
Univ
ers

ity
 of

 C
ap

e T
ow

n

LINtAR LIBRARY
C01 0088 1530

~~ mi rn1111 m u rr===i!

University of Cape Town
Department of Computer Science

An Efficient Parallelization
of a

Real Scientific Application

by
Elizabeth Post

A thesis
prepared under the supervision of

Assoc. Prof. H.A. Goosen
in fulfilment of the requirements for the

degree of Master of Science in Computer Science

Cape Town
February, 1995

Univ
ers

ity
 of

 C
ap

e T
ow

n

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

University of Cape Town

Department of Computer Science

An Efficient Parallelization

of a

Real Scientific Application

by

Elizabeth Post

A thesis

prepared under the supervision of

Assoc. Prof. H.A. Goosen

in fulfilment of the requirements for the

degree of Master of Science in Computer Science

Cape Town

February, 1995

Acknowledgements

I would like to thank:

my supervisor, Associate Professor Henk Goosen, for his constructive guidance

and insight into the problems of parallel processing, and in particular for his

thorough and invaluable guidance in the art of technical writing,

my colleagues, especially Philip Machanick, for their valuable assistance,

suggestions, and cooperation,

the systems administrator, Sandi Donno, for her ever-willing support and
helpfulness,

Dr. Tom Ackerman of Pennsylvania State University, USA, and his assistants

Steve Nagle and Eugene Clothiaux, for providing the original serial

application, and for their willing assistance in clarifying the meteorology,

Dr. Bruce Hewitson of the Department of Environmental and Geographical

Science at the University of Cape Town for introducing me to Dr. Ackerman

and for his assistance and the use of his Sun workstation,

The University of Cape Town and the FRD, who supported my studies
financially,

my husband for his assistance and support throughout this project,

and, last but not least, my long-suffering children for putting up with

"Mommy's Masters" for so long!

11

Abstract

In the past decade the cost of computing has come down considerably making

high-powered computing more easily affordable. As a result many institutions

and organisations now have networks of high-powered workstations. Such

networks provide a large, generally untapped, source of computing power

which can be used for running large scientific applications which previously

could only be run on supercomputers.

This dissertation shows that a substantial improvement in

performance can be achieved by the parallelization of a real scientific

application for a heterogeneous network of Sun and Silicon Graphics

workstations connected by an Ethernet network, but that this is affected by a

number of factors. These factors include communication delays, load balancing,

and the number of slaves used. This dissertation shows that performance can

be improved by sending more, shorter messages, and by overlapping

communication with computation.

Part of this thesis concerns the difficulties involved in the

evaluation of parallel performance on a heterogeneous network. This

dissertation shows that conventional methods such as speedup and efficiency

are not appropriate for evaluating the performance of a heterogeneous system,

and that linear speed gives a much more representative indication of the actual

performance achieved.

We also proposed new concepts of perfect linear speed and linear

efficiency, which help to evaluate the improvement in parallel performance on

a heterogeneous system.

111

Contents

List of Figures . vm

List of Tables . x

I Introduction
I. I Untapped computer resources 3
1.2 The development of standard parallel

libraries . 4
1.3 Performance of real parallel applications 6
1.4 · Parallel problem solving environments 7
1.5 Structure of this dissertation 8

2 Related Work . 9
2.1 Other parallel projects using Monte Carlo

simulation . 10
2.1.1 Monte Carlo benchmarks l 0
2.1.2 Efficiency evaluation of some

parallelization tools on a
workstation cluster using the
NAS parallel benchmarks
[Suku94] 11

2.1.3 Monte Carlo simulation m
radiation dosimetry [Ma93] 12

2.1.4 Monte Carlo simulation of
radiative heat transfer on a
SP ARCStation farm [Minn93] 13

2.2 Efficient parallel computing in distributed
workstation environments [Cap93] 14

2.3 Parallelization of scientific applications
using the PVM parallel library 16
2.3.1 Distributed computation of

wave propagation models using
PVM [Ewin94] 17

2.3.2 Parallelization of the two­
dimensional Ising Model on a
cluster of IBM RISC
System/6000 workstations
[Alte93] . 18

2.3.3 Lattice Boltzmann method on a
cluster of IBM System/6000
workstations [Bete93] 19

IV

2.3.4 Performance of IBM RISC
System/6000 workstation
clusters in a quantum chemical
application [Nana93] 19

2.4 Data-parallel programming on a network of
heterogeneous workstations [Nede93] 21

2.5 Parallel programming in meteorology and
climatology . 21
2.5. l We at her prediction

[Gart93][Gart93a] 22
2.5.2 Climate modelling [Sela94] 23

3 Implementation . 24
3.1 Brief description of the p4 parallel library 24
3.2 · Description of the original serial program 25
3.3 Parallelization of Cloud 26

3.3. l Basic structure of the parallel
program . 27

3.3.2 Input and output files used 28
3.3.3 Memory requirements of serial

and parallel programs 29
3.3.4 Overlapping communication

with computation 30
3.3.5 Reducing communication

overheads 31
3.3.6 Exploiting redundancy and fault

tolerance 32
3.3.7 Dynamic load balancing 33
3.3.8 Scalability 35
3.3.9 Generation of random

numbers 36

4 Design of Experiment . 38
4.1 Experimental environment 38
4.2 Compiler options and executables 39
4.3 Problem size . 40
4.4 Number of runs for each experiment 40
4.5 Timing of runs . 41
4.6 Calibration of the workstations and

network
4.6.l

4.6.2

Serial runs on every
workstation
Performance of the Ethernet

4. 7 Grouping of machines into homogeneous

42

43
43

and heterogeneous groups 45
4.8 Slave startup times . 47
4.9 Varying the number of slaves 48

v

4.10 Load balancing and granularity 48
4.11 Overlapping communication with

computation . 49
4. I 2 Changing the number and size of

messages . 49

5 Results and Discussion . 51
5.1 Elapsed time vs CPU time 52
5.2 Basic performance measurements of the

hardware used . 55
5.2. l · Serial performance of the

workstations 55
5.2.2 Network performance 64

5 .3 Speedup and efficiency 6 7
5.4 · Alternative ways of evaluating parallel

performance . 71
5.4. l Conventional elapsed time

graph . 72
5.4.2 Conventional speedup graph 73
5.4.3 Conventional efficiency graph 74
5.4.4 Linear speed graph 75
5.4.5 Linear efficiency 80
5.4.6 Log-time graphs and Log-speed

graphs . 81
5.5 Performance of Cloud on groups of

homogeneous and heterogeneous
workstations . 82

5.6

5.7

5 .5. l Performance of "homogeneous"
Sun ELC/Classic group - 11
machines 83

5.5.2 Performance of homogeneous
Sun SPARCstation l + group -
4 machines 88

5.5.3 Performance of SGI group -
3 machines 92

5.5.4 Performance of heterogeneous
groups of 3, 14 and 18 Sun &
SGI machines

Factors affecting parallel performance
5.6. l Startup costs
5.6.2 Load balancing and

granularity
5.6.3 Overlapping communication

with computation
5.6.4 Changing the number and size

of messages
Scalability and isoefficiency

VI

95
103
103

105

111

116
123

6 Conclusions 126

A

6.1 Findings of this thesis 127
6.1. l Perfonnance achieved 127
6.1.2 Evaluation of the parallel

perfonnance of heterogeneous
networks 128

6.1.3 Factors affecting the
perfonnance 128

6.2 Usefulness of the p4 library as a
parallelization tool . 130
6.2.l MP! 131 ·

6.3 Future work . 132
6.3.l Using a fast or a slow master? 132
6.3.2 Better utilization of idle

workstations 132
6.3.3 Cluster masters 133
6.3.4 Random size tasks 133
6.3.5 Dynamic adaptive load

balancing 134
6.3.6 Intelligent task allocation 135

References . 13 7

Bibliography

Description of the
radiation model

cloud
...................

145

146

B Hardware specifications 149
B.1 Silicon Graphics workstations 149
B.2 Sun workstations . 150
B.3 Ethernet technical summary 154

B.3.1 Packet size 154
B.3.2 Data rate 154
B.3.3 Inter-packet spacing 154
B.3.4 Carrier · 155
B.3.5 Control procedure 155
B.3.6 Network node congestion 156

Vil

List of Figures

Figure l: CPU times for ELC/Classic group - I & 5 result .
messages (grouped by number of slaves) 53

Figure 2: Elapsed times for ELC/Classic group - 1 & 5 result
messages (grouped by number of slaves) 53

Figure 3: Schematic diagram of network topology 56
Figure 4: Serial performance of all workstations used in parallel

performance experiments . 59
Figure 5: Ethernet data rate . 64
Figure 6: CPU, system and elapsed time for ELC/Classic group -

40000 photon task size . 72
Figure 7: Speedup for ELC/Classic group - 40000 photon task

size ·. 73
Figure 8: Efficiency for ELC/Classic group - 40000 photon task

size . 74
Figure 9: Linear speed for ELC/Classic group - 40000 photon

task size . 76
Figure 10: Elapsed time, speedup and linear speed for

ELC/Classic group - 40000 photon task size 77
Figure 11: Linear speed for heterogeneous groups - 20000 photon

task size . 78
Figure 12: Speedup for heterogeneous groups - 20000 photon task

size . 79
Figure 13: Linear efficiency for heterogeneous groups - 20000

photon task size . 81
Figure 14: Elapsed times for "homogeneous" ELC/Classic group

(grouped by task size) . 83
Figure 15: Speedup for "homogeneous" ELC/Classic group

(grouped by task size) . 84
Figure 16: Efficiency of "homogeneous" ELC/Classic group

(grouped by task size) . 85
Figure 17: Linear speed for "homogeneous" ELC/Classic group

(grouped by task size) . 87
Figure 18: CPU and elapsed times for homogeneous

SP ARC station 1 + group (grouped by task size) 88
Figure 19: Speedup for homogeneous SPARCstation 1 + group

(grouped by task size) . 89
Figure 20: Efficiency of homogeneous SPARCstation 1 + group

(grouped by task size) . 90
Figure 21: Elapsed times for ELC/Classic, SPARCstation 1 + and

SGI groups (40000 photon task size) 91
Figure 22: CPU and elapsed times for SGI group (grouped by task

size) ·. 92
Figure 23: Speedup for SGI group (grouped by task size) 94

Vlll

Figure 24: CPU, system and elapsed times for heterogeneous
groups of 2, 13, 17 and 18 slaves (grouped by task
size) . 96

Figure 25: Speedup for heterogeneous groups of 2, 13, 17 and 18
slaves (grouped by task size) . 97

Figure 26: Linear speed for heterogeneous groups of 2, 13, 17
and 18 slaves (grouped by task size) I 02

Figure 27: Linear efficiency for heterogeneous groups of 2, 13,
17 and 18 slaves (grouped by task size) 103

Figure 28: Explanatory three-dimensional bar graph. 106
Figure 29: Total execution time for each processor of

ELC/Classic group (grouped by number of slaves) 107
Figure 30: Standard deviation in total execution time, in seconds,

for processors of the ELC/Classic group (grouped by
task size) . I 08

Figure 31: Total amount of work done by each processor of
ELC/Classic group (grouped by number of slaves) 109

Figure 32: Mean waiting time in seconds, for each processor of
ELC/Classic group (grouped by number of slaves) 110

Figure 33: CPU, system and elapsed times of the Master, for
different numbers of task messages sent, for
ELC/Classic group (grouped by number of messages
sent) . 112

Figure 34: Waiting times of processors, for different numbers of
task messages sent, for ELC/Classic group (grouped by
number of messages sent) . 113

Figure 35: Amount of work done by each processor, for different
numbers of task messages sent, for ELC/Classic group
(grouped by number of messages sent) 115

Figure 36: CPU, system and elapsed times for ELC/Classic group
- 1 result message (grouped by number of slaves) 116

Figure 37: Elapsed times for ELC/Classic group - 1 & 5 result
messages (grouped by number of slaves) 118

Figure 38: CPU times for ELC/Classic group - 1 & 5 result
messages (grouped by number of slaves) 118

Figure 39: System times for ELC/Classic group - 1 & 5 result
messages (grouped by number of slaves) 119

Figure 40: Amount of work per slave for ELC/Classic group - 1
result message (grouped by number of slaves) 120

Figure 41: Total waiting time per slave for ELC/Classic group -
1 result message (grouped by number of slaves) 121

Figure 42: Schematic diagram of top view of cloud (bottom view
will be similar) . 14 7

Figure 43: Schematic diagram of side view of cloud 148

lX

List of Tables

Table I:

Table II:
Table III:

Table IV:
Table V:

Table VI:

Comparison between perfonnance of original serial
program and perfonnance of parallel program on a
single processor . 57
Serial perfonnance of workstations 58
Mean serial perfonnance of homogeneous groups of
workstations ·. 63
Comparison of p4 and PVM data rates 66
Comparison of elapsed times for 13 and I 7
heterogeneous slaves . 99
Startup costs for each group of slaves I 04

x

Chapter 1

Introduction

Parallel processing is becoming increasingly important as the practical limits

of serial processing are reached, and more practicable as increasingly powerful

processors become cheaper, and high-speed networks such as FDDI and A TM

are more generally available. In the past decade, the development of portable

and efficient parallel libraries has greatly contributed to the parallelization of

more real applications.

These advances are particularly important in such scientific fields

as climatology, meteorology and aerospace research, where the problems often

have memory or computation requirements which are too large for the program

to be run serially in a reasonable time. Previously such large programs could

only be run on supercomputers, which were not generally available. Nowadays

many institutions already have networks of workstations, and since efficient

and portable parallel libraries have been developed it is becoming easier to

parallelize applications for such networks.

Networks of powerful workstations represent an important resource

for the potential delivery of a supercomputer level of performance. A

significant obstacle to realising this performance is that not much is known

about the performance of real applications on a network of workstations, and

particularly for networks of heterogeneous workstations.

The typical network in most institutions is heterogeneous, as most

networks consist of workstations of a number of different makes and models,

so not all machines will have the same CPU, or the same amount of memory

or cache. In addition, many such networks are multi-user networks, and

dynamically varying workloads will cause even machines which are identical

to have different performance capabilities.

If the computing power available in such networks is to be

successfully exploited for parallel processing, then it is essential to acquire a

better understanding of how real parallel applications perform on a

CHAPTER I. INTRODUCTION 2

heterogeneous network. In the past researchers have often concentrated on the

performance of scaled down versions, or kernels of real applications. Now that

_ many of the basic problems have been solved researchers have realised that it

is important to study the performance of complete, full-size applications. This

is particularly important in a heterogeneous environment, where the disparate

performance capabilities of the workstations make it difficult to achieve

efficient synchronisation and load balancing. These difficulties are compounded

in a shared environment where the dynamically varying workloads on the

processors constantly affect the performance capability of the workstations.

In the past it has also been difficult to use machines of different

architectures together for parallel processing. However, with the development

of modern portable parallel libraries it is now possible to run a parallel

application using a heterogeneous group of machines.

This dissertation shows that a significant improvement m

performance can be achieved by parallelizing a real scientific application for

a distributed group of heterogeneous workstations, connected by Ethernet.

Several crucial factors that affect parallel performance of a real application are

identified. This dissertation shows that:

•

•

•

•

the performance of an application on a network of workstations is

sensitive to over-utilization of the network, and that a heavily

loaded network will cause a severe degradation in performance;

that these effects can be alleviated by breaking long messages into

shorter messages, and by avoiding bursts of network traffic

interspersed with periods of low usage, by ensuring that all

machines ~o not try and send at the same time;

network latency can be reduced by overlapping communication

with computation;

in a widely heterogeneous system little or no advantage may be

gained by using slow processors together with very much faster

processors, and adding slow processors may even cause a reduction

in performance.

The measurements shown in this dissertation confirm the

misleading nature of commonly used means of measuring performance, such

as speedup and efficiency, and show that linear speed, as proposed by Crowl

[Crowl94], more closely reflects the actual performance achieved, especially

for heterogeneous networks.

CHAPTER 1. INTRODUCTION 3

We also propose some extensions to Crowl's work which will assist

in understanding the performance of heterogeneous systems. These are the

concepts of "perfect linear speed", and "linear efficiency", which will be

described in section 5.4.4.

The work done for this thesis in studying the factors affecting the

performance of a real parallel application will contribute to both the use, and

the development of, parallel programming environments. Such parallel

programming environments are currently under development as part of the

move to make parallel programming more practicable for the real user (see

section 1.4).

The application studied in this thesis, Cloud, is a cloud radiation

model which was obtained from, and parallelized on behalf of, the Department

of Meteorology at Pennsylvania State University (PennState) in the USA. The

passage of photons through a stratocumulus cloud deck is simulated, using the

Monte Carlo method, which is a computation-intensive technique used widely

in scientific computing. The transmissivity, reflectivity and absorptivity of the

cloud are then calculated from the results obtained. A more detailed description

of Cloud is given in Appendix A.

The p4 parallel library, from Argonne National Laboratories1
, was

used to parallelize the application, to run on both homogeneous and

heterogeneous groups of Sun and Silicon Graphics workstations, connected by

an Ethernet network. Since all workstations used were uniprocessors, the

message-passing paradigm was used.

The remainder of this chapter looks at some of the factors that are

contributing to parallel programming becoming a practical reality for the real

user.

1.1 Untapped computer resources

Existing networks of workstations can now be used as multicomputers, to solve

large scientific problems, so that parallel processing can exist as a by-product

of a normal, highly distributed workstation environment, without the need for

specialised multicomputers or supercomputers [Bell94]. An additional benefit

The p4 parallel library is in the public domain and can be obtained via
anonymous ftp from info.mcs.anl.gov at Argonne National Laboratory. The distribution
contains all the source code, a meta-makefile to build p4 on a number of different machines,
a set of examples, and a User's Guide.

CHAPTER I. INTRODUCTION 4

is that a user may have exclusive use of a network of workstations, which

could result in a shorter elapsed time for a parallel run than the elapsed time

on a supercomputer, where the resources have to be shared with other users

[Minn93].

Nowadays many organisations and institutions can afford, and

already have available, networks of uniprocessor workstations, which are

usually under-utilized, and which represent a large, generally untapped, source

of computing power. Researchers at the University of Zurich observe that the

typical workstation in a LAN lies idle for long periods (Cap93]. Statistics of

their LAN demonstrate an average idle percentage of at least 90%. They also

postulate that, for a large percentage of their lifetime, these high performance

machines are used merely for small tasks such as editing files, and reading

email.

Similarly, researchers at the Lawrence Livermore National

Laboratory observed that users spend about three times as much time on

workstations as on supercomputers, and that these workstations are only about

15% utilized [Bell94]. And for the 15% of time when these workstations are

being utilized, they deliver about five times the power of the supercomputers

at the Laboratories! In 1993 workstations and PCs comprised 9% and 45%

respectively of computer expenditures in the USA, thus providing a great

untapped resource for parallel processing. Bell claims that, as LAN-based

workstations evolve to be connected by high-speed networks, they will have

the capability of modem multicomputers [Bell94].

An advantage of a distributed system is that each machine has its

own memory, and usually a cache, and this adds up to a considerable amount

of memory, which is usually more than the memory and cache available for a

serial processor. The available memory for each machine is reduced by such

factors as having the operating system, and separate copies of the executable

and global variables, in the memory of each processor, but often more data can

be in memory, or cache, at any one time on a distributed system, than on a

serial processor. This reduces the paging necessary, and can contribute towards

superlinear speedup being achieved.

1.2 The development of standard parallel libraries

The development of portable and efficient parallel libraries has contributed to

making parallel processing possible for the real user. Previously heterogeneous

CHAPTER I. INTRODUCTION 5

machines could not easily be used together for parallel processing. Now, with

modern portable parallel libraries, such as p4, the computing power available

in a heterogeneous network can be more easily exploited.

Suitable parallel processing hardware has been commercially

available for approximately a decade, yet relatively few real applications have

been successfully parallelized. This was principally due to the lack of parallel

languages, libraries and compilers, the lack of skills and the difficulties of

implementing parallelism by low-level, hardware-dependent, programming. The

difficulties of parallel programming were also immense, as each different

platform had its own way of implementing such things as communication, so

that a programmer had to relearn the techniques for every different

environment. Few real users were willing to invest a large amount of time and

money in parallelizing a serial application, when it might have to be redone

two or three years later for a different hardware platform. There were few

people with the necessary skills available commercially, as most of those who

knew how to do parallel programming were researchers. Many users were also

disillusioned because few parallel environments lived up to the performance

claims made by vendors. Users found that parallel programming was just too

hard, and too expensive, and the performance gains were just not good enough.

Kuck claims that, even now, users have not been presented with usable

practical parallel processing facilities, and that this matter should be addressed

urgently [Kuck94].

In the past decade, a number of these problems have been solved

with the development of portable libraries such as p4 [Butl94], PVM [Sund94],

SpaceLib [Mach92], Linda [Carr89][Carr94] and PARMACS [Calk94]. For a

survey of some of these, and others, see [McBr94]. These libraries generally

consist of extensions to C or Fortran, and they have made it possible for

relatively unskilled programmers to parallelize real applications easily, and

efficiently, in such a way that they are easily portable to other hardware

platforms, or can be run in heterogeneous environments. This effort will be

considerably enhanced by the adoption of the new MP! standard [Walk94],

which is based on those features of the most common libraries such as p4,

PARMACS and PVM, which have been found in practice to be the best way of

implementing message-passing parallelism. This standardisation was not

possible until sufficient real applications had been parallelized, so that

researchers could see what was required, and could start to develop suitable

CHAPTER I. INTRODUCTION 6

libraries. Now that more experiments have been conducted, the best methods

are emerging as standards.

1.3 Performance of real parallel applications

Good performance for parallel programs on a network of workstations will

only be achieved if the factors affecting the performance of applications on

such a network are properly understood. And these factors can only really be

identified by studying the performance of complete, real applications, such as

Cloud.

Mainly as a result of increased standardisation, and the

development of portable parallel libraries, there has been increasing emphasis

in research on the performance of real parallel applications in the past decade.

In serial computing, the speed of the processor is of prime importance, but in

parallel computing factors such as memory requirements and communication

costs also have a significant impact on performance, particularly in a

distributed system.

Initially, parallel processing research has focused on improving the

performance of parallel architectures, by such methods as reducing memory

and communication latency, in experiments with small test programs or

kernels. However, the good performance of a small test program does not

necessarily mean that comparably good performance can be achieved when the

program is run with a larger data set, requiring considerably more memory,

. and perhaps involving extensive input and output, The results of such research

can therefore be misleading regarding the performance of real applications, and

frequently performance claims for certain architectures cannot be achieved with

real programs, which behave differently from the kernels used in the

performance tests.

For users it is important that performance claims relate to complete

real applications, and not just kernels. As a result researchers are now

establishing suites of benchmark programs, which contain real applications

with a broad range of different characteristics, so that the performance of

parallel systems can be assessed more accurately. These benchmark programs

are also portable between platforms, so that different parallel environments can

now be compared (SPLASH [Sing92], NAS benchmarks [Bail93], Perfect

benchmarks [Cybe90], SPEC benchmarks [Dixi9 l], Genesis benchmarks

[Hey9 l], and a survey of parallel benchmarks in [Weic9 l]).

CHAPTER I. INTRODUCTION 7

The performance of a parallel program can be affected by the

parallel algorithm used. If a program is merely a parallelized version of a serial

program, this may not necessarily be the most efficient parallel program. A

totally new algorithm may be a better and more efficient way of solving a

problem in parallel. Such a parallel algorithm may, for example, take

advantage of the extra caches and memory available in a distributed system,

by handling the data differently, or by using the different capabilities of

heterogeneous processors to handle certain tasks for which they are particularly

suited, such as for the rendering of graphics images.

There is still much room for research in the area of developing

parallel algorithms which take the most advantage of a parallel environment,

as opposed to parallelized serial algorithms.

1.4 Parallel problem solving environments

For parallel processing to become a successful alternative to supercomputers

it must become easier to implement parallel programs. A major contribution

in this area is current research on the development of parallel problem solving

environments. These environments will assist a programmer to develop an

efficient parallel program quickly and easily. The results of this study on the

performance of Cloud will assist in both the development and the use of such

parallel programming environments.

Parallel processing is now at the stage where the major architectural

problems have been solved, and some parallel languages, libraries and

compilers have been developed. Because the costs of parallel programming are

so high, it is essential that parallel programming must become simpler and

faster. Generally, an automatic parallelizing compiler can do low-level

parallelism and communication very efficiently. However, it is extremely

difficult for parallelizing compilers to recognise high-level parallelism, and

dependencies in the application being parallelized. This can be done much

better by a programmer who has some familiarity with the application to be

parallelized, and an understanding of parallel processing.

The necessity to make parallel programming simpler and faster has

led to the development of dynamic parallel programming environments, which

combine the strengths of a programmer in identifying high-level parallelism,

together with the strengths of an automatic compiler for implementing efficient

low-level parallelism [Kuck94]. These environments assist a programmer in

•,

CHAPTER 1. INTRODUCTION 8

developing applications for both shared-memory and distributed systems. Some

of the environments that are currently under development are Enterprise,

Mentat, Presto and Schooner. Enterprise produces code for a network of

workstations [Scha93]. Mentat enables the parallelization of data-parallel

applications for a wide variety of MIMD platforms, from loosely coupled

networks of workstations· to tightly coupled multicomputers [Grim93a]

[Grim93b][Grim94]. Presto is intended for developing·parallel applications for

shared-memory multiprocessors [Bers88]. Schooner is specifically intended to

exploit the varied resources available in a heterogeneous system [Home94].

These environments, particularly Enterprise, allow the user to specify high­

level parallelism but automatically implement the low-level parallelism

efficiently.

It will still be some time before such environments are generally

commercially available, as there is still much research to be done on the

behaviour of real applications, so that the performance characteristics of such

programs can be properly understood. As more users are becoming involved

with parallel processing, and more real applications, such as Cloud, are

parallelized, it will assist researchers in the development of such environments.

Also programmers will gain expertise which will enable them to parallelize

applications efficiently by using such an environment.

1.5 Structure of this dissertation

. The next chapter reports on other work in this area. This is followed by a

description of the parallelization of the application. The subsequent chapter is

an account of the experiments conducted in studying the performance of this

parallel application. Following this, there is a summary of results obtained,

together with a discussion of their relevance. This chapter also includes

discussion on the problems of evaluating the parallel performance of a

heterogeneous system. Finally, conclusions are drawn concerning the factors

affecting the performance of this parallel application, and some

recommendations are made on how to achieve the best performance for a

parallel application, in a similar environment.

Chapter 2

Related Work

There is increa~ing research in the programming and performance of real·

applications, as researchers attempt to understand the behaviour of programs

in actual use. This chapter describes some of the work in this area.

Cloud has many similarities to the research described in this

chapter. These include making use of existing underutilized networks of

workstations, parallelizing a common scientific application by using a freely

available parallel library, running the program on both homogeneous and

heterogeneous machines, heterogeneous partitioning of work, and dynamic load

balancing.

The experiments using Cloud were run on both homogeneous and

heterogeneous groups of Silicon Graphics Indigo, Sun ELC 1
, Sun

SP ARCclassic and SUN SPARCstation 1 + workstations, all connected by

Ethernet. Some of the projects described in this chapter were run on similar

groups of Sun workstations, also connected by Ethernet. Other projects were

run with groups IBM RISC System/6000 workstations, some connected by

Ethernet, and others with a Token Ring, or fiber-optic implementation. The

remainder of the work described in this chapter was .conducted on different

types of parallel systems, such as transputer networks, but these projects were

similar to Cloud in the programming techniques used.

Section 2, 1 describes a number of other implementations of the

Monte Carlo technique. After that, some work on the more efficient utilization

of networks of heterogeneous workstations is described in the next section.

Section 2.3 contains a summary of a number of real scientific applications

which have been parallelized using the PVM library. After that there is a short

description of the implementation of a data-parallel application for a network

1SPARCstation, SPARCstation I+, SPARCstation IO, SPARCclassic and SPARCstation
ELC are trademarks of Sun Microsystems, Inc.

9

CHAPTER 2. RELATED WORK 10

of heterogeneous workstations, together with some discussion of the load

balancing techniques used. The last section lists some other projects where real

applications have been parallelized in the fields of meteorology and

climatology.

2.1 Other parallel projects using Monte Carlo
simulation

Monte Carlo simulation is a common scientific technique which has been used

in Cloud, and in many other applications. Frequently this type of simulation

is the only way to solve scientific problems which would either take too long

to be solved, or cannot be solved at all. Typically, Monte Carlo simulations

have minimal memory requirements, require almost no communication, and are

very time-consuming. This section describes some other applications which use

Monte Carlo techniques.

2.1.1 Monte Carlo benchmarks

In many ways the minimal communication requirements of Monte Carlo

simulation make it an ideal way to estimate the upper limits of a system's

floating point performance. This is evident by the fact that Monte Carlo

routines are part of at least six sets of parallel benchmarks: the QCD program

in the Perfect Benchmarks [Cybe90], the Embarrassingly Parallel program of

the NAS Parallel Benchmarks [Bail92][Bail93], the DODUC program in the

SPEC benchmarks [Dixi91][Weic91], kernel 16 in the Livermore Fortran

kernels [Berr91], INTMC, GAMTEB, VGAM and SCALGAM in the Los

Alamos benchmarks [Berr91] and QCD 1 in the Genesis distributed memory

benchmarks [Hey91].

The Embarrassingly Parallel program is in some ways very similar

to Cloud, and typical of many other Monte Carlo applications, in that two­

dimensional statistics are calculated from a large number of pseudorandom

numbers [Bail93].

CHAPTER 2. RELATED WORK 11

2.1.2 Efficiency evaluation of some parallelization tools on
a workstation cluster using the NAS parallel
benchmarks [Suku94)

At Vienna University of Technology, Sukup has conducted an efficiency

evaluation of PVM 2, PVM 3, p4, Express and Linda by implementing and

running four of the NAS Parallel Benchmarks [Suku94]. The NAS Parallel

benchmarks used were the Embarrassingly Parallel benchmark (Monte Carlo

simulation), the Simple 3D Multigrid Benchmark, Solving an Unstructured

Sparse Linear System by the Conjugate Gradient Method and the Parallel Sort

Over Small Integers. The tests were conducted on a cluster of nine IBM

RS6000-320H workstations, each with a 25 MHz clock rate and 16 Mb

memory per workstation.

These benchmarks were implemented using each of the five

libraries, and the results were ranked according to the performance obtained

with each library. For the Embarrassingly Parallel benchmark, all libraries gave

• almost exactly the same performance results. However, there was considerable

variation in which library gave the best performance for the other benchmarks,

but the results for most libraries were reasonably similar. Finally the libraries

were ranked according to their overall performance with each benchmark, and

also other factors, including the ease of learning and programming with that

tool, the costs of startup and closedown time, the configuration of the tool, and

the ease of debugging. The final results ranked Express first, followed by PVM

2.x, Linda, p4 and PVM 3.x in that order. This was in contrast to the results of

Cap and Strumpen (see section 2.2), where Linda gave the worst results. This

dissertation shows in Chapter 5 how there are many factors which affect

parallel performance. Since the NAS benchmarks are "paper and pencil"

benchmarks, and their implementation differs for different experiments,

Sukup's performance results may not necessarily be conclusive. If these factors

which affect performance are considered, it may be that re-implementations of

Sukup' s version of the benchmarks may give different results.

In the network performance results, described in section 5.2.2, the

data rates that were achieved for a small p4 program, that was used to test the

performance of the Ethernet network, were similar to the data rates achieved

for PVM, by Sunderam et al in (Sund94].

CHAPTER 2. RELATED WORK 12

Sukup reported a number of problems with p4, which included lost

or hanging processes. This was consistent with the experiments with Cloud,

where similar problems occurred. However, Sukup was favourably impressed

with the debugging tools in p4, which were also useful in the development of

Cloud.

2.1.3 Monte Carlo simulation in radiation dosimetry [Ma93)

Chang-ming Ma implemented a parallel version of the EGS4 (Electron Gamma

Shower version 4) Monte Carlo code system on the Edinburgh Concurrent

Supercomputer (ECS), which is a multiple-transputer system consisting of 423

T800 20-MHz transputers. This program was used to calculate the absorbed

dose of radiation by using Monte Carlo simulation. The program,

DOSIMETER, is a task-farm' procedure written in Meiko Fortran, and which

uses CSTools for the underlying communication. The interface routines were

based on those provided in the Meiko Task Farm and the Wheatfarm.

The program was similar to Cloud as it consisted of a control

process to generate tasks, a number of simulation processes to consume tasks

and generate results, and an analysis process to collect and analyze the results.

Currently the number of particle histories traced by Ma is 105
, if the incident

particles are.electrons and 106
, if the incident particles are photons, and these

numbers are similar to the number of photon histories (l .2x 106
) traced in the

experiments with Cloud.

Ma found that, in the case of the ECS transputer domain,

communication costs become negligible when running large simulation tasks.

Similarly, the initialization time, although it increases with the domain size,

becomes negligible when compared to the computing time for large

calculations.

However, the optimal speed on the T800 transputers can only be

achieved when using the transputer's native language, Occam. When running

a program written in Fortran, less than half the stated performance could be

a~hieved. Ma's results showed that a linear increase in computer speed was

1 A task-farm is a technique for implementing self-scheduling calculations. In a task farm,
a "source" process generates a pool of jobs, while a "sink" process consumes results. In
between, one or more "worker" processes repeatedly claim jobs from the source, tum them into
results, despatch those results to the sink, and claim their next jobs. If the number of jobs is
much greater than the number of workers, task farming can be an effective way to load balance ·
a computation [Wils93].

CHAPTER 2. RELATED WORK 13

achieved, as the number of transputers used on the ECS was increased. Ma

also includes results obtained from running the code on a number of other

machines including 5 different V AXs, an HX i860, a Division i860, a Motorola

88000 and an HP 90001720. [Ma93]

2.1.4 Monte Carlo simulation of radiative heat transfer on
a SP ARCStation farm [Minn93)

Minnich and Pryor, at the Supercomputing Research Center in the USA, are

developing a distributed shared-memory model, Mether. To test the

performance of their model, they implemented a parallelized Monte Carlo

simulation of radiative heat transfer, to run on a computing farm consisting of

16 SPARCStation ELCs (33MHz SPARC 1 processor) connected by an

Ethernet network, which is fairly similar hardware to that used for most of the

work with Cloud. The application simulates the radiative heat transfer among

surfaces of arbitrary 2-D enclosures, and is used for the modelling of the

geometry of a laser-isotope separation (LIS) unit, for which the accurate

determination of radiant exchange factors is an important component in the

larger simulation of the isotope separation process.

The application involves the tracing of photons which are emitted

from the surfaces of the enclosure, reflect from one or more intermediate

surfaces, and are then absorbed into, or transmitted through, terminating

surfaces. The LIS has 3 7 sides, and 1 million photons are emitted uniformly

from each side. The path of each photon may include several reflections, which

may be specular or diffuse, before it is transmitted through, or absorbed by a

surface. The counts of the photons transmitted and absorbed are recorded in

two 2-dimensional matrices. This problem is very similar to Cloud in the

amount of computation, and the total elapsed time on the farm.

The same C code was run on a 16-processor ELC farm, and on one

processor of a Cray 2. The total CPU time on the Cray was 262 min (1 Oh 20m

elapsed time), and for the ELC-farm the elapsed time was 28 minutes. This

time of 28 minutes for the ELC-farm is similar to the time needed for Cloud

on 11 Suns. The long time for the Cray is primarily because there were other

users on the Cray. However, the program was run on only one processor on the

Cray and the code did not automatically vectorize easily. The researchers claim

that if they optimized the program to take full advantage of the Cray, the same

task would run on the Cray in approximately 10-13 minutes. Similarly, if

CHAPTER 2. RELATED WORK 14

certain optimizations were made for the program running on the ELC-farm, the

time could be improved, but would probably still be in the order of 20-30

minutes.

Nevertheless, it is claimed that for this example, a radiative heat­

transfer simulation, it was possible to achieve supercomputer-level performance

on a network of cheap workstations. For this problem, a 3-processor Cray 2

wou.ld run about 3 times as fast as a 16-station farm, and a 16-processor C90

Cray supercomputer would run approximately 40-50 times as fast as the farm.

However, the cost of a C90 supercomputer is about 500 times the cost of the

farm, so that performance/price is correspondingly higher [Minn93].

Results also showed that the startup overhead was relatively small

for large amounts of computation, but for smaller runs this became increasingly

significant. It was estimated that the farm would scale easily to about 32

processors, but for more than 32 processors another method of starting the

processor~ should be found, as the startup costs would limit further scalability.

2.2 Efficient parallel computing in distributed
workstation environments [Cap93)

This thesis is to illustrate how an existing network of heterogeneous

workstations can be used for efficient parallel computing. This section

describes similar work at the University of Zurich, where Cap and Strumpen

are conducting research into more efficient utilization of existing networks of

heterogeneous workstations [Cap93].

Research has shown that, for the workstations in the network at the

University of Zurich, the average idle percentage is at least 90%, and that for

much of their lifetime these high-power workstations are used for small tasks,

such as editing files, and reading email. Although the research at Zurich is

primarily concerned with data-parallel processing, the principles are discussed

here, as many of them are valid for all distributed parallel processing.

Cap and Strumpen have developed THE PARFORM to use idle

workstations for parallel computing. Even on dedicated parallel machines it can

be difficult to obtain good speedup and efficiency. However, the heterogeneity,

and dynamically varying load situation of a non-dedicated workstation network,

considerably increase the difficulties of obtaining good parallel performance.

In a parallel program with communicating processes one slow workstation can

cause the whole program to proceed at the rate of the slowest processor, which

CHAPTER 2. RELATED WORK 15

may result in a decrease in efficiency. In a non-dedicated network where the

workload of each processor is changing constantly, it is not possible to

determine beforehand which processor will do the most work in a certain time.

Even if the situation is known at the beginning of a run, it will probably

change several times during the run.

THE PARFORM uses heterogeneous partitioning and dynamic load

balancing to improve performance. It uses ~ number ·of sensor processes to

determine the load situation of each processor, and whether the processor is

busy running a time-consuming program, or it is currently idle, except for very

short or interactive jobs. Another process determines approximately how much

computation can be expected from the processor. THE P ARFORM thus partitions

the work, so that the fastest processors get the most work, and the slowest get

the least, according to the comparative rates, and computation potential, of the

processors, as determined by the sensor processes. These sensor processes run

throughout the time the parallel program is running, so as the load situation

and computation potential of the workstations changes, THE PARFORM

dynamically adjusts the load for each processor, to obtain the greatest

efficiency possible.

The increase in efficiency achieved by heterogeneous partitioning

and dynamic load balancing more than compensated for the overhead of

running the sensor processes. THE PARFORM is in many ways similar to PVM,

but heterogeneous partitioning and dynamic load-balancing are not supported

by PVM so this has to be done entirely by the programmer, which makes it

difficult to achieve high efficiency for a network running under a normal daily

load. p4 also does not support these techniques implemented by THE PARFORM,

and like PVM these will also have to be implemented by the programmer.

A parallel program may slow down the response times of

interactive processes as a result of CPU sharing, and it is important to use a

sensible scheduling mechanism, together with the other processes described

above, to ensure that a parallel program does not interfere with interactive

users, but uses idle machines instead. So far researchers at Zurich have found

that, even when their parallel program was running at normal priority, there

was minimal impact on other users, and frequently it was not noticed at all.

However, they intend to introduce a mechanism whereby their parallel program

runs at low priority to reduce the impact on other users.

The performance obtained by using THE P ARFORM was evaluated

by using the same program implemented with each of THE P ARFORM, Linda

CHAPTER 2. RELATED WORK 16

(POSBYL), SCALinda and PVM. This program was run on a heterogeneous

network of 40 SPARCstations and SPARCservers, of five different types. In

all cases the application was a 2-D grid-based iterative solver for heat

conduction, and the network was dedicated. The performance was also

compared to the same program running on a tightly-coupled Transputer

Multicluster MC-2/32-2. Results showed that the speedup was essentially

constant for all versions, except for the Linda (POSBYL) implementation which

performed badly. This can be explained by the overhead of tuple space

management, as Linda is more suited to shared-memory processing. However,

in overall speed THE PARFORM was marginally better than the SCALinda and

PVM versions, and a factor of approximately 3 times as fast as the Transputer

Multicluster, which was primarily due to the lower performance of the T800

processors. In these experiments, for this application at Zurich, the workstation

network scaled almost exactly like the tightly-coupled Transputer Multicluster.

Cap and Strumpen also observed that, for a parallel version on a network, there

is more memory available than for a serial version, and this can result in super­

linear speedup for a program requiring a large amount of memory, as the serial

version will require excessive paging [Cap93].

Excellent, near-linear speedup was obtained for up to 20

workstations, but there was a breakdown in performance for more than 30

processors. Cap et al found that network saturation and congestion were serious

inhibiting factors which limited scalability. Congestion occurred when too

many stations attempted to transmit at the same time, and saturation happened

when the work was split into so many tasks that the network became saturated

with communication. Similar problems were experienced with Cloud. Cap et

al suggest that the problem of saturation may be solved by using a different

algorithm, as is shown in the experiments with Cloud, and that modem high­

speed networks may partially solve the problem of congestion, although

increases in the performance capabilities of workstations make this problem

more prominent.

2.3 Parallelization of scientific applications using
the PVM parallel library

PVM is a parallel library similar in many aspects to p4. There have been a

number of projects using PVM to parallelize real scientific applications for a

network of workstations. Some of these projects are described briefly below.

CHAPTER 2. RELATED WORK 17

All four of the projects listed here run on networks of IBM RISC

System/6000 workstations. The numbers of workstations used are similar to the

numbers of machines used in the experiments with Cloud. Three of the projects

described in this section were implemented on groups of homogeneous

machines, but in one case the master was a different processor. In the fourth

project the experiment was conducted on both homogeneous and heterogeneous

groups of machines.

The results of these experiments indicate some of the problems that

anse when parallelizing real applications for a network of workstations,

particularly when the network is heterogeneous, and how these factors affect

the optimal performance that can be achieved.

2.3.1 Distributed computation of wave propagation models
using PVM (Ewin94]

Some of the developers of PVM used it to parallelize an application which

simulates the propagation of seismic waves. The primary purpose of this

project was to demonstrate that many organizations have considerable

computing power available, in the form of existing networks of workstations,

and that for no extra cost, by using a parallel library such as PVM, they can

use this power for running parallel scientific applications, which are generally

too large, or too slow, to run serially. [Ewin94]

The program was run on a network of six homogeneous processors

. connected by Ethernet. Reasonable speedups were obtained, but were limited

by communication overheads. It was observed that the network could become

a significant bottleneck, and that for many applications speedup will be less

significant as processors are added, and network communication becomes

saturated. Similar problems were also observed for Cloud, which may be

limited in its scalability because of network congestion, and an overloaded

master.

Another factor which may affect load balancing is that the PVM

tests were performed on an isolated homogeneous network. Performance is

expected to degrade in a heterogeneous environment, or a network with

varying load conditions which cause additional load balancing problems.

CHAPTER 2. RELATED WORK 18

2.3.2 Parallelization of the two-dimensional Ising Model on
a cluster of IBM RISC System/6000 workstations
[Alte93)

The Ising model is another commonly used scientific technique for statistically

obtaining a solution, when an exact solution cannot be found easily, if at all.

In such cases computer simulations become an important tool to confirm and

understand experimental data. This method has much in common with the

Monte Carlo method, and is also well-suited for parallelization, as it has only

modest communication between processors. Here this technique is used in an

application to derive statistically the thermodynamic properties of macroscopic

bodies [Alte93].

For this example, an automatic parallelizer was not the best

solution, since such parallelizers seem to be limited to fine-grain

parallelizations, and these tend to have a high latency on workstation clusters.

For this program, a new algorithm, which was more coarse-grained, and

therefore had less communication, was thus implemented manually.

This application was run~ at the IBM Research Center in Germany,

on a platform of one RTS/6000-560 and four RS/6000-550 workstations,

connected by both a Token Ring network, and with Serial Optical Channels.

The speedups and efficiency achieved were satisfactory. However, it was noted

that there was a "critical lattice size", and that when the lattice was below this

size, the amount of communication was so much that performance was

degraded, while for large lattice sizes the communication costs were negligible.

This is because only the edges of the lattice are communicated to other

processes, and as the lattice size increases, the edges form a smaller percentage

of the data.

Again it was observed that static decomposition of the domain into

a number of subdomains, with each subdomain to be associated with a

particular processor, was only appropriate in a homogeneous, dedicated system.

For such an application, that is limited by inter-process communication,

dynamic load-balancing would be required on a heterogeneous, non-dedicated

network.

CHAPTER 2. RELATED WORK 19

2.3.3 Lattice Boltzmann method on a cluster of IBM
System/6000 workstations [Bete93)

The lattice Boltzmann method is yet another scientific procedure in common

use, particularly for the simulation of complex hydrodynamic phenomena. It

was implemented, using PVM, by Betello et al [Bete93]. Since the application

was to be run on a homogeneous network, PVM was optimized, to exploit the

high speed available on a fiber channel, by removing some of the handshaking,

and data conversions, that would be required for a heterogeneous system

This application was run on a homogeneous network of IBM

RS/6000-550 workstations connected by a fiber-optical channel. A good

speedup of 6.5 to 6.8 for 8 processors was obtained. The scalability of this

application was analyzed to determine the critical number of processors beyond

which adding another processor would not increase the speedup.

For this application it was determined that, for a grid of size 512,

the application would scale with almost linear speedup to 18 processors. If the

problem size was increased to a grid of size 2048 then the application would

scale well to 35 processors, and with 20 processors the speedup would be

about 15. These speedups compare well with those obtained for Cloud on

similar numbers of machines.

2.3.4 Performance of IBM RISC System/6000 workstation
clusters in a quantum chemical application [Nana93]

The ab initio determination of the electronic structure of molecules demands

considerable computing power, especially when electron correlation effects are

taken into account. The concurrent computation Many-Body Perturbation

Theory (ccMBPT) is a method in which such a problem can be divided into

a set of completely independent sub-problems, which can each be handled by

a different processor. Using this theory and PVM, an application to solve the

many-electron correlation problem, using a network of workstations, has been

modified from the original program, which ran on an Cray Y-MP C90

[Nana93].

Nanyakkara et al first studied the performance of this quantum

chemical application on the two homogeneous sub-groups, and then measured

the performance of the combined heterogeneous group of IBM RISC

CHAPTER 2. RELATED WORK 20

Systern/6000 workstations, connected by Ethernet. The two homogeneous

groups were up to eight RS6000-320H workstations, and up to eight RS6000-

340 workstations. The heterogeneous group was a combination of these two

groups. The master workstation was an RS6000-550. This approach of first

studying the performance of the homogeneous sub-groups, and then the

performance of the combined heterogeneous group, is similar to the approach

used in the experiments with Cloud.

It was observed that although the theoretical performance of

Ethernet on a dedicated strand is 10 Mbits/second, in practice only about 5-7

Mbits/second could be achieved for a dedicated strand.

Results showed that although a significant decrease in the total

elapsed time could be achieved for clusters of four homogeneous workstations

(speedup greater than 3.1 and efficiency 0.78 to 0.87), comparable

improvements were not achieved for clusters of six or eight homogeneous

workstations, with speedup factors in the range of 4 to 4.5 and efficiency

dropping to 0.5 to 0.56. With the larger group of up to 16 heterogeneous

workstations there was only a small reduction in elapsed time for 6 (3 of each

model) and 8 processors (4 of each model), and an increase in the elapsed time

for 16 processors (8 of each model). The speedup for the heterogeneous group

ranged from 3.86 to 4.55 for 8 processors (4 of each model), with

corresponding efficiencies of 0.48 to 0.57, and from 2.82 to 4.02 for 16

processors (8 of each model), with corresponding efficiencies of 0.18 to 0.25.

This lack of improvement for larger number of processors is

attributed mainly to data migration, and to the low bandwidth of Ethernet.

Again, these values for speedup and efficiency are similar to those obtained for

Cloud, with similar numbers of processors.

Thus, although groups of 300 to 400 RISC workstations could

theoretically match the computing power of a Cray Y-MP C-90, in practice

similar results could not be achieved for this application, by using the cluster

of workstations. As with Cloud, the low bandwidth communication links are

the major inhibiting factor preventing good performance with a cluster of

workstations. However, restructuring of the algorithm to minimize data

migration could reduce the communication overheads.

CHAPTER 2. RELATED WORK 21

2.4 Data-parallel programming on a network of
heterogeneous workstations [Nede93]

This project illustrates the use of a new parallel language, DataParal/el C.

Like Cloud, and like THE PARFORM, this system also performs dynamic load­

balancing which adjusts to the varying load situation in a multi-user,

heterogeneous environment. In DataParallel C the load balancing is achieved

by the non-uniform redistribution of virtual processors between workstations,

after monitoring the load situation on each workstation. The network used in

these experiments was similar to that used in the experiments with Cloud.

Four typical scientific applications were run to test the performance

of the system, using DataParallel C, on a network of heterogeneous

SP ARCstations connected by Ethernet. The performance achieved was

reasonable, with near-linear speedup obtained for the computation-intensive

application, and a lower speedup for those applications that required more

communication.

The advantage of this system is that it is dynamic, and will

automatically adjust to changing conditions without programmer intervention.

This language is to be ported to run on a network of IBM RISC Systern/6000

workstations where even better performance is expected [Nede93].

2.5 Parallel programming in meteorology and
climatology

This chapter is concluded by a look at some other parallel processing projects

in the fields of meteorology and climatology. Most of the applications

described in this section are quite different from Cloud, and run on completely

different hardware configurations. However, the projects described in this

section illustrate how parallel processing is being increasingly used in these

fields.

Scientists in meteorology and climatology have long been hampered

by the lack of computing power, and memory, to run their very large

programs. For scientists without access to supercomputers, this lack of

available computer power has meant that often problems have either been

partitioned into smaller independent serial programs, or run as serial

simulations with a coarse resolution. Such coarse simulations frequently give

CHAPTER 2. RELATED WORK 22

false results, since it is impossible to model every aspect accurately, and a

small deviation may result in a large propagated error, such as in the Lorenz

effect [Glei87]. With recent advances in parallel processing several

independent, but related problems, may be run in parallel, to get a better

overall picture [Kuck94]. Also, with increased computer power and memory,

simulations may be run with a finer resolution to obtain more realistic results.

Now that parallel processing is becoming a practical reality

meteorologists and climatologists have been among the first to make use of

parallel processing for real applications. This section descr~bes some of the

projects that have been undertaken.

2.5.1 Weather prediction [Gart93) [Gart93a)

The European Centre for Medium-range Weather Forecasts (ECMWF) has

cooperated with scientists in Germany, in an effort to parallelize the ECMWF's

weather forecast program by using the PARMACS library. PARMACS was

chosen so that the program would be portable to a number of different

environments. However, once the MP! standard has been defined, this weather

forecast program will probably be re-implemented in MP!, in accordance with

several other European projects. Previously, such parallelization was not

feasible, as it was just too expensive to parallelize a large program such as this

weather forecast program, when it would probably only have a lifetime of

about 10 years, and it would not have been portable to other platforms.

However, with the development of such portable libraries as PARMACS, p4

and MP! such exercises are now possible in a realistic time, and for a

reasonable cost.

In this project sections of the program were parallelized separately,

and then integrated. This program uses a spectral transform technique, which

involves a large number of 3-dimensional data structures, and a considerable

amount of communication. Nevertheless, the spectral transform method is a

considerable improvement on straight 3-dimensional iterative calculation.

Initially, parallelization of the 2D-case has been completed [Gart93], and work

is now continuing on the parallelization of the 3D-case [Gart93a].

The model was implemented on a number of different parallel

systems, including Intel iPSC/860, Meiko i860 CS, CMS and a network of

IBM RS6000 workstations. Satisfactory performance was obtained in all cases,

except on the workstations, where the interconnect network was a simple

CHAPTER 2. RELATED WORK 23

Ethernet, and the communication capacities were too low. This poor

performance with Ethernet is consistent with the other work described in this

chapter, and with the results of the experiments with Cloud.

2.5.2 Climate modelling [Sela94)

The example in section 2.5. l incorporates real weather data, and uses this data

to forecast the weather. In climate modelling researchers study long-term

climate change -by simulating weather data. Programs such as general

circulation models (GCMs) were among the first real scientific applications

that were parallelized. GCMs have such large computing and memory

requirements that, until recently, full-size GCMs have only been run on

supercomputers such as Crays, and even then they run for months.

A description of the parallelization of the USA National

Meteorological Center's spectral model for a Connection Machine (CM-200)

is given in [Sela94]. Results showed that tl)e time for the program to run on

a 256-node CM-200 are similar to those of a Cray Y-MP/l. It was also shown

that the program would scale efficiently from a 256-node machine up to a

2048-node machine.

The main problems with GCMs is that it may take months to get

a solution. Consequently, to obtain a solution in a shorter time, GCMs will

usually be run with a resolution which is too coarse to simulate climate well.

For instance, in GCMs it is very difficult to model cloud cover well.

Thunderstorms, which are the clouds with the greatest energy, and that affect

the weather the most, cover a very small area of only a few square kilometres.

These clouds cannot be modelled realistically on a GCM where one gridpoint

is used to represent an area of hundreds of square kilometres. Thus, researchers

are interested in studying such programs as cloud radiation models, like Cloud,

to establish the best way to simulate clouds of different types in such programs

as a GCM. As computing power increases, it will become feasible to combine

such simulation programs to obtain a more realistic GCM. Monte Carlo

simulation is one of the methods that researchers use to simulate the behaviour

of weather, in preference to more time and computation intensive techniques,

such as 3D-grid iterative methods.

Chapter 3

Implementation

This chapter describes the original serial program, Cloud, and how it was

parallelized, using p4, for a distributed system of heterogeneous workstations.

Certain features were implemented particularly to investigate the answers to

specific questions, and these are explained both in this chapter, and the next.

Cloud uses the Monte Carlo method to simulate the passage of

photons through a stratocumulus cloud deck. Cloud is described more fully in

Appendix A. The original serial program, which was written in Fortran by Lin

as part of an MSc thesis in Meteorology at PennState [Lin93], was converted

to a more extensive program, written in C, by Steve Nagle of PennState. The

C version of Cloud is the serial version that was parallelized for this thesis.

The Department of Meteorology at Pennsylvania State University

required that Cloud should be parallelized to run on a heterogeneous network

of uniprocessor Sun and SGI machines. The message-passing paradigm was

chosen, as this was well-suited to this type of environment.

To run a parallel program in a heterogeneous environment it is

necessary that there is some means by which machines of different

architectures may communicate with one another. In the past this has been

difficult, if not impossible. Now, with the advent of modem portable parallel

libraries such as p4 [Butl94], PVM[Sund94], and PARMA CS [Calk94], this has

become feasible. p4 was chosen because it was easy to implement, and it

would run on a wide variety of machines, including all five architectures of

workstation used in the experiments with Cloud, and it would be portable to

the processors at PennState.

3.1 Brief description of the p4 parallel library

The p4 portable parallel processing library has been developed by Argonne

National Laboratories, as the successor to the popular parmacs or monmacs

24

CHAPTER 3. IMPLEMENTATION 25

macros, which first' appeared in about 1984. These macros were available for

both Fortran and C, and were implemented by using the m4 macro

preprocessor.

p4 has now been implemented as libraries of routines for portable,

efficient, and simple parallel programming. These libraries are available for

both C and Fortran (Butl94]. The libraries are portable to a number of different

architectures. Both message-passing and shared-memory parallel processing are

supported.

p4 has both advantages and disadvantages when compared to other

libraries, but will usually give much the same results. Its main advantage is

that it can be used for both message-passing and shared-memory parallel

processing, which is not true of most libraries, and that it is available for a

wide variety of machines. It also has more functionality and tools for

debugging than most other libraries.

p4 is particularly well-suited to being used in a heterogeneous

environment because of its use of a process group file which contains a list of

all machines to be used as slaves, and for each machine the number of slave

processes to run on that machine, and the full path name for the executable to

be used by that machine. This means that each machine may use a different

executable, as is necessary for slaves of different architectures, or machines of

a similar architecture may share the same executable. Also different slaves may

even perform different tasks, so, for example, a slow slave may do 110, and a

faster slave may do computation.

At Vienna University of Technology, Sukup has conducted an

evaluation of the efficiency of two versions of PVM,p4, Express and Linda in

implementations of four of the NAS Parallel Benchmarks (Suku94]. In

comparison with the other libraries the performance of p4, for this

implementation of these benchmarks, ranged from very good to very bad.

Since the NAS Benchmarks are "paper and pencil", in that specification of the

problem is only algorithmic, and the user must implement his own code, it is

possible that this variation in performance may be attributed to some of the

factors which are discussed in Section 5.6.

3.2 Description of the original serial program

The serial program reads three input files, describing atmospheric and

thermodynamic data, and a set of user-configurable input parameters, such as

CHAPTER 3. IMPLEMENTATION 26

the heights of the top and bottom of the cloud, the number of photons to be

fired, the number of wavelengths and the angle of the incident light. For this

research, exactly the same input data was used for all experiments that were

run, and none of the data in these input files was changed.

During each run a number of different cases are simulated, each

with a different set of input data, with one case for each interval of each

wavelength. The number of photons leaving the cloud through the top or

bottom of the column of the cloud, or being absorbed in the cloud, are counted

in a number of collection arrays (See Appendix A for more details about the

collection arrays). In the serial program each interval of each wavelength is

processed sequentially, the contents of the collection arrays are written to file,

and the same collection arrays are re-used for each case.

All through the program various results are output to a file of

intermediate results, and a file containing the contents of the collection arrays

for each case. When all processing is complete, a further file of final results

is saved.
/

3.3 Parallelization of Cloud

This section describes how the serial program was converted to run in parallel

on a distributed system of heterogeneous workstations. The original C program

was well written and modular, so that the "core" of scientific processing in the

program could be used unchanged in the parallel version.

To parallelize this program it was only necessary to make some

changes to the main program, together with some slight modifications in the

allocation of memory, and to write some additional routines. Some changes

were necessary purely because a parallel program requires a different approach

from that of a serial program. Others features were implemented particularly

to improve the efficiency of the parallel program, or to explore the factors

which affect the efficiency of a parallel program.

Cloud is, in many ways, an ideal program to parallelize. In Monte

Carlo simulation each photon history is independent of every other. Thus it is

possible to break down a task into a number of sub-tas~s, so that each slave

does some of the photon histories for a particular wavelength. Then the results

can be added together, before the final results are calculated. This means that

all slaves can operate totally independently of each other, and synchronization

is unnecessary. This parallel program is therefore very suitable for a

CHAPTER 3. IMPLEMENTATION 27

heterogeneous environment, where fast slaves can do more work than slower

machines, and the whole program is not therefore slowed down by a slow

machine.

3.3.1 Basic structure of the parallel program

The operation of the parallel program is described as follows. The master reads

the input data from files, creates a list of tasks, sends them to the slaves and

receives results. -When all results have been received, it then closes down the

slaves, and computes the final results, and writes these to file.

To reduce communication costs, and also to provide for possible

future extension, some global variables, such as the heights of the top and the

bottom of the cloud, the mean pathlength and the cosine of the incident zenith

are sent, as part of the task message, to the slave. The program was designed

this way to make it more general and extensible.

Whenever the master is not otherwise engaged with the

administration of the job, it also executes Monte Carlo tasks. Between Monte

Carlo tasks it checks if any results messages have been received. If there are

such messages it processes them, and sends a new task to the slave that sent

the result. It continues with collection and collation of results until there are

no more messages waiting for attention, when it will again execute a Monte

Carlo task.

When the last tasks have been sent out to the slaves, the master

remains idle, as it waits until all outstanding results have been received from

the slaves. At first consideration it seems that this could be improved, so that

the master will instead execute tasks for which results have not yet been

received from slaves. However, as at this stage nearly all results have been

received, this could result in a delay in the completion of the job, since all the

slaves may finish, while the master is still busy on a duplicate task. For this

reason this feature has not been implemented.

An additional benefit that arises because the master also does

Monte Carlo (slave) work, is that the same executable version can run either

as a serial program on one processor, or as a master with any number of

slaves, without need of separate compilation. This is a result of the way in

which p4 starts up slaves. To use p4, a process group file is created. This file

consists of one line for the master, and one line for each slave, specifying the

name of the slave, the number of processes to be run on that slave, and the full

, CHAPTER 3. IMPLEMENTATION .. · 28

path of the executable. If this file contains no slaves, then the program will

execute on the master only. If the program is written as described above then

the master will do all the work, as there will never be any tasks sent to slaves

or results received from slaves. Thus, the same executable can be used for both

serial and parallel runs, which is very useful in comparing performance.

The p4 process group file also makes it easy to run the program on

a heterogeneous system consisting of machines of different architectures. In

this case, a separate executable is specified for each machine architecture,

though all machines with the same architecture use the same executable.

Another benefit of the p4 process group file is that it is easy to

change the group of slaves to be used for a run, by changing the slave entries

in this file, and it is not necessary to recompile the program. In this way, the

number and identity of the slaves to be used will be established at run time,

by the contents of the process group file.

3.3.2 Input and output files used

The parallel version reads exactly the same input files, and produces exactly

the same output files as the serial program, although minor changes were made

to ensure that only the master process would read from, and write to, disk.

This was to prevent clashes if the slaves tried to write to disk at the same time

as another processor. For practical programming purposes it was also easier to

have all file access centralised in one process. All files are NFS-mounted, and

all the files used in this research are on the disk of one machine, so that all file

access is via the network.

In the serial program, each interval of each wavelength was

processed sequentially, and the collection arrays for each wavelength were

written to file before the next wavelength was processed. For the parallel

program the simulations for each wavelength could be completed in any order,

which made it necessary to keep the collection arrays for all wavelengths until

the end of the run. At the end of the run the collection arrays, containing the

collated data for all wavelengths, were saved to file in the correct order.

CHAPTER 3. IMPLEMENTATION 29

3.3.3 Memory requirements of serial and parallel programs

In the serial program the same collection arrays were re-used for each task,

which was the calculation required for each interval of each ~avelength. As

each task was completed, the data in the collection arrays was written to file.

In the parallel version these tasks may be split up into smaller sub-tasks, and

it is impossible to determine the order in which results would be returned. The

final results, for any interval of a wavelength, cannot be determined until all

results for that wavelength interval have been received. Therefore the master

program allocates one set of collection arrays for each interval of each

wavelength, so that results could be collated for the correct wavelength

interval, as they were returned, in any order, by the slaves. Thus, for the data

set of fifty wavelength intervals used in the experiments, the parallel version

required fifty times as much memory than was needed for the serial program.

Since the collection arrays for each task required just under 210 kb, the parallel

version required approximately 10.5 Mb memory to store the collection arrays

for all the wavelengths.

The remaining memory requirements for the master to store global

variables were relatively trivial, less than 1 Mb in addition to the collection

arrays. Since the master also does Monte Carlo work, an additional 210 kb is

required for reusable collection arrays for doing this "slave work".

In addition, both the master, and each slave, require a variable

amount of memory for message-passing - approximately 210 kb for each set

of messages from a slave. This memory is reusable, and the amount required

by the master depends on how many messages are being processed at any one

time. For instance, if there are many slaves, and many messages, then more

memory is required to store the messages in the master's buffers, until they can

be processed. If there is just one slave the master has more time to process the

previous message from that slave, before the next one is received, so the

memory is freed in time to be reused for the next set of messages.

The slaves required considerably less memory than the master.

Each slave needed only about 1 Mb of memory for data storage. This relatively

small amount of memory for each slave made the program suitable to be run

in an environment with other users, as it is quite possible that the program and

data would not have to be swapped out of memory for another process to run.

CHAPTER 3. IMPLEMENTATION 30

3.3.4 Overlapping communication with computation

Message-passing is slow, and the time spent in communication by a parallel

program is often a significant part of the overall elapsed time. The best

performance will be achieved by ensuring that the communication time for

each computation task is minimized, and that no processor should spend time

idle, while waiting for a message.

There is considerable overhead in message-passing. In p4 this

consists of the cost of sending a message, including building an address and

the allocation of memory, the cost of communication via the network, and the

cost of the other process allocating memory and receiving the message. If one

process sends a message to another process, and then has to wait for a reply

message from that process before it can continue, then it will be delayed for

the time needed for the round trip. If the other process is busy, or otherwise

delayed, this may significantly increase the time that the original process must

wait for a reply. Also, if the network is congested the collision rate will

increase, and drastically reduce the data transmission rate, thus increasing the

waiting time of the original process even more.

In a typical message-passing program the master sends a task to a

slave, which executes this task, and then returns result messages to the master.

When the master receives these results, it sends the next task to the slave that

sent the results. If a program is implemented this way, the slave will be idle

between sending the results and receiving the next task.

In p4, the overhead of sending or receiving a message cannot be

avoided, as the communicating process blocks until the message has been sent

or received. This is different from PVM, which starts daemons to perform the

communication in the background, thus allowing the main communicating

process to continue processing once a send has been initiated, even if the send

has not completed, or to process until a message has been received. Although,

in p4 these overheads cannot be avoided, the communication time via the

network can be hidden by overlapping this communication time with

computation time. This overlapping technique is implemented automatically by

some parallel compilers such as Fortran D [Hira94].

Cloud was written to hide communication latency by overlapping

communication with computation. To do this the master initially sends two task

messages to each slave. Thus, when the slave has sent the result messages for

a task to the master, it can immediately begin working on the next task,

CHAPTER 3. IMPLEMENTATION 31

without having to wait for the round-trip communication time for the master

to receive the results, and send the next task. By the time the slave has

completed the task it has on "standby", the following task should have been

received from the master, and be waiting in a buffer to be received. In this

way no processes should have to wait for work.

To prove that this queue of available work improved efficiency, the

length of the task queue was implemented as a run-time parameter, so that the

user could specify how many tasks were to be sent initially to each slave. The

default value if no queue length is specified is two - one task to work with,

and one immediately available when the previous task has been· completed.

3.3.5 Reducing communication overheads

There is a basic component of the overhead in sending and receiving messages,

which is independent of the size of the message and cannot be reduced. Thus,

if fewer messages are sent there will be less overhead. There is therefore a

potential advantage in combining several smaller messages to make one larger

message. Some modern parallel compilers perform this optimization

automatically [Hira94]. The remaining overhead in sending a message is

proportional to the length of a message. As a message increases in size it takes

longer to get it from one processor to another, which can result in delays as a

processor waits for a message [Dennis94].

There are also additional overheads to be taken into account when

choosing an optimal message length. These include the Ethernet overhead of

18-26 bytes per packet, with a maximum of 1500 bytes of data per packet, and

the p4 overhead of 40 bytes per message.

To see whether it was more efficient to use a number of shorter

messages, or one longer message, two slightly different versions of Cloud were

implemented. They were identical except for the number and size of the

messages sent. In the first version of Cloud, which was used for most of the

experiments, each slave returned, for each task, the contents of the five

collection arrays in five messages of sizes 4064, 34608, 34608, 69208 and

69208 bytes. In the second version, all five collection arrays were returned in

one long message of size 211688 bytes.

Overheads to allocate memory for sending and receiving messages

can also be reduced by using the p4 feature which allocates re-usable buffers,

to be used for sending and receiving messages, at the beginning of the

CHAPTER 3. IMPLEMENTATION 32

program. The sizes of these buffers can be specified to match the sizes of the

messages, so as not to waste time by sending unnecessarily large messages

which are partly empty. For this program the sizes of the first four buffers

were left as the default sizes, and the last four buffers were set to sizes just

larger than the sizes of the messages used in the program. Sizes were chosen

that were a multiple of 64 bytes which meant they were also multiples of 4,

8 and 16 bytes. This was because it is often more efficient to send messages

in blocks of these sizes

The overhead of copying data from a data structure into a message

buffer can also be avoided by using the p4 memory allocation routines to

allocate data structures as message buffers (with headers), which are ready to

be sent, and do not need to be copied first. Cloud was not implemented in this

way, as this would have necessitated considerable rewriting of serial code.

However, when a program is written as a parallel program, and not by

parallelizing an existent serial program, it may be advantageous to allocate

some data structures as message buffers to avoid copying overheads when

message-pass mg.

Communication overheads can sometimes be reduced by using an

alternative algorithm needing less communication. However, this should be

undertaken with care as an algorithm with less communication may require

more iterations to converge, and thus require more overall run time. It is

pointless to use a numerically inefficient algorithm merely to exhibit artificially

high performance rates on a particular parallel architecture. [Bell94]

3.3.6 Exploiting redundancy and fault tolerance

A distributed network of workstations used as a multicomputer has both

advantages and disadvantages. Any part of the network may fail at any time.

However if the program is designed to degrade gracefully, so that if one

processor fails the others will continue with the program, then as long as one

processor is working the program can continue. If all processors are functional

then peak performance can be achieved [Y en93].

Cloud has been parallelized so that, if a slave finishes its last task,

and there is no more work available, the master will look in a table to see if

there are still results outstanding. If so, it will choose one of the tasks for

which results have not yet been received, and send this duplicate task to the

slave that has no work. Although this does mean duplication of effort, it could

CHAPTER 3. IMPLEMENTATION 33

result in the job being completed quicker if this faster slave completes the

duplicate task before the slower slave which was allocated the original task.

This feature is idempotent in that only the first set of results received for a task

will be accepted by the master. All subsequent results for the same task will

be discarded.

This feature also provides fault tolerance in that, if a slave fails,

then it will not return the results of the tasks which were sent to it. However,

eventually other slaves will finish their work, and then the master will send

these undone tasks to other slaves, which have completed their work. The total

job will take longer than if all slaves had been functioning, but at least the job

will be completed, so long as the master, and at least one slave, remain

functional. The program could easily be extended to ensure that even if all

slaves failed, but the master remained functional, the job could be finished,

even if it took a long time.

In performance testing, it is important that all slaves are functional,

as the best times can only be achieved in this case. Also, it is necessary that

all runs perform a known number of tasks, which should be the same for each

repeatable run, so that results can be compared. Therefore, the feature to

exploit redundancy, and provide a fault-tolerant program, has been disabled for

the performance tests. For these tests, all runs of the same set executed the

same number of tasks, and if a slave failed then the run was aborted, and

repeated later. However, this feature is present in the program and easily

enabled.

Due to frequent failures of the parallel program it was necessary

to implement a "timeout" feature in the program, so that if the master heard

nothing from a slave, for a period longer than the longest time expected for the

slave to finish the sub-task, then the run was aborted. The results of these

aborted runs were not included in the performance studies.

3.3.7 Dynamic load balancing

The best performance for a parallel program will usually be achieved if all

processors are busy for the entire duration of a run, and if all processors finish

as nearly as possible at the same time. To achieve this in a heterogeneous

system requires careful load balancing. If the work is equally divided among

the slaves, so that each slave does exactly the same number of tasks as the

others, then the faster machines will finish first, and will then have to wait for

CHAPTER 3. IMPLEMENTATION 34

the slower machines to complete their tasks. The idle time of the faster

machines is wasted time, as it is not used for processing, and as a result the

total time for the whole run will not be optimal. It is therefore better to

allocate more work to the faster machines, and Jess to the slower.

A group of workstations may be heterogeneous either because the

processors have different performance capabilities, or because on a non­

dedicated network the load on each machine, and on the network, changes

constantly. For a heterogeneous network it is therefore impossible to determine

beforehand how much work should be allocated to each machine, and this must

be done dynamically while the program is running.

More work can be sent to faster processors either by sending larger

tasks with a dynamically varying task size, or by keeping the task size static

and sending more tasks. The computation/communication ratio wiJJ be better

if larger task sizes are used, but the administration of dynamically varying task

sizes is more difficult. Also, if the load situation changes, so that a processor

which was previously cJassed as a fast processor becomes heavily loaded, and

takes longer to complete a task, then if large task sizes are being used it wiJI

take longer for the master to adjust to sending smaller tasks to this processor.

In Cloud, the task size is kept static throughout a run, and dynamic load

balancing is achieved by sending more tasks to faster processors, and fewer

tasks to slower processors.

Dynamic load-balancing was relatively easy to implement, as all

tasks were independent, and no machines had to wait for any others as in a

data-parallel program .. Load-balancing in Cloud was designed so that the

master sends a new task to each slave as soon as a slave returns the result of

the previous task. At the same time, whenever the master is not engaged in

communication and collation of results, it itself does work. In this way more

tasks wiJJ be sent to the faster processors, and fewer to the slower ones, and

all processors will finish at more or less the same time. Also, if the workload

of a machine on a non-dedicated network increases, so that the processor takes

longer to complete a task, this wiJJ be compensated for automatically as Jess

work wiJI then be sent to this slave, and more to the others.

At the end of the run, some of the slaves may finish before others.

This wasted time can be minimized if small sub-tasks are sent to each slave.

It was simple to change the sub-task size for a run, since each main task could

be divided into a number of equal-sized sub-tasks. The total size of the task for

the run is read in from a file of input data. The size of the sub-task, in

CHAPTER 3. IMPLEMENTATION 35

photons, can be adjusted for each run by specifying it as a command-line

parameter, although there is a default sub-task size of I 0000 photons if no sub­

task size is supplied.

The size of the sub-task is not adjusted dynamically while the

program is running because, for performance testing, it is important to achieve

repeatable results. Also, one of the factors being studied in this thesis was to

determine the optimal sub-task size, so it was important that this should not

change during the run. However, a proposal of a load balancing method where

the task size is changed dynamically is suggested in section 6.7.2

The method of load balancing used in these experiments also takes

into account failed slaves, and apportions the extra work to the other

processors. So if one or more slaves should fail the work will still be done,

even though the best performance will not be achieved.

Efficient dynamic load balancing is considerably more difficult to

achieve for programs that require communication and synchronization between

processes, such as data-parallel programs. For these programs some method has

to be developed to adjust the workloads of each processor dynamically, so as

to minimize the delays due to synchronization [Cap93].

3.3.8 Scalability

Amdahl's law states that the speedup of a program is limited by its serial

overheads [Wils93]. The ideal program will scale linearly with an increase in

the number of processors. By scaling a problem to a sufficiently large size to

improve the computation to communication ratio, overhead can be reduced to

increase processing rates [Sing93][Gram93][Bell94]. Workstations provide size

scalability and evolvability to some degree, although LAN communication rates

have remained constant [Bell94]

In practice, scalability may be limited by such factors as

communications overheads, synchronization bottlenecks, granularity and load

balancing problems. For instance, adding further processors does not always

produce an increase in performance, and may even result in a decrease in

performance as a result of increased overheads. Bell claims that there is a lack

of understanding about application scalability for scalable machine

characteristics, and this guarantees a negligible application market using

existing third-party vendors [Bell94].

CHAPTER 3. IMPLEMENTATION 36

It is particularly difficult to assess the scalability of a heterogeneous

network, particularly if there is a large difference in the performance

capabilities of the machines used. Sometimes little or no gain will result if a

slow processor is added to a network of much faster machines. For this reason,

experiments with different numbers of slaves were also run on the smaller

homogeneous sub-groups, · to establish whether Cloud scaled well for

homogeneous groups.

This program has been implemented so that it is easy to investigate

its scalability. It is simple to change the problem size in the file of input

parameters, and easy to adjust the sub-task size which is an input parameter.

The number of slaves for a run can be changed simply by altering the number

of entries in the process group file. This program was run with various

numbers of slaves, for all task sizes, on from I to 18 processors. The results

of these experiments can be seen in Chapter 5.

3.3.9 Generation of random numbers

Monte Carlo simulation requires the generation of millions of random numbers.

Numbers generated by computers are not truly random, but rather pseudo­

random, in that a sequence of machine-generated random numbers has a finite

length and will ultimately repeat itself. This is important for Monte Carlo

simulation, because there is no point in producing photon histories which have

already been generated. Ma discusses the subject of generation of random

numbers for Monte Carlo simulation at some length in [Ma93]. Another point

made by Ma is that some random number generators are faster than others,

which is significant in Monte Carlo simulation when millions of random

numbers must be generated. Usually the better random number generators,

which have a longer cycle before repeating themselves, are slower. It is

therefore important, when choosing a random number generator for Monte

Carlo simulation, that these points be taken into account, so that the results are

valid, and at the same time the program runs· as quickly as possible.

The original serial program has a specially written random

generator, which is seeded from the clock of the processor. For the parallel

program this same random number generator was used, but it is seeded

separately for each slave from the slave's clock. It is therefore extremely

unlikely that any two processors will begin with the same seed, and thus

produce the same photon histories. However, the random number generator

CHAPTER 3. IMPLEMENTATION 37

used by this program should be checked by a statistician, to ensure that valid

results are produced.

During this study, the problem of choosing a good random number

generator has been largely ignored. This thesis concerns primarily the factors

affecting the performance of a parallel program, and for this it is does not

matter whether photon histories are repeated.

Chapter 4

Design of Experiment

This chapter de~cribes the experiments that were conducted to investigate the

factors which affect the performance of a parallel program on a network of

heterogeneous workstations. Since the performance of a heterogeneous network

is a complex issue, some experiments were conducted on homogeneous sub­

groups of the heterogeneous group. The results of these experiments were

useful for understanding the behaviour of Cloud on the heterogeneous system.

4.1 Experimental environment

The network used consisted of 18 heterogeneous uniprocessor workstations,

connected by an ordinary Ethernet. These were l Silicon Graphics lndigo2

Extreme, 2 Silicon Graphics Indigo, 2 Sun ELC, 9 Sun SP ARCclassic and 4

Sun SPARCstation l + workstations. Technical specifications of these

machines, and Ethernet, are given in Appendix B. All these machines are in

several different rooms on the same floor of one building. The experiments

were run on various groups of these workstations with the groups ranging in

·size from l to 18 machines.

Since most of this work was done during term-time in an academic

teaching environment, it was not possible to have dedicated use of either the

workstations, or the network. Approximately fifty people had access to the

workstations involved in the experiments, and about three hundred people used

the network via other terminals and computers. In addition, all the machines

are Network File Servers (NFS) and some were also Network Information

Servers (NIS) which had some impact on the performance.

All files involved were stored on the hard disk in one of the Silicon

Graphics Indigos. The minimal 110 in Cloud was performed only by the

master, and had little impact on the performance.

38

CHAPTER 4. DESIGN OF EXPERIMENTS 39

The primary purpose of this thesis was to study performance, so

most runs were at night and at weekends, usually between midnight and 08h00,

when there was the lightest load on the network, and the best results could be

achieved. These results, which are described in Chapter 5, were as close to

being repeatable as possible on a non-dedicated network, and gave a good

indication of the best performance that would be possible on a dedicated

network. Few real users have exclusive use of a network of workstations, so

these results are generally more realistic than those that would be obtained on

a dedicated network.

4.2 Compiler options and executables

The parallel library, p4, supports running a parallel program on a network of

either homogeneous or heterogeneous processors.

For this study there were two primary architectures - Sun and

Silicon Graphics. The executables for both architectures were compiled from

exactly the same source code. The executable for the three Silicon Graphics

machines was compiled on the Silicon Graphics Indigo2 Extreme, using the

native cc compiler with the compiler optimization option of 03. (The higher

04 optimization produces R4000 specific code which will not run on the two

R3000 Indigos) The Sun ELC, SPARCclassic and SPARCstation l+

workstations all used a second executable, which was compiled on a

SPARCstation 1 + workstation, using the native cc compiler with compiler

optimization option of 04.
The same executable was used for both the master and the slave

computers. In Cloud, the master itself does Monte Carlo simulation whenever

it is not involved in communication with the slaves. The Monte Carlo code

comprises the bulk of the program, so little would be gained in separating the

tasks of the master and slaves into two different executables.

The number of slaves used in any run does not affect the

executable, as this is dependent only on the machines listed in the p4 process

group file, which is external to the program. Thus, for a serial run there will

be no slave machines listed in the p4 process group file, and the master will

do the entire run by itself. This means that exactly the same executable was

used for both serial and parallel runs, which made it simpler to conduct the

experiments, and was particularly beneficial in the calculation of speedup.

CHAPTER 4. DESIGN OF EXPERIMENTS 40

4.3 Problem size

It has been noted that small benchmarks lose their predictive value with the ·

advent of on-chip caches, and sophisticated optimizing compilers [Weic91].

Frequently, such small benchmarks do not reflect the impact of input and

output on the performance of a program, or the proportion of computation to

input/output is different to that of a real application. Also, some small

benchmarks may run with only a subset of data, which may fit entirely in

cache, thus giving good performance results. However, when the full data set

is used in a real application, it may be too large to fit in memory, thus

resulting in increased swapping, which causes a deterioration in performance.

Also, if the actual elapsed time of a program is very short, the startup and

closedown times of the parallel run may constitute such a great proportion of

the total time that it is difficult to separate this from the actual parallel run

time, thus giving misleading results. For these reasons, many current

benchmark efforts, such as SPEC [Dixi91], now concentrate on larger,

complete applications, which have a real use.

In this study a realistic problem size has been chosen, even though

in its serial version it runs for nearly an hour on the fastest workstation used,

and almost six hours on the slowest machines, and even the parallel version on

a group of 18 workstations takes from 16-18 minutes. The task size chosen

was for 120000 photons to be fired through the cloud. This task size is typical

of the actual task size that would be used by climatologists, and is large

enough to give meaningful results. Thus the performance results obtained in

this study are typical of those that would be obtained for this application in

actual use.

As a result of this approach, it took a great deal of time to collect

the results of these experiments: over a period of several months, groups of

between 1 and 18 workstations were running this program for anything up to

8 hours per night. In all, over 800 runs, comprising more than 3000 hours of

elapsed computer time, were executed.

4.4 Number of runs for each experiment

For any experiment such as this, it is necessary that the results should be

repeatable. This is particularly difficult in a non-dedicated network, where the

environment is constantly changing. Therefore, each experiment should be

CHAPTER 4. DESIGN OF EXPERIMENTS 41

repeated a number of times to ensure that the results are consistent. Although

the program took so long to run for each test, most runs were repeated at least

three times. Where there were more than three runs the best (fastest) three

results were taken. The variations in the results for such long runs was found

to be so small that it was felt justified to repeat the run only three times. The

means of the three best runs were used for the graphs, and in the calculation

of speedup.

There was one exception to the repeating of each run three times.

The experiments using very long messages caused such serious network

congestion that performance was seriously degraded, and sometimes the run

even failed entirely due to lost messages. In these experiments it was too time­

consuming, and too difficult, to repeat the runs as often as three times,

particularly as the network congestion seriously interfered with other users of

the workstations, and the network. However, sufficient results were obtained

to show the effects of such an experiment.

In some of the other experiments, such as those testing the

performance of the Ethernet, the tests were repeated more than three times to

obtain more accurate results. These tests are described more fully later in this

chapter.

4.5 Timing of runs

There is considerable discussion concerning the correct way to time parallel

programs [Crow94]. The generally accepted view is that the total elapsed time

is of primary importance. However the CPU time and system time are also of

interest, as it is useful to know the time each process spends on computation,

and how much time is spent on overheads such as communication. Thus the

experiments conducted in this study were timed in a number of ways.

First, all runs were timed using the Unix 1 time command. This

provided, for the master, the CPU time used by the application, the system

time used by the application, and the overall elapsed time for the run.

In addition, the p4 timing functions were used to measure the time

taken by various parts of the program. The times were wallclock times, and

included time when the application was swapped out. These times were

recorded in milliseconds. In addition to these timing statistics, the number of

1 Unix is a trademark of AT&T Bell

CHAPTER 4. DESIGN OF EXPERIMENTS 42

sub-tasks executed by each workstation was recorded. The items measured

were as follows:

For the master:

•

•

•

•

•

•

•

the number of sub-tasks executed by the master,

the overall execution time from start to closedown,

the time the master spent in starting up and initialization before

any tasks were sent to the slaves, or Monte Carlo work executed

by the master,

the time spent by the master in the parallel section of the program,

(i.e. not including initialization and closedown),

the time spent by the master in executing Monte Carlo simulation,

the time spent by the master in waiting for messages from slaves,

the time spent by the master in computing the final results after all

work is completed.

For each slave:

•
•
•

•

the number of sub-tasks executed by the slave,

the overall execution time from start to closedown,

the time spent by the slave in executing Monte Carlo simulation,

the time spent by the slave in waiting for messages from the

master.

The remaining time that was not spent in computation, or wa1tmg for .

messages, was primarily that needed for the sending and receiving of

messages, and this could be calculated from the above measurements.

4.6 Calibration of the workstations and network

It is particularly difficult to evaluate the performance of a heterogeneous

network, as all the machines have different performance capabilities.

Conventional methods of evaluating performance, such as speedup, are not

immediately suitable for assessing the performance of a heterogeneous system.

Thus, before evaluating the performance of a heterogeneous system it is first

necessary to understand the performance of the individual components of the

system.

CHAPTER 4. DESIGN OF EXPERIMENTS 43

The following experiments were conducted to measure the serial

performance of each individual machine, and the performance of the network.

These serial measurements were then used to group the workstations into sub­

groups of like machines, so that the behaviour of Cloud on homogeneous

machines could be studied. It is. easier to study the performance of such

homogeneous groups, and to establish whether the program is performing

efficiently in such aspects as load balancing, and whether there is a constant

improvement in performance as like processors are added. These results can

then be used to understand and assess the performance of the parallel program

on a network of heterogeneous workstations. This method of first studying the

performance of homogeneous sub-groups, and then the performance of the

combined heterogeneous group was also used by Altevogt et al, as described

in section 2.3.2 [Alte93].

4.6.1 Serial runs on every workstation

At least three serial runs of Cloud were run for each workstation involved in

the study. The executable was the same as that for the parallel experiments but

there were no slaves in the process group file. In some cases more than three

serial runs were executed, but in all cases the three runs with the shortest

overall elapsed time were used for the calculation of means, standard

deviations and speedups.

4.6.2 Performance of the Ethernet

Part of this study concerns the size and number of messages used in

communication between the slaves and the master. The impact of message size

on performance was established by measuring the optimal data rate that could

be achieved on Ethernet, by using the p4 library, and comparing this with the

performance achieved for different message sizes when running the parallel

program.

4.6.2.1 Bandwidth of Ethernet

Nanayakkura et al observe that, although the theoretical performance of

Ethernet on a dedicated strand is 10 Mbits/second, this is seldom achieved in

practice. They found the rate to be approximately 5-7 Mbits/second on a

dedicated strand [Nana93]. Halsall confirms this, and points out that even

CHAPTER 4. DESIGN OF EXPERIMENTS 44

under light load conditions, and with a cable bandwidth of l 0 Mbits/second,

the actual performance of Ethernet is more likely to be nearer to tens of

kilobits rather than megabits/second. This is a result of processing delays

associated with the higher protocol layers. [Hals85]

4.6.2.2 Packet size of Ethernet

The message length may have considerable impact on performance. In

Ethernet, there is an overhead of 18 or 26 bytes per packet, and each packet

may transfer from 1 to 1500 bytes of data. If the amount of data is less than

46 bytes, then this is padded to 46 bytes. If the messages are longer than 1500

bytes, they must be broken down, sent, and reassembled. There is also an

additional overhead of 40 bytes per message in p4. This reduces the maximum

amount of data that can be sent in the first packet of a message to 1460 bytes,

but all subsequent packets, of the same message, may carry 1500 bytes of data.

The optimal message length should be such that the most data is sent for the

least message overhead, which will occur when the maximum amount of data

is sent in each packet. Ponnusamy et al, in their experiments with the CM-5

(non-Ethernet network), showed that the best data rate was obtained with full

packets [Ponn93].

For Ethernet, the required interpacket spacing (i.e. the minimum

time between consecutive transmissions from a single station) is 9.6 µs. This

means that a station transmitting a message must pause between each packet,

and another station may seize the line at this time. This will delay the first

station, which will have to wait for a break in transmission before it can

continue transmission.

When a station detects a collision, it backs off an increasing integer

number of slot times for each collision detected. Thus for very long messages

needing many packets, on a heavily loaded network, a workstation can be

considerably delayed in waiting for a chance to transmit, and this can have a

serious impact on overall performance. If there are a number of stations, all

trying to transmit at the same time, this can result in considerable delays for

all stations. This problem is alleviated to some extent on a heterogeneous

network when the slaves take a different amount of time to finish a task, so the

communication is more evenly spaced as the slaves will send at different times.

CHAPTER 4. DESIGN OF EXPERIMENTS 45

4.6.2.3 Experiment to test Ethernet performance

A separate test program was written, using p4, to establish the data rate of the

Ethernet network used, whether the message size affected this performance,

and whether performance could be improved by sending longer messages so

that the proportion of data, as compared to overhead, was increased. This

program was a modification of part of the program systest, which is released

with the p4 library as an example program.

The largest messages used Cloud were approximately 210 kb long,

so in the test program messages, of lengths ranging from 1 byte to 210 kb,

were sent between the master and one slave, with messages of each length

being sent 15 times each. Each message was sent from the master to the slave

and then back to the master. The time was measured using the p4 timing

functions. The data rate was then calculated, using the size of the message in

8-bit bytes, and the time of the round trip in milliseconds, to give a rate in

Megabits/second, so that this could be compared with the theoretical

performance of Ethernet of 10 Mbits/second. These results were also used to

calculate the time required for sending and receiving a NULL message. The

results of this test program are given in section 5.2.2.

4. 7 Grouping of machines into homogeneous and
heterogeneous groups

The results of the serial runs described in section 4.6.1 were used to define

approximately homogeneous and heterogeneous groups of machines, which

were used for the experiments. It is useful to group machines into

homogeneous groups, so that any improvement in performance of the program

that is gained by adding extra machines can be better evaluated, when

compared to the expected performance for that number of machines. These

results can then be used to understand the performance of the heterogeneous

system.

Homogeneity is a complex issue for a group of workstations

connected by a network. Workstations are generally only considered

homogeneous if they have the same CPU chip, and the same amount of

memory and cache. Similar machines with differing amounts of memory and

cache are not truly homogeneous, as a different amount of paging or cache

CHAPTER 4. DESIGN OF EXPERIMENTS 46

misses may result in different performance. Also, if the workstations are in a

non~dedicated environment where either the workstations, or the network, or

both, are shared by other users and processes, then these external processes

may affect the performance, so that the workstations can no longer be

considered truly homogeneous [Cap93]. This will be most evident in the longer

overall elapsed time, and the uneven distribution of work, as the machines will

no longer perform the same amount of work as they would. if they were

dedicated.

The machines used in the experiments were grouped into

approximately homogeneous groups, according to their serial performance, as

described in section 5.2.1. These groups were not truly homogeneous because

they were in a shared-environment, and some of the machines had different

amounts of memory, and even different CPUs. However, the serial

performances of the machines in each group were sufficiently similar, that for

the purposes of these experiments the groups could be considered

homogeneous.

For the purpose of these experiments the "homogeneous" groups defined on the

basis of their serial performance were:

•

•

The ELC/Classic group, consisting of 2 Sun ELCs (33 MHz) and

9 Sun SPARCclassics (50 MHz), which all had approximately the

same performance (see section 5.2.1). The ELC with. the most

memory (32 Mb), and the best serial performance, was used as a

master for this group. The other ELC (16 Mb memory) was used

only as the tenth slave, and was excluded from all runs with 1 to

9 slaves, so as to obtain the best homogeneity possible. Three of

the Classics had 32 Mb of memory, and the remaining six had

16 Mb.

The SPARCstation 1 + group, consisting of 4 Sun

SPARCstation 1+ machines (25 MHz). For this group, the

workstation with the largest amount of memory (28 Mb) was used

as the master, and the other machines, with 12 Mb of memory

each, were used as slaves.

CHAPTER 4. DESIGN OF EXPERIMENTS 47

• The SGI group, consisting of I Silicon Graphics Indigo2 Extreme

(I 00 MHz, 128 Mb memory), and 2 Silicon Graphics Indigos

(33 MHz, 24 Mb & 16 Mb memory), where the Indigo2 was

considerably faster than the other 2 Indigos. The Indigo2 was used

as a master in this group so that the 2 slaves had similar

capabilities.

The heterogeneous groups were:

•

•

The 18-machine group, consisting of all 18 machines that were

available, with the lndigo2 as the master, since this was the fastest

machine and had the most memory, with the other 2 SGis, the 2

Sun ELCs, the 9 Sun SPARCclassics and the 4 Sun SPARCstation

1 + workstations as slaves.

The 14-machine group, consisting of same machines as the 18-

machine group, but excluding the 4 Sun SPARCstation 1 +

workstations, which were the slowest machines.

Most of the initial experiments were conducted on the ELC/Classic group

because this is the largest group of nearly homogeneous slaves.

4.8 Slave startup times

The time taken to start up slaves can be significant in a parallel program

[Minn93]. To establish whether the startup time for Cloud was a significant

proportion of the overall elapsed time, Cloud was modified so that the master

terminated immediately after starting up the slaves listed in the process group

file, and similarly the slaves finished immediately they had been started. The

resulting executables were exactly the same size as those used for the other

tests. The results of this test therefore reflect the actual times for the starting

up of the Cloud program.

The modified version was run 20 times for each of 10 groups of

slaves ranging from 1 to 10 in number for the ELC/Classic group, for each of

2 groups of from 1 to 2 slaves for the SGI group, and for each of 3 groups

from 1 to 3 slaves for the SP ARC station 1 + group. These runs were timed

using the Unix time command.

CHAPTER 4. DESIGN OF EXPERIMENTS 48

4.9 Varying the number of slaves

For each "homogeneous" group, experiments were conducted to measure the

performance of the program, with the number of slaves varying from l to the

maximum number of slaves in that group. These experiments with the

homogeneous groups were useful in assessing whether there was a constant

improvement in performance as additional slaves were added. These results

could then be used to understand the performance of the heterogeneous group.

The heterogeneous groups of 14 and 18 machines were

combinations of the machines in the "homogeneous" groups, so performance

tests for the heterogeneous groups were run only for the maximum number of

14 and 18 slaves.

4.10 Load balancing and granularity

The efficiency of the load balancing was investigated by dividing the work into

a number of smaller sub-tasks, and running the program with different sub-task

sizes for each run. For each run, the size of all the sub-tasks was static.

As described in section 3.3.8, the number of photons to be

processed in each sub-task was a parameter. The overall number of photons to

be fired for each wavelength was chosen to be 120000, since this was a

realistic problem size, and it also factorized easily into sub-task sizes of 5000,

10000, 20000, 30000, 40000, 60000 and 120000 photons.

For each experiment the program was run three times for each sub­

task size, but in all cases the total number of photons fired for each wavelength

was 120000. For these experiments there were 50 wavelengths.

Thus the experiments were as follows:

50 sub-tasks of 120000 photons, (1 for each wavelength)

100 ·sub-tasks of 60000 photons, (2 for each wavelength)

150 sub-tasks of 40000 photons, (3 for each wavelength)

200 sub-tasks of 30000 photons, (4 for each wavelength)

300 sub-tasks of 20000 photons, (6 for each wavelength)

600 sub-tasks of 10000 photons, (12 for each wavelength)

1200 sub-tasks of 5000 photons. (24 for each wavelength)

CHAPTER 4. DESIGN OF EXPERIMENTS 49

4.11 Overlapping communication with computation

As described in section 3.3.4, the Monte Carlo program has been written so

that, at all times, the slave process has its next task waiting in a queue.

An experiment was conducted to see if having the next task

immediately available for the slave was significant in reducing the overall

elapsed time. Additional experiments were conducted to see if having one task

available was sufficient, or whether it was advisable to have more than one

task in the queue.

The ELC/Classic group with 10 slaves was used for these

experiments, as this was the largest homogeneous group available, and it is

most likely that there will be communication delays when the master has more

slaves. This is also the case which is most likely to have network congestion,

as there are more machines sending messages in a shorter overall time. This

homogeneous group was used for this experiment because it was easier to

assess the impact on perfonnance where all slaves were similar. If this

experiment was run using the heterogeneous group the results may be confused

by other factors arising from the disparate nature of the slaves.

Three runs were run for each task size for queues of 0, 1, 2 and 3

available tasks. The queue length was a command-line parameter so the same

executable was used in all cases.

4.12 Changing the number and size of messages

As described in section 3.3.5, two versions of Cloud were implemented to see

ifthere was an improvement in perfonnance if communication overheads could

be reduced by combining several messages in one longer message. In the first

version, each slave returned the results of the simulation in five different

messages of sizes 4064, 34608, 34608, 69208 and 69208 bytes, and in the

second version, all the results were returned in a single message of size 211688

bytes. In both cases the master sent each new task to the slave in a single

message of 8088 bytes.

The data for the version returning five result messages has been

collected in the other experiments, since all experiments, unless otherwise

specified, used this version of the program. So this experiment consisted of

running the version returning one long result message, using the ELC/Classic

group of machines, as this was the largest homogeneous group available. This

L

CHAPTER 4. DESIGN OF EXPERIMENTS 50

version of Cloud was run several times for each task size, as described in

section 3.3.7, on groups of 5, 6, 7, 8, 9 and IO slaves. It was considered that

running it for these groups of slaves would be sufficient to compare the results

with those for the program returning five result messages, and using the same

groups of machines; and it was not necessary to run it for groups with 1, 2, 3,

and 4 slaves as well. The groups with larger number of slaves were chosen to

increase the chances of network congestion.

Chapter 5

Results and Discussion

The usual met~ods of presenting parallel performance results include the

measurement of elapsed time, speedup and efficiency. However, there is at

present no firm consensus on how to measure the performance of a parallel

program on a heterogeneous distributed system. This chapter investigates some

of the issues involved, and discusses some alternatives proposed by others.

These issues are illustrated by using various methods to present the

measurements obtained from the experiments in Chapter 4. The technical

specifications of the workstations and of Ethernet, can be found in

Appendix B.
The first section of this chapter discusses how a parallel program

should be timed. The next section considers what is meant by serial

performance, and presents the serial performance results for Cloud. Speedup

and efficiency are defined in the following section, and the difficulties of using

these measures in a heterogeneous environment are discussed. The next

section shows some alternative methods for evaluating the performance of a

parallel program in a heterogeneous environment. Several different methods of

presenting parallel performance results are compared by using these alternative

methods to present the results of the experiments described in Chapter 4. After

that some of the factors which affect parallel performance are discussed, and

illustrated with the results of the experiments. The chapter concludes with

some predictions of the expected performance of this program if the number

of slaves was increased.

All results in this chapter, unless otherwise specified, are the mean

of the 'best' three runs for that particular experiment, where 'best' means the

shortest elapsed time for the run.

Each experiment, using Cloud, was run for all seven task sizes and

for all numbers of slaves in the group being tested. For those graphs in which

serial performance is · compared with parallel performance, the serial

51

CHAPTER 5. RESULTS AND DISCUSSION 52

perfonnance for the program executing the task size of 120000 photons is

used. This is because there is no point in breaking the work into smaller tasks

when running the program on a single processor. Thus the value for serial

perfonnance for all task sizes was arbitrarily chosen to be that for the 120000

photon size. In some graphs this value for serial perfonnance is repeated seven

times, so as to correspond to the seven task sizes. The serial results shown in

these graphs are therefore not seven different values for seven task sizes, but

the same result for the 120000 photons repeated.

In all the line graphs presented in this chapter lines are used to

connect sets of results. This is not strictly valid as these results are· discrete

rather than continuous. However, the lines serve as guidelines to indicate

which sets of results belong together.

5.1 Elapsed time vs CPU time

It is well established that elapsed time should be used to measure the

perfonnance of a program, since this is most representative of the actual time

a user must wait for a result [Henn90]. It is relatively simple to measure the

elapsed time for experiments on a dedicated system, where it is easy to obtain

repeatable results. Difficulties arise, however, when timing runs on a non­

dedicated system, when the perfonnance of an application may be seriously

affected by other processes, whether these are other users or operating system

daemons. Thus, some researchers have been tempted to use CPU time alone

to measure the perfonnance of their applications, since the elapsed times

measured when repeating runs may vary widely [Crow94]. However, CPU time

alone may be misleading, and may not reflect the true perfonnance

characteristics of the program.

This is well illustrated by the experiment in which two different

versions of Cloud were run on the same group of machines to produce the

same output. These experiments showed that while the CPU time was almost

identical for both versions, there was a considerable difference in the elapsed

times measured. In both versions the same output was returned, and the total

length of the messages (207 kb) was the same. The only difference between

the versions was that, in one version, five shorter messages (4064, 34608,

34608, 69208, 69208 bytes) were used, and in the other version, one long

message (211688 bytes) was used to return the results.

CHAPTER 5. RESULTS AND DISCUSSION

ELC/Classics - 1 & 5 result messages
CPU time for 1 & 5 result messages

18000,-~~~~~~~~~~~~~~~~~~~---.

en

16000

14000

~ 12000
0

~ 10000
CJ)

.5: 8000
CD
E 6000
F

4000

2000

0

- ---- --- - -- -- --- ---- - - - --------- - --

WWif!t -

- - - - 5 - - _170_ 5- - - ne s - - - - _s - - - - 5 - - - - - - - - -

- - - --~-~ ~~ :.;:;- - - -

0 5 6 7 8 9 10
No of Slaves (Increasing Task Size)

--- CPU time - 1 message -+-CPU time - 5 messages

53

Figure 1: CPU times for ELC/Classic group - 1 & 5 result messages (grouped by
number of slaves)

en
~ 12000
0

~ 10000
CJ)

c: 8000
CD
E 6000
F

4000

2000

ELC/Classics - 1 & 5 result messages
Elapsed time for 1 & 5 result messages

0 -'++-t-+-i!-++++-+-t-t-!-++++-+-t-t-H-+++-+-t-t-H-+++-t-t-t-t-H-++-t;-;-t-H--;-+-;!-+++++'

0 5 6 7 8 9 10
No of Slaves (Increasing Task Size)

I-- Elapsed time - 1 message -+- Elapsed time - 5 messages I
Figure 2: Elapsed times for ELC/Classic group - 1 & 5 result messages (grouped

by number of slaves)

CHAPTER 5. RESULTS AND DISCUSSION 54

Figure l and Figure 2 compare the measurements for these two

versions of Cloud. Figure l shows the CPU time, and Figure 2 shows the

elapsed time. The results are grouped first by the number of slaves for the run,

and within this group by the size of the sub-tasks for the run. The number of

slaves in each group is shown on the x-axis. For each group of slaves the

results are grouped with increasing task size from left to right, from 5000 up

to 120000 photons. For each group of results the 5 on the left indicates the

result for the 5000 photon task size, and the 120 on the right indicates the

result for the 120000 photon task size. The intermediate points represent the

results for the l 0000, ~0000, 30000, 40000 and 60000 photon task sizes in that

order.

Figure l shows that there is relatively little difference in the CPU

time for the two versions, but Figure 2 shows that there is considerable

difference in the overall elapsed time, with the one-message version taking

from 1.5 to 8 times as long as the five-message version. The reasons for this

are discussed in section 5.6.4. In this experiment~ the CPU time alone would

give misleading information about the performance of the program. (The

missing data in Figure l and Figure 2 is because the network congestion from

some experiments was so serious that some of the experiments could not be

completed, owing to lost messages, and inordinately long run times.)

These results show that the overall elapsed time is more

representative than CPU time in assessing parallel performance, as the elapsed

time includes not only the time spent in computation, but also the time spent

paging and performing 1/0. Even though some of the elapsed time may be

spent while the program contends for resources with other unrelated programs,

much of the waiting is integral to the program and must be considered when

timing performance [Crow94].

However, it is also informative to measure both CPU and system

time, as these can give some indication of the behaviour of the program, and

may suggest ways in which performance can be improved. In the example

illustrated by Figure 1 and Figure 2, the excessive system time measured for

the version returning a single results version indicates that there is a problem.

Similarly~ if the total elapsed time differs significantly from the

sum of the CPU and system time, this may be due to time-sharing and sharing

resources with other applications, but could also indicate that the program is

CHAPTER 5. RESULTS AND DISCUSSION 55

blocking', such as when waiting for messages. If the waiting is inherent to the

program, then redesign may reduce this waiting time, perhaps by overlapping

communication with computation, and thus improve performance.

For all the experiments conducted for this thesis the elapsed times

were used to compare performance, even though it was difficult and time­

consuming to obtain these ·times. The elapsed time is what the user of the

system will experience. The CPU time, as has been shown in this section, is

a poor indicator of elapsed time, even though it is easier to obtain repeatable

measurements of CPU time.

5.2 Basic performance measurements of the
hardware used

This section presents measurements of the serial performance of the

workstations, and measurements of the data rate that could be expected for the

network.

Figure 3 is a schematic diagram of the network topology, and

shows the positions of the workstations used. The technical specifications of

the workstations, and of Ethernet, can be found in Appendix B.

The network consists of five sections, with each section connected

to a multiport repeater. This is as a result of the limitations of Ethernet which

limits the maximum length of each section to 186 metres. The multiport

repeater repeats each signal received from any section to all the other sections,

so for practical purposes the network used in these experiments can be

considered as one single broadcast network.

5.2.1 Serial performance of the workstations

To evaluate the performance of a parallel system, the parallel performance is

compared to the serial performance of the workstations used. Thus, in a study

such as this, the basic serial performance of each workstation must be

measured before parallel performance can be evaluated. However, the question

then arises of what is meant by serial performance. Should it be the elapsed

time of the best serial version available, or the elapsed time of the parallel

"blocking" is used in this dissertation to mean that the program is halted for some
reason, such as when waiting for messages, or competing for resources.

CHAPTER 5. RESULTS AND DISCUSSION

~ 'c'

Multiport
Repeater

KEY

II ~ II Works ta ti on

Network cable
Initial position
of workstation c

Walls of rooms

Figure 3: Schematic diagram of network topology

version running on a single machine?

56

A parallel program contains additional code to implement

parallelism, and this creates additional overheads. If a parallel program is run

on a single processor, there is no advantage to be gained by parallelism, and

the parallel overheads will reduce the possible performance. Also, a parallel

algorithm may perform badly on a serial processor, where a serial algorithm

for the same problem may give much better results on a single machine.

Cloud has been parallelized so that if there are no slaves present,

then the code for implementing parallelism is ignored, and Cloud behaves

almost exactly the same as the original serial program.

Table I shows a comparison between the performance of the

original serial program, and the serial performance of the parallel version of

CHAPTER 5, RESULTS AND DISCUSSION 57

Table I: Comparison between performance of original serial program and
performance of parallel program on a single processor

Workstation Elapsed time of Elapsed time of Percentage
the original parallel program difference
serial program (I processor)
(Seconds) (Seconds)

a - SGI2 [-03] 3017 3111 1.0

b - SGI (16 Mb) [-03] 5769 5565 -3.5
-

c - SGI (24 Mb) [-03] 6220 6366 1.0

d - ELC (32 Mb) [-04] 12858 12715 -1.1

e - ELC (16 Mb) [-04] 12754 13226 3.7

f-n - Classics (Mean) 13245 14105 6.5
[-04]

o-r - SPARCstation I+ 19873 20464 3.0
(Mean) [-04]

Cloud, but running on a single processor. The serial performance of the

parallel version of Cloud was very similar to the performance of the original

serial program, with differences in elapsed time ranging from l % to 6.5%. The

CPU times for both versions were nearly the same, and most of the difference

was caused by an increase in system time for the parallel version, which uses

considerably more memory. The compiler optimization used is shown in square

brackets [] in the first column of Table I.

In the evaluation of the parallel performance of Cloud, the serial

performance of the parallel program, running on a single processor, was used,

rather than the performance of the original serial program. This was because

it was easier to use exactly the same executable for both the serial and the

parallel runs, and because the differences in performance of the original serial

program and the parallel program running on one processor, as shown by

Table I, were so small that they could be considered negligible.

Thus, the serial performance of all workstations used in this study

was measured by running the parallel version of Cloud, compiled with the

highest possible compiler optimisation, on each processor alone without any

slaves. The ·program was run on each of the 18 workstations at least three

times, and the shortest three elapsed times for each computer were used in this

CHAPTER 5. RESULTS AND DISCUSSION 58

study. These measurements were then used as serial performance measurements

for the calculation of speedup.

Table II: Serial perfonnance of workstations

Name Arch. CPU Time System Time Percentg Total Elapsed Time
Mean Mean Utiliztn Mean (Std.Dev)[%]
Seconds Seconds Seconds

a SGI 3079.67 15.47 99.47 3111(6) (0.2]
b SGl 5338.67 85.63 97.50 5565 (109) (2.0]
c SGI 5944.00 215.00 96.75 6366 (63) (l.O]
d ELC 11655.17 151.60 92.86 12715 (116) (0.9]
e ELC 12677.37 28.90 96.07 13226 (19) [0.1]
f Cls 13760.00 8.67 98.02 14047 (53) (0.4]
g Cls 13799.33 7.67 97.25 14198 (142) [l.0]
h Cls 13777.00 8.67 98.04 14061 (63) (0.4]
I Cls 13531.67 8.67 98.05 13810 (96) (0. 7]
j Cls 13789.00 8.67 96.83 14254 (269) [l.9]
k Cls 13789.00 8.33 97.55 14145 (150) [1.1]
1 Cls 13773.00 5.00 97.25 14168 (278) [2.0]
m Cls 13880.67 4.33 98.38 14114 (105) [0.7]
n Cls 13786.33 9.33 97.53 14144 (57) [0.4]
0 SS l+ 19889.23 141.60 97.19 20610 (144) [0.7]
p SS l+ 20033.53 72.73 98.28 20458 (189) (0.9]
q SS l+ 19857.77 72.47 98.31 20272 (49) [0.2]
r SS l+ 19975.97 90.07 97.80 20517 (121) [0.6]

Table II shows the mean serial performances of the workstations

used. The CPU time, system time and elapsed time for these runs were

measured using the Unix time command. The mean times for each processor

are shown in seconds, with the standard deviation of the elapsed time given in

curved brackets (), and the standard deviation as a percentage of the elapsed

time in square brackets []. The percentage utilization is the sum of the CPU

and system time, expressed as a percentage of the elapsed time.

The high utilization in Table II shows that all computers could be

considered as dedicated for these serial runs. The percentage utilization ranges

from 92.86% to 99.47%, and fourteen of the eighteen machines have a

percentage utilization of more than 97%. Of the four machines with a value of

less than 97%, three (c, d and e) are on the same network segment. One of

these machines (c) gave better performance in earlier experiments. Then it was

moved to a new location, one step along the network towards d and e, and

there was a noticeable deterioration in its performance (refer to Figure 3). In

the earlier experiments c gave approximately the same serial performance as

CHAPTER 5. RESULTS AND DISCUSSION 59

a similar machine, b. After the move, c showed elapsed times approximately

10% longer than that of b. Also Table II shows that c and d use a considerable

amount of system time, which is much more than that for similar machines on

other links of the network. All these factors indicate that there is a network

problem which affects the performance of both c and d, and to a lesser extent

e. This problem is allegedly because the network cables connecting these

machines is very old, and in a bad condition. However, the deterioration in

performance was very small, and was considered negligible as it did not

invalidate the performance results of these experiments.

Table II also shows that the standard deviation of the elapsed time

was less than l % of the total elapsed time for 12 of the 18 workstations, and

for the remaining 6 machines it was between 1 % and 2% of the total elapsed

time. These standard deviations, together with the closeness of the elapsed

times for machines of the same architecture, indicate that the performance

values for these serial runs were reasonably repeatable, and may legitimately

be used for the evaluation of parallel performance.

Serial runs
CPU time, System time and Elapsed time

20000 - ;:: - - - - - i=

en
"C c:
8 15000
~
c:
·a; 10000
E
F

5000 - iii

= = = = = ~ = F ~ ,
r-- ~ ' ; , ~ , -

·,~ •/.

g h i j k
Computer

m

·"

~--~ :.j ?"

. /, :~ .. .·,·
;~

n 0 p

·;·,

~-~
'·

q r

ID CPU time •System time D Additional time I
Figure 4: Serial performance of all workstations used in parallel performance

experiments

The closeness of the elapsed times for machines with the same

architecture can be seen more clearly in Figure 4, which is a stacked-bar graph

~----------------------------

CHAPTER 5. RESULTS AND DISCUSSION 60

showing the mean CPU time, the mean system time and the mean elapsed time

for each processor. The bottom, and by far the largest section of the bar, shows

the CPU time for each processor. For some processors (particularly c and o),

a very small amount of system time is shown by the next section of the bar.

For the remaining processors the amount of system time was too small to be

seen on this graph. The top section of the bar shows the difference between the

sum of the CPU and system time, and the total elapsed time, so the elapsed

time for each processor is represented by the top of each bar. The small

difference between the sum of the CPU and system time, and the total elapsed

time, for most processors, illustrates the high utilization shown in Table II.

This small difference is because all runs were run when the workstation was

not otherwise being used.

The performance of each workstation is affected by three factors:

the CPU performance, the memory access time, and other overheads, such as

interference from other processes and communication overheads. The memory

access time is a function of application behaviour, and of the memory

hierarchy which includes TLB, cache and virtual memory. Figure 4 shows that

machines with the same type of CPU all have similar performance. Even

though not all machines in each group have the same amounts of memory,

there is no discernible trend between the performance and the amount of

memory.

Figure 4 shows that the 4 SP ARC station 1 + machines (o, p, q, r)

gave virtually identical performance, regardless of the amount of memory, as

did the 9 SPARCclassics (f, g, h, i, j, k, I, m, and n).

The two Sun EL Cs (d, e) were similar in performance, but the one

with 32 Mb memory was faster than the one with 16 Mb memory. It is not

clear whether this difference in performance is due to the different amount of

memory, but if the results on the Classics and SPARCstation l+s are compared

it seems that the amount of memory makes little difference to the performance

for this program.

The Silicon Graphics Indigo2 (machine a) has by far the best

performance, about 6 times as fast as the SPARCstation 1 +s, 4 times as fast

as the Classics, and 3.5 times as fast as the ELCs. Part of the reason for this

good performance was the high processor speed. However, a contributing

factor was the fact that this machine has a I Mb secondary cache, 8 kb

instruction cache, and 8 kb data cache. The other two SGis have no secondary

cache, although they have a 32 kb instruction cache and a 32 kb data cache.

CHAPTER 5. RESULTS AND DISCUSSION 61

The Sun workstations appear to have 64 kb write-through caches. (See

Appendix B for further hardware details.)

The other two SGis (b and c) gave very similar performance, but

the one with 16 Mb (b) performed better than the one with 24 Mb memory (c).

This was probably due to bad network cables, since the SGI with 24 Mb (c)

was moved along the network as discussed earlier. In the earlier tests these two

SGis gave almost identical performance, with the 24· Mb SGI (c) tending to

have slightly better results.

The results in this section thus show that for serial performance the

amount of memory makes little or no difference in the performance results

obtained for machines of the same CPU, but with different amounts of

memory. However, the results in Table I show that there was a difference of

about 6.5% in the performance of the original serial program, and the parallel

version of Cloud run on a single processor, on the Classics. Six of the nine

Classics have 16 Mb of memory, and the remaining three have 32 Mb. The

operating system running on these machines is Solaris, which takes up most

of the 16 Mb memory available on most of the Classics. The parallel version

of Cloud needs approximately fifty times the amount of memory needed by the

original serial version. These different memory requirements account for the

6.5% difference in performance between the serial and parallel versions of

Cloud, as shown in Table I, as the parallel version with its greater memory

requirements will cause considerably more paging of the small amount of

available memory.

In the parallel experiments with Cloud the slaves use about the

same amount of memory as the original serial version, and the master needs

about fifty times as much memory as the serial version. Thus, for each group

of machines used, the master is the machine in that group with the largest

amount of memory. Since the slaves need so much less memory it does not

matter if some slaves have more memory than others. This is also confirmed

by the results of the parallel experiments, where it was seen that for most runs

all slaves did nearly exactly the same amount of work, regardless of the

amount of memory.

CHAPTER 5. RESULTS AND DISCUSSION 62

5.2.1.1 Grouping the workstations into "homogeneous" groups.

This thesis is to study the factors affecting the performance of a parallel

program on a heterogeneous network. However, it is difficult to evaluate the

performance of a heterogeneous•system, and to determine whether there is a

linear improvement in performance as more processors are added. To

understand a heterogeneous system one first needs to understand the

performance of-each individual component. It is much easier to evaluate the

performance of a homogeneous system, and to identify any problems such as

bad load balancing, and to establish whether linear speedup can be obtained.

For this reason all the workstations in the heterogeneous group were first

grouped into three approximately homogeneous sub-groups, by using the data

summarised in Table II, so that the parallel performance results obtained for

these sub-groups could be used to understand and calibrate the performance of

the heterogeneous group.

The four SPARCstation l + machines (o, p, q, r) had nearly

identical serial performance, and could be considered as homogeneous. The

only difference was that one machine had more memory than the others.

Therefore these four machines were grouped together to form the

SPARCstation 1 + group, with the machine with the most memory as the

master.

Table II and Figure 4 show that the serial performance of the ELCs

was fairly similar to that of the SP ARCclassics (machines g-n), so that for the

purposes of these experiments the ELCs and Classics could be considered to

be the same type of machine. The ELC with most memory (d) took 90% of the

mean serial time taken by the Classics, and the other ELC (e) took 94% of the

mean serial time taken by the Classics. Thus these eleven machines were

grouped into one so-called homogeneous group, the ELC/Classic group, with

the faster ELC as the master, and the other ELC and the nine Classics as the

slaves. To make the group as homogeneous as possible, the slave ELC was

used only as the tenth slave. For all experiments with fewer than ten slaves

only Classic slaves were used. Of these Classics, three had 32 Mb of memory,

and the other six had 16 Mb. For these experiments this difference in memory

did not matter, as the slaves did not need more than 16Mb of memory, and

there was no noticeable difference in the performance of those slaves with less

memory.

CHAPTER 5. RESULTS AND DISCUSSION 63

The three Silicon Graphics machines (a, b, c), were grouped

together into the SGI group merely because all three were SGis, and there

were too few to make a truly homogeneous group. Only two of the three SGI

machines had similar performance, so the fastest machine was used as the

master, and the two similar machines were slaves.

Table Ill: Mean serial performance of homogeneous groups of workstations

Group of CPU time System time Elapsed time
workstations

9 SPARCclassics 13765 (141) [1.0] 8 (2) [24.9] 14105 (198) [1.4]

2 ELCs and 13474 (667) [4.9] 22 (42) [186.4] 13898 (486) [3.5]
9 SPARCclassics

SPARCstation I+ 19939 (104) [0.5] 94 (33) [35.5] 20464 (184) [0.9]

Table III shows the mean times for the SPARCstation 1 + group,

and ELC/Classic group, and also for the Classics alone. The results in this

table are to illustrate the homogeneity of the SPARCstation 1 + and

ELC/Classic groups. The SGI group is not included in this table because this

group was not homogeneous. These mean times were calculated by taking the

best three runs for each machine in each group, and using these to calculate the

mean and standard deviation of the group. The first value in each column is

the mean time for the group, in seconds. The next value, in (), is the standard

deviation for the group, in seconds. The last value in each column, in [],is this

standard deviation, as a percentage of the mean time.

The data shown in Table III shows that the SPARCstation 1 +
group can be considered as homogeneous. The standard deviation in elapsed

time for the four machines was only about 184 seconds, which was about 0.9%

of the mean serial time for these machines.

The means of the 9 Classics and the 11-machine ELC/Classic

group, given in Table III, are used to illustrate that the ELC/Classic group can

be considered as virtually homogeneous. The mean of elapsed time of the

Classics (14105s) differs from the mean of elapsed time of the 9 Classic and

the 2 ELCs (13898s) by just over 200 seconds, which is less than 1.5%

difference. The standard deviation in elapsed time of the Classics only, was

also just less than 200 seconds, which was about 1.4% of the mean serial

elapsed time for the Classics. When the mean of elapsed time of the 2 ELCs

together with the 9 Classics was calculated, the standard deviation was just

CHAPTER 5. RESULTS AND DISCUSSION 64

under 500 seconds, which was about 3.5% of the mean serial elapsed time for

the group of I I machines. These differences are small enough that, for the

purposes of these experiments in a shared environment, the ELC/Classic group

can be considered as homogeneous.

These means shown in Table III were the values used for the

calculations of speedup in section 5.5. The SGI values used for the calculation

of speedup in section 5.5 were taken from Table II.

5.2.2 Network performance

Although Ethernet bandwidth is specified to be IO Megabits/second (see

Appendix B), reported performance falls short of this, typically between 5 and

7 Megabits/second [Nana93][Gart93][Nede93].

The data rate that could be expected for this experimental

environment was established with a small p4 program, which measured the

round-trip time for a master to send a message to a slave, and for the slave to

receive this message, and send it back to the master.

"'C
c:
0
u
Q)
(/)

~

Q)
a.
(/) -:a
«I
Cl
Q)

~

10

9

8

7

6

5

4

3

2

Ethernet Data Rate (Means}
SGI, SPARCstation 1 + & ELG/Classic

. . . _ _ _ _ _ . _ _ . _ _ _ _ _ _ . . . j ELC/Classic I _ _ _ _ _ _ _ _ _
SPARCstation l +
data rate shown

- - - - - between other two. -

o..J_~~~~~~~~~~~~~~~~~~~~~--'

0.0 30 60 90 120 150 180 210
Message size (kilobytes)

Figure 5: Ethernet data rate

As the largest message used in Cloud was just under 210 kb long

this program sent messages ranging in size from I byte to 210 kb. There is a

CHAPTER 5. RESULTS AND DISCUSSION 65

p4 header of 40 bytes per message, which will be included in the first packet

of a message. Since the maximum amount of data that can be sent in an

Ethernet packet is 1500 bytes, it is not necessary to test messages of every

length, as the results would vary minimally for messages of similar sizes. So

the message size was incremented in steps of 300 bytes, making 5 increments

per packet.

All experiments were run in the early hours of the morning when

there were generally no other users of the network. The loop sending messages

from l byte to 210 kb in steps of 300 bytes was repeated 15 times. The best

10 times, for each size message, were used to calculate the mean round-trip

time for each message size. This value, together with the message size, were

used to calculate the data rate for an uncongested network. These experiments

were run using the master and one slave for each of the SGI, ELC/Classic and

SPARCstation 1 + groups.

Figure 5 shows the data rate achieved on a lightly loaded network

for the SGI2 Extreme master and 1 SGI slave, for a SPARCstation 1 + master

and I SPARCstation 1 + slave, and for an ELC master with 1 Classic slave.

The size of the message in kilobytes is shown along the x-axis, and the data

rate in Megabits/second on the y-axis.

The best data rate was achieved with the SGI2/SGI machines. Apart

from the very high data rate of about 8.5 to 9 Mbits/second, for messages

between 5 kb and 10 kb, the best data rate for the SGis was nearly 8

Mbits/second for messages between 10 kb and 40 kb. This dropped to about

7.5 Mbits/second for messages between 40 kb and 60 kb, and then to

7 Mbits/second for messages longer than about 60 kb, and then remained more

or less constant. The unexpectedly high data rates for messages less than 5 kb

long may well be due to an inability of the timing routine to measure too short

a time accurately.

For the ELC/Classic group the data rate was the slowest. For

messages larger than about 10 kb the data rate is fairly constant at about 6

Mbits/second.

The data rate for the SPARCstation 1 + group is slightly better than

that for the ELC/Classic group, being just over 6.5 Mbits/second for messages

larger than about 10 kb, and then remaining more or less constant at 6.5

Mbits/second for messages of 30 kb onwards.

In all three cases Figure 5 shows that the data rate for messages

less than about 5 kb (about 3 packets) is poor, and that the best data rates are

CHAPTER 5. RESULTS AND DISCUSSION 66

Table IV: Comparison of p4 and PVM data rates

Msg Test - Test - ELC ·Test - ANL - p4 PVM-
Size (kb) SGI +classic SPARC I+ SPARC 10

4 6.5 5.1 6.2 2.4 4.4

16 8.6 5.8 6.4 2.7 5.2

20 8.2 6.0 6.4 2.7 -
64 7.3 6.1 6.5 - 6.2

achieved for messages bigger than about 10 kb (about 6 packets). Thereafter

the data rate remains fairly constant regardless of message size, although a

slight drop in the rate is observed for the SGI machines for messages longer

than 60 kb (about 40 packets) .

The data rates achieved with these three groups of machines are

compared, in Table IV, with those obtained by the developers of p4 at ANL,

using 2 SPARCstation 10 machines connected by Ethernet [Butl94], and those

obtained by the developers of PVM, using 2 workstations connected by

Ethernet [Sund94]. It is not known which workstations were used in the PVM

experiments.

PVM is reputed to handle communication more efficiently, in that

its message-passing is not blocking, and processing can continue while a

message is being sent, as communication is handled by daemons working in

the background. However, if one examines the data presented in the last

column of Table IV it appears that, depending on the workstations used, p4 is

not inferior to PVM, although the data rate for PVM does appear to improve

as the messages get longer. This is probably because in PVM the process is not

delayed by message-passing.

The data rates achieved at ANL [Butl94] (5th column of Table IV)

are surprisingly low, especially as these were probably measured using the

program systest, which is supplied as a sample program with the p4 library,

and which was the basis of the program I used for measuring the data rates for

this thesis.

This data rate measured at ANL seems more likely to be that

obtained when other users were using the network, or there may be a mistake

in the calculations made at ANL, with the data rates shown in [Butl94] being

calculated from the full time for the round trip instead of half the time. If this

CHAPTER 5. RESULTS AND DISCUSSION 67

mistake was made, then the rates would be 4.8 and 5.4 Mbits/sec, which is

comparable with the results obtained in my experiments.

5.3 Speedup and efficiency

The overall elapsed time is of fundamental importance m measuring the

performance of a parallel program, as users are primarily interested in how

long it takes to achieve a solution. The problem with a conventional elapsed

time graph is that it is difficult to see how well the system is performing, as

the values for higher numbers of processors receive little visual space. It is

important to understand whether the performance achieved is optimal, and

whether or not there is room for improvement.

Speedup and efficiency are commonly used to evaluate parallel

performance in this way, by comparing the parallel performance to the serial

capabilities of the processors used. Poor speedup and efficiency may indicate

such problems as inefficient load balancing or synchronization, and that

redesign may improve performance. Good values for speedup and efficiency

show that the performance is close to optimal, and there is not much that can

be improved. For a parallel program to be worthwhile, substantial benefit

should be obtained by using more processors, and speedup and efficiency are

means of measuring this benefit.

However, there are a number of difficulties inherent in the use of

speedup and efficiency to evaluate parallel performance, and some of these will

· be discussed in this section. In particular, this section shows that the

conventional means of calculating speedup and efficiency are not directly

appropriate for evaluating the performance of a heterogeneous system, and that

it is actually very difficult to evaluate parallel performance on a heterogeneous

system.

Speedup for homogeneous parallel machines is generally defined

as the ratio of the sequential execution time of a program on a single

processor, divided by the execution time of the program on a number of

processors. Yet, even this simple definition raises the question of what serial

program should be measured on the single machine. Should it be the best serial

version available, or the parallel version running on a single machine? As

described in section 5 .2.1, the serial performance of Cloud, used to determine

speedup in this dissertation, was the elapsed time of the parallel program

running on the single processor, because this was sufficiently close to the

CHAPTER 5. RESULTS AND DISCUSSION 68

elapsed time of the original serial program, and it was easier to use the same

program for all experiments.

A complementary measure of performance to speedup is efficiency,

which is a means of measuring how efficiently the processors are utilised. This

is defined, for a homogeneous system, to be the ratio of the speedup divided

by the number of processors. Ideally efficiency should be l, as the perfect

speedup should be equal to the number of processors. However, as processors

are added, it is likely that the efficiency will decrease as a result of increased

overheads [Eage89].

Ideally, performance should improve linearly, as processors are

added. However, there is even confusion in what exactly is meant by "linear

speedup". Is speedup linear only when the efficiency remains at l as the

number of processors increases (perfect speedup), or can speedup be

considered linear when speedup is directly proportional to the number of

processors, but the efficiency is less than l [Eage89]? Since true linear

(perfect) speedup can rarely be achieved, most researchers consider speedup

to be linear if there is a constant rate of improvement in speedup as processors

are added.

Then it is commonly known that slow machines often exhibit better

speedup than faster machines [Sun91]. Since communication costs may depend

more on the communication medium, such as an Ethernet network, than on the

communicating machines, a slow machine may have a better

computation/communication ratio than a fast machine, thus exhibiting better

speedup.

Amdahl's Law states that speedup is limited by the serial

component of the application. This serial component may be composed of

many factors, one of which is likely to be the time to access disk, or slow

memory. However, as more processors are used there is generally more

memory available, and some of this may be caches. So it may be that

increasing resources, such as memory, could lead to superlinear speedup as

more data can be in cache and memory at the same time, thus reducing the

time needed for accessing disk [Gust88][Fisc9l][Dona94][Sing94]. On the

other hand, increasing the number of processors increases the communication

overhead, thus reducing the efficiency, and the potential speedup.

All these points make it difficult to judge whether speedup and

efficiency are portraying good performance or not. These difficulties are

compounded when it comes to measuring the· speedup and efficiency of a

CHAPTER 5. RESULTS AND DISCUSSION 69

heterogeneous system, such as that used in the experiments described in this

dissertation.

There is considerable discussion on just how to measure the

speedup of a heterogeneous system, but this has not yet been consistently

defined [Dona94]. In a heterogeneous system the processors have different

performance capabilities. In addition, some processors may have special

capabilities, such as graphics or floating point chips; which enable them to

perform certain tasks much faster than processors without these capabilities.

It is also possible that some applications cannot even be run on some serial

processors, which do not have the required capabilities. Another factor to be

considered is that if the system is not dedicated, then the performance of

processors will be impacted by other processes, and users external to the

application.

It is easy enough to measure the elapsed time of a parallel program

on a heterogeneous system, but with what should it be compared to determine

its speedup? If the execution time for the program on the slowest processor is

used, then artificially high speedups will be obtained, and these may even be

superlinear. On the other hand, if the time of the fastest processor is used, then

the speedup will appear low.

Donaldson et al suggest that the serial elapsed time of the fastest

processor should be used for calculating the speedup of a heterogeneous

system [Dona94]. On the other hand, Kumar et al use the sum of the time

spent by all the processors on useful computation, as the single processor time

in the speedup calculation [Kuma94]. Schnekenburger goes further in

considering the problem of determining the efficiency of parallel programs in

heterogeneous, non-dedicated, multi-tasking environments, with dynamically

changing service requests of external tasks, and arbitrary scheduling strategies

[Schn93]. Schnekenburger develops the concept of dynamic efficiency, which

takes into account the effect of the service requests of external tasks, which

affect the service rate of resources. He thus calculates for a resource, the time

spent in serving the application being studied, the time spent servicing other

applications, and the time spent idle, and uses this as a term in his equation.

Since there exist an immense number of external loads it is impossible to

compare different results. He therefore takes this concept further by using a

stochastic process to determine the stochastic efficiency.

Donaldson's proposal to use the time of the fastest processor would

show very poor speedup in the system studied for this thesis, as the fastest

CHAPTER 5. RESULTS AND DISCUSSION 70

machine is up to 6 times as fast as the slowest machine. Kumar's method does

not include the cost of overheads in the calculation, and, as has been shown

in section 5.1, these could be highly significant. It is quite difficult to

determine some of the terms in Schnekenburger's equation, and this may

involve the use of sampling techniques such as found in several existing

performance analysing tools [Schn93].

In calculating heterogeneous speedup, one must consider exactly

what one is trying to show. In essence, speedup is a measure to show how

performance is improved by using more processors. If the parallel performance

is compared with the single processor time of the fastest processor, the speedup

shows the number of machines, with the same capabilities as the fastest

processor, that would give the result achieved. But if the system consists of

widely disparate processors, as in the system studied in this thesis, is this

relevant?

Correspondingly, the efficiency of a homogeneous system can be

easily understood, as the ratio of the speedup ·divided by the number of

processors. However, this calculation of efficiency is not necessarily relevant

for a heterogeneous system. If the speedup of a heterogeneous system is

calculated by comparing parallel performance to the serial performance of a

particular machine, such as the fastest or slowest processor, then a value for

efficiency that is derived by dividing this speedup by the number of processors

is meaningless.

For example, when the parallel performance for 14 processors is

compared to the serial performance of the fastest SGI2 processor, giving a

speedup of 3.3, the corresponding efficiency, calculated as this speedup divided

by the number of processors, is 0.3. However, this is not a true reflection of

parallel performance, since for Cloud all processors are in fact working to a

high efficiency. This suggests that using this formula for the calculation of

efficiency of a heterogenous system is not valid.

On the other hand, if the speedup of the heterogeneous system is

calculated by comparing the parallel performance with the mean of the serial

performances of all the machines used, this gives a speedup of 11, for 14

processors. Dividing this speedup by the number of processors, will give a

corresponding efficiency of about 0.8. This speedup and efficiency give a

better indication of the improvement in performance gained by adding more

processors.

CHAPTER 5. RESULTS AND DISCUSSION 71

Thus, if the parallel performance of a heterogeneous system is to

be compared with the performance of a particular machine, then the serial

performance of that machine should be used to calculate speedup. On the other

hand, if, as in this study, the parallel performance is to be compared with the

actual performance capabilities of the machines used, then the mean of the

serial performances of all the machines used, should be used for the calculation

of speedup, and thus efficiency, as this gives a more accurate measure of the

improvement in performance through parallelization. These points are

illustrated by the results presented later in this chapter.

5.4 Alternative ways of evaluating parallel
performance

Graphs of elapsed time, speedup and efficiency are common ways of

presenting parallel performance. However, as described in section 5.3, and

illustrated in this section, and section 5.5, there are many problems associated

with this, and particularly when evaluating the performance of a heterogeneous

system.

Crowl has critically evaluated several methods of portraying

parallel performance, and suggests some alternatives to the conventional

elapsed time and speedup graphs [Crow94]. Most of the discussion in this

section can be related to Crowl's paper.

Two sets of results are used to illustrate Crowl's arguments. These

are the results for the 40000 photons task size, run on the ELC/Classic group,

and the results for the 20000 photons task size, run on the group of 18

heterogeneous machines. These examples were chosen because these task size

gave the best performance for these two groups, and these two groups were the

largest groups of near homogeneous and heterogeneous machines. These sets

of results are used for all the graphs in this section.

The results for a homogeneous group were used because it is easier

to understand Crowl's points when examining the results for a homogeneous

group, as it is easy to see if there is a constant improvement in performance

as more processors are added. The results for the heterogeneous group then

illustrate how Crowl's proposals are especially valid for evaluating the

performance of a heterogeneous system. Crowl's proposal of linear speed is

used in section 5.5 to present the performance results of the experiments with

Cloud.

CHAPTER 5. RESULTS AND DISCUSSION

5.4.1 Conventional elapsed time graph

12000

~ 10000
c:

8 8000 Q)
en
.s 6000
Q)

E
i= 4000

2000

ELC/Classics
CPU, System & Elapsed time (40000)

- -

0 1 2 3

j--. CPU time

4 5 6 7
No of Slaves

8 9 10

-G- CPU+System ~ Elapsed time I

72

Figure 6: CPU, system and elapsed time for ELC/Classic group - 40000 photon
task size

Figure 6 shows a conventional elapsed time graph for the 40000 photons task

size, for the ELC/Classic group. CPU time and system time are also shown

for interest. The system time is the difference between the line showing the

sum of the CPU and system time, and the line showing the CPU time. The

elapsed time is very close to the sum of the CPU and system time, thus

indicating that, for these runs, the system could be considered as dedicated.

The number of slaves is shown along the x-axis.

This graph shows a consistent decrease in elapsed time, as the

number of slaves is increased. However, on a graph in which a linear decrease

in elapsed time is represented by a curve rather than a straight line, the results

for higher numbers of processors have little visual space. This makes it

extremely difficult to see whether such a graph is showing improving or

deteriorating performance as processors are added.

CHAPTER 5. RESULTS AND DISCUSSION

5.4.2 Conventional speedup graph

12
11
10
9
8 c.
7 ::I

"C
6 Q)

8. 5
(/')

4
3
2
1
0

0

ELC/Classics
3 speedups vs Perfect Speedup (40000)

2 3 4 5 6 7
Number of slaves

8 9

-+-Perfect Speedup -+ Speedup (Fastest)
~Speedup (Means) -o Speedup (Slowest)

Figure 7: Speedup for ELC/Classic group - 40000 photon task size

73

10

Speedup can be used to illustrate whether the improvement in performance is

linear. The speedup, for the same data as in Figure 6, can be seen in Figure 7.

Three different methods of calculating speedup are shown, to

illustrate one difficulty of using speedup as a measure of performance. The~e
are the speedups showing the parallel performance compared to the serial

performance of the fastest processor (the ELC master), the parallel performance

compared to the serial performance of the slowest processor (mean of the

Classics), and the parallel performance compared to the mean serial

performance of all the processors used (9 Classics and 2 ELCs).

Figure 7 shows that the speedup where the parallel performance is

compared to the mean of the serial performance of the Classics, and the

speedup compared to the mean of all the processors used, are virtually

identical, thus confirming that the performance of the ELCs and of the Classics

are close enough for this group to be considered homogeneous. As is expected,

the speedup, when the parallel performance is compared to the fastest machine

(ELC master), is not as good as the other speedups.

CHAPTER 5. RESULTS AND DISCUSSION 74

All three speedups show that there is a near linear increase in speed

up to 9 slaves (10 processors), with a slight decrease in performance for 7

slaves. After that there is an improvement in the speedup for 10 slaves. This

improvement in speedup for the tenth slave is because this slave is an ELC,

which is slightly faster than the other 9 Classic slaves. The reduction in

performance for 7 slaves is probably because of uneven distribution of work

among this number of processors, leading to increased idle time for some

slaves, and a corresponding reduction in efficiency.

5.4.3 Conventional efficiency graph

ELC/Classics
3 measures of Efficiency (40000)

1 ~-....~~~~~~~~~~~~~~~~~~~~---,

0.9

0.8

0.7

~0.6
c:
-~ 0.5

ffi 0.4
0.3

0.2

0.1
0-'--l-~-+-~-+-~-l-~-+-~-+-~-+~-+~-t-~--t~---1t---'

0 1 2 3 4 5 6 7
Number of Slaves

a 9 10

I-+ Efficiency(Fastest) --*- Efficiency(Means) -0 Efficiency(Slowest) I
Figure 8: Efficiency for ELC/Classic group - 40000 photon task size

The efficiency for the same data as in Figure 6 and Figure 7 is shown in

Figure 8, with the three measures of efficiency shown corresponding to the

three calculations of speedup shown in Figure 7.

Figure 8 shows that there is a noticeable difference in the efficiency

as compared to the fastest machine, and as compared to the slowest machine.

This indicates how easily calculations of efficiency may be misleading, and

that it is important to state clearly how efficiency is calculated, and what it

means.

CHAPTER 5. RESULTS AND DISCUSSION 75

The graph of efficiency shows variation m performance more

clearly than the speedup graph in Figure 7. The higher efficiencies for l and

2 slaves are because, for these numbers of slaves, the master does up to half

the Monte Carlo work, and since the master has no communication overhead

the overall efficiency is better. From 3 to 7 slaves the efficiency remains fairly

constant. For 8 and 9 slave·s there is an improvement in the efficiency. This

may possibly be because it is more efficient for the master to receive 8 or 9

sets of results before changing back to Monte Carlo work, than when for fewer

numbers of slaves it receives 4 or 5 sets of results, and then changes to Monte

Carlo work. Thus, for higher numbers of slaves, the efficiency seems to

improve, and this may be due to the master being either consistently busy on

communication, or on Monte Carlo work, and changing between these less

often, thus resulting in less paging. The higher efficiency for the tenth slave

is because this is the ELC slave, which is faster than the other 9 slaves.

5.4.4 Linear speed graph

Because of the problems associated with speedup and efficiency, especially in

the evaluation of the performance of a heterogeneous system, Crowl suggests

a graph of linear speed as an alternative to speedup.

A linear speed graph shows the inverse of elapsed time, plotted

against the number of slaves. This graph is visually similar to speedup, but it

is independent of hardware and other considerations, and is therefore not a

derivative measure, unlike conventional speedup which is related to the serial

performance of individual processors. This makes linear speed particularly

useful for the evaluation of the performance of a heterogeneous system. This

section first illustrates the use of a linear speed graph for a homogeneous

system, and then for a heterogeneous system.

Linear speed is a way of showing how much work is completed in

unit time. In the experiments in this study the total amount of work for all runs

was the same, so linear speed could be computed simply as the inverse of

elapsed time, without calculating how long it took for each separate solution.

However, linear speed is a good way of comparing runs where different

amounts of work are done, by comparing how many solutions are obtained in

unit time.

For linear speed graphs an increase in the gradient of the graph

indicates an improvement in performance as processors are added, and a

CHAPTER 5. RESULTS AND DISCUSSION

ELC/Classics
Linear Speed (40000)

0.0008 ,---------------------:>Ir--,

0.0007

~ 0.0006
c:
0
~ 0.0005

. !/)

.5 0.0004
Q)

~ 0.0003

..... 0.0002

0.0001

0-'--+--+--+----1~---+--+--+----+--l----+-----1-~
0 2 3 4 5 6 7

Number of Slaves

1-sumof serial Linear Speed-.-1/ElapsedTime

8 9 10

I
Figure 9: Linear speed for ELC/Classic group - 40000 photon task size

decrease in the gradient shows a deterioration in performance.

76

A graph of linear speed is a good way of showing how

performance changes as further processors are added. However, it would be

useful to have some way of establishing whether the performance is the best

that could be achieved, or whether there is room for improvement.

We propose that, as an extension of Crowl's work, a line showing

. the sum of the serial linear speeds should be used to indicate the best

performance possible for that system, in the same way that the line depicting

perfect speedup is used to indicate perfect performance on a conventional

speedup graph. The serial linear speed is the amount of work that can be

performed by a processor in unit time. Therefore, the total performance

capability of a system, whether homogeneous or heterogeneous, can. be

expressed as the sum of the serial linear speeds of the processors comprising

the system.

Figure 9 shows the linear speed graph for the same data as the

graphs in Figure 6 and Figure 7. Also shown in Figure 9 is a line depicting the

sum of the linear speeds of the serial runs for the processors used in the

experiment. The changes in performance discussed in sections 5.4.2 and 5.4.3

can be seen clearly in Figure 9, where the changes in the gradient of the linear

CHAPTER 5. RESULTS AND DISCUSSION 77

speed graph show the changes in performance as processors are added. The

closeness of the linear speeds achieved to the line showing the sum of the

linear speeds of the serial runs indicates that good performance was achieved.

This is discussed further in section 5.4.5. Since this graph is for a

homogeneous group the line depicting the "perfect linear speed" is a straight

line, which will not be the case for a heterogeneous system, as will be shown

in Figure 11.

14000
13000
12000

<ii' 11000 g 10000
~ 9000
~ 8000
Q) 7000 E
+: 6000

'"O 5000 Q)
(/)

4000 a. ro
w 3000

2000
1000

0
0

ELC/Classics
Speedup, Linear Speed & Elapsed time

1 2 3 4 5 6 7
Number of Slaves

8 9

7

- 6

5

4

3

2

1

0
10

1--- Speedup (Means) -+- Linear Speed*10000Q.- Elapsed time
L....--------------------=------------------"
Figure 10: Elapsed time, speedup and linear speed for ELC/Classic group - 40000

photon task size

The three different ways of showing parallel performance with

elapsed time, speedup (with speedup calculated according to the mean serial

performance of the processors used), and linear speed graphs are compared in

Figure 10, which combines the graphs for the same data shown in Figure 6,

Figure 7 and Figure 9. The left-hand y-axis in Figure 10 de~icts the elapsed

time in seconds. The values of linear speed were multiplied by l 0000 so that

the graph of linear speed could be shown on the same axes (right-hand side

y-axis) as the speedup graph.

Figure l 0 shows that both the speedup and linear speed graphs

show changes in performance more clearly than the elapsed time graph. This

graph also shows that this linear speed graph has the same shape as a speedup

--------------------------------------'

CHAPTER 5. RESULTS AND DISCUSSION 78

graph, so that it is valid to use linear speed instead of speedup to illustrate

performance. Note that it is the shape of the graph that is important, and that

the overall slope is dependent on the scale used. The different scales used in

Figure 9 and Figure 10 are the reason that the same linear speed graph has a

different slope in the two figures.

Heterogeneous groups (Means)
Linear Speed (20000)

0.0018 ..-----------------------,
0.0017 -
0.0016 -

00.0015
"O 0.0014 g 0.0013
~ 0.0012
{/) 0.0011
c: 0.001
·- 0.0009 e 0.0000
·- 0.0007
t:.0.0006
- 0.0005
- 0.0004 -

0.0003 -
0.0002 -
0.0001 +-i-t-+-t-+-+-+-i~T-+-t-+-t-+-t-+-+-+-i-+-t-+--+-+-t-+-+-+-+-+-i-+-+-+-i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Slaves

I~ Sum of Serial Linear speeds --1/ElapsedTime

Figure 11: Linear speed for heterogeneous groups - 20000 photon task size

Linear speed is particularly useful for portraying the performance

of a heterogeneous system as shown, in Figure 11. This graph illustrates the

linear speed for a system of 18 processors, where values are shown on the

graph for 2 slaves (2 Indigo slaves), 13 slaves (2 Indigo+ 2 ELC + 9 Classic

slaves), 17 slaves (2 Indigo + 2 ELC + 9 Classic + 4 SP ARC 1 + slaves), and

18 slaves (2 Indigo + 2 ELC + 9 Classic + 4 SP ARC 1 + slaves, plus an

additional slave on the same processor as the master). The results are shown

for the 20000 photon task size, which is the task size that gave the best

performance results.

In Figure 11 the line showing the sum of the serial linear speeds

of the processors used gives a good indication of the potential total

performance in this heterogeneous system, according to the serial capabilities

of the processors used. The steep slope of the line showing the sum of the

serial linear speeds between 0 and 2 slaves indicates the good performance of

CHAPTER 5. RESULTS AND DISCUSSION

Heterogeneous groups (Means)
Speedup vs Perfect Speedup (20000)

20.--~~~~~~~~~~~~~~~~~~~~~--.

19
18
17
16
15
14
13

c.12
-6 11
Cl> 10
Cl> 9
~8

7
6
5
4
3
2
1
0+-+-t-+-+-+-+-+-+-if-+-+-+-t-+-+-+-+-+-+-t-+-+-+-t-+-+-+-+-+-+-if-+-+-+---1--l

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Slaves

I-Perfect Speedup ~ Speedup I
Figure 12: Speedup for heterogeneous groups - 20000 photon task size

79

the two Indigo slaves. The slope of this line then decreases between 2 and 13

processors, when the group of 11 ELC and Classic slaves are added. This

shows that the ELC and Classic slaves have less performance capability per

processor than the two Indigo slaves. The slope of the graph decreases again

between 13 and 17 slaves, when the four slow SPARCstation l + slaves are

added, thus showing the limited processing potential of the SPARCstation l +
slaves. This line then remains level for 17 and 18 slayes, because the 18th

slave is run on the same processor as the master, and eighteen processors are

used for both 17 and 18 slaves.

The line showing linear speed (inverse of elapsed time) shows that,

for this group of 18 processors, very good performance is achieved for the two

Indigo slaves, as the slope of the line showing linear speed is very close to the

line showing the sum of the serial linear speeds. When the 11 ELC/Classic

slaves are added (slaves 3 to 13) the improvement in performance by adding

more processors is not so good, and the line showing linear speed diverges

from that showing the potential performance. And when the four slow

SPARCstation 1 + machines are added (slaves 14 to 17) the gradient of the line

showing linear speed decreases even more, indicating that the SPARCstation

1 + machines do not contribute much in processing potential. There is a distinct

CHAPTER 5. RESULTS AND DISCUSSION 80

drop in the perfonnance when the extra (18th) slave is run on the same

processor as the master processor, since no extra processors are added, just that

one is shared between two processes.

The deceptive nature of a graph showing speedup for a

heterogeneous system can be seen if the speedup graph in Figure 12 is

compared to the linear speed graph in Figure 11. Figure 12 shows the speedup

for the same group of 18 processors, with the speedup·calculated as compared

to the mean serial perfonnance of the processors used. Figure 12 shows the

perfect speedup as a straight line. The graph showing the observed

experimental speedup suggests that the improvement in perfonnance was near

linear, but this not a true representation of the actual perfonnance, as has been

shown by the linear speed graph in Figure 11, and will be clearly shown in

section 5.5.4.

The graphs in Figure 11 and Figure 12 show clearly that speedup

is not a valid means for evaluating the perfonnance of a heterogeneous system,

and that linear speed will give a better indication of the actual perfonnance.

5.4.5 Linear efficiency

A linear speed graph gives a good indication of how well a system is

performing. However, the actual percentage utilization of the processing power

of a heterogeneous system is not immediately obvious from a graph of linear

speed.

We therefore propose, as a further extension to Crowl's work, that

the concept of linear efficiency should be used to show this percentage

utilization, where the linear efficiency is calculated as the linear speed divided

by the sum of the linear speeds of the processors used. This concept of linear

efficiency is thus analogous to the conventional measure of efficiency for a

homogeneous system.

Figure 13 shows the linear efficiency for the same group of

processors as the linear speed graph in Figure 11. Here the deterioration in

efficiency as compared to the total potential performance is clearly visible,

with the highest efficiency of just over 0.9 for the two Indigo slaves,

deteriorating to 0.65 when the ELC and Classic slaves are added, and again to

0.6 when the SPARCstation l + slaves are added.

CHAPTER 5. RESULTS AND DISCUSSION

Heterogeneous groups (Means)
Linear Efficiency (20000)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Slaves

I"'*"" Linear efficiency I
Figure 13: Linear efficiency for heterogeneous groups - 20000 photon task size

5.4.6 Log-time graphs and Log-speed graphs

81

Normal x-y plots, such as the elapsed time graph in Figure 6, do not show

qualitative changes well, as performance for large numbers of processors

receives very little visual space. Also a constant improvement in performance

is seen more clearly as a straight line on paper, and conventional elapsed time

graphs are curves, on which it is difficult to see changes in performance.

Logarithmic graphs can be beneficial in these circumstances, as

they give more visual space to the results for the higher number of processors,

and may even accentuate changes in performance. Crowl therefore suggests

two further ways of showing performance. The first of these is a Log-log time

plot, where the log (to the base 2) of the time is plotted against the log (also

to the base 2) of the number of processors. A similar graph to the Log-log time

graph is a Log-log speed graph, where the log (to the base 2) of the speed

(inverse of time) is plotted against the log (also to the base 2) of the number

of processors. The improvement in performance, as the number of processors

increases, is shown by the changing slope of the graph as the number of

CHAPTER 5. RESULTS AND DISCUSSION 82

processors increases. For further information on Log-log time graphs and Log­

log speed graphs, refer to Crowl [Crow94].

For the experiments described in this dissertation these last two

graphs show little that is not also apparent in the Linear Speed graph.

However, all three graphs proposed by Crowl are good ways of showing

qualitative change. For example, if the program began slowing down at a

certain number of processors, then this would be· difficult . to see on a

· conventional elapsed time graph, but is easy to see on any of the graphs

proposed by Crowl.

5.5 Performance of Cloud on groups of
homogeneous and heterogeneous workstations

It is difficult to understand t~ performance of a heterogeneous system,

because of the widely varying performance capabilities of the processors used.

Thus, it is first necessary to evaluate the performance of the homogeneous sub­

groups, since if good performance can be shown for all homogeneous sub­

groups this indicates that the performance of the combined heterogeneous

group is close to optimal. Also, most researchers typically report speedups, so

if linear speedups can be shown for a homogeneous group, then in some sense

the results are comparable with other researchers.

This section presents the performance results obtained from testing

Cloud on various groups of workstations. This performance is shown using

graphs of elapsed time, speedup, efficiency, linear speed and linear efficiency.

Conventional graphs of elapsed time, speedup, and efficiency are used to

present the results of the homogeneous sub-groups. However, as speedup and

efficiency have been shown to be inappropriate for evaluating the results of a

heterogeneous system, linear speed and linear efficiency are used to evaluate

the results of the combined heterogeneous group. The results for the

homogeneous sub-groups are shown first, and then the results of the

heterogeneous group consisting of the combination of these sub-groups.

The data presented in section 5.4.2 has illustrated, that for this

study, the speedup should be calculated by comparing the parallel performance

to the mean of the serial performances of the actual machines used for that

run: for example, the mean of the serial performance of the ELC master and

1 ELC slave and 9 Classic slaves for the l 0-slave runs; the mean of the serial

performance of the ELC master and 9 Classic slaves for the 9-slave runs; and

CHAPTER 5. RESULTS AND DISCUSSION 83

so on. Therefore all the speedups presented in this section were calculated in

this way. In all cases the means were calculated from the results of the best 3

runs for each machine.

For each group of slaves, the graphs show the results grouped first

by the size of the sub-tasks (5000, 10000, 20000, 30000, 40000, 60000 and

120000 photons), and within these groups by the number of slaves for the run.

Thus the graphs for all task sizes are shown on the same graph.

5.5.1 Performance of "homogeneous" Sun ELC/Classic
group - 11 machines

~ 10000
c:
0
() 8000
~
c: 6000
Q)

E
i= 4000

2000

ELC/Classics
Elapsed time

I-- Elapsed time I
Figure 14: Elapsed times for "homogeneous" ELC/Classic group (grouped by task

size)

Figure 14 shows the elapsed times for the experiments with an ELC master,

with from 0 to I 0 Classic and ELC slaves, with the results grouped within sub­

task size. For each task size, the sub-graph shows the times for runs from 0 to

10 slaves.

The size of each sub-task is indicated in each header block, with

the number of slaves increasing from left to right within each sub-task size

group. Figure 14 shows that the times for all sub-task sizes are similar, with

slightly better times for a sub-task size of 40000 photons, and with the overall

CHAPTER 5. RESULTS AND DISCUSSION 84

shortest elapsed time for a task size of 40000 photons and l 0 slaves (l l

processors in all). In all cases, there is a regular decrease in total elapsed time

as the number of slaves is increased.

The speedup for the ELC/Classic group, as compared to perfect

speedup, is shown in Figure 15. Each curve refers to one task size as shown

on the horizontal axis. Each tick on the horizontal axis indicates an increase

in the number of slaves. For each task size the speedup is shown for runs from

0 slaves (serial run, speedup of 1) to 10 slaves, as compared to the perfect

speedup.

12

11
10

9
8

c.
7 ::J

"O
Q) 6
Q)
c. 5 en

4
3
2
1

0

ELC/Classics
Speedup vs Perfect Speedup

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

Increasing task size (No of slaves)

I~ Perfect Speedup ~Speedup (Means) I
Figure 15: Speedup for "homogeneous" ELC/Classic group (grouped by task size)

Figure 15 shows that initially the 5000 task size gave the best

speedup, with a speedup of nearly 5 for 6 processors. However, from 6 slaves

onwards (7 processors) the speedup deteriorates. This is because, for few

slaves, the master spends less time on communication, and therefore does far

more Monte Carlo work, with no communication overhead, so overall

efficiency is good. As the number of slaves increases, the master spends more

time on communication, and less on computation, so proportionately more

work is done by the slaves. For every task done by the slaves there is a

communication overhead, so overall efficiency is reduced, and the speedup is

not as good as for fewer slaves.

CHAPTER 5. RESULTS AND DISCUSSION 85

Figure 15 also shows that the best overall speedup is for the task

size of 40000 photons, with l 0 slaves, with a speedup of nearly 9 for 11

processors. This indicates that 40000 photons is the optimal task size, with the

best tradeoff between an efficient computation/communication ratio, and

efficient load balancing. For larger task sizes, the computation/communication

ratio will be better, as there is more computation per task, for the same amount

of communication. However, since the larger task sizes take longer to

complete, and the work is divided into fewer tasks, there is an increased

likelihood of processor idle time due to poor load balancing. For smaller task

sizes the load balancing will be good, because small tasks only take a short

time to complete. However, the computation/communication ratio will be bad,

because for smaller tasks there is only a small amount of computation per task,

but the amount of communication remains the same.

0.9

0.8

0.7

~0.6
c:

ELC/Classics
Efficiency

:§ o.
5 -+=?=J~=;;:::~:~ ~ ~ j:~~~~~:::j_ ~it~:~~ ~t,~::!~ ~l~~~[J ~ f!i~f[j_ ~ if!P~'. ffi 0.4

0.3

0:2

0.1

O-'t+i'+++H+l-+++H+++++<'+++H++++H-+++-H+++++1f+t+H+++++<t+tt+++t-+++t+tt++H+++-++++++++'
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

Increasing task size (No of Slaves)

j ~ Efficiency(Means) I
Figure 16: Efficiency of "homogeneous" ELC/Classic group (grouped by task size)

Figure 15 shows that, for the task sizes of 20000, 30000 and 40000

photons, the speedup is improving as the number of slaves increases. As

described in section 5.4.3, this is because for higher numbers of slaves there

is reduced swapping of Monte Carlo and communication code in and out of

cache for the master.

CHAPTER 5. RES UL TS AND DISCUSSION 86

The "steps" which occur on the graphs in Figure 15 for I 0000,

60000 and 120000 photons are probably due to imperfect load balancing,

where the work is not evenly divided between the processors, because the

number of tasks does not divide well between this number of homogeneous

processors.

Figure 16 shows the efficiency of Cloud, calculated from the

speedup as compared to the mean serial performance. In each case the

efficiency was obtained by dividing this speedup by the number of processors,

as discussed in section 5.3.

Each curve displays the results for the task sizes (in photons) given

in the shaded boxes. Within each task size group, tick marks on the horizontal

axis indicate the number of slaves used in each part of the experiment. This

graph shows the values for each task size (in photons), with the number of

slaves varying from 0 to 10.

As is expected from the speedups shown in Figure 15, Figure 16

shows that the efficiency for the task size of 5000 photons increases with the

increase in number of slaves up to 4 slaves. This is because for this small task

size the load balancing is very good, and there is little processor idle time.

From 5 slaves onwards the master has to process the results of at least 5

slaves. This takes longer than the time each slave takes to complete one task,

and communication delays begin to occur, leading to a decrease in efficiency

as the number of slaves increases. An efficiency of 0.8 is achieved for the

5000 photon task size with 4 slaves, but this is deceptive since from 5 slaves

onward the efficiency deteriorates for this task size. This indicates how an

initially promising efficiency can be seriously affected by increased

communication overheads, as the number of slaves increases.

Figure 16 shows that the efficiency for the larger task sizes

decreases initially, then remains fairly constant, before increasing again for

larger numbers of slaves. The initial decrease is because for 1 and 2 slaves the

master does from two-thirds to half of all the work, and for all tasks done by

the master there is no communication overhead, and therefore a high

efficiency. As the number of slaves increases and the master does fewer tasks,

the efficiency decreases, due to increased communication overhead. Then, as

the number of slaves increases, from 6 or 7 upwards, the master is more

continuously busy with communication, and consequently spends less time

swapping between Monte Carlo processing and communication. This results in

increased efficiency due to reduced swapping.

CHAPTER 5. RESULTS AND DISCUSSION 87

Figure 16 also shows that the best efficiency is for the smaller and

larger task sizes. For larger task sizes this is because there is more computation

for the same amount of communication overhead per task, whi~h gives a better

computation/communication ratio, and thus higher efficiency. For the smaller

tasks it is because the tasks take a shorter time to complete, so the load

balancing is better, with less processor idle time, and consequently better

efficiency.

In most cases the efficiency is approximately 0.65, and the best

efficiency achieved is nearly 0.8, for the task size of 40000 photons, with 10

slaves. Thus 40000 photons is the task size where there is the best tradeoff

between efficient load balancing and a good computation/communication ratio.

~ 0.0006
c:
0
(.)
Q)
en
.!: 0.0004
Q)

E
i= --- 0.0002 ..-.

ELC Master & Classic Slaves (Means)
Linear Speed

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 810 0 2 4 6 810 0 2 4 6 8 10 0 2 4 6 810 0 2 4 6 8 10
13579 13579 13579 13579 13579 13579 13579

No of Slaves (Increasing task size)

I-Sumof serial Linear Speed ~ 1 /ElapsedTime

Figure 17: Linear speed for "homogeneous" ELC/Classic group (grouped by task
size)

Figure 17 shows a Linear Speed graph for the ELC/Classic group.

This graph is visually similar to the speedup graph in Figure 15 (ELC/Classic

speedup) and gives much the same information, but is not dependent on

hardware considerations.

The deterioration in performance, as the number of slaves increases

beyond 4, can be seen clearly for the 5000 photon task size. Also, the

improvement in performance when the faster 10th (ELC) slave is added, is

CHAPTER 5. RESULTS AND DISCUSSION 88

clearly visible for the middle task sizes. This graph shows clearly that the best

performance is achieved for the 40000 photon task size, with I 0 slaves.

5.5.2 Performance of homogeneous Sun SPARCstation 1 +
group - 4 machines

SPARCstation 1 + Group (Means)
CPU and Elapsed time

22000~~~~~~~~~~~~~~~~~~~~~

20000

18000

en 16000
"C g 14000

~ 12000

.!: 10000

~ 8000
i= 6000

4000

2000

O...i.+-++-+-11-+-+-+-+-1-+-+-+-+-+-+-+-+-+-+-+-+-t-+-+-+-+-i1-+-+-+-+-+-+'
0123 0123 0123 0123 0123 0123 0123

Increasing Task Size (No of Slaves)

j-+- CPU time Elapsed time I
Figure 18: CPU and elapsed times for homogeneous SPARCstation l+ group

(grouped by task size)

Figure 18 shows the CPU time and elapsed time of the master workstation for

the SPARCstation 1 + group. The elapsed time is very close to the sum of the

CPU and system time, so this sum of CPU and system time is not shown on

this graph.

The CPU times in Figure 18 are very similar in all cases, but it is

very clear that there is a significant increase in system time for the smaller task

sizes, particularly the 5000 photon size, when there are many more messages

to be sent and received. This causes an increase in overall elapsed time. This

graph also shows a steady decrease in the elapsed time, as the number of

slaves increases, for all task sizes. Again the best time is achieved for a task

size of 40000 photons, with the maximum number of slaves (3 slaves, 4

processors in all). This suggests that, for this group of machines, the best

CHAPTER 5. RESULTS AND DISCUSSION 89

tradeoff between a good computation/communication ratio, and efficient load

balancing, is also achieved for the 40000 photon task size.

The longer elapsed times for the 120000 photon task size can be

attributed to increased processor idle time, due to inefficient load balancing for

this larger task size.

a.
:J

"O

3

Q) 2
Q)
a.

en

SPARCstation 1+ Group (Means)
Speedup·vs Perfect Speedup

0123 0123 0123 0123 0123 0123 0123
Increasing task size (No of slaves)

I-Perfect Speedup -+- Speedup (Means) I
Figure 19: Speedup for homogeneous SPARCstation l+ group (grouped by task

size)

Figure 19 shows the speedups calculated for the 4 processors of the

SPARCstation 1 + group. Only the speedup compared to the mean serial time

for the group is shown, since all machines have the same architecture, and

showed very similar serial performance, and can therefore be considered

homogeneous.

This graph shows good speedup for most task sizes. The speedup

for the task size of 40000 photons was nearly linear, with reasonable speedup

also obtained for the 30000 photon task size. For all other task sizes the

improvement in speedup deteriorates, as the number of slaves increases. For

the smaller task sizes this is due to increased communication, and for the larger

task sizes it is because of inefficient load balancing. The middle task sizes

have the best tradeoff between efficient load balancing, and a good

CHAPTER 5. RESULTS AND DISCUSSION 90

computation/communication ratio, and this is evident in the improved speedups

for these task sizes.

The best speedup of 3.09 for 3 slaves (4 processors) was for the

task size of 40000 photons, confirming that this was the best task size. The

worst speedups were for the task size of 5000 photons. This was due to the

large amount of message-passing for the 5000 photon task size.

SPARCstation 1+ Group (Means) .
Efficiency

1.1 ~~~~~~~~~~~~~~~~~~~~~---,

1

0.9

0.8

>.0.7
0
55 0.6

~ 0.5
Wo.4

0.3

-----x---\----\ ~ ~ --\ ~ ~ -h--
----- ---------~~--~\-----

--~~~~~-~~~~~- -~~~~-~~~~-~~~~~-~~~--~

0
·
2 i!~~~I _ ~):!~If ~ I~~~~':[J~~::~ ~ t~I(~ t~~~ ~ l~!~I 0.1

0-'+-+-+-+-+-+-+-+-+-+-l-+--+-l-1-+-+-+-+-+-+-1--+--+--if-+-+-+-+-+-+-+-+--+-'
0123 0123 0123 0123 0123 0123 0123

Increasing task size (No of slaves)

I-*- Efficiency(Means) I
Figure 20: Efficiency of homogeneous SPARCstation 1 + group (grouped by task

size)

The next graph, Figure 20, shows the efficiency calculated for this

group. These values are grouped together for each task size, with 0 to 3 slaves

for each task size.

The efficiency for one processor is marginally better than l,

because the serial performance of the master is very slightly better than the

mean serial performance of the 4 processors. Therefore, when the speedup is

calculated for 1 processor, as the serial performance for the master compared

to the mean serial performance for the group, this works out as just over 0.99

instead of 1, resulting in an efficiency marginally better than 1.

Figure 20 shows that the efficiency tends to decrease as the number

of slaves increases, but still improves as the task size increases. As described

for the ELC/Classic group in section 5.5.1, the best efficiency is achieved for

CHAPTER 5. RESULTS AND DISCUSSION

ELC/Classic, SPARCstation 1+ & SGls
Comparative Elapsed times

22500~~~~~~~~~~~~~~~~~~~~~

en

20000

17500

-g 15000
0
~ 12500
en
.s 10000
Q)

E 7500
t=

5000

2500

..x. -

.. - ,- .. - - - - - - - - ... - ... - - - .. - - - - - - - - - - - - - - - -

- - -~- - - - - - - - - - - - - - .. - - - ... - .. - - - - - - - - - - -

..... -x- - .. - - - - .. - - - - - - - ... - - - - - - .. - - - - - - -
: - -.. - - - - - - - - - .. - - -. - - - - - - - - - - - - - - - -

.

...._
- - --...i:-: :_j - - - - - - - - - - - - - - - - - -------

o~-i--~t-----1~--t-~---i-~-t-~-t-~-+-~-r-~+-~t--'
0 2 3 4 5 6 7 8 9 10

No of Slaves

I-+- ELG/Classic-~ SPARC 1 + --+ SGI I

91

Figure 21: Elapsed times for ELC/Classic, SPARCstation l+ and SGI groups
(40000 photon task size)

the middle task sizes, where the tradeoff between efficient load balancing and

a good computation/communication ratio is best. There are not enough slaves

available for this group to show whether the efficiency will improve again for

higher numbers of slaves, as described in section 5.5.1, for the ELC/Classic

group.

The efficiencies for this group are better than those for the

ELC/Classic group, being mostly better than 0.8, as compared to 0.65 to 0.8

for the ELC/Classic group. However, the elapsed times for the SPARCstation

1 + group are longer than those for the ELC/Classic group! To illustrate this,

the elapsed times for the ELC/Classic group, for the SP ARC station 1 + group,

and the SGI group, are shown in Figure 21. More details of the performance

of the SGI group will be given in section 5.5.3. Figure 21 shows the data for

the 40000 photon task size, because, for all three groups, the best results were

achieved for this task size. The number of slaves Is shown on the x-axis.

Figure 21 shows that the elapsed time to run Cloud on 4

SPARCstation I+ machines is almost the same as the time taken on I ELC and

2 Classics, and about four times as long as on I ELC master with 9 Classic

and I ELC slaves. This shows that, although good speedup and efficiency can

CHAPTER 5. RESULTS AND DISCUSSION 92

frequently be achieved for slow machines, as a result of a good

computation/communication ratio, this does not mean that the overall

performance is good, as the elapsed time may be long. It is therefore essential,

when evaluating performance, to consider the elapsed time, as ultimately the

shortest elapsed time indicates the best performance.

5.5.3 Performance of SGI group - 3 machines

Unlike the ELC/Classic and SPARCstation 1 +groups, the SGI group was not

homogeneous, as it consisted of a fast machine and two much slower

machines, with the Indigo2 master being nearly twice as fast as the two slower,

near homogeneous, Indigo slaves. These three machines were grouped together

merely because they were all Silicon Graphics machines, and because their

performance was so different from the two Sun groups.

Silicon Graphics (Means)
CPU and elapsed times

3200...-~~~~~~~~~~~~~~~~~~~--

3000
2800
2600
2400

~ 2200
g 2000
~ 1800
Cl) 1600
.S: 1400
~ 1200
·- 1000
I- 800

600
400
200

0 ..LJ_...,1_.L...J.....J.......1..---'--1.....J.......1-.J....-1-L--'-.J....-1-'--'-............ -'--'-............ _._....._.....__._.

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
Increasing Task Size (No of Slaves)

1-Elapsed time --- CPU time

Figure 22: CPU and elapsed times for SGI group (grouped by task size)

Section 5.2.1 described how the performance of the Indigo with

24 Mb memory deteriorated after it was moved from one room to another, and

that this performance was slightly worse than the other Indigo with 16 Mb,

when the reverse would be expected. This deterioration is largely ignored in

the graphs presented in this section, as the difference in the results was small,

CHAPTER 5. RESULTS AND DISCUSSION 93

and, if the network fault was corrected, it is expected that the other Indigo

slave would give nearly identical results. The graphs in this section therefore

show the results for 0, l and 2 slaves, with the results for l slave being those

of the Indigo slave that gave slightly better performance.

Figure 22 shows the CPU and elapsed times for 0, 1 and 2 slaves

for each task size. The sum of the CPU and system times is not shown, as this

is nearly identical to the overall elapsed times for this group (The difference

is less than l % of the elapsed time). Therefore the system time can be

interpreted as the difference between the CPU and elapsed times.

Figure 22 shows increased system time, and thus a longer elapsed

time, for both the 5000 photon task size when there are many more messages,

and also for the task size of 120000 photons, when load balancing is less

efficient for this larger task size. Again the shortest elapsed time is for the task

size of 40000 photons, with the maximum number of slaves. These results are

similar to those of the ELC/Classic and SPARCstation 1 + groups.

The elapsed times of the SGI group are compared with those of the

ELC/Classic and SPARCstation 1 + groups in Figure 21. This graph shows

that the shortest elapsed time, of approximately 28 minutes, for the 3 Silicon

Graphics machines, is almost identical to the shortest elapsed time for the ELC

master with 10 slaves. This shows how the same performance can be achieved

for two different groups, containing 3 and 11 machines respectively. The best

performance of the 4 SP ARC station 1 + machines is approximately 4 times as

long as this best performance for the SGI and ELC/Classic groups.

Some difficulties of calculating speedup for a heterogeneous system

are illustrated in Figure 23. This graph shows the speedups for the group of 3

Silicon Graphics machines, and illustrates how widely varying speedups may

be obtained, depending upon how the speedup is calculated. The speedups

shown are the speedup compared to the serial performance of the fastest

machine (the SGI2 master), the speedup compared to the mean of the serial

performance of the actual machines involved (1, 2 or 3 machines), and the

speedup compared to the serial performance of the slowest machine (SGI

slave). There is no line showing perfect speedup in Figure 23, as this would

hide the graph showing the speedup compared to the mean of the serial

performance of the machines used.

Figure 23 shows a speedup, compared to the serial speed of the

fastest machine (SGI2 master), of about 1.5 for 2 machines, and about 1.9 for

3 machines. This indicates how many Indigo2 Extreme machines would give

CHAPTER 5. RESULTS AND DISCUSSION

3

Silicon Graphics
3 measures of speedup

Q .

- - / - - - - -I - - - - -I

J I I
I

'

Q

- - - - - p

I

I
- - - "J"

0-'-+--+-+-t--t-+--+--+-+-t--t-+--+-+-t--t-+--+--+-+-t--t-+--+--+-+-+-'
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

No of Slaves (Increasing Task size)

I-+- Speedup (Fastest) - Speedup (Means) ...q Speedup (Slowest) I
Figure 23: Speedup for SGI group (grouped by task size)

94

the same performance. These speedups are poor, as is to be expected, seeing

that the master is approximately twice as fast as each slave. When the parallel

performance is compared to the serial performance of the slowest machine

(SGI slave), then there are superlinear speedups of about 1.8 for I processor,

about 2.6 for 2 processors, and approximately 3.4 for 3 processors. These

speedups show how many Indigos would give the same performance as this

group of I Indigo2 and 2 Indigos. This superlinear performance is due to the

difference in performance capability between the master and the slaves.

Yet, when the parallel performance is compared to the mean serial

performance of all the processors used, the speedup achieved is near perfect,

with a speedup of I for I processor, 2 for 2 processors, and 3 for 3 processors.

This good performance is primarily due to the large amount of cache and

memory in the master (8kb+8kb primary cache, I Mb secondary cache, and

128 Mb memory), so that there is no paging necessary, which means minimal

system time is needed, and a high efficiency is achieved.

These three speedups show that comparing the parallel performance

with the mean serial performance of the machines used gives a better

indication of the efficiency of a heterogeneous system.

CHAPTER 5. RESULTS AND DISCUSSION 95

As for the ELC/Classic and SPARCstation 1 + groups, Figure 23

also shows that the best speedups for the SGI group are for the middle task

sizes, where there is the best tradeoff between efficient load balancing and a

good computation/communication ratio. The poorer speedup for the smaller

task sizes is due to increased communication overhead, because of a larger

number of messages. For the larger task size, the lower speedup can be

attributed to poor load balancing ..

There is no graph showing the efficiency for the SGI group, since

the speedup graphs in Figure 23 show clearly that, if speedup is calculated by

using the mean of the serial performance of all processors used, then near

perfect speedup is achieved. This is tum means a near perfect efficiency of 1,

for all numbers of processors used, except for the task size of 120000 photons

when the efficiency is marginally less than 1.

5.5.4 Performance of heterogeneous groups of 3, 14 and 18
Sun & SGI machines

Altogether there were 18 Sun and SGI workstations used in the experiments

with Cloud. They were all used together to find the best overall performance

that could be achieved. This section presents the results of the experiments on

these heterogeneous groups.

The groups used, with the Silicon Graphics Indigo2 Extreme as master, were:

•

•

•

•

the other 2. SGI machines as slaves (as shown in section 5.5.3),

these 2 SGI machines, plus the 2 ELCs and 9 SP ARCclassics, as

slaves (13 slaves and 14 processors in all), and

these 13 slaves, plus the 4 SP ARC station 1 + machines, as slaves

(17 slaves, and 18 processors in all),

these 17 slaves, plus an 18th slave process running on the master,

in addition to the main process, so that the master workstation had

two processes running. (18 slaves, 18 processors in all).

The Silicon Graphics Indigo2 Extreme was used as the master

because this machine was different from all the others. This meant that for

each subset of slaves there were at least two with similar performance

capabilities, so the actual performance of like slaves in the heterogeneous

environment could be compared.

CHAPTER 5. RESULTS AND DISCUSSION

~ 2500
c:

~ 2000
en

.5 1500
Q)

E
i= 1000

500

Heterogeneous groups (Means)
CPU, System and Elapsed times

2

Increasing Task Size (No of Slaves)

2 - - -
18

l-1- CPU time -e CPU+System - Elapsed time I

96

Figure 24: CPU, system and elapsed times for heterogeneous groups of 2, 13, 17
and 18 slaves (grouped by task size)

The CPU time, sum of the CPU and system times, and elapsed time

for the master process, with these heterogeneous groups of slaves, are shown

in Figure 24. The system time is thus the difference between the graph

showing the sum of the CPU and system times, and the graph showing the

CPU time. All these values are shown, so that the time when the master is

swapped out can be seen as the difference between the· elapsed time, and the

sum of the CPU and system time. The results are grouped together by task

size, with the numbers of slaves shown next to the markers.

Figure 24 shows that there is a decrease in elapsed time, as the

number of slaves increases from 2, to 13 and 17 slaves. However, when an

18th slave process is run on the master workstation the performance

deteriorates, and becomes worse than that for 1 7 slaves. The increase in the

'gap', between the overall elapsed time and the sum of the CPU and system

time, shows the time when the master process was swapped out, in favour of

the slave process. There is also an increase in the amount of system time for

the master, when a slave process is running on the same machine.

These results show, as would be expected, that it is more efficient

for a master to do "slave work" within the master process, than to run a

CHAPTER 5. RESULTS AND DISCUSSION

Heterogeneous groups (Means)
Speedup vs Perfect speedup

18-m:::~~lf-r.:::=~.,;:;~~~~r-..~:=::~~~~"'*"'~=<'>',,,..,
17~~w
16
15
14
13
12

a.11 .a 10
Q) 9
8.. 8

en 7
6
5
4
3
2
1
o..._~~~~~~~~~~~~~~~~~~~~~----'

Increasing Task size (No of Slaves)

I-Perfect Speedup ""*"" Speedup I

97

Figure 25: Speedup for heterogeneous groups of 2; 13, 17 and 18 slaves (grouped
by task size)

separate slave process on the same machine. This can probably be attributed

to increased overheads due to context switching between processes on the same

processor, and also the increased overheads due to interprocess communication

whenever the master communicates with the slave on the same machine.

However, these results were obtained at the end of the cycle of experiments.

This data is included here because it was collected, but further work is

necessary to prove this.

Section 5 .4 has shown that speedup is inappropriate for evaluating

the results of a heterogeneous system. However, the speedups for this

heterogeneous group are shown in Figure 25, so as to indicate some of the

difficulties in using speedup as a measure of parallel performance. Figure 25

shows the speedups obtained for these four heterogeneous configurations. The

task size for each set of curves is indicated in the shaded block at the top. The

numbers of slaves are shown next to the markers.

Section 5.5.3 has shown that, when evaluating the efficiency of a

heterogeneous system, the speedup should be calculated by comparing the

parallel performance with the mean of the serial performances of the

processors used, as this is most representative of the optimal performance that

CHAPTER 5. RESULTS AND DISCUSSION 98

can be expected from a heterogeneous system. Thus, the speedups for

Figure 25 were calculated this way. For example, the mean serial perfonnance

used for calculating the speedup of the runs with 13 slaves (14 processors) was

calculated as the mean of the serial perfonnance of the SG Indigo2 master, the

other 2 SGls, the 2 ELCs and the 9 Classics. For the runs with 17 slaves, the

value was the mean of the serial perfonnance of all 18 workstations.

Figure 25 suggests that the speedup up to l 7 slaves was near linear.

However, remaining results in this section will show that this is not a valid

representation of the parallel perfonnance.

As was shown in 5.5.3, Figure 25 shows that the speedup for 2

slaves (3 processors) is close to 3, which is near perfect. A good speedup of

just over 11 for the group with 13 slaves (14 processors) is shown for most

task sizes, with a speedup of just over 10 for the remaining task sizes.

The best speedup for this group of 13 slaves was for the task size

of 20000 photons, whereas for the ELC/Classic group alone the best speedup

was for the 40000 photon task size. This can be attributed to the disparate

perfonnance of the processors in the heterogeneous group. For the

ELC/Classic group all the processors had very similar perfonnance, so they

would be expected to finish almost at the same time, even for larger task sizes,

such as 40000 photons. However, there is a wide difference in the perfonnance

of the processors comprising the heterogenous group of 14 processors, with the

master being about four times as fast as a Classic, and the other SGis more

than twice as fast as an ELC or Classic. This means that, if the load balancing

is such that some processors finish before other slower processors, there may

be considerable processor idle time while waiting for the slower processors.

Therefore, for a heterogeneous group, where the perfonnance of the processors

varies widely, better load balancing, and therefore better perfonnance, can be

achieved with a smaller task size such as 20000 photons.

Figure 25 shows that a similar, but slightly lower, speedup of

approximately 11, for 13 slaves, was also achieved for the 40000 and 5000

photon task sizes. For the 40000 photon task size, this was because of the

better computation/communication ratio for the larger task size. The good

speedup for the 5000 photon size, as compared to the poor speedups for this

task size for the homogeneous ELC/Classic and SPARCstation 1 + groups,

illustrates one benefit of a heterogeneous system. In a homogeneous system,

all processors will finish each task at approximately the same time, and this

may lead to communication bottlenecks, both with clashes on the network,

CHAPTER 5. RESULTS AND DISCUSSION 99

and also there may be delays caused by the master having to process results

from all slaves at the same time. In a heterogeneous network the processors

have different performance capabilities, and this will mean that the slaves will

finish their tasks at different times, thus staggering the impact on the network

and the master. This is shown in the good speedup for the 5000 task size for

13 heterogeneous slaves, where the benefit of good load balancing, for the

small task size, outweighs the disadvantage of a poor

computation/communication ratio, because the communication is staggered.

Since part of this study was to establish the optimum task size, the task size

remained constant throughout each run. However, some possible solutions that

will reduce these communication bottlenecks are suggested in section 6.7.3 and

section 6.7.4.

Figure 25 becomes misleading when showing the speedup for 17

heterogeneous slaves. Speedups of up to about 14 are shown for the group of

17 slaves, with the speedup calculated as compared to the mean serial

performance of these 17 slaves and the master. However, this improvement in

speedup is deceptive, as is seen when the elapsed times for these runs are

studied. These mean elapsed times, in seconds, are shown in Table V.

Table V: Comparison of elapsed times for 13 and 17 heterogeneous slaves

Task size Elapsed time Elapsed time Difference
(photons) 13 slaves 17 slaves (seconds)

[Std dev] [Std dev]

5000 1070 [23] 1056 [14] 14

10000 1155 [34] 997 [16] 158

20000 1065 [37] 979 [18] 86

30000 1122 [6] 1001 [7] 121

40000 1088 [27] 1038 [36] 50

60000 1126 [68] 1111 [23] 15

120000 1141 [7] 1267 [42] -126

Table V shows that adding four slow machines to the group of

slaves is of very little benefit, and that almost the same elapsed times can be

achieved without these processors. This is because the four SPARCstation l +

machines are so slow that they do almost none of the work, and almost all of

the work is completed by the faster processors.

CHAPTER 5. RESULTS AND DISCUSSION 100

The values in Table V show that the runs with 13 slaves and 17

slaves have very similar elapsed times. Any improvement achieved by using

17 slaves is minimal, and in the case of the 120000 photon task size the

elapsed time with 17 slaves is 126 seconds slower than that with 13 slaves.

This amount is not trivial, and compared to the elapsed time of 1141 seconds,

for 13 slaves, it is 11 % slower. Yet the speedup shown in Figure 25, for this

task size, still shows an improvement! This shows how speedup can be

deceptive when evaluating performance. The differences in the elapsed times,

for the two groups of 13 and 17 slaves, are very similar to the standard

deviations, in seconds, of the means of 3 best elapsed times (as shown in [] in

Table V). In some cases the difference in elapsed time is less than the standard

deviation. This shows that there is no significant improvement to be gained by

adding the 4 slow SPARCstation 1 + slaves. For the largest task size, it was

actually detrimental to overall performance to use these four slow machines.

The poor performance of the largest task size illustrates how poor

load balancing on a disparate heterogeneous system can seriously affect

performance. For example, for the task size of 120000 photons there are only

50 tasks to be shared between 17 heterogeneous slaves and the master. Cloud

initially sends two tasks to each slave, so as to ensure that, immediately after

returning the results of the previous task, each slave has a spare task ready to

process. So, for 50 tasks and l 7 slaves, the master would initially send out 2

tasks per processor, 34 in all. This means that 8 tasks, 2 per processor, are

committed to the 4 slow SPARCstation l + machines. In the time that each of

· the SPARCstation l + takes to complete l task, each of the SGI slaves can

complete 4 tasks, and each of the ELCs and Classics about 1.5 tasks each. This

means that the remaining 16 tasks (50 less the 34 tasks originally sent to the

slaves) are completed by the faster slaves before the SPARCstation 1 +

machines have finished their second task. And since the time for a

SPARCstation 1 + to complete one task of 120000 photons is about 6 to 7

minutes, this could mean that the faster slaves may finish up to about 6

minutes before the SPARCstation l + slaves, and this is inefficient, and causes

an unnecessarily long elapsed time. In this case the technique of sending a

spare task to each processor is not beneficial, and actually results in a longer

elapsed time.

Performance can be improved by reallocating the final tasks from

slower to faster processors, which will complete these tasks in a shorter time.

Cloud was written to do this, as described in section 3.3.6. However, to

- - - - - - - --- ----------------

CHAPTER 5. RESULTS AND DISCUSSION IOI

evaluate performance the same amount of work should be done in each run,

so for these performance tests the feature to reallocate tasks to faster

processors was not implemented, as this would have meant that some tasks

were duplicated, and the total amount of work would have varied from run to

run. This is discussed further in section 6. 7. I.

The other important point, illustrated by Figure 25, is that running

a separate slave process on the same processor as the master is detrimental to

performance. The speedup, in this case, is calculated by comparing the parallel

performance for 19 processes (I master, 17 slaves on other machines and I

slave on the same machine as the master), with the mean serial performance

of the 18 processors used. Figure 24 shows that, in all cases, the elapsed times

for the runs with the 18th slave process on the master's machine were longer

than those for the 17 slaves.

Figure 25 shows clearly the deterioration in speedup for the runs

with 18 slaves. This shows that the overheads of running two processes on the

same processor are such that it is more efficient for the master to do slave

work in the master process, than for the master process to run a separate slave

process on the same processor.

Figure 25 has shown that speedup is not valid for evaluating the

performance of a heterogeneous system. As an alternative, Figure 26 shows a

linear speed graph as proposed by Crowl. Figure 26 illustrates the benefit of

using a hardware-independent means to show parallel performance.

Figure 26 gives a much better idea of the actual parallel

performance achieved for this group of heterogeneous workstations than the

speedup graph in Figure 25. Figure 26 shows clearly the divergence between

the actual performance and the best possible performance, as depicted by the

line showing the sum of the serial linear speeds.

The lack of improvement in performance, for most task sizes, when

the four SPARCstation 1 + slaves (slaves 13 to 17) are added is clearly visible.

Even when there is some improvement in performance when these four slaves

are added, for the task sizes of 10000, 20000 and 30000 photons, Figure 26

shows that this improvement is very small, and this is more representative of

the actual parallel performance than the good speedup shown in Figure 25.

Also, Figure 26 correctly shows a deterioration in performance for

the 120000 photon task size for 17 slaves, as opposed to the speedup graph in

Figure 25, which shows an improvement in speedup for this case! The

deterioration in performance for 18 slaves (with 1 slave process on the same

CHAPTER 5. RESULTS AND DISCUSSION

Heterogeneous groups (Means)
Linear Speed

0.0018 ~--------------------~
0.0017
0.0016
0.0015

(i)0.0014
-g 0.0013
0 0.0012
~ 0.0011
(I) 0.001
.!:: 0.0009
Q) 0.0008
E 0.0001
i= 0.0006
:::::- 0.0005
..... 0.0004

0.0003
0.0002
0.0001 .l!M""' .. ""·,.,.""/.""" -

0

Increasing task size (No of Slaves)

I-Sum of Serial Linear speeds --- 1 /ElapsedTime

102

Figure 26: Linear speed for heterogeneous groups of 2, 13, 17 and 18 slaves
(grouped by task size)

processor as the master) is clearly evident.

Linear speed graphs are independent of hardware, and the number

of processors or processes used, and are therefore perhaps a more reliable

method of portraying the parallel performance of a heterogeneous system, than

a conventional speedup graph, which may be misleading.

The linear efficiency for this group of 18 heterogeneous processors

is shown in Figure 27. For this graph the linear efficiency was calculated by

dividing the linear speed achieved in the experiments, by the sum of the serial

linear speeds of all processors used, where this sum represented the total

potential performance capability of the system. Figure 27 shows that a high

efficiency of approximately 0.9 was achieved for the two Indigo slaves. This

dropped to a range of 6.0 to 6.5 when the ELC and Classic slaves were added

(slaves 3-13). This graph also shows very clearly the deterioration in

efficiency, to about 0.6, for most task sizes when the four SPARCstation 1 +
slaves are added (slaves 14 to 17), and even more so the poor efficiency of

0.35 to 0.5 when a slave process is run on the same processor as the master.

The linear speed graph in Figure 26, and the linear efficiency graph

in Figure 27 are therefore much more representative of the true parallel

,. J,

CHAPTER 5. RESULTS AND DISCUSSION

Heterogeneous groups (Means)
Linear Efficiency

Increasing task size (No of Slaves)

I-*"" Linear efficiency I

103

Figure 27: Linear efficiency for heterogeneous groups of 2, 13, 17 and 18 slaves
(grouped by task size)

performance of this heterogeneous group, and suggest that linear speed, as

proposed by Crowl, and linear efficiency, as suggested in this dissertation,

should be used to evaluate the performance of a parallel system, in preference

to the conventional methods of speedup and efficiency, which give misleading

. results for a heterogeneous system.

5.6 Factors affecting parallel performance

There are a number of factors which may affect parallel performance. These

include the costs of starting up slave processes, the amount of memory used,

load balancing and granularity, overlapping communication with computation,

and the number and size of messages. This section describes the quantitative

impact of these factors as shown by the results of experiments.

5.6.1 Startup costs

The time to start up slave processes can sometimes be a significant proportion

of the overall elapsed time [Minn93]. If this time is minimized, then

CHAPTER 5. RESULTS AND DISCUSSION 104

performance can be improved. This section shows that, for Cloud, the startup

costs can be considered negligible for the number of slaves used in these

experiments, although for more slaves it may be necessary to investigate

whether the startup time could be reduced, perhaps by using the p4 secure

server.

To determine the overhead involved in starting up slaves for Cloud,

the first executable statement of the program was changed to exitO, so that the

program would terminate immediately after starting up. No other changes were

made to the program, so the size of the executable remained the same, and the

startup costs measured would be realistic.

Table VI: Startup costs for each group of slaves

Group ~ ELC/Classic SPARCstation I+ SGI
No slaves J, (Seconds) (Seconds) (Seconds)

I 4.80 (0.91) 2 (0) 1.5 (0.07)

2 8.87 (1.15) 5 (0) 2.9 (0.3)

3 12.87 (1.26) 7 (0) -
4 17.20 (l.17) - -
5 22.00 (1.63) - -
6 25.00 (1.21) - -
7 30.93 (2.51) - -
8 36.27 (4.01) - -
9 43.00 (5.34) - -
10 44.40 (3.86) - -

This section shows the startup costs for each group of machines.

For each experiment the master started up groups of slaves containing from 1

slave to the maximum number of slaves in the group and then terminated.

Slaves terminated immediately they were started. These runs were repeated 20

times, for each number of slaves, for each group. The times shown in Table VI

are thus the mean time needed to startup and closedown the processes. The

values shown in brackets, (), are the standard deviations in seconds.

Table VI shows that to start up the slaves in the ELC/Classic

group took approximately 4-6 seconds per slave, and those in the

SP ARC station 1 + group needed about 2 seconds per slave. The SGI machines

showed that to start l machine as a single slave took less than 2 seconds, and

to start both slaves was about 3 seconds.

These startup times are a very small fraction of the overall elapsed

times of the experiments described in section 5.5. For the ELC/Classic group

CHAPTER 5. RESULTS AND DISCUSSION 105

with l 0 slaves, the startup time is less than 3% of the elapsed time. For all

numbers of slaves less than 10, the fraction of startup time is an even smaller

percentage. Even when 17 slaves are started up by the SGI2 master, the startup

time is less than 5% of the elapsed time. In most cases the time for starting up

slaves is less than the variation in the elapsed times when the same experiment,

with the same number of slaves, and the same task size, is repeated. This

suggests, that for these experiments with Cloud, that little would. be gained by

optimizing the starting of slaves, by such means as using the p4 secure server.

5.6.2 Load balancing and granularity

Parallel performance can be seriously affected by the load balancing. When the

load balancing is good, all processors finish at almost the same time. If it is

poor, there may be increased processor idle time as some processors finish

before others. Bad load balancing is most likely to happen on a heterogeneous

system, where some processors are faster than others. As described in section

3.3.7 Cloud implements dynamic load balancing, to compensate for the

different performance capabilities of the processors used.

As shown in section 5.5, the best performance for Cloud is when

there is the best tradeoff between efficient load balancing, and a good

computation/communication ratio. Load balancing is best for small task sizes,

when there is least processor idle time, as all processors finish at almost the

same time. However, the best computation/communication ratio is usually for

larger granularity, when there is more computation for the same amount of

communication.

The results in section 5.5 show that, for Cloud, the best

performance is for a granularity of 40000 photons, for the homogeneous

groups, and for a granularity of 20000 photons, for the heterogeneous groups.

These were the granularities with the best balance between the optimal load

balancing for task sizes of 5000 photons, and the most efficient

computation/communication ratio for the largest task size of 120000 photons.

To show the efficiency of the load balancing for Cloud, the

following extra measurements were recorded, as well as recording the CPU

time, system time and elapsed time using the Unix time function. The p4 timer

was used to measure:

•

•

the total elapsed time for each processor,

the time spent on Monte Carlo work, and

CHAPTER 5. RESULTS AND DISCUSSION 106

• the time each processor spends waiting for messages which have

not yet arrived.

In addition, the number of tasks executed by each processor are counted.

The time spent on communication by each processor was calculated as the

difference between the total execution time, and the sum of the computation

time and the time spent waiting for messages.

This section uses these results to show the efficiency of the load

balancing for the ELC/Classic group, which was the largest homogeneous

group available. It is easier to show good load balancing with a homogeneous

group, as all processors would be expected to do the same amount of work,

and to finish at approximately the same time.

-•1ttl11f:ll11
350

300

~ 250
(/)

~ 200

0 150

~ 100

50
0

Explanatory Graph
Total number of tasks per slave

Figure 28: Explanatory three-dimensional bar graph.

In the description that follows in this chapter, some three dimensional bar

graphs will be used to illustrate certain points. An annotated example of one

of these is shown in Figure 28, and described in detail, to assist the reader in

interpreting these graphs.

The directions left, right, front and back were arbitrarily chosen as

indicated in Figure 28. All further discussion will follow this convention.

CHAPTER 5. RES UL TS AND DISCUSSION 107

The vertical axis shows the number of tasks executed, as recorded

at each event. The height of each bar is proportional to the number of tasks

executed by each slave.

The axis on the left shows the master (against the back wall), and

the individual slaves (towards the front). Slaves that received their tasks first

are shown nearer to the back wall, and the slaves that received their tasks last

are shown near the front. This also reflects the order in which the slaves were

started up, with the slave closest to the back wall being the first slave started

up, and the slave closest to the front being the last slave started up.

The front axis of the graph denotes task sizes ranging from 120000

photons on the left to · 5000 photons on the right. In this graph only one sub­

series is shown, but in all subsequent graphs many sub-series like this are

shown on the same graph, one for each number of slaves in the experiment.

Figure 28 shows that the slaves that received their tasks first

execute more tasks than those that receive their tasks later, and that this effect

is decidedly more pronounced for smaller task sizes than for larger task sizes.

.s:
Q)

E
~

ELC/Classics - 5 messages
Total Execution time per slave

Figure 29: Total execution time for each processor of ELC/Classic group (grouped
by number of slaves)

Figure 29 shows the total elapsed time for each of the processors

in the ELC/Classic group, from startup to closedown, for each run. The times

CHAPTER 5. RESULTS AND DISCUSSION 108

for the master are the bars along the back wall of the graph. For each group

of slaves, the row of bars on the right is for the task size of 5000 photons,

with one row for each task size, with the task size increasing towards the left.

In Figure 29 it is the overall impression that is important, rather

than the detail. Each row of vertical bars shows the elapsed times for each

processor in each run. This graph is illustrating that, for each run the heights

of the bars are nearly identical in height, thus indicating that the load balancing

was good, with almost exactly the same elapsed time for each.of the processors

in any particular run. As would be expected, the runs for the smaller numbers

of slaves took longer than those with more slaves.

c: 300
0

~
·~ 250
>
VJ
-g 200
0
CJ
Q)
VJ 150 -0 ,_

ELC/Classics
Load Balancing

~ 1 00 -
E
:::I
z 50

~0~0~0111l!R!1!1~1~o~oo~ol!llll(ff~2ijoo~o~off11Hl!i!~3~00~0~0Hlffllffl~4~00~0~0Hffllffll~s~oo~oijoitffl!l~12~0~00~0~H!lffffHP
No of Slaves (Increasing Task Size

Figure 30: Standard deviation in total execution time, in seconds, for processors of
the ELC/CJassic group (grouped by task size)

The efficiency of the load balancing is illustrated in Figure 30. The

mean and standard deviation of the actual execution times for all 11 processors

used in each run was calculated. The standard deviation, in seconds, for these

runs is shown in Figure 30, grouped according to task size.

Figure 30 shows that, as expected, the load balancing for the small

task size of 5000 photons is very good, with almost no variation in total

execution time for the processors. As the task size increases, there is more

variation in the time taken by the processors to complete execution. However,

CHAPTER 5. RESULTS AND DISCUSSION 109

in most cases (except for the largest task size) the variation is still less than I

minute, which for practical purposes can be considered an acceptable waiting

time. For the five smaller task sizes this variation, is less than 2% of the total

execution time. For the 60000 task size it is about 4%, and for the 120000 task

size it is about 6%.

ELC/Classics - 5 messages
Amou~t of work per slave ·

Figure 31: Total amount of work done by each processor of ELC/Classic group
(grouped by number of slaves)

The next graph, Figure 31, shows the number of tasks executed by

each processor. Again the values for the master are along the back wall of the

graph, and the rightmost row, for each number of slaves, is for the task size

of 5000 photons, when there are 1200 tasks in total to be executed. This graph

shows the actual number of tasks executed, because this is clearer than

showing percentages. In total there were 1200, 600, 300, 200, 150, 100 and 50

tasks, for runs with the task sizes 5000, 10000, 20000, 30000, 40000, 60000

and 120000 photons respectively. The same total amount of 120000 photons

is processed for each run.

Figure 31 shows that all slaves do approximately the same amount

of work per run, which shows that the load balancing was good. For smaller

number of slaves the master does far more tasks than any of the slaves, even

though its serial performance is very similar to that of the slaves. This is

CHAPTER 5. RESULTS AND DISCUSSION 110

because for small numbers of slaves the master does not spend so much time

on communication as it does for more slaves, and therefore has more time

available for Monte Carlo work. And when the master executes a task it has

no communication overhead, so it can execute more tasks than can be executed

by a slave in the same time.

(/)

-0 c
0
0
cu

ELC/Classics (Means)
Average Waiting time for Task

3 -

(/)2 ---------------------- -------------
.£:
cu
E
i=

1 - - - - - - - - -

3 4 5 6 7 8 9
No of Slaves - Increasing Task Size

Figure 32: Mean waiting time in seconds, for each processor of ELC/Classic group
(grouped by number of slaves)

The average waiting times per task, for each slave, are shown in

Figure 32. Apart from 3 exceptions, no slave had to wait longer than 2 seconds

for a message from the master, and in most cases for less than 1 second. The

waiting time increased as the number of slaves was increased, and also as the

size of the task was increased. This shows that, with more slaves, there may

be a slight delay when the master is busy with communication. The increase

in waiting time, as the size of the task increases, is probably due to the master

working on tasks itself, in between handling communication. If a result arrives

immediately after the master has commenced a task, this result will not be

processed, and a new task will not be sent to the slave, until the master has

finished its own Monte Carlo task. However, this graph shows that the policy

of overlapping communication with computation, so that every slave has a

CHAPTER 5. RESULTS AND DISCUSSION 111

spare task waiting, as described in sections 3.3.4 and 4.11, is generally

sufficient, and there are no long delays.

Some of the waiting time could also be attributed to the cost of

starting up all slaves at the beginning of the program, when some slaves are

ready to receive tasks before the master has actually sent any. There is no

easy way to avoid this, since p4 starts up all slaves in the process group file

in one operation, and this must be done before any messages can .be sent to the

slaves.

5.6.3 Overlapping communication with computation

It was proposed, in sections 3.3.4 and 4.11, that the efficiency of a program

could be improved if no processor has to spend time waiting for a message,

before it could continue working. To investigate this, experiments were

conducted where the master initially sent each slave either l, 2, 3 or 4 task

messages. If l task message was sent, the slave would do this task, then send

the results to the master, and then have to wait for the master to send it a new

task. If 2 task messages were sent, then, whenever a slave had sent the results

of the previous task to the master, it already had the next task waiting in its

message-buffer, and could continue working immediately. Meanwhile, the

master would process the results of the previous task, and then send the next

task to the slave, and ideally this new task would arrive before the slave

finished processing its current task.

Each of the two cases, where the slave had no spare messages, and

1 spare message, was tested. In addition, 3 or 4 task messages were sent to

each slave, so that the slave would have 2 or 3 spare tasks, to see whether any

further improvement could be gained, in case the master had not sent the next

task in time. Since the number of messages to be sent to each slave was a run­

time parameter, the same executable was used for all experiments.

For each of these experiments runs were conducted for all task

sizes, but only for the ELC/Classic group of 10 slaves. This is because this

was the largest number of homogeneous slaves possible, and would keep the

master busiest, thus increasing the chances that the master would not send a

task to a slave on time, and a slave would have to wait. This homogeneous

group was used for this experiment because it was easier to assess the impact

on performance where all slaves were similar. If this experiment was run using

CHAPTER 5. RESULTS AND DISCUSSION 112

the heterogeneous group the results may be confused by other factors arising

from the disparate nature of the slaves.

ELC /Classics - Task messages sent
CPU, System & Elapsed Time

3000 • ~ ll1 •

2500 ~--------------- ----- --------

(/)

-g 2000 -/'v,,(o_ -~--~ -~ 0
0
Q)

~ - - - - - - rs>. -~:Ir/_ - ->,i~ ---Cf) 1500
.s
Q)

- - - - - - - - -~- - - - - - - - - - - - - - - - - - -E 1000
i=

500 - - - - - - - I

~ ~
0

5000 20000 40000120000 5000 20000 40000120000 5000 20000 40000120000 5000 20000 40000 120000
10000 30000 eoooo 10000 30000 eoooo 10000 30000 60000 10000 30000 60000

Increasing Task Size (10 Slaves}

I-+- CPU time ~ CPU+System - Elapsed time I
Figure 33: CPU, system and elapsed times of the Master, for different numbers of

task messages sent, for ELC/Classic group (grouped by number of
messages sent)

Figure 33 shows the CPU, system and elapsed times for runs with

1, 2, 3 and 4 task messages (0, 1, 2 and 3 spare messages) being sent to the

slaves. The number of task messages sent is shown in the small grey boxes

near the top of the graph. All data is for a group of 10 slaves, with the data for

each task-message queue length shown for increasing task sizes.

The shortest elapsed times were achieved for a queue length of 2,

where each slave had 1 task to work with immediately, and 1 spare task to

work with as soon as it had sent the results of the previous task to the master.

The times when there were no spare tasks, and the slave always had to wait

for the next task, were by far the worst times. The times with no spare tasks

were from 15% to 48% longer than the elapsed times with 1 spare task.

Also, the elapsed times when the slaves were sent 3 or 4 tasks were

worse than those for queues of 2 tasks. This is partially because the master had

to send out 3x10 tasks, and 4x10 tasks, respectively before it could even begin

processing, and by that time the first result messages were arriving, so the

master did not have time to do Monte Carlo work. And then, since each slave

CHAPTER 5. RESULTS AND DISCUSSION 113

had a queue of 2 or 3 spare tasks, this meant that no other processor could

execute these tasks, as the feature to reallocate tasks from slower to faster

processors was not implemented (see section 3.3.6). So the master would

possibly have to wait for I or more slow slaves to finish the assigned tasks,

while other faster processors finished earlier, and the load balancing would be

poor.

The results of the serial runs described in section 5.2.l clearly show

that there is so little system time for the serial runs that it is negligible. This

suggests that for the parallel runs the system time is almost entirely due to

parallel overheads, most of which are communication. Thus, in Figure 33, the

increase in system time, and decrease in CPU time, for the master, for the

cases where 3 or 4 messages are sent, clearly shows that the master spends

more time on communication, than on Monte Carlo computation.

ELC/Classics - Task messages sent
Waiting times

~ 3000 .----g=g.,,...:::~ --------,,111-··· . .--------,.,.llJ-.,:r.----~~-.... -----,
8 2500
Q)

~
Q) 2000
> ca
~ 1500
CD a.
~ 1000 - ::

:;::::;

1 ()()()() 30000 60000 1 ()()()() 30000 60000 1 ()()()() 30000 60000 1 ()()()() 30000 60000
5000 20000 40000120000 5000 20000 40000120000 5000 20000 40000120000 5000 20000 40000120000

• Master B Slave10 • 9
ml5 .4 .3

Increasing Task Size

Figure 34: Waiting times of processors, for different numbers of task messages sent,
for ELC/Classic group (grouped by number of messages sent)

The time each processor spends waiting for messages was

measured. Figure 34 is a stacked bar graph showing the total waiting times for

all processors for all runs. The numbers of tasks sent to each slave are shown

in small grey boxes near the top of the graph. Each shaded section of each

stacked bar represents the length of time spent waiting by a slave or master

CHAPTER 5. RESULTS AND DISCUSSION 114

process. The waiting time for the master is the dark-shaded bottom section of

the bar, with the waiting times of the IO individual slaves above. The total

height of each bar shows the total waiting time of all processes for a run.

It is evident that there is least waiting time when 2 tasks are sent

to each slave, l to work on and l spare one. But, it is interesting to see that

there is almost as much waiting time, and sometimes more, where the master

sent 3 or 4 tasks to each slave, than when it only sent l task, and the slave had

to wait for its next task. This can happen when the master is so busy sending

out the initial 3 or 4 tasks per slave, that results return from the slaves before

it has finished sending out the initial tasks. From then on, it is so busy

processing results that, for the smaller tasks sizes, the slaves finish their work

first, and eventually have to wait for the master. For the larger task sizes the

slaves have to wait less. For the smaller task sizes the master is so busy that

it has almost no waiting time.

The long waiting times for the master, for the large task sizes, in

the cases where 3 and 4 tasks were sent to each slave, illustrate the point that

the master has to wait a long time for the slaves to finish the last 3 or 4 large

tasks in the queue, and this is wasted time for the master. It would be more

efficient if the master could have shared this work, as described in

section 6. 7. l.

Figure 35 shows the amount of work done by each processor. Each

shaded section of each stacked bar represents the number of tasks executed by

a slave or master process. Each whole bar represents the total number of tasks

for each run, that is, 1200 tasks for the 5000 photon task size, down to 50

tasks for the 120000 photon size which explains the difference in height of the

bars. This graph shows that, as expected for a homogeneous group, the load

balancing for all runs was fairly good, with each slave doing approximately the

same amount of work.

The most important point to see from Figure 35 is that, when 1 or

2 tasks are sent to each slave, the master does at least as many, and sometimes

more, tasks than the slaves. When 3 or 4 tasks are sent to the slaves, the

master does no tasks at all. This is inefficient for two reasons. First, it is more

efficient for the master to do a task, than for a slave, as the master has no

communication overhead, so can execute more tasks in the same time. Second,

if there are 2 or 3 spare tasks in the queue for each slave, once the master has

despatched the last task to the slaves, it waits idle until all these tasks have

been executed by the slaves. Figure 34 shows how the master spends more

CHAPTER 5. RESULTS AND DISCUSSION

Q)

>
C'tS

en ...
Q)
a.
~
(/)
C'tS .._
0 z

1200

1000

800

600

400

200

0

ELC/Classics - Task messages sent
No of tasks per process

5000 20000 40000, 20000 5000 20000 40000120000 5000 20000 40000, 20000 5000 20000 40000, 20000
, ()()()() 30000 60000 , ()()()() 30000 60000 , ()()()() 30000 60000 , ()()()() 30000 60000

Increasing Task Size (10 Slaves)

•Master 1111Slave10 • 9
ns .4 .3

115

Figure 35: Amount of work done by each processor, for different numbers of task
messages sent, for ELC/Classic group (grouped by number of messages
sent)

time waiting, as the size of the task increases.

Thus, the best load-balancing is achieved when each slave is sent

2 task messages, and having too many tasks "committed" for execution by a

specific slave is detrimental to efficient load balancing at the end of the run.

Also, the smaller task sizes execute too quickly for the corresponding results

to be processed in the same time. So the tasks should be large enough, that the

master has enough time to process the results for all slaves in the time the

slaves take to execute one task. Thus, having only one master to control a

large number of slaves can be a bottleneck, and cause a reduction in efficiency.

This could be solved by increasing the task sizes, but this would also cause

poor load balancing, as a larger task takes longer to complete. Alternatively the

program could be redesigned so that there are several "cluster masters", each

administering a sub-group of slaves, and one overall master to collate the

results from these "cluster masters". There would then be less chance of

communication bottlenecks as each "cluster master" would only have to

administer a few slaves. This is discussed further in section 6. 7 .2.

CHAPTER 5. RESULTS AND DISCUSSION 116

5.6.4 Changing the number and size of messages

As described in section 4.12, two .versions of the program were tested to see

if there was an improvement in performance if one longer message was sent,

instead of several shorter ones. In one version, the results were returned in five

different results messages, and in the other, in a single results message, with

the same amount of data being returned in both cases. Apart from this

difference, the two versions of the program were identical.

Most of the experiments with Cloud used the version returning five

results messages, and the results for these experiments have been presented in

section 5.6.2. The graphs that will be presente? in this section should be

compared with the corresponding graphs in sectio~s 5.1 and 5.6.2, so that the

difference in the performance of the two versions of Cloud can be seen clearly.

This section shows the results for the version with the results returned in one

message, as tested with the ELC/Classic group, for groups of 5, 6, 7, 8, 9 and

10 slaves.

ELC/Classi~s - 1 result message
CPU, System and Elapsed time

18000~~~~~~~~~~~~~5~~~~~~~~-,

16000 - - - - - - - - - - - -. - - - 5 - - - - - - - - - - - - - - - - - - -
5 5

14000
(/)

-g 12000 Mll;l~~ - - - - - -
0

g 10000
en
c: 8000
CD
E 6000
F

4000

2000

0*+++1-++++IH++H-++++++-t-H-++t-H++HH-t-t-H+-t-H-++t-H++HH+ti'
0 5 6 7 8 9 10

No of Slaves (Increasing Task Size)

-+-CPU time -Q. CPU+System time - Elapsed time

Figure 36: CPU, system and elapsed times for ELC/Classic group - 1 result message
(grouped by number of slaves)

Problems with lost packets, or with packets taking too long to be

received, made it necessary to implement a "time-out" feature in the single

CHAPTER 5. RESULTS AND DISCUSSION 117

message version, so that a program did not hang if a message was lost. The

results for these runs were discarded, since if one or more slaves had failed the

best times could not be achieved, as the work of the failed slaves would have

to be reallocated to the other slaves, which would then have increased the

overall elapsed time.

The CPU time, system time, and total elapsed time of the master

for these runs are shown in Figure 36. This graph shows that,. although the

CPU time remains fairly constant, there is a big increase in the amount of

system time for the runs with the smaller task sizes, and this causes long

elapsed times. In fact, for groups with 6 or more slaves, the elapsed time for

the task size of 5000 photons was longer than the elapsed time for the serial

run on the master alone!

As will be shown, the considerable increase in processing time for

the smaller task sizes was caused by network congestion, caused by Cloud,

which resulted from sending very long messages of about 210 kb. This

network congestion was so serious, that it became almost impossible to collect

these results for the groups of 9 and l 0 slaves, owing to the excessive time

taken for the runs, and because messages were lost, and some runs had to be

aborted. Thus, there are some results missing in this section. The results for

groups of 5, 6, 7 and 8 slaves were taken as the means for the best 3 runs for

each task size. However, the results for groups of 9 and 10 slaves were from

only 2 (or even 1) runs, and some results were not obtained at all. Those

results that were obtained for groups of 9 and 10 slaves show the same trends

as those for the other groups.

CHAPTER 5. RESULTS AND DISCUSSION

ELC/Classics - 1 & 5 result messages
Elapsed time for 1 & 5 result messages

18000,.-~~~~~~~~~~~~~~~~~~~~

5
16000

14000
en
-g 12000
0

~ 10000
CJ)

c: 8000
Cl>
E 6000
F

4000

2000

- - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - - - - -
5 5

O-'+++++-++-H-++++-++-r++++-1-++-r++++-1-++-t++++-1-++-++++-Hf-+++++-++-f-+f'
0 5 6 7 8 9 10

No of Slaves (Increasing Task Size)

I--- Elapsed time - 1 message -+- Elapsed time - 5 messages I

118

Figure 37: Elapsed times for ELC/Classic group - l & 5 result messages (grouped
by number of slaves)

ELC/Classics - 1 & 5 result messages
CPU time for 1 & 5 result messages

18000....-~~~~~~~~~~~~~~~~~~~--,

16000

14000
(/)

-g 12000
0

~ 10000
CJ)

c: 8000
Cl>
E 6000
F

4000

2000

--- -- ---------- - -------------------

:m!!F? -

120 5 - - - - 5 - - - - - 5- - - 1:20 s - - - - - - - - - 5 - - - - - - - - -

- - ' - -~-~ ~·~-~ - - - -
0 -44-++4-++-t+++-H-++-+++-++-f-++++++-Hf-+++++-++-H-+++-t-t+-t-++++-I-++-+-+-+'

0 5 6 7 8 9 10
No of Slaves (Increasing Task Size)

1-- CPU time - 1 message -+-CPU time - 5 messages I
Figure 38: CPU times for ELC/Classic group - l & 5 result messages (grouped by

number of slaves)

CHAPTER 5. RESULTS AND DISCUSSION 119

The overall elapsed times for the runs with a single results

message, as compared to those with five results messages, are shown in

Figure 37. In all cases the elapsed times, for the runs using a single results

message, were much longer than for the runs using five results messages. The

time for the task size of l 0000 photons was approximately twice as long for

the single message version as for the 5-message version, and that for the 5000

photons size took even longer than the serial run!

Figure 38 shows a comparison between the CPU times of the

master, for the runs with a single results message, and those with five results

messages. This graph showed that the CPU time for the master is similar for

both versions of the program, but for the smaller task sizes the master uses

more CPU time in the single results version, than in the version with five

messages. This is probably because the master has spare time available to do

Monte Carlo work, while waiting for results from the slaves which are trying

to send results messages on a congested network. So the master does more

tasks than in the 5-message version, when there is no network congestion.

Figure 38 shows that the degradation in performance, of the single-message

version, is not due to any difference in CPU time, but must therefore be

entirely due to a large increase in system time.

ELC/Classics - 1 & 5 result messages
System time for 1 & 5 result messages

18000~~~~~~~~~~~~-.-~~~~~~~~-,

16000

14000
VJ

~ 12000
0

~ 10000
en
c: 8000
Q)

E 6000
i=

4000

2000

- - - - - - - - - - - - - - -5 - - - - -5 - - - - - - - - - - - - - -

- - - - - - - - - -5- - - - - - - - - 5 - - - - - - - - -

rmm:=:------ ---- -------------------
5

o_..~~H-+++-i++-++++H4+++++H-++++++Hf+++++~H++H++=ft-l.I
0 5 6 7 8 9 10

No of Slaves (Increasing Task Size)

-- System time - 1 message --+- System time - 5 messages

Figure 39: System times for ELC/Classic group - 1 & 5 result messages (grouped
by number of slaves)

CHAPTER 5. RESULTS AND DISCUSSION 120

The system times of the master, for both versions of the program,

are shown in Figure 39. This graph shows that the system time for the version

with a single message is considerably greater than the corresponding system

time for the 5-message version, which is relatively little, and remains fairly

constant for all runs. The system time for the single message version also

increases slightly as the nu~ber of slaves increases.

ELC/Classics - 1 message
Amount of work per slave
~. J!''.

Figure 40: Amount of work per slave for ELC/Classic group - 1 result message
(grouped by number of slaves)

The next graphs show that the serious degradation in performance,

of the single message version, is due to network congestion, which is caused

by Cloud itself.

Figure 40 shows the number of tasks executed by each processor,

and indicates the load imbalance that arises because of communication

bottlenecks. In this graph the number of tasks for the master are shown along

the back wall of the graph. The number of tasks executed by the slaves is

shown so that there is one row of slave data, from back to front, for each task

size, for each number of slaves, and the slaves in each row are shown in the

order in which they were started up. For each row, the slave that is nearest the

back wall was the first slave started up by the master, and the slave nearest the

front the last slave started up. This is also the order in which the master sends

CHAPTER 5. RESULTS AND DISCUSSION 121

messages to the slaves. For each number of slaves, the rightmost row of slave

data is for the smallest (5000 photon) task size, with each row of slave data,

towards the left, the data for the next biggest task size.

Figure 40 shows that there is a drastic decrease in the number of

tasks executed by each slave, according to the order the slaves were started up

and received their tasks. For 5 slaves, although the decrease is quite apparent,

slaves further "down the list" do still execute some tasks. For larger number

of slaves, the graph shows that those slaves which are "last in the queue" for

sending results messages, and for receiving further work, do almost no work.

This is most serious for the small task sizes, where the time to execute one

task is very short.

The corresponding graph for the five-message version is shown in

Figure 31, in section 5.6.2. This graph shows, that for the five-message

version, there was an even distribution of work between all the processors.

Since the only difference between the versions of Cloud used was that one

version returned five short results messages, and the other a single long results

message, this proves that the difference in performance, and particularly the

variation in the number of tasks executed by each slave, is caused by the

different ways of returning the results messages.

ELC/Classics - 1 message
Waiting time per slave

™'~==l«-'~=~=~=r=r.,.,,..i."""'f~F-=t~:=~=!=1
(,/) 1400
~ 1200
8 1000
~ 800
.s 600
Q) 400

~ 200

Figure 41: Total waiting time per slave for ELC/Classic group - 1 result message
(grouped by number of slaves)

CHAPTER 5. RESULTS AND DISCUSSION 122

Figure 41 confirms that the degradation in performance for these

slaves is not due to time spent waiting for messages from the master as, in all

cases, the slaves spends almost no time waiting for messages. Therefore, it

must be concluded that the degradation in performance is due to the

communication delays, resulting from network congestion.

In a homogeneous system, such as the ELC/Classic group, all

slaves would be expected to take about the same time to execute a task, and

thus finish the tasks at the same time. Therefore, it is likely that the slaves will

finish in the same order as they received their tasks, with a very small time

separating them. Thus, the first slave to finish will be able to start sending its

results immediately. Subsequent slaves must wait their tum to send. Ethernet

requires that each processor must wait in between packets, to allow other

processors a chance to transmit, so all slaves will have a chance. However,

because they all finish at approximately the same time, there is increased

chance of network contention. As soon as one slave pauses, after it has sent

a packet, the remaining slaves will all try and send, as soon as they hear the

pause, and this will result in collisions, with the processors backing off. For

messages consisting of only a few packets, this will soon be resolved, but

when all processors are trying to send very long messages, serious congestion

arises. This is compounded when the time to process a task is very short, as

for the small task sizes, as those slaves, which have succeeded in sending a

results message, will complete processing the next task, and immediately try

and send the results of this task, while the other slaves have not yet succeeded

in sending the results of the previous task. This means, that for small task

sizes, the network congestion will be continuous, throughout the entire run.

This accounts for the exceptionally long elapsed run times, for the small task

sizes, for the single-message version. (See Appendix B for further details on

the operation of Ethernet).

The results in this section show that it is more efficient to send five

shorter messages, than one long message. In the version with five shorter

messages, there was a short time in between the sending of each message,

when the data to be sent was copied into the message buffer, and then sent.

This time gave the other slaves a chance to send a message, so there were

fewer collisions. Also the messages were shorter, so each slave needed to send

fewer packets, and any contention that did arise was resolved quickly. With the

long messages the slave can do nothing else, while backing off and waiting for

access to the network to send a message, and this is very inefficient. In this

CHAPTER 5. RESULTS AND DISCUSSION 123

way, a library such as PVM is more efficient, since PVM is non-blocking. That

is, PVM starts a daemon to sent the message and can meanwhile continue

processing.

Keiser, in a comparison of Ethernet with a Token Ring, has also

illustrated how, as the load on the network increases, performance deteriorates

rapidly as a result of an increasing number of collisions [Keis89]. If the

congestion is such, that the input rate of data at a node ·exceeds the output rate,

this can result in buffer overflow, which may cause packets to be dropped and

create the possibility of the whole network becoming deadlocked, with no

packets getting through [Hamm88]. On Ethernet, if a packet is successfully

received it can be assumed to be correct. However, according to the Ethernet

specification, what happens to a packet, after the 16th collision in attempting

to send this packet, depends on each implementation. In some implementations

the packet may be abandoned.

The results in this section have shown that significant delays can

occur when messages are very long, when there are too many messages, too

short a time to process the messages, and too many slaves, and that these

delays can be caused by the program itself. However, on a non-dedicated

network congestion can also be caused by factors exterior to the program, such

as other applications and users. Thus, congestion could occur even for small

numbers of slaves and short messages. These problems must therefore be

considered, when writing a program for a non-dedicated, distributed system.

· 5. 7 Scalability and isoefficiency

When a real application is parallelized it is desirable that is should scale well

if it is to be of practical use. Usually users will either want to add more

processors to get a result in a shorter time, or run a larger problem, or both.

Gustafson's Law states that if the size of most problems is scaled

up sufficiently, then any desired efficiency can be achieved on any number of

processors [Wils93]. Essentially, if processors are added, a problem should be

solved in a shorter time. However, as the number of processors increases, so

do the communication overheads, which decreases the efficiency achieved.

Gustafson's Law implies that if a desired level of efficiency is to be

maintained then the communication/computation ratio must remain constant.

Thus, if the communication overhead is increased, then the problem size must

be increased, so as to maintain the proportions of communication and

CHAPTER 5. RESULTS AND DISCUSSION 124

computation. For some applications this works well, but for others the

algorithm used, or the amount of communication needed, may prevent linear

scalability. Also, a larger problem size may require more memory, which may

cause further constraints on performance [Sing93].

Isoefficiency means that the efficiency of a program remains

constant as the number of processors is increased. Isoefficiency analysis is a

means of determining the potential scalability of a program (Gram93][Kuma94]

[Jako93].

It is obvious that if an application is scaled with the intent of

obtaining a result in a fixed time, by increasing the number of processors, then,

as the problem size increases, the potential scalability will eventually be

bounded by such constraints as limited bandwidth. This is particularly likely

in a network with low bandwidth such as Ethernet.

The issue of determining the scalability, or calculating the
'

isoefficiency, of a program on a network of heterogenous workstations is a

very difficult one. Singh and others show how this can be done for a

homogenous system, but do not include the cost of bus or network contention.

Kumar et al take contention into account in their formula for isoefficiency, but

do not explain how to include heterogeneity in the formula [Kuma94].

Some other papers on this topic provide useful insight. Scaling is

discussed in some detail in [Jako93] and [Miill91], who both develop formulae

for predicting the scalability of a parallel program when considering the

overheads arising from parallelism. Singh et al show that, instead of increasing

the problem size, increased computing power can be used to reduce the errors

arising from a simulation, so that scientists may achieve more accurate results

("scaling for error") [Sing93].

Cloud is potentially ideally scalable for several reasons. One reason

is that the memory requirements for the master, and for each slave, are

independent of both the task size and the number of processors used, so that

the amount of memory used by the master and each slave will always be the

same, regardless of changes in problem size or number of processors. Also the

amount of memory required is relatively little, so even processors with small

amounts of memory can be used. There is relatively little communication in

this type of computation-intensive program, so the computation/communication

ratio is favourable for good scalability; The size and number of messages

required for communication between the master and slaves are also

independent of the overall problem size, and number of processors, in the same

CHAPTER 5. RESULTS AND DISCUSSION 125

way as the memory requirements. The number of messages is affected only by

the granularity of the task size chosen.

The structure of the program is such that if the master has to

communicate with too many slaves, this could easily become a bottleneck

Indeed, these experiments have shown that network contention becomes an

inhibiting factor for as few as l 0 slaves when these are run by an ELC master.

This is primarily because of the homogeneous nature ·of the slaves, which all

try to send messages at approximately the same time. In this matter

heterogeneity would be an advantage, as the sending of messages would be

staggered and less likely to cause congestion, as described in section 5.5.4.

This contention with I 0 slaves occurs before the master has reached the stage

where it cannot handle any more slaves thus causing the slaves to wait for the

master. For the communication needed for 1 task the SGI2 Extreme spends on

average l 0% of the time the ELC master requires. This suggests that a network

of SGI machines would scale better than one of Suns. If necessary, the

program could be easily restructured so as to allow several "cluster masters",

each handling some of the slaves, as described in section 6. 7 .2. This would

enhance the scalability of the program, which would not then be limited by the

number of slaves that one master could handle.

Despite the good potential scalability of this program, the small

numbers of machines used in these experiments, and the widely different

performance capabilities of these machines, make it extremely difficult to

predict to what extent this program is scalable. Even if the potential scalability

is calculated for various groups of machines, there are too few machines to

confirm by experiment whether this is valid. It is also likely that network

contention will limit the speedup that could be achieved. The potential

scalability would be greatly improved if a higher speed communication

network than Ethernet was used.

Chapter 6

Conclusions

This dissertation has shown that good parallel performance can be achieved by

running a real scientific application on a network of heterogeneous

workstations, but that this performance is affected by a number of factors.

The results of these experiments raised the question of what was

the best way to evaluate the performance of a parallel program on a

heterogeneous network. A number of methods of evaluating this performance

were investigated. These included the conventional methods of speedup and

efficiency, and also the alternative method of "linear speed" as proposed by

Crowl [Crow94].

/ In addition, we proposed "perfect linear speed", and "linear

efficiency" as extensions to Crowl's work in evaluating the parallel

performance of heterogeneous systems.

This study has provided valuable insight into the performance of

a real scientific application on a network of heterogeneous workstations. This

is particularly important since most networks are heterogeneous, either because

they consist of workstations of different makes and models, with different

CPUs and differing amounts of memory and cache, or because they are shared

environments, and the load on the workstations and the network is constantly
changing.

These experiments have shown how such an existing, under-utilized

network of workstations can provide a considerable amount of computing

power, which can be exploited for parallel processing, with minimal impact on
other users.

As described in this dissertation, Cloud has been parallelized for the

Department of Meteorology at Pennsylvania State University in the USA.

Scientists in this department are reported to be well satisfied with this parallel

version of Cloud, and are now extending the meteorological sections of Cloud,

so that it can be used for a number of research projects, which could not be

126

CHAPTER 6. CONCLUSIONS 127

done before because the original serial program just took too long. These

projects are intended to take place soon, and the researchers at PennState

expect to write a number of papers describing results obtained by using the

parallel version of Cloud studied in this thesis.

This chapter also includes some conclusions regarding. the

usefulness of the p4 library as a tool for the parallelization of an application

for a distributed network of heterogeneous workstations.

6.1 Findings of this thesis

The findings of this thesis can be grouped into three sections: the overall

performance achieved, the evaluation of the performance of heterogeneous

systems, and the factors affecting this performance.

6.1.1 Performance achieved

This dissertation has shown that a considerable improvement in performance

was achieved in the parallelization of a real scientific application for a network

of heterogeneous workstations. The experiments with Cloud showed that:

•

•

•

the performance range for this heterogeneous network was

approximately 6.5, with the serial time of the fastest processor of

51 minutes, and the serial time of the slowest processor of 5.5
hours;

the fastest parallel time was 16 minutes for all 18 processors,

giving a speedup of 14 for 18 processors, and an efficiency of 0.8;

the best performance will be achieved if the processors used are

reasonably similar in performance capability. This study showed

that adding four very slow processors as slaves only reduced the

elapsed time from 18 minutes to 16 minutes, and that these four

slow processors could have been better utilized for other work, as

the reduction of under 2 minutes is too small to make it

worthwhile to use these processors as slaves.

CHAPTER 6. CONCLUSIONS
128

6.1.2 Evaluation of the parallel performance of
heterogeneous networks

This study showed that there is considerable difficulty in evaluating the

performance of a heterogeneous system. These experiments showed that:

• the performance of a parallel program should be measured by using

elapsed time, and that measuring the CPU time alone can be very

misleading. However, the CPU and system times may give useful

insight in understanding the performance of an application, and

may indicate ways in which performance can be improved;

• speedup and efficiency are inappropriate for evaluating the

performance of a heterogeneous network, and may give misleading

information. However, if speedup is to be used to measure the

parallel performance of a heterogeneous system, then the most

representative values will be obtained if the parallel performance

of the system is compared to the mean of the serial performance
of the processors used;

• alternative methods of measuring performance, such as linear

speed, as proposed by Crowl [Crow94], and linear efficiency as

suggested in this dissertation, give a more representative indication

of the actual improvement in performance that is achieved.

6.1.3 Factors affecting the performance

There were a number of factors which affected the performance that could be

achieved on this system. The experiments conducted for this study showed
that:

• although good performance can be achieved for Cloud on a

network of workstations, the network performance was very

sensitive to a number of factors. The results of the experiments

with Cloud indicated that this sensitivity occured when the network

traffic was very "bursty", or when the network became saturated

when there were too many messages being sent at the same time,

or if the messages were very long (greater than 200kb). These

factors caused a serious deterioration in the data rate, and the

network degradation was so serious that messages were lost.

•

•

CHAPTER 6. CONCLUSIONS
129

This poor perfonnance of Ethernet can be alleviated to

some extent by reducing the "burstiness" of the traffic that may

occur, particularly on a homogeneous system, when all processors

try and send at approximately the same time. This can be done by

interspersing sending messages with computation, or by using

heterogeneous machines which will take different times to finish

a task, and thus transmit results at different times. Also, breaking

long messages (greater than 30 kb) into more, shorter messages, of

sizes between I 0 kb and 30 kb will improve network throughput.

Network latency can be hidden by overlapping

communication with computation. A reduction of 25%-30% in the

overall elapsed time can be achieved by sending a spare task to

each slave, so that each slave always has a spare task on "stand­

by" and can immediately proceed with processing the next task,

without having to wait for the time of the round-trip

communication of results to the master, and receiving a new task

from the master. No benefit was achieved by sending more than

one spare task, and this can even reduce perfonnance;

The results of the experiments also confinn that, as

shown by others, the specified bandwidth for Ethernet of I 0

Mbits/second cannot be achieved in practice. For this study the best

data rate of 7-8 Mbits/sec was achieved by the Silicon Graphics

machines. The SPARCstation 1 + machines had a data rate of about

6.5 Mbits/sec, and the ELC and Classics a rate of about

6 Mbits/sec. This was consistent with the findings of other

researchers [Cap93][Nana93][Gart93][Alte93];

it is inefficient to run a slave process on the same processor as the

master, and that better results can be achieved if the master does

slave work within the master process, rather than in a separate

process on the same processor.

better load balancing is achieved for small task sizes, but higher

efficiency is achieved for large task sizes. The best perf onnance is

obtained when there is the best tradeoff between the good

communication/computation ratio possible for large task sizes, and

the efficient load balancing for small task sizes. On a homogeneous

system all machines will tend to finish at approximately the same

time, so a relatively large task size can be used, and good load

CHAPTER 6. CONCLUSIONS 130

•

balancing will still be achieved. On a heterogeneous system, with

a wide range of performance capabilities, a large task size will lead

to poor load balancing, and better results can be achieved with a

small task size.

it is important when choosing a task size that will ensure that the

time taken to execute a task is longer than the time needed for the

master to handle all the communication for tasks for all slaves, or

else communication bottlenecks and delays will occur.

6.2 Usefulness of the p4 library as a parallelization
tool

This section gives a brief evaluation of the parallel library p4, and its

usefulness in the parallelization of Cloud for a network of heterogeneous

workstations.

p4 has proved to be simple to learn and implement, and efficient

in its execution. The debugging tool, which allows a user to display error

messages at different levels of complexity, was very useful during program

development.

The portability of p4 was well demonstrated in this study. The p4

library was obtained from Argonne National Laboratories and installed at the

University of Cape Town. Cloud was then parallelized, using p4, for five

different models of workstation, of two different architectures. This parallel

version of Cloud was then used successfully on both homogeneous and

heterogeneous groups of up to 18 Sun and Silicon Graphics workstations.

Cloud, and the p4 library, were then successfully installed on Sun workstations

at PennState, where Cloud was recompiled and ran successfully, with no

problems at all.

The efficiency of p4 was shown by the good performance results

obtained for Cloud, and by the good data rates achieved on Ethernet with p4.

These data rates were comparable to those achieved by other researchers using

methods of communication other than p4, and according to other researchers,

were close to being the optimal data rates that could be achieved on Ethernet.

There were a number of problems found in running a program

implemented with p4, and this was also consistent with the experiences of

Sukup [Suku94]. In both studies there were occasional problems with slave

processes being lost, or crashing at the beginning of runs, and also with slaves

CHAPTER 6. CONCLUSIONS 131

occasionally hanging for unknown reasons. These problems show that a p4

application must be written to be fault tolerant, so that if there is a problem

with lost message, or insufficient memory, then both the slave and the master

processes should be able to recover. If one or more slaves fail, the application

should be able to continue, as long as at least the master, and possibly. one

slave, are still functioning.

There was also a slight problem with using p4 on the

SP ARCclassics. The SP ARCclassics functioned well as slaves, but could not

be used as a master. This was because the p4 library for the Sun workstations

was implemented on a SPARCstation 1 +, which is the sun4 architecture, and

the SPARCclassics are sun4m architecture, and there is a difference in the way

the SPARCstation 1 + and SP ARCclassic machines start a remote shell. The

ELCs (sun4 architecture) appear to use the same method of starting remote

shells as the SP ARC station 1 +s, and so could be used as masters. The p4

library would need to be modified if SP ARCclassics are to be used as masters.

One of the biggest advantages of p4 is that it is the only parallel

library that implements both a shared memory and a message-passing model,

as well as being suitable for implementing a parallel program on networks of

clusters of shared-memory multiprocessors. The library functions for shared­

memory were not used in this study, but it is relatively simple to convert from

a p4 message-passing implementation to a p4 shared-memory implementation.

Another advantage of p4 is that a message-passing implementation can also be

run on a shared-memory multiprocessor, or on clusters of shared-memory

multiprocessors connected by a network, as the send/receive procedures are

generic and it does not matter whether a message must travel across a network,

or through shared-memory, or via some other mechanism [But192].

6.2.1 MP/

With the development of the new standardized message-passing interface, MP!

[Walk94], it is likely that most future work in parallelizing message-passing

applications will be done using MP!. MP! incorporates many of the features

of the more well-established parallel libraries such as p4, PVM, and

PARMA CS, and existing programs that were written using these libraries

should be fairly easily reimplemented in MP!.

CHAPTER 6. CONCLUSIONS 132

Future work, along the same lines as this thesis, should rather be

implemented using MP I, since this is the new standard for message-passing

systems.

6.3 Future work

This dissertation has shown that there are a number of factors that affect

parallel performance. This section shows some ways in which the performance

could be improved by redesigning of the program, and also suggests some

possible research projects that could build on what has been learnt in this

study.

6.3.1 Using a fast or a slow master?

Further work should be done to establish whether the best performance results

from using a fast master or a slow master.

All experiments in this dissertation used a fast master because, even

in a homogeneous group, the master executes more tasks in the same time,

than can be executed by a slave. This is because the master has no

communication overheads when doing Monte Carlo work. This suggests that

it is advantageous to use the fastest machine as the master, because this

machine can be used to do slave work whenever it is not otherwise engaged

with administrative tasks, such as communication with slaves.

Also, as discussed in section 5.7, with the master/slave paradigm,

the master is likely to become too busy with communication, thus causing a

bottleneck. Thus, it would also be better if the master was the machine that can

handle communication fastest, as the master has to do more communication

than the slaves.

However, it may be better to use a slow master which handles

communication only, and does not do any Monte Carlo work, and thus use the

faster processors as slaves where their processing power can be .better utilized,

as a slave spends more time on processing than on communication.

6.3.2 Better utilization of idle workstations

The results in this dissertation have shown that, when the load balancing was

poor, the master was idle for some time at the end of a run, while waiting for

CHAPTER 6. CONCLUSIONS 133

the slaves to complete their last tasks, and also, some of the faster processors

finished before the slower processors had completed their last task. Also,

Cloud is implemented so that the master initially sends two tasks to each slave,

so each slave always has its next task immediately available. However, at the

end of a run this can lead to even worse load balancing, as while the faster

processors may have finished all the available work, the slower processors may

still have spare tasks in their task queues ..

The wasted time of the faster slaves, and idle time of the master,

could be better utilized if these faster processors instead did some of the work

allocated to other, still busy, slow slaves, especially if the tasks reallocated

were those still in the standby queue of these slaves. In this case, the slaves

must be constrained to receive a "CLOSE" message, ifthere is one, before any

task in its queue, to prevent a slow slave from executing a task in its queue,

when that task has now been reallocated, and completed by another faster

processor.

As described in section 3.3.6, this feature to make better use of idle

workstations was originally programmed into Cloud, but was not used in the

performance tests. It should, however, be activated for real use. This feature

may lead to some duplication of work, as sometimes a task may be executed

by more than one processor, but the overall elapsed time will be shorter.

6.3.3 Cluster masters

This study has shown that communication bottlenecks can occur if there are

too many slaves, and the master does not have sufficient time to handle all the

communication from all slaves, for one set of tasks, in the time the slaves take

to execute the next task.

This problem could be solved ifthe program was redesigned so that

there are several "cluster masters", each administering a sub-group of slaves,

and one overall master to collate the results from these "cluster masters". There

would then be less chance of communication bottlenecks as each "cluster

master" would only have to administer a few slaves.

6.3.4 Random size tasks

The results of the experiments described in section 5 .5 have shown that in a

homogeneous system all slaves will finish their tasks at approximately the

CHAPTER 6. CONCLUSIONS 134

same time, and this causes bursts of network traffic as all slaves try and

transmit results at the same time.

This could be alleviated by sending tasks of different sizes to each

slave, perhaps by getting the master to send tasks of "random" size.

6.3.5 Dynamic adaptive load balancing

This section describes a method of load balancing which could be

implemented, in Cloud, to improve overall efficiency, and thus result in shorter

elapsed times. The method is dynamic because the optimal size of the tasks is

determined during the run, and adaptive because it takes into account the

different performance capabilities of the processors, and the dynamically

varying workloads on machines in a shared environment, and adapts the size

of the tasks accordingly.

The results in this dissertation have shown that load balancing is

best for small task sizes, but that efficiency is greatest for large task sizes,

which have a better communication/computation ratio. The load balancing for

large tasks was poor, resulting in a certain amount of processor idle time,

which could be better utilized. The best overall performance is achieved when

there is the best tradeoff between a good communication/computation ratio, and

efficient load balancing.

If the program is changed to process large tasks for most of the

run, this will improve the communication/computation ratio, and result in high

efficiency. Then, the size of the task should be reduced in the last stages of the

run, so the final load balancing will be good, and all processors will finish at

approximately the same time.

The master can determine the comparative rates of the processors

by measuring the time taken, by each machine, to perform each task. This time

can easily be returned by the slave, as part of the results for each task. The

master can then keep a table of the current performance rates for each slave,

and use this in determining the size of the task to send to each slave. This is

particularly useful in a shared environment when the load on a machine may

vary considerably during a run.

The initial tasks sent by the master to the slaves should be

relatively small, as the situation is unknown at that point. The times returned

by the slaves, to the master, can then be used by the master for dynamic

determination of the performance of each slave, so that the master allocates

CHAPTER 6. CONCLUSIONS 135

larger amounts of work to faster machines, and lesser to slow machines. As the

situation changes, and the performance of the slaves varies, the master can

adjust the amount of work sent to each slave. In some ways, this technique is

similar to that of THE PARFORM which is described in [Cap93].

Towards the end of a run, it is extremely important to determine

the time at which the master must change from sending out large tasks, to

sending small tasks. This is so that a situation does not arise where all the

faster processors have finished their tasks, while the slow machines are still

working. The point at which the master must start sending smaller tasks can

be established by comparing the speed of the fastest and slowest machines, and

then not sending large tasks to a slow machine, when this machine will take

longer to finish a task than the rest of the processors will take to finish all

remaining work. At this stage, all remaining work should be divided into much

smaller tasks, so the final load balancing will be good.

This combination of using large task sizes for most of the run, and

small ones at the end to ensure good load balancing, will result in higher

efficiency, and shorter elapsed times. The overheads introduced by this

technique should be minimal, as no extra communication is required, and the

extra memory requirements and computation required are small.

This method of load balancing, although ideally suited for the type

of program where synchronization is not an issue, could be extended for use

in programs with more complicated load balancing and synchronization

requirements such as data-parallel programs.

Further suggestions of load balancing techniques can be found in

[Kuma94].

6.3.6 Intelligent task allocation

In Cloud, the largest amount of communication is when the collection arrays

are returned from a slave at the end of each sub-task. This section suggests a

technique for allocating tasks to slaves, which will result in reduced

communication time, thereby improving performance.

This technique can be implemented for Cloud, because for the

Monte Carlo method used, the totals in the collection arrays for sub-tasks, for

the same interval of the same wavelength, are added together before calculating

the final results. In the current implementation of Cloud, the master receives

the collection arrays for each sub-task, from each slave, and adds the totals for

CHAPTER 6. CONCLUSIONS 136

the same interval of the same wavelength together. The method in this section

proposes that if a slave is specifically allocated subsequent sub-tasks, all for

the same interval of the same wavelength, then the slave can add these totals

together, without returning the collection arrays to the master at the end of

every task, and this will reduce communication costs.

Since the input arrays total to about 210 kb, this technique would

reduce the amount of communication to a fraction of that needed with the

present implementation. Cloud has been programmed so that it is relatively

trivial to implement this technique. However, there was insufficient time to

repeat all the experiments using this methbd. The added processing cost would

be minimal, and considerably less than the time otherwise needed for

communication. In this way, relatively small sub-task sizes could be used, and

the load balancing efficiency of small tasks could be achieved. However, a

communication/computation ratio approaching that of the larger tasks could be.

achieved, because of the reduced communication overhead. -

The simulation of all photons for one case of input conditions

·cannot be allocated to one slave initially, as it is unlikely that the work divided

in this way would divide evenly among the slaves, and this would lead to poor
load balancing.

References

[Alte93]

(Bail921

(Bail93]

(Bers88]

(Beck93)

Altevogt, P., and Linke, A.,
Parallelization of the two-dimensional Ising Model on a
cluster of IBM RISC System/6000 workstations,
Parallel Computing,
19(9): 1041-1052, September 1993.

Bailey, D.H., Barscz, E., Dagun, L., and Simon, H.D.,
NAS Parallel Benchmark Results,
RNR Technical Report RNR-92-002, NASA Ames Research
Center, _December 1992, quoted by [Bell94]

Bailey, D.H., and Barszcz, E.,
NAS Parallel Benchmark Results,
IEEE Parallel & Distributed Technology,
1 (l):43-51, February 1993.

Bershad, B.N., Lazowska, E.D. and Levy, H.M.,
PRESTO: A System for Object-oriented Parallel
Programming,
Software - Practice and Experience,
18(8):714-732, August 1988.

Becker, J.C., and Dagum, L.,
Particle simulation on heterogeneous distributed
supercomputers,
Concurrency: Practice and Experience,
5(4):367-377, June 1993.

[Bell94] . Bell, G.,
Scalable Parallel Computers: Alternatives, Issues, and
Challenges, International Journal of Parallel Programming,
22(1):3-46, February 1994.

(Berr91] Berry, M., Cybenko, G., and Larson, J.,
Scientific benchmark characterizations,
Parallel Computing,

[Bete93]

17(10& 11):1173-1194, December 1991.

Betello, G., Richelli, G., Succhi, S., and Ruello, F.,
Lattice Boltzmann method on a cluster of IBM RISC
System/6000 workstations,
Concurrency: Practice and Experience,
5(4):359-366, June 1993.

137

REFERENCES 138

(Bird941 Birdsall, J. W.,

(But1941

(Calk941

(Cap93)

(Carr89)

[Carr94)

(Crow94]

[Cybe90)

The Sun Hardware Reference,
comp.sys.sun.hardware,
Wed Sep 28 08:55:53 1994.
(jwbirdsa@picarefy.com)

Butler, R.M .. & Lusk, E.L.,
Monitors, Messages, and Clusters: the p4 Parallel
Programming System,
Parallel Computing,
20(4):547-564, April 1994.

Calkin, R., Hempel, R., Hoppe, H.-C., and Wypior, P.,
Portable programming with the PARMA CS message-passing
library,
Parallel Computing,
20(4):615-632, April 1994.

Cap, C.H. and Strumpen, V.,
Efficient parallel computing in distributed workstation
environments,
Parallel Computing,
19(11):1221-1234, November 1993.

Carriero, N.J., Gelemter, D.,
Linda in Context,
Communications of the ACM,
32(4):444-458, 1989.

Carriero, N.J., Gelemter, D., Mattson, T.G., and Sherman, A.H.,
The Linda alternative to message-passing systems,
Parallel Computing,
20(4):633-656, April 1994.

Crowl, L.A.,
How to Measure, Present, and Compare Parallel
Performance,
IEEE Parallel & Distributed Technology,
2(1):9-25, Spring 1994.

Cybenko, G., Kipp, L., Pointer, L., and Kuck, D.,
Supercomputer Performance Evaluation and the Perfect
Benchmarks,
ACM SIGARCH Computer Architecture News,
18(3):254-266,
Conference Proceedings, 1990 International Conference on
Supercomputing, Amsterdam, Netherlands, June 1990.

REFERENCES 139

(Denn941 Dennis, J.B.,
Machines and Models for Parallel Computing,
International Journal of Parallel Programming,
22(1):47-78, February 1994.

fdeKe93) de Keyser, J. and Roose, D.,
Load balancing data parallel programs on distributed
memory computers,
Parallel Computing,
19(11): 1199-1220, November 1993.

[Dixi91 I Dixit, K.M.,
The SPEC benchmarks,
Parallel Computing,
17(10& 11):1195-1210, December 1991.

[Dona941 Donaldson, V., Berman, F., and Paturi, R.,
Program Speedup in a Heterogeneous Computing Network,
Journal of Parallel and Distributed Computing,
21 (3):316-322, June 1994.

[Eage891 Eager, D.L., Zahorjan, J., and Lazowska, E.D.,
Speedup Versus Efficiency in Parallel Systems,
IEEE Transactions on Computers,
38(3):408-423, March 1989.

[Ewin941 Ewing, R.E., Sharpley, R.C., Mitchum, D., O'Leary, P. and
Sochacki, J.S.,
Distributed Computation of Wave Propogation Models using
PVM,
IEEE Parallel & Distributed Technology,
2(1):27-31, Spring 1994.

[Fisc91] Fischer, D.,
On superlinear speedups,
Parallel Computing,
17(9):695-697, September 1991.

[Gart93] Gartel, U., Joppich, W., and Schuller, A.,
Parallelizing the ECMWF's weather forecast program: the
2D case,
Parallel Computing, ,
19(11):1413-1425, November 1993.

[Gart93a
0

] Gartel, U., Joppich, W., and Schuller, A.,
First results with a parallellized 3D weather prediction code,
Parallel Computing,
19(11):1427-1429, November 1993.

REFERENCES 140

(Glei88) Gleick, J.,

(Gram93)

Chaos, Making a New Science,
Sphere Books 1988.

Grama, A.Y., Gupta, Anshul, and Kumar, V.,
Isoefficiency: Measuring the Scalability of Parallel
Algorithms and Architectures,
IEEE Parallel & Distributed Technology,
1(3):13-21, August 1993.

[Grim93a) Grimshaw, A.S., Strayer, W.T. and Narayan, P.,
Dynamic Object-Oriented Parallel Processing
IEEE Parallel & Distributed Technology,
1(2):33-48, May 1993.

[Grim93b) Grimshaw, A.S., West, E.A. and Pearson, W.R.,
No Pain and Gain! - Experiences with Mentat on a
Biological Application
Concurrency: Practice and Experience,
5(4):309-328, June 1993.

[Grim94) Grimshaw, A.S., Weissman, J.B., West, E.A. and Loyot, E.C.,
Jr.,
Metasystems: An Approach Combining Parallel Processing
and Heterogeneous Distributed Computing Systems
Journal of Parallel and Distributed Computing,
21(3):257-270, June 1994.

[Gust88] Gustafson, J.L.,
Reevaluating Amdahl's Law,
Communications of the ACM,
31(5):532-533, May 1988.

[Hals85] Halsall, F.,
Introduction to Data Communications and Computer Networks,
1985, Addison-Wesley Publishing Company Inc., 269pp.
ISBN 0-201-14547-2, ISBN 0-201-14540-5 pbk

[Hamm88] Hammond, J.L., & O'Reilly, P.J.P.,
Performance Analysis of Local Computer Networks,
1986, reprinted 1988 with corrections,
Addison-Wesley Publishing Company Inc., 410pp.
ISBN 0-201-11530-1

[Henn90) Hennessy, J., & Patterson, D.,
Computer Architecture: A Quantitative Approach,
1990, Morgan Kaufmann Publishers, Inc., 594pp.
ISBN 1-55880-069-8

REFERENCES ·141

(Hey91) Hey, A.J.G.,
The Genesis distributed memory benchmarks,
Parallel Computing,
17(10&11):1275-1283, December 1991.

(Hira941 Hiranandani, S., Kennedy, K, and Tseng, C-W,
Evaluating Compiler Optimizations for Fortran D,
Journal of Parallel and Distributed Computing,

(Hock91)

21 (l):24-45, April 1994.

Hockney, R. W.,
Performance parameters and benchmarking of
supercomputers,
Parallel Computing,
17(IO& 11):1110-1130, December 199 l.

[Home94) Homer, P.T. and Schlichting, R.D.,
A Software Platform for Constructing Scientific Applications
from Heterogeneous Resources,
Journal of Parallel and Distributed Computing,
21(3):301-315, June 1994.

[Jako93) Jakobs, A., and Gerling, R.W.,
Scaling aspects for the performance of parallel algorithms,
Parallel Computing,
19(9): 1063-1073, September 1993.

[Keis891 Keiser, G.E.,
Local Area Networks,
1989, McGraw-Hill Book Company, 420pp.
ISBN 0-07-033561-3

(Kenn94) Kennedy, K.,
Compiler Technology for Machine-Independent Parallel
Programming,
International Journal of Parallel Programming,
22(1):79-98, February 1994.

[Klei92] Kleinrock, L., and Huang, J-H,
On Parallel Processing Systems: Amdahl's Law Generalized
and Some Results on Optimal Design,
IEEE Transactions on Software Engineering,
18(5):434-447, May 1992.

[Krem93] Kremien, 0., Kramer, J. and Magee, J.,
Scalable, Adaptive Load Sharing for Distributed Systems,
IEEE Parallel & Distributed Technology,
1(3):62-70, August 1993.

REFERENCES

[Kuck94)

[Kuma94)

fLin93)

[Ma94)

(Mach92)

[McBr94)

[Minn93)

[Miill911

[Nana93)

142

Kuck, D. J.,
What Do Users of Parallel Computer Systems R~ally Need?
International Journal of Parallel Programming,
22(1):99-127, February 1994.

Kumar, V., Grama, A.Y., and Vempaty, N.R.,
Scalable Load Balancing Techniques for Parallel Computers,
Journal of Parallel and Distributed Computing,
22(1):61-79, July 1994.

Lin, R-F.,
A Monte Carlo Simulation of the Reflectivity over a
Stratoc.umulus Cloud Deck,
An M.Sc. thesis in Meteorology, Department of Meteorology,
Pennsylvania State University,
May 1993.

Ma, C-m.,
Implementation of a Monte Carlo code on a parallel
computer system,
Parallel Computing,
20(7):991-1005, July 1994.

Machanick, P.,
SpaceLib: A Library for Spatially Decomposed Shared
Memory Multiprocessor Applications,
Computer Science Department, Stanford University, 1992.

McBryan, O.A.,
An overview of message passing environments,
Parallel Computing,
20(4):417-444, April 1994.

Minnich, R.G., and Pryor, D.V.,
Radiative Heat Transfer Simulation on a SP ARCStation
Farm, Concurrency: Practice and Experience,
5(4):345-357, June 1993.

Miiller-Wichards, D.,
Problem size scaling in the presence of Parallel Overhead,

_Parallel Computing,
17(11):1361-1376, December 1991. ·

Nanayakkara, A., Moncrieff, D. and Wilson, S.,
Performance of IBM RISC System/6000 workstation clusters
in a quantum chemical application,
Parallel Computing,
19(9):1053-1062, September 1993.

REFERENCES 143

(Nede93) Nedeljkovic, N., and Quinn, M.J.,
Data-parallel programming on a network of heterogeneous
workstations,
Concurrency: Practice and Experience,
5(4):257-268, June 1993.

(Ponn93) Ponnusamy,. R., Thakur, R., Choudhary, A., Velamakanni, K.,
Bozkus, Z. and Fox, G.,
Experimental Performance EvaluatiOn of the CM-5,
Journal of Parallel and Distributed Computing,
19(3): 192-202, November 1993.

[Scha93) Schaeffer, J., Szafron, D., Lobe, G. and Parsons, I.,
The Enterprise Model for Developing Distributed
Applications,
IEEE Parallel & Distributed Technology,
1(3):85-96, August 1993.

(Schn93) Schneckenburger, T.,
Efficiency of Parallel Programs in Multi-tasking
Environments,
in PEPS Performance Evaluation of Parallel Systems,
University of Warwick, Great Britain,
75-82, November 1993,

[Sela94] Sela, J.G., Anderson, P.B., Norton, D.W., and Young, M.A.,
Massive Parallelization of NMC's Spectral Model,
Journal of Parallel and Distributed Computing,
21(1):140-149, April 1994.

[Sing92) Singh, J.P., Weber, W-D, & Gupta, Anoop,
SPLASH: Stanford Parallel Applications for Shared­
Memory, Computer Architecture News,
20(I):5-44, March 1992.
Also Stanford University Technical Report No. CSL-TR-92-526,
June 1992.

[Sing93] Singh, J.P., Hennessy, J.L. and Gupta, Anoop,
Scaling Parallel Programs for Multiprocessors: Methodology
and Examples,
Computer,
43-51, July 1993.

[Suku94] Sukup, F.,
Efficiency Evaluation of Some Parallelization Tools on a
Workstation Cluster Using the NAS Parallel Benchmarks,
Computing Center, Vienna University of Technology, Austria,
Technical Report No. ACPC/TR 94-2, January 1994.

REFERENCES 144

(Sun91) Sun, X.-H., and Gustafson, J.L.,
Towards a better parallel performance metric,
Parallel Computing,
17(10&11):1093-1109, December 1991.

(Sund94) Sunderam, V.S., Geist, G.A., Dongarra, J., and Manchek, R.,
The PVM . concurrent computing system: Evolution,
experiences, and trends,

(Walk94)

(Weic91)

(Wils93)

(Yen93)

Parallel Computing,
20(4):531-546, April 1994.

Walker, D.W.,
The design of a standard message passing interface for
distributed memory concurrent computers,
Parallel Computing,
20(4):657-674, April 1994.

Weicker, R.P.,
A detailed look at some popular benchmarks,
Parallel Computing,
17(1O&11):1153-1172, December 1991.

Wilson, G.V.,
A Glossary of Parallel Computing Terminology,
IEEE Parallel & Distributed Technology,
1(1):52-67, February 1993.

Yen, 1-L., Leiss, E.L., and Bastani, F.B.,
Exploiting Redundancy to Speed Up Parallel Systems,
IEEE Parallel & Distributed Technology,
1(3):51-60, August 1993.

Bibliography

Boyle, J., Butler, R., Disz, T., Glickfelt, B., Lusk, E., Overbeek, R., Paterson,
J., & Stevens, R.,
Portable Programs for Parallel Processors,
Holt, Rinehart & Winston, .Inc., New York, 1987.

Butler, R., & Lusk, E.,
User's Guide to the p4 Parallel Programming System,
Argonne National Laboratory, Argonne, IL 60439-4801, October 1992.

Carriero, N.J., and Gelemter, 0.,
How to Write Parallel Programs: A First Course,
MIT Press, Cambridge, MA, 1990.

Herrarte V., & Lusk, E.,
Studying Parallel Program Behaviour with Upshot.

Machanick, P .,
SpaceLib: A Library for Shared Memory Parallel Applications,
Department of Computer Science, University of Cape Town, 1993.

Peixoto, J.H., and Oort, A.,
Physics of Climate,
pp 1-7, pp 450-479, 1992.

Tyson, P.D., & Preston-Whyte, R.A.,
The Atmosphere & Weather of Southern Africa,
1988, Oxford University Press, 374pp.

145

Appendix A

Description of the cloud radiation model

A stratocumulus cloud deck usually covers several hundred square kilometres.
To study the reflectivity, transmissivity and absorptivity of such a cloud, a
model has been set up. In this model a horizontal strip through the cloud is
studied, with the cloud on either side of the strip assumed to continue to
infinity. This strip is then divided into a number of identical vertical columns,
each with a square horizontal cross-section. Each column is considered
separately. In this way, different input data representing the atmospheric
conditions, such as gas composition, water vapour content, and temperature,
can be used for each column of cloud

As photons are incident on the top of the cloud column, they either
penetrate the cloud, or are reflected off the top of the cloud. If a photon
penetrates the cloud it is likely that within a certain distance, known as the
mean free path, it will collide with a molecule of gas or water vapour. As a
result of this collision it will either be absorbed in the cloud, or will continue
passing through the cloud in a different direction until another collision. For
all photons each photon is traced, until eventually it is either absorbed in the
cloud, or reflected back out of the top of the cloud, or finally transmitted right
through the cloud, and emerges from the bottom of the cloud. For this
simulation it is assumed that the column of cloud studied is not at the edge of
the cloud, so photons emerging from the sides of the column are 'wrapped
round' to appear to come in from the other side of the column. Thus, all
photons continue passing through the column of cloud until they are either
absorbed, or emerge out the top (reflection), or the bottom (transmission) of
the column.

Several collection arrays are used to count the photons reflected,
transmitted or absorbed. Each cloud column has a square horizontal cross­
section, and this is represented by a square grid divided into an equal number
of collection cells in each direction. There is one such collection array
representing the top of the cloud column, and one representing the bottom of
the cloud column. As the photon passes through the cloud column, its new
position after each collision is calculated. If it leaves the cloud through the
bottom, or top, of the cloud column, it is counted in the collection array cell
though which it emerges. At the same time the angle at which it leaves the
cloud is recorded. For this purpose, there are another two collection arrays, one
for the top, and one for the bottom of the cloud. These arrays have the same
number of collection cells as those for counting the photons. As the photon
leaves the cloud its angle (in radians) is added to the total in the corresponding

146.

APPENDIX A. DESCRIPTION OF CLOUD RADIATION MODEL 147

cell. At the end of the run the mean angle of exit of photons leaving through
that grid cell is calculated. .

A schematic diagram showing a view of the top of the cloud
column is shown in Figure 42. The strip of cloud is in the x direction, and the
cloud is assumed to be infinite in the y direction. A square grid representing
the collection array at the top of the cloud column is shown. This is schematic
only. In the program the size of this array may be varied by the user. For the
experiments described in this dissertation the array was 93 x 93. The view of
the cloud column from the bottom will be similar.

These four collection arrays are used to compute the reflection of
light from the top of the cloud and the transmissivity of light through the
cloud.

x

0 0 0 0 0

0 0 0 0 0

y 0 0 0 0 0 y

0 0 0 0 0

0 0 0 0 0

x

Figure 42: Schematic diagram of top view of cloud (bottom view will be
similar)

Another array is used to count the number of photons absorbed into
the cloud column. This array represents the cloud column vertically. The
distance between the top and the bottom of the cloud is divided into a number
of layers of equal height. The number of photons absorbed in each layer is
counted. These totals are then used to calculate the heat absorbed by the cloud
column. A schematic diagram showing how the cloud column is divided into
layers is shown in Figure 43. For these experiments there were 1000 layers.

Light is composed of a number of different wavelengths, and each
wavelength has different properties. For instance, certain gases absorb light of
certain wavelengths, and other gases absorb light of a different wavelength. A
cloud consists of a combination of different gases and water vapour. One of

APPENDIX A. DESCRIPTION OF CLOUD RADIATION MODEL 148

Top of cloud

x x

-----------·~- ---------
-----------'--------------------'--------

Bottom of cloud

Figure 43: Schematic diagram of side view of cloud

the factors which will change according to the wavelength is the mean free
path that a photon can be expected to travel before a collision, or being
absorbed. Thus, to simulate the passage of light through a cloud it is necessary
to simulate photons of all wavelengths, as photons of some wavelengths will
be absorbed more than others, which may be reflected or transmitted. Also
light may be either direct or diffuse, and will behave differently for each case.
For this particular experiment there were in all 22 different wavelengths, some
of which were divided into sub-intervals, making 50 sets of input conditions.
Some cases were calculated for both diffuse and direct light. The properties of
each wavelength are read in from file.

Monte Carlo simulation has been used to trace the paths of photons
through the cloud, since other methods would take too long.

I
Appendix B

Hardware specifications

This section gives the technical specifications of the workstations and the
network used in the experiments described in this dissertation. The
workstations, described by the letters "a" to "r" as used elsewhere in this
report, are grouped together with their common technical description.

First the workstations are described and then the Ethernet network.

B. l Silicon Graphics workstations

The following information, except for the operating system information, was
obtained by typing the command hinv on each workstation. The operating
system version number is displayed at login.

Workstation "a" - Silicon Graphics lndigo2 Extreme

1 100 MHZ IP22 Processor
FPU: MIPS R4010 Floating Point Chip Revision: 0.0
CPU: MIPS R4000 Processor Chip Revision: 3.0
On-board serial ports: 2
Data cache size: 8 Kbytes
Instruction cache size: 8 Kbytes
Secondary unified instruction/data cache size: 1 Mbyte
Main memory size: 128 Mbytes
Integral Ethernet: ecO, version 1
Integral SCSI controller 1: Version WD33C93B, revision D
Disk drive: unit 1 on SCSI controller 0
Integral SCSI controller 0: Version WD33C93B, revision D
Iris Audio Processor: version A2 revision 0.1.0
Graphics board: GUl-Extreme
Operating system : IRIX 4.0.SH

Workstation "b" - Silicon Graphics Indigo - 24 Mb memory

1 33 MHZ IP12 Processor
FPU: MIPS R2010A/R3010 VLSI Floating Point Chip Revision: 4.0
CPU: MIPS R2000A/R3000 Processor Chip Revision: 3.0
On-board serial ports: 2
Data cache size: 32 Kbytes
Instruction cache size: 32 Kbytes
Main memory size: 24 Mbytes
Integral Ethernet: ecO, version 0
Disk drive: unit 1 on SCSI controller 0
Integral SCSI controller 0: Version WD33C93A, revision 9
Iris Audio Processor: revision 3
Graphics board: LGl
Operating system : IRIX 4.0.SF

149

APPENDIX B. HARDWARE SPECIFICATIONS 150

Workstation "c" - Silicon Graphics Indigo - 16 Mb memory

1 33 MHZ IP12 Processor
FPU: MIPS R2010A/R3010 VLSI Floating Point Chip Revision: 4.0
CPU: MIPS R2000A/R3000 Processor Chip Revision: 3.0
On-board serial ports: 2
Data cache size: 32 Kbytes
Instruction cache size: 32 Kbytes
Main memory size: 16 Mbytes
Integral Ethernet: ecO, version 0
Tape drive: unit 4 on SCSI controller 0: DAT
Disk drive: unit 1 on SCSI controller 0
Integral SCSI controller 0: Version WD33C93B, revision C
Iris Audio Processor: revision 10
Graphics board: LGl
Operating system : IRIX 4.0.SF

B.2 Sun workstations

It has been extremely difficult to obtain any specifications of the Sun
workstations used in these experiments. The following information was
obtained from comp.sys.sun.hardware Wed Sep 28 08:55:53 1994. It is not
known whether these specifications accurately describe the Sun workstations
used. For example, from these descriptions one would expect the Classics to
perform better than the ELCs whereas the serial performance tests showed the
reverse to be true.

OVERVIEW
========

The document posted was:

THE SUN HARDWARE REFERENCE
compiled by James W. Birdsall

(jwbirdsa@picarefy.com)

PART I
======

OVERVIEW
CPU/CHASSIS

Last updated: 09/09/1994

This primary focus of this document is to cover Sun-badged hardware
in detail sufficient to be useful to buyers and collectors of used Sun
hardware, much of which comes without documentation. Details on
hardware commonly used with Suns, especially hardware specifically
designed for Suns, are also included where available.

An extract from this document describes the Sun-4/SP ARCstations as follows:
(All Suns used were part of this group)

Sun-4/SPARCstation

OVERVIEW

These machines were initially introduced with model designations in
the same pattern as previous lines: Sun 4/xxx. However, Sun departed
from their classic naming scheme with the name SPARCstation, and has

APPENDIX B. HARDWARE SPECIFICATIONS 151

since experimented with alphabetic designations (e.g. "SPARCstation
SLC") before returning to numbered SPARCstations.

This model line marks the introduction of Sun's own RISC chip, the
SPARC. There have been a number of different implementations of the chip
from various manufacturers, with varying degrees of hardware support for
the instruction set.

Support for Sun-4's was introduced in SunOS 4.0. Since this product
line is still current,· it is still supported by Sunos, which has mutated
to become Solaris.

Some of the later models have pictures silkscreened on their CPU
boards.

Note that MIP/GIP ratings for later models are deemed suspicious.

By taking extracts from this document the following specifications of the Sun
workstations were obtained. Further notes from this document follow these
specifications.

Workstations "d" (32Mb memory), and "e" (16Mb memory) -

SPARCstation ELC (4/25)
Processor(s): Fujitsu MB86903 or Weitek W8701 @ 33MHz, FPU

CPU:
Chassis
Bus:
Memory:

type:

CPU chip, Sun-4c MMU, 8 hardware contexts,
21 MIPS, 3 MFLOPS
501-1730/1861
monitor
none
64M physical; 64K write-through cache,
direct-mapped, virtually indexed, virtually
tagged, 32-byte lines

on

Notes: Code name "Node Warrior" (?). 4M or 16M x 33 SIMMs.
No fan. 17" mono monitor built in. 8M standard.

Operating System : SunOS 4.1.3 (ELC)

Workstations "g", "I", "m" (32Mb memory), and
"r', "h", "i", "j", "k", "n" (16Mb memory) -

SPARCclassic (SPARCclassic Server)
Processor(s): microSPARC @ 50MHz, 59.1 MIPS, 4.6 MFLOPS

(microSPARC - Texas Instruments TMS390S10.
On-chip 4K I-cache. On-chip 2K D-cache.
64 hardware contexts. FPU and SPARC Reference MMU
on chip. SPARC Reference MMU has in-memory
3-level page tables, similar to a
de-baroqued subset of the 68030 MMU, but with
Sun-MMU-style contexts.)

Bus: SBus
Memory: 96M physical
Notes: Sun-4m, but no MBus. Code name "Sunergy".

Uniprocessor only. 16M standard. 1.44M 3.5"
floppy.

Operating System : SunOS 5.3

APPENDIX B. HARDWARE SPECIFICATIONS 152

Workstations "q" (28Mb memory), and "o", "p", "r" (16Mb memory) -

SPARCstation l+ (4/65)
Processor(s): LSI L64801IU@ 25MHz, Weitek 3172, Sun-4c MMU,

CPU:
Chassis type:
Bus:
Memory:

Notes:

8 hardware contexts, 15.8 MIPS, 1.7 MFLOPS
501·1632
square pizza box
SBus, 3 slots
64M (40M?) physical with synchronous parity,
512M/process virtual; 64K write-through cache,
direct-mapped, virtually ind~xed, virtually
tagged, 16-byte lines; 50ns cycle
Code name "Campus B". lM x 9 30-pin 80ns SIMMs,
possibly higher capacities as well. SM standard.
l.44M 3.5" floppy.

Operating _System : SunOS 4 .1

The following information was part of this document and explains the
preceding details.

CPU/CHASSIS
===========

For each model listed above, whatever information is available is
given, in the following order:

Processor: The microprocessor followed by its clock speed in MHz. The
floating point coprocessor (FPU), if any, followed by whatever
information is available about the MMU and number of hardware contexts
(in the MMU?). Lastly, the MIPS (Millions of Instructions Per Second,
aka Meaningless ...) and MFLOPS (Millions of FLoating-point OPerations
per Second) ratings, if available. Note that some SPARC processors are
referred to by name; information on the SuperSPARC and microSPARC is
available in the "Processor Data" section.

CPU: The Sun part number of the CPU board or motherboard.

Chassis type: "Rackmount" chassis, as the name suggests, are designed
to fit into a standard 19" equipment rack. They usually require
clearance over and under the chassis for cooling. "Pizza box" chassis
are intended to sit on a desktop, typically underneath the monitor; they
are low, wide, and deep. Older pizza boxes (2/50, 3/75, 3/50, and 3/60)
are much wider than they are deep; newer ones are square (3/80,
SPARCstation 1, l+, 2, etc.). Some older pizza boxes (mostly the 3/50)
have a 'dimple top', a case top with a circular depression that allows
the chassis to serve as a tilt/swivel monitor base directly. 9-slot
Multibus and 12-slot VME (and probably 6-slot VME as well) "deskside"
chassis are wide towers that must stand on the floor. 3-slot VME
"deskside" chassis can stand on the floor as narrow towers or lie on
their sides on a desktop as a tallish pizza box. "Shoebox" chassis are
small rectangular boxes the size of a couple large hardcover books
stacked. "Monitor" chassis (SPARCstation SLC, etc.) have the motherboard
in the back of the monitor.

Bus: Whatever bus or busses the machine has. Sun has, at various
times, used Multibus, VMEbus, ISA, SBus, MBus, and XDBus.

Memory: The amount of physical memory the machine can take, if known,
followed by the maximum size of the machine's virtual memory space, if
known, followed by the cycle time for physical memory, if known, and
finally details of any on-chip or off-chip caches, if known. The caches
on the Motorola 68020 and 68030 and the Intel 80386 are not described,
since information on these chips is widely known. To save space,

APPENDIX B. HARDWARE SPECIFICATIONS 153

the on-chip caches of the SuperSPARC and microSPARC processors is
described in the "Processor Data" section.

Notes: General information which does not belong under other
headings.

Bibliography/Acknowledgements

Much of the information in CPU/CHASSIS was contributed by Al Kossow
(aek@wiretap.spies.com).

"Guy" contributed notes on SF9010/MB86900 and 4/lxx and 4/2xx FPUs.

Additional information in CPU/CHASSIS confirmed by/added from Sun document
"Cardcage Slot Assignments and Backpl!ine Configuration Procedures", P/N
813-2004-10, Revision A of 5/13/87.

Additional information in CPU/CHASSIS (and all infomation in the
Announcement Dates/List Prices section) confirmed by/added from Data Sources
Reports on Computer Select CD-ROMs from February 1991, March 1991, April 1991,
June 1992, July 1993, and July 1994.

Information on 3/2xx CPU boards added from Sun document "Sun 501-1206 CPU
Board Configuration Procedures", P/N 813-2017-05, Revision A of 10 October 1986

Information on 3/50 motherboard added from Sun document "Sun 3/50 Desktop
Workstation Hardware Installation Manual", P/N 800-1355-05, Revision A of 31
January 1986

Information on 3/60 motherboard added from Sun document "Hardware
Installation Manual for the Sun-3/60 Workstation", P/N 800-1987-05, Revision
50 of 14 August 1987

Information on 2/120 CPU boards and other Multibus boards added from Sun
document "Sun-2/120 Hardware Installation Manual", Revision A of 15 April 1985

Random facts contributed by or extracted from postings by:
Jon Mandrell (jon@amc.com)
Robert Dinse
Cave Newt (roe2@midway.uchicago.edu)
Chuck Cranor (chuck@maria.wustl.edu)
root@junior.apana.org.au
Bruce Orchard (orchard@eceservo.ece.wisc.edu)
Ren Tescher
Robert Tseng

SPEC Benchmark for Sun ELC

The following information was also obtained from comp.sys.sun.hardware and
gives some benchmark information to give a rough idea of the performance of
the ELC.

******** TABLE 4: SPECmark89 ******** SPEC89 Results:

Note: - SPECmark 89 is an older figure derived from the results of
a combined set of floating point and integer benchmarks, and
is reported only because SPEC92 figures are not available for
many older machines. The use of SPECmark 89 is strongly discouraged.

APPENDIX B. HARDWARE SPECIFICATIONS 154

System
Name

CPU
Type

Clk MHz Cache SPEC Info Source
Ext/Int Ext+I/D Mrk89 Date Obtained

Sun SS ELC
Intel 386/387
Intel 486DX
Intel 486DX
Intel 486DX
Intel 486DX2

SP/FuWe
80386/7
80486
80486
80486
80486

33
33
25
33
50
33/66

64
64+0
128+8
0+8
256+8
256+8

20.3
4.3
8.7

11.1
21. 9
25.6

Nov92
1992
1990
1991

Oct92
1992

Sunflash
Intel
Intel
Intel
comp.arch
Intel

So, ELC is roughly equal to 486/DX50, and much faster than DX33.
The above is from the table made by John DiMarco. But benchmarks are
misleading :-)

Szymon Sokol -- Network Manager
U u M MM M University of Mining and Metallurgy, Computer Center
U U MM MM MM MM ave. Mickiewicza 30, 30-059 Krakow, POLAND
U U M M M M M M M M TEL. +48 12 338100 EXT. 2885 FAX +48 12 338907

UUUUU M M M M M M finger szymon@galaxy.uci.agh.edu.pl for PGP key
WWW page: http://www.uci.agh.edu.pl/-szymon/

B.3 Ethernet technical summary

A full technical description of Ethernet can be obtained from a number of
sources such as the IEEE-802 Standard. For the sake of brevity only those
facts about Ethernet which are relevant to this thesis are described here. They
were obtained from the Ethernet Technical Summary m Appendix C m
[Keis89] unless otherwise specified.

B.3.1 Packet size

An Ethernet packet consists of an 8-byte preamble, a 14-byte header, from 46-
1500 bytes of data and a 4-byte CRC. Thus the minimum packet size is 72

·bytes and the maximum packet size is 1526 bytes.
The minimum length of the data field is 46 bytes in order to ensure

that valid packets are distinguishable from collision fragments. If the data
supplied is less than the 46 bytes required for proper operation of the Ethernet
protocol this an integer number of padding bytes will be added by the Logical
Link Control protocol layer to bring the length of the data field to 46 bytes.

B.3.2 Data rate

The specified data rate of Ethernet is 10 Mbits/second so that the bit cell is
100 ns ± 0.01%.

B.3.3 Inter-packet spacing

The minimum time that must elapse after one transmission before another
transmission is started is 9.6 µs.

APPENDIX B. HARDWARE SPECIFICATIONS 155

B.3.4 Carrier

The presence of data trans1t1ons indicates that a carrier is present. If a
transition is not seen between 0.75 and l.25 bit times since the center of the
last bit cell, then carrier has been lost, indicating the end of a packet. For
purposes of deferring, carrier means any activity on the cable independent of
the signal being properly formatted. Specifically, it is any activity of either
receive or collision-detect signals in the last 160 ns. ·

8.3.5 Control procedure

The control procedure· defines when and how a station may transmit packets.

Defer

Transmit

Abort

Retransmit

Backoff

A station must not transmit when a carrier is present or
within the minimum interpacket spacing time.

A station may transmit if it is not deferring. It may
continue transmitting until either the end of the packet
is reached or a collision is detected.

If a collision is detected, transmission of a packet must
terminate, and a jam signal (4 to 6 bytes of arbitrary
data) is transmitted to ensure that all involved
participants are notified of the collision.

After a station has detected a collision and then
aborted, it must wait for a random retransmission
delay, defer as usual, and then attempt to retransmit the
packet.

Retransmission delays are computed using the truncated
binary exponential backoff algorithm, with the aim of
resolving contention among up to 1024 stations.
The basic unit of backoff is 51.2 µs. [Hamm86]
One version of the truncated binary exponential backoff
algorithm allows an initial attempt plus 15
retransmissions each delayed by an integer r times the
base backoff time. The integer r is selected at random
from the discrete distribution, uniform on the set of
integers {0, ... ,2k-1 }, where k is the minimum of the
number of retransmissions to date and the integer 10.
i.e. For the l lth through the 15th retransmission
attempts the upper limit of the set of values for r is
fixed at 210-1 = 1023. After 16 attempts the Ethernet
algorithm reports an error and a higher level protocol

APPENDIX B. HARDWARE SPECIFICATIONS 156

B.3.6

must decide whether to discard the packet or to
continue the attempt to access the network. [Hamm86]

Network node congestion

The following notes on network congestion were taken from [Hamm86].
Congestion occurs at a node in a computer network when the

resources of the node are stretched to capacity. This happens when the total
input traffic rate exceed the output rate so that all available buffers become
full. As a consequence of buffer overflow packets will have to be dropped and
there is a likelihood that the whole network will become deadlocked with no
packets getting through.

