to one.

The equation and the constraint together translate into

n-1

Pn;u = ~u + L~v(Pn;u- Pv;u) when u < n
v=l

and
n-1

~n = 1- L~u
u=l

which has a matrix representation of the form

6 Pn;l

6 Pn;2

A·

~n-1 Pn;n-1

~n 1

(1 + Pn;1 - P1;1) (Pn;1 - P2;t) (Pn;l- Pn-1;1) 0

(Pn;2 - Pt;2) (1 + Pn;2- P2;2) (Pn;2- Pn-1;2) 0

where A =

(Pn ;n-1 - P1;n-1) (Pn;n-1 - P2;n-d (1 + Pn;n-1 - Pn-l;n-d 0

1 1 1 1

This set of equations can be solved easily using either of the algorithms described in

Section 4.5.

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 33

4.4 Checking for infinite queues

When a model includes customers belonging to open chains, it becomes possible for a

centre to have customers arriving faster than they can be served. In this case we would

generate an infinite queue at the centre.

After solving the relative throughputs for all chains in the model, we check that no cen

tre has an infinite queue. This is done by the function checkrnodelsoln() (in "stat4l.c")

by a call to the funct ion verify_open_thruputs () (in "book4l.c").

This check can be accomplished by checking that Pi is less than one for each centre i

that is not a DELAY centre.

We do, however, have a problem when the model includes PRIORITY servers. In this

case the above test does not work. Rather, we must check that all the values W;r solved

in Step 6b of the MVA algorithm (fig 3) are non-negative. This check must be performed

each time equation 17 is solved (see section 5.2.9).

4.5 Solving linear equations

The CMTB must be able to solve simultaneous linear equations for two reasons:

1. To solve the relative throughputs of customers at centres.

2. To allow the MVA algorithm to solve the model when PRIORITY servers have been

introduced.

This section will present two algorithms that have been implemented in the CMTB for

solving sets of simult aneous linear equations.

4.5.1 Using two solution algorithms

Solving the relative customer throughputs is typically a very time-consuming exercise -

complicated models can often have workloads with routing matrices of the order of 100

by 100 elements. One might expect that we could use the same function to solve any set

of linear equations. However, the CMTB should ideally take advantage of the fact that

these large matrices are typically very sparse and therefore implement an algorithm that

will solve such sets of sparse linear equations more efficiently.

In the CMTB one such 'sparse-matrix ' algorithm has been included, which is based

on the Conjugate Gradient method for solving non-linear equations. This method was

originally implemented in the CMTB sin ce it boasts a significant time advantage over

other typical algorithms when applied to sparse matrices (see [Recipes 87]) ..

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 34

As stated in chapter 2, it was found that the method was only robust for smaller

matrices, and therefore the implementation of the algorithm has not really offered much

advantage. None the less, as mentioned earlier, the algorithm has been retained as an

option as it is apparently possible to increase the accuracy of the solution obtained by

manipulating the original matrix. This would require further research and development

beyond the scope of this dissertation.

Obviously a sparse matrix algorithm cannot be used efficiently to solve linear equations

for which the representative matrix is not sparse. We have already noted that the MVA

algorithm must be able to solve such sets of linear equations. Consequently one other

algorithm for solving sets of linear equations - The LU- Decomposition Algorithm -

has been implemented in the CMTB. Although this algorithm cannot take advantage of

any sparse matrix representations of the set of linear equations, it is very accurate and is

therefore also the default for solving the rela tive throughputs.

4.5.2 The Conjugate Gradient Method

This section describes the Conjugate Gradient method for solving a set of linear equations.

It also describes how this algorithm has been implemented in the CMTB to solve the

relative throughputs for each workload.

A further discussion of the Conjugate Gradient Method can be found in [Recipes 87].

4.5.2.1 Basis of t he algorithm

Let us assume that we have a matrix representation of a set of linear equations A· x = b.

Also, let us consider the function

1 2
f(x) = -lA · x - bl

2
(8)

Clearly this func tion f(x) has a single minimum, at a value x that satisfies the set of

linear equations A · x = b. The conjugate-gradient method can be used to minimise such

a function, and thus solve the set of linear equations.

The Conjugate Gradient method is an iterative solution algorithm. We start with an

initial estimate for our solution vector, and keep adjusting this estimate until we converge

on the actual solution.

For the Conjugate Gradient method to work, we only need to be able to calculate

A· y and AT· y where AT is the transpose of A and y is some arbitrary vector. If the

matrix A is sparse then these calculations do not take the usual N 2 operations, but rather

a smaller number of operations determined by the number of non-zero elements in A.

If we can represent t his matrix using a suitable sparse-matrix representation, then these

calculations can be done relatively quickly.

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 35

4.5.2.2 Implementation of the Conjugate Gradient Method

The code for the Conjugate Gradient method is contained in the module "through.c".

This module has two special functions asub() and atsub() that will calculate the value

of A· x and AT · x respectively. A is the array with elements as defined in Section 4.3.2

above, and x is an arbitrary vector passed in the function parameter list.

We note that our prob_list_root data structure already represents an efficient sparse

matrix representation system for our routing information. We can therefore use these

routing information data structures directly in the functions asub () and at sub().

The body of the Conjugate Gradient method is contained in the function sparse()

which is responsible for controlling the iteration until the algorithm finally converges on the

solution vector. This function will return the solution vector as well as the sum-of-square

residuals of the estimated solution.

The code for the function sparse () was reproduced from [Recipes 87].

4.5.3 L U-Decomposition

This algorithm is a general purpose algorithm for solving sets of linear equations, and is

quoted as the preferred method by many authors for solving such equations. The version

of the algorithm that has been implemented in the CMTB is Crout's Method with Partial

Pivoting, and was reproduced from [Recipes 87].

The code for the LU-Decomposition algorithm is contained in the module "ludcmp.c".

4.5.3.1 Basis of the LU-Decomposition algorithm

Suppose we are able to write the matrix A as a product of two matrices,

L·U=A

where Lis lower triangular and U is upper triangular. Then we can solve the linear set of

equations

A· x = (L · U) · x = L · (U · x) = b

by first solving for the vector y such that

L ·y = b (9)

and then solving

U·x=y (10)

The advantage of breaking the linear set up into two successive ones is that the solution

of a triangular set of equations is quite trivial, with equation 9 being solved by forward

substitution and equation 10 being solved by backward substitution.

CHAPTER 4. ROUTE VALIDATION AND RELATIVE THROUGHPUTS 36

4.5.3.2 Limitations of the LU-Decomposition Algorithm

Unfortunately, the LU-Decomposition algorithm does not take advantage of the fact that

the set of linear equations may be sparse. Instead, the equation matrix must be represented

in its entirety. Furthermore, there is little chance of being able to modify the algorithm to

take advantage of the sparseness of the matrix A since the algorithm modifies the matrix

A , and it is unlikely that the new matrix would remain sparse.

4.5.3.3 Implementation of the algorithm

The functions ludcmp () and lubksb () have been reproduced from [Recipes 87] . To find

the solution to a set of linear equations A· x = b we make the following calls

ludcmp(a, n, indx, d)

lubksb(a, n, indx, b)

The answer x will be returned in b []. The original matrix a[] [] will have been destroyed.

The array indx [] is of dimension n (where a[] [] is n x n) and holds the row permutation

of a[][] after the LU-Decomposition. The value d is output as +- 1 depending on

whether the number of row interchanges was even or odd, respectively.

4.6 Solving sets of linear equations in the MVA algorithm

Simultaneous linear equations that need to be solved by the MVA algorithm are solved

using LU-Decomposi tion which is described in Section 4.5. The MVA algorithm is respon

sible for setting up the matrices which represent the linear equations and passing these to

the LU-Decomposition module.

Chapter 5

MV A and Statistical Measures

This is the last of three chapters in the dissertation concerning the CMTB. This chapter

describes how the MVA solution algorithm has been implemented in the CMTB, and

also gives a detailed account of the mechanics of the algorithm. Formulae defining the

statistical measures available to the modeller, after the model has been solved, are given

in the final section.

5.1 Introduction to the Mean Value Analysis algorithm

The MVA algorithm is the most complicated solution function in the CMTB.

Although the solution of the linear equations defining relative throughputs can some

times take longer than the MVA solution itself, the problem of solving a set of linear

equations is an old one, and one for which many well-known algorithms have been devel

oped.

The MVA algorithm on the other hand is complicated. In fact, when priority centres

are introduced the MVA algorithm must itself be able to repeatedly solve sets of linear

equations. The MVA algorithm also requires a large amount of temporary storage for

intermediate solution results, and an efficient means to allow mapping to and from this

storage.

This chapter will describe the MVA algorithm in detail, and then go on to explain how

the algorithm has been implemented in the CMTB.

5.2 The Algorithm

In its most basic form the MVA algorithm is used to solve:

• relative chain t hroughput rates T"k(L),

37

CHAPTER 5. MVA AND STATISTICAL MEASURES 38

• average waiting times Wt1JL), and

• average total closed population queue lengths Q;(l)

for all closed chains, and state independent FCFS, LCFSPR, PS and DELAY centres.

In the CMTB this algorithm has been extended to allow centres with a PRIORITY

service discipline and PRIORITY classes. In this form the MVA algorithm will also solve

the average waiting time Wir for all classes rat priority centres i. Only two levels of priority

are supported in the CMTB although this could easily be extended. The reader should

note that only an approximate solution can be found where chains include PRIORITY

service centres. However, by limiting the number of priority levels to only two, this solution

is sufficiently accurate to be used confidently.

Throughout this section the theory regarding the algorithm and notes on the actual

implementation of the algorithm will be mixed freely. This approach will hopefully allow

readers to grasp more quickly how the MVA algorithm has been implemented in the

CMTB. Readers who are interested in more technical texts may wish to study [Krit 82].

The following paragraphs will give an outline of the algorithm, and also describe in

detail how each of the steps of the algorithm have been implemented in the CMTB.

5.2.1 Outline of the algorithm

The MVA algorithm is laid out in Figure 3. This algorithm is taken from Kritzinger

[Krit 82] with amendments to Step 4 and 6 to allow the solution of models having PRI

ORITY service centres. This figure represents an outline of the algorithm as it has been im

plemented in the CMTB. The notation used is the same as that introduced in Section 4.1,

except for the value Wir referred to in steps 4 and 6 which is defined in Section 5.7.4

below.

The function mva() controls all of the steps 1 through 6, with different functions

being called to carry out the calculations specific to each of the steps. The reader should

note that the function mva_solution() is the 'top-level' function that should be called to

initiate the solution algorithm. This function ensures that the correct storage is allocated

for the MVA solution functions, and also checks to see whether the MVA results need to

be interpolated for non-integral MPL levels (See Section 5.4).

5.2.2 Storing intermediate results at each population vector i

The MVA algorithm requires certain statistics to be stored during each iteration of the

outer loop (step 2). These stored values are needed in each of J later iterations that have

the same population vector r but with one more customer in some chain k' 1 ~ k ~ J,

(ie. with population vector (7 + ek)).

CHAPTER 5. MVA AND STATISTICAL MEASURES 39

Figure 3: The MVA algorithm for solving multiclass open and closed queueing networks.

STEP 1 (Initialisation)
For each state independent FCFS, PS or LCFSPR centre i,
we set Q;(O) = 0.

STEP 2 : Main loop over all closed population vectors. Let i = (i 1 , .. . , iJ)
FOR i 1 = 0 to L1 ; ... ;iJ = 0 to LJ do; (Note iJ changes most rapidly)

STEP 3 : (Loop over all closed chains)
FOR k = 1 to J do;

STEP 4 : (Loop over all centres)
FOR i = 1 to N do;

STEP 5

STEP 6:

~ (I!p;) (Q;(i- ek) + 1)
PiJs..
:::: ik

Lr:(i,r)EEk { ~ W;r(i)}

end of loop i

for state independent FCFS, PS
or LCFSPR centre i

for a DELAY centre i

for a PRIORITY centre i

(Compute the relative throughput of the closed chain k)

applying Little's Law to chain k

end of loop k (Step 3)

(Loop over all centres)
FORi= 1 toN do;

(Compute Qi([) quantity required during next iteration of step 4.)

J

Q;(i) = L:=:ijT;*(i)W;j(i) for each state independent
i=I FCFS ,PS or LCFSPR centre i

(not computed for DELAY service centres)

If i is a PRIORITY centre, we calculate the value W;r for all
classes r belonging to an open chain. See Step 6b - Section 5.2.9

end of loop i

end of loop i1 , ... , iJ

CHAPTER 5. MVA AND STATISTICAL MEASURES 40

5.2.2.1 Calculating the width of the temporary stores

The number of temporary stores required for each of these statistics depends on the

maximum life or width of such a store. We can determine this width by calculating the

number of iterations over the loop i1 , ... , iJ that must be made before the stored statistic

(calculated in the present iteration i) is no longer needed. Clearly, this will occur after we

reach the population vector (i1 + 1) , i2, i3 , .. . , iJ (assuming iJ changes most rapidly).

The width '1/J of these temporary stores is therefore given by the equation

(11)

In the CMTB this value '1/J is calculated by the function Vectors..mem_req () , and stored

in the global variable m_cust_vectors in the module "mva4l.c".

5.2.2.2 Minimising the width

The reader may note that when arranging the closed chains in the array mod- >workldarray []

the function put_wrklds_in_array() will ensure that the chain with the highest MPL level

will be assigned the lowest chain number. This will minimise the value '1/J and can repre

sent quite a significant space saving in the MVA algorithm. The maximum saving possible

will be in the order of the ratio of the highest to the lowest closed chain MPL levels.

5.2.2.3 Mapping population vectors onto an array

We now need a function that will map the vector i onto an array of dimension m_cust_vectors.

This mapping is provided by the function w(i) where

or

w(i) = iJ + iJ-I(LJ + 1) + iJ-2(LJ + 1)(LJ-l + 1)

+ ... + i2(LJ + 1)(LJ-1 + 1) · · · (L3 + 1)

wo'l = t, { ;, iL (L; + 1)}
Using this notation I1~+ 1 (Lj + 1) is defined to be equal to 1. See Step 4 below for a

discussion on how the function index ..map() can be used to calculate W (t).

5.2.3 Step 1 - Initialisation

The values Qi(i) are stored by the array m_Q_cust [] []. The first index holds the centre i

and the second w(i) .

CHAPTER 5. MVA AND STATISTICAL MEASURES 41

For DELAY centres we note that the value Qi({) does not need to be calculated, and

so the pointer m_Q_cust [i] is set to NULL where i is a delay centre. The reader should

note that in C a two-dimensional array is represented as an array of pointers to one

dimensional arrays. Similarly, a three-dimensional array is merely an array of pointers to

two-dimensional arrays. The technique of setting a pointer to NULL and not allocating

storage space for a second or even third dimension, has been used repeatedly in the CMTB.

This not only saves space but also allows some functions to see which values are zero

without actually having to calculate them. This is done by checking for NULL pointers.

The reader is referred to Section 5.5 for further notes on dynamic memory allocation.

The function ini t_Q () is used to initialise all the elements of m_Q_cust [] [] to zero.

5.2.4 Step 2 - Looping over all closed population vectors

We cannot explicitly express the loop over all customer population vectors (i 1 , ... , iJ)

using normal for(; ;) statements, without restricting J to be some constant value.

Clearly, this would be unacceptable.

The function next_pop 0 is used to simulate J nested for statements. When first

called, this function will initialise the population vector to zero. On subsequent calls, the

function will change t he population vector and thereby mimic the action of several nested

for statements. This function (taken from Nijenhuis [Niji 78]) was originally implemented

by Renate Schmidt, and has been only slightly modifi ed in the present implementation.

5.2.5 Step 3- Looping over all closed chains

This step. of the algorithm can be implemented quite trivially using a for(

ment, and is mentioned here only for completeness.

5.2.6 Step 4 - Computing average waiting times Wi'k(i)

) state-

The real work of the MVA algorithm is done in steps 4 through 6. The Average Waiting

time for customers in chain k at centre i, is calculated according to the formula set out

in Step 4 of figure 3. The function calc_W_chain() implements this formula.

The values Pik, 2ik and Pi were introduced in Section 4.1, and are stored in the arrays

rho_chain [] [], xLchain [] [] and rho_centre [] respectively. Each of these arrays is

declared type extern in the module "mva4l.c" , and are originally defined in the module

"param.c".

CHAPTER 5. MVA AND STATISTICAL MEASURES 42

5.2.6.1 Introducing the function index....rnap()

We note that in the case of state independent FCFS, PS or LCFSPR centres the value

Q;(i- ek) is needed to solve W;'k(i). This value has been stored in the array ro_Q_cust [] []

during a previous iteration of Step 6. However, we need a function that will map the

population vector (i- ek) onto the appropriate array index. The function index....rnap()

performs such a mapping, and allows the calling function to specify which chain k is to

have one customer 1 ss than that of the present population vector i. Thus to obtain the

array index for population vector (i- ek) we pass index....rnap() the present population

vector i and the chain number k. If we set the chain number k equal to NODEC (defined

as -1) then the funct ion index....rnap() will return the array index value for the population

vector i.

The reader should note that the function index ...map () is not only needed in step 4 of

the MVA algorithm, but also in steps 5 and 6b.

5.2.6.2 Calculating W;r for PRIORITY centres i

For PRIORITY centres i we need the values W;r for each class r in the chain k which

visits that centre i. The values W;r can be estimated according to the following equation

(12)

s:P(s)<P(r)

where P(s) represents the priority level of class s customers, and P(s) < P(r) implies that

class s customers have a higher priority than customers of class r.

As can be seen from the formula above the values W ;s and T;s must be available

from previous iterations of the loop it, ... , iJ. The values W;s can be calculated using

equation 12 and stored using the same type of array structure used to store the values

Q;. The values Tis can be obtained by equations 21 and 20 for open and closed chains

respectively. We note that using equation 20 would involve the value T; (i- ek) and so

the value Tk calculat ed in each iteration of Step 6 would also need to be stored.

The arrays ro_W_cust [] [] [] and ro_Lcust [] [] have been used to store the values Wis

and Tk respectively in each iteration of Step 2. The values W is must be calculated and

stored for all classes, from both open and closed chains, so that they may be used in

equation 12 in following iterations of the loop it, ... , iJ. However, equation 12 can only

be used to solve W;r(i) for classes r from closed chains. Therefore the values W;r(i) for

classes r from open chains must be calculated by some other formula. Such a formula is

given in Section 5.2.9 below.

CHAPTER 5. MVA AND STATISTICAL MEASURES 43

5.2.6.3 Optimising the solution for PRIORITY centres i

Equation 12 must be evaluated many times in the sum represented in Step 4 of figure 3.

Therefore the calculation has been optimised as effectively as possible through the use

of the static variables ddi vide and top in the function calc_W_cust () (The reader will

remember that in C static variables do not lose their values between function calls). To

see how this optimisation has been realised we write equation 12 as

where

and

and the variable

__!.._ +top
W· (i) - ..:....:11-•:..:..._r --

1r - ddivide

top = L { Wis(i- ek) X d_t_is}
s:P(s):SP(r)

ddivide = 1- L (d_t_is)
s:P(s)<P(r)

(13)

(14)

(15)

ddivide has an initial value of one, and top is initialised to zero . We can calculate top

and ddi vide simultaneously, noting that the value d_t_is (calculated for each class s in

the sum used to calculate top) may also need to be subtracted from ddivide ifP(s)<P(r),

as shown in equation 15.

When we calculate the value Wik(i) using the sum presented in Step 4 of figure 3,

equation 13 must be solved repeatedly for each class r belonging to chain k. However,

given a priority centre i , then for each class r in a single chain k the values for both

top and ddi vide do not change, since all classes belonging to the same chain must have

the same priority. Thus, by using the static variables top and ddi vide we need calculate

equations 14 and 15 only once in the sum represented in Step 4 of fig 3. The static

variables last chain and last centre are used to check whether top and ddi vide must

be recalculated when the function calc_W_cust () is called.

5.2. 7 Step 5 - Computing the relative chain throughputs T;(?)

The values T;(i) can be calculated quite trivially using the formula presented in Step 5 of

Figure 3. This is done by the function calc_LchainO.

We must remember that if there are PRIORITY centres in the model then the values

T;(i) must be stored so that they may be used in Equation 12 in later iterations of the

loop i1, ... , iJ. These values are stored in the array m_T _cust [] [] .

CHAPTER 5. MVA AND STATISTICAL MEASURES 44

5.2.8 Step 6a - Computing Qi(i)

The values Qi(T) are computed by the function calc_Q_cust () and then stored in the

array m_Q_cust [] []. These values are not computed for DELAY centres.

5.2.9 Step 6b - Estimating Wir for priority service centres z and cus

tomers of class r from open chains

As pointed out above, the values Wir must be calculated for all classes r that belong to

open chains. These values are stored in the array m_W_cust [class] [centre] [wO)J for

use in solving Equation 12 in later iterations over Step 4.

5.2.9.1 The mathematical basis

Sevcik and Mitrani [Sevcik 79] have shown that for r : (i, r) E Ek. i a PRIORITY centre

and Ek an open chain , equation 12 can be rewritten as

where

and

1 ""' {Tis(i) -} -- . + ~ - _-Wis(i) + C1(i)
J.ltr s:P(s)=P(r) J.lu

Wir(i) = ---------~~------
C2(iJ

s:P(s)<P(r)

C2(i) = 1- L T is (i)j J.lis
s:P(s)<P(r)

(16)

It should be noted that equation 16 is only an approximation. If we solve equation 16 for

classes in descending priority order, then the values C1 (i) and C2(T) will always be known.

In practise, equation 16 can be more usefully written as the set of simultaneous equa

tions:

C2(i)Wir(i)- L Tis(i)Wis(Y = ~ + C1(i)
s:P(s)=P(r) J.lis J.lir

(17)

This set of equations does not necessarily have a solution, since open class customers can

arrive at a centre faster than they are being served, and therefore generate infinite queue

lengths Qir and infinite waiting times W ir· Since the introduction of PRIORITY classes

will modify the service received by each class in ways that cannot be predetermined we

are forced to check for infinite queues by checking that the solution vector contains no

negative components each time equation 17 is solved.

CHAPTER 5. MVA AND STATISTICAL MEASURES 45

5.2.9.2 Implementation in the CMTB

In the CMTB there are only two priority classes, and therefore we solve only two sets of

simultaneous equations 17 - one for priority class customers (C1(i) = 0 and C2(i) = 1)

and one for normal class customers. When solving the set of equations for normal class

customers, the results from the previous solution involving only priority classes is available

to calculate C1(i).

The set of linear equations 17 is solved by the function calc_W_custs_openchains ().

This function will accept a boolean parameter priors which will dictate whether the set of

equations must be solved for priority class customers (priors is TRUE) or normal class cus

tomers (priors is FALSE). The variables priori ty_open_classes and normaLopen_classes

store the number of priority classes and normal classes respectively that belong to open

chains. These two numbers also represent the dimension of the set of linear equations used

when solving 17 for priority and normal classes respectively.

The LU-Decomposition algorithm has been used to solve these sets of linear equations.

This algorithm is discussed in Section 4.5. After each call to the LU-Decomposition

algorithm, we check that the solution vector has no negative components. The reason for

implementing such a check is to detect any infinite queues as described above.

It must be noted that when the matrix representation of 17 is set up, we need some map

ping from each node (i; r) to its allocated row in the matrix. In calc_W_custs_openchains ()

this mapping is not explicit but rather implicit. The nodes (i; r) are allocated rows of this

matrix in a sequential manner with the loops in the function extracting each of these nodes

one by one. By using the exact same loops we can extract the results from the solution

vector and insert them into the appropriate stores . The reader is referred to the code to

see exactly how this implicit mapping works.

5.3 Storing the values Wi,· for PRIORITY centres z and

classes r belonging to open chains

In section 5.2.9 an equation was presented to approximate the values W;r. These values

were needed to calculate the relative chain waiting times W;'k at each PRIORITY centre

i, in Step 4 of the MVA algorithm.

However, these calculated values Wir have another important use. It will be shown

in section 5.7.2 that the average queue length for class r customers belonging to an open

chain Ek at a PRIORITY centre i, can not be calculated directly using the results from

the MVA algorithm. Instead, we must apply Little's Law

CHAPTER 5. MVA AND STATISTICAL MEASURES 46

to calculate the value Q;r(L).

Thus the values W;r must be stored for all PRIORITY centres i and classes r be

longing to open chains. The function shutdown_rnva() copies these results into an array

W_open [] [] . This array is declared in the module "stat4l.c" and allocated storage space

in the function check_priori ty _centres() in the module "book41.c" .

5.4 Interpolation of the MVA results

The MVA algorithm can only be used to solve models where each chain has an integral

population level (MPL) . We can, however, estimate a solution when one or more chains

has a non-integral average population level by interpolation.

There are literally hundreds of interpolation algorithms that can be used to interpolate

values over a multi-dimensional space. Many such methods are described in the literature

[Conte 65], [Ralston 65] and [Recipes 87]. The algorithm that has been adopted in the

CMTB is the same as that proposed in the earliest versions of MicroSnap .

The values that are interpolated include

• m_Wstar_chain [centre] [chain]

• m_Tstar_chain [chain]

• m_Q_centre[centre]

These values represent the values W;'k, r; and Q ; respectively. The final interpolated

values are given as t he solution statistics of the MVA algorithm.

5.4.1 The interp olation algorithm

Suppose we wish to calculate R(i), where the population vector i has one or more non

integral components. Keeping with the adopted notation the vector i has dimension J,

where J is the number of closed chains in the model.

We can calculate the values R(x) for a set of m population vectors x, where x has no

non-integral components, and for each chain k, ik- 1 < Xk < ik + 1. The size of this set

m is subject to the constraint m::; 21 . Clearly, the set of results (R(x1), .. . , R(xm)) will

surround the true solution R(i) in a m-dimensional space, and therefore present a good

basis for our interpolation.

Associated with each of these results R(xk) is a weight, which will be used to estimate

R(i) as a weighted average of the values R(x) . This weight is given by the formula

(18)

CHAPTER 5. MVA AND STATISTICAL MEASURES 47

thus giving more weight to those calculated values where the approximate (integral) pa

rameters are closest to the original (non-integral) network parameters.

For simplicity, we denote R({) by R, R(ik) by Rk, and wxk by Wk in the following

equation
m

LRkwk
R = _k=_l'---

m

LWk
k=l

This equation gives the final interpolated result R (or R({)).

(19)

As a refinement, we do not need to store the values Rk and the associated population

vectors before applying equation 19, but can computeR by keeping a running total of the

numerator and denominator shown in the above equation. Thus we merely capture the

values Rk in each of the appropriate iterations of the loop it, ... , iJ . This algorithm can

be summarised as

• initialise both w and R to zero

• for each relevant population vector Xk(1::; k::; m)

1. compute Rk,

2. compute the weight Wk using equation 18

3. let w = w + Wk

4. let R = R + Rk

• finally, R = R/w is the interpolated result

5.4.2 Collecti11g the MVA results for interpolation

From the above description of the interpolation algorithm, we see that the values rn_Tstar _chain[],

rn_Q_centre [] and rn_Wstar _chain[] [] need to be collected for each of the population vec-

tors Xk.

The function mva_interpol () accepts these values in its parameter list, and uses the

arrays Tstar _chain[], Q_centre [] and Wstar _chain[] [] to calculate the numerator of

the equation 19. The global variable sum is used to sum the weights of the statistics used

in the interpolation. These weights are calcu lated according to equation 18 in the function

weight().

The boolean interpol is used to tell the function rnva() that a call to rnva_interpol ()

is necessary after each iteration of step 6.

The final interpolated results are obtained in the function rnva_solution () by dividing

each of the values in Tstar _chain[], Q_centre [] and Wstar _chain[] [] by sum.

CHAPTER 5. MVA AND STATISTICAL MEASURES 48

The reader should note that when the model includes PRIORITY servers and open

chains, the interpolation process at this stage is still incomplete. The reason for this is

discussed in Section 5.4.3.

5.4.3 Interpolating the values Wir for PRIORITY centres i and classes

r belongin g to open chains

As pointed out in Section 5.2.9 the values Wir (where i is a PRIORITY centre and

class r belong to an open chain) need to solved approximately in Step 6b of the MVA

algorithm using the set of linear equations 17. These results are then used directly by the

function ave_wait_t i me() in the module "stat4l.c" to give the average waiting time of

such customers r at the PRIORITY centre i (See section 5.7.4).

5.4.3.1 The incon sistency after interpolation

However, if i possesses some non-integral components, then the final values Wir that are

calculated and stored in the array location m_W_cust [r] [i] [m_cust_vectors-1] do not

correspond to the population vector i but rather to the vector Xm which is the vector i
with every component rounded up to an integral MPL. Clearly, we must re-solve the set

of equations 17 using the new interpolated values of Ti,· and Wir·

5.4.3.2 Re-solving

Before we can resolve equation 17 using the funct ion calc_W_custs_openchains (), the

interpolated results must be substituted for those in the array locations

m_Lcust [] [m_cust_vectors-1] and m_W_cust [] [] [m_cust_vectors-1]. Step 6b is then

repeated in the funct ion solve_mva() , and the subsequent call to shutdown_mva() will

copy the relevant new ' interpolated' values of l¥ir into the W_open [] [] array.

5.5 Dynamic memory allocation in the MVA algorithm

The memory requirements of the MVA algorithm are complex. This is especially so when

a model involving PRIORITY centres is solved . Consequently, memory management in

the module "mva4l.c" is complicated.

We will trace the steps in typical a call to the function mva_solution().

5.5.1 Deleting old solution results

If the model has been solved previously, we deallocate the storage used by mod- > Q_centre [] ,

mod->Tstar_chain[] and mod- > Wstar_chain[] [] . We cannot use this storage again, as

CHAPTER 5. MVA AND STATISTICAL MEASURES 49

the number of closed chains J may have been changed by a MODIFY_WORKLOAD

statement, thereby making the dimension of the above stores inappropriate.

We note also that even ifthe model has been solved previously, the stores mod->Tstar_chain []

and mod->Wstar_chain[] [] have not necessarily been allocated any storage since we may

have had no closed chains in the model. Thus we must check that the values mod->Tstar

and mod->Wstar are not null before we can deallocate them.

5.5.2 Storage for interpolation

If the MVA results need to be interpolated, the arrays Tstar_chain [], Q_centre [] and

Wstar _chain[] [] , are allocated space to keep a running total of the numerator in equa

tion 19 for each ofthe solution statistics. This allocation is done in function mva_solution().

These arrays are never freed, but rather tagged onto the model data structure as the final

interpolated results (after being divided by the normalising factor sum).

The array avg...mpLchain [] is allocated space to store the non-integral average MPL

levels of each chain. T his vector is needed by the function weight() when calculating Wxk

defined by equation 18. This array avg...mpLchain [] is allocated and freed in the function

mva_solution().

The array int_pop_chain [] is allocated space to store the final population vector

needed in the MVA solution. This vector is the same as avg...mpLchain [] with each

component rounded up to an integral value. This array is both allocated and freed in the

function mva_solution().

5.5.3 The function startup mva()

This function is called by mva() before any of the steps described in figure 3 are carried

out. startup...mva() initialises certain variables before the body of the MVA algorithm is

entered. Also, space is allocated to store all the intermediate results of the MVA algorithm.

The arrays m_Tstar_chain [] , m_Wstar _chain[] [] , m_Q_centre [] and m_Q_cust [] ,which

have been introduced in previous sections, are all allocated space in this function. The

array m_pop_chain [] is also allocated, and is used to store the population vector i. Of

all these arrays, only m_Q_centre [] is definitely allocated space. The others will not be

allocated if there are no closed chains in the model.

If the model includes PRIORITY centres, we must allocate more storage. These arrays

include

• m_W_cust [class] [priority _centre] [II' (i)J

The third dimension of this store is not allocated if the value of W;r is known to be

zero for the part icular class@centre combination. This will be the case when

CHAPTER 5. MVA AND STATISTICAL MEASURES 50

1. mod->xLvalues [class] [centre] is zero, or

2. mod->mu_class [class] [centre] is zero

• m_Lcust [closed_chain] [w(2)]
This stores the values r; for each population vector i.

• Arrays to store the matrix representation of the set of linear equations 17. These

include

1. the array a [] []

used to represent the LHS of the set of linear equations

2. the array r hs []

used to represent the RHS of the set of linear equations

3. the array i ndx []

used to store the row permutations of the LU-Decomposition of a[][]

5.5.4 The function shutdown mva()

This function is concerned with releasing all the temporary storage used by the MVA

algorithm.

All storage detailed in the above subsection is released, with one possible exception.

When the MVA results do not need to be interpolated then the arrays m_Tstar_chain[],

m_Wstar_chain [] [] and m_Q_centre [] all hold the final solution statistics . They are

therefore not released, but rather tagged onto the model data structure.

5.6 The funct ion checkmodelsoln () in the module "stat41.c"

Whenever a solution statistic is requested by a statement in the evaluation section of a

SnapL program, the function checkmodelsoln() will be called by the appropriate statistic

evaluation function in the module "stat4l.c".

checkmodelsoln() is responsible for ensuring that the MVA solution statistics are up

to date. A boolean modifiedmva is used to mark any alteration to the model definition,

and if set TRUE the model must be re-solved.

5.6.1 The function check priority centres()

This function must be called before the MVA algorithm can be initiated. It will

• provide a mapping prLcentres [] from the model centre number to the 'priority

centre number'. The 'priority centre number' is not a true nodal centre number, but

CHAPTER 5. MVA AND STATISTICAL MEASURES 51

rather an enumeration over all priority centres. This enumeration is often used in

loops over all PRIORITY centres. We have

priorcentrenum = pri_centres[rnodelcentrenumber]

This also allows arrays to be created with dimension num_priority_centres and

then indexed by priority _centre..number

• provide a mapping centres_pri [] from the enumerated 'priority centre number' to

the true model centre number. This is an inverse of prLcentres [] and gives

priorcentrenum = pri_centres[centres_pri[priorcentrenum]]

• allocate suitable space for the array W_open [] []

5. 7 Statistical measures

All the statistics that the user may wish to use can now be evaluated from the results

obtained in the previous two sections.

In the CMTB these statistics are evaluated only when requested, and do not take up

any additional temporary storage. They are calculated in the module "stat4l.c" .

When the model is modified (and when it is first defined), the solution functions are

not called directly. This is because some modifications may take place before any statistics

are requested, and so any time spent solving the model, before it is redefined, is wasted.

Consequently each of the procedures in "stat4l.c" calls a function checkrnodelsoln()

which ensures that the model solution statistics are up to date. This function was described

in Section 5.6.

5. 7.1 Notes on the statistical measures formulae

The formulae described in the next few subsections give performance measures for each

class 1 ::; r ::; R in each chain 1 ::; k ::; J(at every centre 1 ::; i ::; N. In each of the

formula the values T;, W;'k and Q; are all dependent on the state L, where L is a vector

which represents the integral number of customers in each of the closed chains.

To see how these formulae are implemented in the CMTB the reader may wish to note

the use of the following variables:

rnodel- > xLvalues [r] [i] stores the values ~ir

rnodel- > Tstar_chain[k] stores the values Tk
model-> Wstar_chain [i] [k] stores the values W;'k

rnodel- > Q_centre [i] stores the values Q;

CHAPTER 5. MVA AND STATISTICAL MEASURES 52

In all the formulae Ek represents the chain to which the class r customers belong.

Each of the formula below has been taken from Kritzinger [Krit 82].

5.7.2 Average queue length

The expected number of class r customers at centre i, when the network is in state L, is

given by

• Where Ek is a closed chain.

Tk and Wik are calculated in steps 5 and 4 of the MVA solution respectively.

• Where Ek is an open chain

1. For r a PS, LCFSPR or state independent FCFS centre

- /ir -
Qir (L) = (1 _ p;) (1 + Qi (L))

2. For r a DELAY centre

3. For r a PRIORITY centre

from Little's law. Note that W;r is calculated directly by the MVA solution

algorithm.

This value is calculated by the function ave_queue_length() in "stat4l.c".

5. 7.3 Average throughput rate

The average throughput rate Tir(L) of customers of class r at centre i, when the network

is in state l , is given by

• Where Ek is a closed chain

(20)

where Tk (l) is computed in step 5 of the MVA algorithm.

• Where Ek is an open chain

(21)

This value is calculated by the function ave_ thruput() in "stat4l.c" .

CHAPTER 5. MVA AND STATISTICAL MEASURES 53

5.7.4 Average waiting time

The expected waiting time Wir(i) of class r customers at centre i, when the network is

in state i, is given by

• Where Ek is a closed chain, or r is not a priority centre

by Little's Law

• Where Ek is an open chain and r is a priority centre, the value Wir is calculated

explicitly in the MVA solution algorithm. These values must be stored.

This value is calculated by the function ave_wai t_time () in "stat4l.c".

5.7.5 Average queueing time

The expected queueing time of class 1' customers at centre i, when the network is in state

i, is by definition the waiting time Wir less the service time 1/ J..Lir. Thus

This value is calculat ed by the function ave_queue_time() in "stat4l.c".

5.7.6 Average cycle time (Closed Chains)

The cycle time is defined as the time elapsed from the moment a customer of class r leaves

a centre i until it returns to the same centre i as a customer of the same class, given that

the network is in state I.

This measure is defined only for customers from closed chains, and is calculated by the

function ave_cycle_t ime () in "stat4l.c".

5. 7. 7 Average turnaround or residence time (Open chains)

The average residence time is the time spent by class r customers in the open chain Ek

when the network is in state f. It is the total time inside the network for customers of

that class, and is given by the expression

The average residence time is not defined for classes belonging to closed chains, and is

calculated by the function ave_residence_time () in "stat4l.c".

CHAPTER 5. MVA AND STATISTICAL MEASURES 54

5. 7.8 Average utilisation

The utilisation Uir(i) of class r customers at centre i, when the network is in state i, is

given by the ratio of the average throughput rate to the capacity of server i . That is

1-'ir _

Qir (L)

Q; (i)

for PS, LCFSPR, PRIORITY and state indep . FCFS centres

for Ek a closed chain and i a DELAY centre

undefined for Ek an open chain and i a DELAY centre

This value is calculated by the function ave_utilisation O in "stat4l.c".

Chapter 6

Designing the X Snap User

Interface

A toolbox of solution routines (such as the CMTB) is obviously of little use unless it is

integrated into some application which offers the facility to define, query and modify mod

els that are be to solved by such routines . Of equal importance to the CMTB, therefore,

is the User Interface which is offered under XSnap .

This chapter describes the GUI (Graphical User Interface) offered under XSnap, while

the actual implementation of the interface is described in the following chapter.

Sample screens t aken from XSnap are shown to complement the textual description of

the interface's features.

It should be noted that since XSnap has been implemented using X-Windows, many

of the colours, sizes , relative positions and actual text contained in each of the buttons

or widgets inside the application can be easily changed using an application-defaults file.

By editing this file, one can change much of the overall appearance of XSnap without

resorting to coding in any way.

6.1 Requirem ents of the Interface

The primary purpose of developing XSnap was to produce an interactive modelling appli

cation that could be used to define, solve and manipulate queueing network models in a

manner that was easy to master, practical and attractive.

The interface was to allow the modeller to define models of the greatest complexity

with which the solution modules in the CMTB could actually cope, thereby using the

CMTB to its full potential.

An important function of the interface is to help to ensure that the model definition is

valid. Obviously, some degree of tolerance is needed whilst a model is still being defined

55

CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 56

since part-completed models are almost always invalid. Certain constraints can be imposed

by the interface, however. For example:

• the interface should not allow the modeller to define routing information or service

requirements for a class of customer that has not yet been defined .

• customers in closed chains should not be allowed to route to or from the external

environment.

• paths should not be allowed to route from exit points or to entry points, even for

open chains.

• classes removed from the model should be automatically removed from all routing

information and service requirement definitions, etc.

When a model is passed to the CMTB to be solved, the more sophisticated validation

algorithms which form part of the CMTB will be used to check that the model is completely

valid. The CMTB is able to report any errors which are then passed on to the modeller

by XSnap. The purpose of the interface therefore is not to check that the model is valid,

but rather to prevent any model that is clearly invalid from being defined.

When designing t he interface, it was only natural to draw on experience gained whilst

using other modelling packages with CUI's such as MACOM. Experience using MicroSnap

was also valuable, and in the discussion below reference will often be made to both of these

packages.

6.2 Constructing Models

When defining models to be solved in XSnap we need to consider:

• what graphical representation of the model would be best to use, if any.

• how workloads in the model and the different customer classes in each workload

should be defined.

• how centres in the model, their service discipline and service time requirements for

each class of customer should be defined.

• how routing information, detailing the routing of customers between centres in the

model, should be defined .

CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 57

6.2.1 The Canvas

Obviously, the most effective method for representing a model of queueing networks is to

use a diagram. Diagrams can be used to show clearly all the centres in the model and the

paths that customers take when routing between the centres. Both MACOM and XWAN

build up diagrammatic representations of the model.

MicroSnap, on t he other hand, uses a textual representation of the model which is

defined using a specification language called SnapL. In MicroSnap, one can only establish

the actual make-up of the model by scrutinizing the statements defining workloads, centres

and routing information.

XSnap, like MACOM, allows the modeller to build up a picture of the model by adding

centres and paths to a canvas. These centres and paths can be positioned or drawn using a

pointing device such as a mouse. User defined names, rather than simple centre numbers,

are shown beneath each centre in the model to add clarity.

A sample screen of the XSnap application is given in figure 4 showing the large central

canvas and the centres and paths defined in a sample model.

I I .I ¥§,1!111¥

l
;:::nDO+-.
~

~ Source

1
Cf'U Sink

J:::nno
Dl&k.D

~~~II I J ~ z~ I Shrink Face~ 

·"- I 

Figure 4: The XSnap screen with sample model 

Once drawn, one can move centres or re-route (redraw) paths without losing any 

information about the model. This allows a modeller to rearrange the model so that any 

new centres or paths can be added without the model becoming cluttered or starting to 

appear unattractive or confusing. 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 58 

When the canvas is too large to view on the screen the modeller is able to scroll the 

canvas appropriately, thereby showing only a part of the model through a viewport. 

One of the difficulties with MACOM is that large models tend to become cumbersome 

and difficult to discern on the screen. It was decided therefore that in XSnap the canvas 

on which the model is drawn should not only scroll, but should also be allowed to grow or 

shrink so as to accomodate the model diagram comfortably. The modeler can also "zoom 

in" to certain areas of the model diagram, or view the model in its entirity. Zooming can 

be effected by merely clicking on a button which zooms in towards the centre of that part 

of the model current ly viewable through the viewport, or by positioning a box around 

that part of the model which one would like to enlarge to fill the viewport. An additional 

button can be used to instruct XSnap to automatically resize and reposition the canvas 

so that the entire model can be viewed comfortably inside the viewport. An exmple of a 

'zoomed-in' model is given in figure 5. 

"~ l<'-llrtJI , , , I 1 o , I ; 1 l 1 , , i 1 g!" 

f--------------1 JIIJ 0 
-+---. 

Dlsk.A 

Sink 

•f-------+JIIJO +-------+-
DlskB 

Figure 5: A 'zoomed-in' model 

Attributes of the different paths or centres are set easily using the pop-up windows 

described in the following sections. Rather than activating these windows from a menu 

bar, these windows are activated by simply clicking on the path or centre in question 

on the canvas. This method helps to preserve the strong correlation between the model 

diagram and the rest of the details needed to make up the total model specification. 

An attractive feature of MACOM was its sensible use of colour and different centre 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 59 

icons to help add more detail and clarity to the model diagram. In XSnap this is done sim

ilarly using colours to distinguish between paths holding customers belonging to different 

chains, and by using different centre icons to depict the various centre service disciplines. 

Sophisticated canvas management is one of the key features of XSnap. By allowing the 

resizing, scrolling and zooming of the canvas, repositioning of centres and the rerouting of 

paths XSnap has been able to offer a truly attractive alternative to the textual specification 

of models used in MicroSnap and other packages whilst also overcoming some of the faults 

of other GUI's such as MACOM. 

6.2.2 Default Settings 

Another problem with MACOM was that one could not copy parts of the model or specify 

default settings. XSnap allows the modeller to make the particular settings for any specific 

workload or centre default settings. Any new centres or workloads defined would then 

automatically have t hese settings. Furthermore, one can copy the default settings onto an 

existing centre or workload. This can therefore be used as a copy facility. 

6.2.3 Variables and Expressions 

XSnap allows the modeller to define variables and to use these variables when defining 

routing probabilities, MPL levels, arrival rates or centre service requirements. These 

variables can be allocated values using complex expressions such a.s those supported in 

MicroSnap. One can also use the facility to modify values across the whole model by 

simply changing the value of a single variable used in definitions throughout the model. 

Variables are defined using the "Variables" option under the "Solve" menu. The latter 

is invoked from the main menu bar. This option pops up an editor in which the mod

eller simply lists the variables to be defined seperated by commas, and any assignment 

statements assigning values to the variables. 

6.2.4 Workloads 

Central to the defini t ion of models is the definition of the different workloads and classes 

of customers that are allowed to travel between the centres in the model. These workloads 

are defined or modified using the Workload Manager. This pop-up window is invoked 

from the main menu bar of XSnap. A sample screen of the Workload Manager is given in 

figure 6. 

No changes are actually made to the model until the modeller selects the "update" 

button. 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 60 

f8J Wor1<Joad ManruJer r~W'rq ~ I@ ~ ~, ~ ~ ~ ~ i~t! ii'f! ~ ~ ~,~,,~ ~ ~ ~ % ~ ~ ii'f!,~ ~ 
'~:--,m,:.-,#.6: :-:~..{,.,.....-»,~ ;;;;,., , ~,,,;.-_..,:6/-;.(;::, ;.,;i,./$.-: ,;i..,;,, %-uW/h ,~,~/,W, , '}};';,,.~n,q; ... " %;.-,,r,y;;,;$ ,., z;.,;.-.-:~"'"'U.' ,Phi 

~orkload Nafte ~~orkload Classes I Ne" Class Nafte 

~nteractive I active I inactive ... I 
• Standar d 

query 
update I Rdd Class I 

0 Priorit y t1PL expression 

D Open Chain 
~5 I 

• Closed Chain Update I 
I I I 

Cancel 
Path Colour 

Delete ~orkload 

t1ake Default 

Copy Default 

Solution Stats 

Figure 6: The Workload Manager 

The Workload Manager allows the modeller to define or modify the following attributes 

of the workload: 

• The workload name. 

If the name of t he workload is changed then all references to classes belonging to the 

workload used in centre service requirement definitions are automatically ammended 

to reflect the new workload name. 

• Open or Closed . 

The modeller can choose whether the workload should be open or closed by simply 

clicking on the appropriate toggle button. If a workload is changed to a closed chain 

then the routing information for the model is automatically checked to ensure that 

any routes to or from the external environment by classes in the chain are removed 

from the model. 

• List of Classes . 

This list shows the defined classes in the workload . If the list is too long to fit in the 

viewport it can be scrolled. Classes can be removed from the list by simply clicking 

on the class to be removed. If a class list is modified, the routing information and 

centre service requirement information for the model is checked to ensure that any 

classes which are no longer defined are removed from the model. 

• New Class N arne. 

The class name di~logue allows the modeller to enter class names for the different 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 61 

classes of customer belonging to the workload. The new class is added to the list by 

clicking on the "Done" button. 

• Workload Colour. 

Each workload is given a colour to distinguish its paths from paths of other work

loads. The "Workload Colour" button causes a list of all unallocated colours to be 

displayed and a new colour is chosen by clicking on the new colour name. 

• MPL expression or ARRIVAL rate. 

This dialogue allows the modeller to enter the MPL expression for closed chains, or 

the arrival rate for customers belonging to open chains. The expression can include 

variables and normal math operators. 

• Copy Default. 

This button allows the modeller to copy the default settings onto the workload. 

• Make Default . 

This button allows the modeller to make the current settings for the workload the 

default settings. 

6.2.5 Centres 

6.2.5.1 Adding new centres 

Centres are added to the model by simultaneously holding down the SHIFT button on the 

keyboard and pressing the middle mouse button. The new centre is added to the canvas 

at the position of the mouse pointer, and is given the default centre attributes. 

6.2.5.2 Changing centre details 

The attributes of each centre can be changed or queried using the Centre Manager. This 

pop-up window is activated by clicking on the centre, or when a centre is first added to 

the model. 

The Centre Manager allows the modeller to set the service discipline of the centre 

in question and the service requirements of the classes that may visit the centre. Other 

attributes such as the centre name may also be changed. A sample screen of the Centre 

Manager is given in figure 7. 

The Centre Manager maintains three lists of classes: 

• classes serviced by the centre, together with their service requirement. 

• classes not served by the centre and which do not visit the centre. 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 62 

[~,1 (.eutre MartruJer .. . . ~ gJ] 

I Cent.re llafte 
II 

Serviced Claac and Service Requlr~l Updat.e 

Bat.ch:Lrana 0.2 
Cancel lfPU I 

D FCFS 
Interac~iue:active 0.1 DeleLe Centre 

Hake Default. 
• PS 

COf>\l Dehult D LCFSPR 
Reid all D PRIORITY 

Ronovo all D DELAY I Service Requireftent. D HICRO 

D ENTRY ~ 
0EXIT ~~0 TIHERLL II Class dep. req. 

I Solut.ion St.at.a I 
lvialtinv- Hot Served I IMDL viaitinv- Not Served! 

R..t.ch: i o_uait. 
Interoc~ive:query 

Interactive:updat.e 

Figure 7: The Centre Manager 

• classes not served by the centre even though they do visit the centre. 

If the modeller clicks on any class name in either of the latter two lists, the class will be 

added to the list of classes demanding service from the centre. The service requirement 

for the new class is that entered in the dialogue named "Service Requirement". 

By dividing those classes not serviced into those visiting the centre and those that do 

not visit the centre, the modeller can easily see if an error has been made. Normally all 

classes visiting a centre require service from the centre. Otherwise, they do not queue at 

the centre but rather route directly to the next centre. 

The modeller can change the service requirement for any class by typing the new 

requirement into the "Service Requirement" dialogue and then simply clicking on the old 

service requirement listed to the right of the class name in the list of serviced classes. 

Classes are removed from the list of serviced classes by clicking on the class name to be 

removed. 

This method of adding serviced classes ensures that only classes defined in the model 

can be used, and prevents unnecessary typing (and typing errors) on the part of the 

modeller. 

Buttons also exist to allow the modeller to add all the unserviced classes to the list of 

serviced classes or alternatively to remove all the serviced classes . 

A toggle is used to determine whether or not all classes require the same service 

requirement (TIMEALL), or whether the service requirement is class dependent. If the 

TIMEALL toggle is selected then the three class lists described above are automatically 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 63 

inactivated, and all classes visiting the centre have a service requirement equal to that 

stated in the "Service Requirement" dialogue. FCFS centres are always TIMEALL centres . 

The centre discipline is set using a toggle group, and a centre can also be defined as 

an entry or exit point using this toggle group. No service requirements can be defined for 

entry or exit points. If a centre is changed to an ENTRY or EXIT point then suitable 

warnings are given that the routing information may be modified automatically by the 

application to prevent routing errors . 

The Make Default and Copy Default buttons operate in the same way as those for the 

Workload Manager. 

6.2 .5.3 Remov ing centres 

Centres can be removed from the model by choosing the "Delete Centre" button in the 

Centre Manager. The user is prompted to confirm the action to prevent centres from being 

deleted by mistake. 

When a centre is removed, all paths to and from the centre are also automatically 

removed from the model. 

6 .2.5.4 Moving ce nt res 

Centres can be moved by clicking on the centre in question using the middle mouse button. 

An outline of the centre then appears on the canvas and automatically moves around the 

screen as the user moves the pointer. The centre is finally re-affixed to the canvas when 

the user clicks any one of the pointer buttons. 

Any paths leading to or from the centre are redrawn automatically by XSnap . If the 

user is unhappy with the route of the new paths then these can be redrawn manually as 

described in the next section. At present only a simple graph drawing algorithm is used to 

map out the new route to the repositioned centre. A more sophisticated algorithm could 

possibly be introduced later into the package to optimise not only these redrawn routes 

but also all other paths in the model. 

6 .2.6 Pat hs 

In any model, the routing information is defined through the use of paths. Paths are used 

to carry customers belonging to any one chain from a source centre to a destination centre. 

Customers leaving any one centre can route to a number of different destination centres 

according to different routing probabilities. To calculate these routing probabilities, XSnap 

compares the specified relative frequencies defined by the modeller for each class routing 

along each path leaving the source centre. For example, if class a at centre 1 routes to 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 64 

both centre 2 and centre 3, then class a will need to be included in the routing information 

along the paths from centre 1 to both centres 2 and 3. If class a is to route to each of these 

centres with equal probability, then the relative frequency for this class along each of these 

paths will have to be identical. Conversely, if the relative frequency for this class along 

the path to centre 2 was three times· that along the path to centre 3 then the probability 

of routing to centres 2 and 3 would be 75% and 25% respectively. 

6.2.6.1 Adding new Paths 

Paths can be added to the model by simply clicking on the centre from which the path is 

to begin using the rightmost mouse button. A pop-up then invites the user to select the 

workload to which the path belongs. Only classes belonging to the chosen workload will 

be able to route along the path. 

Once the user has selected the workload, the path is then drawn using a rubber-band 

technique. Under this method each segment of the path is drawn in turn. The first 

segment is pinned at its one end to the centre from which the path leaves. The other end 

of the segment automatically changes position as the user moves the pointer, until this 

end of the segment is also pinned to the canvas by clicking one of the mouse buttons. A 

new segment is then automatically started with its first end pinned to the canvas at the 

same position as the end of the previous segment. The path is completed when the last 

segment drawn leads to a centre. 

XSnap automatically ensures that all segments drawn are either horizontal or vertical. 

This makes the model neater and more attractive. 

6.2.6.2 Changing Path Details 

The user can modify the routing information for each path by invoking the Path Manager. 

The Path Manager is invoked by clicking on the path in question on the canvas. This 

pop-up window allows the user to specify which classes of the workload route along the 

path and with what relative frequency. A sample screen of the Path Manager is given in 

figure 8. 

The Path Manager shows a list of all classes that visit the centre from which the path 

originates, as well as a seperate list holding all other classes in the chain. 

The table of routing information is made up of triples. These triples show the class of 

the customer at the source centre, the class of the customer when it reaches the destination 

centre and the relative frequency of customers routing along this path. For example, for a 

path leading from centrel to centre2, the triple ( classl, class2, freq) means that customers 

of classl at centrel will, with a relative frequency of freq, route to centre2 where they 

will then be of class2. 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 65 

~ PaU1 ManalJer: Interactive - Disk TO CPU i-, _ , -· , . " . ~- . ~ 

IFROH- TD- FREQI Updat.e 

updat.e active 1 
Cancel 

Delet.e pat.h 

Rdd all 

Re~tove Rll 

Re-rout.e path 

I 
Rout.in1 Frequeney 

_li 

II TD 

iclassea viaitin1 source cenLrel !classes not. visiting source cent.rel 

update active 
querv 

Figure 8: The Path Manager 

The routing triples can be built up easily by simply clicking on the class names classl 

and class2 in turn. The class names classl and class2 will be found in either the list 

of classes visiting or the list of classes not visting centrel. The freq making up the final 

component of the triple is simply taken from the dialogue headed "Routing Frequency". 

Routing triples can be removed from the path by clicking on either the first or second 

class name in the triple. The relative frequency can be modified by typing the new 

frequency into the "Routing Frequency" dialogue and then simply clicking on the relative 

frequency in the triple to be modified. 

Although the above method may appear complicated at first, it is in fact extremely 

simple and efficient. There is no typing of class names or changing from "add" to "delete" 

modes. The lists of classes visiting and not visiting the source centre are also useful since 

the user can quickly see whether a class which visits a centre ever leaves the centre. 

6.2.6.3 Deleting paths 

Paths can be deleted by clicking on the "Delete Path" button in the Path Manager. The 

user will be prompted to confirm the action before the path is removed from the model. 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 66 

6.2 .6 .4 Re-r o uteing p aths 

Paths can be redrawn from a source centre to a (possibly different) destination centre, 

without losing any path details, by selecting the "Re-route Path" button in the Path 

Manager. 

The path is redrawn using the rubber-band technique described above. Redrawn paths 

are allowed to route to different destinations since, on occasions, the modeller may wish 

to insert a new centre inbetween two existing centres in a path. 

6.3 Saving and Retrieving Models 

Models can be saved and retrieved using model names defined by the user. The "File" 

button on the main menu bar activates a pop-up menu asking whether a model is to be 

saved or retrieved. A dialogue is then used to get the model name. All saved models have 

the extension '.xsn' . 

6.4 Textual R epresentation of the Mode l 

Sometimes a model definition can contain bugs that are difficult to find. In these cases 

one would want to be able to generate a textual representation of the model that can then 

be scrutinized later. 

Such a facility can also be used to keep hard-copy definitions of models in case the 

electronically saved model ever becomes corrupted, overwritten or lost. The details con

tained in the textual version of the model can then be used to reconstruct the model using 

the XSnap GUI. 

A textual representation of the model can be obtained by selecting the "XSnap Text" 

option under the "FILE" menu . The user will be prompted for the file name and the 

model details will then be written to the file . 

When a model definition is written in textual form to a file, and the solution statistics 

have already been found for the model, then these statistics are automatically appended 

to the end of the model definition. 

The CMTB also provides functions for producing a hard-copy of the model definition . 

The output generated by these routines is slightly different in format to that described 

above, which is generated by XSnap. This output can be sent to a file using the "CMTB 

Text" option under the "FILE" menu. The ouptut is only valid, however, where the XSnap 

model data has been copied successfully (i.e. without any errors being reported) to the 

CMTB. Otherwise the CMTB model may be incomplete and not fully reflect the model 

defined in the XSnap GUI. An example of the output generated is given in appendix B. 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 67 

6.5 Solution Statistics 

6.5.1 Generating Solutions 

The model can be solved by selecting the "Go" option from the menu invoked when the 

mouse is clicked on the "Solve" button on the main menu bar. The model is then copied 

to the CMTB and solved. Any errors reported by the CMTB are displayed in pop-up 

windows. 

A pop-up window displays a suitable message if the model is solved successfully, and 

also reports the solution time of the CMTB solution algorithms. 

6.5.2 Viewing Solution Statistics 

Solution statistics can be viewed by selecting the appropriate button in either the Workload 

Manager or the Centre Manager. 

When viewing solution statistics from within the Workload Manager, a table is shown 

giving all the computed statistics for each class in the workload at each centre in the 

model. An example of the statistics shown is given in figure 9. 

lut.ion St.at.iat.ica for Cent.re: CPU 

Claaa N....., IIUEUE THRU NRIT CYCLE QTIIIE UTIL ------ --- --- --- --- ---
act.ive 0 .007367 0.07278 0.1012 343.4 0.001227 0.007278 _, 0 0 0 0 0 0 
updat.e 0 0 0 0 0 0 

Solut.ion St.~istics for Cent.re: Disk 

Class N....., QUEUE THRU NRIT CYCLE QTIIIE UTIL ------- --- -------- --------- ---- ---- ------
active 0 0 0 0 0 0 
query 0 0 0 0 0 0 
update 10.8 0.02547 424 557.4 404 0.5095 

Solut.ion ~!sties for Centre: terninal 

Claaa Mane QUEUE THRU NRIT CYCLE QTIIIE UTIL ------ --- ------- ------ --- ------ -------
active 0 0 0 0 0 0 
query 14.19 0.04731 300 228.5 0 1 
update 0 0 0 0 0 0 

Residence Tines 

Class N- RES 

Figure 9: Sample workload solution statistics 

The table of solution statistics shown from within the Centre Manager gives the com

puted statistics for all classes in the model at the specific centre in question. An example 

of the statistics shown by the Centre Manager is given in figure 10. 

If the model is modified then neither the Workload Manager nor the Centre Manager 

will allow the modeller to view the statistics calculated when the model was previously 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 68 

lut.ion St.at.bt.lca for Centre: CPU 

Claaa "- QIEUE THRU IIATI CYCLE QTII1E UTIL 
- --- --- ----- --- --- ---

llatch:io_...,it 0 0 0 0 0 0 
llatch:tr- o.0049GG 0.02453 0.2025 407.5 0.00248 0.004905 

Interactive:active 0.007367 0.07278 0.1012 343.4 0.001227 0.007278 
Interactive:query 0 0 0 0 0 0 
lnteractive:update 0 0 0 0 0 0 

· Einiabed -

Figure 10: Sample centre solution statistics 

solved. This is to prevent the modeller from assuming that the statistics shown relate to 

the new modified model. Rather, the modeller is prompted to re-solve the modified model 

before the solution statistics can be viewed. 

6.5.3 Saving Solution Statistics 

One can save the solution statistics by selecting the "Write Solution Stats" option under 

the "FILE" menu. 

Alternatively, solution statistics can be written to a file along with the model definition 

by chasing the "XSnap Text" option under the "FILE" menu. 

6.6 Repetitive Model Evaluation 

When modelling queueing networks, one often needs to solve a model a number of times 

whilst changing one or more of the model parameters each time the model is solved. Ideally, 

the modeller should be able to specify exactly which paramaters are to be changed, and 

request that the solut ion results are tabulated showing the effect of the changing model 

parameters. XSnap allows exactly such a facility by way of an Evaluation-Section which 

accompanies each model definition. 

The Evaluation-Section can be used to request solution output in the form of tables, 

detailed reports, or even through the use of print statements. High level programming 

constructs such as loops, condition statements and complex mathematical and boolean 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 69 

expressions allow the modeller to generate and manipulate solution statistics. The eval

uation section code is written using a language called SnapL, which is the specification 

language used in MicroSnap to define and solve models . In XSnap, the model is obviously 

defined using the GUI, and there is therefore no need to write a SnapL definition of the 

model. None the less, a SnapL evaluation-section can be used to automatically modify 

and resolve the model, and to produce customized output . 

It might be said that the fact that modellers may often find themselves involved in 

textual interaction with XSnap defeats the whole object of having a GUI in the first place. 

This, however, is totally untrue. Rather, the facility to automatically modify and resolve 

the model and to collect and manipulate the solution statistics adds tremendous power to 

the modelling package. Such power cannot be gained by merely clicking on buttons, and 

can only be truly harnessed through the use of something more dynamic such as SnapL. A 

GUI is useful in that it overcomes the traditional downfall of the wholly-textual interface 

which, of course, is that with textual interfaces the basic structure of the network being 

modelled is not at all obvious or clear. The GUI can also be used to help the modeller 

define the model, ensuring that no basic errors are made. Quite arguably, XSnap offers 

the best of both typ s of package. 

6 .6 .1 B ackgroun d to the SnapL language 

The Stochastic Network Analysis Programming Language, or SnapL, was originally de

veloped by M. Booyens and P.S. Kritzinger whilst working at the Institute for Applied 

Computer Science at the University of Stellenbosch in 1983: A paper describing the lan

guage was printed in t he international journal Performance Evaluation (Krit 84] in August 

1984. 

The language was designed to allow a modeler to solve multi-class queueing networks 

and to manipulate the results of such a solution into a useful representable form. 

Readers who are interested in the history of the SnapL ·language are referred to 

(Krit 84]. 

6 .6.2 The definition and evaluation sections 

A SnapL program used in MicroSnap has a definition section and an evaluation section. 

The former is responsible for defining the model and generates no output . The latter 

is responsible for generating tables, reports or any other output that is required . The 

evaluation section also supports loops, condition statements and expressions involving 

model solution statist ics. 

The evaluation section can also be used to modify the defined model. Any modifications 



CHAPTER 6. DESIGNING THE XSNAP USER INTERFACE 70 

affect only the CMTB representation of the model and the model defined using the XSnap 

GUI remains unaffected. Obviously, under XSnap, the definition section is not needed. 

Rather, the definition of the model is accomplished using the Workload Manager, Centre 

Manager and Path Manager described above. 

6.6.3 Editing E valuation Code 

Evaluation code can be edited using the pop-up editor invoked by clicking on the "Eval

uation Part" button on the main menu bar. 

This evaluation code is automatically appended to the end of the textual model defi

nition produced when a user selects "XSnap Text" under the "File" menu. 

The Backus N aur Form of the SnapL language is given in the following chapter re

garding the implementation of XSnap, and a more detailed description of the features of 

the language can be obtained from the MicroSnap User Manual [MSnap 90]. 

6.6.4 Parsing Evaluation Code 

Once an evaluation section has been edited, it can be parsed by XSnap by selecting the 

"Evaluation Part" option under the "Solve" menu. If the evaluation section is parsed 

successfully, the output produced is automatically displayed in a pop-up window. An 

example of an evaluation section together with the output generated is given in appendix A. 

If the evaluation section is not parsed successfully then a pop-up window is displayed 

showing any errors encountered by the parser. 

The output is automatically written to a file having the same name as that of the 

model, but with the extension ".evl". The trace of the parse (together with any error 

messages) is also automatically written to a file having the same name as that of the 

model, but with the extension ".1st". 

It should be noted that the model can be solved without parsing the evaluation section 

by selecting the "Go" option under the "Solve" menu. 



Chapter 7 

Implementing XSnap 

This chapter describes the implementation of XSnap, as well as the hardware and software 

environment in which XSnap was developed. 

7.1 The Development Environment 

The original development of the CMTB was done on an IBM PC/AT running under 

DOS , whilst XSnap has been developed on a Sun SPARC 1+ workstation using the Sun 

Operating System version 4.1 (SunOS 4.1) . 

XSnap runs under X- Windows (Xll R4) in a UNIX environment. The package was 

written using C and the Athena widget set supplied with X- Windows. 

7 .1.1 Choosing C as a programming langauge 

The original development of the CMTB was done under DOS using Borland's TURBO 

C V2.0. Consequently, porting the CMTB (and MicroS nap) to a UNIX environment was 

a relatively pain-free excercise. When developing XSnap, C was a natural choice as a 

programming language for a number of reasons: 

• There is a wide availability of C compilers, and this leads to the added advantage 

of wide portability. 

• C offers great flexibility and a wide array of library functions that can be used by 

the programmer. 

• There is an X- Windows system interface for C. 

• The CMTB had already been successfully implemented in C . 

Although there has been a lot of excitement about C++ in recent years, a C++ 
compiler was not available under UNIX or even under DOS at the start of 1990 when 

71 



CHAPTER 7. IMPLEMENTING XSNAP 72 

the CMTB was first implemented: In any event, C++ compilers are not yet as readily 

available as those for the vanilla-flavoured C and this is a significant disadvantage when 

it comes to portability. 

Admittedly, LISP and ADA interfaces to the X-Windows system do exist. However, 

apart from the author 's own inexperience with using these languages, both languages suffer 

from a lack of compiler availability and conformity. 

7.1.2 X-Windows 

The X-Windows system has been developed jointly by DEC and MIT and uses a device

independent architecture to enable the development of portable graphical-interface based 

applications. 

The X-Window system is based on a client-server model, which allows programs to be 

run on one machine whilst displaying on another. X-Window applications are event-driven 

and the server communicates with the application by means of these events. 

Figure 11 shows the architecture of the X- Windows programming environment. When 

Applkation 

Widget Set 

Xt Intrinsics 

Xlib C Language Interface 

X Protocol 

X Server 

Figure 11: The X- Windows Architecture 

developing applications in C , one uses the XLib C Language Interface to handle the 

lowest level interaction between the application and the X-Windows system. Higher level 

toolkits have been designed to be layered on top of XLib, the most standard of which used 



CHAPTER 7. IMPLEMENTING XSNAP 73 

by application programmers is the X Toolkit (Xt for short). Other toolkits do exist and 

include the Stanford Inter Views toolkit, the Texas Instruments CLUE toolkit, and the 

Carnegie Melon Andrew toolkit. 

The X Toolkit provides an object-orientated layer supporting the user-interface ab

straction known as a widget. Examples of widgets include simple buttons or labels on 

the screen, as well as more complicated composite-widgets such as viewports which boast 

fully functional scroll-bars which can be used to drag a larger widget around inside the 

viewport. Widgets include their own event-handlers and will respond to events passed to 

them by the X Toolkit. Such events may require that the widget redraw or resize itself, 

or perhaps initiate some other user-defined function. 

Widgets are made available to application programmers in widget sets. XSnap has been 

developed using the Athena widget set, which is the widget set distributed together with X

Windows. It should be noted that other more sophisticated widget sets are commercially 

available and include OSF's Motif and AT&T's OPEN LOOK widget sets. Although 

these do offer a wider array of features, the Athena widgets have been used since they are 

more readily available, and because the emphasis in writing XSnap has definitely not been 

to develop a commercial package. In any event, it should be relatively straight-forward 

to modify XSnap to use either of the other two widget sets, should this ever be deemed 

necessary. 

7.2 Components of the XSnap package 

Figure 12 shows a diagramme of the components of the XSnap package. These are: 

• The XSnap Graphical User Interface 

This interface has been described in detail in chapter 6 of this dissertation. The 

interface has been written using the Athena widget set. 

• The CMTB 

The CMTB has been described in detail in chapters 3 through to 5 of this disserta

tion, and is responsible for validating and solving models defined using the Xsnap 

GUI. 

• The SnapL Parser and Lexical Analyzer 

The parser is responsible for parsing the SnapL evaluation-section code defined by 

the modeller to allow repetitive model evaluation and the manipulation of solution 

statistics. Mathematical expresssions used to define arrival rates, routing frequencies 

and customer service rates are also parsed and evaluated by the parser. The parser 



CHAPTER 7. IMPLEMENTING XSNAP 74 

is exactly the same as that implemented under MicroSnap, although obviously in 

XSnap there is no definit ion-section in the SnapL program. 

XSnap GUI 

Lexical Analyzer 

----------------------
Parser 

The CMTB 

Figure 12: Components of the XSnap package 

Since the implementation of the CMTB has already been discussed in this dissertation, 

the following sections will refer only to the XSnap GUI and the SnapL parser. 

7.3 The XSnap GUI 

Creating applications using widgets is a tedious excercise. It is, however, significantly less 

tedious than having to write the application without the benefit of widgets, and so all 

things considered, widgets are actually a blessing for the application programmer. 

The XSnap GUI has been implemented using a number of modules: 

• "xsnap.c" initializes the application and sets up the connection to the X Server. This 

module also sets up the XSnap screen as well as all the menu buttons and pop-up 

menus. Many of the widget resources are actually stored in the application-defaults 

file and are not hard-coded. This is to allow the appearance of the XSnap window 

to to be modified without having to re-compile XSnap. 



CHAPTER 7. IMPLEMENTING XSNAP 75 

• "xworkld.c" is repsonsible for effecting the Workload Manager described in the pre

vious chapter and shown in figure 6. 

• "xcanvas.c" is repsonsible for controlling the canvas. This includes the drawing, 

resizing and scrolling of models. 

• "xcentre.c" is used to effect the Centre Manager described in chapter 6 and shown 

in figure 7. 

• "xpath.c" is used to control the adding of new paths to the model and the Path 

Manager shown in figure 8. The Path Manager has also been described in chapter 6. 

• "xfile.c" is used to write models to disk, or to read saved models into XSnap. 

• "xsolve.c" is used to initiate the solution algorithms in the CMTB. A number of 

functions added to "parser.c" are used to copy the XSnap model to the CMTB, and 

are called from within "xsolve.c" . 

• "utils.c" includes a number of utility functions used by each of the above modules. 

Such utilities can be used to create pop-up windows, dialogues and toggle-sets. Fur

thermore, functions for creating, searching, appending and otherwise manipulating 

lists of strings are provided by this module. These are used extensively by the 

Workload, Centre and Path Managers in XSnap. 

7.3.1 The XSnap GUI data structures 

The data structures used by the XSnap GUI to store the model are quite straight-forward, 

and relatively unexci t ing. The information stored maps very closely onto that displayed in 

the Workload, Centre and Path Managers described in the previous chapter. Additional 

data is used to store the positions of each centre and the segments of each path in the 

model. Centres and workloads are stored in alphabetically sorted binary trees, whilst 

paths are stored in a linked list. 

7.3.2 Managing the Canvas 

The most complicated part of the XSnap GUI, is that which is responsible for managing 

the graphical representation of the model which is displayed on the canvas. 

7.3.2.1 Scrolling 

The Athena widget set does not provide any widget that can be used directly to manage 

the canvas. Instead , a 'simple' widget is used, and the model diagram is drawn directly 

onto the screen using the X Lib drawing primitives. 



CHAPTER 7. IMPLEMENTING XSNAP 76 

XSnap keeps a record of the size and position of the canvas, relative to origin of the 

viewport. Whenever the canvas is resized, XSnap 'informs' the viewport scrollbars of the 

new size and position of the canvas, and also redraws the model. Normally, widgets are 

responsible for their own geometery management, and would automatically inform their 

parent widget of any change in their geometery. Futhermore, widgets each include their 

own event-handlers which would be used to automatically redraw themselves whenever 

they received a 're-display' event from the X Server. Since the 'simple' widget has no 

knowledge of the model diagram, XSnap needs to intercept this event so that the model 

can be redrawn manually. 

7.3.2.2 Resizing 

To allow the 'zooming' and 'shrinking' of models, a scaling factor is used when mapping 

the position and size of each the model components to and from the screen. 

When 'zooming' the model, XSnap needs to change the scaling factor and reposition 

the canvas. The canvas needs to be repositioned so the model diagram grows out and 

around the viewport , rather than just down and to the right . 

Similarly, when 'shrinking' a model, XSnap needs to both rescale and reposition the 

canvas. There is an additional complication, however, whenever the model is shrunk so 

much that it no longer fills the viewport. In this case, the position of each of model 

components stored in the model data structures needs to be shifted so that the model 

shrinks in towards the centre of the viewport, rather than up and left towards the origin. 

7.3.3 Solving the Model 

Before a model can be solved, it needs to be copied to the CMTB. If a model already 

exists in the CMTB data structures, then this is first removed by a call to the module 

"scrapmod.c" in the CMTB. 

The XSnap model is copied to the CMTB using functions in "parser.c". These func

tions have been grouped together with the parser since they make very similar calls to the 

CMTB as those routines used by MicroSnap to parse the definition-section of a SnapL 

program. Where a model definition includes expressions defining centre service rates, 

routing probabilities etc. these are interpreted and evaluated by the parser. 

Once the model has been copied to the CMTB, the routing information is first validated 

and then the relative throughputs are solved using the appropriate functions provided by 

the CMTB. Thereafter, a dummy solution statistic is requested from "stat4l.c" which then 

invokes the MVA algorithm. Once the MVA solution statistics have been found, these are 

automatically tagged on the model data structure used by the CMTB, where they will 



CHAPTER 7. IMPLEMENTING XSNAP 77 

be used by "stat41.c" to calculate solution statistics requested in subsequent calls to the 

CMTB. Such calls are made by the Workload Manager and Centre Manager whenever the 

modeller requests to see a table of solution statistics (see figures 10 and 9). 

7 .3.4 Evalution-section code 

To interpret an evaluation section, XSnap simply passes the evaluation-section code to the 

parser. The parser automatically writes the program output and a program trace to disk. 

These are then viewed from within XSnap using a "AsciiText" widget. 

The implementation of the parser is described in more detail in the following section. 

7.4 The Snap L parser 

7.4.1 B ackus N aur Form of t h e SnapL language 

This subsection gives the formal definition of the SnapL language. The productions asso

ciated with the definition-section of a SnapL program are not supported by XSnap. Also, 

plot statements are not yet supported by XSnap. 

- Terminal symbols are denoted enclosed in single quotes (' ') . 

- An arrow is used to separate the left and right sides of a 

production ( -> ). 
- Alternatives are denoted using the vertical bar symbol ( I ). 
- Optional clauses or items are enclosed in square brackets ([ ]). 

- An occurrence of 0 or more of an item will be 

enclosed in braces ( { } ). 

- Groupings of items or optional items from which one must be 

chosen will be enclosed in round brackets (). 

- Non-terminal symbols are denoted in lowercase lettering. 

- Terminal symbols in English lettering may be either upper or 

lowercase letters. Here we use uppercase lettering for the sake 

of clarity. 

- A range of terminal symbols over a set of well known values 

is linked with a series of periods ( .. ). 

- Italicised items are not supported in the current 

implementation. 

program 

deLsec 

- > label deLsec evaLsec '.' 

- > [opLstmt] {vrb_stmt} wrkld_stmt {wrkld_stmt} 



CHAPTER 7. IMPLEMENTING XSNAP 78 

{glbLstmt} config_para 

opt...stmt -> 'OPTIONS' param '='integer 

{',' param '='integer}';' 

par am -> 'CENTRES' I 'CENTERS' I 'CLASSES' I 

'MARGIN' I 'COLWIDTH' I 'LABELS' I 

'NODES' I 'SYMBOLS' I 'VARIABLES' I 

'WORKLOADS ' I 'LABLENGTH' I 

'PAGELENGTH' I 'PAGELENGTH' I 

'PAGEWIDTH' I 'PLOTLENGTH'I 

'PLOTWIDTH' I 'PLOTTITLE' I 

'ACCURACY' I 'THRU_SOLVE' 

vrb...stmt - > 'VARIABLE' defvariable {',' defvariable} ';' 

defvariable -> label ['(' defexpression ') '] 

variable -> label ['(' expression ')'] 

label -> ('A' .. 'Z') {'0' .. '9' I 'A' .. 'Z' I '-'} 

wrkld_stmt -> 'WORKLOAD ' label ['PRIORITY'] 

[class_clause] (mpLclause I arriv_clause) ';' 

class_clause -> 'CLASS' labeLlist 

labeLlist -> label {','label} 

mpLclause - > 'MPL' (defexpression I defexpression '#' defexpression 

{' ,'defexpression '#' defexpression}) 

arriv _clause -> 'ARRIVAL' defexpression ['AS' label] 

config_para - > { 'SUBMODEL' label ';' {opLstmt} config_para 

'END' '; '} centre_stmt { centre_stmt} route...stmt 

{route...stmt} 

centre...stmt -> ('CENTRE' I 'CENTER') defvariable 

specification ';' 

specification -> 'MICRO' I 'PRIORITY' time_clause I 

'FCFS' {speed_clause} 'TIMEALL' defexpression I 

pdLclause 

time_ clause -> 'TIMEALL' defexpression I 

{'TIME' classJ.ist defexpression} 

speed_ clause -> 'SPEED' defexpr_list 

exprJ.ist -> expression {' ,' expression} 

defexpr_list -> de/expression { ', ' de/ expression} 

classJ.ist -> class {',' class} 

class - > label [':' label] 



CHAPTER 70 IMPLEMENTING XSNAP 

pdLclause 

route_stmt 

route_descr 

node 

nodeJ.ist 

centreJist 

evaLsec 

evaLstmt 

prnt_stmt 

string 

character 

loop_stmt 

ploLstmt 

-> 

-> 

-> 

-> 

- > 

-> 

-> 

- > 

('PS' I 'DELAY' I 'LCFS') {speed_clause} 

time_clause 

'ROUTE' label route_descr {route_descr} ';' 

'FROM' (nodeJist 'TO' node I 
node 'TO' nodeJist 'FREQ' exprJ.ist) 

[class '@'] (variable I 'ENTRY' I 'EXIT') 

node{',' node} 

variable {','variable} 

'BEGIN' {evaLstmt} 'END' 

(prnt_stmt lloop_stmt I ploLstmt I 
tabulate_stmt I reporLstrnt I glbLstmt I 
iLstmt I while_stmt) 

-> 'PRINT' (expression I string) 

{ ',' expression I string} ';' 

- > ' {character} ' 

-> NUL 00 DEL 

- > 'LOOP' variable '=' expression 'TO' expression 

['BY' expression] {evaLstmt} 

'ENDLOOP' ';' 

- > 'PLOT' (pie_ploLstmt I bar_plot_stmt I 
line_ploLstmt) 

pie_plot_stmt -> 
bar_ploLstmt -> 

'PIE' string variable 'TITLE' stringlist ';' 

'BAR' string variable 'TITLE' string 

{' ,' variable 'TITLE' string} 

'VS' stringlist 'TITLE' string';' 

line_ploLstmt - > 'LINE' string variable 'TITLE' string 

stringlist - > 
tabulate_stmt - > 

{','variable 'TITLE' string} 

'VS' variable 'TITLE' string ';' 

string { ',' string} 

'TABULATE' variable 'TITLE' string 

{','variable 'TITLE' string} 

report_stmt 

iLstmt 

'VS' variable 'TITLE' string ';' 

-> 'REPORT' (statJist I 'ALL') (classJist I 'ALL') 

'@' ( centreJist I 'ALL') ';' 

-> 'IF' expression 'THEN' 

{ evaLstmt} 

['ELSE' {evaLstmt}] 

79 



CHAPTER 7. IMPLEMENTING XSNAP 

while_stmt 

stat list 

statistic 

glbLstmt 

leLstmt 

modeLstmt 

mod_wrkld 

mod_centre 

mod_route 

parms..stmt 

incLstmt 

expression 

term 

primary 

factor 

'ENDIF' ';' 

-> 'WHILE' expression 'DO' 

{evaLstmt} 

'ENDWHILE' ';' 

-> statistic {' ,' statistic} 

-> 'QUEUE' I 'QTIME' I 'WAIT' I 'CYCLE' I 
'RATE' I 'UTIL' I 'RES' 

-> leLstmt I modeLstmt I mod_wrkld I 
mod_centre I mod..route I parms..stmt I 
incLstmt 

- > 
- > 

- > 

-> 

-> 

- > 

- > 
- > 

- > 

- > 

- > 

'LET' variable'=' expression';' 

'MODEL' [string] ';' 

'MODIFY _WORKLOAD' label ['PRIORITY'] 

[mpLclause I 'ARRIVAL' defexpression] ';' 

'MODIFY_CENTRE' I 'MODIFY_CENTER' 

variable specification ';' 

'MODIFY_ROUTE' label ['SUBMODEL' label} 

[ rou te_descr] ';' 

'PARAMS' ('WORKLOAD' [label] I 
('CENTRE' I 'CENTER') [label] I 
'ROUTE' [label]) ';' 

'INCLUDE' string';' 

term [relop expresssion] 

primary [ addop term] 

factor [multop primary] 

variable I '( ' expression ')' I canst I staLsel 

I param_sel I unary factor I 'min ( 'exprlist ' )' 

I 'max ( ' exprlist ' ) ' 

I 'range ( ' expression ',' expression ',' variable ' ) ' 

I 'power ( ' expression ',' expression ' ) ' 

defexpression - > primary [ addop defexpression] 

defprimary - > factor [multop defprimary] 

deffactor - > defvariable I '( ' clef expression ')' I canst 

I unary factor I 'min ( ' expr Jist ' ) ' 

I 'max ( ' expr..list ' )' 

I 'range ( ' defexpression ',' defexpression ',' defvariable ' ) ' 

I 'power ( ' defexpression ',' clef expression ' ) ' 

80 



CHAPTER 7. IMPLEMENTING XSNAP 

unary 

relop 

addop 

multop 

const 

integer 

real 

stat..sel 

param..sel 

-> '+' I '-'I 'NOT' 

-> '<' I '>'I '=' I '<=' I '>=' I '<>'I 'AND' I 'OR' 

- > '+'I,_, 

-> '*'I'/' 
- > real I integer 

- > ('0' .. '9') {'0' .. '9'} 

-> ('0' .. '9') {'0' . .'9'} '.' {'0' . .'9'} ['e'['-'] ('0' . .'9') [('0' . .'9')]] 

-> (statistic I 'ALL') ((classJist I 'ALL') 

'@' (centreJist I 'ALL')) I 'RES' label 

-> 'ARRIVAL' label I 
'MPL' label[',' defexpression) 

'TIME' node I 
'FREQ' node 'TO' node I 
'SPEED' variable [', ' de/expression} 

7.4.2 Lexical Analyzer 

81 

The lexical analyzer is responsible for reading the SnapL program and converting the 

stream of input characters into tokens. These tokens are then passed to the parser, to be 

used in the syntax-directed translation of the SnapL program. 

Readers interest d in the design and implementation of lexical analyzers are referred 

to the excellent book by Aho, Sethi and Ullman [Aho 86). 

Save for the following specialised features, the lexical analyzer is quite standard: 

• A panic mode is provided where each line read is prefixed in the output with the 

words "LINE IGNORED :". This mode can be used whenever the parser has become 

totally confused and is searching for the next useful token, such as a semi-colon. 

• A literal string mode is supported where each character is returned without any case 

modification. This is necessary for reading in strings to be printed as headings in a 

TABULATE st atement, or strings in a PRINT statement. 

• No bookkeeping or symbol table manipulation is done by the lexical analyzer, but 

is rather left to the parser. 

7.4.3 The Parse r 

The parser used by XSnap actually functions as an interpreter since the SnapL code is 

not translated into any other form before being executed . Rather the code is 'executed' as 

it is being parsed. The SnapL code is not compiled into any lower level language since it 



CHAPTER 7. IMPLEMENTING XSNAP 82 

is almost certain that the improvement in execution time that could be gained from such 

an excercise would be insignificant when compared to the solution time of the CMTB 

solution modules. The parser has been shown to run very quickly, and any delay caused 

by the direct interpretation of the evaluation section has been unnoticable. 

XSnap uses a simple recursive-decent parser to parse the SnapL evaluation-section 

code defined by the modeller. The procedures used in the code map closely onto the 

productions given in the formal definition of the SnapL language (ie. each production 

is represented by a procedure having the same name). One can extend the language 

by merely changing the productions given in section 7.4.1 above, and by modifying the 

corresponding procedures in the source code. Readers unfamiliar with recursive-decent 

parsers are once again referred to the "Dragon Book" written by Aho, Sethi and Ullman 

[Aho 86]. 

When first implemented in MicroSnap, the parser was split into two modules: 

1. the module "parser.c", which parses the definition section and the MODIFY _WORK

LOAD, MODIFY_CENTRE and MODIFY_ROUTE statements. 

2. the module "eval4l.c", which parses the evaluation section of the SnapL language. 

In XSnap, there is no need for a definition section. However, many of the functions used 

when first defining a model are also used when the model is being modified with a MOD

IFY_WORKLOAD, MODIFY_CENTRE or MODIFY_ROUTE statement. Consequently, 

both "parser.c" and "eval4l.c" have been included into XSnap. 

7.4.3.1 Overview of passes 

The SnapL code is parsed once to check for correct syntax. Once this has been done, the 

evaluation code is interpreted. For this reason, MicroSnap has sometimes been described 

as a 'two-pass' interpreter. However, it would be incorrect to call the interpretation of 

the evaluation section as a 'pass', since any loop statement would cause the interpreter to 

travel over the code more than once. 

7.4.3.2 Reporting errors- the error() function 

This function reports any errors to the user, and has been only slightly modified in XSnap 

to present errors in a pop-up window rather than via standard output. If an errors occur 

whilst the evaluation section is being interpreted XSnap will abort the batch run. 

The error() function accepts a textual string describing the error, and this makes for 

very readable source code since a textual explanation of each error that may arise is given 

in each function where the error could be detected. This is obviously far more helpful than 



CHAPTER 7. IMPLEMENTING XSNAP 83 

error codes. Admittedly, some textual error descriptions are duplicated, thereby wasting a 

small amount of data space. However, using error codes rather than strings would make a 

miniscule dent in the data storage problems presented by the CMTB solution algorithms. 

The function error() also keeps a tally of the number of errors that have been re

ported. 

7 .4.3.3 Panic mode and aligning tokens 

The parser uses a very simple token alignment system, which is used when trying to recover 

from syntax errors. The parser recognises the semi-colon as the only useful 'solid' token. 

This is a logical choice as all statements in SnapL are right-deUmited by a semi-colon. 

The function align_semicolon () will check that the next token is indeed a semi-colon. 

If not, an error is reported and all tokens discarded until a semi-colon is reached. Whilst 

discarding tokens the lexical analyzer is set in 'panic' mode where each line echoed is 

prefixed "Line ignored: ". 

The method of error recovery adopted by the XSnap parser is by no means state-of

the-art, and could be significantly improved through the use of FIRST and FOLLOW sets, 

and more sophisticated matching functions. Nonetheless, the parser is robust, and will 

report correctly all errors found. 

7.4.3.4 Declaring variables- the VARIABLES statement 

The function vrb_stmt () is responsible for parsing the VARIABLES statement. It calls 

the function addtovartree() in the module "book41.c" to add the variable declaration 

to the variables tree. The variable name and subscript (if any) are passed as parameters. 

This function used to parse variable definitions is used by XSnap, even where there 

may be no evaluation section for the model. The defined variables can then be used in 

mathematical expressions defining arrival rates, centre service rates or routing frequencies . 

7 .4.3.5 Parsing expressions 

Expressions are parsed as defined by the SnapL productions, with the precedence of op

erators enforced by the structure of the productions themselves. A distinction is made, 

however, between 'defexpressions' and 'expressions'. 

• defexpressions are expressions that can be used when defining the model, and exclude 

the use of relat ion or logical operators such as<, >, :::;, ' NOT', 'OR' etc. as well as 

statistic or 'params' selectors. 

• normal expressions allow the use of all the operators and selectors mentioned above. 



Chapter 8 

Performance and Testing 

This chapter will give a report on the performance of XSnap, and will also describe the 

procedures that hav been used to test XSnap. 

Much of the testing of the CMTB was tackled when MicroS nap was first being written. 

Further integration testing has obviously being needed to ensure that the CMTB has been 

integrated successfully into XSnap . In this chapter, both the original testing and the 

subsequent "integration testing" will be described . 

8 .1 Performance Analysis 

When talking about the performance of XSnap, we are mainly refering to the space and 

time requirements for solving different types and sizes of models. This performance is not 

a function of the implementation of the XSnap GUI, but rather the CMTB. 

Admittedly, one could talk about the performance of the package whilst refering to 

things such as "ease of use" or special features offered by the XSnap GUI. However, the 

XSnap GUI has alr ady been described is detail in chapter 6, and will therefore not be 

included in the discussion presented in this section. 

Throughout this section simple formulae have been presented to illustrate the effect 

that certain model parameters have on the time and space requirements for solving mod

els. These formulae are not necessarily exact, and are intended only as 'in the order of' 

approximations. They do, none the less, provide valuable insight into many performance 

issues in XSnap. 

8 .1. 1 Performance criteria 

The most important performance criteria in the implementation of the CMTB has been 

space efficiency. One should remember that the CMTB was originally developed as part 

of MicroSnap in a PC environment where space constraints are all too real . 

84 



CHAPTER 8. PERFORMANCE AND TESTING 85 

Admittedly, in a UNIX environment run-time storage is not nearly as dear as under 

DOS, and therefore much larger models can be solved by XSnap than by a DOS-based 

version1 of MicroSnap. Even in XSnap, the storage requirements of the CMTB can still 

limit the size of models that can be solved, although admittedly solution time would 

probably be a more significant factor in the larger models. 

XSnap has been designed as an interactive modelling tool, and therefore much of the 

success of the package depends on the speed with which it can solve models. 

The two procedures that require the most memory in the CMTB are the MVA algo

rithm and solving relative throughputs. The memory requirements for the MVA algorithm 

are affected quite significantly when PRIORITY servers are introduced into the model, 

and are also affected slightly by the use of the interpolation algorithm. 

8.1.2 MVA Memory Requirements 

Table 1 gives a summary of the memory requirements of the MVA algorithm implemented 

in the CMTB. The notation adopted in the table is as follows : 

• N is the total number of centres in the model. 

• Pis the number of PRIORITY centres in the model. 

• J is the number of closed chains. 

• r is the total number of classes in the model. 

• x is the total number of classes in the model belonging to open chains . 

• s is the number of classes belonging to closed chains in the model. 

• '1/; is defined in equation 11 

(i.e. '1/; = Ilf=2 (Lk + 1), where Lk is the population of closed chain k). 

8.1.2.1 MPL levels 

The memory requirement of the MVA aJgori thm is proportional to the product of the 

populations of all but one of the closed chains in the model. The total memory requirement 

therefore rises exponentially with the addition of each new workload in the model. 

We note that increasing the MPL level of any one of the chains in a given model 

would not increase the storage requirement , but would only increase the solution time by 

the same proportion. This is because the value '1/; is a product over all but one of the 

1 MicroS nap has also been ported to UNIX. 



CHAPTER 8. PERFORMANCE AND TESTING 86 

Table 1: MVA memory requirements 

Memory Item Number of elements Space per element 

BASIC MVA 
rho_chain NxJ 8 
xi_chain NxJ 8 

rho_centre J 8 

avgJnpLchain J 8 
m_ T star_chain J 8 
m_ W star _chain JxN 8 

m_Q_centre J X N 8 
m_Q_cust Nx'lj; 8 

m_pop_chain J 2 

INTERPOLATION 
m_ T star _chain J 8 
m_ W star _chain J X N 8 

m_Q_centre J X N 8 

PRIORITY CENTRES 
m_W_cust r X p X 'ljJ 8 
m_T_cust J x'lj; 8 
W_open P xx 8 

equation 16 s2 8 



CHAPTER 8. PERFORMANCE AND TESTING 87 

chain's MPL levels. The function put_wrklds_into_array() of "book4l.c" ensures that 

the chain with the highest MPL level will be that one excluded from the calculation of 'lj; 

(see Chapter 5). 

8.1.2.2 No PRIORITY servers 

From table 1 is can be seen that the total memory requirement for the MVA algorithm is 

J(26 + 32N) + 8N x 'lj; bytes 

assuming that there is no interpolation necessary and that there are no PRIORITY servers 

in the model. Where interpolation is necessary, the memory requirement increases to 

J(34 + 48N) + 8N x 'lj; bytes 

In the above expressions, the most important factor is obviously 'lj;, since this value in

creases exponentially with the additional of each new closed chain to the model. 

8.1.2.3 PRIORIT Y servers 

When a model includes PRIORITY servers we need to allocate an additional amount of 

storage equal to 

8Px + (rP + J) x 'lj; + 8s2 bytes 

In other words, for the larger models, the storage requirements for solutions involving 

PRIORITY centres is proportional to 

'lj; x [the number of centres in the model+ 

the number of closed chains + 

L ( number of classes that visit that centre )] 
priority centres 

where each line of the above equations represents storage for the arrays rn_Q_cust [] [] , 

rn_Lcust [] [] and rn_W_cust [] [] [] respectively. Clearly these models require significantly 

more storage than similar models without PRIORITY servers. 

8.1.2.4 Maximum number of chains 

Each chain in the model must have a positive MPL level which, after rounding up all MPL 

levels for interpolation, will be greater than or equal to 1. For each k, (Lk + 1) therefore 

has a minimum value of 2, and 'lj; must be greater than or equal to 2J-l. 

It is interesting to consider the maximum number of chains that could be included in 

any one model. Given that there must be at least one centre in the model, and also that 



CHAPTER 8. PERFORMANCE AND TESTING 88 

'ljJ is always greater than or equal to 2J-l, we can derive the absolute minimum memory 

requirement for a model with J closed chains to be 

58J + 8 x 2J-l bytes 

In a DOS system with an available heap of roughly 400 KBytes, J would then have to be 

less than or equal to 16. 

The Sun SPARC 1+ station on which XSnap was developed reported a maximum 

available memory area of 511 MBytes, yet even on such a machine J could be at most 

equal to 26. Obviously, solving a model which required over 500 MBytes of intermediate 

solution results would in most cases take an awfully long time! 

If the MPL levels of two or more chains are greater than 1, or if there is more than one 

centre in the model, then the model would have to contain far fewer closed chains than 

that derived above. 

We turn now to t ime requirements for the MVA algorithm. 

8.1.3 MVA Time Requirements 

We can work out the time requirements of the MVA algorithm by looking at each of the 

steps given in figure 3 in chapter 5. 

8.1.3.1 No PRIORITY centres 

The main loop over all closed chain population vectors involves Tif=1 ( Lj + 1) iterations, 

and steps 4 and 5 are carried out J times for each of these outer loop iterations. Since 

the waiting time Wt~c ( i) is then computed for each of the N centres, the total time taken 

by step 4 is proportional to r' where 

J 

r = J N II (Lj + 1) (22) 
i=l 

Admittedly, the equation defining W;j.{Y is very much simpler to evaluate for DELAY 

centres than it is for the other service disciplines. The effect of this is not likely to be 

significant and will therefore be ignored. 

Step 5 is completed J times in every outer loop, and since the calculation of T;(i) 

involves a summation over all N centres, we can see that the total time spent executing 

this step is also proportional to r. 
Step 6 involves calculating Q;(i) for each of theN centres, and each of these calculations 

includes a summation over all J chains in the model. Once again, therefore, the execution 

time for this step is proportional to r. 



CHAPTER 8. PERFORMANCE AND TESTING 89 

8.1.3.2 PRIORITY servers 

Time requirements for solving models with PRIORITY servers is very much more com

plicated to derive. 

To solve W;'k(T) for PRIORITY servers i, we need to sum the values W;r for all classes in 

the closed chain k (see figure 3). Calculating each W;r by equation 13 involves an iteration 

over all classes in the model (or, if the chain k is a priority chain, an iteration over all classes 

in the model belonging to priority chains). However, due to the optimisations described 

in section 5.2.6.3, the iterations involved in finding W;r only need to be performed once 

for each centre. This set of iterations will therefore be ignored in the following equations . 

The total time spent solving W;'k(T) (step 4) in a model with P PRIORITY servers is 

proportional to 
J 

[J(N- P) + PNs] x il (Lj + 1) 
j=l 

using the notation introduced in the sections above. 

As was described in section 5.2.9, there is also an additional overhead in step 6 with 

the calculation of W;r for all r classes belonging to open chains. To find these values we 

need to solve two sets of simultaneous linear equations. Since such sets of equations must 

be solved for each centre during each loop over the different population vectors, the total 

time spent solving these equations is proportional to 

J 

[a3 + b3
] x N x IT (Lj + 1) 

j=l 

where a is the number of classes belonging to open chains which have PRIORITY status, 

and b is the number of classes belonging to open chains which do not have PRIORITY 

status. 

8 .1.3.3 Summary of time requirements 

All steps considered, the solution time for a model with no PRIORITY servers is propor

tion to the product of 

• the number of centres in the model. 

• the number of closed chains in the model. 

• the product of the customer population levels (plus 1) of each of the closed chains 

in the model. 

The solution time for models which include PRIORITY servers is very much more 

difficult to represent clearly, and depends on very many different factors. A significant 



CHAPTER 8. PERFORMANCE AND TESTING 90 

Table 2: Time and space requirements for solving a number of simple models 

Memory Requirement (bytes) Solution Time (seconds) 
Chains XSnap GUI CMTB MVA Sun SPARC 1+ IBM PC/AT 

2 8016 3744 612 0.11 3.75 
3 11340 4176 1998 0.27 9.31 
4 14664 4944 9384 1.49 51.02 
5 17988 5376 52770 10.62 365.07 
6 21312 6096 312156 77.00 2640.11 

difference between a model with and without PRIORITY servers, is that the MVA solution 

time of the former is affected by the number of classes in the model (in both open and 

closed chains), while the latter is not. Another important difference is that it clearly takes 

longer to solve models with PRIORITY servers than it does to solve models of similar 

size which have no such PRIORITY servers . 

8.1.4 Some sample models 

As an indication of t he performance of the MVA algorithm, table 2 has been compiled 

to illustrate the space and time requirements for solving 5 simple models having 2,3,4,5 

and 6 closed chains respectively. Each of the models has no open chains, and each of the 

closed chains has an MPL level (closed chain population) of 5. 

The Sun SPARC-Station 1+ used in the test had 8 MBytes of memory and no floating 

point accelerator. The IBM PC/ AT had 640 KBytes of memory and no math co-processor, 

and ran at a clock speed of 16 MHz. 

8.1.5 Adding Open Chains to the model 

Adding one or more open chains to any of the above models would not affect the memory 

requirements of the MVA algorithm. In fact , the number of open chains in the model 

is constrained only by the storage space available to store the definition parameters and 

routing information for such chains, and those extra statistics Pik and 3 ;k calculated in 

the module "param.c". Even in a DOS environment, we might expect to be able to store 

the data for at least 100 such open chains. Clearly then, this places no real constraint on 

the model size. 



CHAPTER 8. PERFORMANCE AND TESTING 91 

8.1.5.1 Speeding up MVA 

It should be noted that step 4 of the MVA algorithm given in figure 3 has to be carried 

out 

times, every time the model is solved. 

At present this step is implemented by the function calc_W_chainO in "mva4l.c" and 

the time taken to execute this function is normally responsible for a significant propor

tion of the total solution time. In the simple model with four closed chains used in the 

example above, this function is called over 25000 times, while the model with five closed 

chains needs 194400 calls!. Such function calls are quite expensive, and this suggests that 

one of the easiest ways to speed up the MVA algorithm would be to move the function 

calc_W_chainO inline into mva() . This would , however, sacrifice the readability of the 

mva() function. 

8.1.6 Relationsh ip between memory and time requirements of the MVA 

algorithm 

It was pointed out in section 8.1.2.4 that the maximum number of chains that could be 

included in a model would be affected by the available memory and the time taken to 

solve a model. We might wish to consider which one of these performance criteria can 

be expected to be more prohibitive when it comes to solving large models. To establish 

this, we will attempt to derive a relationship between the solution time and the memory 

requirement of large models. 

If we consider the value of r for each of the sample models used in table 2 and compare 

this value to the actual solution time, we see that for the larger models r is roughly 18000 

times the solution time in seconds (on the Sun SPARC 1+ ). Given that the memory 

requirement for large models is roughly equal to 8N X '1/J bytes, and that Tij=l (Lj + 1) is 

at least equal to 21/J , we can derive an equation which gives the minimum solution time 

for models as a funct ion of the MVA memory requirement for solving the model. We have 

S 1 . . 2N J X '1/J d o ut10n t1me 2: 
18000 

secon s 

and therefore 

Solution time per MByte of storage > 14J seconds 

For '1/J to be greater than 1, there must be at least two chains in the model, and so in 

'large' models the right hand side of the above equation must be at least 28. 



CHAPTER 8. PERFORMANCE AND TESTING 92 

Admittedly, any model that used more than 8MBytes of storage would require memory

paging by the operating system, which would slow down the application. The above 

minimum solution time of 28 seconds per MByte of storage is therefore very conservative. 

Another consideration is that Ilf=1 (Lj + 1) can be very much larger than 7/J times 2, 

and is in fact 7/J times the largest closed chain population level in the model. With this in 

mind, the solution time would more Jjkely be as much as 10 minutes per MByte of storage 

used, ignoring the additional overhead involved with paging. 

In summary then, it is difficult to establish a simple relationship between the MVA 

solution time and MVA memory requirements which would be applicable to all models. 

We might expect, however, that on a Sun SPARC 1+ workstation the solution time will 

be somewhere between 1 and 20 minutes per MByte of storage used. A more acturate 

estimate of the relationship can only be given where both the number of chains and the 

largest closed chain population are known. 

8.1.7 Solving Relative Throughputs 

8.1.7.1 Memory requirements for LU-Decomposition 

When solving the relative workload throughputs, each chain is solved separately and only 

those nodes that are actually visited are included in the matrix representation of equation 7 

given in chapter 4. 

If w represents the total number of visited nodes in the chain, then this set of equations 

will take up 

8w( w + 2) bytes 

of memory. Admittedly, the routing probabilities also need to appear in the CMTB data 

structures where they will take up additional storage space. However, the CMTB uses a 

sparse matrix representation of the data which, for large models, is likely to take up very 

much less space than that given by the equation above. The CMTB data structures will 

therefore be ignored in the rest of this analysis. 

Using the equation above, we can see that in a DOS environment with a heap of 

approximately 400KBytes we could represent the matrix for a chain with up to 225 visited 

nodes. 

Under UNIX, very much larger matrices cou ld be used. For example, 8MBytes would 

be sufficient to hold a matrix represent ing 1000 visited nodes in a single chain! 

Practically then , memory requirements place no real constraint on the solution of 

relative throughputs using LU-Decomposition. 



CHAPTER 8. PERFORMANCE AND TESTING 93 

8.1.7.2 Memory r equirements fo r t he C o nj ugate G radient metho d 

The above estimates have been derived assuming that the LU-Decomposition method is to 

be used to solve the relative throughputs . When using the Conjugate-Gradient method we 

do not need to store the matrix representation of this set of linear equations, and instead 

use the routing frequencies directly as they appear in the model data structures. This is 

a significant saving for larger models. 

Unfortunately, as has been pointed out in section 4.5.1, the Conjugate Gradient method 

has proved to be inaccurate when used with larger models, and more work would be 

necessary to improve the accuracy of the algorithm. This is beyond the scope of this 

dissertation. 

8 .1.7 .3 T ime R equ ir ement s 

Quite apart from the problem of space, we have the problem of time efficiency. 

Unlike with the MVA algorithm, the time requirement for solving sets of simultane

ous linear equations increases exponentially faster than the memory requirements. Using 

standard notation, the memory requirement for representing the set of simultaneous linear 

equations is 0( n 2
) while the time requirement for solving these is typically 0( n3 ). With 

this in mind, one can expect the t ime taken to solve the relative throughputs to become 

prohibitive long before one runs into any memory problems. 

It has been pointed out that the solution of a set of sparse linear equations can be done 

in less than O(n3 ) using specialized algorithms. As demonstrated in the CMTB, however, 

these algorithms ar not always as accurate as their 0( n3 ) counterparts and therefore 

cannot always be used on the larger models. 

8 .2 Testing XSnap 

The CMTB has been tested thoroughly at each stage during its development. Furthermore, 

the parser and lexical analyzer have been used extensively as part of MicroSnap since the 

end of 1990. 

8.2.1 Testin g the CMTB solut ion results 

The code for each of t he statistical solution modules ("mva4l.c", "stat4l.c" and "through41.c") 

has been checked thoroughly by inspection. However, since such inspection cannot be guar

anteed to find every error, a number of test models have been used to demonstrate that 

the CMTB works correctly. 



CHAPTER 8. PERFORMANCE AND TESTING 94 

Source Sink 

Figure 13: M/M/1 Queue. 

In December 1990, Andrew Hutchison of the Computer Science Department (UCT) 

wrote a paper comparing the solution results of a number of modelling packages [Hutch 90]. 

The packages investigated included (amongst others) MicroSnap, RESQ, HIT and MA

COM. 

In Andrew's study, the MACOM, RESQ and MicroSnap experiments were run on a 

Sun SPARC 1+ Workstation with 8 MBytes of memory and no floating point accelerator. 

The HIT results were obtained through collaboration with the University of Dortmund, 

Germany, which provided their own results for the models tested using the HIT package; 

these HIT experiments were run on a Sun 4. Both of the HIT solution methods used 

(DOQ4 and MARKOV) fall into the class of analytical methods and are not simulations. 

In the following sections, the results produced by XSnap will be compared with those 

tabulated by Andrew. The XSnap models were solved on the same machine as the MA

COM, RESQ and MicroSnap models. 

8.2.1.1 A simple M/M/1 queue 

The first model used is quite simple, and was developed only to compare the output from 

the various tools with the know theoretical results. 

Figure 13 depicts the model of an isolated M/M/1 queue with FCFS scheduling. A 

mean arrival rate of 10 customers per unit time (). = 10) and a mean service rate of 20 

customers per unit time (J.l = 20) was used in the model. In the case of RESQ and the 

HIT Simulator a total of 10 000 events was used. 

The results are given in Table 3. It can be seen from this table that the results for 

MicroSnap and XSnap are both exact in terms of queueing theory. 

8.2.1.2 Central server model 

The second model used was the Central Server model, which Js considered to be the 

classical example of a queueing network. 

In every case except RESQ, it was modelled as an open network with external arrivals 

at the rate of A = 1/3 per second . In the case of RESQ it was modelled as a closed 



I 

CHAPTER 8. PERFORMANCE AND TESTING 95 

Statistic RESQ Micro- MAC OM HIT HIT XSnap Theory 

Snap DOQ4 MARKOV 

Utilisation 0.50 0.50 0.50 0.50 0.50 

Throughput 9.80 10.00 10.00 10.0 10.0 

Queue Length 1.00 1.00 1.00 1.00 1.00 

Queueing Time 0.051 0.050 0.050 0.050 0.050 

Waiting Time 0.101 0.100 0.100 0.100 0.100 

Solution time II l.Os I 0.1s I 35.0s 1.5s I 6.2s 

.A= 1/3 
Source 

Table 3: Results for the M/M/1 Queue 

=o ------10.5 

0.5 
CPU 

1-L = 20 

Disk A 

1/J.t = 0.060 

~o 
1/ 1-L = 0.060 

Disk B 

Figure 14: The Central Server Model. 

0.5 0.50 

10.00 10.0 

1.00 1.00 

0.050 0.050 

0.100 0.100 

0.1s n/a 

t--r--0.1 D 
0.9 l_j 

Sink 

network with a population of 11 customers corresponding to a throughput of about 1/3 

on the feedback loop . 

Figure 14 shows the central server model, whilst a picture of the model implemented 

under XSnap has already been shown as the sample model used in figure 4. 

In the cases of Sandy, RESQ and the HIT Simulator a total of 100 000 events was used. 

Since open chains are not implemented in the version of RESQ which Andrew used, no 

response time was computed in that case. In all four cases the CPU was given a Processor 

Sharing service discipline while the disks were each given a FCFS service discipline. 

Tables 4, 5 and 6 show the solution results and solution times for this model. 

An interesting point is that for each of the models tested, both MicroSnap and XSnap 

have been shown to be significantly faster than any of the other packages used. 



CHAPTER 8. PERFORMANCE AND TESTING 96 

Statistic RESQ MicroSnap MAC OM HIT HIT XSnap 

DOQ4 MARKOV 

Utilisation 0.165 0.167 0.160 0.167 0.167 0.167 

Throughput 3.230 3.333 3.201 3.333 3.333 3.333 

Queue Length 0.189 0.200 0.186 0.200 0.200 0.200 

Queueing Time 0.009 0.010 0.008 0.010 0.010 0.010 

Waiting Time 0.059 0.060 0.058 0.060 0.060 0.060 

Table 4: CPU Statistics in the Central Server model 

. 
Statistic RESQ MicroS nap MACOM HIT HIT X Snap 

DOQ4 MARKOV 

Utilisation 0.100 0.100 0.096 0.100 0.100 0.100 

Throughput 1.625 1.667 1.601 1.667 1.667 1.667 

Queue Length 0.105 0.111 0.105 0.111 0.111 0.111 

Queueing Time 0.005 0.007 0.006 0.007 0.007 0.007 

Waiting Time 0.065 0.067 0.066 0.067 0.067 0.067 

Table 5: Statistics for Disk A (or B) in the Central Server model 

Statistic RESQ MicroSna.p MAC OM HIT HIT XSna.p 

DOQ4 MARKOV 

Response Time n/a 1.267 1.189 1.267 1.267 1.267 

Solution Time 22.0s 0.2s 46 .0s 1.9s 51.5s 0.2s 

Table 6: Throughput a.nd Solution Times for the Central Server model 



CHAPTER 8. PERFORMANCE AND TESTING 97 

8.2.1.3 Three Node Computer Network 

Andrew also compared the solution results of a model of a large 3-node computer network. 

Unfortunately, the model used does not seem to give a realistic representation of the 

operation of the 'timeout' on each of the trunks. Therefore, it has been decided not 

to reproduce this model in this dissertation. Suffice it to say, however, that realistic or 

not, MicroSnap once again gave results which were directly in line with each of the other 

packages. 

8.2.1.4 A simple closed chain model 

Each of the above examples uses only open chains in the model. One more sample model 

will therefore be presented consisting of two closed chains. 

The sample model chosen is called 'ex.xsn', and the MicroSnap equivalent of this model 

has been used often as a teaching example. Since the model is relatively small it has been 

possible to check the solution results manually. The output produced is also identical to 

that produced by MicroSnap. 

There are two workloads in the model, namely "batch" and "interactive". The former 

workload has two classes "trans" and "io_wait", while the latter has three classes "active", 

"query" and "update". The number of customers in workload "batch" is 10 whilst the 

number in "interactive" is 25. The sample screen given in figure 6 actually shows the 

definition of the workload "interactive" using the XSnap Workload Manager. 

Figure 15 gives a simple picture of the model. Unfortunately, since the model includes 

a number of classes it is not possible to show simply the service rates and routing probabil

ities on the model diagramme. Rather these would be queried using the Centre Manager 

and Path Manager in XSnap. Rather than having to list all the model parameters in this 

section, the reader is referred to appendix B which shows the output produced using the 

"CMTB Text" option in the XSnap GUI. This output was generated using "ex.xsn" as 

the sample model. 

8.2.1.5 Models wit h PRIORITY servers 

In the case of PRIORITY centres, an interesting exercise is to set a number of centres as 

PRIORITY centres and ensure that all customers that visit these centres have PRIORITY 

status (or alternatively we ensure they all have normal status). The solution for such a 

model should be very similar to that where the centres are all FCFS and the customers have 

no PRIORITY status. The results of these two models will not be identical since solutions 

involving PRIORITY centres can only be found by approximation (see Section 5.2.6). A 

bug was actually found in the CMTB using the above test, and this has been removed 



CHAPTER 8. PERFORMANCE AND TESTING 98 

cpu disk 

tty 

Figure 15: Sample Model 'ex.xsn' 

successfully. 

8.2.2 Testing the XSnap GUI 

A graphical user interface is much easier to test than mathematical solution modules since 

it is normally immediately obvious whenever anyth ing is wrong. Furthermore, each of the 

widgets on the screen either works or does not work, and is very rarely affected by any 

other part of the program. 

A graphical user interface can only be tested interactively, with the modeller attempt

ing to use as many features of the interface as possible, and ensuring that they all work 

correctly. Each of the features of the XSnap GUI described in chapter 6 has been tested 

using a number of dummy models. 

8.2.3 Testing the other modules 

The parser and lexical analyzer have been checked using numerous test programs, thereby 

ensuring that each of the productions of the SnapL language (see section 7.4.1) is parsed 

properly. 

The bookkeeping functions have been checked using the PARAMS statement to in

terrogate the model data structures to ensure that all the parameters have been entered 

correctly into the CMTB data structures. Code inspection has also been useful in searching 

for bugs in the bookkeeping functions. 

The LU-Decomposition and Conjugate-Gradient method algorithms have been vali

dated by a simple check on the solution sum of square errors . Obviously, a large sum of 



CHAPTER 8. PERFORMANCE AND TESTING 99 

square errors would imply that the solution vector was inaccurate. These matrix algo

rithms have also been tested on simple sets of linear equations and the results checked by 

hand. 

8.2.4 Results of the testing procedures 

Obviously we cannot hope to expect that there are no bugs left in XSnap. However, the 

program has been thoroughly tested and both the CMTB and the SnapL parser have been 

complete and in use since the end of 1990. The few bugs that have surfaced since that time 

have been completely removed. Furthermore, it would be fair to say that any bugs that 

do remain are minor bugs that could be easily removed with the help of the MicroSnap 

Programmer's Manual and the source code comments. 

It has been mentioned before that while programming with widgets is perhaps some

what tedious, it is not necessarily complicated or difficult. Fixing any bugs that may 

appear in the XSnap GUI should therefore be relatively straight-forward. 

XSnap has been only recently completed and has not yet enjoyed as much usage as 

MicroSnap. The scope for errors in the integration between the XSnap GUI and the 

CMTB, therefore, cannot be ignored. None the less, XSnap has been shown to work 

correctly on all mod ls used thus far, and any errors found should be relatively easy to fix 

with the help of the source-code comments provided with the XSnap code. 



Chapter 9 

Conclusion 

This chapter offers a summary of the main successes and any shortcomings of the project. 

A number of areas of possible future study are also suggested which may be undertaken 

to extend the package and to improve the overall quality of the final product. 

9 .1 Successes 

An obvious success of the project has been the development of the XSnap package. Hope

fully this package will be used productively for some years to come. 

The package is user friendly, attractive and practical, and runs under X Windows 

which is a uniform and widely accepted platform. The model validation aspects are quite 

good in that XSnap will report any internal inconsistencies within a model, so as not to 

provide incorrect solutions based on such a model. 

The package also usefully integrates both exact and approximation results. This is 

useful for modelling workloads with different priorities. Non-integral multiprogramming 

levels are also catered for automatically using interpolation approximations. 

Sufficient flexibility is also offered by the tool to define complex model experiments 

through the use of the SnapL model specification and evaluation language. Very often, 

tools which offer a Graphical User Interface do so at the expense of system flexibility and 

power. 

The dissertation also represents a useful reference which brings together much of the 

theory surrounding product-form queueing network solvers, and provides a practical ex

ample of the implementation of these somewhat complex mathematical algorithms. 

Another significant success factor is the apparant speed with which XSnap is able to 

solve models. This has been highlighted by the comparison with similar tools in the previ

ous chapter. Having a fast tool is always an advantage when doing interactive modelling. 

100 



- ------

CHAPTER 9. CONCLUSION 101 

Finally, and most importantly, XSnap has been shown to produce accurate solution statis

tics which are consistent with those produced by all the other tools with which it has been 

compared. The tool can therefore be used confidently when analyzing models. 

9.2 Shortcom ings 

The main shortcoming of the XSnap package is the fact that the models which can be 

solved are largely restricted to that subset of models which can be represented using 

product-form queueing networks. Admittedly, a tool which calculated results using direct 

Markovian Analysis would be able to encompass a much wider domain of models . Such 

tools do, however, have their own shortcomings which have already been described in 

chapter 2. 

There are perhaps additional features that could have been included in the package 

and which would have improved the package. Examples of such extensions are given in 

the next section. However, such features are probably best added to later versions after 

sufficient feedback has been gained regarding the use of the package; this way, one would 

be able to determine more clearly which addit ional features would add the greatest value. 

One final shortcoming, perhaps, is that the package has not yet been extensively used . 

Some bugs in the packge may therefore still surface over time. 

9.3 Further Research 

There are many ar as of further research that could be undertaken to improving the 

package. Some of the more obvious of these are listed below. 

• The package could be extended to allow for the inclusion of Sub-Models. These 

would allow complicated models to be presented far more attractively and could 

also speed solution times (see [Krit 81]). 

• The package could be extended to allow for the inclusion of load dependant servers. 

The CMTB already supports the data structures needed to store the information 

necessary to define servers of this type. The solution of such models is described in 

detail in [Krit 82]. Admittedly this would introduce another degree of complexity to 

the implementation of the MVA algorithm in the CMTB. 

• The parser, used to parse the Evaluation Code used to define complex model ex

periments, could be improved through the use of FIRST and FOLLOW sets. This 

would allow more sophisticated error recovery (see [Aho 86]) . 



CHAPTER 9. CONCLUSION 102 

• The accuracy of the Conjugate Gradient method for solving simultaneous linear 

equations might be improved by manipulating the original matrix (see [Recipes 87]) . 

This algorithm could then be used to calculate the relative throughputs of even the 

larger models, t hereby speeding up the solution time. 

• Estimation and Extrapolation algorithms could be integrated into the package to 

cater for closed workloads with very high MPL levels . A number of algorithms 

which may be adapted suitably for this purpose are described in [Recipes 87]. 



Appendix A 

Sample Evaluation-Code Output 

This appendix gives the sample output from the evaluation section of a model. The 

parameters of the model are the same as that given in appendix B. 

A.l Evaluat ion Code 

testprog 

VARIABLE v1(10), v2(10), v3(10), lop; 

BEGIN I the evaluation section I 

report all all~all; 

LOOP lop = 1 TO 10 

MODIFY_CENTRE disk fcfs timeall (lop*lop); 

I customer service time exponentially I 

PRINT 'Queue length~disk = ', QUEUE all~disk; 

LET v1(lop)=lop*lop; 

LET v2(lop)= QTIME all~disk; 

LET v3(lop)= WAIT batcha:io_wait~disk; 

ENDLOOP; 

TABULATE v2 TITLE 'Queuing Time', 

v3 TITLE 'Waiting Time' 

VS v1 TITLE 'Service Time at Disk'; 

103 



APPENDIX A. SAMPLE EVALUATION-CODE OUTPUT 104 

END. 

A.2 The output produced by XSnap 

XSnap Vl.O Model name: sample Page:1 

Sun Sep 20 16:56:00 1992 

REPORT: Average Queue Length 

batcha batcha interb 

trans io_wait active 

cpu 0.00496619 0 0.00736734 

disk 0 9.99503 0 

tty 0 0 0 

interb interb 

query update 

cpu 0 0 

disk 0 10.8004 

tty 14.1922 0 



APPENDIX A. SAMPLE EVALUATION-CODE OUTPUT 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56: 03 1992 

REPORT: Average Queue Time 

batcha 

cpu 

disk 

tty 

cpu 

disk 

tty 

trans 

0.00247994 

0 

0 

interb 

query 

0 

0 

0 

batcha 

io_vait 

0 

387.514 

0 

interb 

update 

0 

403.993 

0 

XSnap V1. 0 Model name: sample 

Sun Sep 20 16:56: 03 1992 

REPORT: Average Waiting Time 

batcha 

trans 

cpu 

disk 

tty 

cpu 

disk 

tty 

0.20248 

0 

0 

interb 

query 

0 

0 

300 

batcha 

io_vait 

0 

407 . 514 

0 

interb 

update 

0 

423.993 

0 

Page: 2 

interb 

active 

0.00122698 

0 

0 

Page:3 

interb 

active 

0.101227 

0 

0 

105 



APPENDIX A. SAMPLE EVALUATION-CODE OUTPUT 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56: 04 1992 

REPORT: Average Cycle Time 

batcha 

trans 

cpu 

disk 

tty 

cpu 

disk 

tty 

407.514 

0 

0 

interb 

query 

0 

0 

228.46 

batcha 

io_wait 

0 

0.20248 

0 

interb 

update 

0 

557.432 

0 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56: 04 1992 

REPORT: Average Throughput Rate 

batcha batcha 

trans io_wait 

cpu 0.0245268 0 

disk 0 0.0245268 

tty 0 0 

interb interb 

query update 

cpu 0 0 

disk 0 0.0254732 

tty 0 . 0473073 0 

Page:4 

interb 

active 

343.398 

0 

0 

Page:5 

interb 

active 

0.0727804 

0 

0 

106 



APPENDIX A. SAMPLE EVALUATION-CODE OUTPUT 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56: 04 1992 

REPORT: Average Ut ilisation 

batcha batcha 

trans io_wait 

cpu 0.00490537 0 

disk 0 0.490537 

tty 0 0 

interb interb 

query update 

cpu 0 0 

disk 0 0.509463 

tty 1 0 

XSnap V1.0 Model name : sample 

Sun Sep 20 16:56 :04 1992 

REPORT: Average Residence Time 

batcha 

trans 

Total 

Total 

Undefined 

interb 

query 

Undefined 

batcha 

io_wait 

Undefined 

interb 

update 

Undefined 

Page :6 

interb 

active 

0.00727804 

0 

0 

Page:7 

interb 

active 

Undefined 

107 



APPENDIX A . SAMPLE EVA L UATION-CODE OUTPUT 

XSnap V1.0 Model name : sample 

Sun Sep 20 16:56 :42 1992 

Queue length<Odisk = 10.2536 

Queue length<Odisk = 12 . 087 

Queue length<Odisk = 15.065 

Queue length<Odisk = 18.9509 

Queue length<Odisk = 22 . 6919 

Queue length<Odisk = 25 . 6272 

Queue length<Odisk = 27.7555 

Queue length<Odisk = 29 . 282 

Queue length<Odisk = 30 . 3924 

Queue length<Odisk = 31 . 2174 

I Service Time I Queuing Time 

1 . 0000 19.4412 

4 . 0000 91.5901 

9.0000 256.6337 

16 . 0000 575 . 6065 

25 .0000 1082.7795 

36 . 0000 1769 . 3383 

49 . 0000 2617 . 0880 

64 . 0000 3614 . 4978 

81 .0000 4755 . 5845 

100 . 0000 6037 . 2424 

Page :8 

108 



A PPENDIX A . SAMPLE EVALUATION-CODE OUTPUT 109 

XSnap V1 . 0 Model name : sampl e Page : 9 

Sun Sap 20 16:56: 42 1992 

I Service Time I Waiting Time 

1 . 0000 10 . 2086 

4.0000 47.6412 

9.0000 132 . 4616 

16 . 0000 296 . 3471 

25.0000 557 0 6317 

36 . 0000 911.5831 

49.0000 1348.4848 

64 . 0000 1862 . 3007 

81.0000 2449.9586 

100.0000 3109 . 8865 



Appendix B 

Sample output generated using 

"CMTB Text'' 

This appendix gives sample output generated using the "CMTB Text" option under the 

"File" menu in XSnap. 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56:04 1992 

Params: Workload details 

Workload name :interb 

Classes active 

query 

update 

Closed Chain 

MPL 25#1 

Average mpl :25 

110 

Page: 1 



APPENDIX B . SAMPLE OUTPUT GENERATED USING "CMTB TEXT" 111 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56: 04 1992 

Params: Workload details 

Workload name :batcha 

Classes : trans 

io_wait 

Closed Chain 

MPL 10#1 

Average mpl :10 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56:04 1992 

Params: Centre details 

Centre name :cpu 

Service Details: 

Processor sharing 

time batcha:trans 0.2 

time interb:active 0 . 1 

Page :2 

Page :3 



APPENDIX B. SAMPLE OUTPUT GENERATED USING "CMTB TEXT" 112 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56:04 1992 

Params: Centre details 

Centre name :disk 

Service Details: 

FCFS Centre Service time :20 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56:04 1992 

Params: Centre details 

Centre name :tty 

Service Details: 

Delay centre Time all :300 

Page:4 

Page: 5 



APPENDIX B . SAMPLE OUTPUT GENERATED USING "CMTB TEXT" 113 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56: 04 1992 

Params: Route det ails 

Workload name :interb 

from active~cpu t o update~disk, 

query~tty 

freq 0 . 35,0.65 

from update~disk t o active~cpu freq 1 

from query~tty to active~cpu freq 1 

XSnap V1.0 Model name: sample 

Sun Sep 20 16:56: 04 1992 

Params: Route det ails 

Workload name :batcha 

from trans~cpu to io_wait@disk freq 1 

from io_wait~disk to trans@cpu freq 1 

Page :6 

Page: 7 



Bibliography 

[Aho 86] 

[Balbo 92] 

[Baskett 75] 

[Beilner 90] 

[Buzen 73] 

[Chandy 80] 

[Conte 65] 

[Conway 86] 

Aho A.V., Sethi R. and Ullman J.D., Compilers - Principles, Techniques 

and Tools, Addison-Wesley Publishing Company, Massachusetts, 1986, 

ISBN 0-201-10194-7. 

Balbo G., Serazzi G. ( eds ), Computer Performance Evaluation - Modelling 

Techniques and Tools, Elsevier 1992 

Baskett F. et al. "Open, Closed and mixed Networks of Queues with Dif

ferent Classes of Customers." Journal of the ACM, 22, 2, pp 248-260, 

April 1975. 

Beilner H., "Structured Modelling and Tool Support", Performance 1990 

Johannesburg, 1990. 

Buzen J.P., Computational algorithms for closed queueing networks with 

exponential servers, Communications of the A CM, 16(9), September 1973, 

pp 527-531 

Chandy K.M. and Sauer C.H., Computational algorithms for product

form queueing networks, Communications of the ACM 23, 10 (October 

1980) , pp 573-583 

Conte S.D. and De Boor C., Elementary Numerical Analysis - An algo

rithmic approach, McGraw-Hill, New York, 1965. 

Conway A.E. and Georganas N.D. RECAL - a new efficient algorithm for 

the exact analysis of multiple-chain closed queueing networks. Journal of 

the A CM 33, 4 (October 1986), pp 768-791 

[Grassmann 87] Grassmann W., Kumar S. and Billinton R., "A stable algorithm to cal

culate the steady-state probability and frequency of a Markov system", 

IEEE Transactions on Reliability, 36 , 198, pp. 58-61. 

114 



BIBLIOGRAPHY 115 

[Hutch 90] 

[King 90] 

[Klein 75] 

[Krit 81] 

[Krit 82] 

[Krit 84] 

[Lam 83] 

[Laz 84] 

[MSnap 90] 

[Niji 78] 

[Pooley 92] 

[Puig 89] 

[Ralston 65] 

Hutchison A., Solution Methods and Tools for Performance Models, Com

puter Science Department , University of Cape Town, CS90-03-01, Decem

ber 1990. 

King P.J., Computer and Communication Systems Performance Mod

elling, Prentice Hall, New York, 1990. 

Kleinrock L., Queueing systems Volume I: Theory . J.Wiley & Sons, New 

York, 1975. 

P.S.Kritzinger, S. VanWyk and A.E.Krezsinski, A Generalisation of Nor

ton's Theorem for Multiclass Queueing Networks, Institute for Applied 

Computer Science, University of Stellenbosch, February 1982. 

P.S.Kritzinger and S.Van Wyk, MEAN VALUE ANALYSIS, A Collection 

of the Results, ITR 82-14-00, April 1982. 

M.Booyens and P.S.Kritzinger, SNAPL/1: A Langauge to Describe and 

Evaluate Queuing Netwo1·k Models, Printed in Performance Evaluation, 

Volume 4, No 3, August 1984. 

Lam S.S., A simple derivation of the MVA and LBANC algorithms 

from the Convolution algorithm, IEEE Transactions on Computers, C-

32(11):1062-1064, November 1983. 

Lazowska E.D., Zahorjan J., Graham G.S ., and Sevcik K.C., Quantitive 

System Performance - Computer System Analysis using Queueing Net

work models, Prentice-Hall, Englewood Cliffs, N.J ., 1984. 

MicroSnap User Manual, 3rd Edition, Department of Computer Science, 

University of Cape Town, August 1990. 

Nijenhuis A. and Herbert S.W., Combinatorial Algorithms for Computers 

and Calculators., Academic Press Inc., New York, 1978. 

Pooley R.J., Hills ton J. ( eds), Computer Performance Evaluation '92 -

Modelling Techniques and Tools, Conference Copy 1992 

Puigjaner R., Potier D. (eds), Modelling Techniques and Tools for Com

puter Performance Evaluation, P lenum 1989 

Ralston A., A first course in Numerical Analysis, McGraw-Hill, New York , 

1965. 



BIBLIOGRAPHY 116 

[Recipes 87] 

[Reiser 81] 

W.Press, B.Flannery, S.Teukolsky and W.Vetterling, Numerical Recipes 

- The art of Scientific Computing, Cambridge University Press 1987, 

ISBN 0 521 30811 9. 

Reiser M., Mean Value Analysis and Convolution method for queue

dependent servers in closed queueing networks, Performance Evalaution 

Vall , No 1, January 1981, pp 7-18. 

[Sauer 81] Sauer C.H. and Chandy K.M., Computer Systems Performance Modelling, 

Englewood Cliffs, NJ: Prentice Hall, 1981. 

[Schmidt 89] Renate A. Schmidt, Analysis and comparison of seveml algorithms for the 

solution of closed mullichain product-form queueing networks, Depart

ment of Computer Science, University of Cape Town, February 1989. 

[Sczittnick 90] Sczittnick M. and Muller-Clostermann B., "MACOM - A Tool for the 

Markovian Analysis of Communication Systems", Proceedings on the 

Fourth International Confe1·ence on Data Communication Systems and 

their Performance Barcelona, 1990. 

[Sevcik 79] Sevcik K.C., and Mitrani I., The Distribution of Queueing Network states 

at input and output instants, Proceedings of the 4th International Sym

posium on Modelling and Pe1j01·mance Evaluation of Computer Systems, 

Vienna, February 1979. 




