
Univ
ers

ity
 of

 C
ap

e T
ow

n

Acceleration of the noise suppression
component of the DUCHAMP

source-�nder.

Scott James Badenhorst

Dissertation presented in ful�lment of the requirements for the

degree of

MASTER OF SCIENCE

in the Department of Computer Science

UNIVERSITY OF CAPE TOWN

December 2014

Supervised by

M. Kuttel

S. Blyth

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Abstract

The next-generation of radio interferometer arrays - the proposed Square Kilometre Array
(SKA) and its precursor instruments, The Karoo Array Telescope (MeerKAT) and Australian
Square Kilometre Path�nder (ASKAP) - will produce radio observation survey data orders of
magnitude larger than current sizes. The sheer size of the imaged data produced necessitates
fully automated solutions to accurately locate and produce useful scienti�c data for radio sources
which are (for the most part) partially hidden within inherently noisy radio observations (source
extraction). Automated extraction solutions exist but are computationally expensive and do
not yet scale to the performance required to process large data in practical time-frames.

The DUCHAMP software package is one of the most accurate source extraction packages for
general (source shape unknown) source �nding. DUCHAMP's accuracy is primarily facilitated
by the à trous wavelet reconstruction algorithm, a multi-scale smoothing algorithm which sup-
presses erratic observation noise. This algorithm is the most computationally expensive and
memory intensive within DUCHAMP and consequently improvements to it greatly improve
overall DUCHAMP performance. We present a high performance, multithreaded implementa-
tion of the à trous algorithm with a focus on `desktop' computing hardware to enable standard
researchers to do their own accelerated searches. Our solution consists of three main areas
of improvement: single-core optimisation, multi-core parallelism and the e�cient out-of-core
computation of large data sets with memory management libraries. E�cient out-of-core com-
putation (data partially stored on disk when primary memory resources are exceeded) of the à
trous algorithm accounts for `desktop' computing's limited fast memory resources by mitigating
the performance bottleneck associated with frequent secondary storage access. Although this
work focuses on `desktop' hardware, the majority of the improvements developed are general
enough to be used within other high performance computing models.

Single-core optimisations improved algorithm accuracy by reducing rounding error and achieved
a 4× serial performance increase which scales with the �lter size used during reconstruction.
Multithreading on a quad-core CPU further increased performance of the �ltering operations
within reconstruction to 22× (performance scaling approximately linear with increased CPU
cores) and achieved 13× performance increase overall. All evaluated out-of-core memory man-
agement libraries performed poorly with parallelism. Single-threaded memory management
partially mitigated the slow disk access bottleneck and achieved a 3.6× increase (uniform for
all tested large data sets) for �ltering operations and a 1.5× increase overall. Faster secondary
storage solutions such as Solid State Drives or RAID arrays are required to process large survey
data on `desktop' hardware in practical time-frames.

Acknowledgements

This thesis is in dedication to my family and friends for their unwavering support throughout
the years and to my supervisors for their in�nite patience.

i

Plagiarism Declaration

I know the meaning of plagiarism and declare that all of the work in the document, save for
that which is properly acknowledged, is my own.

ii

Contents

1 Introduction 1

1.1 Automated HI source extraction and the role of high performance computing . . 2
1.2 Research Questions . 3
1.3 Aims . 4
1.4 Approach . 4
1.5 Outline . 5

2 Background 6

2.1 Introduction . 6
2.2 Neutral hydrogen (HI) in galaxies . 6
2.3 Radio astronomy instruments . 9
2.4 Detection of neutral hydrogen . 12
2.5 HI Surveys . 13

2.5.1 Past and ongoing large HI surveys . 14
2.5.2 Future HI surveys . 14

2.6 Automated Source Detection . 15
2.6.1 Gamma-�nder . 16
2.6.2 CNHI . 16
2.6.3 DUCHAMP . 16
2.6.4 2D-1D wavelet reconstruction . 17

2.7 Computational Requirements . 17
2.7.1 CPU Technologies . 18
2.7.2 Out-of-core computation . 20
2.7.3 Separable �ltering . 21

2.8 Summary . 22

3 DUCHAMP 24

3.1 Overview of the DUCHAMP software pipeline 24
3.1.1 Loading Input . 26
3.1.2 Preprocessing . 26
3.1.3 Searching (thresholding) . 27
3.1.4 Source Amalgamation . 28
3.1.5 Parametrisation and Output . 29

3.2 False Discovery Rate Threshold . 29
3.3 The à trous Wavelet Reconstruction algorithm 30
3.4 Summary . 35

4 Design 36

4.1 Introduction . 36
4.2 Goals . 38

iii

4.3 Assumptions and Constraints . 38
4.4 Approach and general design decisions . 39
4.5 System Design . 41
4.6 Separable Filtering . 43
4.7 Evaluation and validation . 45
4.8 Summary . 46

5 Implementation 47

5.1 Sequential CPU implementation . 48
5.1.1 Software Dependencies . 48
5.1.2 System Architecture . 49

5.1.2.1 FITS Wrapper and CFITSIO 50
5.1.2.2 à trous wavelet reconstruction 51
5.1.2.3 False Discovery Rate threshold algorithm 54

5.2 Single Core Optimisations . 55
5.2.1 Separable �ltering . 55
5.2.2 SSE Commands Implementation . 59

5.3 Parallel implementations . 60
5.4 External memory management library implementation 61
5.5 Testing . 62

5.5.1 Hardware and Software Testing speci�cs 63
5.5.2 Performance Testing . 63
5.5.3 Test data sets . 63

5.6 Summary . 64

6 Results 65

6.1 Optimal Serial Implementations . 66
6.1.1 Convolution . 66

6.1.1.1 Convolution Results For Regular Data sets 67
6.1.1.2 Convolution Results for Power of 2 data sets 69
6.1.1.3 Floating Point Arithmetic Error 73

6.1.2 SSE optimisation results . 74
6.1.3 Total Serial Run-times . 75
6.1.4 Summary . 77

6.2 Multi-core parallelism . 78
6.2.1 Parallelised convolution procedures . 78

6.2.1.1 DUCHAMP: . 80
6.2.1.2 Original Separable: . 80
6.2.1.3 Transpose Separable: . 81
6.2.1.4 Updated Separable: . 82

6.2.2 Total performance of the parallel convolution procedure 82
6.2.3 Parallelised Update procedures . 84
6.2.4 Total Performance improvement of the à trous reconstruction algorithm . 86
6.2.5 Summary . 89

6.3 Large data sets . 89
6.3.1 Memory-managed convolution . 90
6.3.2 Memory-managed Update procedures . 91
6.3.3 Total run-times with Memory Management 93
6.3.4 Summary . 95

7 Conclusions 97

iv

7.1 Future work . 101

v

List of Figures

2.1 A typical HI double-horn pro�le of a spiral galaxy [2]. 7
2.2 Examples of the (A) global HI mass function [66] using ALFALFA α.40 HI data

[45] and (B) cosmic neutral gas density (ΩHI) constraints [23]. 8
2.3 Example: Tidal HI interactions in Arp 245 [30]. 8
2.4 Single dish telescope receiver pattern [70]. 9
2.5 A) A single radio interferometry baseline.

B) The Karl G. Jansky Very Large Array. 10

3.1 Overview of the DUCHAMP source extraction software pipeline [104]. 25
3.2 Memory access pattern of the 2D convolution �lter for Scales 1-3 [101]. 31
3.3 Overview of the à trous wavelet reconstruction algorithm [101]. 34

4.1 Overview of the components within the prototype system. 42
4.2 Separable Filtering algorithm variants. 44

5.1 Overview of the implemented prototype system components. 49
5.2 Transpose mappings operations required by Transpose Separable algorithm. . . . 59

6.1 Performance of the convolution component of à trous Wavelet for all sequential
�ltering algorithm implementations. 67

6.2 Relative convolution run-times (per 1e6 voxels) for all sequential convolution
implementations. 70

6.3 Performance increases for the SSE implementations of Coe�cient and Output
Update procedures. 74

6.4 Total run-times for the improved sequential à trous wavelet reconstruction algo-
rithm implementations. 76

6.5 Run-time speed-ups for the sequential à trous wavelet reconstruction algorithm. 77
6.6 Multi-core performance increases for the convolution component of à trous wavelet

reconstruction. 79
6.7 Total parallel performance results for the convolution component of à trous

wavelet reconstruction. 83
6.8 Run-times and relative performance for Update procedures parallel implementa-

tions. 85
6.9 Total run-times for the improved à trous wavelet reconstruction algorithm im-

plementations including parallelism and algorithmic redesign. 86
6.10 Total performance increases for the improved à trous wavelet reconstruction

algorithm implementations including parallelism and algorithmic redesign. . . . 87
6.11 Percentage break-down for the improved à trous wavelet reconstruction algo-

rithm implementations total run-times. 88
6.12 Run-times for the memory management implementations of the Updated Sepa-

rable convolution procedure. 90

vi

6.13 Run-times for the memory management implementations of the Floating Point
Update procedures. 91

6.14 Total run-times for the memory-managed à trous wavelet reconstruction algorithm. 93
6.15 Total performance increases for the memory-managed à trous wavelet recon-

struction algorithm. 94

List of Tables

5.1 Test System and Original DUCHAMP Software requirements. 48

6.1 Quanti�cation of error between the sequential 3D algorithm and Separable Fil-
tering algorithm for both single (SP) and double (DP) precision execution. . . . 73

vii

Chapter 1

Introduction

To understand galaxy formation and evolution over time, all components that make up these
processes need to be understood, i.e. the role of the interstellar medium (mainly hydrogen gas
and dust), star formation and evolution, and environmental factors (if the galaxy exists in a
low or high density environment) [89]. Radio astronomy allows for the investigation of these
processes through the observation of their neutral hydrogen (HI) content, a large component of
typical galaxies, which emits a distinct 21-cm wavelength (1,420 MHz) radio emission. However,
this signal is produced by a low rate quantum spin �ip transition of hydrogen's single electron
(changing the relative spin orientation of the proton and electron) and requires large HI volumes
to produce a weak and constant signal [53]. To accurately estimate HI content in galaxies, larger
surveys that probe to cosmologically signi�cant distances with highly sensitive observational
instruments are required.

The traditional observation method of using single dish telescopes has reached feasibility limits
in terms of size and maintenance. Both steerable and stationary single dish telescopes would
be required to be infeasibly large to further improve their angular resolutions to enable the
detection of small HI sources at cosmologically signi�cant distances. These size limitations
are by-passed with radio interferometry techniques which simulate a large single dish telescope
of aperture size D by combining the signals (generating observations from their interference
patterns) from two smaller single dish telescopes separated by a distance D. A interferometer
array consists of many smaller dishes, forming many paired dish combinations and allowing the
imaging of objects at di�erent scales. Additionally, the large collective area of an array (sum
total of all dish area) makes it sensitive to faint signals. The sensitivity and angular resolution
of the next-generation of radio interferometry arrays such as Square Kilometre Array (SKA)1

and its precursor instruments, The Karoo Array Telescope (MeerKAT)2 and Australian Square
Kilometre Path�nder (ASKAP)3, will allow for detailed ultra-wide and ultra-deep HI surveys
orders of magnitude larger than current survey sizes.

The current largest HI surveys, namely the HI Parkes all sky survey (HIPASS) [8, 29, 68,
109] and the Arecibo Legacy Fast ALFA survey (ALFALFA) [39, 84], have produced image
data sets in the range 10 GB - 100 GB. Whilst in the past, the detection of sources in these
noisy observations was performed manually (extracted by eye), the sheer number of sources in
current surveys necessitates automated solutions to source extraction [102]. These automated
HI source extraction solutions are required to accurately locate and measure the properties of
(parametrise) relatively weak radio sources of unknown shape and size from survey data largely

1https://www.skatelescope.org/
2http://www.ska.ac.za/meerkat/
3http://www.atnf.csiro.au/projects/askap/index.html

1

dominated by radio noise (originates from many sources including our own galaxy and man-
made signals). Thus the biggest requirement of source-�nders is to maximise the number of
sources detected (and parametrised) and detect at low signal-to-noise ratios whilst minimising
false detections. Maximising for both these metrics is a complex task. Consequently, many
existing software extraction solutions are computationally expensive and take days to process
the data from current surveys.

The next-generation of HI surveys conducted on the SKA precursor instruments such as The
Wide�eld ASKAP L-band Legacy All-sky Blind Survey (WALLABY) [32] and the Deep Investi-
gation of Neutral Gas Origins (DINGO) [32] surveys with the ASKAP array and the Looking At
the Distant Universe with the MeerKAT Array (LADUMA) [46, 47] survey will produce survey
data volumes 102 - 104 times larger than current surveys [32, 52]. Processing next-generation
survey data is expected to take infeasibly large time-frames with current searching (source ex-
traction) solutions. High performance computing in conjunction with fully automated source
extraction is required to enable next-generation source �nding in practical time-frames.

1.1 Automated HI source extraction and the role of high

performance computing

Several automated source extraction packages have been developed to process noisy data sets.
The most notable are the Gamma-�nder [13], DUCHAMP [104], 2D-1D wavelet reconstruction
[33] and the CNHI [52] source-�nders, which were evaluated for potential inclusion within the
software pipeline for the ASKAP telescopes large surveys [81]. These source-�nders detect
sources in two main ways: intensity thresholding (where observations above a �ux threshold
are considered valid) and statistical detections (where the statistical likelihood of potential
source regions are assessed).

The e�cacy of these �nders is determined by completeness and reliability metrics. Complete-
ness measures the percentage of sources detected (true source count known) whilst reliability
measures how many detected sources were true sources, as noise spikes in the observation may
cause spurious detections. In the Popping et al. evaluation [81] of several leading source-�nders,
the DUCHAMP source extraction package was found to be a robust source-�nder best suited
for the extraction of small point-like sources. Additional evaluation of the DUCHAMP pack-
age in Westmeier et al. [102] showed this source-�nder to be adept at �nding sources at low
signal-to-noise ratios. An improved version of DUCHAMP (Selavy) is set to be used to process
the ASKAP surveys [50]. The success of DUCHAMP lies in its preprocessing steps, speci�-
cally the à trous wavelet reconstruction algorithm, a multiscale (accounts for objects of varying
size) noise suppression algorithm which greatly increases the completeness and reliability of the
source-�nder as a whole [104, 102, 81]. However, this algorithm, as in many similar source ex-
traction processes, is computationally intensive and takes up the majority of total DUCHAMP
run-time. Although current survey sizes can be processed in a few days with automated so-
lutions, the 2-4 orders of magnitude increase in expected survey size on the next-generation
of radio telescopes will necessitate high performance computing to complete computation in
practically short time-frames.

Fortunately, the majority of the algorithms used in automated source extraction are well-
suited for redevelopment as high performance parallel implementations. This is seen in �ltering
operations, such as those found in DUCHAMP's à trous wavelet reconstruction [103], which
contain computing tasks that are performed independently for each volumetric pixel (voxel)
in a data set. This independence of operation has the potential for embarrassing amounts

2

of parallelism and is ideal for both the cluster and distributed high performance computing
solutions. Despite this suitability, few source extraction packages have parallel implementations
and are largely unoptimised for even their existing sequential implementations. Many sequential
procedures within à trous reconstruction have the potential for large performance increases with
algorithm optimisation alone.

In recent years, there has been a signi�cant rise in commodity CPU development and increases
to underlying bus speeds. Modern CPUs now contain multiple processing cores (multi-core) and
hyper-threading (logical computing cores) [65, 4] which allows for e�cient parallel processing.
Additionally, the throughput of a single core can be increased through vector instruction SIMD
(Single Data Multiple Data) parallelism such as Intel's Streaming SIMD Extensions (SSE)
commands [38, 43], which allow for the concurrent execution of a single operation on multiple
data. This has allowed `desktop' commodity hardware to be suitable for high-performance
parallel computing.

`Desktop' computing is still attractive with respect to source detection as it allows the individ-
ual astronomer to perform their own searches through survey data. Additionally, the choice of
search parameters (optimising searches to better detect sources of a certain criteria) and the
source extraction package used is open to the individual. This is in contrast to the ASKAP
blind surveys where output will be produced by Selavy alone and will likely keep search pa-
rameters general to maximise completeness and reliability for blind surveys (source size and
shape unknown). Whilst individual searches could potentially be performed with remote access
to large clusters or distributed systems, there will exist circumstances where access to these
devices is limited and necessitates high performance source detection on individual `desktop'
workstations.

However, the processing throughput of `desktop' commodity hardware will be insu�cient to
process next-generation HI survey data in practical time-frames. Additionally, the amount of
allocated memory required to process this survey data is expected to exceed `desktop' main
memory (fast-access memory) capacity. Excess data will be required to be temporarily stored
on disk (out-of-core computation) where the slow access (orders of magnitude slower than main
memory access) to and from disk can bottleneck performance. The amount of allocated mem-
ory and consequently out-of-core memory transfer can be reduced by individually processing
data set 'chunks' (segments or blocks) to completion. Algorithms such as à trous reconstruc-
tion are ill-suited to segmentation as strong dependencies exist between algorithm components
and would increase the disk access required [103]. General fast out-of-core computation can be
enabled by optimising the paging process (data transfer to and from the disk) with external
memory management libraries. Additionally, the performance of a subset of these data man-
agement APIs can be improved when the memory access pattern is known. Popular memory
management libraries include the Mmap [63][55], Boost [37] and Stxxl [25] libraries.

Algorithm optimisation in conjunction with parallel computing and memory management may
be su�cient to allow `desktop' commodity hardware to compute source extraction procedures
on the next-generation of large HI surveys in practical time-frames.

1.2 Research Questions

This thesis aims to answer the following research questions:

• Can we improve the e�ciency of the à trous wavelet reconstruction for a single core CPU?

3

• Can Intel CPU SSE commands facilitate SIMD execution in this algorithm and further
increase performance for the single-threaded case?

• Can we accelerate these processes by utilising parallel `desktop' multi-core CPU hardware?

• Can slow disk access on `desktop' hardware be mitigated with memory management to
allow for e�cient computation of large data sets?

1.3 Aims

We aim to develop a high performance implementation of the DUCHAMP à trous wavelet
reconstruction algorithm for high performance `desktop' commodity hardware. This algorithm
takes up 65-95% (Chapter 3) of total DUCHAMP run-time and increasing performance will
signi�cantly aid in the future development of a high performance, parallel DUCHAMP imple-
mentation. Additionally, the high computational intensity and memory use of this algorithm
will allow for the assessment of `desktop' hardware as a viable high performance computing
solution for processing large HI survey data in practical time-frames.

The developed system will be assessed with respect to each of the de�ned research questions
in isolation as well as in combination to prevent unbiased assessment of the various developed
system components. The high performance components developed in our system are intended to
be general enough to be easily accommodated into larger parallel computing hardware solutions
despite not being the main focus of development. The memory management solution will only be
intended for incorporation into systems with insu�cient fast-access memory and slow secondary
storage.

1.4 Approach

A high performance commodity hardware implementation of the entirety of the DUCHAMP
source extraction package was not considered due to the sheer scope of this package which
includes several preprocessing operations and source detection algorithms. To reduce the scope
of this work we focused on improving the à trous wavelet reconstruction algorithm which is
the most computationally intensive procedure (65-95% run-time) with the highest memory use
(utilising 5 times the observational data size in allocated memory) within DUCHAMP.

Development of the system followed an iterative approach consisting of four distinct stages: a
sequential C++ implementation, single core optimisation which consists of both algorithmic
optimisation and the use of Intel's SSE commands, multi-core parallelism and memory man-
agement to optimise paging from disk. This iterative development allowed for strict assessment
of the validity and performance contribution introduced at each stage.

Algorithm optimisation consists of reducing the amount of computation required by the �ltering
procedures within the à trous reconstruction as they comprise the majority of algorithm run-
time. Intel's SSE instructions are used to further optimise computation for the single threaded
computation with implementing vector instruction parallelism on a single CPU [34].

We implement multi-core CPU parallelism solutions to all components within the à trous
wavelet reconstruction algorithm which are embarrassingly parallel. Task parallelism (the con-
current execution of algorithm components) is not considered as it is signi�cantly hindered by
strict dependencies with the algorithm.

4

Three popular memory management libraries, namely Mmap [63][55], Boost [37] and Stxxl
[25], are assessed to determine whether these APIs are su�cient to mitigate the disk access
bottleneck on `desktop' hardware to allow e�cient out-of-core computation.

Validity will be ensured by comparing our system outputs with those produced by DUCHAMP
to double precision. Error that cannot be removed will render our system invalid as a scienti�c
tool. Evaluation of performance increases will consist of the relative performance increase intro-
duced at each stage and the absolute performance relative to DUCHAMP as the performance
contributions of each stage are cumulative.

A high performance `desktop' commodity hardware solution for the à trous wavelet reconstruc-
tion algorithm will be considered successfully reached when performance is increased by an
order of magnitude over the original sequential DUCHAMP implementation whilst maintain-
ing accuracy of results. Additionally, this performance should be maintained for large data set
sizes which necessitate out-of-core computation.

1.5 Outline

This thesis is structured as follows:

Chapter 2 provides an introduction to neutral hydrogen research and radio astronomy obser-
vations. This is followed by current and future HI surveys, and the high performance automated
source-�nders required to process them. A brief description of the resources available on `desk-
top' hardware is given. Filter theory relevant to this thesis is discussed.

Chapter 3 discusses the speci�c processes and functionality of the DUCHAMP source ex-
traction package. The à trous wavelet reconstruction algorithm is described in detail, covering
memory use, computation requirements and memory access patterns.

Chapter 4 covers the design speci�cs and limitations of the implemented system. The design
methodologies and approach to parallel development and algorithm optimisation are covered.
Constraints to evaluation and validation procedures are outlined.

Chapter 5 discusses the implementation and testing of the prototype system. This includes al-
gorithms implemented, development di�culties, the data structures used, the input parameters
to the test system and implementation considerations which maximised performance.

Chapter 6 reports the �ndings of this thesis. Results are divided into moderate sized data sets
for the �ndings of performance improvement and extremely large data sets for the evaluation
of out-of-core computation solutions. Special cases are discussed.

Chapter 7 concludes this work, covering the overall �ndings and limitations of this research
and suggesting possible future improvements.

5

Chapter 2

Background

2.1 Introduction

In this chapter, we discuss the theory and motivation behind the automated detection of neu-
tral hydrogen (HI) sources in radio astronomy observations. This background theory includes
the speci�cs of the HI emissions, the instrumentation used and the di�culties that arise in its
detection. Past and future HI surveys are discussed to highlight the extent of neutral hydrogen
research and what the next generation of radio telescopes has in store for continued research in
this �eld. A review of current automated source detection techniques and software packages is
provided, with a detailed treatment of the DUCHAMP software package covered in Chapter 3.
We cover the background on computing concepts and `desktop' commodity hardware architec-
tures used in the remainder of this thesis to accelerate automated radio source detection within
the large surveys planned for the next generation of radio astronomy telescopes.

2.2 Neutral hydrogen (HI) in galaxies

To understand galaxy formation and evolution over time, all components that make up these
processes need to be understood, i.e. the role of the interstellar medium (mainly hydrogen gas
and dust), star formation and evolution, and environmental factors (if the galaxy exists in a
low or high density environment, e.g. voids or clusters). Although a lot is known about stars
through optical observations, less is known about the hydrogen content and its distribution,
one of the key components of a typical galaxy [53]. Additionally, optical surveys may under-
represent low optical brightness objects such as dwarf galaxies [32]. This too may alter the
constraints on predictive models and our understanding of the cosmos.

Hydrogen is found in three forms, namely atomic (HI), molecular and ionised, depending on tem-
perature, density or the ambient radiation �eld [72]. By studying hydrogen we can investigate
galaxy formation and the mechanics of galaxies such as star formation, as hydrogen provides
the fuel to form stars [89]. Most of the molecular hydrogen (H2) in galaxies is cold (below 20 K)
[72]. At these temperatures H2 is at ground state and cannot produce an electromagnetic (EM)
emission spectrum. Rotational transitions are still relevant at these temperatures but for H2,
which is a symmetric molecule, these transitions are suppressed and do not produce emission
(essentially invisible) [72]. The location of H2 clouds can be inferred by the existence of other
molecules such as carbon monoxide which are observed at radio and microwave wavelengths
[72]. Ionised hydrogen exists in high temperature areas such as around hot, young stars [72].

6

In contrast, investigation of neutral atomic hydrogen (HI) is made possible through observation
of the distinct HI 21-cm ((1,420 MHz) radio emission [106] which falls within the portion of
the EM spectrum detectable by radio telescopes on Earth. This HI 21-cm emission is caused
by a low rate (2.868x10−15s−1) quantum transition where the single orbiting electron of a
particular hydrogen atom spin �ips, changing its spin orientation with respect to the proton.
This transition is mainly produced due to collisions of the gas atoms within interstellar medium,
producing, a constant but relatively weak signal [53]. Therefore HI is a good marker for
detecting gas clouds [14] making it useful in the study of galaxy evolution.

Whilst information about the spatial extent of a galaxy can be determined by observing the HI
emission alone, additional information can be obtained by studying the variation of the received
�ux (emission) with wavelength or frequency - called a spectrum. Doppler e�ects caused by
the relative motion of emitting bodies alter the observed wavelength (inversely proportional to
frequency) by the following relation (for non-relativistic velocities):

λobserved = λemitted(1 +
v

c
) (2.1)

where

c� v

v > 0 denotes a receding body
v

c
= z which is known as redshift

This causes the emission wavelength to appear to be shifted towards the red side of the elec-
tromagnetic spectrum (z > 0, red-shifting) for objects moving away from the observer, and
towards the blue side of the spectrum (z < 0, blue-shifting) for approaching objects.

The o�set of a signal pro�le from the HI 21-cm line allows the measurement of the red-shift
due to the relative motion of emitting galaxies from Universe expansion and the motion of a
galaxy in a gravitational potential (e.g. a cluster). The cosmological red-shift (the part due
to Universe expansion) is critical in understanding the evolution of galaxies over cosmic time.
Additionally, the rotating HI content of galaxies gives rise to a blue/red-shifting smearing of the
21-cm line which results in a distinct double-horned signal (Fig 2.1) for approximately edge-on
galaxy observations. This pro�le degrades to a Gaussian-like shape for galaxies which appear
more face-on.

Figure 2.1: A typical HI double-horn pro�le of a spiral galaxy. Image Source: ALFALFA survey website[2].

7

In order to study the evolution of the HI content of galaxies, astronomers would like to measure
observables such as the HI mass function (HIMF) and its variation with redshift, the cosmic
neutral gas density (ΩHI) variation with redshift and the evolution of HI properties in galaxies
as a function of both redshift and environment.

Figure 2.2: Examples of a derivation of the (A) global HI mass function using ALFALFA α.40 HI data
[45] (Image sourced from [66]) and (B) cosmic neutral gas density (ΩHI) constraints (Images sourced
from [23]).

Figure 2.3: Example: Tidal HI interactions in Arp 245, overlayed as contours over an optical image
(V-passband/visible spectrum). Image sourced from [30].

The HI mass function per volume (Fig 2.2 A) quanti�es the relative number of galaxies within
speci�c ranges of HI mass [47, 14]. Measuring the variation of slope, breakpoint and normalisa-
tion of this function with redshift will provide parameters required to test and constrain models
of galaxy formation. Currently the HIMF has only been measured for the local universe and
we do not yet know how it has evolved with cosmic time.

The cosmic neutral gas density (Fig 2.2 B) measures the total neutral gas available at di�erent
time periods. Investigating the amount of neutral gas available in galaxies as a function of
cosmic time will help to shed light on the various processes driving galaxy evolution [53].

Finally, we can investigate if and when galaxy formation has been altered owing to environment
conditions (such as existing in a region of low or high galaxy density). This includes mapping
tidal interactions between colliding galaxies as shown in Fig 2.3.

8

To facilitate accurate investigation of the formation and evolution of galaxies, detailed surveys
of HI to very high redshifts are required [110]. However, the majority of current studies (Chap-
ter 2.5) are comprised of relatively local galaxies [53] as they are limited by the sensitivity and
resolution of current radio telescopes. In the following sections we discuss current instrumenta-
tion and its limitations before covering the engineering advancements used in the design of the
next generation of radio telescopes. These future devices are expected to be sensitive enough
not only to allow ultra-deep (to high redshifts) and ultra-wide observations of HI emission, but
also to allow for the probing of the epoch of reionisation [14], which marks the era when the
�rst stars formed and began �heating� the Universe.

2.3 Radio astronomy instruments

Radio emission detection of astronomical sources is performed using various forms of extremely
sensitive directional radio antennas (called radio telescopes) [32]. Two main types of antenna
are utilised, namely single-dish telescopes and radio interferometer arrays. In this section we
discuss the speci�cs of, and major di�erences between these devices and motivate the current
large scale adoption of interferometer arrays.

Figure 2.4: Single dish telescope overlayed with the main and side lobes of the receiver pattern. Angular
resolution is equal to angle θ. Image Source: [70].

Traditionally, radio astronomy is performed using large single dish telescopes which consist of
large parabolic surfaces to focus emission at a receiver (Fig 2.4) to directly detect �ux values
(strength of the detected signal) at speci�c positions (pointings) on the sky. Due to the shape
and speci�cs of an antenna, a directional dependant pattern of reception strength is formed,
known as the receiving or power pattern [106]. Radio telescopes concentrate this power pattern
into the so-called main lobe or primary beam to de�ne a small directional extent at which signal
can be strongly received in order to discern the direction of the emitting body [106]. The angular
extent of this beam de�nes the (angular) resolution of a particular radio telescope, de�ned as
the minimum angular extent between two emitting objects to discern them as separate entities.
To discern objects at high redshifts that have small angular extents, the angular resolution of
the primary beam is required to be extremely small [32].

9

Angular resolution (θ) of a dish is proportional to wavelength and inversely proportional to
aperture size.

Angular Resolution θ =
1.22λ

D
(2.2)

D - diameter of the radio dish.

λ - wavelength of observed emission.

Thus to attain high angular resolutions for radio waves, which are 4 to 7 orders of magnitude
larger than visible light [35], the collection dish is required to have an extremely large dish
diameter.

Single dish telescopes are normally steerable to increase the portion of the sky which is observ-
able with the device. Notable large steerable radio telescopes include the 76 m Lovell telescope
operated the Jodrell Bank observatory1 in northern England, the 100 m E�elsberg telescope2

operated by the Max Planck Institute in Germany, the CSIRO3 64 m Parkes telescope4 in
Australia and the 100 m Green Bank telescope5 in the USA, the world's largest steerable radio
telescope. However, steerable dish size and consequently angular resolution has reached a cost
and maintenance feasibility limit (∼ 100 m [35]) as a result of the sheer weight of these devices
[16].

This size limit can be overcome by using a �xed dish set-up [39], such as the 305m Arecibo
telescope6 in Puerto Rico, which has a stationary collecting area and a movable receiver to allow
for the observation of a sky area greater than a single pointing. This allows for telescopes to
have a �ner angular resolution and higher sensitivity at the cost of a greatly reduced observable
sky area. However, to observe HI signals at cosmologically signi�cant distances, an even �ner
angular resolution is necessitated which would require an infeasibly large dish size even for �xed
dish solutions.

Figure 2.5: A) A single radio interferometry baseline. τ is the extra propagation distance and consequently
time taken for signal to reach the more distant antenna. B) The Karl G. Jansky Very Large Array (VLA)
in North America (http://www.vla.nrao.edu/).

1www.jb.man.ac.uk/
2www.mpifr-bonn.mpg.de/8964/e�elsberg
3The Commonwealth Scienti�c and Industrial Research Organisation
4www.parkes.atnf.csiro.au/
5https://science.nrao.edu/facilities/gbt/
6www.naic.edu/index_scienti�c.php

10

The angular resolution limitations of the single dish approach can be improved upon with radio
interferometry. Radio interferometry is a technique of superimposing electromagnetic waves
from two or more observing devices in order to produce interference patterns which provide
information about the incoming radio emission waves [21]. However, the timing within these
devices must be precise as they are required to compensate for the di�erence in propagation
times for emission to arrive at each antenna (Fig 2.5 A). Signal received by the antenna nearest
to the source is delayed by the di�erence in propagation time to the furthest antenna, namely
t = c.(D.sinθ), where D equals the distance between the antenna and θ equals the angle
between the antenna pointing and a line perpendicular to the Earth. The clear advantage over
single dishes is that the angular resolution of a radio interferometer array is equal to that of a
theoretical single dish (Equation 2.2) with an aperture diameter equal to the longest distance
(D) between the interferometer elements (known as a baseline). This allows the simulation
of a large single dish telescope with relatively small single dish elements by placing elements
further apart. Additionally, the �eld-of-view achieved with radio interferometers is much larger
than its single dish counterparts as the �eld of view is proportional to the wavelength observed
and inversely proportional to individual dish diameters which are typically relatively small.
Field-of-view speci�cally refers to the area observed with a single pointing of the telescope.

Field of View (primary beam) =
1.22λ

d
where d is equal to the diameter of the interferometer dishes.

Thus interferometer arrays can reach both superior angular resolution and �eld-of-view with
a relatively small dish size which reduces the cost of construction and maintenance. Notable
large interferometers (completed) include the Janksy Very Large Array7 (JVLA) (Fig 2.5) in
the USA with 27 × 25 m dishes (max. baseline 36 km), the Giant Metrewave Radio Telescope8

(GMRT) in India with 30 × 45 m wires dishes (max. baseline 25 km) and the Australia
Telescope Compact Array9 (ATCA) with 6 × 25 m dishes (max. baseline 6 km).

However, there are some disadvantages and di�culties that arise with the radio interferometer
approach. Unlike single dish telescopes that measure the �ux of the sky directly at a speci�c
pointing, radio interferometers record interference patterns by correlating the signals from each
telescope pair in a correlator to produce the so-called UV-plane observation, a Fourier transform
of the sky brightness distribution [105, 99]. The accuracy of the �nal image is proportional to the

number of UV-plane samples (baselines) that are recorded which increases by ((N−1)N
2

) with the
number of antennas (N) [35]. It is not necessary to cover the entire array area with telescopes to
improve UV coverage; instead the techniques of aperture synthesis (through Earth's rotation)
and multi-frequency synthesis (only available to radio continuum observations) are necessitated
to �ll the UV-plane. However, the processing required to generate both the UV-plane and
the �nal image (inverse Fourier transform of the UV-plane) are extremely computationally
expensive.

Current instruments are limited to approximately z ∼ 0.2 (back in cosmic time ∼ 2 billion
years) for 21cm line observations in reasonable observing time [1]. To study the role and
evolution of HI in galactic processes over signi�cant ranges of cosmic time, higher sensitivities
and smaller angular resolutions are required. This has motivated for the next-generation of
radio interferometric arrays: the Australian Square Kilometre Array Path�nder (ASKAP)10

consisting of 36 × 12-m dishes [22, 32], the Karoo Array Telescope (MeerKAT)11 consisting of

7www.vla.nrao.edu/
8gmrt.ncra.tifr.res.in/gmrt_hpage/GMRT/intro_gmrt.html
9www.narrabri.atnf.csiro.au/
10http://www.atnf.csiro.au/projects/askap/index.html
11http://www.ska.ac.za/meerkat/

11

64 × 13.5-m dishes [20], and the Square Kilometre Array (SKA)12 which will consist of 3600 ×
15-m dishes and low frequency antennas split across both the ASKAP and MeerKAT locations.
Both the ASKAP situated in Western Australia and MeerKAT situated in the Northern Cape,
South Africa are designed to be precursors to the SKA.

The extreme size of the SKA array will result in an unprecedented amount of data with 1018

bits per second [21] pre-correlator with exa�ops of computations and petabits/s of I/O. The
angular resolution possible with the SKA will be very high due to very long expected baselines
as SKA dishes will extend up through Africa. Additionally, SKA's expected sensitivity will
allow the observation of HI emission to very high redshifts (1.5 < z < 2) [16].

Radio interferometry techniques alone do not solve all the problems associated with radio
emission observations. In the next section, we discuss some of the problems and di�culties
that arise when observing radio emissions and how many of those problems are exacerbated
when observing the relatively weak HI emission.

2.4 Detection of neutral hydrogen

Observation of HI bodies can be di�cult as signal strength is relatively weak and can be hidden
and distorted by the high prevalence of radio noise in an observation. In this section we discuss
the primary types (and mitigation schemes) of noise and signal distortion a�ecting HI detection:
atmospheric e�ects, interstellar medium, signal smearing and terrestrial noise.

Atmospheric e�ects describe signal distortion and obfuscation as a result of the properties of
the Earth's upper atmosphere which cause refraction, scattering and absorption of radio waves.
The radio window refers to the range of radio frequencies for which the Earth's atmosphere
is transparent. This range approximately extends from a wavelength size of 20 m to 0.2 mm
where signals with wavelength sizes larger and smaller than this range are scattered in the
ionosphere and absorbed by water vapour and oxygen in the troposphere respectively [106].
Although absorption can be lessened by selecting arid locations for instruments, the e�ects of
oxygen absorption and the ionosphere scattering cannot be mitigated from the Earth's surface
and require observation from satellites.

The refraction e�ects of the atmosphere refer to signal distortion caused by variations in the
atmosphere's refractive index [88] and atmospheric turbulence in both the ionosphere [88] and
troposphere [61]. In contrast to scattering and absorption, refraction e�ects can be mitigated
by using one or more calibration methods which attempt to estimate position, phase (interfer-
ometer speci�c) and gain distortions in an observation. These calibration methods include the
observation of known bright sources in the �eld-of-view [95], self-calibration (or auto-calibration
methods) which refers to the more general case where some source parameters are unknown
[75][95], and information from orbiting satellites [88]. Additionally, optical survey data may be
used to cross reference positions when emitting bodies have both an optical and radio compo-
nent.

The detection of relatively weak radio emissions (common for higher redshift objects) is signif-
icantly hindered and limited by human-made radio frequency interference (RFI). These signals
primarily originate from broadcasting of television and communication signals but radio tele-
scopes are su�ciently sensitive to be a�ected by thermal noise generated by electrical devices
such as spark plugs, electric fences and orbiting satellites [7]. This RFI may even originate
from the observation site itself as the electronics in computing and signal transfer are capable

12https://www.skatelescope.org/

12

of radio emission which necessitates the RFI shielding of these components [7]. This motivates
the placement of instruments in radio quiet areas [7] and monitoring of RFI so as to choose
quiet times or observe in radio quiet frequency bands [36] as well as the implementation of
radio astronomy protected bands which cannot be utilised for other purposes [57].

Three common RFI mitigation techniques are rejection in the temporal domain, frequency re-
jection (or �agging) and spatial �ltering [36]. By monitoring signals over time the identi�cation
of short-lived RFI signals can be removed from an observation [36]. Frequency �agging refers
to the process where noise frequency bands are suppressed. These noise bands are either known
RFI signals or detected through the real-time spectrum monitoring of RFI using directional
antennas [36, 7]. Spatial �ltering uses the principle of di�erences in the direction-of-arrival
of valid and RFI emissions [36]. For single dish antennas this is performed with a separate
antenna pointing away from the �eld of view of the primary antenna to allow for a type of
adaptive interference cancellation of unwanted sources [7, 36] using the di�erent signal arrival
times at each dish [57], as single dishes alone cannot di�erentiate signal direction [7]. This tech-
nique works best for strong RFI and where spectral information is not useful [7]. In the case
of radio interferometers this interference cancellation/minimisation can be performed between
multiple radio interferometry elements [36] as extended baselines between elements allow for
the identi�cation of localised RFI [7].

Signal smearing results from the blue/red-shifting of a rotating HI gas body (discussed above).
For stronger sources this can aid identi�cation through the double-horn/Gaussian pro�le that
is produced. However, signal smearing of weaker sources can impede detection as the signal
is spread across multiple frequency detection bins, decreasing the signal to noise in a single
channel.

The next generation of radio interferometers will attempt to detect extremely weak signals
in both the local and distant universe. These instruments are expected to be over 100 times
more sensitive than current devices [85] which will allow the detection of fainter objects at
cosmologically signi�cant scales.

2.5 HI Surveys

In recent years, various large surveys have successfully carried out the mapping of HI in galaxies
for extended regions of the sky. In this section we provide an overview of some of the large HI
surveys which have been completed or are still ongoing and the sheer increase in HI information
that will be provided with future surveys on the next generation of telescopes. Additionally,
we compare past and future surveys to highlight the large increase in imaged data produced
by these devices; i.e. the data sets from which HI sources are extracted. The size of these
data sets is de�ned by the area of the sky surveyed and the resolution of the survey, angular
resolution (pixel size) and the size and range of the spectral bins. The exponential increase
in imaged data complicates the process of source extraction. Traditionally, source extraction
has been performed manually (by eye) and required trained individuals to extract valid sources
from noisy data sets. However, current surveys have already reached sizes that necessitate
semi-automated processing, with future surveys expected to require fully automated source
extraction solutions in conjunction with high performance computing.

13

2.5.1 Past and ongoing large HI surveys

There have been many HI galaxy surveys. The most notable of these surveys, in terms of source
counts, are the HI Parkes all sky survey (HIPASS) [8, 68, 109, 29] and Arecibo Legacy Fast
ALFA survey (ALFALFA)[39, 84, 40, 49]. The HIPASS survey represents the largest HI survey
to date in terms of sky coverage. ALFALFA is considered larger in terms of the number of
sources that were detected in the survey.

The HIPASS survey utilised the CSIRO's Parkes radio telescope (64-m diameter parabolic dish)
located in Australia, to scan the entire Southern sky and partially scan the Northern sky up
to +25 deg. To reach full sensitivity, the observation area was scanned 5 times to z ∼ 0.042
using 1024 velocity bins [68] with channel separation 13.2 km.s−1 (z = 0). The HI Jodrell ALL
sky survey (HIJASS) [56] completes the HIPASS survey with plans to completely observe the
rest of the Northern sky. Since the Parkes telescope cannot see more Northern declinations due
to its location in the Southern Hemisphere, the HIJASS survey was carried out on the 76 m
Lovell telescope in the Jodrell Bank observatory in northern England [60].

The HIPASS survey has resulted in thousands of detected sources, namely 4315 detected
sources in the region declination < +2 deg [68] and a further 1003 sources for the range
+2 < declination < 25 deg [107] detected purely on their HI content. Although originally
387 separate data sets were used to cover the southern sky, the entirety of the surveys was
recently combined by Jurek [44] into a single cube of 12 GB (dimensions 1721 × 1721 × 1025
voxels). The sheer size of this data set prevented extraction of sources using traditional manual
methods and required semi-automated techniques to extract sources of interest.

The Arecibo Legacy Fast ALFA survey (ALFALFA) [39, 84], currently the biggest HI survey
in terms of source count and surveyed to a deeper redshift than HIPASS, was conducted with
the Arecibo telescope. This survey has achieved 8 times the sensitivity and 4 times the angular
resolution of the HIPASS survey. The L-band feed array installed at the Arecibo telescope
allowed over 7000 deg2 of the sky to be observed. Each data cube covers an area of 2.4◦ by 2.4◦

with a voxel separation of 1 arcminute and 1024 spectral channels [84]. At double precision
these cubes are 162 MB in size. To cover the full range of 7000 deg2 and redshift range of
-2000�17,900km.s−1 [84], 4862 of such cubes will be needed and will take up 0.75 TB. To date
the largest catalogue release has been the α.40 HI source catalogue with 15,855 sources found
in a sky coverage of 2800 deg2 which equates to 29 times more sources found per square degree
than HIPASS [45].

Although the HI content identi�ed through these surveys is extremely signi�cant, more detailed
study of the role and evolution of HI in galactic processes over cosmologically signi�cant dis-
tances (and time) necessitates both larger surveys and observations to higher redshifts. In the
next section we describe the future HI surveys planned for the next-generation of radio tele-
scopes and the estimated number of sources that are expected to be detected. These surveys
will be signi�cantly larger than current HI surveys and will necessitate high performance com-
putation to process large data for both the instrument itself and automated source detection,
as manual extraction is already infeasible for current survey sizes.

2.5.2 Future HI surveys

Future HI surveys will be conducted on the Square Kilometre Array (SKA) and its precursor
instruments, MeerKAT, ASKAP and APERTIF13. These surveys will be signi�cantly larger

13http://www.astron.nl/general/apertif/apertif

14

than current HI surveys in terms of the amount of data generated and will necessitate high
performance computation for processing and analysis. Automated source detection will be
needed since manual extraction is already infeasible for current survey sizes.

The Wide�eld ASKAP L-band Legacy All-sky Blind Survey (WALLABY) and the Deep Inves-
tigation of Neutral Gas Origins (DINGO) are two planned HI surveys for the ASKAP facility
[32]. The WALLABY survey is an ultra-wide survey which plans to detect HI to a red-shift of
z ∼ 0.26 for approximately 75% of the sky. This survey is expected to produce 1200× 782 GB
data cubes (dimensions 3600× 3600× 16200 voxels) which equates to nearly 1 PB of Stokes I
imaging data. This imaging data is expected to yield over 500 000 detected galaxies [32]. Ad-
ditional data products produced by this survey, such as catalogues, beam images, post-stamp
images, etc., will increase the total data storage required by WALLABY to well beyond 1PB.

The DINGO survey will be an ultra-deep survey conducted to two di�erent depths and will
cover approximately 60 deg2 of the sky [32]. �DINGO deep� will probe �ve �elds out to z ∼ 0.26
with 500 hours of integration per �eld. A data cube equal in size to the WALLABY (782 GB)
will be generated for each of the �elds, totalling ∼ 4 TB of imaged data. �DINGO ultra-deep�
will probe the red-shift range of 0.1 < z < 0.43 across two �elds with 2500 hours of integration
per �eld. Although fewer sources (105 galaxies) are expected to be found in this data than in
the WALLABY survey, it will provide deeper information on the role and evolution of HI over
signi�cant time-frames.

The MeerKAT array [20] will be conducting its own ultra deep investigation: the Looking At
the Distant Universe with the MeerKAT Array (LADUMA) survey [46, 47]. This ultra-deep
survey will provide the �rst complete view of galaxy evolution for 0 < z < 1.4 over roughly
5deg2. Similarly to DINGO, the �rst phase will consist of observing a single pointing (1000
hours) to observe to a depth of z ∼ 0.6 which is expected to provide thousands of direct
detections [46]. The second phase will involve the observation of HI to z = 1.4 (4000 hours of
observation time). Over 2 TB of imaged data will be created for this survey.

The survey sizes expected for future HI surveys and the image data they produce are orders
of magnitude larger than current surveys increasing the amount of work required to extract
valid sources out of noisy data sets. Current survey sizes have already necessitated that semi-
automated methods be used instead of manual extraction (by eye) as the time taken to process
the data is infeasibly long. This has motivated the need for fully automated solutions. In the
next section we discuss some of the leading automatic solutions and how these techniques may
be insu�cient to process surveys in practical time-frames and will likely be required to be used
in conjunction with high performance computing solutions.

2.6 Automated Source Detection

Automated detection in blind surveys arises from the need to extract HI sources from image
survey data that are orders of magnitude larger than previous surveys. It is no longer feasible
to have a manual component in source extraction to complete this process in practical time-
frames. Several source-�nders have been developed in response to this need, the quality of a
source-�nder being de�ned by two metrics: completeness and reliability [81, 101]. Completeness
refers to the measure of how many sources present in the data set were found. Reliability is the
measure of the number of found sources that are actually sources, as noise has the potential to
be detected as a source.

The current generation of source-�nders fall into two main categories: �nders that rely on

15

intensity and thresholding techniques and �nders that utilise statistical likelihoods to deter-
mine true sources. We evaluate these source-�nders on their computational requirements and
their completeness and reliability metrics which are reported in Jurek [52] and Popping et al.
[81]. These evaluations are by no means exhaustive but give an approximation of source-�nder
performance [81] for speci�c parameter space.

2.6.1 Gamma-�nder

The Gamma-Finder package [13] is a Java application which uses a source extraction technique
based on the statistical Gamma test [91]. By estimating the noise variance in a continuous data
set, a Gamma signal-to-noise ratio is calculated and used as a threshold to assess if an object is
a detection [81] or background noise. Although essentially a basic peak over threshold detector,
this �nder has been shown to detect sources at fainter �uxes than other source-�nders [13]. A
potential drawback is that the software only produces the position and strength of sources and
provides no additional parameters [13]. Nonetheless, this does not disqualify its use as it could
potentially be used in conjunction with a source parametrisation package.

Evaluation of this source-�nder [81] showed that it was the better �nder for objects with a
narrow width and strong �ux. Overall, this source extractor showed good performance in
completeness for high �uxes and signi�cant completeness in the low �uxes.

2.6.2 CNHI

The CNHI source-�nder [52] uses a di�erent technique to intensity thresholding which attempts
to compensate for the weakness of intensity thresholding in detecting large low �ux signals in
the presence of noise. Data cubes are seen as collections or bundles of spectra [81]. A Kuiper
test [90] is performed to determine the probability that a test region of contiguous voxels and
the rest of the spectra come from the same distribution of voxel �ux values. This is succeeded
by the Lutz real time analysis algorithm [64] to combine spectra which have a low probability
of being noise into distinct objects to form a detection.

Evaluation of this algorithm [81] indicated the CNHI algorithm performed well for extracting
model galaxies with moderate spatial pro�les and objects with a low �ux intensity. However,
CNHI performed poorly when extracting point sources and had a poor reliability as it is di�cult
to eliminate false positives from the source list. Additionally, this approach requires �ne tuning
as the test region cannot be small or it will invalidate the statistical constraints of the Kuiper
test.

2.6.3 DUCHAMP

Despite using an intensity thresholding scheme, the DUCHAMP source package [104] is a
robust source-�nder. This robustness is provided through several preprocessing operations
which improve the reliability and completeness of results. This includes inversion operations to
search for negative features, removal of large scale structures such as continuum ripples, spatial
and spectral smoothing as well as complete wavelet reconstruction using the à trous algorithm
[108] to reliably reduce noise in the observation [32]. It is a multiscale algorithm which allows
the removal of artefacts such as RFI, instrument error and continuum ripples of varying sizes

16

within the observation. However, the performance of the à trous algorithms comes at the cost
of high memory use and computation.

Unlike other source-�nders, the intensity threshold attempts to reduce the number of false
positives statistically in detection by using the False Discover Rate (FDR) algorithm. This
allows for a good balance between a high completeness and the reliability which is in contrast
to more stringent thresholds such as the Bonferoni threshold [9, 69] (further discussed in Section
3.2) which ensures maximum reliability but severely reduces the number of sources found. This
software forms the core of the remainder of this thesis and a more detailed discussion of the
components and algorithms within DUCHAMP will be covered in Chapter 3.

In the Popping et al. evaluation [81], the DUCHAMP source-�nder is shown to perform best
when extracting point sources compared to the competing source extraction packages. However,
this �nder was also shown to be incomplete for small �uxes and su�ered when parametrising
sources. Further evaluation of this source-�nder in Westmeier et al. [102] showed that it is adept
at �nding sources at low signal to noise ratios. An improved version of DUCHAMP (Selavy) is
set to be used within the ASKAP to produce its scienti�c outputs [50].

2.6.4 2D-1D wavelet reconstruction

The 2D-1D wavelet reconstruction �nder [33] is a multidimensional wavelet denoising scheme
similar to DUCHAMP. However, unlike the DUCHAMP package, this algorithm implements a
two phase reconstruction which consists of a 2D wavelet reconstruction procedure to smooth all
the channels maps and a 1D reconstruction procedure to smooth all spectra. This approach is
to account for the signi�cant di�erences between the spatial and spectral sizes of sources. This
separated method allows for the multiscale à trous algorithm to easily remove speci�c artefacts
which a�ect the spatial and spectral domains at di�erent scales. Additionally, this algorithm
is well suited to the extraction of anisotropic (directionally biased) sources.

The Popping evaluation [81] shows similar results to DUCHAMP when extracting point sources.
In general, this source-�nder has high reliability but su�ers as the false detections in the �nal
source list are di�cult to eliminate. These elimination di�culties result from the majority of
false detections being similar to true detections in terms of �ux value and size [33]. Further-
more, although 3D curvelets [108] are better suited to anisotropic source extraction, they are
computationally expensive [33]. In contrast, the 2D-1D reconstruction is a computationally
light algorithm with moderately good anisotropic extraction results [33].

Reliability in the 2D-1D wavelet reconstruction can be further improved by adjusting clipping
thresholds in order to �ne-tune the algorithm for speci�c observations. However, this is also
true for many of the ASKAP survey competing algorithms.

2.7 Computational Requirements

Despite the performance advantages of automated source detection software, the large data vol-
umes expected from HI surveys on SKA precursor instruments cannot be processed in practical
time-frames without large amounts of computing power. Computing resource requirements are
generally met with the implementation of specialised hardware, clusters or distributed systems.
However, situations arise where access to large computing solutions may be limited and neces-
sitates the use of computing hardware that is more accessible such as `desktop' workstations.

17

`Desktop' hardware consists of low cost standardised computing components used primarily for
small scale computing problems. However, the development of high speed multi-core CPUs and
general purpose graphics devices has enabled `desktop' hardware to compete as a high perfor-
mance computing solution. In this section we discuss the speci�cs of high performance CPUs
and how certain resources can be exploited to increase computational performance. Addition-
ally, we discuss the limitations of `desktop' hardware's memory hierarchy, covering both caching
and out-of-core computation issues. We discuss potential mitigation techniques to reduce the
poor performance associated with out-of-core computation.

However, implementations of source-�nders that exploit these technologies may not be su�-
cient to facilitate high performance source extraction as the algorithms within the majority of
source-�nders are largely unoptimised. Performance can be further increased by optimising or
reducing the computational complexity of these algorithms. We discuss the theory behind Sep-
arable Filtering, an optimisation technique which can dramatically reduce the computational
complexity of �ltering operations (with certain criteria) commonly used in computer vision and
consequently source extraction.

2.7.1 CPU Technologies

Recent developments in CPU technology have allowed CPU performance to increase despite the
existence of several limiting factors such as the power wall (the exponential increase in power
required to increase clock speed) and memory wall (the relatively slow data transfer between
CPU cache and physical memory). In this section, we discuss CPU technologies discussed and
used within the remainder of this thesis to maximise CPU performance, namely instruction
level parallelism, multithreading, simultaneous multithreading, vector processing and multi-
core CPUs.

Instruction Level Parallelism (ILP) is the overlapping execution of several computation instruc-
tions at once [73]. Commonly ILP is exploited in three ways: pipelining, out-of-order execution
and branch prediction. Pipelining exploits the fact that a single CPU instruction consists of
several stages which are computed in-order on independent parts of the CPU circuitry [73].
The di�erent stages of multiple instructions are able to be computed concurrently on these
independent CPU circuitry parts, which increases CPU throughput. Out-of-order instruction
execution allows for the next instruction to be processed whilst a previous instruction is stalled
on a costly memory access and no dependencies exist between these instructions [73]. This
attempts to ensure that all CPU clock cycles are used to compute some work and the CPU
does not lie idle. Branch prediction extends ILP by assuming the state of a particular branch
condition whilst that condition is evaluated in order to save clock cycles (if predicted correctly)
[73].

Multithreading CPU functionality allows a single CPU to schedule several pieces of work
(threads of execution) from the same process or several processes to allow the interleaving
of work (out-of-order execution) [4]. When a thread being processed stalls on a relatively costly
memory access and cannot execute further instructions out-of-order, the CPU is free to sched-
ule and process another thread in the interim. However, originally this meant only one thread
could be in the CPU pipeline at a given time. Whilst this increases the use of CPU computa-
tional resources, the use of multiple threads can result in a race condition. Race conditions arise
when two threads perform order dependant operations on the same data out-of-order [4]. Order
dependence is not ensured by CPU thread scheduling and it is the task of software developer
to organise thread access to shared data.

18

Simultaneous Multithreading (SMT) CPU functionality improves on ILP and multithreading
by combining these technologies [73]. Independent threads can be executed in the same pipeline
stage by duplicating the portion of a CPU register memory that stores the state of a thread
[65]. Thus a SMT single processor contains more than one logical CPU core which better
schedules work for the compute components of the CPU to decrease the number of wasted
clock cycles and increase computation throughput. Hyper-threading is Intel's implementation
of SMT processing which has the potential to increase multithreading parallel performance by
between 4-30% [65, 93] on a single CPU core.

Vector processing CPU functionality [34] allows for the concurrent execution of Single Instruc-
tion Multi Data (SIMD) instructions where the same instruction (or set of instructions) is
concurrently applied to multiple data points stored in a 1D array (vector). Whilst this has the
potential to increase performance it requires the addition of supplementary chip architecture.
Intel's Streaming SIMD Extensions (SSE) is facilitated by utilising unique 128-bit processor
registers (XMM registers) [38] which hold either 4 single precision or 2 double precision �oating
point variables as �packed� elements [43]. Instructions executed on a single packed element
are applied to all the �oating point numbers contained within. The majority of compilers
contain functionality for automatic vectorisation (conversion of iterative instructions to vector
instructions). However, auto-vectorisation is a di�cult problem and compilers may not com-
pletely vectorise a piece of software [38]. To fully make use of vectorisation functionality it
may be necessary to manually use SSE instructions [3, 10]. The Intel C++ compiler provides
a semi-manual approach to vectorisation with SSE intrinsics (SSE instruction sets) to reduce
implementation complexity [43, 38]. In general, low-level SSE development in Assembly [43, 11]
results in the highest performance but requires large amounts of development time.

Multi-core CPUs are multiple central processing units (cores) on a single device with a shared
memory hierarchy [4] (uni�ed shared memory architecture with multithreading). The multi-
threading capabilities of a multi-core system improves on a single core architecture as indepen-
dent threads of execution are computed concurrently on each of the available cores. Addition-
ally, each core in this architecture bene�ts from SMT parallelism and contains the functionality
for vector instruction parallelism. The uni�ed shared memory architecture indicates that each
core has access to some global address space not distributed across a network: commonly pri-
mary memory and higher levels of cache memory (small, fast memory on the processor) [73].
Consequently, memory access is more intuitive to the software developer as it uses a single
address and the proximity of this memory to the CPU (not distributed across a network) en-
sures fast access. However, scaling shared memory architectures is di�cult as the addition
of extra cores dramatically increases the communication tra�c required to keep the multiple
cores' caches synchronized.

Multithreading parallelism on multi-core architectures has the potential to greatly improve
software performance. However, this requires that the considered software is well-suited to
parallel implementations (lack of dependencies). To utilise the bene�ts of multithreading, the
software developer is required to manually launch/delete threads and ensure thread safety to
prevent synchronization errors (race conditions) in a particular process [4]. Additionally, mul-
tiprocessors introduce core/load balancing performance concerns as thread work load must be
balanced between cores in order to achieve optimal parallel performance. However, manual
thread management with low level APIs, such as PThreads (A POSIX thread standard)[62, 4],
is time consuming and di�cult to optimise. This can be simpli�ed with high level thread
management APIs such as OpenMP [4, 18, 38]. OpenMP is a multi-platform API for mul-
tiprocessor, shared memory architectures that simpli�es thread management via instruction
sets that are interpreted by the compiler (pragmas) to implement multithreading. Whilst this
shortens development time, the developer is required to ensure thread safety and balance work

19

load between threads [4, 38]. Maximising parallel performance is still a complex task despite
the thread management simpli�cations that OpenMP provides.

2.7.2 Out-of-core computation

Out-of-core computation occurs when the memory allocated by a program (the working set)
is larger than physical memory (in-core computation) and must be temporarily stored on sec-
ondary storage. Virtual memory abstracts this memory addressing across physical memory
and swap partitions on secondary storage to simulate a large homogeneous memory space.
This allows large problems to be processed on systems with limited physical memory, such as
`desktop' workstations. However, disk access is still orders of magnitude slower than physical
memory access. Frequent access to disk can therefore result in a performance bottleneck while
computation waits for data to be transferred (transfer bound).

An alternative to the standard paging protocols for handling large data is the use of �le-backed
memory mapping [55]. A �le-backed mapping is a byte-to-byte association of virtual memory
space with a �le on disk. This scheme has several advantages over the standard disk paging and
standard �le I/O. Memory mapping does not require the standard �le I/O's intermediate step
of copying �rst into the standard I/O bu�er before copying into the supplied data structure
[63] as the �le-backing is its own page cache. File size is not constrained by the size of allocated
swap space and physical memory but by that of secondary storage. Additionally, memory
mapping allows for fragmented �le mappings and does not require the existence of a large free
contiguous region on disk. In contrast, swap partitions in Linux are contiguous [100] which
allows for better disk access but prevents scaling to accommodate larger memory use.

Memory mapping schemes implement demand paging [82] by default which results in conserva-
tive physical memory use but has the initial disadvantage of data completely residing on disk
at the time of mapping creation. An initial populating of physical memory is required before
computation can begin on memory mapped data structures. However, actual memory mapping
implementations often improve on demand paging by prefetching data through custom paging
schemes.

Memory mapped data structures completely abstract access across the memory hierarchy [63]
and are often indexed and utilised in the same manner as STL structures. Minimal redevelop-
ment is required to integrate mapped structures into existing applications. This is in contrast
to standard �le I/O commands where the user must implement their own bu�ering scheme.

Three memory management libraries are considered over the remainder of this thesis, namely
the Mmap, Boost.Interprocess and Stxxl libraries. We brie�y introduce these three libraries,
as follows.

MMAP The Linux system kernel facilitates memory mapping through the Mmap() system
call [63, 55]. This memory management library is the simplest out of the three considered
libraries. A Mmap mapping made with a user created �le on disk functions as a normal
C/C++ array. To ensure consistency with its �le-backing, changes to the paged-in portion of
the memory map must be �ushed to disk. Optimised memory managed STL data structures
and multithreading are not supported.

Disk access with a Mmap memory-mapped data structure can be optimised using Madvise()
[63, 54] which allows the developer to specify paging advice to the kernel. Madvise calls include
general advice for memory access patterns as well as the manual control of paging. When

20

normal paging is requested the kernel will readahead a moderate amount of pages o� disk.
Sequential paging advice increases readahead and releases memory soon after the page is used.
Random paging disables readahead as it serves no real purpose with randomly accessed data.

Manual control of the paging scheme is facilitated with WillNeed and DontNeed. WillNeed
speci�es which portion of a mapped �le is likely to be used next and prefetches from disk.
DontNeed dumps all resources allocated to a range of pages (changes are lost if not �ushed
back).

Boost.Interprocess Boost.Interprocess [37] is part of the Boost C++ libraries and is pri-
marily used to facilitate communication between two separate processes. This communication
occurs through a �le-backed memory mapped region and can be accessed as a normal C/C++
array. Additionally, all Boost data structures are compatible with Boost memory mapping and
additionally supports multithreading to these mapped structures.

Boost.interprocess calls are platform independent, making Boost the easiest memory-mapping
library to port between Mac, Linux and Windows systems. However, in contrast to Mmap,
no functionality was found within Boost.Interprocess to manually optimise the paging scheme
used.

Stxxl: Standard Template Library for large datasets The Stxxl library is a standard
template library (STL) which has been optimised to handle large data [25]. Several Stxxl
versions of common data structures and STL algorithms (searching/sorting) are implemented
within this library. Stxxl memory management is implemented by using a dynamically growing
memory mapped region on one or more disks which facilitates software RAID (redundant array
of independent disks) [6].

Available optimisation functionality is signi�cantly larger than that of Boost and Mmap. This
includes the de�nition of how many blocks of memory and the size of these blocks to be paged
into physical memory at any given time [24]. Additionally, several RAID disk assignment and
paging strategies are supported.

2.7.3 Separable �ltering

Digital image processing (signal processing) is widely utilised for the problem of astronomical
source extraction to remove and/or emphasise features in observational data. A common use
case involves �ltering to reduce noise and spurious detections in an observation to highlight
true sources and aid in the extraction, identi�cation and parametrisation of these objects [84,
28, 67]. This is accomplished by convolving �nite discrete �lters (A ∈ N dimensions) with
data (B dimensions ≥ A), here the �lter responses generated form the new image or data.
However, convolution with �nite discrete �lters can be computationally expensive for large
multi-dimensional �lters.

Fortunately, the computation required to calculate multi-dimensional �lter responses can be
drastically reduced with separable �ltering techniques [31, 87, 71] if the �lter is separable.
Separability is de�ned as a Q dimensioned �lter being able to be produced from the outer
product (or convolution) of 1 < X ≤ Q �lters [31]. For a given �lter that meets these conditions
there are often multiple decompositions. However, for image processing we ideally want a �lter
that can decompose into its simplest components, Q 1D �lter components.

21

Filter separability and the associative property of convolution [31] allows a convolution opera-
tion with a Q dimensioned separable �lter F and data D to be decomposed into a convolution
with �lter F's separate components in any order. Assuming the �lter is perfectly separable:

D ∗ F = D ∗ (f1 ∗ f2 ∗ f3 ∗ ...fQ) fi is a separable component of F

= (D ∗ f1) ∗ (f2 ∗ f3 ∗ ...fQ) Q is the number of dimensions in F

·
·
·
= (D ∗ f1 ∗ f2 ∗ f3...fQ−1) ∗ (fQ)

This equivalence allows the separate �lter components to be applied to the data in any order
and still produce the same results of applying the original Q dimensioned �lter.

The advantage of separable �ltering is that the number of �oating point operations required to
compute the convolution operation is now signi�cantly reduced [31]. For the normal convolution
procedure, the �lter is size Fsize =

∏Q
i=1Xi where Xi is equal to the size of i-th �lter dimension

[87]. This �lter is applied to each voxel in the data set of size N and consequently computation
is proportional to O(N

∏Q
i=1Xi).

In contrast, separable �ltering convolves the Q 1D separated �lter components (each of of size
Xi) with the data in Q separate �lter passes. Thus the number of �oating point operations
is proportional to O(NXi) for a single pass and O(N

∏Q
i=1Xi) for the entire separable convo-

lution process [87]. Therefore the ratio at which operation complexity is reduced (theoretical
performance increase) with the implementation of separable �ltering is:

Operation Reduction Factor =

∏Q
i=1Xi∑Q
i=1Xi

Q,X ∈ N

If the �lter is uniform in all directions (isotropic), the reduction factor simpli�es to:

Operation Reduction Factor =
XQ

QX
Q,X ∈ N

Therefore, for isotropic �lters, the theoretical performance increase facilitated by separable �l-
tering implementations increases exponentially with the number of �lter dimensions and poly-
nomial growth to the Qth degree with �lter extent.

2.8 Summary

In this chapter, the theory and motivation behind the automated detection of neutral hydro-
gen (HI) sources in radio astronomy observations were discussed. The low probability of the
quantum spin �ip transition of hydrogen's electron which produces its characteristic emission
impedes its detection as it necessitates large gas volumes to produce a constant but relatively
weak signal. This relatively weak signal can be dominated by other sources of noise and signal
distortion.

Past and future HI surveys are discussed with a focus on the DINGO, WALLABY and LAD-
UMA surveys that are to be carried out on the SKA's precursor devices. The data produced

22

by these surveys is expected to be orders of magnitude larger than that of current surveys and
will represent a challenge to current automated source-�nder algorithms. The completeness
and reliability metrics achieved by current source-�nder software packages are dependant on
properties of the HI sources and noise in the observation. However, the DUCHAMP source
extraction package stands out as the arguably best source-�nder for the detection of point
sources.

We discuss the CPU technologies requires to maximise computational throughput on 'desktop'
hardware, namely instruction level parallelism, multithreading, simultaneous multithreading,
vector processing and multi-core CPUs. Three out-of-core computation libraries (Mmap,
Boost.Interprocess and Stxxl) and their implementations of e�cient out-of-core computation
for large data sets are discussed. Finally, we cover the theory behind separable �ltering, a
technique to improve the computational complexity of convolution procedures when certain
criteria are satis�ed.

23

Chapter 3

DUCHAMP

The data produced by the planned HI surveys on the next-generation of radio telescopes is
expected to be 103 to 106 times larger than current survey sizes (Chapter 2.5.2). Automated
procedures are required to extract objects of interest (sources) from this noisy radio data as a
manual approach would require infeasibly large time-frames. Several source-�nders have been
developed in response to the need of automated source extraction (Chapter 2.6). In the source-
�nder evaluations in Popping et al. [81], DUCHAMP emerged as a robust source-�nder that is
best suited for point source extraction and detecting source pro�les at low signal-to-noise ratios
[102]. This motivated DUCHAMP's further development into the Selavy source-�nder which
will form a part of the ASKAP HI survey software pipeline [58]. However, the procedures within
DUCHAMP (as is the case with many source-�nders) are computationally heavy and memory
intensive. High performance computing (HPC) solutions are required to scale the performance
of DUCHAMP source extraction to allow the planned HI surveys to be processed in practical
time-frames.

In this chapter, we discuss the speci�cs of the DUCHAMP source extraction package version
1.1.13 and the third party software required in its operation. This covers the various com-
ponents (functions) of this system and the algorithms that each component implements. We
expand on the à trous wavelet reconstruction algorithm, the most computationally heavy and
memory intensive algorithm within DUCHAMP and the focus of the remainder of this thesis.
Ine�cient and parallelisable components within the à trous algorithm are identi�ed to contrast
the redevelopment of these components discussed in subsequent chapters.

3.1 Overview of the DUCHAMP software pipeline

The DUCHAMP software was developed as an automated 3D source-�nder to extract sources
from radio spectral cubes [103, 104]. However, the package is su�ciently generalised to addi-
tionally handle 2D data, such as continuum observations, and 1D data for processing a single
spectrum. DUCHAMP is developed primarily in C++, with the majority of the functions using
templating (precision is equal to the input data), but utilises several low level ANSI-C libraries,
discussed below.

The strength of this software lies in its ability to suppress noise in an observation via pre-
processing in order to improve the reliability and completeness metrics (Chapter 2.6) of the
succeeding source �nding algorithm. This source �nding algorithm uses intensity threshold
techniques which make no assumptions on source shape and are well-suited for blind surveys,

24

where position, shape and size are unknown. DUCHAMP can statistically de�ne the threshold
used to reduce the number of false positives during source detection. This allows for a good
balance between completeness and reliability, as maximising for one metric often reduces the
other. However, thresholding approaches come at the cost of source parametrisation reliability
as the entire extent of sources may be missed if a portion of the emission lies beneath the
intensity threshold [102]. This is partially recti�ed with the DUCHAMP functionality to grow
found sources to a second lower threshold but is still inferior to parametrisation in alternative
source-�nders.

The DUCHAMP package consists of seven main phases (Fig 3.1) of operation: loading in-
puts, optional pre-processing, searching (thresholding), source merging, undo pre-processing,
parametrisation and generation of output. The majority of these phases consist of multiple
algorithm alternatives which can be selected by the user to con�gure and �ne-tune the source
extraction process. In the �rst phase, data is �rst read from a �le and the relevant parameters
that govern the execution speci�cs are set. Optional preprocessing implements procedures to
both suppress noise/features in the data set to improve source detection and reduce memory
use (under speci�c conditions). This pre-processing includes the computationally heavy à trous
wavelet reconstruction algorithm which is the focus of this thesis. The Searching step involves
de�ning a threshold which is used to test for a voxel signi�cance as true source emission and
eliminate background noise. Signi�cant voxels are then merged into complex 3D objects (in
the case of spectral cubes) which are further validated with respect to size in order to elim-
inate small high-intensity noise spikes. This is followed by the undoing of preprocessing to
ensure that the correct source parameters are measured by DUCHAMP (e.g. �ux). Finally,
parametrisation of detected sources measures all relevant source properties and outputs them to
the source catalogue along with graphical outputs. We discuss the speci�cs of each DUCHAMP
component, as follows.

Figure 3.1: Overview of the DUCHAMP source extraction software pipeline. Figure adapted from source:
Whiting, M., DUCHAMP: a 3D source-�nder for spectral-line data, 2012 [104].

25

3.1.1 Loading Input

This DUCHAMP component handles the loading of image data and the reading of the param-
eter �le that de�nes the variables and algorithms used in execution. Image data is usually in
the form of a 3D Flexible Image Transport System (FITS) [98] cube or similar format that
conforms to the FITS standard. However, DUCHAMP is general enough to accept 1D spectral
and 2D continuum data in this format. The FITS format is the most commonly used format
in astronomy and is supported by many of the source-�nders reviewed in Chapter 2.6. How-
ever, we note that the use of FITS is in decline as currently it does not scale to the size and
complexity of modern astronomical data sets [92].

To read observational data from the FITS �le, the DUCHAMP package uses the CFITSIO
library [76, 78] which abstracts the format speci�cs. The multi-threaded loading functionality
of CFITSIO is not used by the sequential DUCHAMP package v1.1.13. At present, CFITSIO
limits �le size to approximately 6 TB (231 2880 byte FITS �le blocks) [77]. This maximum �le
size may restrict FITS �le use in future SKA surveys but is su�cient for the ultra-deep and
ultra-wide surveys on ASKAP and MeerKAT where the largest spectral data cube expected is
782 GB (WALLABY survey) [52]. Metadata concerning the considered observation, such as
beam size and correlation between voxels, is accessed in the FITS �le header using the WCSLIB
library [15]. I/O performance with CFITSIO and WCSLIB is a trivial contribution to the total
run-time of the DUCHAMP system as data/metadata is only read once.

DUCHAMP allows for preprocessed data, discussed below, to be accepted as input to prevent
recalculation of computationally expensive noise suppression algorithms when performing mul-
tiple searches with di�erent search criteria. These criteria include stricter/looser thresholds
and changes to the allowed minimum distance between two objects to consider them the same
object to re�ne searching for faint or fragmented source pro�les.

3.1.2 Preprocessing

Preprocessing is an optional DUCHAMP component that precedes the DUCHAMP source ex-
traction functionality. This component contains a variety of procedures to improve both the
computational performance and the e�ectiveness of the source extraction process [104, 103].
Procedures which increase computational performance attempt to exclude regions of data in
order to both reduce memory use and decrease the number of voxels that require processing. In
contrast, the majority of procedures which improve source extraction e�ectiveness add signi�-
cant amounts of computation. These procedures suppress noise and large scale features in the
data to improve the completeness and reliability metrics of the succeeding source extraction
procedures. However, these methods only suppress noise and do not remove it completely.

System performance is improved using the Channel Exclusion and Trimming procedures. Chan-
nel Exclusion reduces the amount of computation by de�ning a continuous range of channels
(or frequency slices) to be ignored. This is useful when a large number of sources are expected
in a frequency range of non-interest which would slow down the subsequent O(N2) source-
�nding amalgamation procedures, discussed below. This function is commonly used to ignore
the Milky Way emission bands. The Cube Trimming procedure minimises memory use when
data contains substantial padding information. This padding data (blanked voxels) ensures that
non-cubic observations are stored correctly in the FITS spectral data cube (of a particular size).
Such blanked voxel edges are common in interferometric data where multiple circular beams
have been combined into a single mosaic. Trimming removes the majority of this padding to

26

reduce memory use and the number of voxel validity checks required throughout the remaining
software pipeline.

Procedures to improve source �nding completeness and reliability include spectral baseline
removal, spectral smoothing, spatial smoothing and wavelet reconstruction. We note that only
the spatial smoothing is templated and potentially executes at double precision whilst the
remaining procedures are cast to single precision. Spectral baseline removal uses the wavelet
reconstruction algorithm, discussed below, to remove large bright spectral features to potentially
improve the detection of faint objects. The signi�cant features at the two largest scales (size of
object considered) are removed temporarily and replaced in the �nal steps of the DUCHAMP
pipeline.

Spatial smoothing uses a 2D elliptical Gaussian kernel (size and orientation de�ned by the user)
to smooth each channel map of the input data set separately. Similarly, spectral smoothing is
implemented by convolving with a Hanning �lter [94], a simple averaging �lter to smooth each
spectrum individually. The width of this �lter (size de�ned by the user) de�nes the degree of
smoothing that occurs. Both of these procedures are e�ective at suppressing noise when the
respective spatial and spectral extents (approximate) of the sources of interest are known [104].
However, both smoothing techniques focus on a single object size which makes them unsuitable
for noise suppression in blind surveys where source extent is potentially diverse.

The wavelet reconstruction procedure improves on the previous two smoothing techniques by
implementing the à trous wavelet reconstruction algorithm. The algorithm is considered to
be a vital component [81, 102] in improving DUCHAMP source extraction's completeness and
reliability. This algorithm consists of an à trous wavelet decomposition where features at each
scale are thresholded for signi�cance. Signi�cant features generate the reconstructed/smoothed
spectral cube where noise in the data has been suppressed. DUCHAMP implements 1D, 2D
and 3D reconstruction options to cater for multi-dimensional input data. The signi�cance
threshold is de�ned using the noise statistics of the data set which can be measured with either
normal or robust statistical measures. The mean and standard deviation (normal statistics) are
a computationally light way of measuring the noise level and spread in the data but are easily
biased/distorted by bright sources. Robust statistics, namely the median and Median Absolute
Deviation from the Median (MADFM) [80], are less sensitive to outliers but require a partial sort
of the data which is usually more computationally expensive than standard statistics. However,
the computational costs are relatively small in comparison to the wavelet decomposition itself
which is both computationally and memory intensive (especially in 3D reconstruction) and is
the main cause for the à trous algorithm taking up the majority of run-time in DUCHAMP
(Chapter 6.1.3). A more detailed discussion of the speci�cs of the à trous wavelet reconstruction
algorithm is given in Chapter 3.3.

3.1.3 Searching (thresholding)

DUCHAMP's Searching component extracts (or separates) sources from noisy data; background
noise will still exist after the optional noise smoothing preprocessing algorithms. However,
preprocessing is useful in decreasing the number of false detections (Type I error) caused by
noise and the number of valid sources missed (Type II error). The DUCHAMP search algorithm
tests each individual voxel's �ux value against an intensity threshold to categorise the voxel
as a likely source or background noise. These simple voxel detections are built into complex
structures in subsequent stages of the DUCHAMP pipeline, discussed below. The per voxel
thresholding used in DUCHAMP is in contrast to source �nding techniques such as statistical
detections and match-�ltering which test the likelihood that a particular region is a valid source.

27

The DUCHAMP package speci�es three methods to determine threshold: namely, �ux value
threshold, signal to noise threshold and the False Discovery Rate. The �ux value is speci�ed
by the user and is an absolute threshold. The signal to noise ratio threshold uses a multiple
(user de�ned) of the noise spread in the data and consequently partially adjusts to the noise
properties speci�c to that observation. The noise spread is determined by the image statistics
using either normal or robust statistics, discussed above.

The False Discovery Rate (FDR) [9] algorithm is a fully automated solution that de�nes a
statistical threshold that controls the amount of false discoveries (Type I error) during searching.
De�ning higher thresholds reduces Type I error in the searching process but can dramatically
increase the number of fainter sources missed (Type II error). The FDR algorithm constrains
Type I error whilst keeping Type II error low, e�ectively �nding a good balance between
these error metrics. Additionally, Type I error is reduced in the later stages of DUCHAMP
through further validation procedures, discussed below. The speci�cs of the FDR algorithm
are discussed in Chapter 3.2.

3.1.4 Source Amalgamation

The source amalgamation component of DUCHAMP forms 3D source objects from the individ-
ual �source� voxels detected in the preceding searching component. This occurs in two stages: a
connected-components scan, which searches either the spatial or spectral domains for connected
voxels, and a further merging procedure to allow for the formation of 3D objects and to merge
nearby objects based on user criteria. Faint source edges are then detected and added to these
objects before undergoing further validation procedures.

DUCHAMP implements two connected-components algorithms which search either the spatial
or spectral domains for connected voxels. The spatial algorithm is a Lutz 2D connected-
components [64] procedure, a raster scan that builds up 2D connectivity by scanning each row
in a channel map and checking adjacency with objects on the previously scanned row. This
generates all possible 2D objects in a particular channel map and is applied to each channel
map separately which makes this procedure highly parallelisable. Spectral scanning uses a
similar process but only considers individual spectra and has the potential to initially �nd
many distinct objects which slows down the subsequent merging procedure.

Complex 3D objects are built up by merging 1D spectral objects or 2D spatial objects that
are in close proximity or adjacent to one another. Close proximity is de�ned by the user as
the maximum distance allowed between two source objects (in both the spatial and spectral
domain) for them to be considered as the same object. Merging follows a two-pass procedure:
an initial check when an object is added to the list of objects which is followed by a more
rigorous O(N2) comparison and merging process [104]. Due to this algorithm's computational
complexity, heavily populated observations can be extremely computationally expensive.

The detected source objects then have the option to �grow� down to a lower secondary threshold
(user de�ned absolute threshold or signal-to-noise ratio). This procedure allows for the valid
faint edges of a source to be detected which improves source parametrisation. If the growing
procedure is performed it is followed by an additional merging operation.

Finally, the object list undergoes a pruning procedure which eliminates all objects that are
insu�ciently large in both spatial and spectral extent. This process removes any bright single
voxel objects which are generally spurious detections of noise spikes. This pruning further
reduces the Type I error in detection to below that statistically enforced in the False Discovery
Rate algorithm.

28

3.1.5 Parametrisation and Output

The �nal step in the DUCHAMP pipeline is parametrisation where the useful properties of the
detected sources are calculated. This component requires the reversal of certain preprocessing
procedures before execution, namely Cube Trimming, Inversion and Baseline removal. The
exact techniques used to parametrise all detected sources are discussed in Whiting 2010 [103].
The variables that are calculated for each source are:

• Peak position - location of the source object described as the voxel with the highest �ux
value.

• Average position - the central position of the source, furthest away from all source edges.

• Centroid position - �ux weighted average for all voxels in each dimension.

• Source size - the extent of the source in the spatial and spectral directions.

• Number of voxels - the number of voxels that make up the detection.

• Velocity Width - the full velocity width of the detection, aka its extent in velocity units.

• Noise characteristics - the spread and level of noise before and after preprocessing.

• Peak Flux - the peak �ux over a source.

• W50 - width of source at 50% peak �ux.

• W20 - width of source at 20% peak �ux.

• Total Flux - the sum of all �ux values in a particular source object.

Additional outputs include a FITS cube that contains the detection mask of detected sources
and preprocessed data. The latter is to avoid having to redo computationally heavy prepro-
cessing when performing source extraction with di�erent variables to �ne-tune the process.

Graphical outputs include both a spatial 0th moment map which shows the channels of each
object and spectral plots which displays the entire spectrum of each detection at all spatial
coordinates and the 0th moment of that spectrum. The actual detection within the spectrum
is indicated.

3.2 False Discovery Rate Threshold

In this section we discuss the speci�cs of the False Discovery Rate (FDR) algorithm and mo-
tivate its use in the Searching (thresholding) step of the DUCHAMP pipeline by contrasting
this algorithm to the common statistically de�ned threshold alternatives. In the strictest sense,
statistical thresholding is a multiple hypothesis test where each voxel is tested to �t the model
to some probability [9]. A voxel intensity is tested against the null hypothesis to determine
whether it �ts the Gaussian noise model; a rejection of the null hypothesis classi�es a voxel
as a likely source. However, when performing this test, the presence of noise can result in
both Type I error (false discoveries) and Type II error (the non detection of valid sources)
[9, 104]. De�ning a high threshold reduces the probability of a false discovery but may result
in many valid sources being missed. The FDR algorithm �nds a reasonable balance between
these metrics. However, we note that the DUCHAMP FDR implementation is computed at
single precision only.

29

The four common statistical alternatives to FDR are: 2σ, 3σ, Family Wise Error Rate (FWER)
and the Bonferoni threshold [9, 69]. In the 2σ approach, a voxel is compared against a threshold
of 2σ, where σ is the measure of noise spread in the data, to constrain the probability of false
detection to approximately 5% (p-value = 0.05). The 3σ approach is a stricter threshold which
reduces the probability of false detections further. However, the probability of error in these
techniques grows with the number of voxels in a particular data set [69]. The large data sets
expected in HI surveys will likely result in Type I error that is unacceptably high.

The FWER and Bonferoni methods prevent the error increase seen in 2σ and 3σ by adjusting to
data size. The Bonferoni threshold corresponds to a p-value of α

N
where N is data set size. This

threshold is particularly strict and results in the non-detection of many valid sources (Type
II error). The FWER threshold attempts to control Type I error while maintaining a small
probability of Type II error by constraining the probability of �nding one false source to α.
Unfortunately this technique can be considered too strict. The FDR is similar to FWER as
it constrains Type I error to a set α instead of trying to reduce it [69]. However the FDR
threshold [69] results in a lower probability of Type II error than the FWER (under speci�c
conditions, equal otherwise) and Bonferoni algorithms. Additionally, the FDR algorithm can
easily account for correlation between voxels which is common in radio observations.

The algorithm to calculate the threshold is as follows [103]:

1. Convert all voxel intensity values to their corresponding p-values. This is the probability
of getting a voxel intensity of this magnitude assuming the null hypotheses that the voxel
is not a source is true.

2. Order the p-values in ascending order.

3. If the data is correlated we de�ne the normalisation constant CN as CN =
∑CR

i=1(i
−1) where

CR is de�ned as the product of Beam size (B) and the number of correlated channels
(C). Beam Size is calculated from the major and minor beam axis information found in
the FITS header �le. If the data is uncorrelated CN is set to 1.

4. α is set to p-value the desired error rate (user de�ned). The default value is set at 0.05.

5. Calculate d = max{j : Pj < jα
CNN
}. D is equal to the maximum index (j) from the

ordered p-value list where the stated inequality holds. Pd (position D on the ordered
list) is the p-value threshold at which we reject the hypothesis that a voxel belongs to the
background and is therefore a source voxel.

6. The p-value Pd is converted to an intensity threshold value. All voxel intensities are
tested against this threshold. Voxel intensities exceeding this threshold are considered
source voxels.

The majority of computation time is concentrated to Steps 2 and 4. Although the procedure
to convert the p-value threshold (Step 3) to an intensity threshold is brute force, it is only
calculated once and the amount of computation required does not scale with problem size. The
dependencies between algorithm steps and within each step prevent parallelism.

3.3 The à trous Wavelet Reconstruction algorithm

In this section, we discuss the speci�cs of DUCHAMP's à trous wavelet reconstruction al-
gorithm. This discussion will include identi�cation of areas suitable for parallelism and the
memory use of this algorithm. The à trous wavelet reconstruction algorithm [102] improves

30

the reliability and completion metrics for DUCHAMP source extraction by smoothing noise in
observational data. This smoothing procedure considers a range of scales (size of object consid-
ered) to ensure e�ective noise suppression in blind surveys where potentially detected sources
sizes are unknown. However, we note that the DUCHAMP implementation of this algorithm
is computed at single precision only.

The reconstruction algorithm uses the discrete à trous wavelet decomposition (or transform) [86]
which convolves low pass �lter banks with the data to extract information (wavelet coe�cients)
at di�erent scales. These wavelet coe�cients, or �ltered values, are thresholded for signi�cance
in order to discard erroneous structures at every scale. The range of scales considered can
be de�ned by the user, with a default minimum scale of 1 and a maximum scale of S =
log2 (dsmall) − 1 where dsmall is de�ned as the size of the smallest dimension of the considered
data set. To retrieve all the signi�cant features within the data, it is necessary to repeat this
process on the input data until only noise remains.

Three versions of the à trous wavelet reconstruction are implemented in DUCHAMP, namely
Spectral (1D), Spatial (2D) and 3D reconstruction. The most commonly used in HI source
extraction is 3D reconstruction as it smooths spectral cubes containing objects with a 3D
extent. These three reconstruction versions are very similar and only di�er by the number
of dimensions in the low pass �lter used to convolve the data at each stage. The �lters used
in this convolution must adhere to speci�c criteria [86] in order to generate a valid à trous
decomposition. The �lters provided in DUCHAMP are a B-spline �lter (1

16
, 1
4
, 3
8
,1
4
, 1
16
), a Haar

�lter (0, 1
2
, 1

2
) and triangle �lter (1

4
, 1

2
, 1

4
) for 1D reconstruction.

To generate the higher dimension �lters used in 2D reconstruction, the DUCHAMP imple-
mentation convolves a single 1D �lter with its transpose to produce a �lter with one extra
dimension. This is repeated to generate the 3D reconstruction �lter which is de�ned formally
as F3D = F ∗F T ∗F T ′

where F T and F T ′
are transposes of the row vector V where the resultant

1D �lters are column aligned and spectral aligned respectively.

Multi-scale convolution (Fig 3.2) is facilitated by �growing� the �lter for each increase in scale
by increasing the distance between �lter elements to (2scale−1), with a distance of 1 indicating
adjacent voxels.

Figure 3.2: Memory access pattern of the 2D convolution �lter for Scales 1-3. Figure taken from source:
S.Westerlund. Analysis of the parallelisation of the DUCHAMP algorithm, ICRAR. 2009 [101].

31

Algorithm 3.1 describes the à trous wavelet reconstruction algorithm steps, covered in detail
in both the DUCHAMP Users Guide [103] and Westerlund [101] assessment paper. Fig 3.3 is
a graphical representation of this algorithm which shows the dependencies between algorithm
components and their procedure type classi�cation, discussed below. The steps within the à
trous wavelet reconstruction algorithm can be classi�ed into �ve procedure types: load, update,
statistics, convolution and miscellaneous. Load operations refer to the creation and population
of data structures whilst update operations refer to procedures that update the relevant data
structures after �ltering (includes signi�cance thresholding). Statistic procedures refer to the
statistical calculations required to estimate noise (spread and level) in the data, discussed above.
The robust statistical measures, namely the median and Median Absolute Deviation from the
Median (MADFM), are used to de�ne noise spread and level by default. The convolution
procedure refers to the multi-scale �ltering process, the memory access pattern of which is
further discussed below. Miscellaneous procedures refers to all operations that do not �t in the
above categories. For the remainder of this thesis, à trous wavelet reconstruction components
will be referred to by these types to di�erentiate between memory access patterns and avoid
discussion for every algorithm component when an overview is su�cient.

Algorithm 3.1. à trous wavelet reconstruction algorithm.

1. Set the array which will hold the �nal reconstruction to 0 (reconstruction array)

2. Calculate the initial noise statistics using the input array, which originally holds the
observation data.

3. Convolve input array with the chosen �lter to calculate the convolved array.

4. Calculate the wavelet coe�cients as the di�erence between the convolved and input arrays.

5. Calculate a threshold to test wavelet coe�cient signi�cance.

6. Add wavelet coe�cients to the reconstructed array if they are above the threshold.

7. Increase �lter scale by increasing the separation between �lter elements.

8. Repeat procedure from Step 4 using the convolved array as the input array. Stop when
the maximum number of scales to be computed is reached.

9. Add the remaining data in the convolved array to the reconstructed array. This provides
the so called �DC o�set� as the wavelet coe�cients (Step 4) have a zero mean.

10. Calculate the spread statistics (standard deviation) of the calculated di�erence between
the reconstructed array and input array (residual array).

11. Repeat algorithm from Step 3 until the residual spread between algorithm iterations
(Steps 3-10 representing a single iteration) is below a small value speci�ed in DUCHAMP.
The algorithm is run for a minimum of 2 iterations.

The main operation within à trous reconstruction is convolution (Algorithm 3.1, Step 3) which
requires the calculation of �lter responses, the sum of all �lter values which have been multiplied
with the underlying data. The central �lter element is required to be centred at each voxel
to calculate that particular voxel's �lter response. Consequently, computational requirements

32

are proportional to data set size and the number of elements in the �lter passed over the data
and thus 3D �ltering is expected to be computationally expensive. In the case of the B3-
Spline �lter (125 elements), 125 �lter operations are required per voxel for a single convolution
pass. A convolution pass is required for every scale within each iteration (repetition) of the
reconstruction algorithm which repeats until all signi�cant structure is found. This results in
reconstruction taking up to 95% [101] of total run-time. A lower bound of approximately 65%
of total run-time was achieved in our preliminary timing (Chapter 6.1.3) of DUCHAMP for
observations highly populated with sources, as the succeeding source amalgamation procedure
is (O(N2)).

Edge cases in the convolution procedure occur when a portion of the �lter extends beyond the
limits of the data set (centre of the �lter is within the data set limits). These cases are handled
by re�ecting the �lter position across the edge of the spectral cube so that valid spectral data
is accessed.

The high run-times of the convolution procedure are partially caused by the ine�cient memory
access pattern of �lter response calculations. Filter elements are adjacent for the �rst scale
considered and consequently access the underlying data linearly for each row of the �lter which
results in near optimal cache use. However, for scales larger than 1, �lter elements are separated
by increasingly large increments (Fig 3.2) which causes the data accessed by a row of �lter
elements to be split across several cache lines. This access pattern results in non-optimal cache
use which degrades performance.

The threshold (Algorithm 3.1, Step 5) used to test wavelet coe�cient signi�cance is generated
using the median of the produced wavelet coe�cients, the original noise spread, a user de�ned
signal-to-noise ratio (SNR) and a variable to account for the increased correlation of voxels at
progressively higher scales. The SNR threshold, if well-chosen, can suppress the random noise
in the observation data set to a large degree [104].

To avoid using additional memory to store the residual array (Algorithm 3.1, Step 10), mod-
i�ed statistical procedures are used. These procedures use both the reconstructed and input
array during calculation instead of de�ning an additional data structure to store the di�erence
between them.

The algorithm is repeated (Algorithm 3.1, Step 14) to ensure that all signi�cant structure
is removed from the observation data and added to the �nal reconstructed array. The algo-
rithm stops when the spread of the remaining noise in the observation data does not change
signi�cantly.

For all steps within Algorithm 3.1, non-valid voxels (padding or corrupted observations) are
ignored by producing a Good Voxel Boolean mask against which all voxels are checked.

The amount of allocated memory required to run the à trous wavelet reconstruction is relatively
high when compared to the rest of the DUCHAMP components. This algorithm requires 4 single
precision data structures (includes input data) each with the same number of elements as the
input spectral data cube. Consequently, the memory allocated for one data structure will be
equal to and half that of single and double precision FITS spectral data respectively. The
modi�ed statistics used in Step 10 of Algorithm 3.1 prevent the normal statistical procedures
from requiring an additional data structure (residual array). However, to calculate robust
statistics whilst preserving the data, an additional temporary data structure equal in size to
the input data structure is required. Additionally, the Good Voxel Boolean mask required to
check validity requires a byte of memory for every voxel in the data set. If we ignore the
relatively few allocated variables required by this algorithm we can estimate the data used in
the à trous wavelet reconstruction algorithm. The memory use for the single precision à trous

33

wavelet reconstruction and a hypothetical double precision implementation is given as follows:

Memory Use (single precision) = MainStructures+GoodV oxelMask + Statisticstemp

= 4(N ∗ sizeof(float)) +N + (N ∗ sizeof(float))

= 17N(+4N) bytes

Memory Use (double precision) = 33N(+8N) bytes

Thus the single precision DUCHAMP implementation processing a data set of 4 GB (109 voxels)
requires ∼ 20 GB of allocated memory. Similarly, a data set with the same number of elements
(109 voxels) computed at double precision would require ∼ 38 GB of allocated memory. The
memory use of this implementation of the à trous wavelet reconstruction algorithm cannot be
further reduced.

The à trous wavelet reconstruction algorithm, as a whole, is not perfectly suited to parallelism.
Data dependencies (Fig 3.3) exist between the majority of the algorithm steps which prohibits
parallel execution of tasks. The only procedures that could execute in parallel are the signi�-
cance thresholding and the �Update data cube values using wavelets� steps (Fig 3.3). The latter
operation is a extra update procedure (computationally light) that arises from DUCHAMPs

Figure 3.3: Overview of the à trous wavelet reconstruction algorithm. Dependencies between components
are indicated via red arrows. Components are classi�ed into �ve classes of procedure based on their mem-
ory access pattern; load, convolution, Update, statistics and miscellaneous. Figure adapted from source:
S.Westerlund. Analysis of the parallelisation of the DUCHAMP algorithm, iVec Research Internships,
ICRAR. 2009 [101].

34

implementation of Algorithm 3.1 in order to avoid using an extra data structure. Task par-
allelism at this point would result in trivial parallel performance increases. However, we note
that both the Update and convolution procedures involve the execution of one or more �oating
point operations per voxel. Consequently, these procedure types are embarrassingly parallel
and have the potential to achieve large performance increases with parallelism.

3.4 Summary

In this chapter, we provide a detailed overview of the DUCHAMP software pipeline. In addition,
we discuss the False Discovery Rate threshold and à trous wavelet reconstruction algorithms
in detail. This discussion includes the dependencies between algorithm components and the
amount of memory allocated required during processing.

35

Chapter 4

Design

4.1 Introduction

Traditionally, extraction of astronomical source emission from noisy observational data has been
performed manually. However, as survey size grew this approach quickly became infeasible and
required the implementation of automated source-�nding solutions in order to process large
past and on-going HI surveys in practical time-frames.

The future HI ultra-deep and ultra-wide surveys proposed for the SKA precursor devices are
expected to generate data sets in the Terabyte-Petabyte size range; orders of magnitude greater
than those produced by current surveys. Currently, automated source-�nding solutions will take
infeasibly large time-frames to locate and parametrise radio sources within these large quantities
of expected survey data. High-performance computing solutions in conjunction with automated
source-�nding software is required to produce scienti�c outputs in practical time-frames.

Automated source extraction software packages, such as Selavy which will form part of the
ASKAP software pipeline, are being developed for use in high-performance supercomputing
solutions in order to process large survey data in practical time-frames. However, institution
run processing may be limiting as it does not allow individual astronomers to perform their own
searches with di�ering search parameters and prohibits alternative source extraction packages
from being used. Whilst this limitation can be overcome by remote access to large clusters or
distributed systems, there will exist circumstances where access to these devices is limited. An
alternative to both these options is the use of high performance personal `desktop' hardware.
The available computational resources on a modern CPU have the potential to perform high
performance source extraction.

The aim of this dissertation is to assess whether low-cost, high-performance parallel `desktop'
hardware can scale to the computational needs of source extraction procedures processing large
ultra-deep and ultra-wide HI survey data. High performance computing on `desktop' hardware
requires the e�cient use of its relatively few computational resources in conjunction with op-
timisations to the original source extraction algorithms. In addition, the memory allocation
(the working set of memory) required for large data problems often exceeds the relatively small
amount of main memory available on `desktop' hardware and requires that a portion of the
data is stored on disk (out-of-core computation) and pages into memory when necessary. This
disk access is slower by orders of magnitude than main memory access and can throttle overall
system performance. This potential performance bottleneck had to be overcome in order for
computation of large data sets to be feasible.

36

The assessment of high performance source-�nding on `desktop' hardware was conducted by
attempting to accelerate DUCHAMP's à trous wavelet reconstruction algorithm and extending
the developed systems functionality to handle out-of-core computation e�ciently. This multi-
scale wavelet smoothing algorithm algorithm was selected for performance enhancement as it
is a vital component of DUCHAMP and greatly improves the reliability and completeness of
the DUCHAMP (and potentially other) source extraction packages by suppressing noise in the
observational data. Additionally, this algorithm is both computationally heavy (contributing
65-95% of total DUCHAMP run-time, Chapter 3.3) and memory intensive (utilising 5 times
the observational data set size in allocated memory).

Our task was to develop a high performance à trous reconstruction implementation through
the optimisation of speci�c algorithms within the reconstruction procedure and the optimal use
of CPU hardware resources, speci�cally SIMD instruction sets (Chapter 2.7.1) and multi-core
parallelism. Algorithm optimisation included the introduction of Separable Filtering techniques
(Chapter 2.7.3) to reduce the computational complexity of the convolution �ltering procedure
which takes up the majority of à trous reconstruction run-time (Chapter 3.3). The SIMD
instruction sets (Chapter 2.7.1) of modern CPU processors exploited the inherently parallel
components of the à trous reconstruction algorithm through vector instruction parallelism.
This SIMD parallelism improves single core performance by concurrently executing a single
instruction on multiple data to increase CPU throughput. We further extended the exploitation
of the à trous algorithm's embarrassing parallelism by developing a multi-core CPU parallel
implementation. Both the performance increase with increased number of computing cores
utilised and the performance contributions of hyper-threading technology were investigated.

The prototype was additionally required to overcome the disk access bottleneck of the `desktop'
hardware memory hierarchy by e�ciently managing the high memory use of the à trous wavelet
reconstruction algorithm. This performance can generally be lessened by dividing the data
into segments and processing each segment individually, reducing the overall amount of disk
transfer. However, strong dependencies in the à trous algorithm between voxels in �ltering
operations (dependence grows with increased �lter scale) and global de�nition of survey noise
(Chapter 3.3) would signi�cantly increase memory use and memory transfer to disk. Instead
three popular external memory management (out-of-core computation) libraries, namely Mmap,
Boost and Stxxl, were integrated into the prototype system design to mitigate the problem of
slow out-of-core computation. These libraries allow extremely large working sets of memory
(the memory allocated to a process), that exceed the size of physical memory and swap space,
to be addressed by de�ning dedicated swap space separate to operating system-managed swap
space Furthermore, these libraries have the potential to amortise the cost of disk access and
increase I/O performance by utilising alternative paging schemes. System performance was
to be optimised both for relatively small data sets, with memory use completely in-core, and
larger data sets, with signi�cant out-of-core memory allocation.

Although the focus of this work is high performance source extraction on `desktop' hardware
only, our developed system components are intended to be general enough for use in larger
parallel computing solutions. The memory management solution was only intended for systems
with insu�cient fast-access memory and slow secondary storage.

Thorough performance pro�ling and validation testing was required in order to assess system
improvements and to ensure that changes to the DUCHAMP implementations did not a�ect
output. Testing was restricted to `desktop' hardware to assess system performance on hardware
with relatively small amounts of main memory.

In this chapter, we further discuss the goals of this dissertation and the prototype system de-
signed to accomplish these objectives. We de�ne constraints for prototype system development

37

to reduce the scope of this work. We describe our approach to system design and provide
an overview of DUCHAMP functionality included in the prototype test system. We specify
the design decisions and techniques used to optimise performance for each of the prototype
system's main modules (encapsulated components). Furthermore, we describe the design of
testing procedures for both validation and performance assessment.

4.2 Goals

The main aim of this work was to develop a high performance version of the DUCHAMP à
trous wavelet reconstruction algorithm which would dramatically increase computational perfor-
mance and handle large data volumes e�ciently on `desktop' hardware. This high performance
prototype would evaluate whether redevelopment of the DUCHAMP source extraction package
and the use of high-end `desktop' hardware is su�cient to process large HI observational data
in practical time-frames. System design included multiple approaches to achieve this goal. To
assess the contribution of each of these design approaches or techniques, we de�ned four main
research questions:

• Can we improve the e�ciency of the à trous wavelet reconstruction for a single core CPU?

• Can Intel CPU SSE commands facilitate SIMD execution in this algorithm and further
increase performance for the single-threaded case?

• Can we accelerate these processes by utilising parallel `desktop' multi-core CPU hardware?

• Can slow disk access on `desktop' hardware be mitigated with memory management to
allow for e�cient computation of large data sets?

The goals of this work would be reached successfully when the prototype system's performance
is an order of magnitude greater than the original DUCHAMP implementation and system per-
formance scales linearly with an increase in CPU cores. Additionally, the memory management
solutions used to mitigate slow out-of-core computation would be considered successful when
performance is comparable between in-core and out-of-core data sets.

4.3 Assumptions and Constraints

The scope of this work was potentially very large, and consequently development and assessment
could have taken infeasibly long time-frames. In order to reduce the scope of this work and
prototype design, we constrained the prototype design, as follows.

System design was restricted to a subset of the DUCHAMP software system, discussed be-
low.This functionality subset included the à trous wavelet reconstruction algorithm, used for
noise suppression within the DUCHAMP software, which was the only algorithm considered for
further development and evaluation in this work. All other functionality was included either to
correctly produce input/output for this algorithm or to assist in validation.

All system input parameters to the developed algorithms were kept consistent with the default
DUCHAMP values when possible. All output generated by the prototype system was required
to be identical (up to double precision) to the output generated by the DUCHAMP à trous
wavelet reconstruction algorithm or proven to produce more accurate results.

38

The input data for system testing was restricted to radio spectrum observational data (astro-
nomical in origin) recorded by radio telescopes or interferometers. These observations were
stored as spectral data cubes in the FITS �le format [42, 79, 98], a current industry standard
which the DUCHAMP software takes as input. Input data set size was restricted to 109 voxels
(3.7 GB in single precision). This size was su�cient to test out-of-core computation due to the
high memory use of the à trous wavelet reconstruction algorithm. Testing with data sets larger
than 109 voxels would have caused assessment (timing) to take infeasibly long time-frames.

The prototype system procedures were required to keep all observational data in the image
space. Although fast and accurate noise techniques exist for noise mitigation in the UV-plane,
we did not consider them in this work. High-performance improvements were restricted to the
algorithms within the DUCHAMP source extraction package to ensure valid results and fair
comparisons of performance.

The prototype system was required to operate on personal computing systems, running typical
`desktop' commodity hardware. This hardware system was expected to have a multi-core CPU
with SSE2 functionality, have at least 2 GB of main memory and possess a relatively large
amount of secondary storage (> 100 GB). Smaller hardware systems were considered infeasible
for any large scale computation and subsequent testing.

Parallel distributed computing models were not considered, as this work is restricted to stand-
alone workstation systems only.

The developed system was required to run on the Unix-compatible operating system. This
design decision was motivated by the prevalent use of Linux and Mac OS systems in the
Astronomy research community.

Run-times for the various procedures within the à trous wavelet reconstruction algorithm are
on the order of seconds to hours. Therefore, millisecond timing was assumed to be su�cient
for accurate timing.

4.4 Approach and general design decisions

Development of the prototype system followed an iterative approach where functionality and
consequently complexity were added in four distinct stages. This would reduce project risks
associated with scoping issues, as a functional system for assessment and research would be
obtained even if later stages were abandoned. Furthermore, this iterative development would
allow for strict assessment of the validity and performance contributions introduced at each
stage of development. The four stages comprised of:

1. A sequential CPU implementation of the considered DUCHAMP algorithms.

2. Optimisation for the single core CPU through algorithm redesign and better use of hard-
ware resources.

3. Development of multithreaded CPU implementations to facilitate parallelism and reduce
computation time.

4. Integration of memory management libraries in order to optimise prefetching of data from
disk and enable e�cient computation of large data sets.

Both the single core optimisation and memory management stages entailed the development of
several competing algorithms in an attempt to maximise system performance. The performance
of the competing algorithms were compared to determine the optimal solution at each stage.

39

However, it was di�cult to predict if the use of the locally optimal procedures would result in the
best overall system performance. Testing included the evaluation of all possible combinations
of developed procedures to determine optimal overall system performance.

The design approach and testing procedures for each of four stages of development are detailed
below.

Sequential CPU: The subset of DUCHAMP functionality (Chapter 4.5) considered for in-
clusion in the prototype system, was reproduced directly. Double precision copies of all
DUCHAMP functionality computed at single precision only were developed. These functions
were used to comparatively test system accuracy as divergence of single precision results in the
latter development phases may represent an increase or decrease in system accuracy.

This development stage was validated against the DUCHAMP system to determine if the
removal of functionality not considered for inclusion in the prototype system, or incorrect im-
plementation, had a�ected the accuracy of the system. Initial pro�ling of DUCHAMP and our
sequential CPU algorithms allowed for the identi�cation of computationally-heavy components
and possible bottlenecks in the system. Additionally, this assessment provided a baseline of
performance against which subsequent improvements were compared.

Single core optimisations:

Many existing automated source extraction algorithms are developed with the principles of
correctness and accurate solutions outweighing that of system performance. Consequently,
algorithm computational performance is often sub-optimal and further development is required
to make these algorithms computationally e�cient and to make better use of available hardware
resources. A single core optimised à trous wavelet reconstruction solution was developed in two
parts: Separable Filtering techniques and Intel's SIMD instruction sets.

The à trous wavelet reconstructions' convolution procedure is computationally expensive and
constitutes up to 95% of algorithm run-time. We attempted to signi�cantly reduce the number
of �oating point operations (per voxel) in the convolution procedure by implementing Separable
Filtering techniques (Chapter 2.7.3). This technique replaces the large 3D �lter convolution
pass with three separate convolution processes, with each convolution pass utilising a single 1D
�lter. Three competing Separable Filtering techniques were developed to determine optimal
memory use for Separable Filtering convolution. The design speci�cs of the Separable Filtering
variations are discussed in Chapter 4.6.

Intel's SIMD instruction set, speci�cally the packed functions of SSE2 (Chapter 2.7.1), were
selected to exploit all parallel SIMD components of the à trous wavelet reconstruction algorithm.
The SSE 2 instruction sets' packed �oating point operations enables single instructions to be
executed concurrently on multiple data to achieve parallelism performance increases on the
single core CPU. The SSE2 instruction set was speci�cally selected because it supported both
by AMD and Intel processors [34]. This eliminated potential hardware dependencies within the
prototype system.

Multithreaded CPU implementations:

Multithreaded implementations of parallelisable DUCHAMP procedures were developed to fully
utilise multi-core CPU architectures and improve system performance. A comprehensive list of
the parallelisable components within the à trous wavelet reconstruction algorithm is discussed
in Chapter 3. We speci�cally utilise multi-core CPU architectures to facilitate parallel execution
as these devices are standard in modern `desktop' hardware. Additionally, these devices are
well-suited to parallelise the large amount of branching execution found in the à trous wavelet
reconstruction algorithm.

40

We selected OpenMP [19, 18], a platform-independent industry standard, to provide multi-
threading functionality. This avoided hardware dependencies for the developed system and
provide predictable performance for di�ering hardware set-ups. Dependencies between and
within the à trous reconstruction procedures were eliminated to increase the number of par-
allelisable components and maximise parallel performance. We aimed to develop a parallel
solution which would scale performance linearly to the maximum number of cores available on
any particular multi-core system.

All parallel solutions were evaluated to determine how well performance scaled with an in-
crease in the numbers of physical cores (and logical cores if applicable) and higher thread
counts used. These results were reported relative to each procedures optimised single-threaded
implementation and their corresponding single-threaded DUCHAMP procedure to allow for
the assessment of performance scaling with thread count and the total performance increases
relative to DUCHAMP.

Memory management integration:

Three popular external memory management libraries (Chapter 2.7.2), namely Mmap, Boost
and Stxxl, were integrated into the prototype system to mitigate the slow disk access associ-
ated with the out-of-core computation of large data sets. The inclusion of these libraries did
not require redevelopment of the preceding performance-enhancing solutions in the previous
developmental phases, discussed above. Performance of these memory management libraries
was optimised by utilising any available �ne-tuning parameters. Further memory management
design details are discussed below (Chapter 4.5).

Evaluation consisted of pairing these memory management libraries with all preceding performance-
enhancing solutions to determine which library (and associated paging scheme) is best suited
for improving the out-of-core performance of the à trous wavelet reconstruction algorithm. Ad-
ditionally, the performance improvements achieved through the �ne-tuning of these libraries
were isolated in order to investigate how performance changed with parameter selection and
di�erent paging schemes.

4.5 System Design

In this section, we describe the subset of DUCHAMP v1.1.13 functionality (Chapter 3) and
all additional system components that were included in the prototype system. The subset of
DUCHAMP functionality that we incorporated into the system explicitly excludes the latter
source extraction stages (Chapter 3.1.4) of source amalgamation, rejection and parametrisation
as they constitute a relatively small portion of total run-time for relatively sparse observations.
Additionally, all optional lightweight preprocessing functionality, that further improves the
e�ectiveness of source extraction or increases computation performance, was excluded from
the prototype system. These optional operations are excluded as their potential improvements
are highly variable and depend on the speci�cs (noise properties and shape) of a particular
observation. This includes a data set trimming procedure which reduces memory use when
data sets are only partially occupied, and baseline removal which improves results if the data
set contains large scale structures such as continuum ripples.

System components were restructured into a modular framework (Figure 4.1) to better en-
capsulate functionality. The phases indicated in Figure 4.1 correspond to the four stages of
development, discussed above, and indicate the level of development each system component
receives. Although DUCHAMP provides several procedural options within each system compo-

41

nent, we only incorporate the most computational expensive procedures which either provide
the best reliability and completeness metrics, or fully automate a portion of system function-
ality. Details pertaining to the actual implementation of these components are discussed in
Chapter 5.

Memory management control procedures were structured into a separate system component as
their implementation was independent of source extraction algorithm speci�cs. This is in con-
trast to the single core optimisation and multi-core implementations which were incorporated
within the noise suppressing à trous wavelet reconstruction algorithm.

Figure 4.1: Overview of the components within the prototype system.

The prototype system modules and the DUCHAMP functionality each would implement was
de�ned, as follows:

FITS Wrapper: The FITS �le reader abstracts the use of the CFITSIO library, a platform
independent C library for performing I/O with the Flexible Image Transfer System (FITS) data
format. Although a C++ interface exists (CCFits), it was considered an unnecessary further
abstraction from the intuitive ANSI-C routines.

The main task of this module was to e�ciently access the raw FITS format data and convert
it to real image voxel values for use in the prototype system. Additional metadata stored in
the FITS format's headers, which describes various properties of the observation, is accessed
directly using CFITSIO routines. This is in contrast to using the World Coordinate System
(WCS) library used by the DUCHAMP software package to abstract the access and storing of
metadata. The majority of the variables de�ned in the WCS are not required for our system
and adding the WCSLIB package would unnecessarily increase complexity. Default values in
the case of missing information are kept consistent with the DUCHAMP implementation.

The CFITSIO library was not considered for further development as the loading of data com-
prised a relatively small portion of DUCHAMP's total run-time.

42

Noise Suppression:

The DUCHAMP package implements several noise suppression procedures, namely 2D Gaus-
sian kernel spatial �ltering, spectral smoothing with a Hanning �lter [94] and the à trous
wavelet reconstruction algorithm. We selected the à trous wavelet reconstruction algorithm for
development, as it is the most e�ective, in terms of noise suppression, out of these procedures.
Additionally, this algorithm is computationally intensive and memory expensive making it an
ideal benchmark for high-performance astronomical computing solutions and techniques for the
e�cient handling of large data volumes on `desktop' hardware. The two alternative de-noising
algorithms were excluded due to their simplicity.

Whilst the DUCHAMP package provides wavelet reconstruction over 1 - 3 dimensions, our
system would only implement the 3D �lter convolution variant in order to reduce the amount
of development required. The 3D procedure is the most suitable for suppressing noise in HI
radio spectral data input as the sources of interest should extend in both spacial and spectral
dimensions. Additionally, this procedure is both the most computationally expensive wavelet
reconstruction variant and has the greatest potential for increased performance.

Noise Removal:

The noise removal module consisted of the False Discovery Rate (FDR) algorithm for deter-
mining the threshold used to separate valid sources from background noise. The two alternate
algorithms, the �ux value and Signal to Noise ratio threshold (Chapter 3.1.3), were not se-
lected due to their simplicity and dependence on user speci�ed input. The FDR thresholding
algorithm statistically de�nes a threshold that controls the number of false positives when ex-
tracting sources from noisy observational data. Although this algorithm can be considered
computationally expensive we did not consider it for performance enhancement due to time
restrictions. Instead this algorithm was to be used to further validate the accuracy of the à
trous wavelet reconstruction. The valid source data sets produced after thresholding would be
compared against their DUCHAMP counterparts. This was to ensure that deviations in output
resulting from �oating point arithmetic inaccuracies are identi�ed and eliminated.

Memory management:

This component consisted of integrating the three memory management libraries; Boost, Stxxl
and Mmap into the prototype system. We would compare these libraries on their ability to
mitigate the slow disk access bottleneck that arises from out-of-core computation. We utilised
the simplest data structure provided by each of the three integrated libraries in order to ensure
comparable assessment, discussed later in Chapter 5.4. These basic data structures allowed for
simpler integration with à trous wavelet algorithm which exclusively uses arrays to store all
data. The set-up and control procedures for these libraries are encapsulated into a separate
module to minimise the modi�cation of the à trous wavelet reconstructions source code and to
simplify changing the memory management scheme used. Multithreaded memory management
functionality was not included in the prototype system as only the Boost and Stxxl libraries
possessed this functionality.

4.6 Separable Filtering

Convolution is the most computationally expensive component of the à trous algorithm. In this
procedure, data observational data is convolved with a scalable 3D �lter to extract features of
a speci�c size. The number of �oating point operations (per voxel) in this procedure can be
signi�cantly reduced by implementing Separable Filtering.

43

To simplify convolution with Separable Filtering, the 3D �lters within DUCHAMP must be
able to be expressed as the convolution of two or more simpler �lters (separability) (Chapter
2.7.3). All DUCHAMP �lters with two or more dimensions meet this criterion of separability,
as higher order �lters are generated at run-time by convolving two or more 1D �lters. Separable
Filtering decomposes the 3D �lter convolution found in DUCHAMP into a three pass convo-
lution algorithm which uses separated 1D �lters orientated in the row, column, and spectral
directions respectively.

Figure 4.2: The Separable Filtering algorithm variants. Shown are the �lter orientations and direction
of propagation for each convolution for all three separable �lter algorithm variants. The direction of
propagation is shown by the �rst three �lter placements labelled �rst (yellow), second(red) and third
(blue). The number of the �lter placement is used to indicate the central �lter position.

44

Separable Filtering should theoretically increase performance by a factor of X3

3X
, where X is

the size of any particular �lter dimension (all DUCHAMP �lters have equal dimensions). The
two �lters implemented in DUCHAMP, namely the 3D Haar of size 3 and B3-Spline �lter of
size 5, result in a theoretical speed-up of 33

3(3)
= 3 and 53

3(5)
= 8.3̇ respectively. This reduction

in operations holds for all �lter scales utilised in the multi-scale à trous reconstruction as the
number of �lter elements (and convolution operations) is constant. The only disadvantage
to this algorithm is the increased memory required to store the intermediate output (�lter
responses) between each of the separable �lter passes.

The �lter responses generated for each of the separated �ltering passes are independent of
the direction at which their respective 1D �lter is propagated over the data. This allows for
the development of multiple Separable Filtering convolution variants which produce distinct
memory access patterns as a result of di�ering �lter propagation directions. Three Separable
Filter variants were designed (Fig 4.2), which vary only with respect to their memory access
patterns, in order to determine the propagation directions that would result in optimal memory
use. All three variants share the same �rst convolution pass method whereby a row-orientated
�lter moves linearly through memory and should result in optimal memory use. However, the
last two passes of each algorithm di�er dramatically, as discussed below. We have assigned
working titles to these Separable Filtering implementations to intuitively distinguish them,
namely, Original Separable, Transposed Separable and Updated Separable Filtering.

Original Separable Filtering (column 1) is the most intuitive approach and mimics the manual
human approach to convolving data with a �lter. This algorithm propagates each of the �lters
over the data in the same direction as the �lters orientation. The row, column and spectra-
aligned �lters are moved over the data in the row (�rst pass), column (second pass) and spectral
direction (third pass) respectively. This memory access pattern is very ine�cient and causes
poor performance for the Original Separable algorithm. Consequently this algorithm was used
as a lower limit benchmark against which the competing Separable Filtering procedures were
compared.

The Updated Separable algorithm (column 2) propagates all three �lters (with their respective
row, column and spectral orientations) linearly through memory for each of the separate �lter
passes. This algorithm was expected to have e�cient cache use (using the entirety of paged in
cache lines) despite the column- and spectral-aligned �lters of the last two �lter passes accessing
memory in strides.

For the the Transpose Separable algorithm (column 3) the data cube is transposed after each
pass. This was to allow the subsequent separable convolution passes to utilise a row-aligned
�lter and propagate this �lter linearly through memory. Therefore after the �rst �lter pass,
the data in the column direction is aligned in the row direction and the corresponding column-
orientated �lter is replaced with a row-aligned �lter. This is followed by another transpose
operation which maps the spectra-aligned data to a row alignment for the �nal convolution
pass. Although this would optimise the convolution read operations, there is a trade-o� as the
convolution writes which transpose the data are strided and consequently ine�cient.

4.7 Evaluation and validation

The main objective of this work was to achieve large performance increases for the DUCHAMP
à trous wavelet reconstruction process. Precise timing was required in order to accurately eval-
uate the system and determine the exact speed-ups attained through performance-enhancing
development. Additionally, the à trous wavelet reconstruction algorithm had to maintain valid

45

and accurate output throughout the development process in order to ensure its use as a sci-
enti�c tool. The evaluation and validation procedures used for the sequential CPU, optimal
single core, multithreaded CPU and memory management development phases are discussed
above. In this section, we discuss the additional design concerns for the testing procedures used
to evaluate and validate our high performance prototype.

Run-times for the various procedures in the à trous wavelet reconstruction algorithm are of
the order of seconds to hours. Thus millisecond timing is assumed to be su�cient for accurate
timing.

Changes to the à trous algorithm was likely to produce rounding error unless all operations and
e�ective operational order are kept consistent. This is caused by the �nite accuracy of �oating
point arithmetic implemented on computing devices. Additionally, this error, which is generally
small, was expected to compound during the multiple iterations of à trous reconstruction and
could result in substantial error in the �nal output. The output of the direct functionality port
which comprises the �rst stage of development, discussed above, was to be validated against
DUCHAMP to produce the exact same output from all implemented procedures in order to
ensure system accuracy. Operational order in later stages of development was to be kept
consistent to reduce the likelihood of FP error. The test system was validated for both single
and double precision calculations. System output was considered valid if it was either identical
(up to the precision level used) to the output generated by the DUCHAMP à trous wavelet
reconstruction algorithm or proven to produce more accurate results.

System accuracy and performance improvements were tested with a comprehensive list of data
sets. This list should adequately cover a range of data set sizes, starting from small completely
in-core data sets to data sets that are computed mostly out-of-core. Real observational data was
used to cover the full range of data set sizes when possible, with simulated data sets covering
any signi�cant gaps in this range. These range gaps could be �lled by merging several data
cubes into a single cube. However, simulated data is simpler to produce and its use does not
change the measured run-times for the à trous wavelet reconstruction procedures as they are
dependant on data set size. Simulated data could not be used for accuracy validation as the
randomly generated �ux values would produce a completely random distribution of low and
high values which would result in an unrealistic amount of rounding error.

Test hardware, to conform to the assumptions detailed in Chapter 4.3, would include a high end
multi-core CPU with moderate amounts of main memory (> 2 GB) and possess a relatively
large amount of secondary storage (> 100 GB) to assess the performance improvements of
parallelism and the mitigation of slow out-of-core computation.

4.8 Summary

In this chapter, the design considerations for the development of an optimal implementation
of DUCHAMP's noise suppression algorithm (à trous wavelet reconstruction) on `desktop'
hardware are discussed. The most pertinent among these, are the considerations for increases
in computational performance through algorithm redesign and optimal use of multi-core CPU
hardware, and slow out-of-core computation mitigation with memory management libraries. It
was considered vital that we evaluate all combinations of the designed performance-enhancing
procedures to determine optimal overall performance of this algorithm. Additionally, validation
was a key concern to ensure the use of this software as a scienti�c tool. The implementation
of this system and the results of the succeeding evaluation are discussed in Chapters 5 and 6
respectively.

46

Chapter 5

Implementation

In this chapter we discuss the implementation and testing of the software system design de-
tailed in Chapter 4. The purpose of the system was to assess whether our improvements to the
DUCHAMP implementation of the à trous wavelet reconstruction algorithm are su�cient to
process large HI survey data in practical time-frames using `desktop' hardware only. Addition-
ally, we discuss the implementation of supporting functionality required to handle the FITS
input data and aid in testing. The testing implementation included a standard implementa-
tion of DUCHAMP v1.1.13 to provide comparative evaluation baselines for both performance
increases and accuracy. The software dependencies of both systems and test hardware speci�cs
are given.

The development of this system was carried out in four implementation phases: sequential
CPU, single core optimisation, multithreaded CPU and memory management. The design
and approach to the development of each phase is outlined in Chapter 4.4 whilst the notable
implementation speci�cs of each are covered in this chapter. The sequential CPU phase covers
the direct reproduction of required DUCHAMP functionality within our system. Additionally,
this phase lists the software dependencies (and references to installation instructions) required
for both the standard implementation of DUCHAMP and our improvements to the à trous
wavelet reconstruction algorithm, discussed in later implementation phases.

Single core optimisation refers to the optimal implementation of the three Separable �ltering
techniques (discussed in Chapter 4.6) and Intel's SIMD Instruction sets (discussed in Chapter
4.4). The Separable �ltering techniques were used to improve the 3D convolution procedure
within à trous wavelet reconstruction and identify the most optimal memory access pattern in
this improved convolution. Intel's SIMD Instruction sets, speci�cally SSE2 packed instruction
commands, were used to implement vector instruction parallelism on a single CPU core to
increase performance. The multithreaded CPU implementation phase discusses the port of our
sequential implementation to a parallel multi-core CPU implementation and the multithreading
API used. The memory management implementation phase refers to the implementation and
�ne-tuning of three popular memory management libraries, namely Mmap, Boost and Stxxl,
within our system which were evaluated on their ability to facilitate optimal out-of-core com-
putation. All assumptions and di�culties encountered during implementation are discussed.

Although `desktop' computing is emphasised, our implemented high performance system com-
ponents are general enough to be accommodated into larger parallel computing hardware solu-
tions. Memory management was intended for systems with insu�cient fast-access memory and
slow secondary storage. This chapter concludes with the implementation speci�cs of evaluation
procedures and test data used to validate system accuracy and precisely measure performance

47

improvements of our improved à trous wavelet reconstruction algorithm.

5.1 Sequential CPU implementation

The focus of this research was the performance improvement of the à trous wavelet recon-
struction algorithm within DUCHAMP. We implemented a sequential CPU test bed system
which reproduced the DUCHAMP subset outlined in Chapter 4.7. This implementation fur-
ther increased the encapsulation present in DUCHAMP's class and object structure to allow
for simpler development and testing. Data structure management (creation, loading, deletion)
was separated into a memory management module. This allowed for later implementation of
the memory management data structures while avoiding changes to the rest of the test system.

Sequential CPU implementation allowed for an initial validation of the test system to ensure the
algorithms were correctly replicated and that the removal of the majority of the DUCHAMP
functionality did not invalidated system correctness. Initial pro�ling con�rmed no signi�cant
run-time di�erences exist between the original DUCHAMP software and our system. This
equivalence provided a valid baseline of comparison for system improvements.

In the remainder of this section, we discuss the speci�cs of our sequential CPU implementation.
We discuss third party software required to run/test both DUCHAMP and our system. The
system architecture (Chapter 4.5) is discussed, focussing on the directly ported DUCHAMP
implementations (as a reference for later development) and our changes to these algorithms.
The speci�cs of the Testing and Timing components are covered separately in Chapter 5.5.

5.1.1 Software Dependencies

Table 5.1 lists and brie�y describes the required third party software for the execution of both
DUCHAMP and our implemented test system. Installation procedures (beyond default) for
CFITSIO and all three memory management libraries are covered below.

Name Description Used By
g++ (v4.4.5) GNU C++ compiler (Optimisation O2 used for

both systems)
DUCHAMP
Test System

CFITSIO
(v3.3.5)

Handles IO interactions with the FITS �le format. DUCHAMP
Test System

WCSLIB Handles World Coordinate System metadata.
Maps voxel position to true sky coordinates.

DUCHAMP

PGPLOT Graphics subroutine library used to display the
graphical output of DUCHAMP.

DUCHAMP

OpenMP
(v4.4.5)

Platform independent CPU API used to imple-
ment multithreading on multi-core CPUs.

Test System

Mmap Memory mapping support available within Linux
operating systems.

Test System

Boost
Interprocess

Memory mapping support within Boost library.
Used primarily for interprocess communication.

Test System

Stxxl (v1.3.1) Memory mapping support with RAID capability. Test System
DS9 Visualisation tool for FITS data. Test System

Table 5.1: Test System and Original DUCHAMP Software requirements.

48

5.1.2 System Architecture

In this section we discuss the �nal system architecture (Fig 5.1) and its sequential CPU im-
plementation. Further system overviews are not required as subsequent development was con-
strained within the Noise Suppression and Memory management components.

A brief overview of each implemented system component is given followed by a more detailed
discussion of the highlighted system components in Fig 5.1. This includes the implementa-
tion speci�cs of both the à trous wavelet reconstruction (Chapter 3.3) and FDR thresholding
(Chapter 3.2) algorithms.

Figure 5.1: Overview of the implemented prototype system components.

The implemented system components (Fig 5.1) are as follows:

Parameter Input: Loads parameters used to de�ne the statistical technique, �lter and
memory management component used during execution. Additionally, this component can
de�ne a data subset for use in the remainder of system execution.

Filter De�nitions: Stores the de�nition of the available �lters in DUCHAMP (B-Spline,
Haar, Triangle) and the correlation factors for these �lters at di�erent scales. B3-Spline used
by default.

CFITSIO: A platform independent C library for performing I/O with the Flexible Image
Transfer System (FITS) data format.

FITS Wrapper: Abstracts the use of the CFITSIO library. Loads only the data subset
requested in �Parameter Input�. Loads the entire data set by default. Retrieves metadata

49

variables stored in the FITS header.

Noise Suppression: Implements the à trous wavelet reconstruction algorithm (Chapter 3.3).
This algorithm uses a multiscale wavelet decomposition and signi�cance thresholding to smooth
noise in the input data. This preprocessing step improves the completeness and reliability of
the succeeding source �nding algorithm. Only 3D reconstruction is implemented as it is more
suitable for processing 3D radio observational data.

Noise Removal: Implements the False Discovery Rate algorithm (Chapter 3.2) which de-
�nes a threshold that separates background noise from likely source signals. This threshold is
statically determined to control false discoveries (inherently caused by noise) whilst detecting
the majority of true sources. This component is used to further process the output of à trous
wavelet reconstruction algorithm to enable further validity testing.

Memory management: Handles the management of both STL data structures and other
data structures used by the Mmap, Boost and Stxxl memory management libraries. This
includes the setting of �ne-tuning parameters within these libraries which are used to optimise
memory management. Only STL data structures are implemented in the Sequential CPU
implementation phase. Place holders were created for the later implementation of memory
management (Chapter 5.4).

Statistics: Implements both the Normal and Robust statistical estimators used in DUCHAMP.
Normal statistics use the mean and standard variation to de�ne the middle and spread of a data
set. Robust statistics de�ne the middle and spread of the data with the median and Median
Absolute Deviation from the Median (MADFM) respectively. Although robust statistics are
more computationally expensive, they are less sensitive to outliers.

Testing: Implements validity checks which verify whether the output produced by the test
system is identical to or more accurate than the output produced by DUCHAMP.

Timing: Generates accurate (to the millisecond) timing data for each system component.

5.1.2.1 FITS Wrapper and CFITSIO

The CFITSIO library was compiled with the following �ags to allow for the creation and
reading of large FITS �les: -D_FILE_OFFSET_BITS=64 and -D_LARGEFILE_SOURCE
[77]. Large �les use 64-bit addressing and required all 32-bit CFITSIO calls to be replaced
with their �type long� equivalent. Maximum �le size is restricted by CFITSIO to 231 FITS
data records (2880-byte)≈ 6TB [77] which is larger than the data set sizes expected from the
WALLABY and DINGO surveys (782 GB), and orders of magnitude larger than those expected
from the LADUMA ultra-deep survey.

Performance improvements to I/O operations accessing FITS data were only considered to
reduce computation time during testing and were not evaluated separately. CFITSIO �le
access was optimised by reading/writing in multiples (greater than 3) of FITS containers units
(2880 bytes) to bypass CFITSIO's internal bu�ering [77]. Data is read once and passed to
the memory management component for storage in the appropriate memory management data
structure. Metadata access was simpli�ed by using CFITSIO routines to directly access the
metadata subset relevant to our system instead of using WCSLIB, a third party library used in
DUCHAMP to access and store metadata. All default variable values are kept consistent with
their DUCHAMP counterparts.

50

5.1.2.2 à trous wavelet reconstruction

A truncated version of the DUCHAMP à trous wavelet reconstruction algorithm (Chapter 3.3)
was implemented. This version did not alter run-time of reconstruction under the assumption
that data sets are fully populated and contain no padding information. Corrupt or invalid voxels
are still expected. For ultra-wide and ultra-deep surveys, it is expected that the majority (if
not all) of data sets are fully populated as blind surveys consider the entire survey space. This
is in contrast to focused observations which only consider a few celestial objects. The pseudo
code representation of our à trous wavelet reconstruction algorithm is shown in Algorithm 5.1.

Algorithm 5.1. A'Trous wavelet reconstruction with 3D convolution.
1: Create data structures and generate 3D �lter from speci�ed 1D �lter.
2: OriginalSpread← CalculateSpread(input[])
3: filter[]← de�neFilter(filterChoice)
4: do

5: spacing ← 1
6: oldSigma← newSigma
7: for n = 0→ TotalV oxels do
8: coe�cients[N]= input[N]-output[N]
9: end for

10:

11: for scale = 0→ numberOfScales do
12: 3DConvolution(wavelet[], coefficients[], GVM [], spacing)
13:

14: for N = 0→ TotalV oxels do
15: coefficients[N]← coefficients[N]− wavelet[N]
16: end for

17:

18: if scale ≥ minScale then
19: middle←calculateMiddle(wavelets[])
20: threshold←calculateThreshold(middle, originalSigma)
21:

22: for N = 0→ TotalV oxels do
23: if wavelet > threshold then
24: output[N]← output[N] + wavelet[N]
25: end if

26: end for

27:

28: end if

29: spacing ← spacing ∗ 2
30: end for

31: for n = 0→ TotalV oxels do
32: output[N]← output[N] + coefficients[N]
33: end for

34:

35: newSpread← CalculateResidualSpread(input[], output[])
36: while CheckContinuationCriteria()

We only implemented 3D reconstruction as this functionality was most suitable for suppressing
noise in HI radio spectral data as the sources of interest extend in both spacial and spectral

51

dimensions. Additionally, this procedure is signi�cantly more computationally expensive than
1D and 2D reconstruction and had greater need of performance enhancement to process noisy
data in practical time-frames.

We removed the Blank Voxel Trimming (�agging) functionality from the DUCHAMP imple-
mentation of à trous reconstruction. Removal of padding information can result in a row or
column extent of a single voxel which can cause edge case handling (discussed below) procedures
to in�nitely loop. Furthermore, under the assumption of fully populated data sets, trimming
serves no purpose as there is no existing padding data to be removed. Removal of trimming
eliminates the need to store edge limits for each row, column and spectrum in the data set.

Declaration of data structures and memory allocation within the à trous algorithm was ab-
stracted through calls to the memory management API (Chapter 4.5). This allowed the memory
management library used to be easily changed and tested. Only STL data structures libraries
were used in the sequential CPU implementation.

Algorithm 5.1 line 8 sets the input for particular iterations of the reconstruction algorithm.
This input (stored in the coe�cients array) is the di�erence between the original input data
and the current state of the reconstructed output. For the �rst iteration, the coe�cients array
is equal to the original input. However, in subsequent iterations, the coe�cients array stores
residual data which may hold additional structure.

Algorithm 5.1 line 12 calls the function shown in Algorithm 5.2. This function accepts the
wavelet and coe�cients arrays used in the convolution calculation and the GoodVoxelCheck
(GVM) array to �ag and ignore corrupt voxels. This function (Algorithm 5.2) calculates �lter
responses for a single convolution pass (lines 4-6). The inner loops (lines 12, 19, 26) step
through �lter elements to calculate �lter responses for each voxel. The loop counter (line 32)
used to index the �lter values in the DUCHAMP implementation is retained. Calculating �lter
positions from the inner loop indexes would remove loop dependencies within the inner loops.
However, this was unnecessary for the level of parallelism implemented in Chapter 5.3. For
every element in the �lter, checks are required (lines 14, 21, 28) to determine whether each of
the three coordinates are valid positions within the data set (in-bounds). If out-of-bounds, one
or more of these coordinates are re�ected across their respective edge of the data set to calculate
a �lter response over a valid position. Once all checks have been completed, the �lter response
for one �lter element and its corresponding valid coe�cient array position is calculated (line
35). Finally, each �lter response is subtracted (line 36) from the same position in the wavelet
array (originally coe�cients array) to calculate the wavelet coe�cients.

After the calculation of the convolution operation, the remainder of Algorithm 5.1 is as follows.

Line 15: The coe�cient array is not updated within the convolution function (line 12) and
is updated separately by subtracting the wavelet coe�cients (even non signi�cant responses).
This di�ers from the description of the à trous algorithm in Chapter 3.3 but is necessitated to
reduce memory use.

Line 24: Adds all signi�cant structure to the reconstructed array (output array).

Line 29: The scale is increased and the convolution and thresholding procedure repeated.

After convolving and thresholding for all scales within a single iteration, the remaining coe�-
cient array (line 32) is added to the reconstruction array as a DC o�set. This is to account for
the zero mean of the wavelet coe�cients added in line 24.

DUCHAMP's modi�ed statistics calls are used to calculate the noise properties of the resid-
ual data (line 35) which eliminates the need for an extra data structure. For robust modi�ed

52

Algorithm 5.2. : 3D Discrete Convolution

1: spatialSize← xLimit ∗ yLimit
2: position← 0
3:

4: for z = 0→ zLimit do
5: for y = 0→ yLimit do
6: for x = 0→ xLimit do
7: filterPos← 0
8:

9: if !GoodVoxelCheck(x, y, z,GoodV oxelMask) then
10: Wavelets[x, y, z]← 0
11: else

12: for zoffset = −filterHalfWidth→ filterHalfWidth do
13: CPZ ←Calculate convolve position(z, zoffset, spacing)
14: if OutofBounds(CPZ) then
15: CPZ ← Re�ection(CPZ)
16: end if

17: CPZ ← CPZ ∗ spatialSize
18:

19: for yoffset = −filterHalfWidth→ filterHalfWidth do
20: CPY ←Calculate convolve position(y, yoffset, spacing)
21: if OutofBounds(CPY) then
22: CPY ← Re�ection(CPX)
23: end if

24: CPY ← CPY ∗ yDimensionSize
25:

26: for xoffset = −filterHalfWidth→ filterHalfWidth do
27: CPX ←Calculate convolve position(x, xoffset, spacing)
28: if OutofBounds(CPX) then
29: CPX ← Re�ection(CPX)
30: end if

31: CP ← CPZ + CPY + CPX
32: filterPos← filterPos+ 1
33:

34: if GoodVoxelCheck(CP,GoodV oxelMask) then
35: filterResponse← (Coefficients[CP] ∗ filter[filterPos])
36: Wavelets[x, y, z]← Wavelets[x, y, z]− filterResponse
37: end if

38: end for

39: end for

40: end for

41: end if

42:

43: end for

44: end for

45: end for

statistics, the temporary data structure copy, used to preserve the data during sorting, is pop-
ulated directly with the di�erence between the input and output arrays. For normal modi�ed
statistics, the di�erence between respective voxels in the input and output arrays are calculated

53

during summation in both the mean and standard deviation calculations.

The CheckContinuationCriteria (Algorithm 5.1 line: 36) checks the stopping condition for à
trous wavelet reconstruction iterations with:
((double)fabs(oldSigma− newSigma)/newSigma > reconstruction tolerance)
This function determines whether reduction in noise spread between two algorithm iterations
is small, indicating that the majority of the source structure has been removed from the input
data. If the change in noise spread is larger than the reconstruction tolerance the algorithm
repeats. It was necessary to cast the absolute value maths calls to double precision to achieve
the same output (accurate to double precision) as the DUCHAMP implementation.

5.1.2.3 False Discovery Rate threshold algorithm

The False Discovery Rate algorithm implemented in DUCHAMP was directly reproduced in
our test system (Algorithm 5.3).

Algorithm 5.3. : False Discovery Rate Threshold algorithm.
1: for x = 0→ xSize do
2: for y = 0→ ySize do
3: for z = 0→ zSize do
4: position← (z ∗ xSize ∗ ySize) + (y ∗ xSize) + x
5: orderedP [count+ +] ←getPValue(array[position],middle, spread)
6: end for

7: end for

8: end for

9: Stable_sort(orderedP)
10: N ← BeamSize ∗NumberCorrelatedChannels
11: for psfCounter = 0→ N do

12: cN ← cN + 1/psfCounter
13: end for

14:

15: for loopCounter = 0→ N do

16: if orderedP [loopCounter] < alpha∗(loopCounter+1)
cN∗count then

17: max← loopCounter
18: end if

19: end for

20: pV alueThreshold← orderedP [max]
21:

22: do

23: zStat← zStat+ deltaZ;
24: current = 0.5∗error_function(zStat/

√
2)−pV alThreshold;

25:

26: if (initial ∗ current) < 0 then
27: zStat← zStat− deltaZ
28: deltaZ ← deltaZ

2

29: end if

30: while deltaZ > tolerance
31: threshold← (zStat ∗ spread) +middle

This algorithm was used to determine a statistical threshold which constrains the percentage

54

of false positives during the thresholding procedure which �searches� for likely source voxels.
Performance improvement and subsequent performance evaluation was not carried out as this
algorithm was only used to produce a noiseless data set to further validate test system correct-
ness.

Line 1-8: Converts all voxel intensity values to their corresponding p-values.

Line 9: Sort the p-values in ascending order.

Line 10-13: Calculate the correlation normalisation constant cN.

Line 15-19: Calculate d = max{j : Pj < jα
CNN
}.

Line 20: The p-value at position d is the threshold at which we reject the hypothesis that a
voxel belongs to the background and is therefore a source voxel.

Line 26-32: The p-value at position d is converted into an intensity threshold.

5.2 Single Core Optimisations

The single core optimisation implementation phase was concerned with improving the per-
formance of the sequential à trous wavelet reconstruction algorithm. This was accomplished
through improvements to algorithm e�ciency and exploiting vector instruction parallelism in
order to optimise performance for a single CPU core. We improved algorithm e�ciency by
implementing separable �ltering to reduce the computational complexity of the 3D convolution
process. Utilisation of Intel's streaming SIMD extensions (SSE) commands facilitated parallel
performance increases with the concurrent execution of identical �oating point operations on a
single CPU core. In this section we discuss the implementation speci�cs of these two approaches
to single core optimisation.

5.2.1 Separable �ltering

Separable �ltering (Chapter 2.7.3) decomposes the DUCHAMP 3D convolution into a three pass
convolution procedure. Each convolution uses a 1D �lter orientated in the row, column, and
spectral directions respectively. Each have size X, where X is the size of any 3D �lter dimension
(all DUCHAMP �lters are isomorphic). This reduces the number of �oating point convolution
operations required per voxel from X3 to 3X and theoretically increases performance by 53

3(5)
=

8.3̇ for the largest �lter in DUCHAMP, the B3-Spline.

Implementation of separable �ltering does result in two negative attributes. An extra interme-
diate array, equal in size to the input data set, is required to store intermediate values between
the three separate �lter passes. This extra memory use decreases the size of the data set com-
puted completely in-core. Furthermore, separable �ltering's multi-pass procedure introduces
non-mitigatable di�erences in output precision relative to 3D convolution. The causes and ex-
tent of this �oating point arithmetic di�erence are discussed in Chapter 6.1.1.3. However, we
note this precision di�erence represents an increase in output accuracy. To ensure the outputs
of all three separable variants were identical their respective arithmetic operational orders were
kept uniform.

Three implementation variants of separable �ltering were developed, namely the Original,
Transposed and Updated Separable implementations. These variants di�er only in their re-
spective memory access pattern and are discussed in detail in Chapter 4.6. We discuss the

55

Algorithm 5.4. : Original Separable Convolution

1: procedure X Pass

2: for z = 0→ zLimit do
3: for y = 0→ yLimit do
4: for x = 0→ xLimit do
5:

6: if !GoodVoxelCheck(x, y, z) then
7: Wavelets[x, y, z]← 0
8: else

9: ConvolveRowOrientatedFilter(x, y, z, Coe�cients[], Wavelets[])
10: end if

11: end for

12: end for

13: end for

14: end procedure

15:

16: procedure Y Pass

17: for z = 0→ zLimit do
18: for x = 0→ xLimit do
19: for y = 0→ yLimit do
20:

21: if !GoodVoxelCheck(x, y, z) then
22: Wavelets[x, y, z]← 0
23: else

24: ConvolveColumnOrientatedFilter (x, y, z, Wavelets[], Intermediate[])
25: end if

26: end for

27: end for

28: end for

29: end procedure

30:

31: procedure Z Pass

32: for y = 0→ yLimit do
33: for x = 0→ xLimit do
34: for z = 0→ zLimit do
35:

36: if !GoodVoxelCheck(x, y, z) then
37: Wavelets[x, y, z]← 0
38: else

39: ConvolveSpectralOrientatedFilter(x, y, z, Intermediate[], Wavelets[])
40: end if

41: end for

42: end for

43: end for

44: end procedure

implementation of these variants by providing a detailed discussion on the Original Separable
variant followed by highlighting key di�erences of the two remaining variants.

Algorithm 5.4 shows the Original Separable variant implementation. This variation passes
the row, column and spectral aligned �lters of the three separate �lter passes in the same
direction as �lter orientation. This is accomplished by changing the controlling loops in the
First (line 2-4), Second (line 17-19) and Third (line 32-34) pass to step the �lters in three

56

Algorithm 5.5. : Row Orientated Filter Convolution

1: procedure ConvolveRowOrientatedFilter(x, y, z, Coefficients[],Wavelets[])
2: for xoffset = −filterHalfWidth→ filterHalfWidth do

3: CPX ←Calculate convolve position(x, xoffset, spacing)
4: if OutofBounds(CPX) then
5: CPX ← Re�ection(CPX)
6: end if

7: CP ← (z ∗ spatialSize) + (y ∗ xLimit) + CPX
8: filterPos← xoffset+ filterHalfWidth
9: if GoodVoxelCheck(CP) then
10: Wavelets[x, y, z]←Wavelets[x, y, z]− (Coefficients[CP] ∗ filter[filterPos])
11: end if

12: end for

13: end procedure

Algorithm 5.6. : Column Orientated Filter Convolution

1: procedure ConvolveColumnOrientatedFilter(x, y, z,Wavelets[], Intermediate[])
2: for yoffset = −filterHalfWidth→ filterHalfWidth do

3: CPY ←Calculate convolve position(y, yoffset, spacing)
4: if OutofBounds(CPY) then
5: CPY ← Re�ection(CPY)
6: end if

7: CP ← (z ∗ spatialSize) + (CPY ∗ xLimit) + x
8: filterPos← yoffset+ filterHalfWidth
9: if GoodVoxelCheck(CP) then
10: Intermediate[x, y, z]← Intermediate[x, y, z]− (Wavelets[CP] ∗ filter[filterPos])
11: end if

12: end for

13: end procedure

Algorithm 5.7. : Channel Orientated Filter Convolution

1: procedure ConvolveSpectralOrientatedFilter(x, y, z, Intermediate[],Wavelets[])
2: for zoffset = −filterHalfWidth→ filterHalfWidth do

3: CPZ ←Calculate convolve position(z, zoffset, spacing)
4: if OutofBounds(CPZ) then
5: CPZ ← Re�ection(CPZ)
6: end if

7: CP ← (CPZ ∗ spatialSize) + (y ∗ xLimit) + x
8: filterPos← zoffset+ filterHalfWidth
9: if GoodVoxelCheck(CP) then
10: Wavelets[x, y, z]←Wavelets[x, y, z]− (Intermediate[CP] ∗ filter[filterPos])
11: end if

12: end for

13: end procedure

57

separate directions. Additionally, each pass calls a di�erent �lter response function (lines 9, 24
and 39) for row (Algorithm 5.5), column (Algorithm 5.6) and spectral (Algorithm 5.7) aligned
1D �lter response calculations.

Separable �ltering reduced loop nesting relative to DUCHAMP's 3D convolution as each 1D
�lters elements only vary in one dimension. This simpli�ed edge case handling as the �lter
response position only needs checking against two edges for each separate pass. Additionally this
simpli�cation reduces the number of �oating point operations required for edge case checking
by a factor greater than X3

3X
. DUCHAMP's nested loop �lter response calculation results in

2(X3+X2+X) �lter edge checks required per voxel, while our separable �ltering implementation
only requires 6X checks per voxel (true for all separable �ltering variants).

The Update Separable algorithm variant was the simplest to implement. Here, the row, column
and spectral orientated �lters were propagated linearly through the data in each respective �lter
pass. To accomplish this, the second (line 19-21) and third (line 34-36) pass controlling loops
in the Original Separable �ltering variant (Algorithm 5.4) were kept identical to the �rst pass
controlling loop (4-6). The �lter response functions used in the Original Separable variant are
kept the same.

The Transpose Separable algorithm variant was implemented to optimise the 1D �lter convolu-
tions by transposing the data between �lter passes to ensure that all memory reads were linear.
The controlling loops were kept identical as with the Update Separable convolution. However,
each �lter pass only calls the row orientated �lter response function. The Transpose operation
is carried out within Algorithm 5.5 line 10 by writing the results of the �lter responses to a
di�erent index, the required transposed address.

As mentioned above, the à trous wavelet reconstruction algorithm is sensitive to �oating point
rounding error. Changes to the operation order can result in large changes to the �nal out-
put. Operation order is maintained in both the Original and Updated Separable algorithms.
However, operation order can be violated within the Transpose Separable algorithm as column
and spectral-aligned data can both be transposed to be row-aligned in two ways, the standard
transpose and the re�ection of that transpose. To maintain accuracy, we implement speci�c
transpose operations (Figure 5.2) to preserve operation order.

The First Pass Transpose transposes the data set anticlockwise on the Z-axis to transform the
column-aligned data into a row alignment. Thus (X,Y,Z) of the output from the �rst �lter
pass is mapped to (Y, XLIMIT-X, Z). Additionally, the array limits or dimension sizes for
row and columns are also exchanged. The relevant limit exchanges for the second and third
transpose operations are not given but are implied by their respective mapping operations.
The Second Pass Transpose transposes the data anticlockwise on the Y-axis to transform the
spectral-aligned data into a row alignment. Thus (X,Y,Z) of the output from the second �lter
pass is mapped to (Z, Y, XLIMIT-X). The Third Pass Transpose simply corrects the data
alignment to its original alignment state by reversing all operations. Thus (X,Y,Z) is mapped
to (Z, XLIMIT-X, YLIMIT-Y).

58

Figure 5.2: Transpose mappings operations required by Transpose Separable algorithm. These mappings
ensure consistent operation order with respect to the alternative separable �ltering algorithms.

5.2.2 SSE Commands Implementation

SIMD execution on a single CPU core was implemented using Intel's SSE commands1. We
limited the set of instructions used to SSE2 and lower to avoid hardware dependencies as later
SSE releases are not fully supported by other CPU brands [34]. To speed up computation,
�packed� operations were used to concurrently compute 2 (double precision) or 4 (single preci-
sion) identical �oating point operations. When data set size is not a multiple of the SSE unit,
the small remainder was calculated sequentially.

We attempted to apply SSE to the parallelisable components of the à trous wavelet reconstruc-
tion algorithm, namely the convolution and update data procedures (Chapter 3.3). However,
preliminary testing showed SSE to be hindered by the branching operations in the convolution
procedure (Algorithm 5.2 lines 14, 21 and 28) and the update operations (Algorithm 5.1 line
24) that tests voxel values for signi�cance. Only the update procedures in lines 15 and 32 were
suitable for SSE implementations as they contained no branching.

SSE makes use of 128-bit XMM registers [34] to facilitate packed operations. We convert the
source and destination arrays used by both Update procedures to SSE registers by de�ning the
following:

__m128d* pSrc1 = (__m128d*) pArray

__m128* pDest = (__m128d) pResult

The m128 and m128d data types are used for single and double precision packed operations
respectively. SSE performance is improved by ensuring the starting address of data is 16-byte

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/

59

aligned i.e. the memory address is divisible by 16. This alignment was ensured by using
_aligned_malloc:

�oat* array = (�oat*)_aligned_malloc(SIZE*sizeof(�oat), 16);

Two SSE Intrinsics were used to execute a single concurrent packed operation, namely ADD
and SUBTRACT. The su�xes ps and pd refer to packed single and packed double respectively.

* pArray1 = (_mm_sub_ps (pArray1, pArray2)

* pDestin = (_mm_add_pd (pArray1, pArray2)

These intrinsic operations are applied by looping through the data (as normal). However, the
m128 pointer propagates in multiples of 16-bytes which results in only DATA SET SIZE

4
and a

DATA SET SIZE

2
loops required to completely apply the packed commands to the data for single

and double precision respectively.

5.3 Parallel implementations

The third implementation phase consisted of porting our already improved à trous wavelet
reconstruction algorithm to a multi-core CPU implementation. This was accomplished by us-
ing the platform independent multithreading CPU library OpenMP to execute sections (task
level parallelism) of code or operations (loop level parallelism) in parallel. The à trous wavelet
reconstruction algorithm does not contain many tasks that can run in parallel (Chapter 3.3).
However, many of the tasks themselves are embarrassingly parallel, namely the convolution
procedures and all Update operations. However, unlike SSE parallelism, multi-core CPU par-
allelism can better handle branching and is suitable for the parallelisation of all the update and
convolution procedures. The focus of parallel development was the convolution procedure as it
takes up approximately 95% of algorithm run-time (preliminary testing results Chapter 6) .

The �lter response functions, both separable and 3D, within the convolution procedure are
executed per voxel with no dependencies between them. We implement multi-core paral-
lelism within our system via OpenMP by executing �lter response functions in parallel. In
the DUCHAMP 3D convolution implementation, the OpenMP for loop parallelisation pragma
(#pragma omp parallel for) was placed around the voxel indexing in Algorithm 5.2 lines 4-6.
The �at addressing and edge case handling required that 7 variables which control position
during the �lter response calculation be made private, increasing memory use slightly. In the
Separable Filtering convolution implementations (Algorithm 5.4), parallelism was implemented
separately for each �lter pass by placing the �parallel for� pragma around the lines 2, 17 and
32. However, each �lter pass required only a few private variables, reducing the amount of
concurrent memory use.

Finer grain parallelism between elements of a particular �lter response calculation (Algorithm
5.2, lines 12, 19 and 26) was not considered as this would require separate threads for every
voxel in the data set. Thread creation overhead would exceed the bene�ts of parallelism at this
level of parallelism. Coarser grained parallelism was not possible owing to the dependencies
between procedures (Chapter 3.3).

The Update operations (without SSE) (Algorithm 5.1 line 15,24 and 32) were similarly par-
allelised using the `parallel for' pragma. However, SSE implementations of these procedures
required segmenting data into sequential blocks, each processed by one thread. This ensured
contiguous memory necessary for e�cient SSE computation.

60

Optimal thread count to be launched will be determined during Testing (Chapter 5.5) with the
�ndings presented in Chapter 6.

5.4 External memory management library implementation

Memory management solutions were required to bypass the slow disk access bottleneck during
out-of-core computation to facilitate the processing of large data sizes on `desktop' hardware
in practical time-frames. In this section we discuss the speci�cs of implementing three popular
memory management libraries, namely Mmap, Boost.Interprocess and Stxxl (Chapter 2.7.2).
This discussion covers the implementation of the data structures, mapping operations and
performance tuning procedures for each library. We do not discuss the installation procedures
of these libraries as both Boost and Stxxl are well documented and Mmap is a POSIX compliant
set of system calls which forms part of the Linux Operating System.

All three of the implemented libraries use �le-backed memory mapping to facilitate memory
management. Both the Mmap and Boost libraries require a bin �le be created and grown
to the required size with standard C/C++ �le I/O. We created a separate �le for each data
structure used in the à trous wavelet reconstruction algorithm. Stxxl de�nes a mapped region
over multiple disks, to facilitate software RAID, using a .stxxl �le. However, we de�ne only
one Stxxl mapped disk region with disk=/media/diskName/stxxl,2G,syscall to allow for fair
comparison with Boost and Mmap. The syscall �ag allowed for direct I/O transfers on user
memory pages [12]. Although �le size can grow automatically, we de�ned a starting �le size of
2 GB to avoid the majority of the auto-sizing overheads.

To map the created �le-backings with Boost.Interprocess we de�ned the following:

Create new �le mapping
�le_mapping mapName(FileName, read_write);

Map the entire �le region whilst de�ning read-write permissions
mapped_region regionName(mapName, read_write);

Get the address and size of the mapped region
Boost_Map = (Data Type*)regionName.get_address();
map_size = region.get_size();

To map the created �le-backings with Mmap we de�ned the following:

Mmap_map = (Data Type*)mmap64(0, FILESIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_POPULATE, FileName, 0);

Mmap64 is used to map large �les with 64-bit addressing and is not an indication of a double
precision map. MAP_PRIVATE ensures that the mapping can only be accessed by a single
process. MAP_POPULATE prefaults the mapping to cause a read-ahead in the �le, thus
partially loading the mapped �le into memory.

Mmap_map and Boost_map data structures function as a normal C/C++ array but have the
advantage of managed data paging. Although Mmap_map required �ushing changes made
on paged-in memory to ensure consistency with its �le-backing. The Boost_map structure is
automatically made consistent with its �le-backing.

61

Stxxl implements its own versions of STL data structures which automatically make use of its
available �le-backings. We utilised the stxxl::vector data structure for Stxxl memory manage-
ment as its behaviour is closest to that of a standard array. This custom vector required several
variables be de�ned. We selected the recommended default settings, namely:

stxxl::VECTOR_GENERATOR<DataType,NumberOfBlocksInPage=4,PagesInCache=8,
BlockSize=(2xx10124x1024)>::result vector_type

The stxxl::vector setup variables were the only performance tuning variables found within
Stxxl. Attempts to optimise Stxxl were unsuccessful as no tuning combination was found
which resulted in an à trous wavelet algorithm run-time less than 6 times greater than the
competing memory management implementations. The Stxxl implementation was subsequently
abandoned. It is unclear if software RAID (multiple disks) was required to achieved competitive
performance or whether the memory access patterns used in the à trous algorithm were ill-suited
for this library.

Our Mmap implementation was performance tuned using Madvise (Chapter 2.7.2) system calls.
These tuning calls allowed for optimisation by specifying to the operating system the likely
paging scheme required at speci�c points within the à trous algorithm. The Update operations
in the à trous wavelet reconstruction algorithm were set to use the Linear Paging Scheme
which aggressively reads-ahead and frees pages soon after use. The Statistics components used
Random Access paging which minimises paged read-ahead as it is not particularly useful and
frees up disk resources. The convolution procedure used Normal Access paging which keeps the
standard Operating Systems paging scheme. No performance tuning functionality was found
in the Boost.Interprocess library.

Initial pro�ling of our memory managed implementations showed that replacing all data struc-
tures with memory managed equivalents reduced system performance signi�cantly. Optimal
performance was achieved only when the coe�cient, wavelet and wavelet copy (separable �lter-
ing only) arrays were mapped. The Input, Output arrays and the temporary data structures
used during data sorting were not mapped. This is covered in more detail in the pro�ling
results (Chapter 6.3) and is only mentioned here to highlight the limit imposed on data set
size due to this partial mapping strategy. The maximum data set size that can be processed is
1
3
(physical memory + swap space on disk).

5.5 Testing

Precise timing was required in order to accurately evaluate our implemented system and deter-
mine the exact speed-ups attained through performance-enhancing development. Additionally,
it was critical that any changes to the à trous wavelet reconstruction algorithm did not invali-
date its use as a scienti�c tool.

Validity testing ensured all outputs were identical to their DUCHAMP counterparts up to
double precision or were shown to increase system accuracy (Chapter 6.1.1.3). We do not
discuss the actual testing procedures used as comparative testing is trivial. In the remainder of
this section we discuss the performance testing procedures, and hardware and software speci�cs
used to accurately time our implemented system improvements. Additionally, we discuss the
data sets used in both performance and validity testing.

62

5.5.1 Hardware and Software Testing speci�cs

The Test hardware speci�cs are:
Processor: Intel Core i7-2600 CPU @ 3.40 GHz, Quad-core, Hyper-threading
Physical Memory: 2x 4 GB DIMM DDR3 (8 GB total)
Graphics Card: Not Applicable
Secondary Storage: 1 TB Seagate Barracuda 7200 RPM (Average Read Rate 102.7 MB/s)
Motherboard: Asus P8H67

The Operating System speci�cs are:
Linux Distribution: Ubuntu 11.04
Swap space: 14 GB

All DUCHAMP variables besides those listed below were left as default.
reconDim = 3
snrRecon = 5.
snrCut = 3.
alphaFDR = 0.05
FDRNumCorChan = 3
�lterCode= 1 (uses the 5× 5× 5 B3-Spline �lter)

5.5.2 Performance Testing

The POSIX API gettimeofday [26] was used to generate timestamps expressed as seconds and
microseconds since the Epoch [27]. Calculating the di�erence between time stamps generated
accurate time measurements for all the components in the à trous wavelet reconstruction algo-
rithm. We note the microsecond accuracy of this clock is not guaranteed as the Time Stamp
Counters (used to facilitate microsecond accuracy) on each core of a multi-core system may
be slightly out of sync [5]. However, this does not occur in practise as the Intel CPU in our
test system uses synced Time Stamp Counters. Additionally, accurate microsecond timing was
found to be unnecessary as all timing results were on the order of milliseconds to minutes for
the smallest data sets and minutes to hours on the largest tested data sets.

Timing biases which result from Operating System services and background processes taking
up processor time were minimised through batch testing and terminating non critical system
services (including XServer). Batch testing ran 20 iterations of each version of the à trous
wavelet reconstruction algorithm detailed in this chapter. The average of the lowest 5 recorded
timing measurements for each algorithm component was considered the o�cial time. A Batch
number greater than 20 was infeasible for the larger data sets as a single batch had the potential
to run for a week or more.

5.5.3 Test data sets

The set of test data consisted of both real and synthesised radio spectral data (3D FITS �les).
Real data was obtained from the The HI Nearby Galaxy Survey (THINGS)2 [97]. However,
the real data sets are concentrated in the size range of 230-520 MB with a few data sets in the
700-1000 MB range. Synthesised data populated with white noise (simpler to produce than
real data composites) was generated to �ll the gap between these two ranges and to produce

2http://www.mpia-hd.mpg.de/THINGS/Overview.html

63

the largest test data which exceeded the maximum size of the data contained in the THINGS
survey. The largest data set created was a single-precision 1000 million voxel cube (3.7 GB)
which results in a total memory use of 18.5 GB within the à trous algorithm.

Data sets were divided into in-core (small) and partially out-of-core (large) data sets. In-core
data sets, computed with the à trous algorithm, only allocate a memory size that can be
completely held in physical memory. In contrast, out-of-core problems will require a portion
of allocated memory be held in swap space on disk. The threshold between these two data
sets occurs at a data set size of approximately 324 million single-precision voxels. In-core data
sets were used to pro�le the high performance computing improvements implemented in our
system. Both in-core and out-of-core data was used in the evaluation of the implemented
memory management schemes.

5.6 Summary

In this chapter, the implementation speci�cs of all improvements and redevelopment of the
DUCHAMP à trous wavelet reconstruction algorithm were discussed. Three separable �l-
tering convolution variants were implemented to reduce the computational complexity of the
DUCHAMP 3D convolution implementation. The implementation of separable �ltering re-
quired higher memory use but has the advantage of increased �oating point arithmetic accu-
racy. The three separable convolution variants di�er between each other by their respective
memory access patterns.

Vector instruction parallelism could only be implemented e�ciently with SSE2 for SIMD when
à trous wavelet reconstruction contained no execution branching. In contrast, multi-core CPU
parallelism was simple to implement with OpenMP pragmas. The superior branch handling
of multi-core CPUs allowed for all SIMD à trous wavelet reconstruction components to be
parallelised.

Three memory management libraries, namely Mmap, Boost and Stxxl, were used and �ne-
tuned to improve out-of-core computation. However, the Stxxl implementation was abandoned
due to poor performance results. A partial memory mapping strategy where only certain data
structures were mapped was implemented to increase performance. However, this decreased
the maximum data set that could be processed to 1

3
(physical memory + swap space on disk).

The hardware and software speci�cs and variable de�nitions used during testing are discussed.
Finally, we discussed the source and size range of data sets used during performance pro�ling.

64

Chapter 6

Results

The à trous wavelet reconstruction algorithm greatly improves the reliability and completeness
of the DUCHAMP automated source extraction procedure. However, the à trous wavelet
reconstruction algorithm is computationally expensive and memory intensive, and does not
scale to the performance required to process the large data sets expected in the next generation
of ultra-wide and ultra-deep HI surveys in practical time-frames.

`Desktop' hardware was considered for a high performance computing solution which could
potentially scale to the computational requirements of large scale source extraction. E�cient
use of relatively small amount of computational resources on `desktop' hardware in conjunction
with improvements to the à trous wavelet reconstruction were required in order to achieve
this goal. In addition, the out-of-core disk access performance bottleneck that arises from the
allocated memory exceeding `desktop' hardwares' relatively small physical memory resources
had to be overcome in order for the computation of large scale data sets to be feasible.

In this chapter, we report on the evaluation of our improved DUCHAMP à trous wavelet
reconstruction algorithm. These performance improvements were achieved with a combination
of algorithm redesign, e�cient use of the memory hierarchy, Intel's SSE commands and multi-
core CPU parallelism. To facilitate the computation of large data sets, we assess the potential of
memory management libraries for mitigation of the disk access bottleneck of `desktop' hardware
by comparison of the performance of three currently popular memory management libraries:
Mmap, Boost and Stxxl.

The à trous wavelet reconstruction algorithm components are categorised into �ve procedure
types: load, convolution, update, statistics and miscellaneous. Load procedures create and
populate data structures. The convolution procedure consists of multiscale �ltering processes
which make up the majority (up to 98%) of the à trous wavelet reconstruction algorithm
run-time. Update procedures update the relevant data structures after the execution of the
convolution procedure. Statistics procedures estimate the noise spread and level used to de�ne
the thresholds that are used to test feature signi�cance and the algorithms end condition.
Miscellaneous procedures are categorised as operations involved in the the creation, setting and
retrieval of control variables and other data management tasks.

The three procedure types that contribute the most to total run-time, in ascending order, are the
update, statistics and convolution procedures. The update and convolution procedures formed
the majority of development in the prototype system. The DUCHAMP statistics procedures
already use the highly optimised STL nth element partial sort algorithm and were not considered
for further development.

65

We present the results in three sections: single core optimisation, multithreading and memory
management. In each section, we discuss separately data sets with spatial dimensions which
are powers of two larger than 512 (hereafter referred to as Power 2 data sets) and data sets
with spatial dimensions that are not powers of two (Regular data sets). This is to highlight
the signi�cant performance di�erences between these two data set types for the DUCHAMP
3D convolution and our improved convolution implementations.

6.1 Optimal Serial Implementations

Here we investigate the performance advancements speci�c to a single thread of execution in
order to isolate the computational improvement obtained with algorithm improvements and the
use of single-threaded CPU hardware instructions to facilitate vector instruction parallelism.
Algorithmic improvement refers to the reduction of DUCHAMP 3D convolution computational
complexity with several alternative convolution implementations which employ separable �l-
tering techniques for reduced computational complexity and better memory access patterns.
Vector instruction parallelism for a single core CPU is facilitated through SSE2 commands
(Chapter 2.7.1) which enables concurrent �oating point operation execution on a single CPU
core. Only the SSE improvements to Update procedures are discussed as the convolution com-
ponent of the à trous reconstruction algorithm is poorly suited to SSE parallelism owing to its
extensive divergent execution (branching).

In addition, we assess divergent output between separable �ltering and DUCHAMP 3D con-
volution which results from �oating point arithmetic rounding error. Finally, we discuss the
contribution of these improved serial implementations to total run-time.

6.1.1 Convolution

The graphs in Fig 6.1 compare run-times and relative performance of the original serial DUCHAMP
implementation (blue line) with our alternative convolution (iterative) implementations: a 3D
�lter implementation (red line) and three separable �ltering methods; the Original Separa-
ble algorithm (green line), the Transposed Separable algorithm (yellow line) and the Updated
Separable algorithm (pink line). We compare the average recorded run-time for a single con-
volution procedure or a set of three convolution passes in the case of separable �ltering; both
with respect to data set size. Total convolution run-time is not used for comparison as it is
proportional to the number of convolutions performed for each algorithm iteration (derived
from data set dimension) and the number of iterations the algorithm performed (dependent on
the data set's noise properties) for each data set. These variables are not consistent across the
test data set range. All testing was performed using a B3-Spline �lter of size 5× 5× 5.

The 3D �lter implementation is a direct port (approximate) of the DUCHAMP à trous recon-
struction algorithm. This implementation is used to establish whether the performance of our à
trous wavelet reconstruction algorithm was comparable with the DUCHAMP implementation
to ensure fair comparison with further developments. The Original, Transposed and Updated
Separable algorithms (Chapter 5.2.1) each employ a 3-pass convolution procedure with each
pass using a 1D �lter which row-, column- and spectra-aligned for the �rst, second and third
�lter pass respectively. However, the direction of �lter propagation for each algorithm di�ers
which results in distinct memory access patterns.

The Original Separable algorithm propagates the row-, column- and spectra-aligned �lters over

66

the data in the row (�rst pass), column (second pass) and spectral directions (third pass)
respectively. The Updated Separable algorithm propagates all three �lters (with their di�erent
orientations) linearly through memory for each of the �lter passes. For the Transpose Separable
algorithm, the data cube is transposed after each �lter pass so the subsequent passes need only
propagate a row-aligned �lter linearly through memory. This is enabled by aligning data (with
a transposition operation) in the column direction to the row direction after the �rst pass and
repeating this process with data in the spectral direction after the second pass.

Figure 6.1: Performance of the convolution component of à trous Wavelet for all sequential �ltering
algorithm implementations for Regular (A & C) and Power 2 (B & D) data sets, showing run-times for
the DUCHAMP algorithm (blue line), our 3D sequential implementation (red line), our Original (green
line), Transposed (yellow line) and Updated (pink line) Separable Filtering algorithm. All algorithms
implement single thread execution. Testing was performed on a Intel i7-2600, 8GB RAM, 7200rpm
hard-drive. Robust statistics are used to estimate noise.

6.1.1.1 Convolution Results For Regular Data sets

Figure 6.1 (A & C) shows that our 3D implementation (red line) has similar performance to the
DUCHAMP counterpart (blue line). The Separable Filtering implementations all substantially
reduce computation time by decreasing the total operations per voxel (Chapter 5.2.1) when
convolving the data from the 3D �lter size (the product of its dimensions M, N and O) to the
sum of these dimensions (M+N+O). However, this operation reduction comes at the cost of
multiple required passes through the data and extra memory allocation to store intermediate
results between �lter passes. In the remainder of this section we discuss the performance
of each serial separable �ltering implementations relative to each other and DUCHAMP 3D
convolution. We discuss in-core and out-of-core performance separately. Partial out-of-core
computation begins at 400 million voxels for DUCHAMP 3D convolution. In contrast, separable
�ltering convolution begins out-of-core computation at 324 million voxels (∼ 90% main memory
use) as a result of its 20% larger allocation of memory.

The Original Separable �ltering implementation (Figure 6.1 C, green line) achieves an average

67

performance increase of 3.7× (relative to DUCHAMP 3D convolution) for small data sets which
are processed completely in-core. This is lower than the theoretical performance improvement
of 8.3× expected for the 5×5×5 test �lter (Chapter 5.2.1). Fig 6.2 C (run-time per 1e6 voxels)
shows that the Original Separable �ltering implementation's ine�ciency is largely constrained
to the last two separable �lter passes, which have respective run-times 20-22% and 20-60% larger
than the �rst pass. The near uniformity of the �rst and second pass relative run-time results
(in-core) indicates that run-time for these passes is increasing linearly with data set size: an
optimal outcome. Additionally, this performance uniformity indicates that data set dimension
has little or no e�ect on the relative run-time of these two passes. Similarly the majority of
third pass results (Fig 6.2 C) are uniform, excluding the 159, 200 and 220 million voxel data
sets which all have signi�cantly larger spectral extents and relative run-time increases. The
ine�ciency of the second and third pass are explained through their memory access patterns.
The second and third pass use column- and spectra-aligned �lters which are propagated in the
column and spectral directions respectively. This results in a strided memory access pattern
which does not use the majority of the elements paged in cache lines (row-aligned blocks of
memory) and consequently, poor performance. The relative increase in third pass run-time,
when computing the 159, 200 and 220 million voxels data sets, is unique to this algorithm and
�lter pass which indicates that propagating a spectral-aligned �lter in the spectral direction is
particularly ine�cient. Additionally, this poor performance is proportional to the extent of the
spectral dimension. In contrast to the second and third pass, the �rst pass linearly propagates
a row-aligned �lter through memory which results in both e�cient memory access and cache
reuse.

Optimal computation was expected with Transpose Separable �ltering (Fig 6.1 C, yellow line)
as the data set is transposed between �lter passes to allow for each 1D convolution pass to be
computed with only the linear propagation of row-orientated �lters. This was shown in the
�rst pass of the Original Separable algorithm to be the most optimal memory access pattern.
However, only an average performance increase of 3.8× is achieved with this algorithm for
in-core data sets. Performance is limited by the average run-times (Fig 6.2 E) for the �rst and
second �lter passes are respectively 10% and 22% larger than expected. These performance
decreases are associated with the additional computation required to compute the new trans-
posed �attened array address for each �lter response. This cannot be a signi�cant contribution
to run-time as the third �lter pass of this algorithm is relatively e�cient, only averaging 2%
slower than the e�cient �rst �lter pass of the Original Separable convolution. It is likely that
the �rst and second pass are a�ected by the memory access pattern of the write operations
within the transpose operation which are strided in memory. Finally, we note that unlike the
Original Separable convolution, run-time increases for all three passes are perfectly linear with
data set size and are not a function of the data set dimension.

Maximum performance is achieved with the Update Separable �ltering method (Fig 6.1 C,
pink line), with a 4.5× average performance increase over DUCHAMP for in-core data sets.
The memory access of the latter two passes, which use column- and spectra-aligned 1D �lters
respectively, is strided across memory which should cause poor performance. However, the row
propagation of these �lters allows for e�cient cache use as the respective nth elements of every
�lter placement are linear in memory. This optimal cache use allows the run-times of the latter
two �lter passes (Fig 6.2 G) to almost equal that of the e�cient row-orientated linear �lter
passes (�rst pass); thus an optimal memory access pattern is nearly achieved. However, the
multiple passes required for this algorithm and the non-zero time required to cache items from
memory, prevent this algorithm reaching the theoretical limit of a 8.3× performance increase.

An exponential drop in performance is experienced by both the DUCHAMP and Separable
Filtering implementations when memory use begins to exceed the limits of physical memory.

68

The 20% higher memory use of the Separable Filtering algorithm causes this drop-o� to occur
at 324 million voxels (∼ 90% main memory use; the remaining ∼ 10% of memory use is
allocated to other system processes). Performance drop-o� for the DUCHAMP implementation
begins at the signi�cantly larger data set size of 400 million voxels. Additionally, the rate at
which DUCHAMP performance decreases is less than that experienced by any of the Separable
Filtering implementations.

The rate of performance drop-o� for out-of-core performance is not consistent between the
Separable Filtering implementations. The Updated Separable convolution (Fig 6.1 A, pink
line) has the lowest rate of performance degradation (Fig 6.1 A & C, pink line) with a near
linear drop-o� with the increase of out-of-core memory allocation.

The Original Separable algorithm's performance drop-o� (Fig 6.1 A & C, green line) is slight
for the �rst partial out-of-core data sets (324 -506 million voxels). However, beyond 506 million
voxels the rate of performance drop-o� increases greatly. At the 729 million voxel mark (168%
memory use), where approximately a third of allocated memory is required to be on disk
(speci�c to the test system), computational performance drops lower than the serial DUCHAMP
implementation. Fig 6.2 C shows that the latter two �lter pass run-times exponentially increase
at a larger rate than the optimal �rst pass. This behaviour is caused by the propagation of
�lters in the column and spectral directions spanning more pages of memory which requires
frequent disk access to page the required data into memory. However, due to small spectral
extents, run-time for the third pass is kept low between 324 and 625 million voxels. This e�ect
is similar to the larger third pass run-times achieved for the 159, 200 and 220 million voxel
data sets with their relatively large spectral extents. A large increase in third pass run-time
is achieved at 729 million voxels as computation is largely out-of-core and the spectral strided
memory access pattern requires frequent disk access.

The initial rate of performance degradation is greatest for the Transposed Separable convolu-
tion (Fig 6.1 A & C, yellow line) with run-time 20-50% greater than the Original Separable
convolution between 400 and 625 million voxels. In Fig 6.2 E the run-time increase for the
second �lter passes is signi�cantly larger than that of the other two �lter passes. The trans-
pose mapping operations in this pass are strided in the spectral direction and consequently,
write operations are not sequential on disk and require more pages of data to be transferred
into memory, increasing the amount of slow disk access. Also, any read-ahead bu�ering the
operating system could perform is likely to have little or no e�ect on improving run-time.

6.1.1.2 Convolution Results for Power of 2 data sets

Power 2 data sets are characterised as data sets with dimensions which are powers of two larger
than 512. Two categories of data sets were tested, data sets with spatial dimensions 1024×1024
(henceforth referred to as 1024 data sets) and 2048×2048 (henceforth referred to as 2048 data
sets). Both categories share the property that all rows of data begin at memory addresses which
are separated by a multiple of page size (4 KB) and are considered page-aligned in memory.

The convolution run-times for all tested algorithms are signi�cantly larger when computing
Power 2 data sets (Fig 6.1 B & D) than the run-times achieved when processing regular data
sets. The run-times for DUCHAMP convolution (blue line) and our 3D �lter implementation
(red line) are both increased by 36.2% on average. For the Separable Filtering algorithms,
average run-times for completely in-core data sets increases by 152%, 43.4% and 5.4% for the
Original (green line), Transpose (yellow line) and Updated (pink line) Separable algorithms
respectively. Small variations in timing are seen among all of the competing convolution algo-

69

rithms (excluding Updated Separable) between 1024 and 2048 data sets (discussed below).

Figure 6.2: Relative convolution run-times (per 1e6 voxels) for the 3D Filter (A & B), Original Separable
(C & D), Transpose Separable (E & F) and Updated Separable (G & H) algorithms for both Regular
(�rst column) and Power 2 (second column) data sets. Uniform performance indicates a linear run-time
increase with an increase in data set size. Run-times for the three separable algorithms are shown in
terms of their three pass components. Testing was performed on a Intel i7-2600, 8GB RAM, 7200rpm
hard-drive.

70

Analysis of the individual passes for each of the Separable Filtering algorithms (Fig 6.2), when
convolving Power 2 data sets, shows that the performance drops experienced by each separable
�lter pass are not uniform for each algorithm. Fig 6.2 D shows that the relative increase
in in-core run-time is greatest for the Original Separable algorithm's second and third pass,
where memory access is strided across columns and spectra respectively. However, in this
instance, the memory addresses that are accessed by the strided �lter elements are page-aligned
in memory. This page-alignment occurs between both certain �lter elements within a single �lter
response calculation and certain respective elements of succeeding �lter response calculations.
Additionally, these run-times di�er between the 1024 and 2048 data sets, with run-time increases
of 48.7% (second pass) and 255.0% (third pass) for 1024 data sets, and 105.6% (second pass)
and 162.5% (third pass) for 2048 data sets. The cause of this variation is discussed below.

The Transpose algorithm shows a relative in-core run-time increase for the �rst and third �lter
pass (Fig 6.2 F). For 1024 data sets, a large performance drop of 93.4% is achieved for the third
pass and smaller performance drop of 8% for the �rst pass. In contrast, the 2048 data sets
experience a large performance drop of 75% in the �rst pass and a smaller performance drop
of 24% in the third pass. These performance drops correspond to situations where transposed
mapping operations result in page-aligned writes to memory, since these writes coincide with
required page-aligned reads from memory in order to update those data values.

In contrast to the behaviour of the Transpose and Original Separable �ltering algorithms, the
Updated Separable algorithms' run-time increases uniformly by 8.1% for the last two �lter
passes (Fig 6.2 H). No signi�cant di�erence is seen between 1024 and 2048 data sets. In this
separable convolution variant, page-alignment only occurs between certain �lter elements in
the calculation of a �lter response. The linear propagation of each �lter (despite orientation)
ensures that respective elements of succeeding �lter response calculations are linear in memory,
and are not separated by a multiple of page size (page-alignment).

The apparent decrease in performance for page-aligned memory access is likely caused by page-
aligned cache con�ict misses [83]. Cache is organised into sets each of which can contain a
maximum number (generally 4, 8 or 16) [83] of cache lines (blocks of memory paged in from
physical memory). The relatively small number of available cache sets are mapped from the
much larger main memory space by modulating the address of a block of memory (or higher
level of cache) over the total number of cache sets (a hardware speci�c power of 2) [74]. This
results in multiple memory blocks mapping to the same cache set. When a cache set is fully
populated a cache line must be evicted when caching in a new cache line (cache con�ict load)
[38]. If this eviction occurs prematurely (data in cache still in use) the data must be cached
again when next accessed (cache con�ict miss). Frequent cache con�ict misses can signi�cantly
reduce computational performance [38].

The rows of both 1024 and 2048 Power 2 data sets are page-aligned and consequently column
and spectra strided memory access results in frequent mapping to the same cache way. This
should result in frequent cache con�icts throughout the entire cache hierarchy (to di�erent
degrees) and consequently causes poor performance. Additionally, 2048 data sets' rows are
aligned with every second page instead of the one-page alignment of 1024 data sets. Strided
memory accesses for 1024 and 2048 Power 2 data sets are therefore separated by di�erent powers
of 2 which a�ects the the number of cache con�icts and explains the apparent performance
di�erence between data set types.

Two types of alignment are possible here: cache con�icts within a single array, as discussed
above, and cache con�icts between arrays where a page-aligned data structure immediately
succeeds another in memory. The latter has the potential for alignment when the corresponding
elements in each data structure are accessed consecutively and can occur during convolution

71

calculations. However, it is dismissed as a strong cause of performance degradation (in isolation)
as no signi�cant performance drop is recorded for the �rst �lter passes of both the Original and
Updated Separable convolution algorithms computing Power 2 data sets. Cache con�icts within
a single array, speci�cally within the frequently accessed coe�cient and wavelet arrays, or a
similar caching e�ect is the probable cause of slow-down. This can be mitigated by inserting
padding data between rows to misalign the data at the expense of slightly larger memory use
and more complicated array addressing functions [17, 51, 96]. However, this is unnecessary as
the Updated Separable convolution implementation largely mitigates the problem of frequent
cache con�icts.

Each of the competing convolution algorithms are a�ected to a di�erent extent by cache con�icts
as a result of their distinct memory access patterns. In the case of the Original Separable
algorithm (Fig 6.2, D), �lter access in the column and channel direction for the last two �lter
passes is page-aligned and is likely to alias to the same cache line. In contrast, the Transpose
Separable algorithm (Fig 6.2, F) reads all data in memory linearly and should be exempt from
cache con�icts. The slow-downs recorded for the third and �rst passes, for 1024 and 2048 data
sets, result from page-aligned writing to the transposed addresses (updating values) to obtain
the next array orientation. The cache con�icts occur during the page-aligned read operations
required to bring the value, stored at each transposed address, into a CPU register so it may
be updated.

The column and channel strided memory access in the last two �lter passes of the Updated
Separable algorithm (Fig 6.2, H) results in a power of 2 caching e�ect within the coe�cient
array. However, this caching e�ect is greatly reduced as cache con�icts can only occur between
the elements of a single �lter response. Additionally, the extent of cache con�icts e�ect on
performance is likely hidden to some degree by this implementation's e�cient use of cache
memory.

The performance decreases in the DUCHAMP 3D convolution (Fig 6.2) are di�cult to analyse
as the convolution process is performed with a large 3D �lter which makes it di�cult to isolate
the performance contributions of row-, column- and spectra-strided memory access. However,
this 3D �lter moves linearly through memory which should result in optimised (to some degree)
cache use, the contributions of which cannot be easily distinguished.

The relatively higher increase in run-time for the Original Separable and Transpose algorithms
(relative to DUCHAMP) reduces their respective relative performance increases from 3.7× and
3.8× to 2.2× and 3.6× respectively. In contrast, the Update Separable algorithms' e�cient
use of cache mitigates the problem of frequent cache con�icts to a large extent and results in a
relatively small run-time increase (relative to DUCHAMP) when computing Power 2 data sets
which increases the relative performance of this algorithm from an average of 4.5× to 5.2×.

For Power 2 data sets larger than 324 million voxels, the performance for all separable �ltering
convolution variants decreases rapidly with data set size as the extent of out-of-core computa-
tion increases. The out-of-core Power 2 run-times achieved for the Updated and Transposed
Separable variants are near identical to their Regular data set run-times. This run-time simi-
larity between data set types is caused by out-of-core slow disk access dominating run-time. In
contrast, the Original Separable variants' run-time is slightly worse for out-of-core Power 2 data
sets and converges on the Transposed Separable variants run-time. At 729 million voxels, the
performance increases between Regular and Power 2 data sets largely disappears as convolution
computation is completely transfer bound.

72

6.1.1.3 Floating Point Arithmetic Error

Accuracy of system output was ensured at all stages of development by comparing the produced
output voxels with the corresponding voxel outputs generated by DUCHAMP. The output for
the majority of DUCHAMP à trous procedures and our improved implementations were exactly
equal. However, di�erences between the outputs of the DUCHAMP and Separable Filtering
algorithms arise (Chapter 5.2.1) from the di�ering number of convolution �oating point oper-
ations and the inherent rounding error for �oating point (FP) arithmetic [41]. We note these
output di�erences are almost undetectable after a single iteration of the à trous reconstruc-
tion algorithm. However, the di�erences between output grows with the compounding of FP
arithmetic error over multiple convolution scales and algorithm iterations. In this section, we
measure the signi�cance of this di�erence and determine if this di�erence represents a loss or
gain in accuracy relative to the DUCHAMP implementation. To determine this, we compare
the single precision (SP) outputs of both algorithms against both of the corresponding double
precision (DP) outputs. To ensure realistic measurements, we restrict tested data sets to real
data only.

Datasets RMSD (between methods) RMSD SP Separable.
(di�. accuracy.)

RMSD SP Original.
(di�. accuracy)

SP (xE-10) DP (xE-20) DP Sep (xE-10) DP Orig (xE-10) DP Sep (xE-10) DP Orig (xE-10)

DD0 154 2.92 4.22 0.601 0.601 2.54 2.54
NGC 4736 1.51 2.44 0.233 0.233 1.44 1.44
NGC 5194 1.61 3.70 0.424 0.424 1.69 1.69
NGC 7793 4.48 7.27 1.12 1.12 4.18 4.18
NGC 4214 3.79 8.92 1.23 1.23 3.20 3.20
NGC 7331 2.98 3.36 0.511 0.511 2.72 2.72
NGC 5236 4.47 9.97 0.763 0.763 4.41 4.41
KELL-IF14 2.58 3.97 0.584 0.584 2.46 2.46
NGC 2403 2.81 3.77 0.843 0.843 2.90 2.90

Table 6.1: Quanti�cation of error between the sequential 3D algorithm and Separable Filtering algorithm
for both single (SP) and double (DP) precision execution.

We use the root mean square deviation (RMSD) to measure the variation between outputs. The
RMSD is a measure of standard deviation between the values of two data sets and is de�ned
as:

RMSD =
√∑n

i=1 |xSepFilter,i−xDuchamp,i|2
n

Table 6.1 shows the RMSD between the DUCHAMP algorithm using 3D convolution and our
improved system using separable �ltering convolution. For single precision computation, the
RMSD (between methods) is shown to be very small with deviation measures for all data sets
to the order of 1e-10. Double precision computation shows a decrease in deviation to the order
of 1e-20, which is consistent with the increase in precision. Although these RMSD values are
small, we cannot predict the increase in rounding error for larger data sets where the increased
number of convolution scales and algorithm iterations could further compound error. For the
Separable Filtering convolution procedures to be useful, the RMSD values measures should
represent a reduction (or be equivalent) in rounding error relative to DUCHAMP. To establish
precision loss or gain with the implementation of separable �ltering, the single precision output
of each algorithm is compared against both double precision outputs.

The Separable Filtering algorithm achieves an approximately equal RMSD measure (Table 6.1,
RMSD SP Separable) for both comparisons with double precision outputs. Similarly, the single
precision DUCHAMP algorithm (Table 6.1, RMSD SP Original) also achieves approximately

73

equal RMSD measures against both double precision procedures. However, the RMSD of the
Separable Filtering algorithm (when compared to DP) is on average an order of magnitude
smaller than the respective DUCHAMP RMSD values. This indicates that the rounding error
produced with separable �ltering is signi�cantly less than 3D DUCHAMP convolution and
that accuracy is gained with our implementations. This reduced rounding error results from
the signi�cantly fewer convolution �oating point operations required for this algorithm. The
discrepancy is likely to hold at double precision but this cannot be tested without computation
at a higher level of precision which is not available on the current test system.

6.1.2 SSE optimisation results

Figure 6.3: Performance increases for the SSE implementations of Coe�cient and Output Update pro-
cedures using quad-packed instructions. The results shown are the average times recorded (A) and the
relative speed-ups (B) for a single execution of the coe�cient update (green line) and output update (pur-
ple line) procedures against their respective DUCHAMP procedure. Performance is consistent between
Regular and Power 2 data sets.

Optimisation of the serial à trous algorithm with Intel's Streaming SIMD extensions (SSE)
was constrained to the non-branching Update procedures only. Convolution and branching
Update procedures are poorly suited for SSE parallelism owing to their extensive divergent
execution (branching). The statistics procedures are considered optimal and are not considered
for algorithm redesign (Chapter 2.6.3).

Update procedures consist of linear passes through multiple data structures whilst testing and
performing �oating point operations between them. (Chapter 2.6.3). The optimisation of these
procedures is achieved with the Intel's SSE2 commands only, speci�cally the quad-pack (single
precision) and dual-pack (double precision) �oating point operations. These SIMD operations
allow for the concurrent execution of a single command on multiple data on a single CPU.

Two Update procedures (Fig 6.3 A & B), namely, the Coe�cient (green line) and the Out-
put (purple line) Update procedures, are ported to an SSE implementation. No signi�cant
performance di�erences exist between Regular and Power 2 data sets and are not discussed
separately. The SSE implementations performance for both algorithms is only 80% of that
achieved with DUCHAMP for 59 million voxels (the smallest data set) and increases linearly
until equivalent with DUCHAMP's performance at 200 million voxels. This results from large
SSE register loading overheads relative to the low run-times of Update procedures processing
small data sets.

For larger data sets, performance grows slowly with increases in data set size, reaching 1.3×
and 1.1× for the Coe�cient and Output Update procedures respectively. Although these
performance increases are small in terms of run-time for a single procedure, the overall time
decrease to the à trous algorithm is signi�cant as these operations are performed frequently.

74

The Coe�cient Update performance degrades signi�cantly for data sets larger than 506 millions
voxels (out-of-core), dropping to half the performance of DUCHAMP as run-time is e�ected
by the signi�cantly larger disk access time. In contrast, a performance increase from 1.1×
to 1.2× is achieved with the Output Update procedure for 506 and 625 million voxel data
sets respectively. The Output Update procedures higher performance results from immediately
succeeding the Feature Update procedure (discussed below). Both these procedures access the
same data structure which ensures that that a portion of the out-of-core memory (percentage
unknown) required by the Coe�cient Update procedure has already been paged from disk after
the Feature Update procedure executes. The timing results (both Update procedures) for the
largest tested data set of 729 million voxels are omitted from Figure 6.3 as they are an order
of magnitude larger than the rest of the tested data sets.

A performance increase of 2-3× is expected with the implementation of quad-packed SSE com-
mands. The large disparity between the theoretical and actual performance increases achieved
with SSE is likely caused by the low number of operations performed compared to the amount of
memory read into cache and the number of operations required to pack the SSE registers. Ad-
ditionally, the DUCHAMP version is expected to be near optimal from compiler optimisations
as update operations are simple, computationally light procedures.

6.1.3 Total Serial Run-times

Performance improvements to the convolution and Update procedures signi�cantly contribute
to the reduction of overall run-time for the à trous wavelet reconstruction. In this section, we
discuss the signi�cance of these improvements by discussing their contributions along-side the
contributions of the components not considered for improvement with respect to the overall
speed-up of the reconstruction algorithm.

Total run-time for the à trous wavelet reconstruction algorithm (Fig 6.4) consists of the follow-
ing components: convolution (green region), noise estimation with statistical measures (yellow
area), update procedures (red region), loading operations (blue region) and miscellaneous com-
ponents (brown region). Miscellaneous components refers to all intermediate and set-up opera-
tions for the other components. Only the update and convolution procedures are considered for
redesign. Miscellaneous, load operations and the statistical components are considered optimal,
the latter using the STL nth element partial sort algorithm which has a linear complexity on
average. All results reported are speci�c to each data set, as signi�cant variability in run-time
is caused by di�ering scales (dimension dependant) and iterations (noise dependant) computed.
Consequently, results only approximately indicate computation time as a function of data set
size and may di�er substantially between Regular and Power 2 data sets.

For the unoptimised DUCHAMP algorithm (Fig 6.4, A) computing Regular in-core data sets,
the convolution component comprises on average 89% of total run-time. This increases to an
average of 92% for Power 2 data sets as convolution run-time increases from frequent cache
con�icts. For data sets larger than 324 million voxels, both data set types experience an
exponential increase in run-time as a result of slow out-of-core computation, achieving run-times
of 1.8 and 2.4 hours at 729 million voxels for Regular and Power 2 data sets respectively. The
contribution of convolution to total run-time decreases to 70% as the contributions of Update
and random access Statistics procedures increases at a larger rate for out-of-core computation.
The statistical procedures perform particularly poorly (order of magnitude run-time increase)
as random access to data stored on disk is particularly ine�cient.

All à trous wavelet algorithm implementing Separable Filtering convolution (Fig 6.4, C-H) have

75

Figure 6.4: Total run-times for the improved sequential à trous wavelet reconstruction algorithm imple-
mentations. These run-times are deconstructed into their component procedures to identify their speci�c
contributions. Results are shown for the DUCHAMP (A & B), Original Separable (C & D), Transpose
Separable (E & F) and Updated Separable (G & H) algorithms for both Regular and Power 2 data sets.
Testing was performed on a Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

dramatically decreased run-times for in-core data sets in comparison to the DUCHAMP im-
plementation. These decreases are proportional to the reduced convolution run-times achieved
with Separable Filtering techniques. However, the 20% higher memory use of the Separable
Filtering convolution components increases the extent of out-of-core computation for these im-
plementations. Subsequently, out-of-core performance decreases at a faster rate with an increase

76

Figure 6.5: Run-time speed-ups for the sequential à trous wavelet reconstruction algorithm. Shown are
Original Separable (blue line), Transpose Separable (red line) and Updated Separable (yellow line) for
both Regular (A) and Power 2 (B) data sets. Testing was performed on a Intel i7-2600, 8GB RAM,
7200rpm hard-drive.

in data set size when compared to the unoptimised DUCHAMP implementation. Similarly to
DUCHAMP, a large variation in performance is seen between Regular and Power 2 data sets
as each convolution procedure causes frequent cache con�icts to some degree. The SSE im-
plementations for the Update procedures are disabled for data sets smaller than 200 million
voxels as they are detrimental to run-time (Chapter 6.1.2). For in-core data sets larger than 200
million, the SSE implementations for the Update procedures only slightly reduce the run-time
contribution of these components.

The reduction in run-time for our improved single core à trous wavelet algorithm comput-
ing in-core data sets represents signi�cant performance increases (Fig 6.5) over the original
DUCHAMP implementation. The wavelet reconstruction algorithms implementing the Origi-
nal (blue line), Transposed (red line) and Updated Separable (yellow line) convolution and SSE
Update procedures result in average speed-ups of 3.3×, 3.6× and 4.1× respectively for regular
in-core data sets. This is reduced to 2× and 3.3× for the reconstruction algorithms implement-
ing the Original and Transposed Separable convolution for Power 2 data sets, owing to the
greater impact of caching e�ects on their convolution implementations relative to DUCHAMP.
The reconstruction algorithm implementing Updated Separable convolution achieves a Power
2 data set performance increase of 4.6× speed-up as it not a�ected (or the penalty is miti-
gated) by frequent cache con�icts. However, all speed-ups are reduced to near DUCHAMP
performance for out-of-core data sets.

6.1.4 Summary

Updated Separable convolution performs the best out of all tested convolution variants by
reducing the number of �oating point operations required per voxel and e�ciently utilising cache
memory. Performance increases of 4.5× and 5.2× are achieved for in-core Regular and Power 2
data sets respectively relative to DUCHAMP. The relatively larger Power 2 performance results
from a memory access pattern that minimises the number of cache con�icts experienced relative
to DUCHAMP. Additionally, separable �ltering convolution produces less rounding error than
DUCHAMP 3D convolution and is consequently slightly more accurate. This results from the
reduced number of �oating point operations used by separable methods. However, separable
�ltering performance comes at the expense of greater memory use and as such, performance
rapidly drops to below DUCHAMP performance for data sets larger than 324 million voxels
(out-of-core). This is in contrast to the DUCHAMP 3D implementation which only begins out-

77

of-core computation at 400 million voxels. At 729 million voxels, separable �ltering performance
is completely transfer bound by slow disk access (out-of-core computation).

The implementation of Intel's SSE commands, to exploit the SIMD nature of the Update
procedures, does not improve performance signi�cantly. Performance increases range from
1.1× to 1.3× for data sets between 255 and 625 million voxels. Smaller data sets are negatively
e�ected by SSE overheads.

Overall, the single-threaded à trous wavelet reconstruction performance is increased by 4.1×
and 4.6× for Regular and Power 2 data sets respectively.

6.2 Multi-core parallelism

The à trous wavelet reconstruction algorithm is well-suited for �ne-grained parallelism (Chapter
3.3) on multi-core CPUs. Speci�cally, the Update and convolution procedures are embarrass-
ingly parallel and have a large potential for performance increases on parallel architectures.
The majority of these procedures contain branching, which makes them better suited to multi-
core CPU parallelism than to alternative parallel solutions, such as the GPU. In this section,
we discuss the speci�c performance increases attained by porting these à trous procedures to a
multi-core implementation using OpenMP on an i7 4-core CPU with hyper-threading. Algorith-
mic performance increases for all parallelised procedures are reported relative to their respective
single-threaded implementations to isolate the speci�c contribution of multi-core parallelism.

We focus primarily on the parallelisation of the implemented convolution procedures (Fig 6.6),
namely the original 3D Sequential algorithm (DUCHAMP) and the three competing Separable
Filtering algorithms: Original Separable, Transposed Separable and Updated Separable. In
addition, we discuss the parallel improvements to the Update procedures without the single-
threaded SSE command optimisations considered above. Preliminary testing shows that the
combination of these parallel paradigms bottlenecks CPU performance, causing performance
to drop below that of the original DUCHAMP implementation.

6.2.1 Parallelised convolution procedures

Despite the signi�cant performance improvements achieved with Separable Filtering, the con-
volution component of the à trous reconstruction still makes up the majority of total run-time.
Both the DUCHAMP and Separable Filtering convolution implementations are embarrass-
ingly parallel as a result of independent �ltering operations (Chapter 2.6.3) and are ideal for
�ne-grained parallelism on multi-core CPUs. In this section, we discuss the performance im-
provements gained from porting the competing convolution algorithms to a multi-core parallel
solution using OpenMP. We assess performance scaling with thread count on a quad-core CPU
with hyper-threading.

The graphs in Fig 6.6 compare the results of the parallel DUCHAMP implementation (A & B)
against our three parallel Separable Filtering methods: the Original Separable algorithm (C &
D), the Transposed Separable algorithm (E & F) and the Updated Separable algorithm (G &
H). Results for both Regular and Power 2 data sets are discussed to isolate the e�ects of cache
con�icts on parallelism.

78

Figure 6.6: Multi-core performance increases for the convolution component of à trous wavelet reconstruc-
tion for both Regular and Power 2 data sets. This �gure indicates the performance increases achieved
with OpenMP for the DUCHAMP (A & B), the Original Separable (C & D), Transposed Separable (E
& F) and Updated Separable (G & H) convolution algorithms. All speed-ups are reported relative to
each algorithm's single-threaded implementation. Testing was performed on a Intel i7-2600, 8GB RAM,
7200rpm hard-drive.

79

6.2.1.1 DUCHAMP:

For the DUCHAMP algorithm, typical performance improvements are shown (Fig 6.6, A & B)
for the number of utilised threads. For Regular data sets (Fig 6.6 A) the 2-thread (blue line)
and 4-thread (red line) implementations achieve an average performance increase of 1.92× and
3.6× respectively. This is near the theoretical maximum improvement expected for 2 and 4
executing cores. However, linear performance scaling is prevented by parallel thread overheads.

The 8-thread implementation (Fig 6.6, row 1, yellow lines) achieves approximately 4.6× perfor-
mance improvement, an average increase of 28% over the 4-thread implementation, as a result
of hyper-threading on a 4-core CPU [93]. However, the performance for small data sets is highly
variable, the average performance increase of 4-threads ranging between 16-32% . Similar be-
haviour is seen for both the Original and the Transposed Separable algorithms. This variation
is suspected to be caused by an interplay of hyper-threading core scheduling and sub-optimal
cache use.

Launching 16 threads for all convolution algorithms (not shown) results in over-scheduling of
the CPU and worse performance than the 8-threaded case. This over-scheduling relationship
will continue to grow with greater allocations of threads.

For Power 2 data sets (Fig 6.6 B), performance increases over the serial implementation are
slightly smaller, achieving speed-ups of 1.87× and 3.5× for 2 and 4-threaded implementations
respectively. This disparity in performance likely results from higher thread counts increasing
the number of cache con�ict stalls. Additionally, the 8-threaded performance drops signi�cantly
from 4.6× to 3.7× which may indicate that hyper-threading cannot fully optimise performance
when cache is constantly evicted by con�ict stalls. This behaviour similarly occurs for all
competing Separable Filtering algorithms to various degrees, excluding the Updated Separable
algorithm which mitigates this power of two caching e�ect.

Out-of-core computation again results in poor performance for all thread counts, with perfor-
mance dropping o� signi�cantly for data sets larger than 400 million voxels. This algorithm
uses relatively less memory than the Separable Filtering convolution which reduces the rate of
performance drop-o� with data set size. For the largest data set of 729 million voxels, perfor-
mance of all threads converges on a 1.5× increase over the single thread performance. However,
this is expected to decrease to match single thread performance for larger data sets.

6.2.1.2 Original Separable:

The parallel performance improvements achieved for Original Separable convolution (Fig 6.6,
C & D) over its single thread implementation are larger than the corresponding DUCHAMP
results. For Regular data sets (A), parallelism with OpenMP achieves average performance
of 2.1×, 3.9× and 4.8× for the 2, 4 and 8-threaded implementations respectively for in-core
data sets. Super-linear and near linear speed-ups are achieved for 2 and 4-threads respectively
which exceeds the theoretical maximum performance increase from the number of cores utilised.
This good performance could result from the amortisation of the relatively computationally
heavy edge-cases when �lter element placement extends beyond the edge of the data set. In
the multithreaded solution where one or more threads are hindered by edge-case handling,
convolution continues with the remaining threads which partially hides the edge-case run-time
cost. Alternatively, it could be caused by the cache e�ect [48, 59] where the cache miss rate
decreases as the accumulated caches of multiple processors can store more of the working set,
signi�cantly reducing memory access times.

80

The 8-thread implementation again shows the expected increased performance over the 4-
thread implementation and the small variations in performance which likely result from hyper-
threading scheduling and strided memory access.

Power 2 data set performance is seen to be less than that of Regular data sets, with average
speed-ups of 1.8×, 3.4× and 4.1× for the 2, 4 and 8-threaded implementations respectively.
However, all thread implementations experience a drop in performance for the 60, 71, 106 and
121 million voxel data sets. This is unlike the performance variability seen for Regular data sets
that strongly e�ects the 8-threaded implementation only. The cause of this Power 2 variation
could not be determined. However, similar drops in performance are seen for Transposed
Separable algorithm and not for the Updated algorithm which suggests that the performance
disparity is caused by a power of 2 caching e�ect (cache con�ict misses).

Performance for data sets larger than 324 million voxels drops o� sharply with the propor-
tional increase in data stored on disk for out-of-core computation. Higher thread counts cause
performance to drop at increased rates as a result of threads accessing disk more frequently.
Performance for all thread counts converges to a performance increase of 1.5× at 625 million
voxels, at which higher thread numbers again hinder performance with parallel scattered disk
access.

6.2.1.3 Transpose Separable:

The Transpose Separable algorithm achieves average performance increases of 2×, 3.7× and
4.8× with 2, 4 and 8-threads respectively for the in-core computation of regular data sets. This
constitutes a drop in performance relative to the Original Separable algorithm of approximately
4%, 7% and 8.5%. Performance is hindered by the ine�cient strided read/writes required to
transpose the data despite the optimal linear memory reads. However, linear speed-ups are still
reached. Although we expect that this is caused by the bene�ts of amortising computationally
expensive edge-cases, it could also be caused by the cache e�ect where the accumulated caches
of multiple processors can store more of the working set and signi�cantly reduce memory access
times.

In-core Power 2 data sets achieve average performance increases of 1.9×, 3.2× and 4.6× for 2,
4 and 8-threaded implementations. The di�erence in performance between Regular and Power
2 data sets is much smaller than Original Separable algorithm as only one of the convolution
passes is a�ected by frequent cache con�icts. Unlike Regular data sets where performance is
relatively uniform, the 4 and 8-threaded implementations computing Power 2 data sets expe-
rience drops in performance of up to 20% at 71, 121 and 159 million voxel data sets. This is
similar to the Original Separable algorithm's response for relatively small Power 2 data sets
which are expected to be associated with power of 2 caching e�ects (cache con�ict misses) and
multi-thread core scheduling.

Out-of-core computation for the multi-threaded Transposed Separable algorithm is particularly
ine�cient as multiple threads are performing strided read/write operations to disk. Convolution
performance begins decreasing sharply for data sets (Regular and Power 2) larger than 324
million voxels. The rate of this drop-o� is greater than the similar performance drops for the
DUCHAMP and Original Separable algorithms with multiple threads intensifying the penalties
of scattered read/writes to disk. Consequently, convergence in performance for all thread
numbers occurs approximately at 400 million voxels which is the smallest convergence point
amongst all competing multi-threaded convolution algorithms.

81

6.2.1.4 Updated Separable:

The Updated Separable algorithm achieves near perfect speed-ups for all thread implemen-
tations, achieving average performance increases of 2×, 3.8× and 5× for 2, 4 and 8-threads
respectively. Additionally, the variation in performance across all data sets is minimal, mak-
ing this implementation the most predictable out of all the convolution procedures. The 2
and 4-threaded implementations exhibit higher performance than expected from parallelism,
as thread overheads should limit performance. These increases are similar to the super-linear
performance seen at low thread counts for the Original and Transposed Separable algorithms.
The cause of this larger than expected performance increase is associated with the bene�ts of
amortising the relatively computationally expensive edge-case or the multi-core caching e�ect.
The 8-threaded implementation achieves a performance increase of 25% over the 4-threaded im-
plementation. This falls into the range of the speed-up expected from Intel's hyper-threading
technology.

The performance for Power 2 data sets is only reduced by 1-10% for all thread counts which
results in average performance increases of 2×, 3.8× and 4.6× for 2, 4 and 8-threads respectively.
This variation is signi�cantly less than all competing convolution algorithms as a result of fewer
cache con�icts and optimal cache use, discussed above. Additionally, parallel performance is
near uniform across all in-core data sets.

Larger data sets show a rapid linear drop-o� in performance beyond 324 million voxels, propor-
tional to the increase in out-of-core memory use. Parallel performance for all thread implemen-
tations converges at 506 million voxels, smaller converging point than the Original Separable
algorithm. At this point disk access is necessitated with multiple threads increasing the e�ect
of the slow disk access bottleneck on performance.

6.2.2 Total performance of the parallel convolution procedure

In the previous two sections, we separately discussed the performance contributions of Separable
Filtering and parallelism using multi-core CPUs. Parallel improvements were discussed relative
to their single-threaded implementations to assess how performance scales with larger thread
counts. This did not show the combined e�ect of Separable Filtering and parallelism. In
this section, we discuss the performance increases achieved with parallel Separable Filtering
implementations relative to the single-threaded DUCHAMP implementation.

The DUCHAMP implementation (Fig 6.7, A & B) is the parallel port of the original DUCHAMP
convolution procedure. This has been previously discussed above and is included for compara-
tive reasons only. The best parallel performance for this convolution procedure is seen with the
8-thread implementation (green line) which achieves performance increases of 4.6× and 3.7×
speed-up for the Regular and Power 2 data sets respectively. The smaller performance increases
for Power 2 data sets results from frequent cache con�ict stalls hindering computation. How-
ever, as a result of increased out-of-core computation, performance for all thread counts drops
to the same level as the single-threaded implementation for data sets larger than 400 million
voxels.

The Original Separable Filtering convolution (Fig 6.7, C & D) has a signi�cantly reduced run-
time because of the combined e�ects of Separable Filtering (Fig 6.1) and parallelism (Fig 6.6,
C & D). This results in an average convolution performance improvement of 3.7×, 7.6×, 14.5×
and 17.6× for 1, 2, 4 and 8-threaded implementations respectively for in-core regular data
sets. This algorithm was the most e�ected by cache con�icts out of all the Separable Filtering

82

Figure 6.7: Total parallel performance results for the convolution component of à trous wavelet recon-
struction for both Regular and Power 2 data sets. Results indicate the combined e�ect of algorithmic
improvement and multi-core parallelism. Shown are the performance increases for the DUCHAMP (A
& B), the Original Separable (C & D), Transposed Separable (E & F) and Updated Separable (G &
H) algorithms. All speed-ups are reported relative to the DUCHAMP single-threaded implementation.
Testing was performed on a Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

83

implementations which results in Power 2 data sets only achieving 2.2×, 4×, 7.3× and 9× for
the 1, 2, 4 and 8-thread implementations respectively. Performance of this algorithm for all
thread counts drops dramatically for data sets larger than 324 million voxels, converging with
the single-threaded performance at 625 million voxels. This corresponds to the increased disk
access required for partial out-of-core computation. The performance contributions from higher
thread counts and algorithmic improvements are small relative to this computation bottleneck.
Performance continues to drop for larger data sets until it drops below the performance of
DUCHAMP at 729 million voxels.

The Transpose Separable algorithm (Fig 6.7, E & F) has similar performance to the Original
Separable algorithm for the majority of regular data sets, achieving 3.8×, 7.7×, 14.7× and
18.2× for the 1, 2, 4 and 8-thread implementations. In contrast to the Original Separable
implementation, only one of the algorithm's separable �lter passes (to a large degree) is e�ected
by frequent cache con�icts. Consequently, results for Power 2 data are slightly more signi�cant
with speed-ups of 3.7×, 7×, 11.8× and 16.6× for the 1, 2, 4 and 8-threaded implementations
respectively. However, run-time for both data set types increases exponentially for data sets
larger than 324 million voxels and performance drops below a 5× performance increase for all
thread counts at 400 million voxels. This rapid drop in performance corresponds to greater out-
of-core disk access than the competing Separable Filtering algorithms owing to the scattered
writes required for transpose mapping operations.

The Updated Separable algorithm (Fig 6.7, G & H) achieves the highest and most uniform
speed-ups of all the tested convolution algorithm variants. Although similar performance gains
to the other Separable Filtering algorithms are achieved with parallelism, the actual convolu-
tion procedure has a signi�cantly better memory access pattern. This results in an average
convolution speed-up of 4.5×, 9×, 17× and 22.3× for 1, 2, 4 and 8-threaded implementations
respectively, for in-core regular data sets. This algorithm is only acutely a�ected by power
of two caching e�ects and achieves signi�cantly larger relative performance increases with re-
spect to the DUCHAMP implementation, which is not exempt from these caching e�ects. This
results in average performance increases of 5.3×, 10.7×, 20.2× and 24× for the 1, 2 ,4 and
8-threaded implementations. However, this algorithm's superior performance does not prevent
the performance drop caused by the increase in out-of-core computation for data sets larger
than 324 million voxels, dropping below the performance of DUCHAMP at 729 million voxels.

6.2.3 Parallelised Update procedures

Update procedures are the third largest contribution to total à trous run-time. In this section,
we discuss the performance improvements achieved by porting these Update procedures to a
parallel multi-core solution. We only consider parallel implementations of the original Update
procedure and do not consider parallel implementations of the previous SSE implementations,
as the combination of these paradigms results in poor computational performance. We assess
the performance scaling of these procedures with increases in threads of execution on a quad-
core CPU with hyper-threading.

We evaluate the parallel implementations of the Coe�cient Update (Fig 6.8, A & B), the Output
Update (Fig 6.8, C & D) and the Feature Update (Fig 6.8, E & F) procedures. There is no
signi�cant di�erence between the results of Regular and Power 2 data sets so results are reported
for the general case. The Features Update algorithm thresholds voxel values are thresholded
for signi�cance before performing �oating point operations. This made it unsuitable for SSE
but it still ports well to a CPU multithreading solution.

84

Figure 6.8: Run-times and relative performance for Update procedures parallel implementations. The
results shown are the run-times and relative performance increases achieved with increased thread counts
for the Coe�cient Update (A & B), Output Update (C & D) and Feature Update (E & F) procedures.
Testing was performed on a Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

The Output Update procedure (C & D) does not perform well, with average performance
increases of 1.15×, 1.14× and 1.1× with 2, 4 and 8-threads respectively. Similarly, Coe�cient
Update performance (A & D) increases average of 1.4×, 1.41× and 1.21× for the respective
thread counts. Thread management overheads and the accessing of multiple data structures in
relation to a computationally light procedure hides any small possible speed-ups as run-time
is dominated by memory transfer. The performance for 8-threads is below that reached with
2-threads as more threading overheads are introduced with higher thread counts. For large
data sets, performance for both Output and Coe�cient Update procedures drops o� sharply
compared to Feature Updates, averaging the performance of the DUCHAMP procedure at 625
million voxels.

The Feature Update algorithm (E & F) shows substantial parallel performance increases which
are more in line with what is expected from multi-core parallelism. The procedure achieves an
average speed-up of 2×, 3.4× and 3.5× for the 2, 4 and 8-thread implementations respectively.
Unlike the previous two procedures, the Feature Update algorithm primarily accesses only

85

one data structure to test for signi�cant voxel values. Only signi�cant voxels require extra
computation and additional data structure access. This reduces the amount of memory that is
required to be paged into cache and prevents this algorithm from being transfer bound between
cache and physical memory.

6.2.4 Total Performance improvement of the à trous reconstruction
algorithm

Figure 6.9: Total run-times for the improved à trous wavelet reconstruction algorithm implementations
including parallelism and algorithmic redesign. These run-times are deconstructed into their component
procedures to identify their speci�c contributions. Results are shown for the Original Separable (A &
B), Transpose Separable (C & D), Updated Separable (E & F) algorithms for both Regular and Power 2
data sets. Testing was performed on a Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

In this section, we discuss the total performance increase of the à trous wavelet reconstruction
algorithm. We include the parallelised implementations of all the Separable Filtering convo-
lutions and Update procedures. The SSE implementations for Updates procedures are not
considered as we have discussed previously that the results with parallelism alone result in bet-
ter performance. We show the results for the best performing multi-threaded implementation
and analyse the run-time that each component adds to the �nal run-time.

86

Figure 6.10: Total performance increases for the improved à trous wavelet reconstruction algorithm
implementations including parallelism and algorithmic redesign. Performance increases are shown for the
Original Separable (red line), Transpose Separable (yellow line), Updated Separable (blue line) algorithms
relative to DUCHAMP for both Regular (A) and Power 2 (B) data sets. Testing was performed on a
Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

Total run-time for the à trous wavelet reconstruction algorithm (Fig 6.9) consists of the con-
tribution from the convolution (green region), statistics (yellow region), update (red region),
loading (blue region) and miscellaneous procedures (brown region), discussed above.

The timing results for in-core computation of the Original Separable (Fig 6.9, A & B), Trans-
posed Separable (Fig 6.9, C & D) and Updated Separable implementations (Fig 6.9, E & F)
for the à trous wavelet reconstruction are highly correlated with the convolution procedure's
times as it constitutes the majority of total run-time. The results for the convolution compo-
nent using 8-threads (discussed above) for Regular data sets are signi�cant, with 17.6×, 18.2×
and 22.3× speed-ups for the Original, Transposed and Updated Separable implementations. In
contrast the speed-ups for Power 2 data sets are 9×, 16.6× and 24× for each algorithm as the
extent of frequent cache con�icts is uniform across each algorithm. This reduces the convo-
lutions procedure's contribution to total run-time from approximately 85-89% to 58-65% (Fig
6.11) for Regular data sets and 58-80% for Power 2 data sets. The best performing algorithm,
Updated Separable Filtering, is responsible for the lowest contribution (58%) to total run-time
(Fig 6.11, E & F).

Certain Update procedures perform poorly for high thread counts as a result of thread overheads
and core over-scheduling. Best performance for the Coe�cient (1.4×), Output (1.15×) and
Feature Update (3.5×) procedures is achieved with the 2, 4 and 8-threaded implementations
respectively. The cause of best performance for each algorithm varying with thread number
is discussed above. Although these performance increases are relatively small, the Updates
procedure's contribution to the à trous algorithm's total run-time decreases to only 3.5% for
in-core data sets.

Statistical and miscellaneous procedures are not considered for optimisation. Their combined
contribution to �nal run-time increases to an average of 30% for Regular data sets and 28% for
Power 2 data sets. These components restrict the total performance increase possible for the à
trous wavelet reconstruction component.

Total speed-ups for the entire à trous wavelet reconstruction algorithm (Fig 6.10) for in-core
data sets are as follows: The Original Separable implementation averages a speed-up of 11.3×
for Regular data sets and 6.9× for Power 2 data sets. The Transpose Separable implementa-
tion performs slightly better with an average speed-up of 11.4× and 10.7× for Regular and
Power 2 data sets. The Updates Separable implementation has the best results with an average

87

Figure 6.11: Percentage break-down for the improved à trous wavelet reconstruction algorithm implemen-
tations total run-times. These run-times are deconstructed into their component procedures to identify
their speci�c contributions. Results are shown for the Original Separable (A & B), Transpose Separable
(C & D), Updated Separable (E & F) algorithms for both Regular and Power 2 data sets. All speed-ups
are reported relative to the DUCHAMP single-threaded implementation. Testing was performed on a
Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

of 13× speed-up for Regular data sets. The performance for Power 2 data set computation
achieves an average of 13.9× speed-up relative to DUCHAMP but actually attains comparable
run-times to Regular data set computation. Despite the implemented algorithmic improve-
ments and parallelism, out-of-core computation is still transfer bound by slow disk access and
performance decreases sharply after 324 million voxels. The e�ect of slow out-of-core computa-
tion is signi�cantly increased with multi-threading as it signi�cantly increases disk access. For
all Separable Filtering convolutions computing the largest data sets, performance drops below
that of the single-threaded DUCHAMP implementation due to the higher memory use. We
mitigate the e�ect of disk access performance bottleneck by introducing memory management
in the succeeding section.

88

6.2.5 Summary

The à trous wavelet reconstruction is well-suited for �ne grain parallelism on multi-core CPUs.
All convolution implementations scale with the increase in threads of execution for Regular
data sets. The Updated Separable Filtering algorithm achieves superior results with the im-
plementation of parallelism, achieving a parallel performance increase of 2×, 3.8× and 5× for
2, 4 and 8-threads respectively. This results in an overall convolution speed-up, relative to the
single-threaded DUCHAMP implementation of 9×, 17× and 22.3× for 2, 4 and 8-threaded
implementations. Additionally, the performance of Updated Separable algorithm for the com-
putation of Power 2 data sets does not drop signi�cantly as this algorithm is only slightly
a�ected by cache con�ict stalls, achieving parallel performance increases of 2×, 3.8× and 4.6×.
This is in contrast to the large performance drops experienced by the DUCHAMP and com-
peting Separable Filtering algorithms. Relative to the DUCHAMP solution computing Power
2 data sets, overall convolution performance increases to 10.7×, 20.2× and 24× for the 2, 4
and 8-threaded implementations.

Only Update procedures without SSE parallelism were ported to multi-core parallel implemen-
tations as the combination of these two parallel paradigms resulted in poor performance. The
performance increases with multi-core parallelism are superior to that achieved with SSE. How-
ever, despite this improved performance, the Coe�cient and Output Update procedures are too
computationally lightweight relative to the required amount of memory transfer and result in
a maximum performance improvement of 1.4× (2-threads) and 1.15× (4-threads) respectively.
In contrast, the Feature Update procedure scales well with an increase in threads of execution,
achieving 2×, 3.4× and 3.5× for the 2, 4 and 8-thread respectively as a result of signi�cantly
reduced memory access.

Overall, the à trous wavelet reconstruction algorithm (using 8-threads) implementing the Up-
dated Separable convolution achieves the best results with an average performance increase
of 13× and 14× for Regular and Power2 in-core data sets respectively. Further speed-ups are
prevented by the serial Statistics procedures which are not considered for performance improve-
ment in this work. However, this is a signi�cant result and su�ciently increases performance to
process data sets an order of magnitude larger than current data sets in practical time-frames.

6.3 Large data sets

Future surveys on the SKA precursor instruments, MeerKAT and ASKAP, and the SKA itself
are expected to produce observational data sets that are exponentially larger than current
surveys. In this work we considered the computational improvement of the à trous wavelet
reconstruction algorithm on a `desktop' commodity system, discussed above, in order to meet
the computational requirements for processing large data sets in practical time-frames. These
improvements alone are not su�cient for improving the computational performance of large
data sets on `desktop' hardware. The à trous wavelet reconstruction algorithm is extremely
memory intensive and consequently the allocated memory for large data sets exceeds `desktop'
hardware's relatively small amount of physical memory. Additionally, the subsequent disk access
to retrieve this data during computation is slower in orders of magnitude than physical memory
access. This slow disk access can bottleneck system performance despite our implemented
computational improvements. This potentially limits the data set size than can be processed
in practical time-frames.

In this section, we assess the mitigation of slow out-of-core computation for the à trous wavelet

89

reconstruction algorithm with the implementation of memory management. Memory manage-
ment attempts to mitigate the penalty of slow disk access by overriding the operating system's
paging scheme (Chapter 2.7.2). Furthermore, it allows for memory use to extend beyond phys-
ical memory and swop space by de�ning �le-backed swop space. Two commonly used memory
management libraries are assessed: Boost and Mmap. The Stxxl library was excluded from
this assessment, as preliminary testing showed run-times approximately 6× larger than the
competing alternatives.

Memory management is applied to only three of the data structures used in the à trous wavelet
reconstruction algorithm (Chapter 5.4) as preliminary testing showed that this partial mapping
maximised performance. The two memory management schemes are assessed in combination
with only our improved system which uses the Updated Separable convolution procedure. This
improved system was selected as it achieved the highest and most predictable (low variability)
in-core performance Additionally, the �lters used in this procedure are propagated linearly
through memory which optimises the use of paged in data and reduces disk access. The reduced
disk access of this improved system makes it the most appropriate for out-of-core memory
managed computation.

6.3.1 Memory-managed convolution

Figure 6.12: Run-times for the memory management implementations of the Updated Separable convo-
lution procedure. Results are given for the Boost (yellow line) and Mmap (green line) implementations
for both Regular (A) and Power 2 (B) data sets. Results are compared against the single threaded
DUCHAMP (blue line) and Update Separable (red line) convolution procedures. Testing was performed
on a Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

In this section, we compare the Boost and the Mmap (normal paging scheme) implementations
of the single-threaded Updated Separable �lter convolution procedure. The Mmap Sequential
and Random paging schemes are not shown. Sequential paging performance results are negli-
gibly di�erent from Normal paging and Random paging is best suited for completely random
access patterns (Chapter 5.4). We only consider single-threaded memory-mapped implemen-
tations as parallelism decreased the performance of the memory-managed implementations
signi�cantly (results not shown). In Fig 6.12, the Boost (yellow line) and Mmap using normal
paging (green line) are compared against the original DUCHAMP convolution implementation
(blue line) and the single-threaded Update Separable algorithm without memory management
(red line).

Run-times (Fig 6.12 A) for Boost and Mmap implementations are on average 32% larger than
the Updated Separable implementation for completely in-core Regular data sets (smaller than

90

400 million voxels). This discrepancy is caused by overheads from data management and a slow
�rst data access, as all memory mapped data is initially stored completely out-of-core. However,
despite these overheads, performance is on average 3.6× better than DUCHAMP's convolution
implementation. For data sets greater than 400 million voxels, the bene�ts of memory manage-
ment outweigh its overheads, causing run-time for both Mmap and Boost implementations to
increase linearly (approximately) with data set size up to 1 billion voxels (size 3.7 GB, allocated
memory 18.5 GB). This linear run-time increase for both libraries contrasts the exponential run-
time increase of out-of-core Updated Separable �ltering convolution (red line) without memory
management which results in a 2.3× performance increase relative to DUCHAMP at 729 mil-
lion voxels (the largest data set used for comparison). Small performance di�erences are seen
between the memory management libraries for larger data sets, achieving a maximum variation
of 17.7%. However, the best performing algorithm alternates depending on data set size as a
result of the di�erent paging schemes implemented in each memory management scheme.

For Power 2 data sets (Fig 6.12 B), the performance of both the Boost and Mmap implementa-
tions for in-core data sets is approximately equal to the performance achieved with Regular data
sets. This results from the Updated Separable algorithm's memory access pattern not causing
frequent cache con�ict stalls. However, for out-of-core data sets (larger than 400 million voxels)
the performance of these libraries is superior to Regular data set performance as the variable
performance between data sets is signi�cantly reduced. The run-times of the Boost and Mmap
implementations are both on average 9.5% larger than the best performing library computing
Regular data sets. The cause of this performance increase could not be determined.

6.3.2 Memory-managed Update procedures

Figure 6.13: Run-times for the memory management implementations of the Floating Point Update
procedures. Results are given for the Boost (blue line) and Mmap (red line) implementations of the Co-
e�cient Update (A), Feature Update (B) and the Output Update (C) procedures. Results are compared
against the standard implementation of the Floating Point Update (green line) procedures. Testing was
performed on a Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

91

The Update procedures in the à trous wavelet reconstruction algorithm only comprise an aver-
age of 2.4% of total run-time for in-core computation. However, run-time was shown (Section
6.3) to exponentially increase for partially out-of-core computation. Consequently, these pro-
cedures require that the disk access bottleneck is reduced in order to facilitate the computation
of large data sets in practical time-frames. In this section we compare the performance of
the standard Update procedures (Fig 6.13, green line) against the memory-managed Boost
(blue line) and the Mmap (sequential) (red line) implementations. The DUCHAMP proce-
dures results are not shown as performance is negligibly di�erent from our standard Update
procedures. Multithreaded implementations are not considered as preliminary testing indicated
that memory-management was ill-suited to multi-core parallelism.

The Mmap and Boost implementations of the Coe�cient Update procedure (Fig 6.13 A) achieve
a computational performance 44.1× slower on average than the standard implementations for
data sets smaller than 625 million voxels. This results from the relatively large data man-
agement overheads associated with memory management and the relatively large amount of
memory transfer required for this computationally light process. However, for out-of-core data
sets the run-time for both libraries increases linearly with data set size and surpasses the ex-
ponentially decreasing performance of the standard Coe�cient Update at 729 million voxels
(largest comparative data set). Larger data sets are not considered for comparison testing as
procedures without memory management take an infeasibly large amount of run-time. The
best performing memory management library alternates between data sets as a result of their
unique paging schemes. The Boost and Mmap implementations' run-time continues to increase
linearly with data set size up to the largest tested size of 1 billion voxels which indicates that
slow disk access mitigation is successful to a large degree. However, memory-management only
improves the disk access bottleneck and does not remove it completely. The best run-times
achieved for 1 billion voxels (using Boost) are still 153.8× larger than the theoretical in-core
computation time.

The standard Feature Update procedure's (Fig 6.13 B) performance is only a�ected slightly
by out-of-core computation. The Feature Update procedure is immediately preceded by the
Coe�cient procedure, and both procedures access the same data structures. This increases
the likelihood that a large portion of this data structure is already paged into memory and
forgoes a large number of disk accesses. Similarly, the run-times for the memory-managed
implementations are kept small but are still are on average 6.5× larger than the standard
implementation up to 625 million voxels. For out-of-core data sets larger than 729 million
voxels, performance of the memory-managed implementations decreases rapidly, dropping to
13.2× slower than a theoretical in-core implementation at 1 billion voxels. This only results in
a negligibly small run-time of 20 seconds and consequently we consider memory management
to be partially successful up to 729 million voxels.

The standard Output Update procedures (Fig 6.13 C) is disproportionately a�ected by out-of-
core computation, and performance decreases exponentially for data set sizes larger than 324
million voxels. This is again in contrast to the Boost and Mmap implementations which show a
linear increase in run-time for data sets larger than 324 million voxels. The standard implemen-
tations' performance is bypassed by both memory-managed implementations at approximately
506 million voxels. However, for this procedure, the Boost implementation performs on average
26% better than Mmap for out-of-core computation. This di�erence likely results from the
di�ering paging schemes and the set of pages in memory at the start of this procedure. Boost
achieves a 3.6× better performance than the standard implementation at 729 million voxels.
The Boost and Mmap implementations' run-time continues to increase linearly with data set
size up to the largest tested size of 1 billion voxels, mitigating the disk access bottleneck to
a large degree. However, the performance of the memory-managed implementations is still

92

187.4× larger (using Boost) than the theoretical in-core computation time at 1 billion voxels.

6.3.3 Total run-times with Memory Management

Figure 6.14: Total run-times for the memory-managed à trous wavelet reconstruction algorithm. These
run-times are deconstructed into their component procedures to identify their speci�c contributions.
Results are shown for the Boost (A & B) and Mmap (C & D) implementations for both Regular and
Power 2 data sets. Testing was performed on a Intel i7-2600, 8GB RAM, 7200rpm hard-drive.

The Mmap and Boost memory-management solutions are not successful in completely mitigat-
ing the slow disk access bottleneck for all the procedures within the à trous wavelet reconstruc-
tion algorithm. These libraries do mitigate the exponential performance decrease for out-of-core
computation and achieve signi�cant performance increases relative to out-of-core procedures
without memory management. However, the majority of procedures still produce run-times
orders of magnitude larger than their respective theoretical in-core computation times. The
main exception to this is the convolution procedure (the main contributor to run-time) where
memory-management is largely successful in mitigating the disk access bottleneck. In this sec-
tion, we discuss the performance (Fig 6.14) of the memory-managed convolution (green region),
update (red region) and statistics (yellow region) procedures and their contribution to total run-
time. The loading (blue region) and miscellaneous (brown region) procedures are not discussed
as their contributions to total run-time are relatively small. Finally, we compare the overall
performance of memory-managed solutions against the DUCHAMP implementation to assess
whether memory management mitigation is su�cient to allow for scalable out-of-core compu-
tation. Only single-threaded solutions are discussed as multi-threaded solutions in conjunction
with memory management result in extremely poor performance.

Statistic procedures are not considered for memory management as the random access memory
pattern utilised by these procedures performed poorly with both the Mmap and Boost libraries.

93

However, the majority of the remaining à trous algorithms data structures implement memory
management and are consequently stored mostly out-of-core when not in use. This provides a
passive bene�t to the statistical procedures' performance for data sets larger 523 million voxels
as the data structure used for partial sorting is mostly in-core. This results in a performance
increase of 3.8× and 5.64× at 729 million voxels for the Mmap (Fig 6.14, A & B) and Boost
(Fig 6.14, C & D) implementations respectively. Consequently, the Mmap and Boost statistical
procedures' contribution to total run-time is kept small, contributing an average of 12.3% and
22.2% respectively for out-of-core computation.

The convolution run-time is signi�cantly reduced for larger Regular data sets in both the Boost
(Fig 6.14, A) and the Mmap (Fig 6.14, C) implementations. The relatively high ratio of com-
putation to disk access of separable �ltering allowed asynchronous loading to reduce the disk
access bottleneck and retain the performance contributions of our implemented improvements
(to a large degree) when computing out-of-core. This results in a 2.3× performance improve-
ment for both libraries at 729 million voxels, the largest data set used in comparison testing.
The di�erence in run-time for Power 2 data sets (Fig 6.14, B and D) is small as the Updated
Separable convolution procedure mitigates the majority of cache con�ict stalls. The percent-
age contribution of all convolution procedures to total run-time for out-of-core computation is
approximately equal for both of the memory management implementations, averaging 41% for
data sets larger than 400 million voxels.

The disk access bottleneck is largely mitigated for out-of-core computation with the Mmap
Feature Update (discussed above) and consequently this procedure's contribution to total run-
time is negligibly small. However, the Mmap Coe�cient and Output Update procedures, despite
their simplicity, achieve run-times 153.8× and 187.4× larger than their respective theoretical
in-core computed procedures. This causes the total run-time for all Mmap update procedures to
be 170.2× larger than an equivalent in-core solution. Similar performance is achieved for most of
the Boost implementations of these procedures. However, the Boost Output Update procedure
performs on average 26% better than its Mmap counterpart which reduces the average total run-
time contribution of the Boost procedures by 12.2%. Although these run-times are signi�cantly
better than standard out-of-core computation, they are still large enough to e�ectively double
total run-time.

Figure 6.15: Total performance increases for the memory-managed à trous wavelet reconstruction al-
gorithm. These run-times are deconstructed into their component procedures to identify their speci�c
contributions. Results are shown for the Boost (red plot) and Mmap (yellow) implementations total
performance increase relative to DUCHAMP for both Regular (A) and Power 2 (B) data sets. The re-
sults for the in-core performance of our improved à trous reconstruction implementation without memory
management (blue plot) are shown for comparison. Testing was performed on a Intel i7-2600, 8GB RAM,
7200rpm hard-drive.

94

The graphs in Fig 6.15 show the overall performance increases achieved over DUCHAMP with
memory management solutions to the out-of-core computation of the à trous wavelet recon-
struction algorithm. The Mmap (red plot) and Boost (yellow plot) implementations are seen
to perform similarly for all data sets except for the �rst partially out-of-core data sets of 324
and 400 million voxels where Mmap achieves a temporary performance increase of 31% and
38% over Boost for Regular and Power 2 data sets respectively. The in-core performance of
both libraries averages 1.63× and 2× for Regular (Fig 6.15 A) and Power 2 (Fig 6.15 B) data
sets respectively. This is substantially less than the in-core performance of the standard im-
plementation (blue plot) which uses separable convolution techniques and SSE commands to
achieve a 4.1× and 4.6× performance increase over DUCHAMP for Regular and Power 2 data
sets respectively. This poor performance results from the overheads of creating and managing
memory management data structures.

The advantages of memory management are seen for data sets larger than 625 million vox-
els where the performance of both the Boost and Mmap implementations exceed that of the
single-threaded à trous algorithm (Update Separable convolution). Both memory-managed
implementations are shown to mitigate the disk access penalty for large data sets, retaining
an increased performance over DUCHAMP. However, performance for out-of-core computa-
tion decreases for both Boost and Mmap implementations, averaging 1.52× and 1.51× for the
Regular and Power 2 data sets respectively. This poor performance is mainly attributed to
the poor performance of the memory-managed Update procedures as both the convolution and
statistics procedures achieved signi�cant decreases to run-time. However, the relative perfor-
mance increases are expected to rise for data sets larger than 729 million voxels. This increase
would not be attributed to memory-management as run-time is shown to increase linearly in
Fig 6.14 with an increase in data set size. Rather, the standard DUCHAMP performance
is expected to exponentially drop with an increase in out-of-core computation, increasing the
relative performance of Boost and Mmap.

The disk access bottleneck is not completely mitigated for any of the à trous wavelet reconstruc-
tion procedures. This limits attempts at multithreading solutions (results not shown) which
in combination with slow disk access and limited physical memory results in thrashing and
consequently poor performance. Therefore despite the large performance increases achieved
for in-core computation with algorithm redesign and multi-core parallelism (13× performance
increase), memory-management is insu�cient in carrying over these performance gains to out-
of-core computation.

6.3.4 Summary

We assessed both the Mmap and Boost memory management libraries on their ability to miti-
gate the slow disk access which results from out-of-core computation for large data sets. Both
libraries performed well with the single-threaded Updated Separable convolution procedure and
achieved linear performance scaling with increases in data set size. The convolution procedure's
high ratio of computation to disk access allows memory mapping to asynchronously draw in
memory and e�ectively mitigate the transfer bottleneck. However, the simple single-threaded
Update procedures are completely transfer bound and run-time is signi�cantly larger than an
in-core solution despite the signi�cant reduction to the disk access bottleneck. Additionally, the
random memory access pattern of the Statistical procedures performs poorly with memory man-
agement. However, statistical procedures without memory management are computed mostly
in-core when the majority of the à trous data structures implement memory management, sig-
ni�cantly reducing run-time for out-of-core data sets. Multi-threaded solutions perform poorly

95

with memory management for all procedures and thread counts.

The slow out-of-core computation for the à trous wavelet reconstruction is only partially im-
proved. Whilst memory management solutions allow performance to scale linearly with increase
in data set size, performance is only 1.51-1.52× that of DUCHAMP single-threaded implemen-
tation. This could not be improved with parallelism and falls extremely short of the in-core
13× speed-up achieved with algorithmic improvement and parallelism on a quad-core CPU.

96

Chapter 7

Conclusions

The goal of this dissertation was to determine whether the computationally heavy à trous
wavelet reconstruction algorithm, implemented in the DUCHAMP source extraction package,
could be improved to facilitate source extraction for large scale HI surveys in practical time-
frames on `desktop' commodity hardware. High performance `desktop' hardware was used to
bypass the access constraints that can arise when performing personalised searches on clusters
and large distributed computing solutions. Although `desktop' computing is emphasised, our
developed high performance system components are general enough to be accommodated into
computing solutions. The memory management component, which allows large data compu-
tation on `desktop' hardware, is intended for systems with insu�cient fast-access memory and
slow secondary storage. Testing was performed on a `desktop' system with a quad-core Intel
i7-2600 CPU, 8GB DDR3 RAM and 7200rpm hard-drive. Convolution performance testing was
performed using the largest (and default) �lter used in DUCHAMP, the 5 × 5 × 5 B3-Spline
�lter.

We draw the conclusions of this thesis with respect to our speci�ed research questions:

Can we improve the e�ciency of the à trous wavelet reconstruction for a single

core CPU?

Algorithmic e�ciency was successfully improved in the à trous wavelet reconstruction algo-
rithm by replacing the à trous algorithm's standard 3D convolution procedure (∼ 95% of total
algorithm run-time) with our three Separable Filtering convolution procedures (which varied by
memory access pattern only). The Updated Separable convolution maximised performance with
a 4.5× average performance increase over DUCHAMP's 3D convolution for in-core computation.
This performance resulted from the e�cient cache use when propagating the row, column and
spectral-aligned separable 1D �lters linearly through memory in each of their respective �lter
passes. However, a 4.5× average performance increase is only 54% of the theoretical separable
�ltering performance (5 × 5 × 5 �lter) as our implementation required three complete passes
through the data (as opposed to one). Similar performance increases are expected with the
application of this convolution optimisation technique in the general case of multi-dimensional
�ltering procedures using separable �lters. Additionally, this algorithm signi�cantly minimised
the e�ect of frequent cache con�icts when computing Power 2 data sets (rows and columns are
aligned to a multiple of page size). The number of cache con�icts for the Updated Separable
algorithm was minimised as page-alignment only occurred between the elements of single �lter
response calculation and not between adjacent �lter response calculations. In contrast, cache
con�icts caused a signi�cant drop in DUCHAMP convolution performance as its memory access
pattern resulted in frequent page-aligned memory access and consequently numerous premature

97

cache evictions. This increased relative convolution performance to 5.2× that of DUCHAMP
when computing Power 2 data sets.

The competing separable convolution methods, namely Original and Transposed Separable
Filtering, perform relatively poorly as a result of the ine�cient memory access patterns of at
least one �lter pass. Propagating the column (second pass) and spectral-aligned (third pass) 1D
�lters in the same direction as �lter alignment (Original Separable Filtering method) resulted
in large strides between memory accesses and non-optimal use of cache memory, and achieved a
3.7× performance increase only. The Transposed Separable Filtering method, which transposes
the data and �lters to ensure all memory reads are linear, was expected to achieve the highest
performance increase. However, this algorithm's performance increase was limited to only 3.8×
because of the extra transpose operations, and subsequent ine�cient writes to memory, required
to transpose the data between �lter passes. Additionally, the memory access patterns of both
convolution algorithms resulted in frequent page-aligned access for Power 2 data sets which
resulted in highly variable, poor performance.

All Separable Filtering convolution methods are well-suited to high-accuracy source extraction
problems, as �oating point error is reduced by an order of magnitude relative to DUCHAMP 3D
convolution. However, the 20% increase in memory allocation of Separable Filtering convolu-
tion limited the data set size which could be computed completely in-core, for which maximum
performance was maintained, to only 1.2 GB (15% size of main memory, ∼ 90% main memory
use). In contrast, the DUCHAMP performance drop-o� only begins at a data set size of 1.5
GB (19% size of main memory). Nonetheless, the performance of all the Separable Filtering
convolutions was still superior to DUCHAMP convolution, despite partially out-of-core com-
putation, up to a data set size of 2.3 GB (29% size of main memory, 179% allocated memory).
However, with further increases to the amount of out-of-core computation performed, run-time
for both the DUCHAMP and Separable Filtering convolutions exponentially increased with the
number of disk accesses required.

The algorithm e�ciency and accuracy of the à trous reconstruction algorithm's convolution
was successfully improved with our Updated Separable Filtering algorithm at the expense of a
20% increase in memory use.

Can Intel CPU SSE commands facilitate SIMD execution in this algorithm and

further increase performance for the single-threaded case?

The introduction of SSE commands to facilitate SIMD execution (vector instruction paral-
lelism) to further improve performance for the single-threaded case was largely unsuccessful.
The majority of the procedures within the à trous wavelet reconstruction algorithm contains
execution branching which prevented e�cient SSE implementation; only the Update procedures
were suitable for SSE parallelism. However, these procedures had a light computational load
per unit of memory transfer which limited the SSE performance increase to between 1.1-1.3×,
dropping to 0.5-1.2× for out-of-core data sets.

Overall single-threaded performance of the improved à trous wavelet reconstruction (using both
Separable Filtering convolution and SSE Update procedures) achieved a performance increase
of 4.1× and 4.6× for Regular and Power 2 in-core data sets respectively. SSE's contribution
to this performance increase is small and should be considered a �ne-tuning optimisation only.
Whilst the single-threaded à trous wavelet reconstruction performance increases achieved are
signi�cant, they are insu�cient to compute ultra-wide and ultra-deep HI surveys in practical
time-frames. However, further performance increases are obtained by incorporating parallel
computing, discussed below. Additionally, although not covered in this thesis, these algo-
rithms are expected to be easily included (if necessary) in distributed computing solutions to

98

DUCHAMP source extraction.

Can we accelerate these processes by utilising parallel `desktop' multi-core CPU

hardware?

The à trous wavelet reconstruction algorithm is well-suited to multi-core CPU parallelism. All
implemented Separable Filtering convolution algorithms scaled well with an increase in the
number of threads and logical cores used (quad-core CPU). However, the performance of the
multithreaded Original and Transposed Separable solutions exhibited unstable performance
with performance drops occurring for certain data set sizes. The Updated Separable convo-
lution algorithm exhibited a uniform performance increase and near optimal scaling with an
increase in the physical cores utilised and hyper-threading for all in-core Regular and Power 2
data sets. Relative to the single-threaded DUCHAMP implementation, the Updated Separa-
ble convolution achieved a 9×, 17× and 22.3× performance increase for 2, 4 and 8-threaded
implementation respectively for in-core regular data sets on a quad-core CPU. The poor perfor-
mance of the DUCHAMP convolution for Power 2 data sets increased the relative performance
increase of the Updated Separable convolution to 10.7×, 20.2× and 24× for 2, 4 and 8-threaded
implementation respectively. The 22.3×-24× convolution performance increase achieved with
8-threads on a 4-core CPU is substantial with the potential of reducing convolution computation
time from days to hours. However, this performance is limited to systems with su�cient physi-
cal memory space (6× the size of the computed data set) as even partially out-of-core problems
decreases performance signi�cantly as a result of slow disk access. Additionally, multithreading
exacerbates this situation as the rate of disk access increases with thread count.

The Update procedure's SSE implementations are not suitable for multi-core CPU parallelism.
Update procedures achieved the greatest performance improvements with multithreading alone.
Update procedures that accessed two data structures per voxel were limited to a maximum
parallel performance increase between 1.15-1.4× despite using 8-threads. Update procedures
that accessed one data set (which are in the minority) for the majority of computation (second
data structure access conditional), by contrast, scaled with the number of threads and achieved
a 3.5× performance increase with 8-threads.

Overall à trous wavelet reconstruction performance with both algorithmic improvement and
multi-core parallelism (8-threads) achieved a 13× (13.8× for Power 2 data sets) performance
increase over the standard DUCHAMP implementation. Performance was restricted signi�-
cantly by the relatively large run-time contribution of the à trous statistical procedures which
were not considered for optimisation in this work. However, this performance increase still rep-
resents an order of magnitude increase over the single-threaded DUCHAMP implementation,
which is a signi�cant performance improvement to the largest component (with respect to run-
time) in the DUCHAMP source extraction package. On a computing system with su�ciently
large memory space (6× the size of the computed data set), large scale HI survey data could
be computed in a practical time-frame, reducing days of computation to mere hours. Similarly,
the in-core processing time of smaller data volumes (in the 0.1 - 10 GB range) is reduced to the
order of minutes. The à trous wavelet reconstruction algorithm can be further improved with
a multi-core solution for statistical procedures and higher end `desktop' hardware with more
available CPU cores. However, to meet the goals of this research, it was necessary to maintain
high performance for out-of-core computation to account for the relatively small amount of
physical memory on `desktop' systems.

Can slow disk access on `desktop' hardware be mitigated with memory management

to allow for e�cient computation of large data sets?

The disk access bottleneck which limits out-of-core performance was only partially mitigated

99

with the implementation of our memory management solutions. Although the Boost and Mmap
memory management solution showed approximately equal performance, Boost and Mmap per-
formed marginally better on Power 2 and Regular data sets respectively. Slow disk access was
mitigated to a large degree for procedures with high computational intensities per unit of
memory paged as it allowed enough time for a substantial amount of asynchronous paging
(prefetching) of data to take place. This enabled high performance to be partially maintained
for single-threaded Updated Separable convolutions with a uniform 3.6× performance increase
relative to DUCHAMP up to the largest tested data set of 3.7 GB (memory use 22 GB). Addi-
tionally, run-time increased linearly with data set size, indicating that the performance achieved
will likely be maintained for even larger data sets. However, the out-of-core multithreading im-
plementation of Updated Separable convolution was signi�cantly hindered by parallel access to
disk with performance decreasing rapidly with higher thread counts and larger data sets. The
lack of e�cient parallelism limited memory managed convolution to only a small fraction of
in-core performance.

The memory managed, computationally light Update procedures, despite having superior per-
formance to out-of-core computation without memory management, experienced an order of
magnitude decrease in performance for both single and multithreaded (to a greater extent) im-
plementations. Additionally, the random access memory pattern of statistical procedures with
memory management resulted in an exponential increase in its run-time. Statistical procedures
were slightly improved by de�ning their data structures in-core without memory management.
Poor multithreading performance and the exponential increase in run-time for both Update and
Statistical procedures reduced the overall performance of our à trous wavelet reconstruction
over DUCHAMP from 13× (in-core) to only 1.51× (out-of-core). Memory mapping solutions
in isolation were insu�cient in mitigating the disk access bottleneck in order to facilitate the
processing of large HI observational data sets on `desktop' hardware in practical amounts of
time. However, we note that slow out-of-core computation may be improved with solutions
that segment large data cubes into manageable quantities or through the implementation of
faster secondary storage such as parallel RAID access or Solid State Drives (SSD).

In conclusion, the implementation of multi-core parallelism with 8-threads on a 4-core CPU
in conjunction with separable �ltering techniques signi�cantly improves the performance of
DUCHAMP's à trous wavelet reconstruction algorithm by 13× for in-core data sets. This per-
formance improvement reduces the run-time required to perform DUCHAMP noise suppression
on HI data volumes by an order of magnitude and signi�cantly reduces total DUCHAMP run-
time. Parallel convolution performance is expected to linearly scale (approximately) with the
number of CPU cores available and will signi�cantly increase the overall à trous wavelet recon-
struction algorithm's parallel performance. However, this performance will be limited by the
current lack of a multithreaded solution for à trous Statistical procedures. SSE intrinsics are
a �ne-tuning operation for the à trous algorithm's single-threaded case only and will produce
negative results when combined with multi-core parallelism.

`Desktop' hardware has inadequate memory resources to process large HI data sets completely
in-core and requires e�cient out-of-core computation to maintain the achieved in-core perfor-
mance increases. However, memory management with magnetic drives as secondary storage
was insu�cient to facilitate e�cient out-of-core computation. Faster secondary storage such as
parallel RAID access or Solid State Drives (SSD) are required to allow `desktop' hardware to
process large HI data sets in practical time-frames.

100

The memory management component was speci�cally intended for systems with insu�cient
fast-access memory and slow secondary storage. Although `desktop' computing is emphasised,
our implemented high performance system components are general enough to be accommodated
into larger parallel computing hardware solutions such as clusters.

7.1 Future work

The potential of high performance source extraction on `desktop' hardware is extensive and
this dissertation only represents a fraction of the work that can be done.

`Desktop' hardware optimisations have not been exhausted. Low level cache optimisation of
all à trous reconstruction procedures and parallel implementations of the statistics procedure
could further improve performance. Memory use in the Separable Filtering implementation
of à trous wavelet reconstruction can be reduced when implementing robust statistics as the
temporary data structures used to sort data could be used to store the intermediate values
generated between separable �lter passes. This will increase the data set size that can be
computed e�ciently in-core.

Faster forms of secondary storage can be implemented to further reduce (or potentially elimi-
nate) the problem of slow disk access. Two main a�ordable commodity options exist, namely
parallel disk access with RAID and the use of solid state drives (SSD). Additional hardware
solutions to further increase performance include the GPU, which is well-suited to the prob-
lem of lightweight thread-level parallelism. The implementation of an asynchronous CPU-GPU
solution has the potential to dramatically increase the performance of à trous wavelet recon-
struction.

Finally, we note that optimisation must be extended to the entirety of the DUCHAMP package
in order for it to be an e�cient source extraction tool for use with the next generation of
ultra-deep and ultra-wide HI surveys.

101

Bibliography

[1] Abdalla, F., and Rawlings, S. Probing dark energy with baryonic oscillations and
future radio surveys of neutral hydrogen. Monthly Notices of the Royal Astronomical
Society 360, 1 (2005), 27�40.

[2] Adams, B. The 21 cm line: Why observe it? https://alfalfasurvey.wordpress.

com/2009/01/17/the-21-cm-line-why-do-we-care/, 2009. Accessed 2014-03-24.

[3] Agulleiro, J., Garzón, E., Fernández, J., et al. Vectorization with SIMD ex-
tensions speeds up reconstruction in electron tomography. Journal of Structural Biology
170, 3 (2010), 570�575.

[4] Akhter, S., and Roberts, J. Multi-core programming, vol. 33. Intel press Hillsboro,
2006.

[5] AMD Staff. AMD64 Architecture Programmer's Manual. volume 3. http://www.

boost.org/doc/libs/1_43_0/doc/html/interprocess.html, Sept 2007 revision 3.14.

[6] Arpaci-Dusseau, R. H., and Arpaci-Dusseau, A. C. Operating Systems: Three
Easy Pieces. Arpaci-Dusseau Books, 2012.

[7] Baan, W. A. RFI mitigation in Radio Astronomy. In Proceedings of RFI mitigation
workshop PoS(RFI2010) (2010), vol. 1, p. 32.

[8] Barnes, D., Staveley-Smith, L., De Blok, W. e. . a., Oosterloo, T., Stewart,

I., Wright, A., Banks, G., Bhathal, R., Boyce, P., Calabretta, M., et al.

The HI Parkes All Sky Survey: Southern observations, calibration and robust imaging.
Monthly Notices of the Royal Astronomical Society 322, 3 (2001), 486�498.

[9] Benjamini, Y., and Hochberg, Y. Controlling the False Discovery Rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series
B (Methodological) 57 (1995), 289�300.

[10] Bernabé, G., García, J. M., and González, J. Reducing 3D wavelet transform
execution time through the streaming SIMD extensions. In Proceedings of Eleventh Eu-
romicro Conference on Parallel, Distributed and Network-Based Processing (2003), IEEE,
pp. 49�56.

[11] Bernabé, G., García, J. M., and González, J. Reducing 3D fast wavelet transform
execution time using blocking and the streaming SIMD extensions. Journal of VLSI signal
processing systems for signal, image and video technology 41, 2 (2005), 209�223.

[12] Bingmann, T. Stxxl 1.4-dev. http://stxxl.sourceforge.net/tags/master/index.
html, Dec. 2013-2014. Accessed 2014-10-22.

[13] Boyce, P. J. GammaFinder: A Java application to �nd galaxies in astronomical spectral
line data cubes. Master's thesis, School of Computer Science. Cardi� University, 2003.

102

[14] Briggs, F. H. Neutral Hydrogen in the Universe. In Proceedings of The New Cosmology
(June 2005), M. Colless, Ed., pp. 147�164.

[15] Calabretta, M. WCSLIB and PGSBOX. Astrophysics Source Code Library 1 (2011),
ascl:1108.003.

[16] Carilli, C., and Rawlings, S. Science with the Square Kilometer Array: motivation,
key science projects, standards and assumptions. New Astronomy Reviews 48 (2004),
979�984.

[17] Cepeda, S. Optimization and Performance Tuning for Intel Xeon Phi Co-processors,
Part 2: Understanding and Using Hardware Events. http://goo.gl/D4TS9Q, 2012. Ac-
cessed 2014-03-20.

[18] Chapman, B., Jost, G., and Van Der Pas, R. Using OpenMP: portable shared
memory parallel programming. MIT press, 2008.

[19] Dagum, L., and Menon, R. OpenMP: an industry standard API for shared-memory
programming. Computational Science & Engineering, IEEE 5, 1 (1998), 46�55.

[20] Davidson, D. B. MeerKAT and SKA phase 1. In Proceedings of 10th International
Symposium on Antennas, Propagation & EM Theory (ISAPE) (2012), IEEE, pp. 1279�
1282.

[21] Davidson, D. B. Potential technological spin-o�s from MeerKAT and the South African
Square Kilometre Array bid. South African Journal of Science 108, 1-2 (2012), 1�3.

[22] DeBoer, D. R., Gough, R. G., Bunton, J. D., Cornwell, T. J., Beresford,
R. J., Johnston, S., Feain, I. J., Schinckel, A. E., Jackson, C. A., Kesteven,

M. J., et al. Australian SKA path�nder: A high-dynamic range wide-�eld of view
survey telescope. Proceedings of the IEEE 97, 8 (2009), 1507�1521.

[23] Delhaize, J., Meyer, M., Staveley-Smith, L., and Boyle, B. Detection of HI
in distant galaxies using spectral stacking. Monthly Notices of the Royal Astronomical
Society 433 (2013), 1398�1410.

[24] Dementiev, R. Stxxl 1.4.0 Tutorial. http://stxxl.sourceforge.net/tags/1.4.0/

tutorial.html, 2013. Accessed 2014-03-20.

[25] Dementiev, R., Kettner, L., and Sanders, P. Stxxl: Standard Template Library
for XXL Data Sets. ESA'05 Proceedings of 13th annual European conference on Algo-
rithms (2005), 640�651.

[26] die.net Staff. gettimeofday(2) Man-pages. http://linux.die.net/man/2/

gettimeofday, 2014. Accessed 2014-10-22.

[27] die.net Staff. time(2) Man-pages. http://linux.die.net/man/2/time, 2014. Ac-
cessed 2014-10-22.

[28] Dong, F., Pierpaoli, E., Gunn, J. E., and Wechsler, R. H. Optical Cluster
Finding with an Adaptive Matched-Filter Technique: Algorithm and Comparison with
Simulations. The Astrophysical Journal 676, 2 (2008), 868�879.

[29] Doyle, M. T., Drinkwater, M., Rohde, D., Pimbblet, K., Read, M., Meyer,
M., Zwaan, M., Ryan-Weber, E., Stevens, J., Koribalski, B., et al. The
HIPASS catalogue�III. Optical counterparts and isolated dark galaxies. Monthly Notices
of the Royal Astronomical Society 361, 1 (2005), 34�44.

103

[30] Duc, P.-A., Brinks, E., Springel, V., Pichardo, B., Weilbacher, P., and

Mirabel, I. Formation of a tidal dwarf galaxy in the interacting system Arp 245 (NGC
2992/93). The Astronomical Journal 120, 3 (2000), 1238�1264.

[31] Dudgeon, D. E., and Mersereau, R. M. Multidimensional Digital Signal Processing.
Prentice Hall Professional Technical Reference, 1990.

[32] Duffy, A. R., Meyer, M. J., Staveley-Smith, L., Bernyk, M., Croton, D. J.,
Koribalski, B. S., Gerstmann, D., and Westerlund, S. Predictions for ASKAP
neutral hydrogen surveys. Monthly Notices of the Royal Astronomical Society 426, 4
(2012), 3385�3402.

[33] Flöer, L., and Winkel, B. 2D�1D Wavelet Reconstruction as a Tool for Source
Finding in Spectroscopic Imaging Surveys. Publications of the Astronomical Society of
Australia 29, 3 (2012), 244�250.

[34] Fog, A. Optimizing software in C++ : An optimization guide for Windows, Linux and
Mac platforms. http://www.agner.org/optimize/, Aug 2014. Accessed 2015-01-20.

[35] Frey, S., and Mosoni, L. A short introduction to radio interferometric image recon-
struction. New Astronomy Reviews 53, 11 (2009), 307�311.

[36] Fridman, P., and Baan, W. RFI mitigation methods in radio astronomy. Astronomy
and Astrophysics 378, 1 (2001), 327�344.

[37] Gaztañaga, I. Boost (C++ libraries): Boost.Interprocess. http://www.boost.org/

doc/libs/1_43_0/doc/html/interprocess.html, Last revised: May 02, 2010. Accessed
2014-01-14.

[38] Gerber, R., Bik, A., Smith, K., and Tian, X. The Software Optimization Cookbook
Second Edition. High Performance Recipes for IA 32 Platforms. Intel Press, 2005.

[39] Giovanelli, R., Haynes, M. P., Kent, B. R., Perillat, P., Saintonge, A.,
Brosch, N., Catinella, B., Hoffman, G. L., Stierwalt, S., Spekkens, K.,

et al. The Arecibo Legacy Fast ALFA Survey. I. Science goals, survey design, and
strategy. The Astronomical Journal 130, 6 (2005), 2598�2612.

[40] Giovanelli, R., Haynes, M. P., Kent, B. R., Saintonge, A., Stierwalt, S.,
Altaf, A., Balonek, T., Brosch, N., Brown, S., Catinella, B., et al. The
Arecibo Legacy Fast ALFA Survey. III. HI source catalog of the northern virgo cluster
region. The Astronomical Journal 133, 6 (2007), 2569�2583.

[41] Goldberg, D. What every computer scientist should know about �oating-point arith-
metic. ACM Computing Surveys (CSUR) 23, 1 (1991), 5�48.

[42] Hanisch, R., Farris, A., Greisen, E., Pence, W., Schlesinger, B., Teuben, P.,

Thompson, R., and Warnock, A. De�nition of the �exible image transport system
(FITS). Astronomy and Astrophysics 376 (2001), 359�380.

[43] Hassaballah, M., Omran, S., and Mahdy, Y. B. A review of SIMD multimedia
extensions and their usage in scienti�c and engineering applications. The Computer
Journal 51, 6 (2008), 630�649.

[44] Hassan, A., Fluke, C. J., and Barnes, D. G. Interactive visualization of the largest
radioastronomy cubes. New Astronomy 16, 2 (2011), 100�109.

[45] Haynes, M. P., Giovanelli, R., Martin, A. M., Hess, K. M., Saintonge, A.,
Adams, E. A., Hallenbeck, G., Hoffman, G. L., Huang, S., Kent, B. R., et al.

104

The Arecibo Legacy Fast ALFA Survey: The α. 40 HI source catalog, its characteristics
and their impact on the derivation of the HI Mass Function. The Astronomical Journal
142, 5 (2011), 170.

[46] Holwerda, B., and Blyth, S. Trumpeting the Vuvuzela: The deepest HI observations
with MeerKAT. In Proceedings of ISKAF2010 Science Meeting (2010), vol. 1, p. 68.

[47] Holwerda, B., Blyth, S.-L., and Baker, A. Looking at the distant universe with
the MeerKAT Array (LADUMA). Proceedings of International Astronomical Union 7,
S284 (2011), 496�499.

[48] Hong, C., Chen, D., Chen, W., Zheng, W., and Lin, H. MapCG: writing parallel
program portable between CPU and GPU. In Proceedings of 19th international conference
on Parallel architectures and compilation techniques (2010), ACM, pp. 217�226.

[49] Huang, S., Haynes, M. P., Giovanelli, R., and Brinchmann, J. The Arecibo
Legacy Fast ALFA Survey: The Galaxy Population Detected by ALFALFA. The Astro-
physical Journal 756, 2 (2012), 113.

[50] Huynh, M., Hopkins, A., Norris, R., Hancock, P., Murphy, T., Jurek, R.,
and Whiting, M. The completeness and reliability of threshold and false-discovery
rate source extraction algorithms for compact continuum sources. Publications of the
Astronomical Society of Australia 29, 3 (2011), 229�243.

[51] Ishizaka, K., Obata, M., and Kasahara, H. Cache optimization for coarse grain
task parallel processing using inter-array padding. In Languages and Compilers for Par-
allel Computing, L. Rauchwerger, Ed., vol. 2958 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004, pp. 64�76.

[52] Jurek, R. The Characterised Noise HI source �nder: Detecting HI galaxies using a
novel implementation of matched �ltering. Publications of the Astronomical Society of
Australia 29, 3 (2012), 251�261.

[53] Kanekar, N., and Briggs, F. 21-cm absorption studies with the Square Kilometer
Array. New Astronomy Reviews 48, 11 (2004), 1259�1270.

[54] Kerrisk, M. Madvise(2) Man-pages. http://man7.org/linux/man-pages/man2/

madvise.2.html, 2014. Accessed 2014-10-29.

[55] Kerrisk, M. Mmap(2) Man-pages. http://man7.org/linux/man-pages/man2/mmap.
2.html, 2014. Accessed 2014-03-20.

[56] Kilborn, V. The HI Jodrell All-Sky Survey (HIJASS). In Proceedings of Seeing Through
the Dust: The Detection of HI and the Exploration of the ISM in Galaxies (2002), vol. 276
of Astronomical Society of the Paci�c Conference Series, p. 80.

[57] Kocz, J., Briggs, F., and Reynolds, J. Spatial �ltering using a multibeam receiver.
In Proceedings of RFI Mitigation Workshop PoS(RFI2010) proceedings (2010), vol. 1,
p. 32.

[58] Koribalski, B. S. Source Finding and Visualisation. Publications of the Astronomical
Society of Australia 29, 3 (2012), 213�213.

[59] Kosec, G., Depolli, M., Rashkovska, A., and Trobec, R. Super linear speedup
in a local parallel meshless solution of thermo-�uid problems. Computers & Structures
133 (2014), 30�38.

105

[60] Lang, R. H., Boyce, P. J., Kilborn, V. A., Minchin, R. F., Disney, M. J.,
Jordan, C. A., Grossi, M., Garcia, D. A., Freeman, K. C., Phillipps, S.,

et al. First results from the HI Jodrell All Sky Survey: inclination-dependent selection
e�ects in a 21-cm blind survey. Monthly Notices of the Royal Astronomical Society 342,
3 (2003), 738�758.

[61] Lay, O. P., and Halverson, N. W. The impact of atmospheric �uctuations on
degree-scale imaging of the cosmic microwave background. The Astrophysical Journal
543, 2 (2000), 787�798.

[62] Lewis, B., and Berg, D. J. Multithreaded programming with Pthreads. Prentice-Hall,
Inc., 1998.

[63] Love, R. Linux System Programming: Talking directly to the kernel and C library.
O'Reilly Media, 2013.

[64] Lutz, R. An algorithm for the real time analysis of digitised images. The Computer
Journal 23, 3 (1980), 262�269.

[65] Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A.,
and Upton, M. Hyper-Threading Technology Architecture and Microarchitecture. Intel
Technology Journal 6, 1 (2002), 4�15.

[66] Martin, A. M., Papastergis, E., Giovanelli, R., Haynes, M. P., Springob,
C. M., and Stierwalt, S. The Arecibo Legacy Fast ALFA Survey. X. The HI Mass
Function and from the 40% ALFALFA survey. The Astrophysical Journal 723, 2 (2010),
1359�1374.

[67] Melin, J.-B., Bartlett, J., and Delabrouille, J. Catalog extraction in sz cluster
surveys: a matched �lter approach. Astronomy and Astrophysics 459 (2006), 341�352.

[68] Meyer, M., Zwaan, M., Webster, R., Staveley-Smith, L., Ryan-Weber, E.,

Drinkwater, M., Barnes, D., Howlett, M., Kilborn, V., Stevens, J., et al.

The HIPASS catalogue�I. Data presentation. Monthly Notices of the Royal Astronomical
Society 350, 4 (2004), 1195�1209.

[69] Miller, C. J., Genovese, C., Nichol, R. C., Wasserman, L., Connolly, A.,
Reichart, D., Hopkins, A., Schneider, J., and Moore, A. Controlling the False-
Discovery Rate in astrophysical data analysis. The Astronomical Journal 122, 6 (2001),
3492�3505.

[70] Napier, P. The primary antenna elements. In Proceedings of Synthesis Imaging in Radio
Astronomy II (1999), vol. 180 of Astronomical Society of the Paci�c Conference Series,
pp. 37�56.

[71] Narendra, P. M. A separable median �lter for image noise smoothing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 3 (1981), 20�29.

[72] Nummelin, A. Observations of interstellar molecules. http://heasarc.gsfc.nasa.

gov/docs/software/fitsio/c/c_user/cfitsio.html, 2007. Accessed 2014-12-1.

[73] Patterson, D. A., and Hennessy, J. L. Computer organization and design, Third
Edition: The Hardware/Software Interface. Elsevier, 2007.

[74] Patterson, D. A., and Hennessy, J. L. Computer organization and design: The
hardware/software interface. Newnes, 2013.

106

[75] Pearson, T., and Readhead, A. Image formation by self-calibration in radio astron-
omy. Annual review of astronomy and astrophysics 22 (1984), 97�130.

[76] Pence, W. CFITSIO, v2. 0: a new full-featured data interface. In Proceedings of
Astronomical Data Analysis Software and Systems VIII (1999), vol. 172 of Astronomical
Society of the Paci�c Conference Series, pp. 487�489.

[77] Pence, W. CFITSIO User's Reference Guide: An Interface to FITS Format Files for C
Programmers. Version 3.2. http://heasarc.gsfc.nasa.gov/docs/software/fitsio/

c/c_user/cfitsio.html, 2010. Accessed 2011-04-20.

[78] Pence, W. D. CFITSIO: A FITS File Subroutine Library. Astrophysics Source Code
Library, Oct. 2010.

[79] Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R., and Stobie, E. De�nition
of the Flexible Image Transport System (FITS), version 3.0. Astronomy and Astrophysics
524 (2010), A42.

[80] Pham-Gia, T., and Hung, T. The mean and median absolute deviations. Mathematical
and Computer Modelling 34, 7 (2001), 921�936.

[81] Popping, A., Jurek, R., Westmeier, T., Serra, P., Flöer, L., Meyer, M., and

Koribalski, B. Comparison of potential ASKAP HI survey source �nders. Publications
of the Astronomical Society of Australia 29, 03 (2012), 318�339.

[82] Randy Kath, M. D. N. T. G. Managing Memory-Mapped Files. http://msdn.

microsoft.com/en-us/library/ms810613.aspx, 1993. Accessed 2011-04-30.

[83] Rivera, G., and Tseng, C.-W. Compiler optimizations for eliminating cache con�ict
misses. Tech. Rep. CS-TR-3819, Dept. of Computer Science, University of Maryland,
1998.

[84] Saintonge, A. The Arecibo Legacy Fast ALFA Survey. IV. Strategies for Signal Iden-
ti�cation and Survey Catalog Reliability. The Astronomical Journal 133, 5 (2007), 2087�
2098.

[85] Schaubert, D., Boryssenko, A., Van Ardenne, A., de Vaate, J. B., and Cra-

eye, C. The Square Kilometer Array (SKA) antenna. In Proceedings of IEEE In-
ternational Symposium on Phased Array Systems and Technology, 2003. (2003), IEEE,
pp. 351�358.

[86] Shensa, M. The Discrete Wavelet Transform: wedding the A'Trous and Mallat algo-
rithms. IEEE Transactions on Signal Processing 40, 10 (1992), 2464�2482.

[87] Smith, S. W. Digital Signal Processing: A practical guide for engineers and scientists.
Newnes, Boston, 2003.

[88] Spoelstra, T. T. The in�uence of ionospheric refraction on radio astronomy interfer-
ometry. Astronomy and Astrophysics 120 (1983), 313�321.

[89] Springob, C. M., Haynes, M. P., and Giovanelli, R. Morphology, environment,
and the HI mass function. The Astrophysical Journal 621, 1 (2005), 215�226.

[90] Stamatis, D. Essential statistical concepts for the quality professional. CRC Press, 2012.

[91] Stefánsson, A., Kon£ar, N., and Jones, A. J. A note on the Gamma test. Neural
Computing & Applications 5, 3 (1997), 131�133.

107

[92] Thomas, B., Jenness, T., Economou, F., Greenfield, P., Hirst, P., Berry,
D., Bray, E., Gray, N., Muna, D., Turner, J., et al. Signi�cant Problems in
FITS Limit Its Use in Modern Astronomical Research. In Proceedings of Astronomical
Data Analysis Software and Systems XXIII (2014), vol. 485 of Astronomical Society of
the Paci�c Conference Series, pp. 351�354.

[93] Tian, X., Bik, A., Girkar, M., Grey, P., Saito, H., and Su, E. Intel R© OpenMP
C++/Fortran Compiler for Hyper-Threading Technology: Implementation and Perfor-
mance. Intel Technology Journal 6, 1 (2002), 36�46.

[94] Tompkins, W. J. Biomedical digital signal processing. Prentice Hall (1993).

[95] Van Der Tol, S., Jeffs, B. D., and van der Veen, A.-J. Self-calibration for the
LOFAR radio astronomical array. Signal Processing, IEEE Transactions on 55, 9 (2007),
4497�4510.

[96] Vera, X., Llosa, J., and González, A. Near-optimal padding for removing con�ict
misses. In Languages and Compilers for Parallel Computing. Springer, 2005, pp. 329�343.

[97] Walter, F., Brinks, E., De Blok, W., Bigiel, F., Kennicutt Jr, R. C., Thorn-

ley, M. D., and Leroy, A. Things: The hi nearby galaxy survey. The Astronomical
Journal 136, 6 (2008), 2563.

[98] Wells, D., Greisen, E., and Harten, R. FITS-A �exible image transport system.
Astronomy and Astrophysics Supplement Series 44 (1981), 363�370.

[99] Wells, D. C. The VLBA correlator�Real-Time in the Distributed ERA. In Astronom-
ical Data Analysis Software and Systems II (1993), vol. 52, pp. 267�276.

[100] Welsh, M. Running Linux. O'Reilly Media, Inc., 2003.

[101] Westerlund, S. Analysis of the parallelisation of the DUCHAMP algorithm. Tech. rep.,
iVec Research Internships, International Centre for Radio Astronomy Research (ICRAR),
2009. Available at http://www.icrar.org/__data/assets/pdf_file/0006/1750866/

stefan_westerlund_ivec_report.pdf.

[102] Westmeier, T., Popping, A., and Serra, P. Basic Testing of the Duchamp Source
Finder. Publications of the Astronomical Society of Australia 29, 3 (2012), 276�295.

[103] Whiting, M. Source Detection with DUCHAMP: A User's Guide. Tech. rep.,
2010. Available at http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp/

downloads.php.

[104] Whiting, M. T. DUCHAMP: a 3D source �nder for spectral-line data. Monthly Notices
of the Royal Astronomical Society 421, 4 (2012), 3242�3256.

[105] Wiaux, Y., Puy, G., Boursier, Y., and Vandergheynst, P. Spread spectrum for
imaging techniques in radio interferometry. Monthly Notices of the Royal Astronomical
Society 400, 2 (2009), 1029�1038.

[106] Wilson, T. L., Rohlfs, K., and Hüttemeister, S. Tools of Radio Astronomy,
vol. 86. Springer, 2009.

[107] Wong, O., Ryan-Weber, E., Garcia-Appadoo, D., Webster, R., Staveley-

Smith, L., Zwaan, M., Meyer, M., Barnes, D., Kilborn, V., Bhathal, R.,

et al. The Northern HIPASS catalogue�data presentation, completeness and reliability
measures. Monthly Notices of the Royal Astronomical Society 371, 4 (2006), 1855�1864.

108

[108] Zhang, B., Fadili, J. M., and Starck, J.-L. Wavelets, ridgelets, and curvelets for
Poisson noise removal. IEEE Transactions on Image Processing 17, 7 (2008), 1093�1108.

[109] Zwaan, M., Meyer, M., Webster, R., Staveley-Smith, L., Drinkwater, M.,

Barnes, D., Bhathal, R., De Blok, W., Disney, M., Ekers, R., et al. The
HIPASS catalogue�II. Completeness, reliability and parameter accuracy. Monthly Notices
of the Royal Astronomical Society 350, 4 (2004), 1210�1219.

[110] Zwaan, M., Staveley-Smith, L., Koribalski, B., Henning, P., Kilborn, V.,
Ryder, S., Barnes, D., Bhathal, R., Boyce, P., de Blok, W., et al. The 1000
Brightest HIPASS Galaxies: The HI Mass Function and OmegaHI. The Astronomical
Journal 125, 6 (2003), 2842�2858.

109

