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Abstract     

 

The Mascarene Plateau is a submerged volcanic plateau to the east of Madagascar which extends over 

2200 km between the Seychelles and Mauritius. It is a complex feature, which is composed of 4 banks 

separated by 3 channels – namely the Seychelles, Saya de Malha, Nazareth and Cargados-Carajos Banks. 

The main objective of this thesis is to analyze cruise data obtained during the October/November 2008 

ASCLME (Agulhas Somali Current Large Marine Ecosystem) cruise on board the Dr Fridtjof Nansen which 

surveyed the region around the Mascarene Plateau. Due to the paucity of data in the region, the cruise 

was a routine cruise with no specific scientific questions to be answered. A comparison is also made 

between sea surface temperature (SST) and Acoustic Doppler Current Profiler (ADCP) derived currents on 

board to satellite estimate to possibly extend cruise results in space and time. Although the resolution of 

satellite estimate is low compared to cruise measurements, satellite estimate of geostrophic velocities 

and sea surface temperatures compare well with cruise data and can therefore be used in the region 

with confidence. This is invaluable since the Mascarene Plateau is relatively poorly understood and it 

allows us to link cruise data with Rossby waves and currents impacting the region. This is the second 

cruise in the region as there was a research cruise on board the RRS Charles Darwin during June/July 

2002. However, the June/July 2002 cruise did not sample the banks of the Mascarene Plateau. 

The water masses in the region can be divided into 3 regions. The northern region (north of 8° S) is 

characterized by Red Sea Water in the intermediate layers and Arabian Sea High Salinity Water in the 

surface waters. Mixing of surface waters (Arabian Sea High Salinity Water and Indonesian Throughflow 

Water) was observed. The central region between 8° - 13° S exhibits mixing between Red Sea Water And 

Antarctic Intermediate Water in the intermediate waters while surface waters are predominantly 

Indonesian Throughflow Water, Tropical Surface Water and Sub-Tropical Surface Water. The South 

Equatorial Current acts as a barrier to Sub-Tropical Surface Water. To the south of 13° S, only water 

masses of Southern Indian Ocean origin exist (Antarctic Intermediate Water and Sub-Tropical Surface 

Water) with the exception of Indonesian Throughflow Water (where the South Equatorial Current flows). 

Many areas in this region exhibit mixing between Sub-tropical Surface Water and Indonesian 

Throughflow Water. North Indian Deep Water exists throughout the region of the Mascarene Plateau 

except in regions where the bathymetry is too shallow. South Indian Central Water exists south of 8° S. 

Corroborating these findings, nutrient rich water associated with Arabian Sea High Salinity Water and 
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nutrient poor water associated with Sub-Tropical Surface Water, the area is broadly divided into 2 

regions of nutrient rich waters to the north of approximately 13° S and nutrient poor waters to the south.  

Similarly to the June/July 2002 cruise results, the cruise results from the October/November 2008 Dr 

Fridtjof Nansen cruise show that the SEC splits into 3 cores to the east of the Mascarene Plateau and is 

channeled through the 3 major gaps in the plateau. The total transport for the upper 450 m was 36.53 Sv 

with 14.93 Sv, 14.41 Sv and 6.19 Sv flowing through the Seychelles – Saya de Malha, Saya de Malha – 

Nazareth and Cargados – Carajos - Mauritius gaps respectively. The only bank to experience flow is the 

Seychelles Bank due to the South Equatorial Counter Current. The South Equatorial Current does not act 

as a constant current in the region but rather oscillates in strength. The Saya de Malha, Nazareth and 

Cargados-Carajos Banks retain similar high Chl-a values throughout the year suggesting that a distinct 

ecosystem could exist across these banks.  

During both cruises conducted in the region (2002 and 2008) there were no major Rossby wave 

propagations in the area and hence sampling was undertaken during normal conditions with regards to 

Rossby wave propagations induced by Indian Ocean Dipole  (IOD) and/or El Niño. During the period 1994 

– 2011, the majority of the major Rossby waves crossed every part of the Mascarene Plateau whilst the 

Rossby waves which passed through the gaps in the Mascarene Plateau significantly increased the 

geostrophic velocity in the gaps.  

Studying the Mascarene Plateau has many limitations. There have only been 2 research cruises in the 

area and hence knowledge of dynamical processes is limited. There have been very few modeling studies 

in the region and have proven to be highly inaccurate of the actual processes occurring. Further 

understanding of the region would entail further modeling studies, deploying moorings in the 3 major 

gaps in the plateau (to understand fully the dynamical nature of the volume transport), analyzing 

satellite data and initiating further cruises to gather more cruise data in the region (a cruise during a 

Rossby Wave propagation would give more insight into the physical processes of the region during these 

events).  
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CHAPTER 1: Literature Review 

1.1 Overview of the Indian Ocean 

 

The Indian Ocean is the third largest ocean in the world covering 68.56 × 106 km2. It is smaller than the 

Atlantic (76.76 × 106 km2) and Pacific Oceans (155.56 × 106 km2) but larger than the Southern (20.33 × 

106 km2) and Arctic Oceans (14.06 × 106 km2). Its boundaries are 20° – 147° E and 30° N – 60° S including 

the Red, Arabian, Gulf Persian Seas and the Bay of Bengal. The physical oceanography of the Indian 

Ocean and in particular the southern sector is poorly understood comparatively to the other ocean 

basins (Pacific and Atlantic). This is largely due to the lack of hydrographic data over the past decades 

and it is surrounded by economically poor countries (Wyrtki, 1971; Demopoulos et al, 2003). The Indian 

Ocean differs to the Atlantic and Pacific Oceans in that it is landlocked in the north at approximately 25° 

N (The Asian continent extends from the northern tropics to the higher latitudes and therefore has no 

connection with the Arctic Ocean). As a result, the Indian Ocean differs from the Atlantic and Pacific 

Oceans in that the circulation patterns north of the equator do not mirror those to the south of the 

equator. Due to the Indian Ocean being landlocked, there is a strong meridional land-sea contrast 

leading to a seasonal reversal of winds known as the monsoon. This monsoon system is the strongest on 

Earth, which generates large seasonal variations in ocean circulation (Schott et al, 2009). The seasonal 

changes in the monsoonal winds force the wind-driven circulation in the Northern Indian Ocean whilst in 

the South Indian Ocean the conventional anti-cyclonic, wind-driven circulation persists throughout the 

year (Lutjeharms, 2006b).  

The mean depth of the Indian Ocean is 3800m. Many basins have depths exceeding 5000m. The 

Wharton Basin, which lies between the Ninety East Ridge (~ 90° E) and Australia, exceeds 6000m and 

the Arabian Sea has depths below 3000m. There are 2 ridge systems, which run through the ocean in a 

meridional direction dividing it into 3 parts of approximately equal size.  The Central Indian Ridge 

between the western and the central part is a northward extension of the interoceanic ridge system. It is 

a broad structure, which rises consistently above 4000m. On occasions it reaches above 3000m. The 

Ninety East Ridge runs in a north-south direction from the Andaman Islands to 33° S. It is narrower than 

the Central Indian Ridge. South of 10° S, it frequently reaches 2000m and 3000m in depth. South of 

approximately 30° S, the Ninety East Ridge merges with the Southeast Indian Ridge which is a 

continuation of the Central Indian Ridge. The central and eastern part of the Indian Ocean is dominated 
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by single basins of large meridional extent whilst the western part is subdivided by small ridges and 

Madagascar into a series of smaller deep basins (Tomczak and Godfrey, 1993).             

                           

Figure 1. 1: Geographic Map of the Indian Ocean. Abbreviations are as follows: Aus – Australia, Moz – 

Mozambique, Mad – Madagascar, RS – Red Sea, PG – Persian Gulf, GO – Gulf of Oman, GA – Gulf of 

Aden. The Indian Ocean is the only ocean that is landlocked to the north at approximately 25° N. The 

central and eastern part of the Indian Ocean has single basins of large meridional extent whilst the 

western part is subdivided by small ridges. The deepest basin is the Wharton Basin, which is situated 

between the Ninety East Ridge and Australia where depths reach below 6000m.  (after Collins, 2013) 

1.1.1 Previous Research 

 

The Indian Ocean remains the least exploited and most unknown ocean region compared to the Atlantic 

and Pacific Oceans (Demopoulos et al, 2003). This is due to the fact that it is not surrounded by the world’s 

leading oceanographic institutions and fewer moorings, XBT’s, CTD’s etc. have been deployed (Domopoulos 

et al, 2003). An International Indian Ocean Expedition (IIOE) was conducted 1959 – 1965, in which 

oceanographic data was collected. Data included hydrographic casts using Nansen bottles, phytoplankton 
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trawl, deep-water fish trawl, vertical series of water samples for primary production, meteorological 

observations and a bathythermograph down to 275m (Wyrtki, 1971). This International Indian Ocean 

Expedition was carried out in order to gain more knowledge of the Indian Ocean and reference textbooks to 

be compiled. Following this expedition others were carried out such as the Indian Ocean Experiment 

(INDEX) during 1976 – 1979 and the World Ocean Circulation Experiment (WOCE) from 1990 – 1998. 

Current meter moorings were deployed during the INDEX expedition for the first time in the equatorial 

Indian Ocean in order to gain more knowledge of the circulation as in-situ data was sparse in the region at 

the time. One of the moorings was deployed at 0°, 55.67° E in order to ascertain the nature of equatorial 

currents in the region (Knox, 1976). WOCE is recognized by many as the largest internationally coordinated 

program conducted. WOCE aimed to provide the largest global data collection such as CTD, ADCP, XBT, etc. 

The Atlas of the Indian Ocean water masses and properties has been compiled by WOCE (Levitus et al, 1994; 

Conkright et al, 2002). Subsequently, after further research (research cruises conducted and satellite data 

obtained) a more in depth understanding of the Indian Ocean was obtained such as the distribution of 

water masses and the general ocean circulation.   

 

Figure 1.2: Stations Occupied during the WOCE one time survey. Notice that the Indian Ocean has been 

sampled the least. (Source: http://woceatlas.tamu.edu/Sites/html/atlas/SOA_WOCE.html) 

1.1.2 Circulation of the Indian Ocean 

 

The Indian Ocean consists of many wind driven currents and water masses which are in turn transported 

from the western Pacific Ocean, the Red Sea, Arabian Sea and the Bay of Bengal to other parts of the 

ocean via these wind driven currents. South of 10° S, the southeast trades are relatively steady with 

their northern edge shifting northward (southward) during the winter (spring). North of 10° S the winds 

reverse direction – a phenomenon known as the monsoon (Schott et al, 2009). The monsoon and its 
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influence on ocean currents will be discussed later. The tropical Indian Ocean is different from the other 

tropical oceans with regard to the absence of continuous easterly winds along the equator. There is only 

an easterly component during late winter/early spring, a semiannual westerly component during the 

intermonsoons and a weak westerly mean (Schott et al, 2009). In the south Indian Ocean an anticyclonic 

subtropical gyre exists between 40° S and 15° S which extends from South Africa to Australia (Stramma 

and Lutjeharms, 1997). At approximately 40° S there is an eastward flow in the form of the SIOC (South 

Indian Ocean Current). Many consider this current to be the northern part of the ACC (Antarctic 

Circumpolar Current). Approximately 60 Sv flows in the region South East of South Africa but it 

decreases further east. About 30 Sv circulates northwards between 50° E and 60° E in a SW Indian sub-

gyre while the remaining 30 Sv circulates northwards across the remainder of the basin (New et al, 

2005)  

1.1.3 Currents in the Indian Ocean 

1.1.3.1 Eastern Boundary Currents 

 

Eastern boundary currents differ in the Indian Ocean compared to the Atlantic and Pacific Oceans. The 

temperature and salinity stratification is not fully developed so when upwelling does occur, there is no 

intensive cooling. Another difference is that twice a year (May and November) the Equatorial jet feeds 

warm water towards Sumatra which creates a poleward current in the northern and southern 

hemisphere (Thompson, 1984). The Leeuwin current off Western Australia differs to the eastern 

boundary currents off the Pacific and Atlantic Oceans. Along the coasts of these two oceans, 

equatorward winds produce coastal upwelling where there is an equatorward surface flow. Off the coast 

of Western Australia there are equatorward winds but there is a strong poleward flow against the wind. 

This phenomenon is because eastern boundary currents are driven by alongshore winds and alongshore 

pressure gradients. The other two oceans have dynamic heights not exceeding 0.1 m2s2 along most 

eastern coasts whilst the dynamic height off western Australia is 0.5  m2s2 (Godfrey and Weaver, 1991; 

Thompson, 1984). This creates an eastward geostrophic flow and once it reaches the coast the water 

flows down the pressure gradient resulting in the poleward flow. This poleward flow is stronger than the 

opposing wind driven equatorward current. The drop in dynamic height drop along the western coast of 

Australia is related to the connection between the Pacific and Indian Oceans. The connection between 

the Pacific and Indian Oceans allows the dynamic height to be similar off Northwest Australia and the 
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Western Equatorial Pacific Ocean. The dynamic height at approximately 34° S is much lower as there is a 

temperature drop due to strong cooling and convective overturning. The annual average transport of 

the Leeuwin Current is approximately 5 Sv with velocities averaging 0.1 – 0.2 m.s-1 (Thompson, 1984).  

 

Figure 1. 3: Satellite images of SST in the Leeuwin Current and associated eddies. Left panel – SST in 

August 1987. The Leeuwin Current is seen as a band of warm water along the western coastline that 

continues around Cape Leeuwin. The black line indicates the shelf break. Right panel – SST anomalies in 

February 1996 depicting large eddies. Black arrows indicate surface currents. (Source: 

http://www.cmar.csiro.au/) 

1.1.3.2 Western Boundary Currents 

 

The strongest Western Boundary current in the Southern Hemisphere is the poleward flowing Agulhas 

Current (Biastoch et al, 2008a). The features of this current are that it is narrow (~ 90 km), 2500 m deep 

and flows closely along the steep slope of the continental shelf (Casal et al, 2009; Donohue and Toole, 

2003; De Ruijter et al, 1999). The steep slope provides the northern extension of the current a stable 

regime. However, between Durban and Richards Bay (Natal Bight), the Agulhas Current occasionally 

overshoots seaward (Lutjeharms, 2006). This occurs due to the development of an intermittent cyclonic 
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meander inshore of the current, termed the Natal Pulse (Lutjeharms and Roberts, 1988). These pulses 

grow as they move downstream at a propagation speed of ~ 20 km/day and a mean diameter of ~ 200 

km (van Leeuwen et al, 2000; Lutjeharms et al, 2001). South of Port Elizabeth, the continental shelf 

differs considerably due to the presence of the Agulhas Bank. The shallow topography of the bank 

induces a more unstable regime on the Agulhas Current and a meandering behaviour characterizes the 

flow in this region (De Ruijter et al, 1999). Measurements taken along the path of the current suggests 

that the core has Sea Surface Temperatures in the range of 22 – 28 °C, salinity of approximately 35.4 and 

propagation speeds of up to 2 m/s (Gordon, 1986; Gründlingh, 1980). The volume transport of the 

Agulhas Current is approximately 76 Sv (Donohue and Toole, 2003; Beal and Bryden, 1999). Towards the 

south western part of the Agulhas Bank, the current separates from the continental shelf and rotates on 

itself in a revolving loop known as the Agulhas Retroflection (De Ruijter et al, 1999). The Agulhas 

Retroflection occurs between 16° E and 20° E (Lutjeharms and van Ballegooyen, 1988b) with an average 

diameter of approximately 340 km (Lutjeharms, 2006). Rings, eddies and filaments are shed from the 

Retroflection into the oceanic environment of the South-East Atlantic (Reason et al, 2003; De Ruijter et 

al, 1999). The Indian Ocean properties (heat and salt) can be transported far beyond the South-Eastern 

Atlantic Ocean (Gordon, 1986). These properties can be transported into the North Atlantic Ocean 

(Biastoch et al, 2009). Van Ballegooyen et al, (1994) estimated a volume flux by the Agulhas rings of 

approximately 7 Sv , a heat flux of approximately 0.9 PW and a salt flux of approximately 78 × 1012 kg 

per year whilst Richardson, (2007) estimated an Agulhas leakage into the Atlantic of 15 Sv in the upper 

1000m of which the vast majority is composed of Agulhas rings. These rings in the Atlantic Ocean lose 

their energy quickly, 70% after their shedding (Shouten et al, 2000). A significant part of the Agulhas 

retroflection returns back towards the Indian Ocean via the Agulhas Return Current (ARC). The Agulhas 

Return Current flows eastwards to approximately 70° E (Lutjeharms and Ansorge, 2001). The ARC forms 

the northern boundary of the Subtropical Convergence Front. This front acts as barrier to the warmer 

saltier waters to the north from the colder and fresher waters to the south. As the current moves 

further to the east, its volume transport decreases as a part of it flows into the subtropical gyre of the 

South Indian Ocean (Lutjeharms and Ansorge, 2001). The ARC has a volume transport of approximately 

55 Sv near the retroflection region.    
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Figure 1. 4: The greater Agulhas Current System. Curvilinear features depicts mesoscale eddies and the 

arrows the ocean currents. Agulhas rings are depicted south-west of Cape Town whilst Mozambique 

eddies are depicted in the Mozambique channel. Contours are expressed in km (after Ansorge and 

Lutjeharms, 2007) 

1.1.3.3 East Madagascar Current 

 

The South Equatorial Current (SEC) approaches the eastern coast of Madagascar at approximately 19° S. 

It then bifurcates into the North East Madagascar Current (NEMC) and the South East Madagascar 

Current (SEMC). These 2 currents are also commonly known as the northward and southward branches 

of the East Madagascar Current (EMC). The bifurcation of the SEC may be the result of the wind system. 

Ekman transport towards the coast (north of the bifurcation) and away from the coast (south of the 

bifurcation) leads to geostrophic balanced currents both south and north of the bifurcation (Voldsund, 

2011). The SEMC acts as a topographically steered western boundary current (150 cm/s and ~ 26 Sv) 

(Voldsund, 2011). This current flows southwards around Madagascar and part of it flows west to the 

African coast in the form of eddies and dipoles (de Ruijter, 2005) and contributes to  the Agulhas current 

whilst the remaining part of this retroflects and feeds a shallow eastward jet (Siedler et al, 2006) which 

is known as the South Indian Ocean Counter-current (SICC). The NEMC is weaker (~ 60 cm/s at the 
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bifurcation point) but accelerates at approximately 12° S. The volume transport around the northern tip 

of Madagascar is 62 Sv (Voldsund, 2011). The NEMC which reaches the African coast largely turns 

northward to form the EACC (East Africa Coastal Current) while some turns southwards through the 

Mozambique channel and breaks up into eddies (Schott and McCreary, 2001).  The EACC may then 

either link up with the Somali current system or be returned eastward through the South Equatorial 

Counter Current (SECC).  

1.1.3.4 Indonesian Throughflow 

 

The Indonesian Throughflow (ITF) transports water from the Pacific Ocean into the Indian Ocean, mainly 

in the upper ocean (< 400m). The water mass which is transported is North Pacific water from the 

Mindanao Current (Gordon, 2005). The ITF also comprises of a subsurface core which has origins in the 

south Pacific (McCreary et al, 2007). As this water passes through the Indonesian passages, changes 

happen to this water through tidal mixing and internal wave breaking (Koch-Larrouy et al, 2007) creating 

a new water mass known as Banda Sea Water. From certain measurements the volume transport is 

approximately 10 Sv (Gordon, 2005), however certain modeling studies estimate a higher volume 

transport. Ganachaud et al, (2000) estimated 15 Sv whilst Lumpkin and Speer, (2007) estimated 

approximately 13 Sv. The ITF has a seasonal cycle with a maximum (minimum) outflow in June 

(February) and has an amplitude of 3 – 4 Sv (Schott et al, 2001). 

1.1.3.5 South Equatorial Current (SEC) 

 

The oceanic wind driven circulation in the SW Indian Ocean (south of 10° S) contains mainly waters of 

the westward flowing SEC which is a broad westward flow between 10° S and 16° S during the northeast 

monsoon (December–April) but can extend to 6° S in September/October during the southwest 

monsoon. The northern part of the sub-tropical gyre in the Southern Indian Ocean takes the form of the 

SEC. There are various waters which flow into the SEC, including the waters flowing northwards from the 

sub-tropical gyre, from the Indonesian seas to the east and from waters in the North Indian Ocean 

through the SW monsoon current and Java current (Schott and McCreary, 2001). Many currents in the 

North Indian Ocean seasonally reverse direction due to the monsoonal climate.   
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1.1.4 Monsoons 

 

The monsoonal climate in the Indian Ocean occurs because it is landlocked in the north (Asian land 

mass). A seasonal reversal of wind direction is the distinguishing feature of monsoonal regions (Gadgil, 

2003). There is a seasonal variation of winds in the northern sector of the Indian Ocean. The northern 

part of the Indian Ocean circulation differs comparatively to that of the Atlantic and Pacific Oceans as 

the other two Oceans are not inhibited by a land mass to the north. In summer (June–September), the 

heating of the Asian landmass results in a low pressure system over Asia, while a high pressure system 

remains over the Indian Ocean (Yamagata et al, 2004). The strong southeast trade winds in the Southern 

Hemisphere extend north to approximately 5° S and re-curve upon crossing the equator becoming 

southwesterlies. This system is known as the summer SW monsoon (Yamagata et al, 2004). In winter 

(December-March) the cooling of the Asian landmass results in a high pressure over the land and a low 

pressure over the ocean, resulting in a northeasterly wind (Woodberry et al, 1989).  These winds cross 

the equator and change to northwesterlies that converge with the southeast trade winds at 

approximately 10° S This system is known as the winter NE monsoon (Goes et al, 2005). The 

intermonsoon periods (April – May and October – November) are characterized by strong equatorial 

westerlies.  During this season there is an equatorial phenomenon known as Wyrtki Jets. These jets do 

not occur in any of the other oceans due to the existence of the semiannual westerly winds. These jets 

are important climatically because they carry warm waters eastward, hence increasing the sea level 

height in the east and decreasing it westwards (Yamagata et al, 2004). Wyrtki jets reflect off the eastern 

boundary of the basin as Rossby waves (Wyrtki, 1973). During the inter-monsoon periods, the winds 

along the Somali coast weaken which decreases upwelling in the region.  
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Figure 1. 5: Wind stress (N/m2) over the Indian Ocean for the (a) Northeast monsoon and (b) Southwest 

monsoon (after Collins, 2013) 

1.1.5 The Monsoon’s influence on Ocean Currents and associated SST’s 

 

The ocean circulation in the North Indian Ocean undergoes seasonal reversal due to the monsoons 

(Schott and McCreary, 2001). During the winter NE monsoon, a westward flowing North Equatorial 

Current (NEC) from 8° N to the equator exists (also known as the Northeast Monsoon Current). This 

current carries fresh low salinity Bay of Bengal water (origin has a salinity of approximately 33) into the 

Arabian Sea (Han and McCreary, 2001). During this season, the Somali current flows south and meets 

with the northward flowing East African Coastal Current (EACC) and supplies water for the eastward 

flowing South Equatorial Countercurrent (SECC). During this season the South Equatorial Current (SEC) 

supplies water to the South Equatorial Counter Current (SECC) and the Agulhas Current (Stramma and 

Lutjeharms, 1997). The SST in the North Indian Ocean (north of 10° S) is influenced by the monsoon 

winds and associated currents. When the northeast monsoon starts in November, SST decreases until 

January with significant reduction at the head of the Bay of Bengal from October to December (29° C - 
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26° C). During January and February between 10° S and 10° N, the SST increases from approximately 28° 

C from the west to more than 29° C in the east. During this period in the Arabian Sea and the Bay of 

Bengal, the SST decreases northward (from 28° C at approximately 10° N to 24° C in the northern part). 

As the sun moves poleward in the northern hemisphere, the Bay of Bengal warms faster than the 

Arabian Sea (Rao and Ram, 2005).  

During the summer SW monsoon, the NEC and Somali currents reverse direction and become an 

eastward and northward flowing current respectively (Schott et al, 2009). The NEC in combination with 

the SECC forms a broad eastward flow approximately from 15° N – 7° S termed the Southwest Monsoon 

Current. This eastward flow flows south of Sri Lanka and then turns north to bring saltier Arabian Sea 

Water (origin has a salinity  > 35.3) into the Bay of Bengal (Jensen, 2003). During this season, the SEC 

augments with waters flowing in the Somali Current along the African coast. Hence, during the SW 

monsoon, the SEC, Somali Current and Monsoon Current form a strong wind-driven gyre in the northern 

Indian Ocean (Pickard and Emery, 1990). It has been observed that there is strong upwelling along the 

Somali coast during this period. At the start of the summer SW monsoon (June), the SST starts falling 

until August due to strong winds and the advection of upwelled water from the Somali coast. The 

decrease in SST in the Bay of Bengal is only approximately 1° C. Towards the end of the southwest 

monsoon in September, both the Arabian Sea and Bay of Bengal warm up. As can be seen, the 

monsoonal climate affects the SST significantly in the Northern Indian Ocean. A feature of the Arabian 

Sea is that the SST in July is 2° C lower than in April whilst the SST in July is almost as low as that in 

January. This is due to the southwest monsoon (Halpern et al, 1998).  
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(a)                                                                                                   (b)  

Figure 1. 6: Diagram of the large scale surface circulation of the Indian Ocean. (a) shows the currents for 

the summer monsoon whilst (b) shows the currents for the winter monsoon. The circulation in the 

Southern Indian Ocean is not mirrored in the north due to the presence of the Asian landmass. The 

Northern Indian Ocean consists of seasonally reversing currents due to the monsoonal climate. Major 

currents include the westward South Equatorial Current (SEC), eastward South Equatorial Counter 

Current (SECC) and the seasonally reversing North Equatorial Current (NEC) and Somali Current  (after 

Schott et al, 2009) 

 

1.1.6 Eddies and Eddy Kinetic Energy (EKE) 

 

Mesoscale eddies play an important role in ocean dynamics. They provide important dynamical fluxes 

for the equilibrium balances of the general circulation and climate (McWilliams, 2013). Mesoscale 

eddies transport heat and salt across ocean basins (Volkov et al, 2008) and eddy induced mass transport 

is comparable in magnitude with that of large-scale ocean circulation (Zhang et al, 2014). At the same 

time, mesoscale eddies modulate nutrient flux into the euphotic zone through vertical transport 

(Crawford et al, 2005). Submesoscale eddies play a key role through intense upwelling of nutrients and 

the subduction of plankton (Levy and Klein, 2004). Mesoscale eddies in the South Indian Ocean have 

been studied using satellite data (Chelton et al, 2011), ocean modeling (Backeberg et al, 2008) and in-

situ observations (Ridderinkhof et al, 2010). Altimetry show that anticyclonic eddies propagate 

westward and equatorward whilst cyclonic eddies propagate poleward in the southeast Indian Ocean 

(Morrow et al, 2004). Eddy kinetic energy (EKE) in the South Indian Ocean shows a distinct seasonal 
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cycle. There is a maximum in EKE during the austral summer whilst a minimum occurs during the austral 

winter (Jia et al, 2011). During the austral spring, heat flux forcing of combined meridional Ekman and 

geostrophic convergence strengthens the upper ocean meridional temperature gradient and increases 

the vertical velocity shear. This modulation of the vertical velocity shear changes the intensity of 

baroclinic instability associated with the surface intensified SICC (South Indian Countercurrent) and SEC, 

leading to the seasonal variations of EKE (Jia et al, 2011). Compared with altimetry measurements, 

surface drifters give fine spatial and temporal resolutions. Altimetry can hardly detect eddies with a 

radius of less than 40 km whereas surface drifters can detect submesoscale eddies with a radius of less 

than 10 km. The temporal resolution of surface drifters are approximately 6 hours whilst altimetry have 

a resolution of 7 days.  

1.1.7 Intraseasonal Variability 

 

The monsoons in the Indian Ocean are a seasonal phenomenon. However there are also intraseasonal 

phenomena in the Indian Ocean such as Madden-Julian Oscillations (MJO’s). 

1.1.7.1 Madden-Julian Oscillations (MJOs) 

 

Madden-Julian Oscillations (MJOs) are a part of a planetary-scale mode of tropical variability where 

convection develops over the western tropical Indian Ocean. Madden and Julian, (1972) observed variability 

at periods of 30 – 60 days. This convection propagates eastward across the Indian Ocean and decays east of 

the international dateline. There are baroclinic circulations associated with the moving convective centre. 

Anomalous easterlies in the lower troposphere east of the convective centre and anomalous westerlies to 

the west of it prevail (Salby and Hendon, 1994). SST anomalies of approximately 0.2° C – 0.4° C co-

propagate with MJOs in the tropical Indian Ocean (Kawamura, 1988). The cause of the coherence of SST 

anomalies with MJOs is the variability in surface heat fluxes, latent heat flux and solar radiation. East of the 

convective centre, anomalous easterlies are superimposed on mean westerlies. As a result, there is a 

reduction in the latent heat loss from the ocean. At the same time, suppressed convection increases heating 

by solar radiation. Consequently, positive SST anomalies lead the MJO (Schott et al, 2009).  The MJO is an 

intrinsic mode of atmospheric convection and circulation. MJO dynamics are not that well understood. A 

reason for this is that MJOs are not well represented in general circulation models (Slingo et al, 1996; Lin et 

al, 2006). However, the MJO is generally considered to be an intrinsic mode of atmospheric convection and 
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circulation and it is clear that convection-circulation interactions give rise to the slow eastward propagation 

of MJOs (Schott et al, 2009). 

 

Figure 1. 7: A schematic representation of the Madden-Julian Oscillation, shown as a cross-section along 

the equator in the Indian Ocean – West Pacific sector. Day 1 – convection in the western Indian Ocean 

with suppressed convection to the east due to anomalous easterlies being superimposed on mean 

westerlies resulting in a reduction in latent heat loss. Day 10 – convection in the eastern Indian Ocean 

with suppressed convection over the western Indian Ocean and the western Pacific Ocean. Day 20 – 

convection in the western Pacific Ocean with suppressed convection over the Indian Ocean.  
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1.1.8 Interannual Variability 

1.1.8.1 ENSO (El Niño – Southern Oscillation) 

 

El Niño – Southern Oscillation (ENSO) is the primary mode of interannual variability in the Pacific Ocean and 

influences the climate on a global scale (Yoo et al, 2010). There is an oceanic component (El Niño or La Niña) 

as well as its atmospheric counterpart (Southern Oscillation). El Niño (La Niña) is characterized by 

anomalous warming (cooling) of the eastern equatorial Pacific (Schott et al, 2009) developing during the 

boreal summer, peaking in winter and decaying during the following spring. During these events there is a 

fluctuation of atmospheric pressure between the eastern and western tropical Pacific (known as the Walker 

circulation). Sea level pressure tends to be lower (higher) in the eastern Pacific during El Niño (La Niña), and 

higher (lower) in the western Pacific (Rasmusson and Carpenter, 1982). The tropical Indian Ocean gradually 

warms during an ENSO year, reaching a maximum during the austral autumn (March-May), approximately 

one season after the El Niño SST peak (Nigam and Shen, 1993; Klein et al, 1999; Liu and Alexander, 2007). 

During an El Niño (La Niña) event, the Indian Ocean north of approximately 30° S warms (cools) whilst 

cooling (warming) occurs in the southern mid-latitudes (Reason et al, 2000; Chambers et al, 1999). During El 

Niño there is a southward shift of the anomalous easterlies near the equator to approximately 10° S. These 

anomalous winds associated with the wind stress curl leads to the formation of westward travelling Rossby 

waves (Xie et al, 2002). Through this, a positive SST anomaly propagates to the west resulting in increased 

convection (Tourre and White, 1995; 1997). In the Eastern Equatorial Indian Ocean (EEIO), warming is more 

abrupt which takes place during October-March after an earlier cooling episode. EEIO SST anomalies cool 

during a growing El Niño (July-October). This cooling is due to intensified southeasterlies off Java and 

Sumatra, which is associated with the anomalous high-pressure system which in turn is associated with the 

Southern Oscillation. The southeasterlies weaken after October and the resulting coastal upwelling ceases 

(Murtugudde et al, 2000). Along with this, evaporation decreases and there is increased solar radiation due 

to suppressed convective clouds. These factors cause the EEIO SST anomalies to become positive (Tokinaga 

and Tanimoto, 2004). During an El Niño event there is high precipitation over Indonesia leading to fresher 

water. Hence Indonesian Throughflow Water (ITW) is fresher during these periods.  

Erlnkl erlgneklrngl jerngerlngekl lerngleknrkl     g gklngnrtnk   ktlntglktnlrtnk    kltnglktngklnl    klntglknkl    
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1.1.8.2 Indian Ocean Dipole (IOD) 

 

The Indian Ocean Dipole (IOD) and associated westward propagating Rossby waves are an integral part 

of the interannual variability of the Indian Ocean (Yamagata et al, 2003;2004). A typical IOD event starts 

with anomalous SST cooling along the Sumatra-Java coast in the eastern Indian Ocean during May-June. 

The usual equatorial westerly winds during June-August reverse direction (Feng and Meyers, 2003). The 

event (positive) typically peaks around September with a positive SST anomaly over large parts of the 

Western Indian Ocean and a negative SST anomaly over large parts of the Eastern Indian Ocean (Saji et 

al, 1999). Saji et al, (1999) described an Indian Ocean dipole index as the difference between SST 

anomalies in the Western equatorial Indian Ocean (50 – 70 E, 10 S – 10N) and the tropical southeastern 

Indian Ocean (90 – 110E, 10S – equator). A negative IOD is the reverse of a positive IOD (ie. positive SST 

anomaly over the Eastern Indian Ocean and a negative SST anomaly over the Western Indian Ocean). 

 

                                  (a)                                                                                          (b) 

Figure 1. 8: Positive  (a) and Negative (b) Indian Ocean Dipole (IOD). During the positive IOD, SST is above 

normal in the western Indian Ocean and below normal in the eastern Indian Ocean. During the negative 

IOD, SST is below normal in the western Indian Ocean and above normal in the eastern Indian Ocean. 

(Source: http://www.jamstec.go.jp/frsgc/research/d1/iod/e/iod/about_iod.html) 

 

There has been a great deal of controversy as to whether the IOD is related to ENSO. An example as to 

whether there is a teleconnection between the two was during the 1997 IOD/ENSO event (Schott et al, 

http://www.jamstec.go.jp/frsgc/research/d1/iod/e/iod/about_iod.html
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2009). However there are examples of IOD years where ENSO is absent such as the strong IOD event in 1994 

and also the significant IOD event of 1961 where ENSO is absent (Schott et al, 2009). Observations from 

1958 to 1997 identified 11 out of 19 IOD years occurred where ENSO was absent (Saji and Yamagata, 2003). 

An analysis by Nagura and Konda, (2007) identified IOD development depends on the seasonal switch from 

normal or La Niña to El Niño. IOD development is favoured if the switch occurs from spring to summer. 

Nagura and Konda, (2007) concluded that if La Niña continued or if El Niño does not develop until autumn, 

an IOD event will not occur. In many models, the IOD tends to co-occur with El Niño (Baquero-Bernel et al, 

2002; Yu and Lau, 2004). However, certain models show that the IOD is generated within the Indian Ocean 

region by stronger austral summer winds (Fischer et al, 2005). Results from certain modeling studies and 

observations conclude that IOD is a natural mode of the Indian Ocean coupled system, which can be 

triggered by ENSO or can self-generate (Schott et al, 2009). It is not clear what triggers IOD events but there 

are a few theories. The Westward propagating Rossby waves occur around the time of an IOD event. These 

waves in the eastern part of the Indian Ocean basin are triggered by the wind stress curl and are 

strengthened by the arrival of Kelvin waves (Vaid et al, 2006). The Sea Surface Height in the western 

equatorial Indian Ocean is influenced by the westward propagating Rossby waves and these signals are able 

to control the evolution of the surface characteristics during IOD events (Vaid et al, 2006). An interesting 

aspect of Rossby waves is that a rise in the sea surface of only a few centimeters results in the deepening of 

the thermocline by tens of metres (Mathieu Rouault, pers comm). The phase speeds of these waves 

increase towards lower latitudes and are of big interest due to their ability to transfer energy across ocean 

basins (Gnanaseelan et al, 2005). The atmospheric response to the anomalous SST is a basin wide 

anomalous Walker circulation (Yamagata et al, 2002; 2003). This anomaly reverses the direction of the 

equatorial winds, from westerlies to easterlies during the peak of the positive events (Rao et al, 2002). 

Additionally, seasonal southeasterly winds along the Sumatra coast are also strengthened during positive 

IOD events, inducing coastal upwelling and hence there is strong SST cooling in the east (Behera et al, 1999). 

Convection in the eastern Indian Ocean is suppressed during positive IOD events but is enhanced in the 

central and western Indian Ocean (Behera and Yamagata, 2003). The eastward propagation of the warm 

anomaly in the western Indian Ocean initiates the decay of the positive IOD event (Feng and Meyers, 2003). 

The climate in the vicinity of the Indian Ocean is affected by the IOD (Ashok et al, 2003; Clark et al, 2003; 

Behera et al, 2003). Countries to the west of the Indian Ocean have an anomalously high precipitation 

(Behera et al, 2003) whilst countries to the east of the Indian Ocean have an anomalously low precipitation 

(Ashok et al, 2003; Saji and Yamagata, 2003). Positive (negative) SSH anomalies associated with a positive 

(negative) IOD phase induces a shift in the intensity and position of the tropical and subtropical gyres 



18 
 

(Palastanga et al, 2006) in the Indian Ocean. A weakening (strengthening) of the intensity of the South 

Equatorial Current and its branches along east Madagascar occurs. Additionally, an intensification and 

northward (southward) extension of the subtropical (tropical) gyre occurs (Palastanga et al, 2006). 

Topographic features in the southwest Indian Ocean such as the Mascarene Plateau may have an influence 

on westward propagating Rossby waves by affecting the speed, strength or acting as a barrier to the flow. 

This influence may occur since the plateau is situated in a region where Rossby waves are frequent (Chelton 

and Schlax, 1996). A description of the Mascarene Plateau is presented in the next chapter.  

1.1.9 Circulation Models in the Indian Ocean 

1.1.9.1 INDOFOS (Indian Ocean Forecasting System) 

INDOFOS is a GODAE OceanView system which incorporates 3 OGCM’s (Oceanic General Circulation 

Models) which encompasses the majority of the Indian Ocean. The INDOFOS system uses atmospheric 

forcing data from the operational atmospheric prediction system from the National Centre for Medium 

Range Weather Forecast (NCMRWF) in New Delhi, India. The atmospheric forcing at NCMRWF consists 

of 1 day analysis fields and gives forecasts for 10 days. The INDOFOS system makes use of these analysis 

fields as well as the first 5 days of forecasting.  

The Global Ocean Data Assimilation System (GODAS) which is used for producing ocean analyses fields is 

forced by the Global Forecast System (GFS) winds from the National Centre for Environmental Prediction 

(NCEP). This system assimilates temperature and salinity profiles from ARGO floats, Moored Buoys, 

XBT’s as well as other in-situ observations. The system produces 5 day mean analysis of ocean fields. The 

HyCOM model setup for the Indian Ocean is forced with the (GFS) winds. 

The 3 models used in the system are ROMS version 3.3, MOM 4p0d and HyCOM. There are 40 sigma 

levels for ROMS, 40 z levels for MOM and 28 Hybrid levels for HyCOM. The horizontal resolution is 1/8° 

for ROMS, 1/12° for HyCOM and 1/2° (zonal); 1/3° (meridional) for MOM.  The domains for the ROMS, 

HyCOM and MOM models are (30 – 120° E; 30° S – 30° N), (30 - 130° E; 50° S - 30° N) and global 

respectively. (https://www.godae-oceanview.org/science/ocean-forecasting-systems/ocean-models/) 

1.1.9.2 OGCM (OFES) Model 

This OGCM is based on the Modular Ocean Model version 3 (MOM3) (Pacanowski and Griffies, 1999) 

and is developed at the National Oceanic and Atmospheric Administration (NOAA). It is optimized for 

https://www.godae-oceanview.org/science/ocean-forecasting-systems/ocean-models/


19 
 

the Earth Simulator and is called the OGCM for the ES (OFES) (Sasaki et al, 2008). This is an Eddy-

Resolving Model. This model uses the z-level coordinate in the vertical and solves 3 dimensional 

primitive equations in spherical coordinates under the Boussinesq and hydrostatic approximations. The 

domain covers the region from 75° S to 75° N but excludes the Arctic Ocean and has a horizontal grid 

spacing of 0.1°. There are 54 vertical levels and to represent the upper ocean circulation realistically, 20 

levels cover the upper 200m. The 54th level has a maximum depth of 6065m. The bathymetry uses the 

1/30° bathymetry data set provided from the OCCAM project at the Southampton Oceanography 

Centre. The temporal resolution is 3 days. The model ocean is driven by the wind stresses and surface 

tracer fluxes (Masumoto et al, 2004) as the initial state. The daily mean values obtained from the NCEP 

reanalysis products (Kalnay et al, 1996) are used for wind stresses and atmospheric variables 
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CHAPTER 2: Introduction  

2.1 Description of the Study Area 

 

The Mascarene Plateau is a submerged volcanic plateau which extends over 2200 km between the 

Seychelles Bank (4° S, 56° E) and Mauritius (20° S, 57° E). This plateau is a complex feature which is 

oriented in a north-south direction and is shaped similar to a crescent (Figure 2.1) while it has an area of 

over 115000 km2 (New et al, 2005). It is composed of a series of banks which are separated by deep 

channels. From north to south the banks are known as the Seychelles Bank, the Saya de Malha Bank, the 

Nazareth Bank and the Cargados-Carajos Bank (New et al, 2005). The depths of these banks range 

between 20-100m deep and are coral topped. However, in some regions of these banks the topography 

sometimes breaks the surface to form small islands such as the Seychelles archipelago with 120 islands 

while on either side of the plateau depths rapidly reach approximately 4000m (New et al, 2005). 

Between the Seychelles Bank and the Saya de Malha Bank, a 400 km ridge exists which is 1000 – 1500m 

deep (gap 1) (Smith and Sandwell, 1997). The deepest part of the Mascarene Plateau exists in the gap 

between the Saya de Malha Bank and Nazareth Bank (gap 2) which is 100 km wide and depths exceed 

1000m. A very narrow gap exists between the Nazareth and Cargados-Carajos Banks (200m deep and 

50km wide). The final gap is that between the Cargados-Caragos Bank and Mauritius (gap 3) where 2 

channels (~ 2000m deep), each of which is approximately 50 km wide and separated by the Soudan 

Bank (New et al, 2007). The Mascarene Plateau affects the ocean circulation in the region which is a key 

aim of investigation in this study. The currents which interact with the Plateau are the South Equatorial 

Current (SEC) and the South Equatorial Counter Current (SECC). The interaction of the SEC with the 

Mascarene Plateau affects its flow downstream (Figure 2.2). Both of these currents contain water 

masses with different origins which will be investigated in this study. Since this area has not been 

extensively studied, further investigations/research will be beneficial to surrounding countries such as 

Mauritius and the Seychelles as these areas are dependent on their fishery resources. 
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Figure 2. 1: The Mascarene Plateau with its associated Banks and gaps. The Plateau is crescent shaped 

and is composed of 4 shallow banks and 3 gaps separating these banks. It lies mainly in a meridional 

direction from the Seychelles to Mauritius. Some of the banks have regions where it breaches the surface 

to form small islands. The deepest gap is between the Saya de Malha and Nazareth Banks where depths 

exceed 1000m. Isobath interval: 500m  
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Figure 2. 2: Circulation around the Mascarene Plateau, LADCP obtained currents on board RRS Charles 

Darwin June/July 2002. Eastward flowing SECC (South Equatorial Counter Current) across Seychelles 

Bank whilst the region south of approximately 8° S is influenced by the westward flowing SEC (South 

Equatorial Current). Part of the circulation north of 8° S is influenced by a westward core of the SEC 

through  gap 1. (after New et al, 2007)  

 

2.2 Water Masses associated with the Mascarene Plateau 

 

Since water masses conserve their properties for long periods of time, they can be used to trace the 

pathway of ocean currents (Emery, 2001). Water masses are classified according to certain properties 

such as temperature, salinity, oxygen etc (Figure 2.3). The following section will describe the water 

masses which are found in the Mascarene Plateau region.  
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Figure 2. 3: Temperature-Salinity Diagram of Indian Ocean water masses (South-West Indian Ocean) 

from Levitus and Boyer (1994a,b). The core water masses indicated are NIDW (North Indian Deep 

Water), AAIW (Antarctic Intermediate Water), RSW (Red Sea Water), SICW (South Indian Central Water), 

ITW (Indonesian Throughflow Water), STSW (Subtropical surface water), TSW (Tropical Surface Water), 

ASHSW (Arabian Sea High Salinity Water) and AABW (Antarctic Bottom Water). 

 

Tropical Surface Water (TSW) – TSW is a broad band of fresh water between 4° S and 20° S. Salinity is low 

(34.7 – 34.9) due to the high levels of precipitation in the tropics. TSW is transported via the westward 

flowing SEC which in turn transports water masses from the western Pacific Ocean (New et al, 2005). TSW 

has temperatures greater than 23° C, oxygen values > 4 ml/l and occupies a density range of between 22 

kg/m3 and 23.5 kg/m3 (Gründlingh et al, 1991; Warren, 1981). 

ASHSW (Arabian Sea High Salinity Water) - ASHSW is formed in the Northern Indian Ocean (Kumar and 

Prasad, 1999) in the Arabian Sea due to an excess of evaporation over precipitation. The salinity in this 
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source region can be in excess of 36.5.  ASHSW is swept eastwards across the Indian Ocean by the South 

Equatorial Counter Current (SECC). The channel separating the Seychelles and Saya de Malha Banks on the 

Mascarene Plateau acts as a barrier between fresh TSW from saltier modified ASHSW to the north. ASHSW 

has temperatures greater than 24° C and salinity greater than 35.3. It forms a shallow salinity maximum 

(Kumar and Prasad, 1999; Emery, 2001). ASHSW has oxygen values greater than 4 ml/l and occupies the 

density range between 22.5 kg/m3 and 24.5 kg/m3 (Kumar and Prasad, 1999). 

Subtropical Surface Water (STSW) – STSW can be found in the subtropical belt between 20°- 35° S. STSW 

displays characteristically high salinity values (> 35.3) due to the high levels of evaporation associated with 

the subtropics. Travelling northwards STSW subducts below the fresher TSW to form a subsurface salinity 

maximum, which at 18° S is centred at 300 m. This salinity maximum extends as far north as 14°S, and may 

be partly carried westward by the SEC. STSW occupies the temperature range 17 – 18° C, has a shallow 

oxygen minimum and occupies the density range between 24.5 kg/m3 and 25.5 kg/m3 (Gründlingh et al, 

1991. Wyrtki, 1973). 

Indonesian Throughflow Water  (ITW)- Immediately below TSW between 100 - 300m. Song et al, (2004) 

identified Indonesian Throughflow Water (ITW). An important characteristic of the Indonesian Throughflow 

is its higher temperature and relatively low salinity (17° C - 23° C and 35.1 - 35.2 respectively) (Song et al, 

2004; New et al, 2005) due to its source region (western equatorial Pacific Ocean) being high in 

precipitation. Consequently the Throughflow transports large amounts of relatively warm and fresh water 

to the Indian Ocean. When the Indonesian Throughflow through the Lombok Strait and the Timor passage 

enters the Indian Ocean it is advected towards Africa within the South Equatorial Current. ITW is slightly 

more saline than TSW and in the region of the Mascarene Plateau has been observed between 100 – 250m 

at 10° S. Carried within the core of the SEC, ITW has been shown to spread across the western boundary of 

the Indian Ocean, forming a subsurface oxygen minimum of between 2 – 3 ml/l and within the density range 

of between 24 kg/m3 – 26 kg/m3 (Song et al, 2004).   

South Indian Central Water (SICW) – this water mass is formed between 35° and 45° S as a result of deep 

winter mixing (a variety of Sub-Antarctic Mode Water (SAMW) and subducted northwards in the subtropical 

gyre recirculation (McCartney, 1982)). SICW is characterized by a temperature range between 8°–15° C, a 

salinity range of 34.7 – 35.2, an oxygen maximum > 4.5 ml/l and within the density range 26.5 kg/m3 – 27 

kg/m3 (Toole and Warren, 1993; Emery, 2001). 

http://en.wikipedia.org/wiki/Lombok
http://en.wikipedia.org/wiki/Timor
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 Antarctic Intermediate Water (AAIW) – AAIW  is characterized by a salinity minimum between 800–1500m 

(33.8 – 34.6) and oxygen levels > 3.5 ml/l. AAIW originates in the Southeast Pacific (McCartney, 1982) and in 

the South Atlantic (Piola and Gordon, 1989) and appears to enter the South Indian Ocean in its southeastern 

region (Fine, 1993). AAIW occupies the temperature range of between 2° C – 10° C and the density range 

between (27.1 kg/m3 – 27.5 kg/m3) (Valentine et al, 1993; Gründlingh et al, 1991; Toole and Warren, 1993).  

Red Sea Water (RSW) – Warm, saline RSW is formed in the Mediterranean basin of the Red Sea, spreads 

from the north through the strait of Bab el Manded into the Gulf of Aden where it is modified through 

mixing (Beal et al, 2000). RSW spreads southward through the Indian Ocean where its salinity content 

decreases. RSW occupies the temperature range 4° C - 9° C, salinity range >= 34.8, oxygen range of <= 2 ml/l 

and occupies the density range 27.0 kg/m3 – 27.6 kg/m3 (Beal et al, 2000). 

North Indian Deep Water (NIDW) – NIDW is often referred to as Circumpolar Deep Water (CDW) It is 

characterized by a salinity maximum due to the infusion of North Atlantic Deep Water (NADW) which is 

carried eastward and northward (Stramma and Lutjeharms, 1997). The salinity maximum decreases 

northward to 10 - 20° S but then increases further to the north due to the southward movement of a deep 

saline water mass which underlies RSW (Mantyla and Reid, 1995). Very little is known about the spreading 

pathways of NIDW in the Indian Ocean. NIDW occupies the temperature range 2.5° C - 5° C, salinity range of 

between 34.8 – 34.9, oxygen values greater than 2.5 ml/l and occupies the density level of approximately 

27.8 kg/m3 (New et al, 2005; Toole and Warren, 1993). 

Antarctic Bottom Water (AABW) – AABW spreads northwards in the Indian Ocean through 3 main routes.  

Namely under the Agulhas Current in the Western Indian Ocean, around the Kerguelen Plateau in the 

Central Indian Ocean and in a broad region (through the South Australasian Bight) between 50° E and 124° E 

in the Eastern Indian Ocean (van Sebille et al, 2013). South of Australia, it flows along the western slope of 

Australia and further north it enters the central Indian Ocean and propagates along the eastern slope of the 

Ninety-east Ridge (Tomczak and Godfrey, 1993). After crossing the eastern slope, it flows westwards to the 

northeast coast of Africa. Here it upwells to form North Indian Deep Water (NIDW). AABW in the region of 

the Mascarene Plateau is identified below NIDW by a decreasing salinity and increasing oxygen content 

(Read and Pollard., 1993). Table 2.1 presents a summary of the water masses characteristics in the region. 

AABW is not mentioned in the table as it was not identified during the 2008 ASCLME cruise.  
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Table 2. 2: Water masses characteristics in the SW Indian Ocean based on temperature, salinity, oxygen and density. 

 

 

Water Mass Temperature 
Range (° C) 

Salinity Range Oxygen Range 
(ml/l) 

Density range (kg/m3) References 

TSW (Tropical 
Surface Water) 

> 23  < 34.9 > 4 22 – 23.5 Gründlingh et al, 1991; 
Warren, 1981. 

ASHSW (Arabian Sea 
High Salinity Water) 

> 24 > 35.3. Shallow 
salinity maximum 

> 4 22.5 – 24.5 Kumar and Prasad, 1999; 
Emery, 2001 

ITW (Indonesian 
Throughflow Water) 

17 – 23 35.1 – 35.2 2 – 3 (Subsurface 
Oxygen 
Minimum) 

24 – 26 Song et al, 2004; New et 
al, 2005 

STSW (Subtropical 
Surface Water) 

17 – 18 Subsurface salinity 
maximum.  > 35.3 

Shallow oxygen 
minimum 

24.5 – 25.5 Gründlingh et al, 1991; 
Wyrtki, 1973 

SICW (South Indian 
Central Water 

8 – 15  34.7 – 35.2 Oxygen 
Maximum (> 4.5 
ml/l) 

26.5 – 27.0 (linear 
relationship on T/S 
diagram) 

Emery, 2001; Toole and 
Warren, 1993 

RSW (Red Sea 
Water) 

4 – 9 >= 34.8 <= 2 27.0 – 27.6 Roman and Lutjeharms, 
2009; Beal et al, 2000; 
Gordon et al, 1987. 

AAIW (Antarctic 
Intermediate Water) 

2 – 10 Salinity minimum. 
33.8 – 34.6 

> 3.5 27.1 – 27.5 Valentine et al, 1993; 
Gründlingh et al, 1991; 
Toole and Warren, 1993. 

NIDW (North Indian 
Deep Water) 

2.5 – 5 34.8 – 34.9 > 2.5  ~ 27.8 New et al, 2005; Toole 
and Warren, 1993  
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2.3 Previous Studies in the Region 

 

The Mascarene Plateau lies directly in the path of the South Equatorial Current. There has been limited 

research on the area to date. However, there have been several modeling studies in an attempt to 

investigate how the pathway of the SEC is influence by the shallow Mascarene Plateau. Woodberry et al, 

(1989) developed a 1.5 layer reduced gravity model with a resolution of 0.2°. The model depicted a SEC 

transport of approximately 24.3 Sv prior to the Mascarene Plateau at 63° E between 8° S and 23° S. The 

model showed that the SEC split into 2 cores, which crossed through gap 2 (10.9 Sv) and one branch, 

which flowed between the Cargados-Carajos Bank and Mauritius. However, the model does not 

represent a westward flow through gap 1 (Figure 2.4). Lee and Marotzke, (1998) used an ocean general 

circulation model (OGCM) with a resolution of 1.5°. This model proved ineffective as it did not represent 

any of the islands in the plateau and showed the SEC as a broad westward flow situated between 5° – 

20° S. Garternicht and Schott, (1997) used an OGCM with a horizontal resolution of 0.4° which better 

resolved the islands in the Mascarene Plateau. The SEC had a greater degree of horizontal structure and 

variability. It passed over the plateau as a narrow current entirely between the Saya de Malha and 

Nazareth Banks. These 3 models yielded different results due to the complex bathymetry in the region 

and also the horizontal resolution. 

The shoals of Capricorn program was conducted from 1998 – 2001. The aim of this program was to 

investigate the Mascarene Plateau and develop knowledge and skills for the management and 

protection of its resources. It was initiated so that the research was of value to the host nations. The 

program hosted over 200 scientists from 21 countries and together they investigated different aspects 

of the marine environment of the Seychelles, Mauritius and Rodrigues. A scientific result out of the 

program was that waters to the west of the plateau have a similar rich nutrient content as that of the 

north Atlantic. The reefs of the Seychelles suffered from dramatic coral bleaching in 1997/1998 but this 

program has revealed that there were signs of new coral recruitment. (Royal Geographical Society, n.d.)     

A study by Weijer, (2008) identified the origin of the bi-monthly variability in the Mascarene basin to the 

west of this plateau, whilst Payet, (2005) studied the management, governance and socio-economics in 

the area, however it was concluded that management practices of marine resources over the plateau is 

not easy due to the lack of knowledge in the area.  
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Prior to the 2008 Agulhas Somali Current Large Marine Ecosystem (ASCLME) cruise, the only extensive 

research cruise conducted over the Mascarene Plateau was the June/July 2002 cruise on board the RRS 

Charles Darwin (however, this cruise did not sample the banks). The cruise was largely funded by the UK 

Natural Environment Research Council through the Southampton Oceanography Centre infrastructure 

funding, with additional support coming from the James Rennell Division core strategic programmes. It 

was also partly supported by the Royal Geographical Society – Royal Society Shoals of Capricorn 

programme, western Indian Ocean, 1998 – 2001. A prior research cruise (June/July 2002) was necessary 

in order to obtain a synoptic view of the circulation in the region as previous models contradicted each 

other and hence were not robust. The results from the June/July 2002 cruise revealed that the South 

Equatorial Current (SEC) split into 3 cores with a volume transport of 50 Sv to the east of the plateau. A 

major finding of this cruise, was that half of the volume of the SEC (25 Sv) was channeled through gap 2, 

whilst the remainder of the SEC flowed in equal volumes of 12.5 Sv north of the Saya de Malha Bank and 

south of the Cargados-Carajos Bank. The variability in the volume of flow associated with the SEC 

through each gap is unknown but a possible trigger for variability could be the change in the position of 

the SEC to the east of the plateau. The June/July 2002 cruise identified the distribution of water masses 

in the region and the degree of mixing which occurred. Once again, the amount of water mass mixing 

may vary throughout the year due to changes in the circulation patterns. There has been a limited 

amount of remote sensing being utilized in the area and by using it, much variability can be ascertained 

since it is able to map seasonal changes in ocean topography, currents etc. It is unknown whether the 

monsoon seasons have an effect on the variability on the Mascarene Plateau with particular reference 

to the circulation. However, the effect of monsoons is not a topic of discussion in this study. 
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(a)                                                                              (b) 

               

                  

                             (c)                                                                              (d) 

Figure 2. 4: Southwestern area of the 1.5 layer reduced gravity model developed by (Woodberry et al, 

1989) (from the 10th year of integration). Arrows depict geostrophic velocities. Velocities can be observed 

through the gaps between the Saya de Malha bank and Nazareth Bank and between the Cargados-

Carajos Bank and Mauritius. (a) – January (b) – April (c) July (d) – October        fklvdlfnvkl kdfnvdklfnvkln 

kdfvklndl 
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2.4 Key Questions 

 

There have only been a couple of modeling studies (WoodBerry et al, 1989; Lee and Marotzke, 1998; 

Garternicht and Schott, 1997) in the region of the Mascarene Plateau as highlighted in the previous 

section. However, these studies did not provide an accurate representation of the circulation in the 

region, reconfirming the need for a synoptic research cruise to be conducted between June/July 2002. 

However, the region still lacks understanding and this study will hopefully deepen our knowledge of the 

area by addressing 8 key questions. In addition to using cruise data obtained via the October/November 

2008 cruise on board the Dr Fridtjof Nansen, satellite data will also be utilized. 

In Chapter 4 

1. Which water masses are present in the region of the Mascarene Plateau, where are their origins, 

where do they mix in the region and does the westward flow of the South Equatorial Current 

(SEC) influence the mixing? (Chapter 4) 

In Chapter 5 

2. How accurate is satellite data in the region and hence what is its viability for use in the region? 

(Chapter 5) 

In Chapter 6 

3. In what way is the flow of the SEC affected by the gaps in the Mascarene Plateau during the 

2008 ASCLME cruise and are there differences to the cruise conducted during the June/July 2002 

onboard the RRS Charles Darwin? (Chapter 6) 

In Chapter 7 

4. What seasonal effect does the Mascarene Plateau have on the geostrophic velocities, SST’s and 

eddy kinetic energy in the region? (Chapter 7) 

5. What is the nature of the SEC in the region and how do the geostrophic velocities during the 

2008 cruise year differ from climatology? (Chapter 7)  
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In Chapter 8 

6. What is the distribution of Chl-a in the region (climatology) and do the banks differ in Chl-a 

concentration from its surrounding areas? (Chapter 8) 

In Chapter 9 

7. Were there westward propagating Rossby waves over the Mascarene Plateau during the 

June/July 2002 cruise on board the RRS Charles Darwin and the October/November 2008 cruise 

on board the the Dr Fridtjof Nansen? Are these waves capable of crossing every part of the 

plateau? What effect do these waves have on the general circulation in the region? (Chapter 9)  

In Chapter 10 

8. Is an OGCM (OFES) model viable in the region for further modeling studies? (Chapter 10) 

 

The data and methodology is presented in the next chapter used to answer these questions. 

 

 

 

 

 

 

CHAPTER 3: Data and Methodology 

3.1 Agulhas and Somali Current Large Marine Ecosystem Project (ASCLME) 2008 cruise 
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CHAPTER 3: Data and Methodology 

 

3.1 Agulhas and Somali Current Large Marine Ecosystem Project (ASCLME) 2008 cruise 

 

The key aim of the ASCLME project was to develop a series of coordinated oceanographic research 

cruises to gather information on the oceanography of the western Indian Ocean and its influence on the 

biodiversity and economies of the Western Indian Ocean. Although the ASCLME project focused on the 

Agulhas and Somali Current ecosystems, it was decided that a survey of the Mascarene Plateau was to 

be conducted to study the nature of the South Equatorial Current (SEC) which is upstream of both the 

Agulhas and Somali currents. In this study, much of the data obtained from this cruise is used to 

ascertain further knowledge of the region of the Mascarene Plateau that until 2008 had remained 

under-sampled. 

 

3.2 Hydrographic Data  

3.2.1 CTD measurements 

Physical properties of the water column were measured to a maximum depth of 3000m. A Seabird 911 plus 

CTD plus was used to obtain vertical profiles of temperature, salinity, pressure and oxygen. Real time 

plotting and hydrographic logging was carried out using the Seabird Seasave software. The profiles along 

the Mascarene Plateau and surrounding shelf and slope regions were usually obtained to a few metres 

above the bottom.  

The hydrographic component of the cruise comprised of 176 CTD casts which were made across the 

Mascarene Plateau. For purposes of this study, only 42 CTD stations are used for analysis since many of 

the CTD casts were made over the banks for biological oceanography research. Commencing in 

Mauritius and ending in the Seychelles, the survey crossed over the Mascarene Plateau, including gap 3, 

the Nazareth Bank, gap 2, the Saya De Malha Bank, gap 1 and finally the Seychelles Bank. Intensive 

sampling was undertaken in the region around gap 2 as previous studies (New et al, 2007) determined 

that half (25 Sv) the SEC flows through this channel and intensive mixing occurs in this region between 

water masses of origins lying in the Northern Indian Ocean and Southern Indian Ocean. This is an 

important region for biological oceanography studies since this main branch of the current divides the 
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area into nutrient rich areas to the north and nutrient poor areas to the south. Figure 3.1 depicts the 

cruise tracks and stations for the 2002 and 2008 research cruises on board the Dr Fridtjof Nansen and 

R.R.S. Charles Darwin respectively.  

  

 

Figure 3.1: (a) Overview of Mascarene Plateau with Banks and cruise track (on board the Dr. Fridtjof 

Nansen – cruise EAF-N2008/7 in 2008) commencing in Mauritius and ending in the Seychelles. Red dots 

indicate CTD stations, blue line indicates the cruise track with the 120m isobath overlaid in black and (b) 

Overview of Mascarene Plateau with Banks and cruise track (on board the R.R.S. Charles Darwin – cruise 

141 in 2002). Numbers indicate CTD/LADCP stations (after New et al, (2007)). 
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3.2.2 ADCP measurements 

 

The currents along the track were measured by using vessel mounted Acoustic Doppler Current Profiler, 

(VMADCP), Ocean Surveyor from Teledyne RD Instruments.  The unit mounted on R/V Dr. F. Nansen 

consists of a single transducer using electronic beam forming to produce four beams required to 

measure current velocity.  The units operates at frequency is 150 kHz and is triggered synchronously 

with the onboard EK60 echo sounder. The navigation data are provided by the Seapath Differential 

Global Positioning System (DGPS).  The instrument was run continuously in broadband mode shallower 

than about 150 meters and in narrow band mode in deeper waters.  The practical range of detected 

currents varied between 200-400 meters, depending on the density of scattering layers in the water 

column.  The ping data were averaged into 4 and 8 m vertical bins for the shallow and deep water data, 

respectively.  Spurious data (near bottom, wire interference, etc) were edited using custom designed, 

prototype software (Marek Ostrowski, pers comm). The currents were estimated over 5 nautical mile 

horizontal bins using ping-based data. Only the regions where the vessel speed was more than 6 knots 

were included in the computations.  The raw data, computed currents and quality flags from data 

editing were stored using the hierarchical data format (HDF5, see www.hdfgroup.org). kfkldfnvldk vdkl 

 3.3 Argo Profiling Float Data 

 

In areas of the world’s oceans where there is a deficiency of cruise data, Argo float data is particularly 

useful since they obtain vertical profiles of temperature and salinity, hence water mass properties, 

geostrophic velocities and fluxes can be assessed.  A series of Argo floats were used for the period 2004 

– 2010 where temperature and salinity properties were analyzed to 2000m to identify water mass 

origins. Once water masses are identified from cruise data, they can be backtracked to their origins via 

Argo floats since they give a synoptic view of the ocean. Since water masses generally move along 

isopycnals, argo floats across the ocean at a specified isopycnal (determined by what isopycnal the 

water mass lies in the region of the Mascarene Plateau) are identified and the origin of the water mass 

can be determined (as well as salinity and temperature changes as it moves through the ocean) (Global 

Ocean Data Assimilation Experiment (GODAE). 2010. Argo Float Data [Dataset]. Available: 

http://www.usgodae.org/argo/argo.html.) 

http://www.hdfgroup.org/
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3.4 Remote Sensing 

3.4.1 Altimetry measurements 

 

Satellite altimetry is an important component of the ocean observing system and was used to compare 

geostrophic currents to shipboard ADCP data. The Centre for Topographic studies of the Oceans and 

Hydrosphere (CTOH) database was used to obtain geostrophic velocities at a resolution of ¼° x ¼°. CTOH 

is a French national observational service for satellite altimetry studies. CTOH maintains online full 

databases for each mission (TOPEX-Poseidon, Jason-1, ENVISAT and GFO). Weekly merged products are 

distributed by different operational centres and include algorithms for areas near the equator. The 

Ssalto/Duacs Gridded Absolute Geostrophic Velocities (1/3° X 1/3°) is incorporated into this product. 

(Center for Topographic Studies of the Ocean and Hydrosphere (CTOH). 2011. Absolute Geostrophic 

Velocities [Dataset]. Available: http://ctoh.legos.obs-mip.fr/.) The data downloaded from the internet 

was processed using Matlab and further analysis was done via Matlab such as the creation of maps, 

graphs etc.    

3.4.2 Ocean Colour Remote Sensing (Chlorophyll-a) measurements 

 

The dataset from the Globcolour Hermes database was used to obtain Chl-data. As early as 1978, the 

launch of the Coastal Zone Colour Scanner allowed estimation of Chlorophyll-a (Chl-a) using 

measurements of ocean colour. Chl-a has been used to assess phytoplankton biomass, primary 

production and the ocean’s impact on the climate cycle (Longhurst et al, 1995; Behrenfeld et al, 2006). 

The estimation of Chl-a by remote sensing relies on the premise that phytoplankton shifts the reflected 

colour spectrum from predominantly blue to green (Gordon and Morel, 1983). The calculation of Chl-a 

by satellite involves an empirical relationship developed from field observations of Chl-a and ocean 

colour collected throughout the global ocean (Zaneveld, 1973). Empirical algorithms have built in 

assumptions that follow the basic concept of biological oceanography that oligotrophic regions have a 

low phytoplankton biomass, wheras more productive regions contain larger concentrations of 

phytoplankton. With the world’s ocean changing, phytoplankton composition may change which may 

create uncertainty (where uncertainties already exist) in empirical approaches (Dierssen, 2010).  

http://ctoh.legos.obs-mip.fr/
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(Globcolour Hermes. 2014. Ocean colour [Dataset]. Available: 

http://hermes.acri.fr/GlobColour/index.php)  

3.4.3 Sea Surface Temperature (SST) measurements 

 

The Tropical Rainfall Measuring Mission (TRMM) Microwave imager (TMI) is a passive microwave 

radiometer primarily designed to measure rain rates over a wide swath under the TRMM satellite that is 

also used to estimate SST. TRMM was launched on November 27, 1997 and data is available until today. 

TRMM is a joint program between NASA and the National Space Development Agency of Japan (NASDA). 

The TMI can estimate SST, rain rates, ocean surface wind speed and cloud liquid water. Data was  

downloaded and analysed using MATLAB. (Remote Sensing Systems. 2011. Sea Surface Temperature 

[Dataset]. Available: http://www.remss.com/missions/tmi) 

3.5 Wind Stress Curl 

 

In order to calculate the wind stress curl, the wind stress (Zonal and Meridional) needs to be calculated 

first. The wind speed at 10 metres above sea level was obtained from the Quikscat database. Satellite-

based sensors are capable of systematically providing measurements over the entire globe. Sensors 

operating at microwave frequencies can make measurements of the ocean surface day and night and 

under nearly all-weather conditions. Both active (radar) and passive (radiometer) microwave sensors 

have been shown capable of retrieving the ocean surface wind speed, with active microwave 

instruments being used to also retrieve the wind direction. The wind stress was calculated via the 

following equations: 

τx  = CdρU2 

Where τx = Wind stress (Zonal Direction) (N/m2) 

Cd = dimensionless drag coefficient (typically 0.0013) 

ρ = air density (1.2 kg/m3) 

U = Zonal wind speed at 10 metres above sea level (m/s) 

τy = CdρV2 

http://www.remss.com/missions/tmi
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Where τy = Wind stress (Meridional Direction) (N/m2) 

Cd = dimensionless drag coefficient (typically 0.0013) 

ρ = air density (1.2 kg/m3) 

V = Meridional wind speed at 10 metres above sea level (m/s) 

The Wind Stress Curl was obtained via the following calculation: 

Wind Stress Curl = ∂τy/∂x - ∂τx/∂y  (N/m3) 

3.6 Eddy Kinetic Energy 

 

Most of the kinetic energy of ocean circulation is contained in ubiquitous mesoscale eddies. Their 

prominent signatures in sea surface height have rendered satellite altimetry highly effective in observing 

global ocean eddies. Our knowledge of ocean eddy dynamics has grown since the advent of satellite 

altimetry in the early 1980s (Fu et al, 2010). 

Mesoscale phenomena studies using satellite altimetry allows us a global observation of eddy variability. 

Eddy Kinetic Energy (EKE) is calculated using the CTOH data described above and applying the following 

formula: 

EKE = ½(U2 + V2) 

Where U and V are the zonal and meridional geostrophic currents respectively 

EKE is the Eddy Kinetic Energy (cm2/s2)         

3.7 OGCM (OFES) Model 

 

The OFES model was used to compare observations and satellite estimate (SST, geostrophic velocity and 

Mean Eddy Kinetic Energy) with model output and evaluate the model in the region. Model output was 

acquired during a trip to Japan at JAMSTEC as part of the ACCESS collaborative project between South 

Africa and Japan.  
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3.8 Interannual Variability 

 

To study the interannual variability around the Mascarene Plateau, weekly normalized anomalies are 

used which is a time series of anomalies from climatology divided by the standard deviation of that 

week. For instance the Mean Absolute Dynamic Topography (MADT) normalized anomaly is calculated 

using the following equation: 

MADTanonorm = (MADT - MADTaverage) / standard deviation (MADT) 

MADT was obtained via the Aviso website (http://www.aviso.altimetry.fr/en/data/data-access/aviso-

cnes-data-center.html) and processed into a usable format in Matlab for further analyzing. Time – 

Longitude plots (Hovmöller Diagrams) are also created in order to observe Rossby Wave propagation 

across the Indian Ocean. Through these plots, this study will identify the interaction between the 

Mascarene Plateau and the Rossby Waves. In the analysis of the interaction of the Rossby Waves with 

the Mascarene Plateau, 6 latitudes are used. The 6 latitudes are the Seychelles Bank (4° - 6° S), gap 1 (7° 

– 9° S) , the Saya de Malha Bank (10° – 11.5° S), gap 2 (12° – 13.8° S), Nazareth/Cargados-Carajos bank 

(14° – 16° S) and gap 3 (18° - 18.8° S).  

There is a high degree of confidence in the data obtained, either cruise data, satellite estimate or 

modeling data to answer the key questions proposed above. There is enough data available to address 

each key question proposed. 
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RESULTS 

CHAPTER 4: The Water Mass Characteristics over the region of the Mascarene Plateau 

 

This chapter consists of the results obtained during the Nansen survey of the Mascarene Plateau 

conducted between October/November 2008. The objective of this chapter is to define the distribution 

of water masses in the region and to understand the effect the westward flowing South Equatorial 

Current (SEC) and eastward flowing South Equatorial Countercurrent (SECC) has on these water masses. 

4.1 Analysis of water masses over the Mascarene Plateau 

 

Key Question 1. Which water masses are present in the region of the Mascarene Plateau, where are their 

origins, where do they mix in the region and does the westward flow of the South Equatorial Current 

(SEC) influence the mixing? 

The Mascarene Plateau affects both the water mass characteristics and circulation patterns in the 

Southwest Indian Ocean. The Mascarene Plateau creates a splitting of the SEC into 3 branches to the 

east (New et al, 2007). The following section presents an in depth analysis of the influence the 

Mascarene Plateau has in the region using 2 datasets (cruise data and Argo data). First a general 

description of the water masses observed during the October/November 2008 cruise of the Mascarene 

Plateau is given below.                          

4.1.1 Water Masses of the Mascarene Plateau - October 2008 

 

New et al, (2007) carried out a detailed study of the water masses in the region of the Mascarene 

Plateau. From their study, it can be seen that there are prominent differences between the northern 

and southern regions of the plateau. The northern part of the plateau contained nutrient rich waters (up 

to 0.6 μg/l) whilst the southern part contained nutrient poor waters (as low as 0.07 μg/l) with the SEC 

acting as a major barrier. In contrast, there is relatively little difference between water masses 

characteristics such as oxygen, temperature and salinity found to the east and west of the plateau. Data 

collected during the 2008 Mascarene survey support past investigations and physical-chemical profiles 
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give further evidence that the South Equatorial Current (SEC) acts as a barrier between the northern and 

southern regions of the plateau. Whilst the SEC dominates the general circulation in the vicinity of the 

Mascarene Plateau, highly saline surface waters over the Seychelles Bank bear resemblance to Arabian 

Sea High Salinity Water (ASHSW) and suggest the influence of the eastward flowing South Equatorial 

Counter Current (SECC) on local water masses (Figure 2.2). Furthermore, results collected during this 

survey provide evidence that the SEC acts as a major conduit for the transport of Indonesian 

Throughflow Water across the Indian Ocean, originating in the western Pacific Ocean and the Indonesian 

archipelago, towards the Mascarene Plateau where it is channeled through its various gaps (Figure 2.2). 

A detailed examination of the water masses identified in the 2008 ASCLME cruise in the region, using 

the criteria determined in the introduction is given in this section. For ease, the region has been divided 

into ocean provinces and the water masses associated with these regions are discussed. Cross sections 

of temperature, salinity and oxygen across the Mascarene Plateau during the October/November 2008 

cruise are given in Figure 4.1. 
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Figure 4. 1: Cross sections across the Mascarene Plateau. In a clockwise direction: Temperature (°C) 

section, Salinity section , cross section across Mascarene Plateau depicted by red line and Oxygen (ml/l) 

section. Core water masses are identified, ASHSW (Arabian Sea High Salinity Water), STSW (Sub-tropical 

surface water), TSW (Tropical Surface Water), ITW (Indonesian Throughflow Water), RSW (Red Sea 

Water), AAIW (Antarctic Intermediate Water) and SICW (South Indian Central Water). 

 

In the characterization of the water masses in the region, 3 sub-regions are defined in order to 

determine where the origins of water masses of both Northern and Southern Indian Ocean primarily lie 

and where the majority of mixing between these water masses occurs in relation to the Mascarene 

Plateau (Figure 4.2). The first region is defined as the northern sector of the Seychelles Bank, where 
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predominantly ASHSW surface waters occur (salinity > 35.3, temperature > 24 °C and oxygen > 4 ml/l) to 

where TSW (Tropical Surface Water) is predominant (salinity < 34.9, temperature > 23 °C and oxygen > 4 

ml/l) which is roughly the same latitude as gap 1 (8° S). The second region is characterized by the 

intrusion of RSW (Red Sea Water), which lies at the same density layer as AAIW (Antarctic Intermediate 

Water) (Beal et al, 2000; Toole and Warren, 1993). This region extends southwards from 8° S to the 

approximate latitude of gap 2 (13° S). The 3rd sub-region extends south of this gap and is determined by 

the lack of RSW and where AAIW is the dominant water mass within the intermediate layers.   

 

Figure 4. 2: CTD Stations depicted for water mass analysis. Blue dots indicate CTD stations with their 

respective numbers with the 1000m isobath overlaid in black. Region 1 is defined as where the surface 

waters are predominantly ASHSW, region 2 is defined by an intrusion of RSW and mixes with AAIW whilst 

region 3 is defined as where RSW is completely absent. 

 

Surface waters differ between the first region (north of 8° S) and the other two regions due to the influence 

of the South Equatorial Counter Current (SECC). The SECC flows eastwards across the Seychelles Bank 

sweeping high salinity Arabian Sea High Salinity Water (ASHSW) across it whilst the other two regions are 

influenced by the westward flowing South Equatorial Current (SEC) which carries fresh tropical surface 
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water (TSW) (Figure 2.2).  Figure 4.3 depicts all 42 CTD stations analyzed across the Mascarene Plateau. The 

red scatter plot indicates all the stations north of 8° S, whilst the blue scatters indicates stations south of 8° 

S. 

 

Figure 4. 3: Temperature-Salinity diagram for selected stations across the Mascarene Plateau. Red 

scatter plot indicates stations north of 8° S, whilst the blue scatter plot indicates stations south of 8° S. 

There are 13 stations north of 8° S whilst there are 29 stations south of 8° S.  

4.1.1.1 Sub-Region 1 (region spanning from the northern sector of the Seychelles Bank to 8° S) 

 

The following section will give results on sub-region 1 which is defined as the region spanning from the 

northern sector of the Seychelles Bank where predominantly ASHSW surface waters occur  to where TSW 

(Tropical Surface Water) is predominant (8° S). Surface waters differ between the first region (north of 8° S) 

and the other two regions due to the influence of the SECC. The SECC flows eastwards across the Seychelles 

Bank sweeping high salinity ASHSW across it whilst the other two regions are influenced by the westward 

flowing SEC which carries fresh tropical surface water.  

Many stations north of 8° S show the presence of NIDW. However, rugged bathymetry (New et al, 2005) in 

gap 1 prevents NIDW’s presence in the gap. All the stations north of 8° S exhibit RSW without any influence 
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from AAIW. The salinity in the intermediate waters of all these stations do not decrease below 34.8, 

indicative of RSW (Beal et al, 2000). ITW exists in the stations where one of the branches of the SEC flows in 

gap 1. Away from the SEC in this region, ITW is not present. Surface waters vary in this region, however 

ASHSW is predominant. Areas which are close to the branch of the SEC signify mixing with ITW as the 

salinity decreases below 35.3. Figure 4.4 depicts a T-S diagram and a T-O diagram for 3 stations in the sub-

region for water mass analyses.   
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(a)                                                                         (b)                                                                               (c ) 

Figure 4. 4: Temperature-Salinity Diagram (a), Temperature-Oxygen Diagram (b) for Selected Stations north of 8° S and position of stations (c). 

Stations representing blue indicates station 41 (7.74° S, 53° E), Green indicates station 26 (7° S, 58.14° E) and red indicates station 27 (7.53° S, 

58.56° E). These stations are chosen to show that near a branch of the SEC there is mixing between low and high salinity waters whilst the other 

stations signify no mixing between high salinity waters (away from the branch of the SEC) and low salinity waters (within the core of the SEC) 
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Three stations are picked to indicate the effect the South Equatorial Current has on the region (station 

numbers are depicted in Figure 4.2). Station 41 represents a station where there is no influence of the 

SEC and hence contains water masses typical of Northern Indian Ocean Origin. Station 27 is chosen as it 

lies within the SEC and shows how the current influences the water properties in the region. Station 26 

is chosen as it lies in a region at the edge of the SEC and hence depicts mixing of surface water masses. 

Station 41 (7.74° S, 53° E) represents a station with water masses typical of Northern Indian Ocean 

origin, ie. RSW and ASHSW, since there is no influence from the SEC which carries water mass properties 

from the Western Pacific Ocean and the Indonesian archipelago as it does not flow across this station.  

ASHSW is present with temperatures of approximately between 24° C and 28° C, salinity of 

approximately between 35.3 and 35.45 and oxygen values between 4.3 ml/l and 4.5 ml/l. RSW exists 

with temperature ranges between 4° C and 7° C, salinity values > 34.82 and oxygen values between 1.6 

ml/l and 2 ml/l. 

Station 27 (7.53° S, 58.56° E) shows no mixing in the deep and intermediate waters with NIDW having 

temperatures and a salinity of approximately 3° C and 34.8 respectively. RSW is present in the 

intermediate waters with temperature and salinity ranges of approximately between 5° C and 8° C and > 

34.82 respectively. Oxygen values are similar to that of station 41 in the deep and intermediate waters. 

The surface waters of this station are clearly influenced by the westward flowing SEC as ITW exists with 

temperature ranges between 17° C and 20° C, a salinity of approximately 35.2 and an oxygen value of 

2.5 ml/l. Above ITW, TSW is present as opposed to ASHSW typical of the region. 

Station 26 (7° S, 58.14° E) presents properties similar to the other two stations in the deep and 

intermediate waters. However, above this, towards the surface waters, mixing occurs between ASHSW, 

TSW and ITW as temperature, salinity and oxygen values lie between these water mass ranges. The 

deep and intermediate waters (NIDW and RSW) remain unchanged in this region (similar to that of the 

Northern Indian Ocean) irrespective of the positioning of the SEC. It appears that the Mascarene Plateau 

also has no effect on these water masses. However, surface waters in this region vary although ASHSW 

is the predominant water mass. The region experiences the intrusion of TSW and ITW due to the 

westward flowing SEC through gap 1 which dilutes the high salinity ASHSW. In the region surrounding 

the current, there is a mixture of the water masses whilst in the core of the SEC, ASHSW is absent. 
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4.1.1.2 Sub-Region 2 (region spanning from approximately 8° S – 13° S) 

 

The following section will give the results of sub-region 2, which is defined as the region characterized 

by the intrusion of RSW which is at the same level as AAIW (Antarctic Intermediate Water). This region 

extends southwards from 8° S to the approximate latitude of gap 2 (13° S). This region is characterized 

by mixing between RSW and AAIW in the intermediate waters and mixing between STSW and ITW in the 

surface waters. The circulation is dominated by the northern core of the SEC which flows through gap 2. 

Figure 4.5 depicts all the CTD stations within sub-region 2. Certain stations in the region contain water 

masses in the intermediate layers purely of RSW as salinity values are > 34.8 (Beal et al, 2000), other 

stations contain water masses in the intermediate layers purely of AAIW as salinity values are between 

33.8 – 34.6 (Toole and Warren, 1993) whilst other stations exhibit mixing between the 2 water masses 

as salinity values lie between that of AAIW and RSW. Figure 4.6 depicts a T-S diagram and a T-O diagram 

for 3 stations in the sub-region for water mass analyses.   
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  Figure 4. 5: Temperature-Salinity diagram for stations across the Mascarene Plateau between 8° S and 13° S. (15 stations)  

 

(a)                                                                                        (b)                                                                                   (c)  

Figure 4. 6: Temperature-Salinity Diagram (a), Temperature-Oxygen diagram (b) for Selected Stations between 8° S and 13° S and position of 

stations (c). Blue indicates station 21 (12.09° S, 62.5° E), Green indicates station 16 (12.08° S, 59.6° E) and red indicates station 13 (12.04° S, 

54.98° E)  
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Station 21 exhibits water mass properties typical of the Southern Indian Ocean (ie. AAIW, SICW and STSW), 

station 16 exhibits intermediate water mass properties that of the Northern Indian Ocean (RSW) and 

surface water mass properties lack the subsurface salinity maximum indicating the influence of the 

Indonesian Throughflow while station 13 exhibits the intrusion of RSW.  

This region (8° S - 13° S) exhibits mixing in the intermediate waters (AAIW and RSW) as well as between 

STSW and ITW. The reason for the mixing between STSW and ITW is the transport of the main branch of 

the SEC through gap 2. Stations away from the SEC exhibit STSW (south of the SEC) with no mixing with 

ITW whilst certain stations within the SEC exhibit only ITW.  AAIW moves northward whilst RSW moves 

southward, hence there is erosion of AAIW further north. Mixing also occurs between the two water 

masses in gap 2. Central waters consist of SICW, represented on the TS diagram by the linear 

relationship between temperature and salinity at densities between 26.5 kg/m3 and 27 kg/m3.  

Station 21 (12.09° S, 62.5° E)  exhibits NIDW with a temperature range of 2.5 °C and 4 °C, a salinity value 

of approximately 34.8 and oxygen in the range of between 2.5 ml/l and 3.5 ml/l. AAIW exists in the 

intermediate waters with a temperature of 6° C, a salinity of 34.6 and an oxygen range of 3.5 ml/l and 4 

ml/l. Central waters consist of SICW with a temperature range of  9 °C and 11 °C, an oxygen range of  4.5 

ml/l and 4.6 ml/l and a salinity range of 35 and 35.1 (Emery, 2001). STSW exists as a subsurface salinity 

maximum (35.7) (Gründlingh et al, 1991). The strong signature of the STSW is due its positioning as it is 

not within the SEC and mixing has not occurred with ITW. TSW is present in the surface waters with 

temperatures > 25 °C, salinity between 34.8 and 34.9 and oxygen values approximately 4.4 ml/l. This 

station exhibits no influence from waters of Northern Indian Ocean origin.  

Station 13 (12.04° S, 54.98° E) does not exhibit NIDW as the bathymetry is too shallow. Intermediate 

waters indicate mixing between AAIW and RSW as salinity and oxygen values lie between the two water 

mass ranges. Temperatures are approximately 5° C, salinity ranges between 34.79 and 34.81 while the 

oxygen is 2 ml/l. ITW is present with a temperature range between 18° C and 20°C, a salinity of 35.2 and 

an oxygen range of between 2.8 ml/l and 3 ml/l (New et al, 2005). Surface waters consist of TSW with 

temperatures > 23°C, salinity values of approximately 34.9 with oxygen values between 4 ml/l and 4.4 

ml/l. 

Station 16 (12.08° S, 59.6° E) consists purely of RSW in the intermediate waters with salinity values of 

34.9, a temperature range of between 6°C and 8°C and an oxygen range of between 1.8 ml/l and 2 ml/l. 

ITW is present with a temperature of 18° C, a salinity of approximately 35.2 and an oxygen value of 3 
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ml/l. Surface waters consist of TSW with temperatures > 25° C, a salinitiy of approximately 34.9 and 

oxygen values between 4.3 ml/l and 4.5 ml/l.  

In this region there is no current which divides RSW and AAIW, however the mixing which occurs in gap 

2 contributes to the gradual change of the properties of the intermediate waters from AAIW to RSW 

northward. The SEC in this region acts as a barrier to STSW as it exists only to the south of it and there is 

mixing between STSW and ITW within the SEC and gap 2. NIDW remains unaffected in this region other 

than where the bathymetry is too shallow for it to exist. 

4.1.1.3 Sub-Region 3 (region spanning south of the Saya de Malha – Nazareth gap (13° S) to 

Mauritius) 

 

The following section gives results for sub-region 3, which is defined as the region which contains AAIW 

in the intermediate waters with the absence of RSW and is characterized by the southern core of the 

SEC. The intermediate waters contain no RSW as all stations have a salinity < 34.8 and hence AAIW is 

present (Toole and Warren, 1993; Beal et al, 2000). There is most likely the presence of IIW (Indonesian 

Intermediate Water) but is difficult to identify as it occupies the same density and salinity ranges as 

AAIW. The low salinity AAIW is most likely a mixture of eroding AAIW and IIW, especially closer to the 

SEC. However, further studies are required. The region spans south of gap 2 (13° S). The region contains 

water masses only of southern Indian Ocean origin except within the core of the SEC where ITW exists. 

ITW was identified similarly near the core of the SEC by New et al, (2005). Figure 4.7 depicts all CTD 

stations within sub-region 3. Figure 4.8 depicts a T-S diagram and a T-O diagram for 3 stations in the sub-

region for water mass analyses.   
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Figure 4. 7: Temperature-Salinity diagram for stations across the Mascarene Plateau south of 13° S.(14 stations) 

 

(a)                                                                         (b)                                                                           (c) 

Figure 4. 8: Temperature-Salinity Diagram (a), Temperature-Oxygen Diagram (b) for Selected Stations south of 13° S and position of stations (c). 

Blue indicates station 7 (16.6° S, 60.65° E) whilst green indicates station 12 (14.6° S, 61.27° E).  
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Station 12 is picked as it is not influenced by the South Equatorial Current and exhibits water mass 

properties purely of Southern Indian Ocean origin whilst station 7 is picked as it depicts the influence of the 

SEC in the region (mixing between STSW and ITW). Both stations exhibit intermediate and central water 

masses that of the Southern Indian Ocean (AAIW and SICW) whilst station 12 exhibits a strong subsurface 

salinity maximum indicating STSW without any influence from the Indonesian Throughflow in contrast to 

station 7 which indicates mixing between STSW and ITW. South of 13° S, AAIW is present without any 

mixing. Hence, RSW is not evident this far south in the region. SICW, represented by the linear relationship 

on the TS diagram between densities of 26.5 kg/m3 and 27 kg/m3 exists whilst STSW is predominant below 

TSW. However, within the branch of the SEC between the Cargados-Carajos Bank and Mauritius, mixing 

between STSW and ITW occurs. Many stations exhibit characteristics between STSW and ITW.  

Station 12 (14.6° S, 61.27° E) exhibits NIDW with temperature ranges between 3° C and 4° C, a salinity of 

approximately 34.8 and an oxygen value of 2.5 ml/l. Intermediate waters consist of AAIW with 

temperature ranges of between 5° C and 7° C and the typical salinity minimum. The oxygen value at this 

depth is approximately 3.5 ml/l. SICW is present in the central waters with temperature values between 

9° C and 11° C, salinity values between 34.85 and 34.95 and an oxygen value of approximately 4.5 ml/l 

(an oxygen maximum). Towards the surface waters, STSW exists as a strong subsurface salinity 

maximum (35.6) and an oxygen minimum (3 ml/l). TSW overlies STSW with temperatures > 23° C. 

Station 7 (16.6° S, 60.65° E) exhibits AAIW with a temperature of approximately 6° C, a salinity of 34.6 

with an oxygen value of 3.6 ml/l. Mixing has occurred at this station as water mass properties lie 

between that of STSW and ITW. The classical isohaline property of ITW exists, however the salinity is too 

high. Salinity values lie between 35.25 and 35.3 without the classic subsurface salinity maximum. TSW 

overlies this mixing of water masses. This station clearly shows the influence of the branch of the SEC 

which is channeled between the Cargados-Carajos Bank and Mauritius due to the presence of ITW which 

is contained within the current.  

From this, it is clear that there are two dividing lines separating firstly surface water masses primarily of 

Northern Indian Ocean origin (ASHSW) to the north due to the eastward flowing SECC and TSW to the 

south. However, there is an intrusion of TSW and ITW due to the westward flowing SEC through gap 1. 

The intermediate waters remain unaffected in this region as RSW is the only water mass present. The 

second dividing line acts as a barrier to STSW. The SEC which flows between the Saya De Malha Bank 

and the Nazareth Bank forms this dividing line. Within this region which contains this branch of the SEC 

there is erosion of AAIW due to the intrusion of RSW from the north. The westward flowing SEC in this 
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region contributes to the mixing between RSW and AAIW due to the interaction of these water masses 

in gap 2. The same can be said for the mixing of STSW and ITW within this gap and mixing of these two 

water masses within the SEC in general. In the southern sector south of 13° S only AAIW exists in the 

intermediate waters and STSW and TSW in the surface waters except within the southern branch of the 

SEC where there is mixing between STSW and ITW (salinity values lie between that of STSW and ITW 

(New et al, 2005; Gründlingh et al, 1991)).  

The Mascarene Plateau has an effect on the water masses surrounding the Mascarene Plateau. 

However, the effect is much smaller than along the north-south divide. The main reason for this is that 

the plateau is too shallow to have a substantial effect on the deep and intermediate waters (NIDW, 

AAIW and RSW). From the examples in Figure 4.9, the plateau actually has no effect on NIDW since both 

the plateau and the channels separating the banks on the plateau are too shallow. The red station (to 

the east of the Mascarene Plateau) displays a salinity of 34.8, indicating RSW (Beal et al, 2000) whilst the 

red station to the west of the plateau (similar latitude) displays a salinity of 34.7 indicating mixing with 

Antarctic Intermediate Water (AAIW). This is due to the SEC (South Equatorial Current) flowing through 

gap 2 where RSW and AAIW mix. The red station to the east of the plateau indicates a strong subsurface 

salinity maximum (salinity of approximately 35.5), indicative of STSW (Gründlingh et al, 1991) whilst the 

red station to the west indicates fresher waters with a salinity of approximately 35.2. This is due to 

mixing between ITW and STSW through gap 2. Similarly, the blue station to the east of the plateau 

indicates a strong subsurface salinity maximum with a salinity of approximately 35.5 (STSW) whilst the 

blue station to the west of the plateau at the same depth has a salinity of approximately 35.3, indicative 

of mixing between STSW and ITW. In the upper layers of the surface waters, the blue station to the east 

of the plateau indicates a salinity of approximately 34.9, indicative of TSW (Gründlingh et al, 1991; 

Warren, 1981) whilst the blue station to the west of the plateau indicates a salinity of approximately 

35.05, indicative of mixing between TSW and STSW through gap 2. The Mascarene Plateau also has the 

effect of displacing the latitude of the SEC (splits it into 3 cores) into 3 regions west of the plateau where 

mixing occurs at different latitudes. This induces increased mixing between ITW, TSW and ASHSW in the 

northern branch as the latitudinal position of the SEC is shifted north. Similarly, the plateau induces 

increased mixing between ITW and STSW within the southern branch as the latitudinal position of the 

SEC is shifted south.  
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(a)                                                                                      (b) 

Figure 4.9: Temperature-Salinity Diagram (a) showing the differences between the western side and 

eastern side of the Mascarene Plateau and position of stations (b). There is negligible mixing in the 

intermediate waters whilst mixing increases in the surface waters, however still small compared to the 

north-south divide. 

 

The overall effect of the Mascarene Plateau is to split the SEC into separate cores centered near 12° and 18° 

S. Once past the Plateau it seems likely that these 2 cores continue westwards towards the Madagascar 

coast at 50° E and there form the North East and South East Madagascar Currents. The SEC acts as a main 

conduit for the westward advection of ITW water across the Indian Ocean bringing with it its subsurface 

oxygen and salinity characteristics.  An interesting circulation exists over the Seychelles Bank, its character 

influenced by both the SEC flowing westwards to the south and the eastward flowing SECC. The influence 

the SECC has in bringing highly saline surface waters originating from the Arabian Gulf as well as RSW (Red 

Sea Water) needs to be further investigated. 

 4.2 Water Mass Origins 

 

The region surrounding the Mascarene Plateau contains water masses with different origins (New et al, 

2007). For evidence of these water mass origins, Argo floats for the period 2004 – 2010 are used to track 
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water masses. Since water masses in the region of the Mascarene Plateau generally flow along lines of 

constant density in the Indian Ocean, floats were tracked along isopycnals. 

4.2.1 Arabian Sea High Salinity Water (ASHSW) and Tropical Surface Water (TSW) 

 

ASHSW and TSW occur along the isopycnals 22.5 kg/m3– 24.5 kg/m3 and 22 kg/m3 - 23.5 kg/m3 

respectively (Gründlingh et al, 1991; Warren, 1981; Kumar and Prasad 1999; Emery, 2001). Along the 

22.6 kg/m3 isopycnal, ASHSW and TSW with different origins and properties (salinity) occur around the 

Mascarene Plateau (From Figure 4.4a, TSW (station 27) and ASHSW (station 41) occurs along the 22.6 

kg/m3 isopycnal). ASHSW occurs in the northern sector of the region and is traced back to the Arabian 

Sea with salinity in excess of 35.8 flowing south whilst low salinity TSW occurs in the southern sector of 

the region (also in the branch of the SEC in the northern sector) and is traced back to the Indonesian 

seas (Figure 4.10a). Isopycnal mixing occurs between these water masses in the northern sector.  

4.2.2 Sub-Tropical Surface Water (STSW) and Indonesian Throughflow Water (ITW) 

 

STSW and ITW occur along the isopycnals 24.5 kg/m3 – 25.5 kg/m3 and 24 kg/m3 – 26 kg/m3 respectively 

(Gründlingh et al, 1991; Wyrtki, 1973; Song et al, 2004; New et al, 2005). Along the 25.5 kg/m3 isopycnal, 

STSW and ITW occur around the Mascarene Plateau (From Figure 4.8a, STSW occurs along the 25.5 

kg/m3 isopycnal (station 12) and from Figure 4.6a, ITW occurs along the 25.5 kg/m3 isopycnal (station 

13)). STSW is traced back to the south-eastern quadrant of the Indian Ocean (70° E - 100° E and 20° S – 

30° S). STSW is observed in this region by its high salinity in excess of 35.75 and ITW is traced back to the 

Indonesian seas with salinity as low as 34.7 (figure 4.10b).   

4.2.3 South Indian Central Water (SICW) 

 

SICW occurs along the isopycnals 26.5 kg/m3 – 27 kg/m3 (Emery, 2001). From Figure 4.8a, SICW occurs 

along the 26.75 kg/m3 isopycnal (station 12) around the Mascarene Plateau. SICW is traced back to 

approximately 40° – 100° E along the 26.75 kg/m3 isopycnal and spreads along the subtropical gyre 

reaching the Mascarene Plateau with an increased salinity (Figure 4.10c). The SEC does not form a 

barrier to it and there is still a presence of SICW north of the SEC.  
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4.2.4 Antarctic Intermediate Water (AAIW) and Red Sea Water (RSW) 

 

AAIW and RSW occurs along the isopycnals 27.1 kg/m3 – 27.5 kg/m3 and 27.0 kg/m3 – 27.6 kg/m3 

respectively (Toole and Warren, 1993; Roman and Lutjeharms, 2009; Beal et al, 2000). From Figure 4.8a, 

AAIW occurs along the 27.2 kg/m3 isopycnal (station 7) whilst in Figure 4.4a, RSW occurs along the 27.2 

kg/m3 isopycnal (station 41) in the region surrounding the Mascarene Plateau and hence this isopycnal is 

used to trace these water masses (Figure 4.10d). RSW is identifiable along the 27.2 kg/m3 isopycnal in 

the north-western region of the Arabian Sea with salinity in excess of 35.7 whilst AAIW is identifiable 

southward of the Mascarene Plateau with salinity of 34.25. RSW can be seen flowing southward, diluting 

as it flows south, whilst AAIW flows northward. Isopycnal mixing occurs between these water masses in 

the region of the Mascarene Plateau. There is a movement of a relatively fresh tongue of water into the 

region from the Indonesian seas along this isopycnal. This is an indication of IIW (Indonesian 

Intermediate Water) which is a relatively fresh tongue of water flowing within the SEC at an 

intermediate depth flowing from the Banda Sea and the Pacific Ocean (Talley and Sprintall, 2005). There 

is most likely the presence of IIW around the Mascarene Plateau but is difficult to identify as it occupies 

the same density and salinity ranges as AAIW. The low salinity AAIW in the region is most likely a 

mixture of eroding AAIW and IIW, especially closer to the SEC. However, further studies are required.  

4.2.5 North Indian Deep Water (NIDW) 

 

North Indian Deep Water (NIDW) is a difficult water mass to trace as very little is known about its 

spreading pathways. According to (Mantyla and Reid, 1995), it is formed from an aged form of North 

Atlantic Deep Water (NADW) mixing with a deep saline water mass which underlies RSW. Along the 

27.72 kg/m3 isopycnal a deep saline water mass flows southward with decreasing salinity (Figure 4.10e). 

From Figure 4.8a, NIDW occurs along the 27.72 kg/m3 isopycnal (station 12).  
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(a)                                                                             (b)                                                                                 (c)  

 

                                 (d)                                                                                   (e)  

Figure 4. 10: Argo Floats in the Indian Ocean from the period 2004 – 2010 tracking water masses in the region of the Mascarene Plateau back to 

their origins along different isopycnals.  
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From the above, key question 1 can be addressed: Which water masses are present in the region of the 

Mascarene Plateau, where are their origins, where do they mix in the region and does the westward flow 

of the South Equatorial Current (SEC) influence the mixing? 

The water masses in the region of the Mascarene Plateau consist of waters of different origins including 

ASHSW (Arabian Sea High Salinity Water), TSW (Tropical Surface Water), ITW (Indonesian Throughflow 

Water) and STSW (Subtropical Surface Water) at the surface, RSW (Red Sea Water) and AAIW (Antarctic 

Intermediate Water) in the intermediate layers, South Indian Central Water (SICW) in the central layers 

and NIDW (North Indian Deep Water) in the deep layers. The region was too shallow for the 

identification of bottom waters. IIW (Indonesian Intermediate Water) was most likely present in the 

region but is hard to identify since it occupies the same density and salinity ranges as AAIW.  

These water masses have their origins in the southern Indian Ocean, northern Indian Ocean or the 

western Pacific Ocean and the Indonesian archipelago. ASHSW has its origins in the northern Indian 

Ocean (Arabian Sea) and TSW has its origins in the Indonesian archipelago. These 2 water masses travel 

southwards and westwards along the 22.6 kg/m3 isopycnal. ITW has its origins in the western Pacific 

Ocean and the Indonesian archipelago and STSW has its origins in the south-eastern quadrant of the 

Indian Ocean. These 2 water masses travel westwards (within the SEC) and within the subtropical gyre 

respectively. SICW is traced back to approximately 40° – 100° E along the 26.75 kg/m3 isopycnal and 

spreads along the subtropical gyre. AAIW and RSW has its origins south of the Mascarene Plateau in the 

southern Indian Ocean and in the north-western region of the Arabian sea respectively. These water 

masses travel along the 27.2 kg/m3 isopycnal. NIDW is a difficult water mass to trace as very little is 

known about its spreading pathways. However, Along the 27.72 kg/m3 isopycnal, a deep saline water 

mass flows southward with decreasing salinity which is indicative of NIDW.  

South of the northern sector of the Seychelles Bank and north of 8° S the predominant water mass in 

the surface layers is ASHSW. However, in the region where the northern branch of the SEC flows 

between the Seychelles and the Saya de Malha Banks there is mixing between ASHSW and TSW. ITW is 

also present within the branch of the SEC. In this region the westward flow of the SEC does influence the 

mixing since the TSW within the branch of the SEC in this region mixes with ASHSW (the bathymetry of 

the Mascarene Plateau steers the branch further north).  

The region (8° S - 13° S) exhibits mixing in the intermediate waters (AAIW and RSW) as well in the 

surface waters between STSW and ITW. This region contains the northern branch of the SEC which 
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carries TSW and ITW. Mixing between STSW and ITW occurs in the areas close to this branch of the SEC. 

AAIW moves northward whilst RSW moves southward, hence there is erosion/mixing of AAIW in this 

region. These 2 intermediate water masses also mix in gap 2 but not to the extent as the erosion/mixing 

of these water masses moving northwards/southwards (also occurs in the surface waters between STSW 

and ITW). Once again the westward flow of the SEC influences the mixing of water masses in this region. 

ITW is carried within the SEC and mixes with STSW. 

South of 13° S mixing in the surface waters occur near the branch of the SEC which is channeled 

between the Cargados-Carajos Bank and Mauritius. Surface waters in this region comprise primarily of 

TSW and STSW. However, within the core of the SEC, ITW is present. Near the core of this current, 

mixing occurs between ITW and STSW. 

4.3 Summary 

 

Chapter 4 focused on the water masses during the October/November 2008 research cruise on the 

Fridtjof Nansen. The primary water mass which was carried by the SEC was fresh Indonesian 

Throughflow Water (ITW) where through the northern gap of the Mascarene Plateau mixed with high 

salinity Arabian Sea High Salinity Water (ASHSW) and through the southernmost gap mixed with high 

salinity Sub-tropical surface water (STSW). There are marked differences in water masses between the 

northern part and the southern part of the Mascarene Plateau. The northern part contains nutrient rich 

waters (ASHSW) whilst the southern part contains nutrient poor waters (STSW). Intermediate waters 

consist of Antarctic Intermediate Water (AAIW) in the south whilst the northern part of the Mascarene 

Plateau consists of Red Sea Water (RSW). Towards the centre of the Mascarene Plateau (~ 13° S), mixing 

occurs between AAIW and RSW. Whilst there were no new water masses observed during the 

October/November 2008 cruise on the Dr Fridtjof Nansen compared to the June/July 2002 cruise on the 

RRS Charles Darwin, new knowledge has been brought to light such as – 

 Substantial mixing in the northern branch of the SEC which flows through gap 1 between 

ASHSW, TSW and ITW. 

 Changes in surface water mass properties in the northern sector of the Mascarene Plateau due 

to this mixing. 

 Confirming the water mass origins by using Argo floats and showing that the region around the 

Mascarene Plateau is an important region for mixing of water masses in the Indian Ocean. 
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 Due to the bathymetry of the Mascarene Plateau, the SEC is deflected more north and south 

(different cores) which enhances mixing between ITW, TSW and ASHSW in the north and 

between ITW and STSW in the south. 

 AAIW is not present in region 1 whilst RSW is not present in region 3 

 Along the same density level as AAIW and RSW, there appears to be a tongue of relatively fresh 

water in the intermediate levels which may resemble IIW (Indonesian Intermediate Water) since 

it is carried within the SEC and the SEC has its origins in the Western Pacific Ocean and the 

Indonesian archipelago. This water mass requires further investigation since it occupies the 

same density levels and salinity ranges as AAIW. 

 The bathymetry of the banks is understood better as the ASCLME cruise sampled the banks of 

the Mascarene Plateau whereas the June/July 2002 cruise did not and the predominant water 

masses over the banks are well known now. Over the Seychelles Bank, high salinity ASHSW is 

swept across eastwards whilst over the other 3 banks, TSW is predominant.   

 

 

 

 

 

 

 

 

 

dkdffdfjkdffkjdfgdfljgdklfjgdjfklgjdkfjgdlfgjldskfjgkldfjgdfgkldjfgsdkfjgkldjfgdfljgklsdjfkljgdfjgfdklsfjgdfgdkl

fjgdjkdfjgdklfgjdgjdklfjgkldfjkdjkvdkljfklsdjfglkdjfklfjsdljgldfjldjfjldjklfjlllllllllllllllllllllllllllllllllllllllllllllllllllldgjdlsj

glkdddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd

dddddfk 



61 
 

CHAPTER 5: Comparison between Cruise Conditions and Satellite Data  

 

Satellite data is extremely useful to oceanographers since cruise opportunities are limited by funding. 

There is an increased need to monitor the oceans and obtain daily estimates of SST, geostrophic 

velocity, ocean colour etc. Satellite data can be used for this purpose. However, to ensure accurate 

representation of satellite estimates, in-situ data needs to be compared with satellite estimate which is 

done in this section. In-situ data around the Mascarene Plateau is cross-referenced to satellite data to 

ensure that satellite data is an accurate representation of the processes occurring in the region so cruise 

data can be extended both temporarily and spatially and to link cruise data to large scale circulation and 

ocean scale Rossby wave propagation. 

Key Question 2. How accurate is satellite data in the region and hence what is its viability for use in the 

region? 

5.1 ADCP Current and Geostrophic Current Comparison 

  

Table 5.1 shows the comparison between ADCP currents obtained during the survey and satellite 

derived altimetry geostrophic currents for the 3 gaps within the Mascarene Plateau (average velocity 

across the respective gaps).  

              All values 
cm/s 

Gap 1 Gap 2 Gap 3 

ADCP (U) -21.87 -43.25 -14.79 

ADCP (V) -3.5 21.326 4.9 

Total ADCP Velocity 22.1481 48.222 15.58 

Satellite Geostrophic 
Flow (U) 

-20.359 -41.096 -14.413 

Satellite Geostrophic 
Flow (V) 

-0.61 11.735 1.8879 

Total Geostrophic 
flow 

20.3684 42.739 14.5361 

Difference 1.78 5.48 1.04 

 

Table 5. 2: Comparison of ADCP velocities with Satellite Geostrophic Velocities 
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The similarity between the ADCP ship-board currents and satellite altimetry are encouraging, especially 

for gap 1 and gap 3 where the difference is only approximately 1 cm/s. Whilst gap 2 has a difference of 

approximately 5 cm/s this is still acceptable since velocities through this gap can easily reach 40 cm/s. 

The reason for the increased difference through this gap is most likely due to the narrowness of the gap 

compared to the others (< 200 km) which could have led to an under-estimation of the geostrophic 

velocity obtained by satellite. 

5.2 TRMM Satellite SST and Shipboard SST comparison 

   

Figure 5.1 gives a comparison between ship board SST and satellite SST. Weekly TRMM Satellite SST is 

used for this purpose.   

 

Figure 5.1: Comparison between shipboard SST (October/November 2008) with TRMM Satellite SST. The 

graph highlights a close similarity between platforms, particularly with distance south. The greatest 

difference is approximately 1° C which is quite acceptable since satellite data is a weekly product (dates 

between satellite data and in-situ data are not exactly the same) 
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From the above, key question 2 can be addressed: How accurate is satellite data in the region and hence 

what is its viability for use in the region? 

These comparisons confirm that satellite data can be used within this region with a high degree of 

confidence and hence cruise data can be extended in space and time. Satellite data which includes 

altimetry (geostrophic velocities) and SST was compared to ADCP and shipboard SST respectively. This 

comparison is important in assessing the viability for using satellite data in the region and hence 

broadening the database for further research in the region. 

5.3 Summary 

 

The geostrophic velocities over the 3 major gaps were compared. The difference in geostrophic velocity 

across gap 1 and gap 3 were approximately 1 cm/s whilst the difference across gap 2 was approximately 

5 cm/s. These differences are acceptable for the use of satellite altimetry in the region. The increased 

difference of 5 cm/s through gap 2 is due to the narrowness of the gap which will produce lower 

satellite geostrophic velocities. However, the velocity in this region can easily reach above 40 cm/s. 

Hence the increased difference is acceptable. The greatest difference between shipboard SST and 

TRMM satellite SST is 1° C. The primary reason for this difference is that the TRMM satellite SST is a 

weekly product and hence the dates between the satellite data and in-situ data are not exactly the 

same. However, the comparison is still within an acceptable range for the use of TRMM satellite SST 

(Kim et al, 2010).  
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CHAPTER 6: The Circulation around the Mascarene Plateau and its influence on the 

Equatorial Current System 

 

This chapter consists of further results obtained during the Nansen survey of the Mascarene Plateau 

conducted between October/November 2008 as well as satellite data. The objective of this chapter is to 

understand the effect the westward flowing South Equatorial Current (SEC) and the eastward flowing 

South Equatorial Countercurrent (SECC) has on the general ocean circulation in the region.  

6.1 Variability around the Mascarene Plateau 

 

The circulation around the Mascarene Plateau consists mainly of the westward flowing SEC which splits 

into 3 cores and subsequently flows through the 3 major gaps within the Mascarene Plateau. 

Downstream of the Mascarene Plateau, two cores of the SEC are formed. The flow between the 

Cargados-Carajos Bank and Mauritius as well as the augmentation of flows from the south forms the 

southern branch of the SEC. The northern branch of the SEC is formed from the channeled flow between 

the Saya de Malha and Nazareth Banks and to a smaller degree the flow between the Seychelles and 

Saya de Malha Banks. The flow across the Seychelles Bank consists of the eastward flowing South 

Equatorial Counter Current (SECC). Part of the SEC which flows westward between the Seychelles Bank 

and the Saya de Malha Bank on occasions recirculate and joins the SECC. There are 4 areas which 

experience a relatively high variability compared to the rest of the Mascarene Plateau, namely a) the 

channels between the Saya De Malha and Nazareth Banks, b) Seychelles and Saya De Malha Banks, c) 

the Cargados-Carajos Bank and Mauritius and d) the area to the east of the Seychelles Bank (Figure 6.1). 

The high variability through the 3 gaps indicates the 3 pathways of the SEC after splitting to the east of 

the Plateau whilst the high variability to the east of the Seychelles Bank indicates the SECC.    
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Figure 6.1: Variability in the region of the Mascarene Plateau (root mean square of MADT) for the period 

2004 - 2010.  The three channels (specifically the channel between the Saya Da Malha Bank and 

Nazareth Bank) exhibit higher than normal variability. The 4 arrows depict the high variability in the 

region due to the SEC and SECC. (Data: AVISO Satellite derived Altimetry) 

6.2 Circulation around the Mascarene Plateau  

 

Key Question 3. In what way is the flow of the SEC affected by the gaps in the Mascarene Plateau during 

the 2008 ASCLME cruise and are there differences to the cruise conducted during the June/July 2002 

onboard the RRS Charles Darwin?  

Circulation patterns in the upper layer of the ocean around and on the banks of the Mascarene Plateau 

were recorded during the Mascarene Plateau Survey (ASCLME 2008 Cruise between 8 October – 16 

November 2008) by a ship-mounted ADCP (SADCP). Velocities at 25 m depth are shown in Figure 6.2 by 

blue arrows with the 1000 m isobath overlaid in black. This range is well within the mixed upper layer 

(New et al, 2005). Figure 6.2 illustrates the velocities over the plateau. The SECC (South Equatorial 

Counter Current) is visible over the Seychelles Bank.  
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The circulation pattern identified by (New et al, 2005) is confirmed by Figure 6.2. These areas or gaps 

were thought to contain most of the transport from the broad flowing westward SEC (New et al, 2007) 

and once again this study proves that most of the SEC flows between these 3 gaps. Quantifying the 

amount of transport through the 3 gaps during this cruise is difficult since there was no LADCP on board 

and hence the circulation was not measured to the seabed. However, one can obtain a close 

approximation of the amount of flow each gap receives as most of the transport is in the upper layer of 

the ocean and the SEC is strongest in the upper 200 – 250m. The SADCP covers this range. (New et al, 

2007) found that the SEC was strongest in the upper 200m (maximum speeds of 70 cm/s) but was still 

present at depths of 1400m with speeds of 10 cm/s. Hence the volume flux measured from the SADCP 

for this cruise should be a reasonable estimate, though it will be an underestimation.  

 

Figure 6.2: Shipboard ADCP Velocities (blue arrows) across the Mascarene Plateau at a depth of 25m 

with 1000m isobath overlaid in black. Increased velocities through the 3 main gaps within the Mascarene 

Plateau due to the SEC (South Equatorial Current) are evident whilst increased velocities eastward across 

the Seychelles Bank are evident due to the SECC (South Equatorial Countercurrent). 
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During this cruise gap 1 and gap 2 received most of the flow with each having received 14.93 Sv and 

14.41 Sv respectively whilst gap 3 received 6.19 Sv. An extra 1 Sv flowed through the relatively small gap 

between the Nazareth Bank and the Cargados Carajos Bank. Interestingly, part of this latter flow was not 

shown on maps of altimetry, hence it could have been ageostrophic flow. The ageostrophic component 

of this flow predominantly occured on the Nazareth bank which could have been due to wind driven 

influence (a tropical cyclone was present). Thus the total flow across the Mascarene Plateau was 

(excluding minor amounts flowing over the banks and the flow below the detectable range of the 

SADCP) 36.53 Sv. 40.87% of the flow was channeled through gap 1, 39.4% was channeled through gap 2, 

16.9% was channeled through gap 3 whilst 2.73% was channeled through the minor gap between the 

Nazareth Bank and the Cargados-Carajos Bank. During the survey conducted by (New et al, 2005), 

approximately 50 Sv flowed westwards in the SEC between 10° S and 16° S and as it approached the 

Mascarene Plateau. 50% (25 Sv) of the flow was channeled through gap 2 whilst the remainder past in 

equal volumes (12.5 Sv) between gap 1 and gap 3. This survey gives an interesting comparison since 

there is more volume transport through gap 1 (40.87% of total) than gap 3 (16.9% of total). The 

difference between the 2 cruises could be due to seasonality. Seasonality affects the positioning of the 

SEC before its encounter with the Mascarene Plateau (Figure 6.3). Figure 6.3a gives the altimetry 

derived geostrophic velocities in the region for June 2002 (the period of the survey conducted by New et 

al, (2005) whilst Figure 6.3b gives the altimetry derived geostrophic velocities in the region for October 

2008. During June 2002 at 70° E, the SEC existed as a broad band between 10° S and 16° S whilst during 

October 2008 at 70° E the SEC existed as a broad band between 7° S and 12° S. This is an indication that 

the variability in the positioning of the SEC may influence the amount of flow through each of the 3 main 

gaps in the Mascarene Plateau.  
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(a)                                                                                                 (b) 

Figure 6.3: Average altimetry derived Geostrophic Velocities (a) June 2002 and (b) October 2008. A shift 

in the SEC northward can be seen in October 2008 at approximately 75° E with increased surface 

geostrophic velocities through the Seychelles – Saya De Malha Bank during this month compared to June 

2002 

Velocities in the upper layers (45m) of gap 1 averaged approximately 29 cm/s and peaked at 79 cm/s. 

The structure of the circulation in this gap was non-homogenous in the upper 450m (Figure 6.4). 3 Main 

areas had velocities in excess of 60 cm/s (westwards) in the upper 60m which appeared to be the main 

components of the volume transport through this gap. There was an apparent counter-flow between 

8.5° S and 9° S. However, from maps of MADT, this counter-flow does not exist (Figure 6.4c). 

Gap 2 exhibited 2 areas where flow had a strong westward component (80 cm/s and above) with one 

area having these velocities down to depths exceeding 200 m (Figure 6.5). These 2 areas (above 50 m) 

were also accompanied by northward velocities exceeding 50 cm/s. This gap had average velocities in 

the upper layers (45m) of 50 cm/s and peaked at 95 cm/s. With these westward velocities not fading out 

at depths of over 250m, this lends to the possibility that this strong flow could have continued further 

down and hence there could be a higher volume flux than calculated. However, due to a lack of data, 

this cannot be ascertained and there were not enough CTD stations within this gap to obtain a 
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geostrophic velocity profile. The higher geostrophic velocities within the gap are clearly evident in Figure 

6.5c. 

The main feature of gap 3 is the apparent eddy (cyclonic) in the region of 17.5 S (Figure 6.6a). The 

velocities of this ‘eddy’ are approximately 40 cm/s to depths of over 150 m. This feature is apparent on 

maps of surface geostrophic velocity (Figure 6.6c) and hence is geostrophic in nature although it appears 

weaker than the ADCP velocities (Figure 6.7). A similar feature was noted during the survey conducted 

during June 2002 (New et al, 2007). This gap has average velocities in the upper 45m averaging 7 cm/s 

and peaking at 43 cm/s. A reason for the low average velocity in the upper layer is due to the eddy like 

feature as it is a recirculation cell and hence part of the gap will experience negative velocities. The 

ADCP currents near Mauritius are South-Eastward which is not picked up in maps of Absolute 

Geostrophic Velocity (indicates a westward flow). This is most likely due to the course resolution of 1/4°. 

Increased geostrophic velocity is clearly evident through the channel as compared to the banks to the 

north and south. 
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(a)                                                                                                                            (b) 

                                                                                                        

                                                    (c)

Figure 6.4: (a) ADCP Velocity Section across gap 1 (vx). 

(b) ADCP Velocity Section across gap 1 (vy). Flow is 

non-homogenous with an apparent counter-flow at 

approximately 9° S with highest westward velocities 

at 8° S. (c) Surface Geostrophic Velocities, Gap 1 

.Dotted line indicates cruise track in region of 

apparent counter-flow and 1000m isobath  overlaid in 

black. (October/November 2008) 
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      (a)                                                                                                                    (b) 

 

                                   (c) 

Figure 4.18: (a) ADCP Velocity Section across gap 2 

(vx). (b) ADCP Velocity Section across gap 2 (vy). 

Highest Westward velocities occur at approximately 

13.2° S and extend beyond 250 m in depth. Hence 

total volume transport through this channel is most 

likely an under-estimation.  (c) Surface Geostrophic 

Velocities, Gap 2 (Between Saya de Malha Bank and 

Nazareth Bank) with 1000m isobath overlaid in black. 

(October/November 2008) 

 

 

Figure 6.5: 
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(a)                                                                                                                   (b) 

 

                            (c) 

Figure 6.6: (a) ADCP Velocity Section across gap 3 (vx). 

(b) ADCP Velocity Section across gap 3 (vy). A cyclonic 

eddy is apparent at 17.5° S and extends in depth to 

below 200m. (c) Surface Geostrophic Velocities, Gap 3 

(Between Cargados-Carajos Bank and Mauritius) with 

1000m isobath overlaid in black. The cyclonic feature 

can be seen at 17° S near the Cargados-Carajos Bank. 

(October/November 2008) 
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Figure 6.7: Shipboard ADCP velocities, Gap 3 (Between Cargados-Carajos Bank and Mauritius) with 

1000m isobath overlaid in black. Surface currents through this channel are not as unidirectional as 

through the other two channels. This is due to the cyclonic eddy near the Cargados-Carajos Bank and the 

reversal in current near Mauritius. 

 

Figure 6.8 gives 3 velocity profiles through the centre of each gap where most of the current is 

channeled through. These profiles are by no means an indication of all the profiles through these gaps as 

the current is not homogenous as shown in Figure 6.4, Figure 6.5 and Figure 6.6. However, these profiles 

do give an indication of the strength of the current with depth. The chosen profile for gap 1 indicates 

that velocities remain above 20 cm/s to depths of 200 m and similarly for gap 3. However, the chosen 

velocity profile for gap 2 indicates that the velocity remains above 15cm/s down to approximately 225m 

and there is even an indication of an increase further down although this cannot be ascertained as the 

SADCP only goes down to approximately 250m. 
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Figure 6.8: Plots showing velocity profiles with depth across stations in Gap, Gap 2 and Gap 3 

respectively.  

 

During the 2008 survey across the Mascarene Plateau, the Saya De Malha Bank was the most quiescent 

bank, in both maps of surface geostrophic velocity and surface ADCP. The SECC (South Equatorial 

Countercurrent) crosses over the Seychelles bank and from maps of absolute geostrophic velocity 

(Figure  6.9a) and surface ADCP (Figure 6.9b), the bank has very little effect on the current at the 

surface, although at 40 m depth, the current has weakened considerably. 

    

(a) (b) 

 

Figure 6.9: (a) Average Geostrophic Velocities across the Seychelles Bank during October/November 2008 

and (b) ADCP Surface Velocities across Seychelles Bank during October/November 2008 with 1000m 

isobath overlaid in black. Eastward velocities are clearly evident which is an indication of the SECC (South 

Equatorial Counter-Current).  
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The Nazareth Bank has a very small geostrophic velocity component flowing over it (figure 6.10b). 

However,  surface ADCP velocities indicates westward flowing currents much stronger than what the 

geostrophic velocities show (figure 6.10a) but yet again, as with the Seychelles bank, at 45m depth, 

velocities fade away rapidly. This may be due to wind driven influence but this is not a topic of 

discussion in this study. 

                        

 

Figure 6.10: (a) ADCP Surface Velocities across Nazareth Bank during October/November 2008 and (b) 

Average Geostrophic Velocities across Nazareth Bank during October/November 2008 with 1000m 

isobath  overlaid in black. ADCP velocities are westward whilst the geostrophic velocities across the bank 

are much smaller. This indicates that the ADCP velocities are most likely due to wind influence. 

 

The upper half of the Cargados-Carajos Bank (near the minor gap with the Nazareth Bank) exhibits 

westward flowing currents. This is the channeled flow which was mentioned previously which is 

responsible for the small amount of volume flux (~ 1 Sv) across the plateau.  
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It can be concluded from the ADCP data and the maps of geostrophic velocity that there is very little 

flow across the banks of the Mascarene Plateau (with the exception of the Seychelles Bank where the 

flow is dominated by the SECC) and the vast majority of the SEC flows through the 3 main gaps. The 

study of the circulation over the banks is a new topic since there has been no prior cruise which 

extensively studied the banks of the Mascarene Plateau. 

From the above, key question 3 can be addressed: In what way is the flow of the SEC affected by the 

gaps in the Mascarene Plateau during the 2008 ASCLME cruise and are there differences to the cruise 

conducted during the June/July 2002 onboard the RRS Charles Darwin?  

During the October/November 2008 cruise on the Dr Fridtjof Nansen, the SEC transport to the east of 

the Mascarene Plateau was 36.53 Sv. This was most likely an underestimate since the volume transport 

was obtained via an SADCP which did not obtain a full depth profile but only reached a maximum depth 

of 450m. However, the SEC is strongest in the upper 250m so the underestimation is not likely to be 

great. The volume transport through each of the major gaps in the Mascarene Plateau are 14.93 Sv or 

40.87% through gap 1, 14.41 Sv or 39.4% through gap 2 and 6.19 Sv or 16.9% through gap 3. There is 

approximately an extra 1 Sv or 2.73% which flows through the small gap between the Nazareth and 

Cargados-Carajos Bank but is not shown on altimetry maps and hence it could be ageostrophic in nature. 

Downstream of the Mascarene Plateau, 2 cores of the SEC were formed, a northern and southern core. 

The northern core composed primarily of the flow between the Saya de Malha and Nazareth Banks with 

a small amount of flow between the Seychelles and Saya de Malha Bank being augmented into it. The 

southern core comprised of the flow between the Cargados-Carajos Bank and Mauritius with 

augmented flow from the south. During the June/July 2002 cruise, 50 Sv flowed east of the Mascarene 

Plateau with half of the flow being channeled through gap 2 with the rest flowing in equal volumes 

through gap 3 and gap 1. The difference between the 2 cruises may be due to seasonality and a re-

circulation loop existed during the 2008 cruise in gap 1. The SEC existed in a broad band between 10° – 

16° S during June 2002 and between 7° – 12° S in 2008. Hence there was a northward shift during 

October 2008 which may have contributed to extra (less) flow through the most northerly (southerly) 

gap in the plateau.  Fnvldjdlkfv fjvnjkdfbvjkd jfkbvdfkbvkjd jkfbvdkjfnk jdfbvjkdfbk jdfbv kd vjkfkfjv 

fjkbvdfj jkd jfbvjkdfjvkjd kjf vjkdf vjkd vjkdf dvjkdf vjkd fkd jvjkd fvjkd fvjkd f vkkdf vjkdf jdf 

fkdkfljlfdlkffmkf 
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6.3 Summary 

 

The volume flux through each gap differs from the 2002 cruise (New et al, 2005) when the SEC transport 

was 50 Sv east of the plateau and 25 Sv flowed through gap 2 whilst the rest flowed in equal volumes 

through the other 2 gaps. In the 2008 October/November cruise, the SEC transport was 36.53 Sv east of 

the plateau (lower than that of 2002). This could be an underestimation due to the SADCP only reaching 

approximately 450 metres in depth. The total volume through each gap from north to south is 14.93 Sv 

(40.87 %), 14.41 Sv (39.4 %) and 6.19 Sv (16.9 %) respectively, whilst there was a small amount of flow (~ 

1 Sv) through the minor gap between the Nazareth Bank and the Cargados-Carajos Bank. The difference 

with the 2002 cruise may be due to shifts in the position of the SEC upstream and/or whether there was 

a recirculation loop within gap 1 which could have increased the volume transport. The flow across the 

Saya de Malha, Nazareth and Cargados-Carajos Banks is negligible whilst the Seychelles Bank 

experiences the eastward flowing South Equatorial Counter Current (SECC) which contains ASHSW. A 

cyclonic eddy was detected south of the Cargados-Carajos Bank with the SADCP and was geostrophic in 

nature since it was picked up in maps of geostrophic velocity. This feature may be semi-permanent or 

permanent since a similar feature was detected during the June/July cruise in 2002. 

The following chapter analyses the Mascarene Plateau with regards to the climatology of certain 

variables (geostrophic velocities, SST and eddy kinetic energy). The climatology is also used to ascertain 

the effect the Mascarene Plateau has on these variables mentioned above. Towards the end of the 

chapter, examples are given which proves that the SEC acts as an oscillating current as the current does 

not have a constant strength/velocity. The examples are all taken during 2008 (the year which the 

Nansen cruise took place, however none of the major pulsations occurred during the cruise within the 

gaps).  

 

Lfnvdfnvdl fjlvnjdfnv jlfnvjdfvndjl jf bvjldfvdj jf bvjld jk vkdf vjlfvn jbvnjlfnvljdnf jvfjvdjnfvdl vdjfnvldfn 

jfvnldf lfvldfnvdkfnvl vjbnfvdklnvkldfnlkd dfjvndlfvndlkfnvl jldnvdklvndklfnvkldnv dfjn      dfnvk fjkf 

kfkf  klsfvjldfjvjkldfvdvjkdjvkldfvdmf fklbndklbndklnbkl kdfnbdklbndklbndkl kdfnbldkfnkl  

kdfnbdklnblknb kdfnbdkljnkrdffnklnkldffnldnkldfnkldfnklfdnkldfnkldfnkldfdf fklfnffnkffklfklfklfn 

kdffkfnkfnkf ffkdklnkldfnbldkndklfnvdnk sklfvnkldfnvkldnvdlknvdklfnkl fnvkldnvdklfnvdklvnvkldfnvkl 

fnk 
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CHAPTER 7: Climatology and Dynamics in the Region of the Mascarene Plateau 

estimated with Satellite remote sensing 

 

In chapter 5 it was ascertained that satellite remote sensing (satellite altimetry and TRMM SST) can be 

used confidently in the region of the Mascarene Plateau. This chapter uses altimetry derived 

geostrophic velocities and SST to study the annual cycle of those parameters and extend the cruise data 

in time and space. For instance, this chapter presents seasonal cycles of geostrophic velocities through 

the 3 major gaps of the Mascarene Plateau, increased velocities through the gaps and modification of 

eddy kinetic energy in the region. It also allows us to compare with a previous cruise led in the region at 

a different time of the year and to investigate if the different results are due to seasonality, interannual 

variability or other reasons for instance Rossby wave propagation associated with a positive Indian 

Ocean Dipole (IOD) year.     

7.1 Seasonal Cycle 

 

Key Question 4. What seasonal effect does the Mascarene Plateau have on the geostrophic velocities, 

SST’s and eddy kinetic energy in the region? 

7.1.1 Geostrophic Velocities 

 

Similarly to the previous chapter, the region around the Mascarene Plateau will be divided into 3 

sections. Section 1 comprises of the region from the northern sector of the Seychelles Bank to the 

southernmost part of gap 1 (9.05° S). Section 2 comprises of the region between the southernmost part 

of gap 1 (9.05° S) to gap 2 (13.95° S) whilst section 3 comprises of the region south of 13.95° S to 

Mauritius.  
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Figure 7. 3: Climatological position of the core (1995 – 2011) of the South Equatorial Current at 70° – 90° 

E. The core position is calculated from the maximum westward geostrophic velocities which occur 

between 6° - 20° S (New et al, 2005). (Data: AVISO Altimetry derived Geostrophic Velocities) 

 

The mean position of the core ranges from a minimum of 7.5° S in November to a maximum of 

approximately 13° S from April to September (Figure 7.1). It is bimodal with a secondary maximum of 9° 

S in mid-January. The SEC moves northward during the austral summer. During this time, the volume 

transport increases through the northern gap (gap 1) within the Mascarene Plateau (chapter 6). 

However, there are other factors responsible for the increased volume transport through the northern 

gap such as a recirculation cell which will be discussed later. 
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(a)                                                                                      (b) 

   

                                 (c)                                                                                        (d) 

Figure 7. 4: Maps of Geostrophic Velocities (Climatology) for 4 seasons (cm/s). (a) – January – March 

(summer). (b) – April – June (autumn). (c) – July – September (winter). (d) October – December (spring). 

1000m isobath overlaid in black. (Data: AVISO Altimetry derived Geostrophic Velocities). 

 

Figure 7.2 depicts maps of Geostrophic Velocities (Climatology – 1995 - 2011) for 4 seasons. Main 

features are identified such as the SECC (South Equatorial Counter Current) north-east of the Seychelles 

Bank, the flow of the SEC (South Equatorial Current) through the 3 major gaps (SEC splits into 3 cores to 

the east of the Mascarene Plateau) and the 2 cores of the SEC downstream of the SEC. The SECC is 
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strongest during April to June (45 cm/s) and weakest during October to December (25 cm/s). The 

highest velocities in the Mascarene Plateau region occur within or just westward of all the gaps. 

7.1.1.1 Section 1 (Northern sector of Seychelles Bank (3° S) – 9.05 °S) 

   

 

Figure 7. 5: Climatology (1995 – 2011) of altimetry derived geostrophic velocities through the Seychelles 

– Saya de Malha Gap. (units: cm/s) (Data: AVISO Altimetry derived Geostrophic Velocities) 

 

Figure 7.3 depicts the climatological geostrophic velocity (1995 – 2011) through gap 1. This geostrophic 

velocity is due to one of the cores of the SEC which split to the east of the Mascarene Plateau. Gap 1 

experiences highest velocities during October – December, peaking during December (23 cm/s) and its 

lowest velocities during August – September (7 cm/s). The climatological geostrophic velocity during the 

time of the Nansen cruise in October-November 2008 was 15 cm/s through gap 1. The geostrophic 

velocity during the time of the Nansen cruise was 20 cm/s (5 cm/s or 33% higher than the climatology 

data) through gap 1. The velocities were higher during the cruise as there was a re-circulation event 

through the gap during September 2008 which increased the geostrophic velocities and during the 

cruise in October/November 2008 there was still a minor effect on the circulation in the region which 

kept geostrophic velocities above the climatological average. As the year progresses, there is a gradual 

westward shift in the maximum geostrophic velocities of the SECC due to changes in ocean circulation in 

the northern Indian Ocean caused by the monsoon. It is apparent that a part of this current recirculates 
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and mixes with the SEC whilst flowing back westward through the gap 1. This then either supplements 

the northern core of the SEC or joins the SECC to the north in a recirculation loop. Gap 1 experiences the 

highest annual variation in maximum geostrophic velocity. Velocities during January – March do not 

increase from east to the west of the bank and remain at 11 cm/s. However, as the flow passes through 

the gap the velocity increases to 15 cm/s. Similarly, during April – June the velocity remains unchanged 

from the eastern side and western side of the plateau (9 cm/s) but through the gap it increases to 18 

cm/s. During July – September velocities remain at 9 cm/s but increase to 20 cm/s through the gap 

whilst during October – December velocities increase from 10 cm/s to 18 cm/s (there is no decrease in 

velocity after it crosses the gap). All velocities to the west of the plateau are taken at 54° E.  

7.1.1.2 Section 2 (9.05 °S – 13.95 °S ) 

 

Figure 7. 6: Climatology (1995 – 2011) of altimetry derived geostrophic velocities through gap 2. (units: 

cm/s) (Data: AVISO Altimetry derived Geostrophic Velocities) 

 

Figure 7.4 depicts the climatological geostrophic velocity (1995 – 2011) through gap 2. gap 2 experiences 

highest velocities during January – March peaking during January (23 cm/s) with its lowest velocities 

during April – June (16 cm/s). The geostrophic velocity through this gap has its origins in one of the cores 

of the SEC which split to the east of the Mascarene Plateau. The Northern core of the SEC downstream 

of the Mascarene Plateau forms between the Saya de Malha and Nazareth Bank with strongest 

velocities during January to March (~ 45 cm/s) and weakest velocities during April to June (~ 25 cm/s). 

The climatological geostrophic velocity during the time of the Nansen cruise in October-November 2008 
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was 18 cm/s. The geostrophic velocity during the time of the Nansen cruise through this gap was 40 

cm/s (22 cm/s or 122% higher than climatology). The reason for the difference is due to the SEC not 

being a current of relative constant strength with time. However, the SEC can reach higher velocities 

through this gap as shown in section 5.3. Gap 2 has the effect of increasing the geostrophic velocity the 

greatest. From January – March the geostrophic velocity increases from 10 cm/s to a maximum value of 

32 cm/s through the gap and drops to 20 cm/s westward of the Mascarene Plateau. From April – June 

the geostrophic velocity increases from 15 cm/s to a maximum of 25 cm/s and drops to 20 cm/s 

westward of the gap. From July – September the velocity increases from 15 cm/s to a maximum value of 

30 cm/s and drops to 20 cm/s westward of the plateau whilst from October – December the velocity 

increases from 10 cm/s to 28 cm/s but drops to 20 cm/s westward of the plateau. All velocities to the 

west of the plateau are taken at 54° E.  

7.1.1.2 Section 3 (13.95 °S – Mauritius (~ 20 °S)) 

 

Figure 7. 7: Climatology (1995 – 2011) of altimetry derived geostrophic velocities through gap 3. (units: 

cm/s) (Data: AVISO Altimetry derived Geostrophic Velocities) 

 

Figure 7.5 depicts the climatological geostrophic velocity (1995 – 2011) through gap 3. Gap 3 

experiences highest velocities during April – June with its lowest velocities during August – November. 

The geostrophic velocity through this gap has its origins in 1 of the 3 cores of the SEC which split to the 

east of the Mascarene Plateau. The southern core to the SEC forms between the Cargados – Carajos 

Bank and Mauritius with strongest velocities during April to June (~ 25 cm/s) and weakest velocities 
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during October to December (~ 15 cm/s). The climatological geostrophic velocity during the time of the 

Nansen cruise in October-November 2008 was 11 cm/s. The geostrophic velocity during the time of the 

Nansen cruise through this gap was 15 cm/s (4 cm/s or 36% higher than climatology). This fits in well 

with the seasonal shift in the SEC upstream between 70° – 90° E (Figure 7.1) as this is the southernmost 

gap and the weakest velocities occur during October – December when the SEC migrates northward (to 

the east (70° – 90° E of the Mascarene Plateau). The velocity westward of gap 3 increases due to the 

constriction of the gap as well as augmented flows from further south (New et al. 2007). Velocities 

during January to March increase from approximately 5 cm/s in the east to 15 cm/s to the west of the 

plateau. During April – June velocities increase from 10 cm/s to 19 cm/s. During July – September 

velocities increase from 5 cm/s to 18 cm/s whilst during October – December velocities increase from 5 

cm/s to 12 cm/s. All velocities to the west of the plateau are taken at 54° E.  

As mentioned previously, these variations through the 3 gaps (highest and lowest geostrophic velocities 

at different times of the year depending on the gap) were most likely due to the seasonal shift in the 

SEC. 

7.1.2 Sea Surface Temperatures (SST) 

 

Figure 7.6 shows maps of SST climatology (1998- 2011) over the Mascarene Plateau for all seasons 

whilst Figure 7.7 depicts the seasonal cycle of SST through the 3 major gaps in the Mascarene Plateau. 

All gaps have a similar seasonal cycle (and is slightly bimodal in nature) except for a general decrease in 

SST from gap 1 to gap 3. The gaps experience highest temperatures around March (28 – 30 °C) whilst 

lowest temperatures occur around July to August (24 – 26 °C) (Figure 7.7). From Figure 7.6, on the large 

scale (entire Mascarene Plateau region), changes in temperature remain fairly zonal throughout the 

year. There is an increase in SST around shallower areas and the small islands which breach the surface 

such as within the Seychelles archipelago and Mauritius simply due to shallower water requiring less 

solar irradiance to heat up. The highest temperature through gap 1 is 30° C during April, whilst through 

gap 2 the highest temperature is 29.5° C and through gap 3 the highest temperature is 28.5° C during 

March. The lowest temperature through gap 1 is 26° C during August, whilst through gap 2 the lowest 

temperature is 25.5° C and through gap 3 the lowest temperature is 24° C during August. 

The SST gradient (climatology) is calculated to see the effect the banks have on the SST (whether there is 

a significant change). The Seychelles Bank exhibits the greatest change in SST gradient in the order of 8 
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e-3 °C/km, whilst the change in SST gradient across the Saya de Malha and Nazareth Bank is relatively 

small, in the order of < 1 e-3 °C/km. The Seychelles Bank will exhibit the greatest change in SST gradient 

as this bank contains the shallowest bathymetry and there are many small islands over the bank. The 

change in SST gradient across the Cargados-Carajos Bank and gap 3 is in the order of 2 e-3 °C/km. As gap 

3 is relatively small Mauritius has the effect of increasing this gradient.  

                        

(a)                                                                                          (b) 

                  

                               (c)                                                                                     (d)  

Figure 7. 8: Maps of seasonal TRMM SST climatology (°C) (1998 – 2011) across Mascarene Plateau (a – 

d). Isobath overlaid in black. (a) – January – February (summer), (b) – April – May (autumn), (c) – July – 

August (winter) and (d) – October – November (spring) (Data: TRMM Satellite SST) 
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                           (a)                                                  (b)                                                               (c)         ffffff            f 

Figure 7. 9: SST Seasonal Cycle (°C) through the 3 Main Gaps in the Mascarene Plateau. Highest 

temperatures occur around March whilst lowest temperatures occur around July/August for all gaps.     

7.2 Eddy Kinetic Energy 

 

In this section eddy kinetic energy is investigated in the Mascarene Plateau region as well as the effect 

the plateau has on the EKE from the eastern side to the western side. It is important to investigate eddy 

kinetic energy since it serves as a proxy for eddy development (Fu et al, 2010). If eddies form in the 

region, they potentially have the ability to transport water masses away from the region.   
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7.2.1 Climatology 

 

                          

(a)                                                                           (b) 

                         

                                (c)                                                                                          (d)   

Figure 7. 10: Eddy Kinetic Energy Climatology (1997 – 2010) – 4 seasons. a) – summer, b) – autumn, c) – 

winter, d) – spring. There are 4 areas where EKE is pronounced (to the east of the Seychelles Bank due to 

the South Equatorial Counter Current (SECC) and to the west of the 3 major gaps due to the South 

Equatorial Current (SEC) in the Mascarene Plateau). 1000m isobath overlaid in black. (units: cm2/s2) 

 

Figure 7.8 depicts the Eddy Kinetic Energy (cm2/s2) Climatology (1997 – 2010) – 4 seasons (a – summer, b 

– autumn, c – winter and d – spring). There are 3 major areas of high Eddy Kinetic Energy, namely, to the 

east of the Seychelles Bank, gap 2 and to the west of gap 3. There is also a pronounced signal from 

October – December in gap 1. All these areas of heightened EKE in the region are due to the South 

Equatorial Counter Current (SECC) passing through the region to the east of the Seychelles Bank and the 
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South Equatorial Current (SEC). The increased EKE through gap 1 from October – December (Figure 7.8d) 

is due to the position of the SEC upstream (70° – 90° E). The average position from October – December 

is 9° S (Figure 7.1) which is within the range of the latitude of gap 1. Since the SEC northward/southward 

migration during the year is linked to the monsoon circulation, the EKE climatology is linked to the 

monsoon. The average position of the SEC upstream during January – March is approximately 11.5° S 

(Figure 7.1) whilst the season with the highest EKE through gap 2 is during January – March (Figure 

7.8a). The most southerly gap (gap 3) in the Mascarene Plateau experiences highest EKE’s during April – 

June (Figure 7.8b) when the SEC upstream is at its most southerly point, 13° S (Figure 7.1). Note that all 

SEC positions upstream are taken at its core. Thus, the strength of the climatological EKE through the 

gaps in the Mascarene Plateau is proportional to the position of the SEC upstream.     

 

Figure 7. 11: Eddy Kinetic Energy (climatology – 1997 – 2010) west and east of the Mascarene Plateau 

averaged over the area 7° – 18° S and 63° – 68° E to the east of the plateau and 7° – 18° S and 54° – 59° E 

to the west of the plateau. Blue represents EKE to the east of the plateau whilst black indicates EKE to 

the west of the plateau.  
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Figure 7. 12: Seasonal Cycle of Eddy Kinetic Energy through the 3 Major Gaps within the Mascarene 

Plateau. Highest EKE in gap 1 occurs during December (~ 350 cm2/s2) and highest values occur during 

January (~ 360 cm2/s2) through gap 2. Values remain below 200 cm2/s2 throughout the year in gap 3. 

 

Figure 7.9 shows the EKE climatology (1997 – 2010) to the west and east of the Mascarene Plateau 

averaged over the areas depicted in the figure. The EKE to the west of the plateau is greater throughout 

the year due to the constriction of the gaps within the plateau which increases the geostrophic velocity. 

Figure 7.10 shows the seasonal cycle of Eddy Kinetic Energy through the 3 major gaps within the 

Mascarene Plateau. Highest EKE in gap 1 occurs during December (~ 300 cm2/s2, the highest EKE in gap 2 

occurs during January (~ 300 cm2/s2) whilst gap 3 has the lowest EKE values for all the gaps (maximum 

values of approximately 190 cm2/s2).  

There is a distinct seasonal cycle in the average EKE to the west and east of the Mascarene Plateau. To 

the west, maximum values reach 140 cm2/s2 around December/January whilst minimum values reach 75 

cm2/s2 around September. To the east, maximum values reach 80 cm2/s2 around December/January and 

drop to a minimum of approximately 45 cm2/s2 during September. The major reason for the increased 

EKE to the west of the Mascarene Plateau is due to the increased speed of the SEC through the gaps of 

the Mascarene Plateau (specifically through gap 2). Eddy Kinetic Energy is highest in the region when the 

SEC flows through gap 1 (350 cm2/s2 - approximately December) and through gap 2 (360 cm2/s2 - 

approximately January). Here, the possibility for eddy formation is the greatest in the region. However, 

there has been no identification through satellite data or otherwise to suggest that mesoscale eddies 

are produced in this region apart from the stationary cyclonic eddy identified during the 

October/November 2008 Nansen cruise south of the Cargados-Carajos Bank (Figure 6.6) and the eddy 

formed during the re-circulation event during September 2008 (Figure 7.13). This is probably due to the 

coarse resolution of satellite estimate (1/3°). There may very well be smaller eddies in the region (< 50 

km) which satellite data cannot detect. As the latitude of the core of the SEC to the east of the 

Mascarene Plateau increases (Fig 7.1), there is a drop in the EKE (both to the west and east of the 
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Mascarene Plateau). Thus, during the summer SW monsoon (Austral winter), the area surrounding the 

Mascarene Plateau experiences lower EKE’s than during the winter NE monsoon (Austral summer) 

where the EKE’s increase.  

7.2.2 EKE during October/November 2008 Nansen Cruise 

 

 

Figure 7. 13: EKE during the October/November 2008 Nansen Research Cruise. 1000m  isobath overlaid 

in black. 2 areas of high eddy kinetic energy are observed to the west of gap 1 (> 1200 cm2/s2) and to the 

north-east of the Seychelles Bank (> 1200 cm2/s2).   

 

Figure 7.11 shows EKE during the October/November 2008 Nansen Research cruise. There is a region of 

high EKE (> 1200 cm2/s2) to the west of gap 1 and to the north-east of the Seychelles Bank. The primary 

reasons for the relatively high EKE in these 2 regions is due to the above average speed of the SEC and 

SECC in the respective regions. Climatological values during October/November in the region of 

heightened EKE west of gap 1 and to the North-East of the Seychelles Bank are approximately 136.104 

cm2/s2 and 408.96 cm2/s2 respectively whilst during October/November 2008 values were approximately 



91 
 

1250 cm2/s2 west of gap 1 and 1470 cm2/s2 to the north-east of the Seychelles Bank. The other 2 gaps 

within the Mascarene Plateau exhibited similar values to the climatology (500 cm2/s2 and 300 cm2/s2 

through gap 2 and gap 3 respectively). 

From the above, key question 4 can be addressed: What seasonal effect does the Mascarene Plateau 

have on the geostrophic velocities, SST’s and eddy kinetic energy in the region? 

The geostrophic velocities in the region are composed primarily of 2 currents, namely the westward 

flowing SEC (South Equatorial Current) and the eastward flowing SECC (South Equatorial Counter 

Current). The Mascarene Plateau has the effect of splitting the westward flowing SEC into 3 cores which 

flows through the 3 major gaps in the plateau. Westward of the plateau, the SEC is composed of a 

northern and southern core. The maximum velocity through gap 1 is approximately 24 cm/s during 

December whilst the minimum velocity is approximately 7 cm/s during September. The maximum 

velocity through gap 2 is approximately 23 cm/s during January whilst the minimum velocity is 

approximately 15 cm/s during April. The maximum velocity through gap 3 is approximately 19 cm/s 

during April whilst the minimum velocity is approximately 11 cm/s during August. The main reason for 

these differences in time of maximum/minimum geostrophic velocities is due to the position of the SEC 

upstream during the year. The re-circulation loop which occasionally forms in gap 1 also affects the 

climatology of that gap. The changes in SST in the region remain fairly zonal throughout the year (a 

general decrease with increasing latitude). The gaps experiences highest SST’s during March with lowest 

SST’s around August. Gap 1 experiences highest SST’s of approximately 30° C with its lowest SST’s of 

approximately 26° C, gap 2 experiences highest SST’s of approximately 29° C with its lowest SST’s of 

approximately 25° C whilst gap 3 experiences highest SST’s of approximately 29° C with its lowest SST’s 

of approximately 24° C. The Seychelles Bank has the effect of increasing the SST the greatest over the 

Mascarene Plateau as it is composed of the shallowest bathymetry and there are many small islands 

which has the effect of increasing the SST. The region around the Cargados-Carajos Bank and gap 3 has 

an effect of increasing the SST. As the gap in this region is not great (compared to gap 1), Mauritius has 

the effect of increasing the SST in the region. The region with the least effect on the SST is the region 

around the Saya de Malha and Nazareth Bank. However, it still has higher SST’s than its surroundings 

offshore of the Mascarene Plateau. The eddy kinetic energy (EKE) has a distinct seasonal cycle through 

the 3 main gaps in the Mascarene Plateau. The maximum EKE through gap 1 is approximately 350 cm2/s2 

during December with the lowest EKE during April with values of approximately 50 cm2/s2. The 

maximum EKE through gap 2 is approximately 360 cm2/s2 during January with the lowest EKE during 
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April with values of approximately 160 cm2/s2.  The maximum EKE through gap 3 is approximately 150 

cm2/s2 during June with minimum values of approximately 40 cm2/s2 during July. The Mascarene Plateau 

has the effect of increasing the EKE as the SEC is channeled through the 3 major gaps in the plateau and 

increases in velocity due to the constriction of the gaps. Hence the EKE is greater to the west of the 

Mascarene Plateau. 

New information in this section obtained includes: 

 The core of the South Equatorial Current between 70° – 90° E changes in latitudinal position 

depending on the season and seems to have an effect on the speed of the SEC through the 3 

gaps in the Mascarene Plateau. The core of the SEC moves northward during the austral 

summer whilst remains at approximately 13° S from April – September (most southerly extent 

throughout the year). From April – September, gap 3 experiences its highest geostrophic 

velocities whilst during the austral summer gap 1 and 2 experiences an increase in geostrophic 

velocities. 

 SST gradients over the banks of the Mascarene Plateau are greatest over the Seychelles Bank, 

followed by the region surrounding Mauritius and gap 3 and finally over the Saya de Malha and 

Nazareth Banks. The gradient will be highest over the Seychelles Bank as this bank contains the 

most islands over the Mascarene Plateau.    

 The eddy kinetic energy (EKE) in the region increases from the eastern side of the Mascarene 

Plateau to the western side. The primary reason for this is due to the constriction of the 3 gaps 

in the Mascarene Plateau which increases the velocities and hence the EKE increases. There is a 

distinct seasonal cycle in the EKE in this region throughout the year with highest EKE’s during 

the austral summer. The EKE during the Nansen cruise in October/November 2008 was generally 

greater than the EKE during the RRS Charles Darwin cruise in June/July 2002.  

 Since EKE serves as a proxy for eddy development, there is a greater chance for the formation of 

eddies to the west of the Mascarene Plateau as well as during the austral summer. 

 Any eddy development in the area has the ability to transport water masses away from the 

region most likely towards Madagascar.  
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7.3 General Dynamics around the Mascarene Plateau (Geostrophic Velocity and SST) 

 

Key Question 5. What is the nature of the SEC in the region and how do the geostrophic velocities during 

the 2008 cruise year differ from climatology? 

The region around the Mascarene Plateau will be divided into 3 sections which have the same 

boundaries as that in 4.1.1. 

7.3.1 Section 1 (Northern sector of Seychelles Bank (3° S) – 9.05 °S) 

 

Figure 7.12 depicts a time series of geostrophic velocities in 2002 (red), 2008 (blue) as well as the 

climatology (black) through gap 1. 2002 and 2008 were the years when the 2 cruises occurred. The time 

series are shown to see if there are any substantial differences between the climatology and 2002/2008. 

The time series indicates that there are geostrophic velocities during both 2002 and 2008 which are 

significantly greater than the climatology. 

 

                                                            

Figure 7. 14: Time Series of Geostrophic Velocities through gap 1 (Climatology, 2002 and 2008). Blue 

represents 2008, red represents 2002 whilst black represents the climatology (1995 – 2011) of the 

geostrophic velocities. Areas of heightened geostrophic velocity can be seen during September 2008  
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Geostrophic velocities are significantly higher during September 2008 when compared to the 

climatology. Velocities are 20 cm/s greater than the climatological value of 10 cm/s during September 

2008. 

                      

(a)                                                                                            (b) 

                     

    (c)                                                                                           (d)                       

Figure 7. 15: Maps of Geostrophic Velocities (cm/s) and SST (°C) across gap 1. 1000m isobath overlaid in 

black. (a) Start of the re-circulation event date (8 August 2008) (b) maximum speeds of the re-circulation 

event through the gap (17 September 2008), (c) geostrophic velocity at the end of the event on 11 

November 2008 whilst (d) SST during the peak of the event.   
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The anomalous velocity during September 2008 (maximum velocities reach 32 cm/s) is due to re-

circulation from the SECC through gap 1 and hence geostrophic velocities increase. Figure 7.13 

represents the geostrophic flow in the area before, during and after the re-circulation event in 2008. (a) 

Represents the start of the re-circulation event where a cyclonic eddy forms which starts to draw in flow 

from the eastward flowing SECC, (b) represents the maximum speeds of the re-circulation event through 

the gap which are approximately 70 cm/s (17 September 2008), (c) represents the end of the event on 

11 November 2008 where speeds diminish to approximately 40 cm/s whilst (d) represents the SST in the 

region during the peak of the event (27° C). Minimal change in SST is evident as SECC has little variation 

in temperature to its surrounding regions. This event lasted for approximately 3 months. Towards the 

end of the event (11 November 2008), the cyclonic eddy drastically reduces in size and there is slightly 

extra flow from the south. The ASCLME research cruise in 2008 missed this event by a couple of weeks. 

During the re-circulation, the salinity content in the gap is higher since there is more Arabian Sea High 

Salinity Water (ASHSW) in the area as much of the water in the re-circulation loop has its origins from 

the SECC (the SECC primarily contains ASHSW in the surface waters). These re-circulation events 

increase the variability of the geostrophic velocities within gap 1. 

The comparison between the 2002 and 2008 average geostrophic velocities through gap 1 vary 

substantially from each other and the climatology. The average geostrophic velocity from January – May 

of 2002 and 2008 are similar with the exception of a spike at the beginning of March 2008 where the 

average geostrophic velocity was 25 cm/s whilst during March 2002 the average geostrophic velocity 

was less than 10 cm/s. From May – August, the average geostrophic velocities were greater during 2002 

than during 2008 by approximately 10 – 15 cm/s whereas from August – November the average 

geostrophic velocities were greater during 2008 than during 2002. Here, the maximum difference 

reached approximately 30 cm/s. During the rest of the year the average geostrophic velocities were 

similar. The reasons for the difference in these geostrophic velocities are either due to the development 

of a recirculation loop or an oscillation in the strength of the SEC.   
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7.3.2 Section 2 (9.05 °S – 13.95 °S) 

 

Figure 7.14 depicts a time series of geostrophic velocities in 2002 (red), 2008 (blue) as well as the 

climatology (black) through gap 2. The time series are shown to see if there are any substantial 

differences between the climatology and 2002/2008 

 

Figure 7. 16: Time Series of Geostrophic Velocities through gap 2 (Climatology (1995 – 2011), 2002 and 

2008). Blue represents 2008, red represents 2002 whilst black represents the climatology of the 

geostrophic velocities. Areas of heightened geostrophic velocity can be seen during December 2008  

 

Geostrophic velocities are significantly higher during December 2008 when compared to the 

climatology. Velocities are 25 cm/s greater than the climatological value of 25 cm/s during December 

2008. 
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(a)                                                                                    (b) 

                              

                          (c)                                                                                           (d)                                                              

Figure 7. 17: Maps of Geostrophic Velocities (cm/s) and SST (°C) across gap 2. 1000 m isobath 

overlaid in black. (a) Start  (17 October 2008) of the event, (b) maximum geostrophic velocity in 

the gap (1 December 2008), (c) end of the event  (4 February 2009) and (d) SST  during the 

event.   

From mid October 2008 – early February 2009 there is an increase in geostrophic velocity through gap 2 

as shown in Figure 7.15. The South Equatorial Current (SEC) in this region appears to oscillate. (a) 

Represents the start (17 October 2008) of the event where there is an oscillation in geostrophic velocity 

in gap 2 where geostrophic velocities reach approximately 35 cm/s, (b) represents the maximum 

geostrophic velocity (50 cm/s) in the gap (1 December 2008) whilst (c) represents the end of the event 

on 4 February 2009 where geostrophic velocities reduce to approximately 20 cm/s and (d) shows little 



98 
 

temperature variation during the event as the SEC has a similar SST to its surroundings. The peak in 

velocity of this event shows that the strength of the current can be much greater than during the 2008 

ASCLME cruise since there was no strong oscillation during October/November 2008. The nature of the 

SEC (the oscillating current) increases the variability of the SEC in gap 2. The time series during both 

2002 and 2008 shows that the SEC oscillates throughout the year but it remains higher than the 

climatology for most of the respective years.   

The comparison between the 2002 and 2008 average geostrophic velocities through gap 2 indicate 

spikes in the average geostrophic velocities at different times of the respective years. For example, 

during May 2002, the average geostrophic velocity reached 53 cm/s whilst at the same time of the year 

during 2008 (May) there was no spike in the average geostrophic velocity (compared to the average 

geostrophic velocity for 2008). However, there was a spike in average geostrophic velocity during 

December 2008 where velocities reached 50 cm/s but in December 2002 velocities were below the 

climatological norm and were approximately 15 cm/s.  

7.3.3 Section 3 (13.95 °S – Mauritius (~ 20 °S)) 

 

Figure 7.16 depicts a time series of geostrophic velocities in 2002 (red), 2008 (blue) as well as the 

climatology (black) through gap 3. The time series are shown to see if there are any substantial 

differences between the climatology and 2002/2008. 

 

Figure 7. 18: Time Series of Geostrophic Velocities through gap 3 (Climatology (1995 – 2011), 2002 and 

2008). Blue represents 2008, red represents 2002 whilst black represents the climatology of the 

geostrophic velocities. Areas of heightened geostrophic velocity can be seen during March 2008 
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Geostrophic velocities are significantly higher during March 2008 when compared to the climatology. 

Velocities are 15 cm/s greater than the climatological value of 15 cm/s during March 2008. Similarly to 

gap 2, the current oscillates during the year through gap 3 but during most of 2002, the current is 

weaker than the climatology.   

                         

(a)                                                                               (b) 

                        

                                    (c)                                                                                  (d) 

Figure 7. 19: Maps of Geostrophic Velocities (cm/s) and SST (°C) across Cargados-Carajos – Mauritius 

Gap. 1000m isobath overlaid in black. (a) start  (1 February 2008) of the event, (b) maximum geostrophic 

velocity in the gap (14 March 2008), (c) end of the event (15 June 2008) and (d) temperature variation 

during the event. 
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Figure 7.17 shows an event where the geostrophic velocity increases to approximately 33 cm/s (15 cm/s 

greater than the climatology). (a) Represents the start (1 February 2008) of the event where there is an 

oscillation in geostrophic velocity (25 cm/s) in gap 3, (b) represents the maximum geostrophic velocity in 

the gap (14 March 2008) where velocities reach 60 cm/s through the gap whilst (c) represents the end of 

the event on 15 June 2008 (velocities approximately 20 cm/s)  and (d) shows little temperature variation 

during the event. This event is once again due to an oscillation of the SEC and the oscillation increases 

the variability of the current in this gap. 

The comparison between the 2002 and 2008 average geostrophic velocities through gap 3 indicate 2 

periods in the year where the average geostrophic velocities vary drastically. From February – June 2008 

there is an increase in geostrophic velocity reaching a peak of approximately 33 cm/s in March. During 

this same period of the year in 2002 there were no major spikes in the velocity and followed the 

climatology closely. The reason for the major difference in geostrophic velocity here is due to a major 

oscillation in the strength of the SEC. The other period in the year where there is a significant difference 

in geostrophic velocity between 2002 and 2008 is between September – October. During 2002, the 

average geostrophic velocity dropped to approximately 3 cm/s at the end of September whilst at the 

end of September during 2008 the velocity reached 16 cm/s. Once again, this is due to no oscillation 

happening through this gap at this time during 2002. 

From the above, key question 5 can be addressed: What is the nature of the SEC in the region and how 

do the geostrophic velocities during the 2008 cruise year differ from climatology? 

The South Equatorial Current (SEC) is not a constant current with regards to velocity. The geostrophic 

velocity through gap 2 and 3 oscillates (2 branches of the SEC). When a re-circulation loop forms in gap 

1, it hinders the westward progression of the SEC through the gap as the re-circulation loop contains 

waters predominantly from the eastward flowing SECC. During 2008 in gap 1 a re-circulation loop 

developed which increased velocities up to 32 cm/s during September 2008 whereby the climatology 

during that time was 10 cm/s. Other than during this event, the geostrophic velocities through this gap 

was similar to the climatology. There was a period of increased geostrophic velocity from mid October 

2008 – early February 2009 in gap 2 with a peak in early December 2008 with values of approximately 

50 cm/s with climatological values in December of 25 cm/s. This increased velocity was due to an 

oscillation of geostrophic velocity (nature of the SEC). The geostrophic velocity through this gap was 

higher than the climatology throughout the year and was of an oscillatory nature. Similarly, due to an 

oscillation of geostrophic velocity in gap 3 during February – June 2008, velocities reached up to 33 cm/s 
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during March 2008 where the climatology is approximately 15 cm/s. For the rest of 2008, the 

geostrophic velocity was lower but there was still an oscillation where the maximum velocity was 18 

cm/s during September 2008 (climatology is 12 cm/s). During this event the geostrophic current was 

lower than the climatology during November 2008 where it was 5 cm/s and the climatology is 10 cm/s.  

jdrgjkldfjfjkldfgjkldfjkldfkldf  

New information in this section obtained includes: 

 Confirmation that a recirculation loop is a regular feature and not an anomaly (observed by New 

et al, (2007)) through gap 1 and during such an event much of the water which flows westwards 

through gap 1 recirculates and flows back eastwards via the SECC. 

 The SEC is not a constant current with regards to geostrophic velocities. It rather acts as an 

oscillating current.   

7.4 Summary 

 

This chapter made use of satellite estimate to study the seasonal cycle of geostrophic velocities, SST’s 

and eddy kinetic energy. The Mascarene Plateau split the SEC into 3 cores which are subsequently 

channeled through the 3 main gaps in the Mascarene Plateau. Downstream of the plateau, 2 cores are 

formed with the strongest core (highest velocity) being the northern core which is composed of the flow 

between the Saya de Malha and Nazareth Banks and to a lesser degree, the flow between the Seychelles 

and Saya de Malha Banks. The SST generally decreases from north to south and is of a zonal nature. The 

SST gradient is the greatest over the Seychelles region probably because this region contains many small 

islands and shallow water which could increase the SST. The lowest SST gradient in the region is across 

the Saya de Malha and Nazareth Banks whilst the SST gradient between the Cargados-Carajos Bank and 

Mauritius is lower than the Seychelles region but higher than the region across the Saya de Malha and 

Nazareth Banks. Mauritius has the effect of increasing the SST gradient in this region as waters will be 

warmer closer to the island. Time series of geostrophic velocities during 2008 and maps of geostrophic 

velocity in the region of the Mascarene Plateau show that there is an increase in velocity through gap 1. 

This is due to the development of a re-circulation loop where waters from the SECC are drawn south and 

are channeled through the gap. Similarly, maps of geostrophic velocity and time series during 2008 show 

that the SEC is not constant in speed in the region as shown by periods of alternating high and low 

velocities through gap 1. Gap 3 has similar oscillations in velocity. Maps of eddy kinetic energy shows 
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that areas where EKE is higher than normal are to the east of the Seychelles Bank (downstream of the 

SECC) and to the west of the 3 major gaps in the Mascarene Plateau (downstream of the SEC). The EKE 

increases to the west of the Mascarene Plateau due to increased geostrophic velocities caused by the 

constriction of the gaps 

The following chapter investigates the phytoplankton biomass in the region via satellite estimate. The 

types of water masses and the amount of upwelling (wind stress curl indicates potential upwelling 

conditions) determines the amount of Chl-a in the region. The climatology and seasonal cycles for 

phytoplankton biomass will be ascertained over the banks of the Mascarene Plateau and regions 

offshore of the banks. It will be ascertained whether there are any differences between the seasonal 

cycles on and off the banks. The variability over the region will also be investigated.  
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CHAPTER 8: Phytoplankton Biomass in the Mascarene Plateau Region 

 

Chapter 4, 5, 6 and 7 analyzed the physical oceanography of the region. The water masses during the 

Nansen 2008 cruise were analyzed to determine how much mixing occurred. The westward flowing 

South Equatorial Current (SEC) contains relatively fresh Indonesian Throughflow Water (ITW) and 

Tropical Surface Water (TSW). The SEC splits into 3 cores east of the Mascarene Plateau and is 

channeled through the 3 major gaps of the bathymetric feature. These fresh water masses mix with high 

salinity Arabian Sea High Salinity Water (ASHSW) over the northern part of the plateau whilst they mix 

with high salinity Sub Tropical Surface Water (STSW) over the southern part of the plateau. STSW is only 

found south of gap 2 (the branch of the SEC through gap 2 acts as a barrier to STSW). ASHSW contains 

nutrient rich waters whilst STSW contains nutrient poor waters. This partly explains the distribution of 

Chl-a in Fig 8.1. On occasions, a re-circulation loop is formed through gap 1 which increases the amount 

of nutrient rich ASHSW in the region as most of the water in the loop has its origins in the SECC which 

contained ASHSW. This chapter will identify the phytoplankton biomass in the region using satellite 

estimate. Chl-a acts as a proxy for phytoplankton biomass. Along with the type of water mass, the 

amount of upwelling also determines the nutrient content of waters in the region and wind stress curl 

estimated from satellite remote sensing is also used below.  

Key Question 6. What is the distribution of Chl-a in the region (climatology) and do the banks differ in 

Chl-a concentration from its surrounding areas?  
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8.1 Climatology 

 

              

(a)                                                                                           (b) 

                

                                 (c)                                                                                              (d) 

                                                                                                                                 

Figure 8. 1: Climatology of Chlorophyll-a (period 1998 – 2010). (a) represents summer, (b) represents 

autumn, (c) represents winter whilst (d) represents spring. (units: ug/l)   
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(a)                                                                            (b) 

 

               

                                     (c)                                                                             (d) 

Figure 8. 2: Climatology of Wind Stress Curl (with wind overlay) – period 1998 – 2010. Highest wind 

stress curl values occur during January – March north of 13° S where values reach 1.5e-7 N/m3. Lowest 

values occur north of 10° S during July – September where values drop to approximately -1.7e-7 N/m3. (a) 

Represents summer, (b) represents autumn, (c) represents winter whilst (d) represents spring. 1000m 

isobath overlaid in black. 
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Figure 8.1 shows the climatology for Chl-a for January – March (a), April – June (b), July – September (c) 

and October – December (d) respectively while Figure 8.2 shows the corresponding wind stress curl. 

During all 4 seasons, the Saya de Malha, Nazareth and Cargados-Carajos Banks retain similar Chl-a values 

unlike the surrounding regions. During all seasons, Chl-a concentration is higher in the northern region 

(north of ~ 13° S). Nutrient rich ASHSW is dominant north of approximately 11° S whilst nutrient poor 

STSW is dominant south of approximately 13° S. Apart from Madagascar (coloured in white), the white 

patches represent Chl-a values > 2 ug/l. Since Chl-a is an indicator for phytoplankton biomass, ocean 

colour represents the concentration of phytoplankton biomass in the surface waters. 

The period from January – March (Figure 8.1a) had the lowest concentration of Chl-a during the year 

whilst a strong positive wind stress curl occurred during January – March with values as high as 1.5e-7 

N/m3 (Figure 8.2a). This positive wind stress curl indicates downwelling and hence a lower Chl-a 

concentration. However Chl-a values increase northward of approximately 13° S (the latitude between 

the Saya de Malha Bank and the Nazareth Bank). The other two periods (April – June and July – 

September) also showed an increase of Chl-a concentration northward of 13° S. October – December 

showed a dramatic increase in Chl-a values and remain high as far south as the Cargados-Carajos Bank. 

The concentrations of Chl-a depend not only on upwelling but on the types of water masses in the 

region. July– September has a negative wind stress curl with values as low as -1.5e-7 N/m3 (Figure 8.2c). 

This indicates potential upwelling of nutrient rich waters. The northern part of the region (latitudes 

lower than ~ 13° S) had higher concentrations of Chl-a all year long but no negative value of wind stress 

curl all year long. This is due to the presence of nutrient rich water masses to the north and nutrient 

poor water masses to the south.  
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Figure 8. 3: Seasonal cycle of Chl-a over the Saya de Malha Bank, Nazareth Bank, Cargados-Carajos Bank 

and areas to the west of these banks. The areas to the west have a distinct seasonal cycle whilst over the 

banks, there is virtually no seasonal cycle. 

 

It appears from Figure 8.3 that the Saya de Malha Bank, Nazareth Bank and Cargados-Carajos Bank 

retain similar relatively high Chl-a values throughout the year (0.16 ug/l) irrespective of changes in Chl-a 

adjacent to these banks. The Seychelles Bank had a similar concentration of Chl-a to the surrounding 

areas throughout the year (varied from approximately 0.13 ug/l to 0.2 ug/l). This indicates that a distinct 

ecosystem could exist across these banks (excluding the Seychelles Bank) as there were no major 

currents crossing them and were relatively quiescent (as displayed from shipboard ADCP and maps of 

satellite geostrophic velocity, the majority of the SEC flowed through the 3 major gaps on the 

Mascarene Plateau whilst the SECC flows eastward across the Seychelles Bank).  The banks also have 

little seasonality (Figure 8.3) whilst the surrounding areas show marked seasonality (Chl-a values lowest 

in April and highest in October). The variability across the Saya de Malha, Nazareth and Cargados-

Carajos Bank is low compared to the surrounding region (Figure 8.5) where the Standard Deviation is 

approximately 0.02 ug/l across the banks whilst the surrounding region reaches up to 0.045 ug/l. The 

Seychelles Bank has the same variability (Standard Deviation) as the surrounding region since the SECC 

(Standard Deviation ~ 0.035 ug/l) crosses it carrying the nutrient rich water mass (ASHSW). Since these 

banks may be able to sustain an ecosystem throughout the year there must be a constant supply of 

nutrients and phytoplankton which could mean that there may be upwelling onto the banks from 

deeper, nutrient rich waters. New et al, (2013) showed that areas of high chlorophyll concentration on 

the Saya de Malha Bank is consistent with the breaking of Internal Solitary Waves. Further studies need 
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to be undertaken to investigate the relationship between chlorophyll concentration and Internal Solitary 

Waves over the banks of the Mascarene Plateau.  

Another factor as to why there are nutrient rich waters to the north of the main branch of the SEC (the 

branch through gap 2) is due to the uplifting of density surfaces. The upliftment of the density surfaces 

increases towards the north (Figure 8.4). 

 

Figure 8.4: Cross section across the Mascarene Plateau of potential density (σ0). 

 

Figure 8.5 shows there is low variability over the Nazareth, Saya de Malha and Cargados Carajos Banks 

and high variability in the area where nutrient poor waters mix with nutrient rich waters (9° S - 15° S).  
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Figure 8. 5: Standard deviation (variability) of Chlorophyll-a. 1000m isobaths overlaid in black.  

The highest variability of Chl-a in the region is in the latitude range between 9° S - 15° S (Standard 

deviation > 0.045 Ug/l) (Figure 8.5). This is the region where nutrient poor water masses to the south 

mix with nutrient rich water masses to the north and in many areas, the SEC acts as a dividing line 

between the nutrient rich and nutrient poor water masses. Hence this is a highly variable zone since the 

SEC is not constantly at the same latitude and Chl-a values shift with the SEC. 

The major reasons for the distribution of Chl-a concentration in the region throughout the year is due to 

the advection of water masses (nutrient rich ASHSW to the north and nutrient poor STSW to the south) 

and the upliftment of density surfaces (also as determined by New et al, (2007)). Hence, there are very 

few differences with regards to Chl-a concentration patterns and dynamics between the 2002 and 2008 

cruises.  
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8.2 Conditions during ASCLME Cruise (October/November 2008) 

 

During the ASCLME cruise in October/November 2008, Chl-a values were lower than climatology south 

of 11° S (latitude across the Saya de Malha Bank). Values were < 0.07 ug/l whilst average climatology 

values were < 0.1 ug/l (Figure 8.1d). This may be due to excess nutrient poor waters from the south and 

an above normal positive wind stress curl inducing downwelling. However, north of 11° S and across the 

Saya de Malha, Nazareth and Cargados-Carajos Banks (distinct ecosystems) Chl-a values were similar to 

climatology.  

 

Figure 8. 6: Average October 2008 Chlorophyll-a values (ug/l) estimated from satellite remote sensing 

during the ASCLME 2008 cruise. 1000m isobath overlaid in black whilst white patches indicate 

Madagascar or Chl-a values > 2 ug/l. 

 

Figure 8.6 shows nutrient poor waters are found to the south of ~ 13° S and nutrient rich waters are 

found to the north of ~ 13° S. The Saya de Malha, Nazareth and Cargados-Carajos Banks have nutrient 

rich waters.  
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From the above, key question 6 can be addressed: What is the distribution of Chl-a in the region 

(climatology) and do the banks differ in Chl-a concentration from its surrounding areas?  

Broadly speaking, the area around the Mascarene Plateau is divided into 2 areas, the northern region 

(north of approximately 13° S) which is composed primarily of nutrient rich waters (ASHSW – Arabian 

Sea High Salinity Water) and a southern region which is composed primarily of nutrient poor waters 

(STSW (Sub Tropical Surface Water). However, climatologically, the period from October – December 

contains relatively high Chl-a concentrations as far south as the Cargados-Carajos Bank (~ 16° S).  The 

Saya de Malha, Nazareth and Cargados-Carajos Banks retain relatively high Chl-a concentrations (low 

variability) throughout the year as there are no major currents which flow over them as opposed to its 

surrounding areas where there is a distinct seasonality and high variability. However, the Seychelles 

Bank contains similar characteristics to its surrounding region due to the SECC which crosses over it. 

Hence there is high variability and seasonality over the bank unlike the other banks mentioned. The area 

with the highest variability is the latitude range between 9° S - 15° S. This is due to nutrient poor water 

masses mixing with nutrient rich water masses. The SEC acts as a dividing line between the rich and poor 

water masses and shifts in position throughout the year which increases the variability of Chl-a 

concentrations in the region. Additionally, the region to the north of the SEC which flows through gap 2 

has a higher content of nutrients (higher Chl-a) as there is an upliftment of density surfaces further 

north.  

8.3 Summary 

 

The region around the Mascarene Plateau generally has nutrient poor waters to the south of 

approximately 13° S and nutrient rich waters to the north. Chl-a concentration depends on both the 

types of water masses and the amount of upwelling. The major cause for the 2 distinct regions of 

nutrient rich and poor waters are due to the advection of surface water masses as well as the upliftment 

of density surfaces north of gap 2. The northern region of the Mascarene Plateau contains nutrient rich 

ASHSW (Arabian Sea High Salinity Water) whilst the southern sector contains nutrient poor STSW (Sub 

Tropical Surface Water). The Saya de Malha, Nazareth and Cargados-Carajos Banks retain similar Chl-a 

values throughout the year (unlike its surrounding areas) with little seasonality and low variability. This 

indicates that a distinct ecosystem could exist across these banks. The banks retain similar relatively 

high Chl-a values throughout the year as there are no major currents which flow over them. However, 
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the Seychelles Bank contains similar characteristics (relatively high Chl-a concentrations, high variability 

and high seasonality) to its surrounding region as the eastward flowing SECC crosses it. The area with 

the highest variability in Chl-a concentration is in the latitude range between 9° S - 15° S. This is due to 

mixing between nutrient poor water masses to the south and nutrient rich water masses to the north. 

Within this area, a branch of the SEC flows which acts as a division between the water masses. It is not 

constantly at the same latitude throughout the year which increases the variability of Chl-a as Chl-a 

concentrations shift with the SEC.  

The next chapter investigates the interannual variability around the Mascarene Plateau. In the Indian 

Ocean, westward travelling Rossby Waves are generated primarily by the positive Indian Ocean Dipole 

(IOD) and during El Niño via changes in wind. The chapter will investigate whether these propagating 

Rossby waves are able to cross over sections of the Mascarene Plateau and whether there were any 

present during the research cruise on board the RRS Charles Darwin during June/July 2002 and the 

research cruise on board the Dr Fridtjof Nansen during October/November 2008. The effect of these 

Rossby waves on the general circulation in the region will also be investigated. 
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CHAPTER 9: Interannual Variability 

 

The Mascarene Plateau may be of important interest with regards to the interannual variability in the 

Indian Ocean as it lies in the Western Indian Ocean and may have an influence on the westward 

propagation of Rossby waves. Since the plateau is divided into a series of banks and gaps in a meridional 

direction, the Rossby waves may be affected differently by the plateau depending on the latitude of the 

Rossby wave (the speed of Rossby waves differ with latitude) and the topography (depth and width of 

the banks and gaps in the plateau). The following section will identify whether any Rossby Waves were 

present over the Mascarene Plateau during the research cruise on board the RRS Charles Darwin during 

June/July 2002 and the research cruise on board the Dr Fridtjof Nansen during October/November 2008. 

In addition we will ascertain whether Rossby Waves are able to propagate over certain sections of the 

Mascarene Plateau. Rossby waves are identifiable on Time-Longitude plots (Hovmöller diagrams of 

MADT normalized anomalies) by sloping lines increasing with time. 

Key Question 7. Were there westward propagating Rossby waves over the Mascarene Plateau during the 

June/July 2002 cruise on board the RRS Charles Darwin and the October/November 2008 cruise on board 

the the Dr Fridtjof Nansen? Are these waves capable of crossing every part of the plateau? What effect 

do these waves have on the general circulation in the region? 

9.1  Analysis of Interannual Variability  

 

For clarification, the Mascarene Plateau is divided into 6 different regions where it will be ascertained 

whether Rossby Waves are able to cross the specified region (Figure 9.1). The 6 regions are the 

Seychelles Bank (4° - 6° S, 54° – 57° E), Gap 1 (7° – 9° S, 57.5° – 59° E) , the Saya de Malha Bank (10° – 

11.5° S, 60° – 62° E), gap 2 (12° – 13.8° S, 60° – 62° E), Nazareth/Cargados-Carajos bank (14° – 16° S, 60° 

– 61.5° E) and gap 3 (18° - 18.8° S, 58.3° – 60° E). To determine the strength of the Rossby Waves, 

weekly MADT normalized anomalies from climatology is used (method described in chapter 3). 
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Figure 9. 1: The 6 different regions used in subsequent Hovmöller plots to investigate the effect of Rossby 

Waves on the Mascarene Plateau. These 6 regions are also chosen to investigate whether Rossby waves 

were present during the 2 research cruises and whether they are able to cross the specified region. 

 

There were 2 extensive research cruises in the region of the Mascarene Plateau. The first one was 

conducted on board the RRS Charles Darwin during June/July 2002 whilst the second one was conducted 

on board the the Dr Fridtjof Nansen during October/November 2008. This section will ascertain whether 

any Rossby Waves, important regional features, were present in the region of the Mascarene Plateau 

during the 2 research cruises. Since Rossby Waves affect the thermocline depth, this may have an effect 

on upwelling and hence there may be less/more nutrient rich waters which enter the mixed layer and 

result in higher/lower chlorophyll concentrations. With the presence of a Rossby Wave during cruise 

conditions, an analysis could be undertaken to see differences in upwelling within the 3 major gaps due 

to differences in the thermocline depth. There could also be an effect on SST. 
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Figure 9. 2: Time – Longitude plots (Hovmöller Diagrams) of MADT Normalized Anomalies depicting 

propagation of Rossby Waves in the region of the Mascarene Plateau. Sloped lines indicate wave 

propagation whilst vertical line indicates the particular feature of the plateau (gap/bank). Stars indicate 

the time of the cruises (June 2002 or October 2008 cruise). Clockwise, figures are labeled a – f. 
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Figure 9.2 shows the propagation of Rossby waves at various latitudes from 2° – 20° S and over the 

Mascarene Plateau. Sloped lines indicate wave propagation whilst the vertical red lines indicate the 

particular feature of the plateau (gap/bank). Stars indicate the time of the cruises (June 2002 or October 

2008 cruise). From the Hovmöller plot, there are no major wave propagations (in any of the regions of 

the Mascarene Plateau) during both of the cruises indicating no major perturbation during the cruises. 

This indicates that cruise samplings were done during normal conditions with regard to major abnormal 

events triggered by Rossby wave propagations.   

         Year Seychelles 

Bank 

Saya de 

Malha Bank 

Nazareth 

Bank 

Gap 1 Gap 2 Gap 3 

2002 -1.3 -0.5 0.5 -1.1 0.1 0.4 

2008 -0.3 -0.2 0.6 -1 0.4 0.25 

 

Table 9. 3: Table of MADT Normalized Anomalies in number of standard deviations over the respective 

regions of the Mascarene Plateau during the 2 research cruises. 

 

Table 9.1 indicates the values of MADT normalized anomalies over the particular regions of the 

Mascarene Plateau. From Table 9.1 there are no MADT normalized anomaly values over 1 standard 

deviation in any of the regions during both of the cruises. There were no Rossby Waves present during 

either cruise.  This is unfortunate for the scope of the study but it does not prevent the study of Rossby 

wave propagation in the region since we have several years of altimetry and several clear cases of 

Rossby wave propagation. 
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(a)                                                        (b)                                                          (c) 

 

                             (d)                                                           (e)                                                            (f) 

Figure 9. 3: Time series of MADT normalized anomalies (1994 – 2011) for 6 regions of the Mascarene 

Plateau.  

 

In an attempt to establish the behaviour of Rossby waves when they encounter the Mascarene Plateau, 

Hovmöller diagrams (Figure 9.2) were analyzed over 6 areas of the Mascarene Plateau. 3 case studies 

are investigated with regards to the propagation of the waves through the 3 major gaps. The strongest 

MADT values for each gap over the 17 year period (1994 – 2011) are used for this purpose.  
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Table 9. 4: Table of MADT Normalized Anomalies over the 6 regions of the Mascarene Plateau with the 

associated times and corresponding figures representing Rossby wave propagation. Green highlighted 

rows indicate further investigation with regards to the effect the waves have on the ocean circulation in 

the region. 

 

Bank/Gap MADT Normalized Anomaly Time (Year and Month) Corresponding Figure (Hovmöller Diagram) 

Seychelles Bank 0.97 Feb 2010 Fig 7.2a 

“ 1.1 Sep 2009 “ 

“ 1.1 June 2008 “ 

“ 1.4 June 2007 “ 

“ 1.3 July 2004 “ 

“ 1 June 1999 “ 

“ 3.1 Jan 1998  “ 

“ 0.9 Jan 1995 “ 

Saya de Malha Bank 1.4 May 2010 Fig 7.2b 

“ 1 Jan 2009 “ 

“ 2 Jan 2007 “ 

“ 0.85 Jun 2005 “ 

“ 0.9 Feb 2003 “ 

“ 2.5 Jan 1998 “ 

“ 1.8 July 1994 “ 

Nazareth Bank 1.8 Dec 2010 Fig 7.2c 

“ 0.9 Dec 2009 “ 

“ 1.6 Jan 2007 “ 

“ 1.3 Jan 2004 “ 

“ 0.9 Sep 2002 “ 

“ 1 Jun 1998 “ 

“ 1 Jan 1995 “ 

Gap 1 1.2 June 2010 Fig 7.2f 

“ 0.9 June 2009 “ 

“ 2 Mar 2007 “ 

“ 0.7 Dec 2005 “ 

“ 0.9 Feb 2003 “ 

“ 3.1 Jan 1998 “ 

“ 1.5 Jun 1994 “ 

Gap 2 1.8 Jun 2010 Fig 7.2e 

“ 1 Jun 2009 “ 

“ 1.5 Mar 2007 “ 

“ 1.1 Jun 2005 “ 

“ 1 July 2003 “ 

“ 1.4 Jan 1998 “ 

“ 1.4 Jan 1995 “ 

Gap 3 1.5 Jun 2010 Fig 7.2d 

“ 1 Jan 2010 “ 

“ 1 Jan 2009 “ 

“ 0.9 Jan 2008 “ 

“ 1 Dec 2005 “ 

“ 1.3 Sep 2003 “ 

“ 0.7 July 1994 “ 
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For gap 1, the Rossby wave which passed through the gap during January 1998, a well known ENSO/IOD 

Rossby wave event is investigated. The MADT value of 3.1 standard deviations was reached in January 

1998 and the wave propagation is clearly seen in Figure 9.2f across the basin.   

 

 

(a)                                                                          (b) 

Figure 9. 4: (a) Hovmöller Diagram of U geostrophic velocity normalized anomaly between 1997 and 

1999. Sloped black line indicates Rossby wave propagation whilst vertical red line indicates position of 

gap 1 and (b) geostrophic velocity in the region of the Mascarene Plateau – 5 January 1998. 

 

During the Rossby wave propagation through gap 1, there is an MADT normalized anomaly of 3.1 

standard deviations (Figure 9.2f) and a U normalized geostrophic anomaly of -1 standard deviation 

(Figure 9.4a). This Rossby wave propagation was associated with the 1997 positive Indian Ocean Dipole 

(IOD). From Figure 9.4b, it can be seen that velocities reach approximately 55 cm/s through the gap 

whilst the climatology for January is approximately 19 cm/s (Figure 7.3). It can be ascertained from 

Figure 9.4a that the higher velocity is due to the propagation of a Rossby wave as the negative anomaly 

can be traced to 100° E. During the Rossby wave propagation the eastward flowing South Equatorial 

Counter Current (SECC) shifts northwards and does not cross the Seychelles Bank. There is a westward 

current across the Seychelles Bank during this time.  
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For gap 2, the Rossby wave which passed through the gap during June 2010 will be investigated (MADT 

value of 1.8 during June 2010).   

 

(a)                                                                         (b) 

Figure 9. 5: (a) Hovmöller Diagram of U geostrophic velocity normalized anomaly between 2009 and 

2011. Sloped black line indicates Rossby wave propagation whilst vertical red line indicates position of 

gap 2 and (b) geostrophic velocity in the region of the Mascarene Plateau – 19 June 2010. 

 

During the Rossby wave propagation through gap 2, there is an MADT normalized anomaly of 1.8 

standard deviations (Figure 9.2e) and a U normalized geostrophic anomaly of -0.7 standard deviations 

(Figure 9.5a). The geostrophic velocity through gap 2 is 50 cm/s on 19 June 2010 (Figure 9.5b) whilst the 

climatology for the same gap in June is 19 cm/s (Figure 7.4). It can be ascertained from Figure 9.5a that 

the higher velocity is due to the propagation of a Rossby wave as the negative anomaly can be traced to 

100° E.  

For gap 3, the Rossby wave which passed through the gap during June 2010 will be investigated (MADT 

value of 1.5 during June 2010).   

 



121 
 

 

(a)                                                                          (b) 

Figure 9. 6: (a) Hovmöller Diagram of U geostrophic velocity normalized anomaly between 2009 and 

2011. Sloped black line indicates Rossby wave propagation whilst vertical red line indicates position of 

gap 3 and (b) geostrophic velocity in the region of the Mascarene Plateau – 4 June 2010. 

 

During the Rossby wave propagation through gap 3, there is an MADT normalized anomaly of 1.5 

standard deviations (Figure 9.2d) and a U normalized geostrophic anomaly of -0.9 standard deviations 

(Figure 9.6a). It can be ascertained from Figure 9.6a that the higher velocity is due to the propagation of 

a Rossby wave as the negative anomaly can be traced to 100° E. The geostrophic velocity through gap 3 

was 40 cm/s on 5 June 2010 (horizontal geostrophic velocity anomaly of -0.7) whilst the climatology for 

the same gap in June is 19 cm/s (Figure 7.5).   

In analyzing the amount of Rossby waves each section of the Mascarene Plateau encountered during the 

17 years of data available (1994 – 2011), time-longitude plots (Hovmöller diagrams) are used (Figure 

9.2). The latitude along the Seychelles Bank experienced 10 major Rossby waves whereby 9 propagated 

across the bank whilst 1 disappeared prior to the bank (Figure 9.2a). The latitude along the Saya de 

Malha Bank experienced 7 major Rossby Waves during the 17 year period whereby 6 propagated across 

the bank and 1 faded out as it crossed over (Figure 9.2b). The latitude along the Nazareth Bank 

experienced 8 major Rossby waves during the period whereby 1 faded out as it encountered the plateau 

(Figure 9.2c). The latitude along gap 1 experienced 8 major Rossby waves whereby 2 faded out as it 
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encountered the plateau, 1 faded out before reaching the plateau whilst the rest propagated through 

the gap (Figure 9.2f). The latitude along gap 2 experienced 9 major Rossby waves whereby 2 faded out 

whilst encountering the plateau and the rest propagated through the gap (Figure 9.2e). The latitude 

along gap 3 experienced 9 major Rossby waves whereby 8 propagated through the gap and 1 faded out 

before reaching the plateau (Figure 9.2d). 

From the above, key question 7 can be addressed: Were there westward propagating Rossby waves over 

the Mascarene Plateau during the June/July 2002 cruise on board the RRS Charles Darwin and the 

October/November 2008 cruise on board the the Dr Fridtjof Nansen? Are these waves capable of 

crossing every part of the plateau? What effect do these waves have on the general circulation in the 

region?  

There were no Rossby waves which propagated over the Mascarene Plateau during both the cruises. 

However, there was a propagation towards the end of June 2008 over the Seychelles Bank but it faded 

out completely by October/November. It has been shown in this study that Rossby waves can propagate 

over every part of the Mascarene Plateau. Rossby waves can change the circulation patterns in the 

region. The propagation during 5 January 1998 through gap 1 (associated with the strong 1997 + IOD 

event) increased the velocity through the gap. The Rossby wave which propagated westward through 

gap 2 (19 June 2010) and through gap 3 (4 June 2010) had the effect of increasing the geostrophic 

velocities through the gaps significantly. 

9.2 Summary 

 

A major feature of the interannual variability in the region of the Mascarene Plateau is Rossby Waves.  

During IOD (Indian Ocean Dipole) years or El Niño years, Rossby Waves are generated in the eastern 

Indian Ocean and propagate westwards. During the westward propagation, a rise in the sea surface of 

only a few centimeters results in the deepening of the thermocline by tens of metres. This section has 

shown that there were no Rossby Waves present during the research cruise conducted on board the RRS 

Charles Darwin during June/July 2002 as well as the cruise conducted on board the Dr Fridtjof Nansen 

during October/November 2008. Rossby Wave propagation is possible across 6 regions of the 

Mascarene Plateau. Rossby Waves affect the circulation patterns in the region. These waves which 

passed through the 3 major gaps in the Mascarene Plateau increased the geostrophic velocity 

significantly (compared to the climatology). From the maps of MADT normalized anomaly, it has been 
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shown that most Rossby waves (over the 17 year period 1994 – 2011) propagate across the 6 regions of 

the Mascarene Plateau described. However, there are instances where the waves fade out in the region. 

Whether the plateau plays a part in this is unclear.  
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CHAPTER 10: OGCM (Ocean General Circulation Model) 

 

In this section we will compare observations and satellite estimates obtained around the Mascarene 

Plateau with OFES model data and ascertain the validity of the model in the region. Modeled SST and 

Geostrophic Velocity observations will be compared to satellite TRMM SST and satellite derived 

geostrophic velocities (AVISO data). This is a stringent test for a global model but if validated, it can be 

used to infer properties not available in space and time which is limited with cruise data and satellite 

remote sensing as the spatial and temporal resolution is higher in the model than in the satellite data 

(the model has a spatial and temporal resolution of 1/10° and 3 days respectively whilst satellite data 

has a spatial and temporal resolution of 1/4° and 7 days respectively (for both SST and altimetry)).  

Key Question 8. Is an OGCM (OFES) model viable in the region for further modeling studies? 

10.1 Climatological Comparison 

 

Climatological data (2000 – 2009) for surface geostrophic velocity (data obtained via AVISO satellite 

derived geostrophic velocities) and satellite TRMM SST will be compared to modeled SST and 

Geostrophic Velocity observations over the Mascarene Plateau. If the comparisons agree reasonably 

well, this model can be a very useful tool for further studies in the region. 

10.1.1 Geostrophic Velocity 

 

Figure 10.1 depicts maps of climatological geostrophic velocity (satellite altimetry and OFES model) for 

January – March (2000 – 2009). Figure 10.1 shows that velocities through gap 2 are approximately equal 

(~ 35 cm/s) and both cores of the SEC are evident downstream of the plateau in both the observation 

and model. The model also manages to capture the geostrophic velocity in gap 3 and hence the 2 cores 

west of the plateau are present in the model. However, the model does not represent the South 

Equatorial Countercurrent (SECC) well as velocities in the model are up to 40 cm/s greater. Other than 

the areas mentioned, the geostrophic velocities are generally greater in the region in the model by 

approximately 5 cm/s.  
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(a)                                                                                       (b) 

Figure 10. 2: (a) Climatological Geostrophic Velocity (cm/s) January – March (2000 – 2009) – Satellite 

Altimetry and (b) Climatological Geostrophic Velocity (cm/s) January - March (2000 – 2009) – OFES 

Model. 1000m isobath overlaid in black. 

 

                                    

(a)                                                                                        (b) 

Figure 10. 3: (a) Climatological Geostrophic Velocity April – June (2000 – 2009) – Satellite Altimetry and 

(b) Climatological Geostrophic Velocity April - June (2000 – 2009) – OFES Model. 1000m isobath overlaid 

in black 
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Figure 10.2 depicts maps of climatological geostrophic velocity (satellite altimetry and OFES model) for 

April - June (2000 – 2009). Figure 10.2 shows that during the period from April – June, the model 

manages to capture the 2 cores of the SEC west of the plateau but the model overestimates the 

geostrophic flow through gap 2. The model captures the SECC but at a lower velocity than the 

observation by approximately 15 cm/s. Once again, the model generally captures a higher velocity than 

the observed geostrophic velocity in the rest of the region by approximately 5 cm/s.   

 

                              

(a)                                                                                                  (b) 

Figure 10. 4: (a) Climatological Geostrophic Velocity July - September (2000 – 2009) – Satellite Altimetry 

and (b) Climatological Geostrophic Velocity July - September (2000 – 2009) – OFES Model. 1000m isobath 

overlaid in black.  

 

Figure 10.3 depicts maps of climatological geostrophic velocity (satellite altimetry and OFES model) for 

July - September (2000 – 2009). Figure 10.3 shows that during July – September the 2 cores of the SEC 

west of the Mascarene Plateau are present in the model, however the modeled southern core has 

greater velocities. The current north of the Saya de Malha Bank is present but stronger in the model. 

The geostrophic velocity between the Saya de Malha Bank and Nazareth Bank is approximately equal in 

the satellite estimate and the model. The SECC is not present in the model during this period. Velocities 

in the area are westward as opposed to the eastward flowing SECC. A possibility for this is that in the 

model the NEC (North Equatorial Current) shifts south but does not reverse direction (this period is the 

SW monsoon season where the NEC is supposed to flow eastward).  
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(a)                                                                                              (b) 

Figure 10. 5: (a) Climatological Geostrophic Velocity October - December (2000 – 2009) – Satellite 

Altimetry and (b) Climatological Geostrophic Velocity October - December (2000 – 2009) – OFES Model. 

1000m isobath overlaid in black.  

 

Figure 10.4 depicts maps of climatological geostrophic velocity (satellite altimetry and OFES model) for 

October - December (2000 – 2009). Figure 10.4 shows that during October – December the model 

captures the SECC however it is weaker than the observed satellite climatology. Velocities are in the 

order of 5 cm/s lower in the model. Once again, the model captures the northern and southern core of 

the SEC but the northern core has a higher velocity in the model by approximately 15 cm/s. The 

remainder of the region has a higher velocity in the model with the exception of the banks where the 

difference is negligible.    
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10.1.2 SST 

 

            

(a)                                                                              (b) 

            

                     (c)                                                                            (d) 

Figure 10. 6: (a) Climatological SST January - March (2000 – 2009) – Satellite Altimetry, (b) Climatological 

SST January - March (2000 – 2009) – OFES Model, (c) Climatological SST April – June (2000 – 2009) – 

Satellite Altimetry and (d) Climatological SST April – June (2000 – 2009) – OFES model. 1000m isobath 

overlaid in black. 
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(a)                                                                                    (b) 

              

                       (c)                                                                                       (d) 

Figure 10. 7: (a) Climatological SST July - September (2000 – 2009) – Satellite Altimetry, (b) Climatological 

SST July - September (2000 – 2009) – OFES Model, (c) Climatological SST October - December (2000 – 

2009) – Satellite Altimetry and (d) Climatological SST October - December (2000 – 2009) – OFES model. 

1000m isobath overlaid in black. 
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Figure 10.5 and Figure 10.6 depicts maps of climatological SST for both satellite altimetry and OFES 

model (2000 – 2009). From Figure 10.5 and Figure 10.6, it can be seen that south of 15° S the model and 

observations agree very well with regards to SST whilst north of 15° S the observations are 

approximately 1° – 2° C warmer than the model (in the region of the Mascarene Plateau). This study 

highlights a certain degree of confidence when using SST climatology in the OFES model south of 15° S. 

However, one would need to be cautious when using this model in the region north of 15° S due to the 

1° – 2° C disparity.  

10.2 Cruise Observations 

                                                      

              

(a)                                                                          (b) 

Figure 10. 8: (a) Geostrophic velocity during the October/November 2008 cruise – satellite altimetry and 

(b) Geostrophic velocity during the October/November 2008 cruise – OFES model.  

 

During the October/November 2008 cruise there were many similarities between the satellite estimate 

and the model output. The South Equatorial Current (SEC) was observed through the 3 major gaps in the 

Mascarene Plateau. Gap 3 had similar velocities which were approximately 25 cm/s. The geostrophic 

velocities between satellite observations and OFES model output through gap 2 had similar velocities of 

approximately 45 cm/s whilst the geostrophic velocities through gap 1 were similar but in a different 

position as depicted in Figure 10.7. The velocities reached up to 50 cm/s through this gap. The 
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geostrophic velocities to the north-east of the Seychelles Bank (SECC) were similar between the 

observations and model output where they reached up to 55 cm/s. A major difference was that the 

Seychelles Bank had velocities of approximately 30 cm/s (SECC) whilst the model output showed that 

the bank was quiescent with little flow.  

10.3 Variability around Mascarene Plateau 

 

                  

(a)                                                                              (b) 

Figure 10. 9: (a) RMS of Geostrophic Velocity from observations and (b) RMS of Geostrophic Velocity 

from OFES Model. 1000m isobath overlaid in black.  

 

Figure 10.8a is the root mean square (RMS) of geostrophic velocity, from altimetry from 1 January 2004 

to 31 December 2010 whilst figure 10.8b is from OFES, for 7 years climatology of the model run (2004 – 

2010). Enhanced levels of RMS geostrophic velocity are representative of mesoscale variability. The 

model generally shows higher RMS values than satellite altimetry. Both the model and satellite altimetry 

shows enhanced levels of RMS through the 3 major gaps in the Mascarene Plateau as well as over the 

northern part of the Seychelles Bank. The RMS values are low and approximately the same (observation 

and model) on the banks whilst the model shows an RMS value of approximately 32 cm/s in gap 3 and 

the observation shows an RMS value of 25 cm/s which is an overestimate of 7 cm/s. Gap 2 shows an 

RMS value of approximately 45 cm/s in the model and 35 cm/s in the observations whilst gap 1 shows 
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an RMS value of between 32 cm/s and 40 cm/s in the model and values of approximately 22 cm/s in the 

observation. To the north of the Seychelles Bank, the variability is greatly overestimated in the model by 

approximately 21 cm/s. This is most likely due to the model overestimating the strength of the South 

Equatorial Counter Current (SECC). 

10.4 Mean Eddy Kinetic Energy 

 

           

(a)                                                                         (b) 

Figure 10. 10: (a) Mean Eddy Kinetic Energy from observations (climatology 2004 – 2010) and (b) Mean 

Eddy Kinetic Energy from OFES model (climatology 2004 – 2010). 1000m isobath overlaid in black 

 

Figure 10.8 is consistent with figure 10.9: Strong MEKE results in a strong RMS of geostrophic velocity. 

The OFES model generally shows higher values of MEKE than through satellite estimates. Similarly to the 

RMS values, the MEKE values are far greater in the model than in the satellite observations north of the 

Seychelles Bank. Higher values of MEKE are shown in satellite altimetry north of the Saya de Malha Bank 

than the surrounding areas (400 cm2/s2) whilst in the OFES model values in the same region are greater 

(700 cm2/s2). In gap 2, satellite altimetry shows MEKE values of approximately 750 cm2/s2 and the model 

shows values of approximately 950 cm2/s2. The satellite altimetry and OFES model exhibits 

approximately the same values of MEKE in gap 3 (370 cm2/s2). The model shows a stronger production 

of MEKE than in the satellite altimetry, likely associated with a stronger SEC and SECC in the model.  
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From the above, key question 8 can be addressed: Is an OGCM (OFES) model viable in the region for 

further modeling studies? 

The model managed to pick up the major oceanographic features around the Mascarene Plateau such as 

the 3 branches of the SEC which were channeled through the 3 major gaps in the plateau, the SECC 

(except for the climatological period of July – September) and the 2 cores of the SEC  downstream of the 

plateau. South of gap 2, the SST was similar. However there were differences between the model and 

satellite observations. The SECC was not picked up during July – September. The model either 

overestimated or underestimated the geostrophic velocities of the 2 major currents in the region (SECC 

and SEC). The maximum difference in the SECC was 30 cm/s whilst the minimum was 15 cm/s whilst the 

minimum difference in the SEC was 5 cm/s and the maximum difference was 10 cm/s. As the model 

does not pick up the SECC during July – September and the RMS and MEKE being overestimated in the 

region of the SECC ( > 25 cm/s and 700 cm2/s2 respectively) it would not be advisable to use this model 

north of the Seychelles. The most likely reason why the model is not as accurate in the northern region 

as in the southern region is that the OFES global model does not resolve the monsoon seasons and its 

effects correctly (the different monsoon seasons affect the position and strength of the SECC). This 

model would be advised to only obtain a rough synoptic view of the region as the geostrophic velocities 

are either overestimated or underestimated in the model (although in the case of the SEC, only by a 

maximum of 10 cm/s). The model can be used with most confidence in obtaining the position of the 

northern and southern core of the SEC downstream of the Mascarene Plateau.  

10.5 Summary 

 

There are similarities between the satellite estimates and the OFES model. The OFES model manages to 

pick up the major oceanographic features around the Mascarene Plateau such as the 3 branches of the 

SEC which crossed through the major gaps in the plateau, the SECC (with the exception of the 

climatological period of July – September) and the 2 cores of the SEC downstream of the Mascarene 

Plateau. The climatological SST was also very similar south of gap 2.  

However, there are major differences between the satellite observations and the OFES model. The SECC 

was not picked up very well in the model. Differences in velocities were great and in the period July – 

September (climatology), the SECC is not picked up in the model. The model overestimates the 

observation by 30 cm/s during the period January – March, underestimates the observation by 15 cm/s 
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during the period April – June whilst the model underestimates the observation by 15 cm/s during the 

period October – December. The SEC between the Saya de Malha Bank and the Nazareth Bank has 

velocities greater in the model throughout the year however the maximum difference is 10 cm/s which 

is small in comparison to the model overestimation of 30 cm/s in the SECC. Similarly, the velocities 

through gap 3 differ by a maximum of 10 cm/s between the observations and the model. Both the root 

mean square (RMS) values and the mean eddy kinetic energy (MEKE) values is greater in the model 

through the 3 main gaps in the Mascarene Plateau but these higher values occur in the same region as in 

the observations.  

Due to the model not picking up the SECC during July – September (Climatology) and the RMS and MEKE 

being overestimated too much in the region of the SECC (> 25 cm/s and 700 cm2/s2 respectively), the 

model has problems in this region north of the Seychelles. One can use this model satisfactorily for SST 

south of gap 2. In order to obtain the position of the Northern core and Southern core, the model 

satisfactorily captures the position, however the strength of the velocity cannot be relied upon. One 

would have to be cautious to use the model between the 3 major gaps although the difference in 

climatological velocity is relatively small (~ 10 cm/s).  

It would be advisable to use this model only to obtain rough conditions in the Mascarene Plateau region 

at a certain time of the year such as approximate geostrophic velocities of the SEC, SST’s in the region 

and position of the northern and southern core of the SEC (this can be used with most confidence in the 

model) as values are either overestimated or underestimated in the model. However, the model 

captures major oceanographic features of the region such as the SEC splitting into 3 cores which flows 

through the 3 major gaps, the SECC (apart from July – September), the quiescence in velocity over the 

banks and the increased RMS and MEKE through the 3 major gaps in the Mascarene Plateau. 

Dfjvfjfjfkfjkfnghikfrkflenfefn elfldjfvdkjfvldfjvdlkfjvdlkf kfjvjldfjvdkljvdjfvldk jnfklvjkldjvkldjfv fjvdkjfvj 

vjdklfjvvlvdjvkldjl jeklfrjglfjdkljl fjvkldjfdklfjvldfjdvlkj jvdlfjvldfjvlkdfjvl jdflvjvdfjfldkfj jdfvljdklfjkj djfvjkd 

jvdfljvlljdvjklfjdfldjlfvdfvjklddfvjkldfvjkldfvjkldfvjldfvjkldfvdfvfklfkkfkfkf fkljvdklfjvldfvjk fdjvlkdvjvdfjvkl 

dfkvj 

 

 



135 
 

CHAPTER 11: Conclusions 

11.1 Main Findings 

 

The main objective of this thesis was to analyze cruise data obtained during the October/November 

2008 cruise on the Dr Fridtjof Nansen which surveyed the area in the region of the Mascarene Plateau 

(Water masses and circulation patterns) and to compare SST and ADCP obtained currents on board to 

satellite data in the hope that the region can be further studied using satellite data. Biologically, 

Chlorophyll data was used to analyze the region to ascertain where nutrient rich and poor waters occur 

and whether the banks of the Mascarene Plateau have the ability to sustain separate ecosystems. 

Additionally, an objective of the thesis was to gain insight into the nature of the South Equatorial 

Current in the region (a stable, constant velocity current or a current of an oscillatory nature) and how 

westward propagating Rossby waves impact the geostrophic velocities through the gaps of the 

Mascarene Plateau. An OGCM (OFES) model was compared to observational data in order to ascertain 

the viability of the model in the area. 

This thesis investigated a relatively understudied feature of the world’s ocean, the Mascarene Plateau.  

It is a submerged volcanic plateau which extends between the Seychelles Bank and Mauritius. The 

plateau is a complex feature which is oriented in a north-south direction and is shaped similar to a 

crescent. It is composed of a series of banks (Seychelles, Saya de Malha, Nazareth and Cargados-Carajos 

Banks) which is separated by 3 deep channels. The primary water mass which was carried by the SEC 

(South Equatorial Current) was fresh Indonesian Throughflow Water (ITW) where it mixed with high 

salinity Arabian Sea High Salinity Water (ASHSW) and high salinity Sub-tropical surface water (STSW) 

through the northernmost gap (gap 1) and southernmost gap (gap 3) channel in the Mascarene Plateau 

respectively. There are marked differences in water masses between the northern part and the southern 

part of the Mascarene Plateau. The northern part contained nutrient rich waters (ASHSW) whilst the 

southern part contained nutrient poor waters (STSW). Intermediate waters consisted of Antarctic 

Intermediate Water (AAIW) to the south whilst the northern part of the Mascarene Plateau consisted of 

Red Sea Water (RSW). Towards the centre of the Mascarene Plateau (~ 13° S), mixing occurs between 

AAIW and RSW. The research cruise conducted during October/November 2008 confirmed that the SEC 

split into 3 cores to the east of the Mascarene Plateau (similarly to the cruise conducted during 

June/July 2002). However, the volume transport (via the SEC) differed during the second cruise. During 
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the cruise conducted during June/July 2002, the volume transport was 50 Sv to the east of the plateau 

and half of it was channeled through gap 2 whilst equal volumes were channeled through gaps 1 and 3. 

During the October/November 2008 cruise, the volume transport to the east was 36.53 Sv (lower than 

the first cruise but most likely an underestimate as there was only an SADCP onboard which reached 

maximum depths of 450m). The total volume through each gap from north to south was 14.93 Sv (40.87 

%), 14.41 Sv (39.4 %) and 6.19 Sv (16.9 %) respectively, whilst there was a small amount of flow (~ 1 Sv) 

through the minor gap between the Nazareth Bank and the Cargados-Carajos Bank. The difference with 

the 2002 cruise may be due to the difference in the position of the SEC upstream (different seasons) 

and/or whether there was a recirculation loop within gap 1. The volume transport across the Saya de 

Malha, Nazareth and Cargados-Carajos Banks were negligible whilst the Seychelles Bank experienced the 

eastward flowing SECC (South Equatorial Counter Current). Downstream of the plateau, 2 cores of the 

SEC formed.  

The SST over the Mascarene Plateau generally decreases from north to south and is of a zonal nature. 

The Seychelles region has the greatest influence on the SST in the region as there are many small islands 

in the region which increases the SST. The area which has the lowest effect on the SST is the region 

across the Saya de Malha and Nazareth Banks since this area has on average the deepest waters. An 

analysis of geostrophic velocities during 2008 reveals an increase in velocity through gap 1 due to the 

development of a re-circulation loop where waters from the eastward flowing SECC are drawn south 

and channeled through the gap. The SEC in the region is not constant in speed but is of an oscillatory 

nature. During 2008, gap 2 and gap 3 experienced oscillations in velocity. Eddy Kinetic Energy 

(climatology) is higher than normal to the east of the Seychelles Bank and to the west of the 3 major 

gaps in the Mascarene Plateau. The EKE is generally higher to the west of the plateau due to the 

increased velocity caused by the constriction of the gaps. 

The area around the Mascarene Plateau roughly has 2 regions of nutrient poor waters to the south of 

13° S and nutrient rich waters to the north. However, the period from October – December (climatology) 

contained relatively high concentrations of Chl-a as far south as approximately 16° S as opposed to the 

rest of the year where the concentration of Chl-a was relatively high north of 13° S. The Saya de Malha, 

Nazareth and Cargados-Carajos Bank have little seasonality in their concentration of Chl-a where it 

retains similar values and is generally higher than its surrounding areas. This indicates that a separate 

ecosystem could exist across these banks. The Chl-a concentrations across these banks have little 

seasonality as there are no major currents which cross them. However, the Seychelles Bank exhibits 



137 
 

seasonality similar to its surroundings due the SECC which flows across the plateau. The area with the 

highest variability in Chl-a concentration is in the latitude range between 9° S - 15° S. In this area, 

nutrient rich and poor water masses mix. The SEC flows and acts as a dividing line between nutrient rich 

and poor water masses but is not at a constant latitude. This shifting of the position of the SEC during 

the year increases the variability as Chl-a concentrations shift with the SEC. 

A feature of interannual variability in the region of the Mascarene Plateau is westward propagating 

Rossby waves. During IOD (Indian Ocean Dipole) years, Rossby waves are generated in the eastern 

Indian Ocean and propagate westwards. This study has shown that there were no Rossby waves present 

during both the June/July 2002 and October/November 2008 research cruises. Rossby wave propagation 

is possible over all parts of the Mascarene Plateau. Rossby waves affect circulation patterns in the 

region.  During January 1998, a Rossby wave crossed through gap 1. This increased the geostrophic 

velocity through the gap and the SECC was located northward of its normal position. The Rossby wave 

(June 2010) which crossed through gap 2 and gap 3 had the effect of increasing the geostrophic 

velocities through these gaps significantly. 

As there have been few studies around the region of the Mascarene Plateau and in particular only 2 

research cruises in the region, modeling studies can prove to be an invaluable mechanism in gaining 

more knowledge in the region. Here we compared satellite observations to an OFES model to see if this 

particular model could be used for further studies in the region. The model picked up the major 

oceanographic features around the Mascarene Plateau such as the 3 branches of the SEC which crossed 

through the major gaps in the plateau, the SECC (with the exception of the climatological period of July – 

September) and the 2 cores of the SEC downstream of the plateau. The climatological SST was similar 

south of gap 2. However there were major differences between the satellite observations and the OFES 

model. The SECC was not picked up well in the model (either and overestimation of underestimation in 

the model) whilst the SECC was not picked up at all during the period July – September. The SEC 

between the Saya de Malha and Nazareth Banks and between the Cargados-Carajos Bank and Mauritius 

had velocities greater in the model throughout the year. However, the maximum difference was 10 cm/s 

which were small in comparison to the model overestimation of 30 cm/s in the SECC. Both the root 

mean square (RMS) values and the mean eddy kinetic energy (MEKE) values were greater in the model 

through the 3 main gaps in the Mascarene Plateau but these higher values occurred in the same region 

as in the observations. Due to the model not picking up the SECC during July – September (Climatology), 

the RMS and MEKE being overestimated too much in the region of the SECC (> 25 cm/s and 700 cm2/s2 
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respectively) it would not be advised to make use of this model in this region north of the Seychelles. 

One can use this model satisfactorily for SST south of gap 2. In order to obtain the position of the 

Northern core and Southern core, the model satisfactorily captured the position, however the strength 

of the velocity cannot be relied upon. One would have to be cautious to use the model for the velocity 

between the 3 major gaps although the difference in climatological velocity is relatively small (~ 10 

cm/s). It would be advisable to use this model only to obtain rough conditions in the Mascarene Plateau 

region at a certain time such as approximate geostrophic velocities of the SEC, SST’s in the region and 

position of the northern and southern core of the SEC (this can be used with most confidence in the 

model) as values are either overestimated or underestimated in the model. However, rough conditions 

can be obtained since the model captures the major oceanographic features of the region such as the 

SEC splitting into 3 cores which flows through the 3 major gaps, the SECC (apart from July – September), 

the quiescence in velocity over the banks and the increased RMS and MEKE through the 3 major gaps in 

the Mascarene Plateau.  

This study has proven, via the comparison between cruise data (on board the Dr Fridtjof Nansen), that 

satellite data (satellite altimetry and TRMM satellite SST) can be used to extend cruise results in both 

space and time. These findings will prove useful for future studies in the region as there is a lack of in-

situ data over the Mascarene Plateau. Various processes such as the nature of ocean circulation patterns 

in the region, interannual variability (ie. Rossby waves associated with the Indian Ocean Dipole) and 

phytoplankton biomass can be studied by making use of satellite data in the region. Additionally, an 

OGCM (OFES) Model was compared to satellite data and proved to capture most of the oceanographic 

features in the region such as the SST and the position of the 2 branches of the SEC (South Equatorial 

Current) downstream of the Mascarene Plateau. Although, it is advisable to only use this model for 

rough estimates of conditions over the plateau, the high resolution of the model (1/10 degree) may be 

able to capture features such as small eddies which satellite altimetry cannot due to its course 

resolution. Although this model either captures an underestimate or overestimate of geostrophic 

velocities in the region (although it captures the velocity of the SEC well as the estimate <10 cm/s), to 

date this model has proved to be one of the most accurate comparisons to observational data (although 

other models may be more accurate but has not yet been tested in the region).  

The main research questions addressed in this thesis were: 
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1. Which water masses are present in the region of the Mascarene Plateau, where are their origins, 

where do they mix in the region and does the westward flow of the South Equatorial Current 

(SEC) influence the mixing? (Chapter 4) 

2. How accurate is satellite data in the region and hence what is its viability for use in the region? 

(Chapter 5) 

3. In what way is the flow of the SEC affected by the gaps in the Mascarene Plateau during the 

2008 ASCLME cruise and are there differences to the cruise conducted during the June/July 2002 

onboard the RRS Charles Darwin?  (Chapter 6) 

4. What seasonal effect does the Mascarene Plateau have on the geostrophic velocities, SST’s and 

eddy kinetic energy in the region?  (Chapter 7) 

5. What is the nature of the SEC in the region and how do the geostrophic velocities during the 

2008 cruise year differ from climatology? (Chapter 7) 

6. What is the distribution of Chl-a in the region (climatology) and do the banks differ in Chl-a 

concentration from its surrounding areas? (Chapter 8) 

7. Were there westward propagating Rossby waves over the Mascarene Plateau during the 

June/July 2002 cruise on board the RRS Charles Darwin and the October/November 2008 cruise 

on board the the Dr Fridtjof Nansen? Are these waves capable of crossing every part of the 

plateau? What effect do these waves have on the general circulation in the region? (Chapter 9)  

8. Is an OGCM (OFES) model viable in the region for further modeling studies? (Chapter 10) 

The questions will be answered one by one in this section: 

1. Which water masses are present in the region of the Mascarene Plateau, where are their origins, 

where do they mix in the region and does the westward flow of the South Equatorial Current 

(SEC) influence the mixing? 

North of approximately 8° S, surface waters comprise of mainly ASHSW (Arabian High Salinity Water), 

intermediate waters comprise of RSW (Red Sea Water) whilst many areas comprise of NIDW (North 

Indian Deep Water). However, the westward flow of the SEC (South Equatorial Current) which flows 

through gap 1 influences the surface water composition in the area. The SEC carries fresh TSW (Tropical 

Surface Water) and fresh ITW (Indonesian Throughflow Water). Areas close to this current undergo 

mixing. ASHSW mixes with fresher ITW around the SEC. However, ASHSW is still the predominant water 

mass in the surface waters. The northern branch of the SEC is characterized in the area between 8° S 

and approximately 13.5° S. RSW mixes with AAIW (Antarctic Intermediate Water) in the intermediate 
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waters. There is also mixing between STSW and ITW in the surface waters close to the westward 

transport of the SEC (the northern branch) which contains ITW. The SEC acts as a barrier to STSW as 

there is no STSW north of it. NIDW exists in this area in areas which are deep enough and SICW is 

present in the region. The southern branch of the SEC is characterized in the area southward of 

approximately 13.5° S in the region. The intermediate waters are composed purely of AAIW. Surface 

waters are composed of STSW and TSW. However, close to the southern branch of the SEC, mixing 

occurs between STSW and ITW whilst TSW overlies these water masses. SICW and NIDW are present in 

this region.  Hence the westward flow of the SEC influences the mixing since it contains ITW and TSW. 

The SEC is channeled through the 3 major gaps in the Mascarene Plateau and mixes with water masses 

in the northern and southern regions of the Mascarene Plateau. In the intermediate waters, RSW has its 

origins in the north-western region of the Arabian Sea whilst AAIW has its origins south of the 

Mascarene Plateau. NIDW is a difficult water mass to trace as little is known about its spreading 

pathways. According to Mantyla and Reid, 1995 it originates from an aged form of NADW which moves 

southward mixing with a deep saline water mass which underlies RSW. SICW has its origins at 

approximately 40° – 100° E and spreads along the subtropical gyre. STSW is traced back to the south-

eastern quadrant of the Indian Ocean. ITW is traced back to the Indonesian seas as well as TSW whilst 

ASHSW is traced back to the Arabian Sea.  

2. How accurate is satellite data in the region and hence what is its viability for use in the region?  

The Mascarene Plateau is composed of very small islands and narrow gaps with a complex bathymetry. 

Satellite data is known to be relatively coarse in resolution and hence there may be significant errors for 

use in the region. The geostrophic velocity obtained via satellite estimate through the 3 major gaps in 

the Mascarene Plateau was compared to the ADCP currents obtained on board the October/November 

2008 cruise. Average velocities were used through these gaps (as velocities were not constant over the 

entire length of the gap). The results were encouraging with only a 1.78 cm/s difference through gap 1, 

5.48 cm/s through gap 2 and 1.04 cm/s through gap 3. Although the difference was 5.48 cm/s through 

gap 2, it is acceptable since velocities can easily reach 50 cm/s. The greater difference was due to the 

narrowness of the gap. These results are very encouraging for the use of satellite altimetry in the region. 

The greatest difference between SST obtained via cruise data and satellite SST was 1° C which is 

acceptable since satellite data was available weekly. Since satellite data can be used in the region, cruise 

data can be extended in space and time.    
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3. In what way is the flow of the SEC affected by the gaps in the Mascarene Plateau during the 

2008 ASCLME cruise and are there differences to the cruise conducted during the June/July 2002 

onboard the RRS Charles Darwin?  

During the cruise in October/November 2008, the SEC transport to the east of the Mascarene Plateau 

was 36.53 Sv. The volume transport through each of the major gaps in the Mascarene Plateau were 

14.93 Sv or 40.87% through gap 1, 14.41 Sv or 39.4% through gap 2 and 6.19 Sv or 16.9% through gap 3. 

There was approximately an extra 1 Sv or 2.73% which flows through the small gap between the 

Nazareth and Cargados-Carajos Bank but is not shown on altimetry maps and hence it could be 

ageostrophic in nature. Downstream of the Mascarene Plateau, 2 cores of the SEC were formed, a 

northern and southern core. The northern core composed primarily of the flow between the Saya de 

Malha and Nazareth Banks with a small amount of flow between the Seychelles and Saya de Malha Bank 

being augmented into it. The southern core comprised of the flow between the Cargados-Carajos Bank 

and Mauritius with augmented flow from the south. During the June/July 2002 cruise, 50 Sv flowed east 

of the Mascarene Plateau with half of the flow being channeled through gap 2 with the rest flowing in 

equal volumes through gap 3 and gap 1. The difference between the 2 cruises may be due to seasonality 

and a re-circulation loop existed just prior to the October/November 2008 cruise in gap 1 which would 

increase the geostrophic velocities in the region.  The SEC existed in a broad band between 10° – 16° S 

during June 2002 and between 7° – 12° S in 2008. Hence there was a northward shift during October 

2008 which may have contributed to extra (less) flow through the most northerly (southerly) gap in the 

plateau.   

4. What seasonal effect does the Mascarene Plateau have on the geostrophic velocities, SST’s and 

eddy kinetic energy in the region? 

There are 2 major currents in the region of the Mascarene Plateau, the SEC (South Equatorial Current) 

and the SECC (South Equatorial Counter Current). The bathymetry of the Mascarene Plateau causes the 

SEC to split into 3 cores which subsequently flow through the 3 major gaps of the bathymetric feature. 

Downstream of the Mascarene Plateau, the SEC is composed of a northern and southern core located at 

approximately 13° S and 18° S respectively. The maximum/minimum geostrophic velocities occur during 

different times of the year through the 3 major gaps due to the movement of the SEC upstream during 

the year. A re-circulation loop which forms occasionally through gap 1 also has the effect of increasing 

the geostrophic velocity through this gap.  The SST distribution remains fairly zonal throughout the year 

(general decrease with increasing latitudes). The gaps experience highest SST’s during March with 
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lowest SST’s during August. The Seychelles Bank has the effect of increasing the SST the greatest over 

the plateau as it is composed of the shallowest bathymetry. Similarly, the region around gap 3 has 

increased SST’s compared to its surroundings mainly due to the gap being narrow and the presence of 

Mauritius has the effect of increasing the SST (shallow bathymetry). The region around the Saya de 

Malha Bank and Nazareth Bank has the least effect on the SST over the Mascarene Plateau but SST’s are 

still greater than regions offshore of the Mascarene Plateau. The Mascarene Plateau has the effect of 

increasing the Eddy Kinetic Energy as the SEC increases its velocity through the Mascarene Plateau and 

hence the EKE is greater to the west of the plateau. The maximum EKE through gap 1 is approximately 

350 cm2/s2 during December with the lowest EKE during April with values of approximately 50 cm2/s2. 

The maximum EKE through gap 2 is approximately 360 cm2/s2 during January with the lowest EKE during 

April with values of approximately 160 cm2/s2.  The maximum EKE through gap 3 is approximately 150 

cm2/s2 during June with minimum values of approximately 40 cm2/s2 during July. 

5. What is the nature of the SEC in the region and how do the geostrophic velocities during the 

2008 cruise year differ from climatology? 

The SEC is not a constant current with regards to velocity. The geostrophic velocity through gap 2 and 3 

oscillates. When a re-circulation loop forms in gap 1, it hinders the westward progression of the SEC 

through the gap as the re-circulation loop contains waters predominantly from the eastward flowing 

SECC. During 2008 in gap 1, a re-circulation loop developed which increased velocities up to 32 cm/s 

during September 2008 whereby the climatology during that time was 10 cm/s. Other than during this 

event, the geostrophic velocities through this gap was similar to the climatology. There was a period of 

increased geostrophic velocity from mid October 2008 – early February 2009 in gap 2 with a peak in 

early December 2008 with values of approximately 50 cm/s with climatological values in December of 25 

cm/s. This increased velocity was due to an oscillation of geostrophic velocity (nature of the SEC). The 

geostrophic velocity through this gap was higher than the climatology throughout the year and was of 

an oscillatory nature. Similarly, due to an oscillation of geostrophic velocity in gap 3 during February – 

June 2008, velocities reached up to 33 cm/s during March 2008 where the climatology is approximately 

15 cm/s. For the rest of 2008, the geostrophic velocity was lower but there was still an oscillation where 

the maximum velocity was 18 cm/s during September 2008 (climatology is 12 cm/s). During this event 

the geostrophic current was lower than the climatology during November 2008 where it was 5 cm/s and 

the climatology is 10 cm/s.   
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6. What is the distribution of Chl-a in the region (climatology) and do the banks differ in Chl-a 

concentration from its surrounding areas?  

The area around the Mascarene Plateau is divided into 2 areas, the northern region (north of 

approximately 13° S) which is composed primarily of nutrient rich waters (ASHSW – Arabian Sea High 

Salinity Water) and a southern region which is composed primarily of nutrient poor waters (STSW (Sub 

Tropical Surface Water). The Saya de Malha, Nazareth and Cargados-Carajos Banks retain relatively high 

Chl-a concentrations throughout the year as opposed to the surrounding areas where there is a distinct 

seasonality. However, the Seychelles Bank contains similar characteristics to its surrounding region due 

to the SECC which crosses over it and has distinct seasonality. The area with the highest variability is the 

latitude range between 9° S - 15° S. This is due to nutrient poor water masses mixing with nutrient rich 

water masses. The SEC acts as a dividing line between the rich and poor water masses and shifts in 

position throughout the year which increases the variability of Chl-a concentrations in the region.  

7. Were there westward propagating Rossby waves over the Mascarene Plateau during the 

June/July 2002 cruise on board the RRS Charles Darwin and the October/November 2008 cruise 

on board the the Dr Fridtjof Nansen? Are these waves capable of crossing every part of the 

plateau? What effect do these waves have on the general circulation in the region?  

There were no Rossby waves in the region of the Mascarene Plateau during both cruises. Rossby waves 

can propagate over all the gaps and banks of the plateau and can change the circulation patterns in the 

region (geostrophic velocities). However, it has been proven that a few Rossby waves do not cross the 

Mascarene Plateau and fade away. It was not ascertained in this study as to whether the Mascarene 

Plateau was the reason for the disappearance of these waves. If they propagate through any of the gaps 

in the plateau, the geostrophic velocity increases significantly. 

8. Is an OGCM (OFES) model viable in the region for further modeling studies?  

The model managed to pick up the major oceanographic features around the Mascarene Plateau (3 

branches of the SEC channeled through the 3 major gaps, the SECC and the 2 cores of the SEC 

downstream of the plateau). South of gap 2, the SST was similar. However there were differences 

between the model and satellite observations. The SECC was not picked up during July – September and 

it either overestimated or underestimated the geostrophic velocities in the region. As the model does 

not pick up the SECC during July – September and the RMS and MEKE being grossly overestimated in the 

region of the SECC, it would not be advisable to use this model north of the Seychelles. This model 
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would be advised to use only to obtain a rough synoptic view of the region as the geostrophic velocities 

are either overestimated or underestimated in the model. The model can be used with confidence in 

obtaining the position of the southern and northern cores of the SEC downstream of the plateau. 

11.2 Future Work 

 

Although this study has helped gain new knowledge and insight into the oceanic processes occurring 

over the Mascarene Plateau, there are still many gaps in knowledge. Since there was an absence of 

Rossby waves during both cruises which have occurred in the region, a cruise would help gain much 

insight into the knowledge of the region during a Rossby wave propagation (circulation patterns via 

ADCP, affect the waves have on water masses in the region, nutrient content in the region etc.). The 

cruise would most likely need to be undertaken during a + IOD year since during these years the plateau 

has a much greater chance of encountering Rossby waves. More CTD stations would need to be 

deployed in gap 2 and a LADCP would also need to be deployed since there has only been 1 velocity 

profile which reached the ocean floor in this region and hence there cannot be a complete 

understanding of the volume flux through this gap (LADCP deployment during the cruise conducted 

between June/July 2002). To date there have been very little modeling studies in the region. Since 

satellite data is relatively course compared to the potential resolution of model data, small features may 

be able to be detected from model data where satellite data cannot. Although we have learnt that the 

banks and gaps have a significant role in the evolution of the South Equatorial Current (SEC), one can 

gain more insight into the affect by removing certain gaps or banks in a model and observing the 

evolution of the SEC downstream as well as other general oceanographic features such as the position 

of water masses, the amount and position where water mass mixing occurs. Through this, on a bigger 

scale we could see the affect the Mascarene Plateau has on the greater region in the South west Indian 

Ocean such as the circulation in the Mozambique Channel (its eddies) and the greater Agulhas Current 

system since the waters from the SEC feed into the system. The deployment of moorings in the 3 major 

gaps in the Mascarene Plateau would assist in understanding the dynamical nature of the volume 

transport across the Mascarene Plateau. As it was established that there were differences in the volume 

transport through the 3 gaps during the 2 cruises which occurred during different seasons, through the 

use of moorings, time series of volume transport can be obtained (as well as velocities) and a better 

understanding of the change in volume transport due to seasonality can be established.  
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