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Abstract

Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging
success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in
marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important
ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population
decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to
record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to
the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day
variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship
between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but
did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated
between males and females, indicating synchronous changes among days. There was a significant interaction of wind
direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds
from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and
storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from
westerly directions might enhance upwelling and consequently the prey availability in the penguins’ foraging areas. Our
data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely
neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic
variability.
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Introduction

Seabird species are widely used as indicators of environmental

conditions and food abundance in the marine environment [1–3].

Short-term changes of food availability during the breeding season

are often reflected in foraging and provisioning behaviour, such as

trip duration and distance travelled, meal sizes and frequency of

visits to the nest [4–6]. Prey quality and quantity delivered by the

parents are critical for nestlings’ growth and their subsequent

survival, even after fledging when independent from the parents

[7,8]. Therefore, parents should invest into chick rearing and chick

provisioning in order to produce high quality offspring [9]. This

energetic investment, however, needs to be traded off with

maintenance of their own body reserves [10] to ensure the

survival of the adults, especially in long-lived animals like seabirds

[11].

Penguins are typical central place foragers during the chick

rearing period, and, in comparison to flying seabirds, are more

restricted in their foraging range [12]. As such, they are excellent

sentinels for local food availability [13]. Adapted to regular

provisioning with high-quality food [14], chicks of small-sized

penguin species can grow very quickly and fledge (depending on

the species and latitude) at an age of about 50 to 98 days [15].

During periods of poor environmental conditions, however,

breeding success can drop dramatically up to total breeding

failure [16] and adult mortality can increase with serious

consequences for population numbers (e.g. [17]).

We studied the daily foraging mass gain (i.e. difference in the

mean mass of adults leaving the colony in the mornings and

returning in the evening) as a measure of foraging success of

southern rockhopper penguins (Eudyptes chrysocome) at a breeding

site in the Falkland Islands (Islas Malvinas). Southern rockhopper

penguins have undergone a dramatic population decline across

their sub-antarctic breeding range [18–20]. Due to their limited

foraging range especially during the chick rearing period (e.g.

[21,22]), they depend on a high productivity in areas adjacent to
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their breeding sites. Local wind conditions are known to affect the

presence of prey species (e.g. [23]) and the ability of seabirds to

capture prey [24]. Scientists are now realizing that a change in

wind regimes can have important consequences for seabird

foraging conditions and consequently their life history [25].

The Falkland Islands are currently located within the west-wind

zone, experiencing strong winds from mainly south-westerly to

north-westerly directions [26]. The productivity of the marine

food web in the western part of the Falkland Islands is positively

affected by the western branch of the cold, nutrient rich Falkland

Current [27]. Southerly to westerly wind directions coincide with

the direction of this current and could contribute to upwelling in

this area (see [27] and literature therein), and consequently

improve foraging conditions for seabirds. In contrast, it remains

unclear how opposing wind directions, particularly from easterly

directions affect the foraging conditions for seabirds in this area.

We studied day-to-day variability in adult body mass patterns to

compare the daily foraging mass gain of male and female southern

rockhopper penguins during different stages of chick rearing and

how these changes in body mass are related to wind speed and

direction. During guard, only females provision chicks, while

males guard the chicks at the nest. During crèche, chicks are

provisioned by both parents. As southern rockhopper penguins

provision chicks daily [21,22], short-term differences in prey

availability should be reflected in adult foraging mass gain, which

in turn could affect chick provisioning. We expect that winds from

westerly directions (1802360u) could positively affect upwelling

processes and coincide with lower sea surface temperatures. We

therefore anticipate higher foraging mass gains under westerly

wind directions than under easterly wind directions (02180u).

Materials and Methods

The study was conducted in the ‘‘Settlement Colony’’ on New

Island, Falkland Islands (51u43’S, 61u17’W), in a colony that held

about 7,500 breeding pairs in December 2010.

Ethics Statement
The marking of penguins with subcutaneous passive integrative

transponders (PITs) is a standard field procedure and in the long-

term less problematic for penguins than the use of flipper bands

[28]. Notably, even much smaller bird species have been studied

with PITs, without any noticeable effects [29].

Disturbance during capture and handling of penguins was kept

as little as possible by covering the eyes of the penguin with a hood

and keeping handling times as short as possible (generally below 20

min). In order to reduce the risk of infection, we carefully sterilized

PITs, transponder-injectors and the skin at the injection side, and

subsequently glued the skin puncture (VetbondTM, 3M, St. Paul,

Minnesota). During the whole period of the study, we never

observed any infection at the injection site.

The use of the weighbridge system enabled us to obtain body

mass recordings without a constant disturbance due to handling

and weighing of penguins in the colony. The position of the

weighbridge system at a natural bottleneck path on the way to the

colony did not impose the penguins to make a detour or wait any

longer than normally.

All work was approved by the Falkland Islands Government

(Environmental Planning Office; Research Licenses No: RO09/

2006, R16/2007, R05/2009), and we would like to thank the New

Island Conservation Trust for permission to work on the island.

Weighbridge system and body mass analysis
In the course of four consecutive breeding seasons (starting in

2006/07), 753 breeding adult southern rockhopper penguins (380

males, 373 females) were marked with subcutaneous PITs (23 mm

length, RFID, Texas Instruments, USA). Each PIT marked bird

was measured and weighed, and sex was determined using bill

measurements and behaviour [30]. An automated weighbridge

system, which reads the PITs and records body mass measure-

ments (see below), has been operating between the landing site and

the colony since 2007/08, but only data from 2009/10 and 2010/

11 were used in our analysis, as sample sizes for reliable mass data

were small in the first breeding seasons. We included the time

period between the 11th of December and the 10th of February

from these two breeding seasons into this study, which covers the

chick rearing period (n = 124 days in total for both seasons, less

n = 11 days during which the weighbridge did not work and n = 2

days for which wind data are missing). The weighbridge system

records the date, time, PIT-number, and body mass of each

crossing PIT bird. In the weighing process, the scale detects up to

6 mass recordings within 0.1 second and logs the average value

from these 6 records as one mass recording, unless outliers

occurred. A maximum of six mass recordings (from up to 36

individual measurements) were logged per transit of each

individual penguin crossing. The balance can detect mass to the

nearest 1 g, however body mass recordings are easily impaired by

movement of the PIT bird and by potential other penguins on the

balance. We carefully scanned the automated weighbridge system

files for outliers and only considered crossings with two or more

mass recordings. For each penguin crossing, the mean body mass

value was calculated, and only included in the analysis if the

recorded body mass data per crossing differed by less than 200 g.

The remaining outliers were removed. Based on our own body

mass measurements when handling birds in the colony (see below,

using an electronic spring scale, Kern, Germany, measuring mass

to the nearest 10 g) and data published in Williams [12], we

assumed the acceptable body mass limits to be 1700–3500 g for

females during guard and crèche and 2000–3900 g for males

during crèche. This procedure also allowed us to exclude mass

recordings obtained by two or more penguins standing on the

balance of the weighbridge system.

In order to estimate the general accuracy of these filtered body

mass data obtained by the weighbridge system, we compared mass

data of manually weighed individuals with those obtained through

the weighbridge: In the framework of another concurrent study in

the breeding season 2010/11 [22], we manually weighed penguins

at their nest-sites (before feeding their chicks during guard and

crèche). From 20 of these individuals, we also obtained accurate

mass data through the weighbridge system (from the same evening

at which the manual weighing took place, and filtered according to

the methods described above). The mean body mass of these 20

individuals obtained by manual weighing (2699 g6278 g (SD)),

did not differ significantly from the mean body mass obtained

through the weighbridge system (2710 g6291 g (SD); paired t-test:

t19 = 0.43, p = 0.676). Thus, on the population scale, the mass

obtained from the weighbridge system is comparable to the mass

obtained by manual weighing. During guard and crèche, southern

rockhopper penguins on New Island usually leave the colony early

in the morning to forage, and start returning later in the morning,

with a peak during the afternoon and evening ([21,31], own

observations). Southern rockhopper penguins often crossed

through the weighbridge in large groups and then moved rapidly

over the weighing balance, so that we rarely obtained accurate

mass recordings from the same individual in the morning and in

the evening of the same day (even though individual marked birds
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were recorded in the weighbridge in the morning and in the

evening). Therefore, an analysis of the body mass recordings on

the individual scale, i.e. determining the daily body mass gain for

individual birds, as done in other studies with different penguin

species [32–34] was not possible. Instead, we worked on the

population scale, i.e. we calculated the daily body mass gain from

the difference between the mean mass of adults leaving the colony

(1:20 to 09:59 hours; peak between 3 and 7 am) and the mean

mass of adults returning to the colony (10:00 to 23:40 hours; peak

between 4 and 8 pm). Sample sizes (i.e. individuals with accurate

mass recordings for leaving or returning) differed among days and

between leaving and returning, and were in the range of 15 to 70

birds per set of daily morning (leaving) or evening (return) trips.

The daily foraging mass gain therefore reflected the sum of net

body mass gain (from self-feeding of the adult) and prey mass that

was subsequently fed to the chick.

In the few cases that we have obtained accurate mass recordings

from the same individual in the morning and in the evening, we

randomly selected one crossing body mass to ensure that each

individual was present in the dataset only once on a given day

(either in the morning, or in the evening). This procedure

guaranteed independent data on a daily basis, while we could not

control for individual effects over the course of the breeding season

without massively reducing the sample size of mass recordings per

day. Considering, however, the relatively minor influence of an

individual’s mass recording on the daily foraging mass gain of all

birds as calculated in this study, we assumed that this pseudo-

replication issue had a negligible effect on our final analysis. We

used a paired t-test to check for differences between mean morning

(leaving) and mean evening (returning) body mass of adults per

day. We further applied an independent t-test to compare the daily

foraging mass gain between sexes. Furthermore, we conducted

Pearson correlations to test for the concordance in daily foraging

mass gain between males and females.

Wind and SSTA data
Ocean wind and sea surface temperature anomaly (SSTA) data

were downloaded from NOAA (http://www.ncdc.noaa.gov/

thredds/OceanWinds.html) for the geographic range west of

New Island (51–52uS, 61–62.5uW). This area is known to be the

main foraging site of southern rockhopper penguins from the study

colony during guard and crèche ([21,22], Ludynia unpublished

data). Ocean wind data were based on blending of high-resolution

observations from multiple satellites (http://www.ncdc.noaa.gov/

oa/rsad/air-sea/seawinds.html#data), and were expressed as U-

and V-component of the daily wind speed (in m/s). Wind is

thereby expressed as a vector, combining wind speed and wind

direction: The V-component describes the wind speed on the

North-South axis, with negative values if the wind comes from the

North, and the U-component describes the wind speed on the

East-West axis, with negative values if the wind comes from the

East. Using a trigonometric conversion, these vectors were then

transferred into wind direction (in degrees, giving the direction

from which the wind was blowing) and daily wind speed (in m/s)

along this direction. Wind direction is a circular variable (i.e. wind

from 0u equals wind from 360u). In order to test for year

differences in wind conditions, we therefore used independent t-

tests for the U- and V-component of wind instead of directly using

wind speed and wind direction.

SSTA data were calculated as the difference between actual

SST and long term average (data from 1971 to 2000) and

downloaded from NOAA (http://www.ncdc.noaa.gov/thredds/

catalog/oisst/NetCDF/AVHRR/catalog.html). To test for a

potential influence of wind speed on daily SSTA through

upwelling, we conducted a Pearson correlation test between wind

speed and daily SSTA. This test revealed a significant negative

correlation (see Results) between the two parameters. To avoid

problems with collinearity [35], and as wind should logically drive

this relationship, we only included wind speed and wind direction,

but not daily SSTA into subsequent statistical analyses.

Data for both breeding seasons were pooled to retain sufficient

sample sizes. In order to account for the circularity of wind

direction, we conducted a Generalised Additive Model (GAM) in

the R package mgcv [36], with daily foraging mass gain (pooled for

both sexes) as dependent variable. As explanatory variables, we

included breeding season (2009/10 or 2010/11) and chick rearing

stage (guard or crèche) as fixed factors, wind speed (in m/s, as

numerical) and wind direction (in degrees; the circularity was

accounted for by a circular smoother) and the two-way interaction

between wind speed and wind direction (again, the circularity of

the wind direction was accounted for by a circular smoother).

Statistical analyses were run in R 3.0.1. [37]. Means are given

with standard deviation throughout the manuscript.

Results

Males and females that crossed the weighbridge system when

returning from foraging were significantly (between 243 and287 g)

heavier than when leaving (paired t-test: t184 = 38.14, p,0.001;

Table 1). During the crèche stages, daily foraging mass gain did

not differ significantly between sexes (t-test: t142 = 0.283 and

p = 0.777), but was highly correlated between males and females

(r = 0.49, p,0.001, n = 72 days), indicating synchronous changes

among days within males and females (Fig. 1). We therefore

pooled daily foraging mass gain for both sexes in the subsequent

analyses.

Mean daily ocean wind speed showed a high variability among

days (Fig. 1), and was dominated by south-westerly to north-

westerly wind directions in both years (Fig. 2). Wind conditions

between the two years did not differ significantly (t-tests for the U-

and V-component of wind; both t109 $ |0.33|, P $ 0.509). Mean

daily wind speed was negatively correlated with daily SSTA (r =

–0.33, p,0.001, n = 111).

Daily foraging mass gain showed a high variation across time

within both breeding seasons (Table 1, Fig. 1), but did not differ

significantly between breeding seasons and chick rearing stages

(Table 2). The interaction between wind direction and wind speed

had a significant effect on the daily foraging mass gain (Table 2).

Under north-easterly to south-easterly wind directions (02180u),
the foraging mass gain of southern rockhopper penguins was

highest under low wind speeds (Fig. 3). With increasing wind

speeds from the easterly range, foraging mass gain decreased. For

the westerly wind range (1802360u), foraging mass gain increased

from weak to moderate wind speeds. Under storm conditions

(mean daily wind speed of $ 13 m/s), foraging mass gain was

lowest throughout all wind directions.

Discussion

In the present study, daily foraging mass gain as an indicator of

foraging success of adult southern rockhopper penguins was highly

variable over time, while showing no significant differences

between breeding seasons, chick rearing stages and sexes. The

high degree of day-to-day variation in foraging mass gain suggests

that local foraging conditions for penguins were variable among

days. This is further supported by the fact that daily foraging mass

gain was highly correlated between males and females, indicating

that both sexes experienced similar foraging conditions. In fact,

GPS tracking has revealed that males and females use the same
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foraging areas in the west of New Island during crèche (Ludynia

unpublished observations).

Our data indicate, however, that day-to-day variation in

foraging mass gain of southern rockhopper penguins is linked to

the local wind conditions, which in turn affect SSTA. We found

that the penguins’ daily foraging mass gain was significantly

affected by a combination of wind speed and wind direction, as

indicated by the significant interaction of these two variables.

Foraging conditions were better under moderate to strong winds

from westerly directions and low winds from easterly directions.

Under storm conditions, foraging mass gain declined throughout

all wind directions.

The effect of wind patterns should not significantly affect travel

time of flightless penguins as could be expected for flying seabird

species [25,38]. Even if ocean wave action and increased counter-

currents due to certain wind conditions could affect the swim

speed of the penguins, an effect on the travel time on the outcomes

of this study should be minimal for several reasons: Firstly, due to

friction loss, the effect of wind on wave action and counter-

currents and finally on the swim speed of the penguins should be

smaller than the comparable direct effect of wind on a flying bird.

Secondly, the distances that rockhopper penguins travel on their

daily foraging trips during the chick rearing period are short

(about 30 to 60 km within about 12 hours [22]) and travel times

should therefore hardly be affected by opposing wind conditions,

particularly when considering the enormous distances that these

birds can travel in short times (e.g. 50021600 km within 10219

days during the incubation foraging trip [39]). Thirdly, foraging

grounds of southern rockhopper penguins breeding in our study

colony are located in the west of the breeding colony. If wind

conditions would affect the foraging mass gain through travel time,

one would expect a negative effect of westerly winds ( =

headwinds) on the daily foraging mass gain, which was only

found during storm conditions.

Instead, the penguins’ foraging success should rather be affected

by oceanographic conditions and prey availability. Moderate to

strong winds are known to cause mixing of the water column and

local upwelling in the open ocean [40]. In coastal areas, upwelling

is determined by the course of the coastline as well as currents in

relation to wind directions [40]. Upwelling of cold, nutrient rich

water from deeper strata leads to an increased primary produc-

tivity, i.e. growth of phytoplankton in the photic zone [40]. This

will in turn attract higher consumer levels [41]. Moreover, changes

in the stratification of the water column (e.g. through wind) can

also directly affect the distribution of zooplankton [41], as well as

the abilities of diving seabirds to capture prey [42]. Zooplankton

will attract larger prey species and thus seabirds [24], whose

feeding rates might also depend directly on wind directions [43]

and the presence of oceanographic fronts [44,45].

In the Falkland Islands, southerly to westerly wind directions

coincide with the direction of cold, nutrient rich waters from the

Falkland Current and might contribute to upwelling in this area

(see [27] and literature therein). In fact, we found a negative

correlation between mean daily wind speed and daily SSTA,

Figure 1. Daily foraging mass gain with wind speed across time. Daily foraging mass gain (in g) of females (in pink) and males (in blue)
against wind speed (in dark grey) in the breeding seasons 2009/10 (top) and 2010/11 (below). Daily foraging mass gain was calculated as the
difference between mean mass of adults leaving the colony in the mornings and mean mass of adults returning to the colony in the evenings.
doi:10.1371/journal.pone.0079487.g001
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suggesting that stronger winds (which in our dataset mostly came

from south-westerly to north-westerly directions; see Fig. 2) lead to

enhanced upwelling of cold, nutrient rich water. This agrees with

our finding of increased foraging mass gain under moderate to

strong westerly winds (Fig. 3). On the contrary, for the easterly

wind directions (opposing the Falkland Current and upwelling),

the optimum foraging mass gain coincided wind speeds of 5 m/s

and less. Such weak winds (equivalent to 3 Beaufort and less) do

not yet cause the formation of waves [46], and likely have no

influence on upwelling processes. Our findings further suggest that

moderate to strong wind speeds from easterly wind directions lead

to a reduction in the daily foraging mass gain, potentially as these

winds reduce upwelling.

In addition, our data illustrate that under storm conditions

southern rockhopper penguins forage less successfully. This might

be caused by an effect of strong waves on the foraging ability of the

penguins. Furthermore, strong waves under storm conditions

Figure 2. Wind conditions during the breeding season 2009/10 and 2010/11 (n = 111 days). The position of scatter plot points within the
windrose represent the direction from which the wind was blowing, while the distance from the origin represents the wind speed (in m/s).
doi:10.1371/journal.pone.0079487.g002

Table 2. Results for the GAM with daily foraging mass gain as
dependent variable.

Explanatory variables Df F P

Breeding season 1 0.726 0.396

Chick rearing stage 1 0.865 0.355

Wind speed 1 0.692 0.010

Wind direction 1 ,0.001 0.597

Wind speed*wind direction 2.2 0.682 0.001

Breeding season (2009/10 or 2010/11) and chick rearing stage (guard or crèche)
were included as fixed factors, wind speed (in m/s) and wind direction (in
degree, circularity was accounted for by a circular smoother) were included as
continuous variables. In addition, we included the interaction between wind
speed and wind direction (again accounting for the circularity with a smoother).
n = 111 days, the model explained 15.8% of the deviance. Significant results are
marked in bold.
doi:10.1371/journal.pone.0079487.t002

Table 1. Foraging mass gain for sexes and chick rearing
stages.

Females Males

Mean ± SD Range Mean ± SD Range

Guard 2009/10 287668 143–456

Crèche 2009/10 260699 42–508 2516108 75–353

Guard 2010/11 2436101 21–434

Crèche 2010/11 258679 62–416 257688 78–480

Foraging mass gain in g (i.e. difference between evening and morning body
mass; body mass of individuals was pooled for both mornings and evenings) of
adult southern rockhopper penguins crossing the weighbridge system at New
Island, Falkland Islands. Data were obtained through the weighbridge system
from n = 316 individual females and n = 276 individual males in 2009/10 and
n = 330 individual females and n = 301 individual males in 2010/11.
doi:10.1371/journal.pone.0079487.t001
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hinder the save entry and exit at landing sites and pose a high risk

of injury on rockhopper penguins trying to come ashore.

Conclusions on foraging behaviour and chick
provisioning

Southern rockhopper penguins are opportunistic feeders that

take a mixture of krill, squid and fish, but proportions of prey items

vary strongly over time and between locations [47–50]. Although

energetic requirements of adults and juveniles can influence the

prey choice [51], this broad food spectrum might also be the

consequence of a high variability in prey type availability or

abundance [52].

For the daily foraging mass gain recorded in this study, we did

not quantify the exact proportions of how much food was used for

self-feeding of the adult birds and how much prey was fed to the

chicks. The daily foraging mass gain that we recorded was on

average higher than the mean stomach content wet mass found in

southern rockhopper penguins breeding on the Falkland Islands

(mean stomach content wet mass of 79 to 221 g, depending on

study site [49,53]) and on Staten Island, Argentina (mean stomach

content wet mass of 101 and 106 g, depending on breeding stage

[54]). This suggests that a considerable amount of the captured

prey was not actually delivered to the chicks but digested by adults,

potentially still during the foraging trip ([55] and literature

therein).

The food demand of chicks increases with age and size and also

depends on the food quality [14]. The average food intake of

captive African penguin chicks (Spheniscus demersus) was 20–30% of

their own body mass (see [14]). Applied to our study, southern

rockhopper penguin chicks might take up to 500–750 g of food per

day at the peak of their growth curve when they are about 50 to 60

days old (body mass of about 2500 g; see [56] for a chick growth

curve of southern rockhopper penguins). If this is the case, the

chicks’ food demand could exceed the daily foraging mass gain of

both parents (compare with Table 1). Yet, this high food demand

is limited to a short time period (during crèche) during which both

parents contribute to chick rearing. Interestingly, despite the

increasing food demand of chicks with progressing breeding

season, we did not observe an increase in the daily foraging mass

gain with the progress of the breeding season. This could be linked

to self-allocation of prey by adults to regain body mass reserves

after fasting during incubation (females) and guard (males) [39].

Implications for population trends
The Falkland Islands are currently located in the area of the

southern ocean west wind drift [57]. Climate change scenarios,

however, predict an increase of wind speeds and a southward shift

of this wind zone [57], which already affects life history traits of

wandering albatrosses (Diomedea exulans) breeding on the Crozet

Islands [25]. It seems likely that a poleward shift of the west wind

drift will reduce the number of days with westerly winds on the

Falkland Islands in the future. For southern rockhopper penguins

breeding on the Falkland Islands, this would imply fewer days with

favourable foraging conditions, as indicated by our data.

Moreover, other seabird species breeding on the Falkland Islands,

including black-browed albatrosses (Thalassarche melanophris) and

several species of petrels, which are depending on high wind

speeds [58], are likely to be negatively affected by the changing

wind conditions. On a more global scale, one can expect that the

shift of wind regimes due to global warming will affect seabird

species all over the world, including southern rockhopper penguins

at different breeding sites.

The population of southern rockhopper penguins is listed as

vulnerable [19]. The breeding population on the Falkland Islands

has declined from about 1.5 million breeding pairs [18] in the

1930s to about 210,000 breeding pairs in November 2005 [59].

Even though the population has meanwhile increased to about

319,000 breeding pairs in November 2010 [59], the exact reasons

for the original decline still have to be identified. Increasing SST

due to global warming might play an important role [19,60]. As

such, this study may add important information about an

additional global change related threat to rockhopper penguins.

The poleward shift of the west wind drift might deteriorate

foraging conditions close to breeding colonies of southern

rockhopper penguins in the future. Other seabird species,

including the closely related macaroni penguins (Eudyptes chrysolo-

phus), have reacted to changes in local food availability by shifting

to another prey type or extending their foraging trips [61]. Despite

these adaptations, reduced local food availability resulted in

reduced breeding success and/or fledglings were significantly

lighter than under normal food conditions [61]. Environmental

changes leading to reduced food availability close to penguin

colonies are therefore assumed to have negative consequences for

future population trends (e.g. see [62] for king penguins Aptenodytes

patagonicus), and this can also be assumed for southern rockhopper

penguins.

Figure 3. Relationship between daily wind speed and daily wind direction on the daily foraging mass gain of southern rockhopper
penguins. The graphical output of the GAM (see Table 2 for details) shows foraging mass gain as a colour scale ranging from high foraging success
in white to low foraging success in red, depending on wind speed (y-axis) and wind direction (x-axis).
doi:10.1371/journal.pone.0079487.g003
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49. Pütz K, Ingham RJ, Smith JG, Croxall JP (2001) Populations trends, breeding

success and diet composition of gentoo Pygoscelis papua, Magellanic Spheniscus

magellanicus, and rockhopper Eudyptes chrysocome penguins in the Falkland Islands.

Polar Biol 24: 793–807.

50. Thompson KR (1994) Predation on Gonatus antarcticus by Falkland Islands

seabirds. Antarct Sci 6: 269–274.

51. Pierotti R, Annett CA (1990) Diet and reproductive output in seabirds.

Bioscience 40: 568–574.

52. Montevecchi WA, Myers RA (1995) Prey harvests of seabirds reflect pelagic fish

and squid abundance on multiple spatial and temporal scales. Mar Ecol Prog Ser

117: 1–9.

Wind Drives Seabirds’ Foraging Success

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e79487



53. Croxall JP, Prince PA, Baird A, Ward P (1985) The diet of the southern

rockhopper penguin Eudyptes chrysocome chrysocome at Beauchene Island, Falkland-

Islands. J Zool 206: 485–496.

54. Raya Rey A, Trathan P, Schiavini A (2007) Inter-annual variation in

provisioning behaviour of southern rockhopper penguins Eudyptes chrysocome

chrysocome at Staten Island, Argentina. Ibis 149: 826–835.

55. Wilson RP, Peters G (1999) Foraging behaviour of the chinstrap penguin

Pygoscelis antarctica at Ardley Island, Antarctica. Mar Ornithol 27: 85–95.

56. Poisbleau M, Demongin L, Strange IJ, Otley H, Quillfeldt P (2008) Aspects of

the breeding biology of the southern rockhopper penguin Eudyptes c. chrysocome

and new consideration on the intrinsic capacity of the A-egg. Polar Biol 31: 925–

932.

57. Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical southern

hemisphere winds and currents. Geophys Res Lett 33, L06701.

58. Davies RG, Irlich UM, Chown SL, Gaston KJ (2010) Ambient, productive and

wind energy, and ocean extent predict global species richness of procellariiform
seabirds. Global Ecol Biogeogr 19: 98–110.

59. Baylis AMM, Wolfaardt AC, Crofts S, Pistorius PA, Ratcliffe N (2013)

Increasing trend in the number of southern rockhopper penguins (Eudyptes c.

chrysocome) breeding at the Falkland Islands. Polar Biol 36: 1007–1018.

60. Dehnhard N, Poisbleau M, Demongin L, Ludynia K, Lecoq M et al. (2013)
Survival of rockhopper penguins in times of global climate change. Aquatic

Conserv: Mar Freshw Ecosyst DOI: 10.1002/aqc.2331.

61. Croxall JP, Reid K, Prince PA (1999) Diet, provisioning and productivity
responses of marine predators to differences in availability of Antarctic krill. Mar

Ecol Prog Ser 177: 115–131.
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