
Univ
ers

ity
 of

 C
ap

e T
ow

n

LINtAR LIBRARY 
C01 0088 1530 

~~ mi rn1111 m u rr===============================================i! 

University of Cape Town 
Department of Computer Science 

An Efficient Parallelization 
of a 

Real Scientific Application 

by 
Elizabeth Post 

A thesis 
prepared under the supervision of 

Assoc. Prof. H.A. Goosen 
in fulfilment of the requirements for the 

degree of Master of Science in Computer Science 

Cape Town 
February, 1995 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 

 

 

 

 

 

 

 

 

The copyright of this thesis vests in the author. No 
quotation from it or information derived from it is to be 
published without full acknowledgement of the source. 
The thesis is to be used for private study or non-
commercial research purposes only. 

 

Published by the University of Cape Town (UCT) in terms 
of the non-exclusive license granted to UCT by the author. 
 



University of Cape Town 

Department of Computer Science 

An Efficient Parallelization 

of a 

Real Scientific Application 

by 

Elizabeth Post 

A thesis 

prepared under the supervision of 

Assoc. Prof. H.A. Goosen 

in fulfilment of the requirements for the 

degree of Master of Science in Computer Science 

Cape Town 

February, 1995 



Acknowledgements 

I would like to thank: 

my supervisor, Associate Professor Henk Goosen, for his constructive guidance 

and insight into the problems of parallel processing, and in particular for his 

thorough and invaluable guidance in the art of technical writing, 

my colleagues, especially Philip Machanick, for their valuable assistance, 

suggestions, and cooperation, 

the systems administrator, Sandi Donno, for her ever-willing support and 
helpfulness, 

Dr. Tom Ackerman of Pennsylvania State University, USA, and his assistants 

Steve Nagle and Eugene Clothiaux, for providing the original serial 

application, and for their willing assistance in clarifying the meteorology, 

Dr. Bruce Hewitson of the Department of Environmental and Geographical 

Science at the University of Cape Town for introducing me to Dr. Ackerman 

and for his assistance and the use of his Sun workstation, 

The University of Cape Town and the FRD, who supported my studies 
financially, 

my husband for his assistance and support throughout this project, 

and, last but not least, my long-suffering children for putting up with 

"Mommy's Masters" for so long! 

11 



Abstract 

In the past decade the cost of computing has come down considerably making 

high-powered computing more easily affordable. As a result many institutions 

and organisations now have networks of high-powered workstations. Such 

networks provide a large, generally untapped, source of computing power 

which can be used for running large scientific applications which previously 

could only be run on supercomputers. 

This dissertation shows that a substantial improvement in 

performance can be achieved by the parallelization of a real scientific 

application for a heterogeneous network of Sun and Silicon Graphics 

workstations connected by an Ethernet network, but that this is affected by a 

number of factors. These factors include communication delays, load balancing, 

and the number of slaves used. This dissertation shows that performance can 

be improved by sending more, shorter messages, and by overlapping 

communication with computation. 

Part of this thesis concerns the difficulties involved in the 

evaluation of parallel performance on a heterogeneous network. This 

dissertation shows that conventional methods such as speedup and efficiency 

are not appropriate for evaluating the performance of a heterogeneous system, 

and that linear speed gives a much more representative indication of the actual 

performance achieved. 

We also proposed new concepts of perfect linear speed and linear 

efficiency, which help to evaluate the improvement in parallel performance on 

a heterogeneous system. 
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Chapter 1 

Introduction 

Parallel processing is becoming increasingly important as the practical limits 

of serial processing are reached, and more practicable as increasingly powerful 

processors become cheaper, and high-speed networks such as FDDI and A TM 

are more generally available. In the past decade, the development of portable 

and efficient parallel libraries has greatly contributed to the parallelization of 

more real applications. 

These advances are particularly important in such scientific fields 

as climatology, meteorology and aerospace research, where the problems often 

have memory or computation requirements which are too large for the program 

to be run serially in a reasonable time. Previously such large programs could 

only be run on supercomputers, which were not generally available. Nowadays 

many institutions already have networks of workstations, and since efficient 

and portable parallel libraries have been developed it is becoming easier to 

parallelize applications for such networks. 

Networks of powerful workstations represent an important resource 

for the potential delivery of a supercomputer level of performance. A 

significant obstacle to realising this performance is that not much is known 

about the performance of real applications on a network of workstations, and 

particularly for networks of heterogeneous workstations. 

The typical network in most institutions is heterogeneous, as most 

networks consist of workstations of a number of different makes and models, 

so not all machines will have the same CPU, or the same amount of memory 

or cache. In addition, many such networks are multi-user networks, and 

dynamically varying workloads will cause even machines which are identical 

to have different performance capabilities. 

If the computing power available in such networks is to be 

successfully exploited for parallel processing, then it is essential to acquire a 

better understanding of how real parallel applications perform on a 
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heterogeneous network. In the past researchers have often concentrated on the 

performance of scaled down versions, or kernels of real applications. Now that 

_ many of the basic problems have been solved researchers have realised that it 

is important to study the performance of complete, full-size applications. This 

is particularly important in a heterogeneous environment, where the disparate 

performance capabilities of the workstations make it difficult to achieve 

efficient synchronisation and load balancing. These difficulties are compounded 

in a shared environment where the dynamically varying workloads on the 

processors constantly affect the performance capability of the workstations. 

In the past it has also been difficult to use machines of different 

architectures together for parallel processing. However, with the development 

of modern portable parallel libraries it is now possible to run a parallel 

application using a heterogeneous group of machines. 

This dissertation shows that a significant improvement m 

performance can be achieved by parallelizing a real scientific application for 

a distributed group of heterogeneous workstations, connected by Ethernet. 

Several crucial factors that affect parallel performance of a real application are 

identified. This dissertation shows that: 

• 

• 

• 

• 

the performance of an application on a network of workstations is 

sensitive to over-utilization of the network, and that a heavily 

loaded network will cause a severe degradation in performance; 

that these effects can be alleviated by breaking long messages into 

shorter messages, and by avoiding bursts of network traffic 

interspersed with periods of low usage, by ensuring that all 

machines ~o not try and send at the same time; 

network latency can be reduced by overlapping communication 

with computation; 

in a widely heterogeneous system little or no advantage may be 

gained by using slow processors together with very much faster 

processors, and adding slow processors may even cause a reduction 

in performance. 

The measurements shown in this dissertation confirm the 

misleading nature of commonly used means of measuring performance, such 

as speedup and efficiency, and show that linear speed, as proposed by Crowl 

[Crowl94], more closely reflects the actual performance achieved, especially 

for heterogeneous networks. 
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We also propose some extensions to Crowl's work which will assist 

in understanding the performance of heterogeneous systems. These are the 

concepts of "perfect linear speed", and "linear efficiency", which will be 

described in section 5.4.4. 

The work done for this thesis in studying the factors affecting the 

performance of a real parallel application will contribute to both the use, and 

the development of, parallel programming environments. Such parallel 

programming environments are currently under development as part of the 

move to make parallel programming more practicable for the real user (see 

section 1.4). 

The application studied in this thesis, Cloud, is a cloud radiation 

model which was obtained from, and parallelized on behalf of, the Department 

of Meteorology at Pennsylvania State University (PennState) in the USA. The 

passage of photons through a stratocumulus cloud deck is simulated, using the 

Monte Carlo method, which is a computation-intensive technique used widely 

in scientific computing. The transmissivity, reflectivity and absorptivity of the 

cloud are then calculated from the results obtained. A more detailed description 

of Cloud is given in Appendix A. 

The p4 parallel library, from Argonne National Laboratories1
, was 

used to parallelize the application, to run on both homogeneous and 

heterogeneous groups of Sun and Silicon Graphics workstations, connected by 

an Ethernet network. Since all workstations used were uniprocessors, the 

message-passing paradigm was used. 

The remainder of this chapter looks at some of the factors that are 

contributing to parallel programming becoming a practical reality for the real 

user. 

1.1 Untapped computer resources 

Existing networks of workstations can now be used as multicomputers, to solve 

large scientific problems, so that parallel processing can exist as a by-product 

of a normal, highly distributed workstation environment, without the need for 

specialised multicomputers or supercomputers [Bell94]. An additional benefit 

The p4 parallel library is in the public domain and can be obtained via 
anonymous ftp from info.mcs.anl.gov at Argonne National Laboratory. The distribution 
contains all the source code, a meta-makefile to build p4 on a number of different machines, 
a set of examples, and a User's Guide. 
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is that a user may have exclusive use of a network of workstations, which 

could result in a shorter elapsed time for a parallel run than the elapsed time 

on a supercomputer, where the resources have to be shared with other users 

[Minn93]. 

Nowadays many organisations and institutions can afford, and 

already have available, networks of uniprocessor workstations, which are 

usually under-utilized, and which represent a large, generally untapped, source 

of computing power. Researchers at the University of Zurich observe that the 

typical workstation in a LAN lies idle for long periods (Cap93]. Statistics of 

their LAN demonstrate an average idle percentage of at least 90%. They also 

postulate that, for a large percentage of their lifetime, these high performance 

machines are used merely for small tasks such as editing files, and reading 

email. 

Similarly, researchers at the Lawrence Livermore National 

Laboratory observed that users spend about three times as much time on 

workstations as on supercomputers, and that these workstations are only about 

15% utilized [Bell94]. And for the 15% of time when these workstations are 

being utilized, they deliver about five times the power of the supercomputers 

at the Laboratories! In 1993 workstations and PCs comprised 9% and 45% 

respectively of computer expenditures in the USA, thus providing a great 

untapped resource for parallel processing. Bell claims that, as LAN-based 

workstations evolve to be connected by high-speed networks, they will have 

the capability of modem multicomputers [Bell94]. 

An advantage of a distributed system is that each machine has its 

own memory, and usually a cache, and this adds up to a considerable amount 

of memory, which is usually more than the memory and cache available for a 

serial processor. The available memory for each machine is reduced by such 

factors as having the operating system, and separate copies of the executable 

and global variables, in the memory of each processor, but often more data can 

be in memory, or cache, at any one time on a distributed system, than on a 

serial processor. This reduces the paging necessary, and can contribute towards 

superlinear speedup being achieved. 

1.2 The development of standard parallel libraries 

The development of portable and efficient parallel libraries has contributed to 

making parallel processing possible for the real user. Previously heterogeneous 
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machines could not easily be used together for parallel processing. Now, with 

modern portable parallel libraries, such as p4, the computing power available 

in a heterogeneous network can be more easily exploited. 

Suitable parallel processing hardware has been commercially 

available for approximately a decade, yet relatively few real applications have 

been successfully parallelized. This was principally due to the lack of parallel 

languages, libraries and compilers, the lack of skills and the difficulties of 

implementing parallelism by low-level, hardware-dependent, programming. The 

difficulties of parallel programming were also immense, as each different 

platform had its own way of implementing such things as communication, so 

that a programmer had to relearn the techniques for every different 

environment. Few real users were willing to invest a large amount of time and 

money in parallelizing a serial application, when it might have to be redone 

two or three years later for a different hardware platform. There were few 

people with the necessary skills available commercially, as most of those who 

knew how to do parallel programming were researchers. Many users were also 

disillusioned because few parallel environments lived up to the performance 

claims made by vendors. Users found that parallel programming was just too 

hard, and too expensive, and the performance gains were just not good enough. 

Kuck claims that, even now, users have not been presented with usable 

practical parallel processing facilities, and that this matter should be addressed 

urgently [Kuck94]. 

In the past decade, a number of these problems have been solved 

with the development of portable libraries such as p4 [Butl94], PVM [Sund94], 

SpaceLib [Mach92], Linda [Carr89][Carr94] and PARMACS [Calk94]. For a 

survey of some of these, and others, see [McBr94]. These libraries generally 

consist of extensions to C or Fortran, and they have made it possible for 

relatively unskilled programmers to parallelize real applications easily, and 

efficiently, in such a way that they are easily portable to other hardware 

platforms, or can be run in heterogeneous environments. This effort will be 

considerably enhanced by the adoption of the new MP! standard [Walk94], 

which is based on those features of the most common libraries such as p4, 

PARMACS and PVM, which have been found in practice to be the best way of 

implementing message-passing parallelism. This standardisation was not 

possible until sufficient real applications had been parallelized, so that 

researchers could see what was required, and could start to develop suitable 
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libraries. Now that more experiments have been conducted, the best methods 

are emerging as standards. 

1.3 Performance of real parallel applications 

Good performance for parallel programs on a network of workstations will 

only be achieved if the factors affecting the performance of applications on 

such a network are properly understood. And these factors can only really be 

identified by studying the performance of complete, real applications, such as 

Cloud. 

Mainly as a result of increased standardisation, and the 

development of portable parallel libraries, there has been increasing emphasis 

in research on the performance of real parallel applications in the past decade. 

In serial computing, the speed of the processor is of prime importance, but in 

parallel computing factors such as memory requirements and communication 

costs also have a significant impact on performance, particularly in a 

distributed system. 

Initially, parallel processing research has focused on improving the 

performance of parallel architectures, by such methods as reducing memory 

and communication latency, in experiments with small test programs or 

kernels. However, the good performance of a small test program does not 

necessarily mean that comparably good performance can be achieved when the 

program is run with a larger data set, requiring considerably more memory, 

. and perhaps involving extensive input and output, The results of such research 

can therefore be misleading regarding the performance of real applications, and 

frequently performance claims for certain architectures cannot be achieved with 

real programs, which behave differently from the kernels used in the 

performance tests. 

For users it is important that performance claims relate to complete 

real applications, and not just kernels. As a result researchers are now 

establishing suites of benchmark programs, which contain real applications 

with a broad range of different characteristics, so that the performance of 

parallel systems can be assessed more accurately. These benchmark programs 

are also portable between platforms, so that different parallel environments can 

now be compared (SPLASH [Sing92], NAS benchmarks [Bail93], Perfect 

benchmarks [Cybe90], SPEC benchmarks [Dixi9 l ], Genesis benchmarks 

[Hey9 l ], and a survey of parallel benchmarks in [Weic9 l ]). 
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The performance of a parallel program can be affected by the 

parallel algorithm used. If a program is merely a parallelized version of a serial 

program, this may not necessarily be the most efficient parallel program. A 

totally new algorithm may be a better and more efficient way of solving a 

problem in parallel. Such a parallel algorithm may, for example, take 

advantage of the extra caches and memory available in a distributed system, 

by handling the data differently, or by using the different capabilities of 

heterogeneous processors to handle certain tasks for which they are particularly 

suited, such as for the rendering of graphics images. 

There is still much room for research in the area of developing 

parallel algorithms which take the most advantage of a parallel environment, 

as opposed to parallelized serial algorithms. 

1.4 Parallel problem solving environments 

For parallel processing to become a successful alternative to supercomputers 

it must become easier to implement parallel programs. A major contribution 

in this area is current research on the development of parallel problem solving 

environments. These environments will assist a programmer to develop an 

efficient parallel program quickly and easily. The results of this study on the 

performance of Cloud will assist in both the development and the use of such 

parallel programming environments. 

Parallel processing is now at the stage where the major architectural 

problems have been solved, and some parallel languages, libraries and 

compilers have been developed. Because the costs of parallel programming are 

so high, it is essential that parallel programming must become simpler and 

faster. Generally, an automatic parallelizing compiler can do low-level 

parallelism and communication very efficiently. However, it is extremely 

difficult for parallelizing compilers to recognise high-level parallelism, and 

dependencies in the application being parallelized. This can be done much 

better by a programmer who has some familiarity with the application to be 

parallelized, and an understanding of parallel processing. 

The necessity to make parallel programming simpler and faster has 

led to the development of dynamic parallel programming environments, which 

combine the strengths of a programmer in identifying high-level parallelism, 

together with the strengths of an automatic compiler for implementing efficient 

low-level parallelism [Kuck94]. These environments assist a programmer in 

•, 
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developing applications for both shared-memory and distributed systems. Some 

of the environments that are currently under development are Enterprise, 

Mentat, Presto and Schooner. Enterprise produces code for a network of 

workstations [Scha93]. Mentat enables the parallelization of data-parallel 

applications for a wide variety of MIMD platforms, from loosely coupled 

networks of workstations· to tightly coupled multicomputers [Grim93a] 

[Grim93b][Grim94]. Presto is intended for developing·parallel applications for 

shared-memory multiprocessors [Bers88]. Schooner is specifically intended to 

exploit the varied resources available in a heterogeneous system [Home94]. 

These environments, particularly Enterprise, allow the user to specify high­

level parallelism but automatically implement the low-level parallelism 

efficiently. 

It will still be some time before such environments are generally 

commercially available, as there is still much research to be done on the 

behaviour of real applications, so that the performance characteristics of such 

programs can be properly understood. As more users are becoming involved 

with parallel processing, and more real applications, such as Cloud, are 

parallelized, it will assist researchers in the development of such environments. 

Also programmers will gain expertise which will enable them to parallelize 

applications efficiently by using such an environment. 

1.5 Structure of this dissertation 

. The next chapter reports on other work in this area. This is followed by a 

description of the parallelization of the application. The subsequent chapter is 

an account of the experiments conducted in studying the performance of this 

parallel application. Following this, there is a summary of results obtained, 

together with a discussion of their relevance. This chapter also includes 

discussion on the problems of evaluating the parallel performance of a 

heterogeneous system. Finally, conclusions are drawn concerning the factors 

affecting the performance of this parallel application, and some 

recommendations are made on how to achieve the best performance for a 

parallel application, in a similar environment. 



Chapter 2 

Related Work 

There is increa~ing research in the programming and performance of real· 

applications, as researchers attempt to understand the behaviour of programs 

in actual use. This chapter describes some of the work in this area. 

Cloud has many similarities to the research described in this 

chapter. These include making use of existing underutilized networks of 

workstations, parallelizing a common scientific application by using a freely 

available parallel library, running the program on both homogeneous and 

heterogeneous machines, heterogeneous partitioning of work, and dynamic load 

balancing. 

The experiments using Cloud were run on both homogeneous and 

heterogeneous groups of Silicon Graphics Indigo, Sun ELC 1
, Sun 

SP ARCclassic and SUN SPARCstation 1 + workstations, all connected by 

Ethernet. Some of the projects described in this chapter were run on similar 

groups of Sun workstations, also connected by Ethernet. Other projects were 

run with groups IBM RISC System/6000 workstations, some connected by 

Ethernet, and others with a Token Ring, or fiber-optic implementation. The 

remainder of the work described in this chapter was .conducted on different 

types of parallel systems, such as transputer networks, but these projects were 

similar to Cloud in the programming techniques used. 

Section 2, 1 describes a number of other implementations of the 

Monte Carlo technique. After that, some work on the more efficient utilization 

of networks of heterogeneous workstations is described in the next section. 

Section 2.3 contains a summary of a number of real scientific applications 

which have been parallelized using the PVM library. After that there is a short 

description of the implementation of a data-parallel application for a network 

1SPARCstation, SPARCstation I+, SPARCstation IO, SPARCclassic and SPARCstation 
ELC are trademarks of Sun Microsystems, Inc. 

9 
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of heterogeneous workstations, together with some discussion of the load 

balancing techniques used. The last section lists some other projects where real 

applications have been parallelized in the fields of meteorology and 

climatology. 

2.1 Other parallel projects using Monte Carlo 
simulation 

Monte Carlo simulation is a common scientific technique which has been used 

in Cloud, and in many other applications. Frequently this type of simulation 

is the only way to solve scientific problems which would either take too long 

to be solved, or cannot be solved at all. Typically, Monte Carlo simulations 

have minimal memory requirements, require almost no communication, and are 

very time-consuming. This section describes some other applications which use 

Monte Carlo techniques. 

2.1.1 Monte Carlo benchmarks 

In many ways the minimal communication requirements of Monte Carlo 

simulation make it an ideal way to estimate the upper limits of a system's 

floating point performance. This is evident by the fact that Monte Carlo 

routines are part of at least six sets of parallel benchmarks: the QCD program 

in the Perfect Benchmarks [Cybe90], the Embarrassingly Parallel program of 

the NAS Parallel Benchmarks [Bail92][Bail93], the DODUC program in the 

SPEC benchmarks [Dixi91][Weic91], kernel 16 in the Livermore Fortran 

kernels [Berr91 ], INTMC, GAMTEB, VGAM and SCALGAM in the Los 

Alamos benchmarks [Berr91] and QCD 1 in the Genesis distributed memory 

benchmarks [Hey91]. 

The Embarrassingly Parallel program is in some ways very similar 

to Cloud, and typical of many other Monte Carlo applications, in that two­

dimensional statistics are calculated from a large number of pseudorandom 

numbers [Bail93]. 
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2.1.2 Efficiency evaluation of some parallelization tools on 
a workstation cluster using the NAS parallel 
benchmarks [Suku94) 

At Vienna University of Technology, Sukup has conducted an efficiency 

evaluation of PVM 2, PVM 3, p4, Express and Linda by implementing and 

running four of the NAS Parallel Benchmarks [Suku94]. The NAS Parallel 

benchmarks used were the Embarrassingly Parallel benchmark (Monte Carlo 

simulation), the Simple 3D Multigrid Benchmark, Solving an Unstructured 

Sparse Linear System by the Conjugate Gradient Method and the Parallel Sort 

Over Small Integers. The tests were conducted on a cluster of nine IBM 

RS6000-320H workstations, each with a 25 MHz clock rate and 16 Mb 

memory per workstation. 

These benchmarks were implemented using each of the five 

libraries, and the results were ranked according to the performance obtained 

with each library. For the Embarrassingly Parallel benchmark, all libraries gave 

• almost exactly the same performance results. However, there was considerable 

variation in which library gave the best performance for the other benchmarks, 

but the results for most libraries were reasonably similar. Finally the libraries 

were ranked according to their overall performance with each benchmark, and 

also other factors, including the ease of learning and programming with that 

tool, the costs of startup and closedown time, the configuration of the tool, and 

the ease of debugging. The final results ranked Express first, followed by PVM 

2.x, Linda, p4 and PVM 3.x in that order. This was in contrast to the results of 

Cap and Strumpen (see section 2.2), where Linda gave the worst results. This 

dissertation shows in Chapter 5 how there are many factors which affect 

parallel performance. Since the NAS benchmarks are "paper and pencil" 

benchmarks, and their implementation differs for different experiments, 

Sukup's performance results may not necessarily be conclusive. If these factors 

which affect performance are considered, it may be that re-implementations of 

Sukup' s version of the benchmarks may give different results. 

In the network performance results, described in section 5.2.2, the 

data rates that were achieved for a small p4 program, that was used to test the 

performance of the Ethernet network, were similar to the data rates achieved 

for PVM, by Sunderam et al in (Sund94]. 
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Sukup reported a number of problems with p4, which included lost 

or hanging processes. This was consistent with the experiments with Cloud, 

where similar problems occurred. However, Sukup was favourably impressed 

with the debugging tools in p4, which were also useful in the development of 

Cloud. 

2.1.3 Monte Carlo simulation in radiation dosimetry [Ma93) 

Chang-ming Ma implemented a parallel version of the EGS4 (Electron Gamma 

Shower version 4) Monte Carlo code system on the Edinburgh Concurrent 

Supercomputer (ECS), which is a multiple-transputer system consisting of 423 

T800 20-MHz transputers. This program was used to calculate the absorbed 

dose of radiation by using Monte Carlo simulation. The program, 

DOSIMETER, is a task-farm' procedure written in Meiko Fortran, and which 

uses CSTools for the underlying communication. The interface routines were 

based on those provided in the Meiko Task Farm and the Wheatfarm. 

The program was similar to Cloud as it consisted of a control 

process to generate tasks, a number of simulation processes to consume tasks 

and generate results, and an analysis process to collect and analyze the results. 

Currently the number of particle histories traced by Ma is 105
, if the incident 

particles are.electrons and 106
, if the incident particles are photons, and these 

numbers are similar to the number of photon histories ( l .2x 106
) traced in the 

experiments with Cloud. 

Ma found that, in the case of the ECS transputer domain, 

communication costs become negligible when running large simulation tasks. 

Similarly, the initialization time, although it increases with the domain size, 

becomes negligible when compared to the computing time for large 

calculations. 

However, the optimal speed on the T800 transputers can only be 

achieved when using the transputer's native language, Occam. When running 

a program written in Fortran, less than half the stated performance could be 

a~hieved. Ma's results showed that a linear increase in computer speed was 

1 A task-farm is a technique for implementing self-scheduling calculations. In a task farm, 
a "source" process generates a pool of jobs, while a "sink" process consumes results. In 
between, one or more "worker" processes repeatedly claim jobs from the source, tum them into 
results, despatch those results to the sink, and claim their next jobs. If the number of jobs is 
much greater than the number of workers, task farming can be an effective way to load balance · 
a computation [Wils93]. 
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achieved, as the number of transputers used on the ECS was increased. Ma 

also includes results obtained from running the code on a number of other 

machines including 5 different V AXs, an HX i860, a Division i860, a Motorola 

88000 and an HP 90001720. [Ma93] 

2.1.4 Monte Carlo simulation of radiative heat transfer on 
a SP ARCStation farm [Minn93) 

Minnich and Pryor, at the Supercomputing Research Center in the USA, are 

developing a distributed shared-memory model, Mether. To test the 

performance of their model, they implemented a parallelized Monte Carlo 

simulation of radiative heat transfer, to run on a computing farm consisting of 

16 SPARCStation ELCs (33MHz SPARC 1 processor) connected by an 

Ethernet network, which is fairly similar hardware to that used for most of the 

work with Cloud. The application simulates the radiative heat transfer among 

surfaces of arbitrary 2-D enclosures, and is used for the modelling of the 

geometry of a laser-isotope separation (LIS) unit, for which the accurate 

determination of radiant exchange factors is an important component in the 

larger simulation of the isotope separation process. 

The application involves the tracing of photons which are emitted 

from the surfaces of the enclosure, reflect from one or more intermediate 

surfaces, and are then absorbed into, or transmitted through, terminating 

surfaces. The LIS has 3 7 sides, and 1 million photons are emitted uniformly 

from each side. The path of each photon may include several reflections, which 

may be specular or diffuse, before it is transmitted through, or absorbed by a 

surface. The counts of the photons transmitted and absorbed are recorded in 

two 2-dimensional matrices. This problem is very similar to Cloud in the 

amount of computation, and the total elapsed time on the farm. 

The same C code was run on a 16-processor ELC farm, and on one 

processor of a Cray 2. The total CPU time on the Cray was 262 min (1 Oh 20m 

elapsed time), and for the ELC-farm the elapsed time was 28 minutes. This 

time of 28 minutes for the ELC-farm is similar to the time needed for Cloud 

on 11 Suns. The long time for the Cray is primarily because there were other 

users on the Cray. However, the program was run on only one processor on the 

Cray and the code did not automatically vectorize easily. The researchers claim 

that if they optimized the program to take full advantage of the Cray, the same 

task would run on the Cray in approximately 10-13 minutes. Similarly, if 
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certain optimizations were made for the program running on the ELC-farm, the 

time could be improved, but would probably still be in the order of 20-30 

minutes. 

Nevertheless, it is claimed that for this example, a radiative heat­

transfer simulation, it was possible to achieve supercomputer-level performance 

on a network of cheap workstations. For this problem, a 3-processor Cray 2 

wou.ld run about 3 times as fast as a 16-station farm, and a 16-processor C90 

Cray supercomputer would run approximately 40-50 times as fast as the farm. 

However, the cost of a C90 supercomputer is about 500 times the cost of the 

farm, so that performance/price is correspondingly higher [Minn93]. 

Results also showed that the startup overhead was relatively small 

for large amounts of computation, but for smaller runs this became increasingly 

significant. It was estimated that the farm would scale easily to about 32 

processors, but for more than 32 processors another method of starting the 

processor~ should be found, as the startup costs would limit further scalability. 

2.2 Efficient parallel computing in distributed 
workstation environments [Cap93) 

This thesis is to illustrate how an existing network of heterogeneous 

workstations can be used for efficient parallel computing. This section 

describes similar work at the University of Zurich, where Cap and Strumpen 

are conducting research into more efficient utilization of existing networks of 

heterogeneous workstations [Cap93]. 

Research has shown that, for the workstations in the network at the 

University of Zurich, the average idle percentage is at least 90%, and that for 

much of their lifetime these high-power workstations are used for small tasks, 

such as editing files, and reading email. Although the research at Zurich is 

primarily concerned with data-parallel processing, the principles are discussed 

here, as many of them are valid for all distributed parallel processing. 

Cap and Strumpen have developed THE PARFORM to use idle 

workstations for parallel computing. Even on dedicated parallel machines it can 

be difficult to obtain good speedup and efficiency. However, the heterogeneity, 

and dynamically varying load situation of a non-dedicated workstation network, 

considerably increase the difficulties of obtaining good parallel performance. 

In a parallel program with communicating processes one slow workstation can 

cause the whole program to proceed at the rate of the slowest processor, which 
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may result in a decrease in efficiency. In a non-dedicated network where the 

workload of each processor is changing constantly, it is not possible to 

determine beforehand which processor will do the most work in a certain time. 

Even if the situation is known at the beginning of a run, it will probably 

change several times during the run. 

THE PARFORM uses heterogeneous partitioning and dynamic load 

balancing to improve performance. It uses ~ number ·of sensor processes to 

determine the load situation of each processor, and whether the processor is 

busy running a time-consuming program, or it is currently idle, except for very 

short or interactive jobs. Another process determines approximately how much 

computation can be expected from the processor. THE P ARFORM thus partitions 

the work, so that the fastest processors get the most work, and the slowest get 

the least, according to the comparative rates, and computation potential, of the 

processors, as determined by the sensor processes. These sensor processes run 

throughout the time the parallel program is running, so as the load situation 

and computation potential of the workstations changes, THE PARFORM 

dynamically adjusts the load for each processor, to obtain the greatest 

efficiency possible. 

The increase in efficiency achieved by heterogeneous partitioning 

and dynamic load balancing more than compensated for the overhead of 

running the sensor processes. THE PARFORM is in many ways similar to PVM, 

but heterogeneous partitioning and dynamic load-balancing are not supported 

by PVM so this has to be done entirely by the programmer, which makes it 

difficult to achieve high efficiency for a network running under a normal daily 

load. p4 also does not support these techniques implemented by THE PARFORM, 

and like PVM these will also have to be implemented by the programmer. 

A parallel program may slow down the response times of 

interactive processes as a result of CPU sharing, and it is important to use a 

sensible scheduling mechanism, together with the other processes described 

above, to ensure that a parallel program does not interfere with interactive 

users, but uses idle machines instead. So far researchers at Zurich have found 

that, even when their parallel program was running at normal priority, there 

was minimal impact on other users, and frequently it was not noticed at all. 

However, they intend to introduce a mechanism whereby their parallel program 

runs at low priority to reduce the impact on other users. 

The performance obtained by using THE P ARFORM was evaluated 

by using the same program implemented with each of THE P ARFORM, Linda 
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(POSBYL), SCALinda and PVM. This program was run on a heterogeneous 

network of 40 SPARCstations and SPARCservers, of five different types. In 

all cases the application was a 2-D grid-based iterative solver for heat 

conduction, and the network was dedicated. The performance was also 

compared to the same program running on a tightly-coupled Transputer 

Multicluster MC-2/32-2. Results showed that the speedup was essentially 

constant for all versions, except for the Linda (POSBYL) implementation which 

performed badly. This can be explained by the overhead of tuple space 

management, as Linda is more suited to shared-memory processing. However, 

in overall speed THE PARFORM was marginally better than the SCALinda and 

PVM versions, and a factor of approximately 3 times as fast as the Transputer 

Multicluster, which was primarily due to the lower performance of the T800 

processors. In these experiments, for this application at Zurich, the workstation 

network scaled almost exactly like the tightly-coupled Transputer Multicluster. 

Cap and Strumpen also observed that, for a parallel version on a network, there 

is more memory available than for a serial version, and this can result in super­

linear speedup for a program requiring a large amount of memory, as the serial 

version will require excessive paging [Cap93]. 

Excellent, near-linear speedup was obtained for up to 20 

workstations, but there was a breakdown in performance for more than 30 

processors. Cap et al found that network saturation and congestion were serious 

inhibiting factors which limited scalability. Congestion occurred when too 

many stations attempted to transmit at the same time, and saturation happened 

when the work was split into so many tasks that the network became saturated 

with communication. Similar problems were experienced with Cloud. Cap et 

al suggest that the problem of saturation may be solved by using a different 

algorithm, as is shown in the experiments with Cloud, and that modem high­

speed networks may partially solve the problem of congestion, although 

increases in the performance capabilities of workstations make this problem 

more prominent. 

2.3 Parallelization of scientific applications using 
the PVM parallel library 

PVM is a parallel library similar in many aspects to p4. There have been a 

number of projects using PVM to parallelize real scientific applications for a 

network of workstations. Some of these projects are described briefly below. 
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All four of the projects listed here run on networks of IBM RISC 

System/6000 workstations. The numbers of workstations used are similar to the 

numbers of machines used in the experiments with Cloud. Three of the projects 

described in this section were implemented on groups of homogeneous 

machines, but in one case the master was a different processor. In the fourth 

project the experiment was conducted on both homogeneous and heterogeneous 

groups of machines. 

The results of these experiments indicate some of the problems that 

anse when parallelizing real applications for a network of workstations, 

particularly when the network is heterogeneous, and how these factors affect 

the optimal performance that can be achieved. 

2.3.1 Distributed computation of wave propagation models 
using PVM (Ewin94] 

Some of the developers of PVM used it to parallelize an application which 

simulates the propagation of seismic waves. The primary purpose of this 

project was to demonstrate that many organizations have considerable 

computing power available, in the form of existing networks of workstations, 

and that for no extra cost, by using a parallel library such as PVM, they can 

use this power for running parallel scientific applications, which are generally 

too large, or too slow, to run serially. [Ewin94] 

The program was run on a network of six homogeneous processors 

. connected by Ethernet. Reasonable speedups were obtained, but were limited 

by communication overheads. It was observed that the network could become 

a significant bottleneck, and that for many applications speedup will be less 

significant as processors are added, and network communication becomes 

saturated. Similar problems were also observed for Cloud, which may be 

limited in its scalability because of network congestion, and an overloaded 

master. 

Another factor which may affect load balancing is that the PVM 

tests were performed on an isolated homogeneous network. Performance is 

expected to degrade in a heterogeneous environment, or a network with 

varying load conditions which cause additional load balancing problems. 
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2.3.2 Parallelization of the two-dimensional Ising Model on 
a cluster of IBM RISC System/6000 workstations 
[Alte93) 

The Ising model is another commonly used scientific technique for statistically 

obtaining a solution, when an exact solution cannot be found easily, if at all. 

In such cases computer simulations become an important tool to confirm and 

understand experimental data. This method has much in common with the 

Monte Carlo method, and is also well-suited for parallelization, as it has only 

modest communication between processors. Here this technique is used in an 

application to derive statistically the thermodynamic properties of macroscopic 

bodies [Alte93]. 

For this example, an automatic parallelizer was not the best 

solution, since such parallelizers seem to be limited to fine-grain 

parallelizations, and these tend to have a high latency on workstation clusters. 

For this program, a new algorithm, which was more coarse-grained, and 

therefore had less communication, was thus implemented manually. 

This application was run~ at the IBM Research Center in Germany, 

on a platform of one RTS/6000-560 and four RS/6000-550 workstations, 

connected by both a Token Ring network, and with Serial Optical Channels. 

The speedups and efficiency achieved were satisfactory. However, it was noted 

that there was a "critical lattice size", and that when the lattice was below this 

size, the amount of communication was so much that performance was 

degraded, while for large lattice sizes the communication costs were negligible. 

This is because only the edges of the lattice are communicated to other 

processes, and as the lattice size increases, the edges form a smaller percentage 

of the data. 

Again it was observed that static decomposition of the domain into 

a number of subdomains, with each subdomain to be associated with a 

particular processor, was only appropriate in a homogeneous, dedicated system. 

For such an application, that is limited by inter-process communication, 

dynamic load-balancing would be required on a heterogeneous, non-dedicated 

network. 
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2.3.3 Lattice Boltzmann method on a cluster of IBM 
System/6000 workstations [Bete93) 

The lattice Boltzmann method is yet another scientific procedure in common 

use, particularly for the simulation of complex hydrodynamic phenomena. It 

was implemented, using PVM, by Betello et al [Bete93]. Since the application 

was to be run on a homogeneous network, PVM was optimized, to exploit the 

high speed available on a fiber channel, by removing some of the handshaking, 

and data conversions, that would be required for a heterogeneous system 

This application was run on a homogeneous network of IBM 

RS/6000-550 workstations connected by a fiber-optical channel. A good 

speedup of 6.5 to 6.8 for 8 processors was obtained. The scalability of this 

application was analyzed to determine the critical number of processors beyond 

which adding another processor would not increase the speedup. 

For this application it was determined that, for a grid of size 512, 

the application would scale with almost linear speedup to 18 processors. If the 

problem size was increased to a grid of size 2048 then the application would 

scale well to 35 processors, and with 20 processors the speedup would be 

about 15. These speedups compare well with those obtained for Cloud on 

similar numbers of machines. 

2.3.4 Performance of IBM RISC System/6000 workstation 
clusters in a quantum chemical application [Nana93] 

The ab initio determination of the electronic structure of molecules demands 

considerable computing power, especially when electron correlation effects are 

taken into account. The concurrent computation Many-Body Perturbation 

Theory ( ccMBPT) is a method in which such a problem can be divided into 

a set of completely independent sub-problems, which can each be handled by 

a different processor. Using this theory and PVM, an application to solve the 

many-electron correlation problem, using a network of workstations, has been 

modified from the original program, which ran on an Cray Y-MP C90 

[Nana93]. 

Nanyakkara et al first studied the performance of this quantum 

chemical application on the two homogeneous sub-groups, and then measured 

the performance of the combined heterogeneous group of IBM RISC 
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Systern/6000 workstations, connected by Ethernet. The two homogeneous 

groups were up to eight RS6000-320H workstations, and up to eight RS6000-

340 workstations. The heterogeneous group was a combination of these two 

groups. The master workstation was an RS6000-550. This approach of first 

studying the performance of the homogeneous sub-groups, and then the 

performance of the combined heterogeneous group, is similar to the approach 

used in the experiments with Cloud. 

It was observed that although the theoretical performance of 

Ethernet on a dedicated strand is 10 Mbits/second, in practice only about 5-7 

Mbits/second could be achieved for a dedicated strand. 

Results showed that although a significant decrease in the total 

elapsed time could be achieved for clusters of four homogeneous workstations 

(speedup greater than 3.1 and efficiency 0.78 to 0.87), comparable 

improvements were not achieved for clusters of six or eight homogeneous 

workstations, with speedup factors in the range of 4 to 4.5 and efficiency 

dropping to 0.5 to 0.56. With the larger group of up to 16 heterogeneous 

workstations there was only a small reduction in elapsed time for 6 (3 of each 

model) and 8 processors ( 4 of each model), and an increase in the elapsed time 

for 16 processors (8 of each model). The speedup for the heterogeneous group 

ranged from 3.86 to 4.55 for 8 processors (4 of each model), with 

corresponding efficiencies of 0.48 to 0.57, and from 2.82 to 4.02 for 16 

processors (8 of each model), with corresponding efficiencies of 0.18 to 0.25. 

This lack of improvement for larger number of processors is 

attributed mainly to data migration, and to the low bandwidth of Ethernet. 

Again, these values for speedup and efficiency are similar to those obtained for 

Cloud, with similar numbers of processors. 

Thus, although groups of 300 to 400 RISC workstations could 

theoretically match the computing power of a Cray Y-MP C-90, in practice 

similar results could not be achieved for this application, by using the cluster 

of workstations. As with Cloud, the low bandwidth communication links are 

the major inhibiting factor preventing good performance with a cluster of 

workstations. However, restructuring of the algorithm to minimize data 

migration could reduce the communication overheads. 
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2.4 Data-parallel programming on a network of 
heterogeneous workstations [Nede93] 

This project illustrates the use of a new parallel language, DataParal/el C. 

Like Cloud, and like THE PARFORM, this system also performs dynamic load­

balancing which adjusts to the varying load situation in a multi-user, 

heterogeneous environment. In DataParallel C the load balancing is achieved 

by the non-uniform redistribution of virtual processors between workstations, 

after monitoring the load situation on each workstation. The network used in 

these experiments was similar to that used in the experiments with Cloud. 

Four typical scientific applications were run to test the performance 

of the system, using DataParallel C, on a network of heterogeneous 

SP ARCstations connected by Ethernet. The performance achieved was 

reasonable, with near-linear speedup obtained for the computation-intensive 

application, and a lower speedup for those applications that required more 

communication. 

The advantage of this system is that it is dynamic, and will 

automatically adjust to changing conditions without programmer intervention. 

This language is to be ported to run on a network of IBM RISC Systern/6000 

workstations where even better performance is expected [Nede93]. 

2.5 Parallel programming in meteorology and 
climatology 

This chapter is concluded by a look at some other parallel processing projects 

in the fields of meteorology and climatology. Most of the applications 

described in this section are quite different from Cloud, and run on completely 

different hardware configurations. However, the projects described in this 

section illustrate how parallel processing is being increasingly used in these 

fields. 

Scientists in meteorology and climatology have long been hampered 

by the lack of computing power, and memory, to run their very large 

programs. For scientists without access to supercomputers, this lack of 

available computer power has meant that often problems have either been 

partitioned into smaller independent serial programs, or run as serial 

simulations with a coarse resolution. Such coarse simulations frequently give 
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false results, since it is impossible to model every aspect accurately, and a 

small deviation may result in a large propagated error, such as in the Lorenz 

effect [Glei87]. With recent advances in parallel processing several 

independent, but related problems, may be run in parallel, to get a better 

overall picture [Kuck94]. Also, with increased computer power and memory, 

simulations may be run with a finer resolution to obtain more realistic results. 

Now that parallel processing is becoming a practical reality 

meteorologists and climatologists have been among the first to make use of 

parallel processing for real applications. This section descr~bes some of the 

projects that have been undertaken. 

2.5.1 Weather prediction [Gart93) [Gart93a) 

The European Centre for Medium-range Weather Forecasts (ECMWF) has 

cooperated with scientists in Germany, in an effort to parallelize the ECMWF's 

weather forecast program by using the PARMACS library. PARMACS was 

chosen so that the program would be portable to a number of different 

environments. However, once the MP! standard has been defined, this weather 

forecast program will probably be re-implemented in MP!, in accordance with 

several other European projects. Previously, such parallelization was not 

feasible, as it was just too expensive to parallelize a large program such as this 

weather forecast program, when it would probably only have a lifetime of 

about 10 years, and it would not have been portable to other platforms. 

However, with the development of such portable libraries as PARMACS, p4 

and MP! such exercises are now possible in a realistic time, and for a 

reasonable cost. 

In this project sections of the program were parallelized separately, 

and then integrated. This program uses a spectral transform technique, which 

involves a large number of 3-dimensional data structures, and a considerable 

amount of communication. Nevertheless, the spectral transform method is a 

considerable improvement on straight 3-dimensional iterative calculation. 

Initially, parallelization of the 2D-case has been completed [Gart93], and work 

is now continuing on the parallelization of the 3D-case [Gart93a]. 

The model was implemented on a number of different parallel 

systems, including Intel iPSC/860, Meiko i860 CS, CMS and a network of 

IBM RS6000 workstations. Satisfactory performance was obtained in all cases, 

except on the workstations, where the interconnect network was a simple 
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Ethernet, and the communication capacities were too low. This poor 

performance with Ethernet is consistent with the other work described in this 

chapter, and with the results of the experiments with Cloud. 

2.5.2 Climate modelling [Sela94) 

The example in section 2.5. l incorporates real weather data, and uses this data 

to forecast the weather. In climate modelling researchers study long-term 

climate change -by simulating weather data. Programs such as general 

circulation models (GCMs) were among the first real scientific applications 

that were parallelized. GCMs have such large computing and memory 

requirements that, until recently, full-size GCMs have only been run on 

supercomputers such as Crays, and even then they run for months. 

A description of the parallelization of the USA National 

Meteorological Center's spectral model for a Connection Machine (CM-200) 

is given in [Sela94]. Results showed that tl)e time for the program to run on 

a 256-node CM-200 are similar to those of a Cray Y-MP/l. It was also shown 

that the program would scale efficiently from a 256-node machine up to a 

2048-node machine. 

The main problems with GCMs is that it may take months to get 

a solution. Consequently, to obtain a solution in a shorter time, GCMs will 

usually be run with a resolution which is too coarse to simulate climate well. 

For instance, in GCMs it is very difficult to model cloud cover well. 

Thunderstorms, which are the clouds with the greatest energy, and that affect 

the weather the most, cover a very small area of only a few square kilometres. 

These clouds cannot be modelled realistically on a GCM where one gridpoint 

is used to represent an area of hundreds of square kilometres. Thus, researchers 

are interested in studying such programs as cloud radiation models, like Cloud, 

to establish the best way to simulate clouds of different types in such programs 

as a GCM. As computing power increases, it will become feasible to combine 

such simulation programs to obtain a more realistic GCM. Monte Carlo 

simulation is one of the methods that researchers use to simulate the behaviour 

of weather, in preference to more time and computation intensive techniques, 

such as 3D-grid iterative methods. 



Chapter 3 

Implementation 

This chapter describes the original serial program, Cloud, and how it was 

parallelized, using p4, for a distributed system of heterogeneous workstations. 

Certain features were implemented particularly to investigate the answers to 

specific questions, and these are explained both in this chapter, and the next. 

Cloud uses the Monte Carlo method to simulate the passage of 

photons through a stratocumulus cloud deck. Cloud is described more fully in 

Appendix A. The original serial program, which was written in Fortran by Lin 

as part of an MSc thesis in Meteorology at PennState [Lin93], was converted 

to a more extensive program, written in C, by Steve Nagle of PennState. The 

C version of Cloud is the serial version that was parallelized for this thesis. 

The Department of Meteorology at Pennsylvania State University 

required that Cloud should be parallelized to run on a heterogeneous network 

of uniprocessor Sun and SGI machines. The message-passing paradigm was 

chosen, as this was well-suited to this type of environment. 

To run a parallel program in a heterogeneous environment it is 

necessary that there is some means by which machines of different 

architectures may communicate with one another. In the past this has been 

difficult, if not impossible. Now, with the advent of modem portable parallel 

libraries such as p4 [Butl94], PVM[Sund94], and PARMA CS [Calk94], this has 

become feasible. p4 was chosen because it was easy to implement, and it 

would run on a wide variety of machines, including all five architectures of 

workstation used in the experiments with Cloud, and it would be portable to 

the processors at PennState. 

3.1 Brief description of the p4 parallel library 

The p4 portable parallel processing library has been developed by Argonne 

National Laboratories, as the successor to the popular parmacs or monmacs 

24 
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macros, which first' appeared in about 1984. These macros were available for 

both Fortran and C, and were implemented by using the m4 macro 

preprocessor. 

p4 has now been implemented as libraries of routines for portable, 

efficient, and simple parallel programming. These libraries are available for 

both C and Fortran (Butl94]. The libraries are portable to a number of different 

architectures. Both message-passing and shared-memory parallel processing are 

supported. 

p4 has both advantages and disadvantages when compared to other 

libraries, but will usually give much the same results. Its main advantage is 

that it can be used for both message-passing and shared-memory parallel 

processing, which is not true of most libraries, and that it is available for a 

wide variety of machines. It also has more functionality and tools for 

debugging than most other libraries. 

p4 is particularly well-suited to being used in a heterogeneous 

environment because of its use of a process group file which contains a list of 

all machines to be used as slaves, and for each machine the number of slave 

processes to run on that machine, and the full path name for the executable to 

be used by that machine. This means that each machine may use a different 

executable, as is necessary for slaves of different architectures, or machines of 

a similar architecture may share the same executable. Also different slaves may 

even perform different tasks, so, for example, a slow slave may do 110, and a 

faster slave may do computation. 

At Vienna University of Technology, Sukup has conducted an 

evaluation of the efficiency of two versions of PVM,p4, Express and Linda in 

implementations of four of the NAS Parallel Benchmarks (Suku94]. In 

comparison with the other libraries the performance of p4, for this 

implementation of these benchmarks, ranged from very good to very bad. 

Since the NAS Benchmarks are "paper and pencil", in that specification of the 

problem is only algorithmic, and the user must implement his own code, it is 

possible that this variation in performance may be attributed to some of the 

factors which are discussed in Section 5.6. 

3.2 Description of the original serial program 

The serial program reads three input files, describing atmospheric and 

thermodynamic data, and a set of user-configurable input parameters, such as 
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the heights of the top and bottom of the cloud, the number of photons to be 

fired, the number of wavelengths and the angle of the incident light. For this 

research, exactly the same input data was used for all experiments that were 

run, and none of the data in these input files was changed. 

During each run a number of different cases are simulated, each 

with a different set of input data, with one case for each interval of each 

wavelength. The number of photons leaving the cloud through the top or 

bottom of the column of the cloud, or being absorbed in the cloud, are counted 

in a number of collection arrays (See Appendix A for more details about the 

collection arrays). In the serial program each interval of each wavelength is 

processed sequentially, the contents of the collection arrays are written to file, 

and the same collection arrays are re-used for each case. 

All through the program various results are output to a file of 

intermediate results, and a file containing the contents of the collection arrays 

for each case. When all processing is complete, a further file of final results 

is saved. 
/ 

3.3 Parallelization of Cloud 

This section describes how the serial program was converted to run in parallel 

on a distributed system of heterogeneous workstations. The original C program 

was well written and modular, so that the "core" of scientific processing in the 

program could be used unchanged in the parallel version. 

To parallelize this program it was only necessary to make some 

changes to the main program, together with some slight modifications in the 

allocation of memory, and to write some additional routines. Some changes 

were necessary purely because a parallel program requires a different approach 

from that of a serial program. Others features were implemented particularly 

to improve the efficiency of the parallel program, or to explore the factors 

which affect the efficiency of a parallel program. 

Cloud is, in many ways, an ideal program to parallelize. In Monte 

Carlo simulation each photon history is independent of every other. Thus it is 

possible to break down a task into a number of sub-tas~s, so that each slave 

does some of the photon histories for a particular wavelength. Then the results 

can be added together, before the final results are calculated. This means that 

all slaves can operate totally independently of each other, and synchronization 

is unnecessary. This parallel program is therefore very suitable for a 
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heterogeneous environment, where fast slaves can do more work than slower 

machines, and the whole program is not therefore slowed down by a slow 

machine. 

3.3.1 Basic structure of the parallel program 

The operation of the parallel program is described as follows. The master reads 

the input data from files, creates a list of tasks, sends them to the slaves and 

receives results. -When all results have been received, it then closes down the 

slaves, and computes the final results, and writes these to file. 

To reduce communication costs, and also to provide for possible 

future extension, some global variables, such as the heights of the top and the 

bottom of the cloud, the mean pathlength and the cosine of the incident zenith 

are sent, as part of the task message, to the slave. The program was designed 

this way to make it more general and extensible. 

Whenever the master is not otherwise engaged with the 

administration of the job, it also executes Monte Carlo tasks. Between Monte 

Carlo tasks it checks if any results messages have been received. If there are 

such messages it processes them, and sends a new task to the slave that sent 

the result. It continues with collection and collation of results until there are 

no more messages waiting for attention, when it will again execute a Monte 

Carlo task. 

When the last tasks have been sent out to the slaves, the master 

remains idle, as it waits until all outstanding results have been received from 

the slaves. At first consideration it seems that this could be improved, so that 

the master will instead execute tasks for which results have not yet been 

received from slaves. However, as at this stage nearly all results have been 

received, this could result in a delay in the completion of the job, since all the 

slaves may finish, while the master is still busy on a duplicate task. For this 

reason this feature has not been implemented. 

An additional benefit that arises because the master also does 

Monte Carlo (slave) work, is that the same executable version can run either 

as a serial program on one processor, or as a master with any number of 

slaves, without need of separate compilation. This is a result of the way in 

which p4 starts up slaves. To use p4, a process group file is created. This file 

consists of one line for the master, and one line for each slave, specifying the 

name of the slave, the number of processes to be run on that slave, and the full 
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path of the executable. If this file contains no slaves, then the program will 

execute on the master only. If the program is written as described above then 

the master will do all the work, as there will never be any tasks sent to slaves 

or results received from slaves. Thus, the same executable can be used for both 

serial and parallel runs, which is very useful in comparing performance. 

The p4 process group file also makes it easy to run the program on 

a heterogeneous system consisting of machines of different architectures. In 

this case, a separate executable is specified for each machine architecture, 

though all machines with the same architecture use the same executable. 

Another benefit of the p4 process group file is that it is easy to 

change the group of slaves to be used for a run, by changing the slave entries 

in this file, and it is not necessary to recompile the program. In this way, the 

number and identity of the slaves to be used will be established at run time, 

by the contents of the process group file. 

3.3.2 Input and output files used 

The parallel version reads exactly the same input files, and produces exactly 

the same output files as the serial program, although minor changes were made 

to ensure that only the master process would read from, and write to, disk. 

This was to prevent clashes if the slaves tried to write to disk at the same time 

as another processor. For practical programming purposes it was also easier to 

have all file access centralised in one process. All files are NFS-mounted, and 

all the files used in this research are on the disk of one machine, so that all file 

access is via the network. 

In the serial program, each interval of each wavelength was 

processed sequentially, and the collection arrays for each wavelength were 

written to file before the next wavelength was processed. For the parallel 

program the simulations for each wavelength could be completed in any order, 

which made it necessary to keep the collection arrays for all wavelengths until 

the end of the run. At the end of the run the collection arrays, containing the 

collated data for all wavelengths, were saved to file in the correct order. 
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3.3.3 Memory requirements of serial and parallel programs 

In the serial program the same collection arrays were re-used for each task, 

which was the calculation required for each interval of each ~avelength. As 

each task was completed, the data in the collection arrays was written to file. 

In the parallel version these tasks may be split up into smaller sub-tasks, and 

it is impossible to determine the order in which results would be returned. The 

final results, for any interval of a wavelength, cannot be determined until all 

results for that wavelength interval have been received. Therefore the master 

program allocates one set of collection arrays for each interval of each 

wavelength, so that results could be collated for the correct wavelength 

interval, as they were returned, in any order, by the slaves. Thus, for the data 

set of fifty wavelength intervals used in the experiments, the parallel version 

required fifty times as much memory than was needed for the serial program. 

Since the collection arrays for each task required just under 210 kb, the parallel 

version required approximately 10.5 Mb memory to store the collection arrays 

for all the wavelengths. 

The remaining memory requirements for the master to store global 

variables were relatively trivial, less than 1 Mb in addition to the collection 

arrays. Since the master also does Monte Carlo work, an additional 210 kb is 

required for reusable collection arrays for doing this "slave work". 

In addition, both the master, and each slave, require a variable 

amount of memory for message-passing - approximately 210 kb for each set 

of messages from a slave. This memory is reusable, and the amount required 

by the master depends on how many messages are being processed at any one 

time. For instance, if there are many slaves, and many messages, then more 

memory is required to store the messages in the master's buffers, until they can 

be processed. If there is just one slave the master has more time to process the 

previous message from that slave, before the next one is received, so the 

memory is freed in time to be reused for the next set of messages. 

The slaves required considerably less memory than the master. 

Each slave needed only about 1 Mb of memory for data storage. This relatively 

small amount of memory for each slave made the program suitable to be run 

in an environment with other users, as it is quite possible that the program and 

data would not have to be swapped out of memory for another process to run. 
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3.3.4 Overlapping communication with computation 

Message-passing is slow, and the time spent in communication by a parallel 

program is often a significant part of the overall elapsed time. The best 

performance will be achieved by ensuring that the communication time for 

each computation task is minimized, and that no processor should spend time 

idle, while waiting for a message. 

There is considerable overhead in message-passing. In p4 this 

consists of the cost of sending a message, including building an address and 

the allocation of memory, the cost of communication via the network, and the 

cost of the other process allocating memory and receiving the message. If one 

process sends a message to another process, and then has to wait for a reply 

message from that process before it can continue, then it will be delayed for 

the time needed for the round trip. If the other process is busy, or otherwise 

delayed, this may significantly increase the time that the original process must 

wait for a reply. Also, if the network is congested the collision rate will 

increase, and drastically reduce the data transmission rate, thus increasing the 

waiting time of the original process even more. 

In a typical message-passing program the master sends a task to a 

slave, which executes this task, and then returns result messages to the master. 

When the master receives these results, it sends the next task to the slave that 

sent the results. If a program is implemented this way, the slave will be idle 

between sending the results and receiving the next task. 

In p4, the overhead of sending or receiving a message cannot be 

avoided, as the communicating process blocks until the message has been sent 

or received. This is different from PVM, which starts daemons to perform the 

communication in the background, thus allowing the main communicating 

process to continue processing once a send has been initiated, even if the send 

has not completed, or to process until a message has been received. Although, 

in p4 these overheads cannot be avoided, the communication time via the 

network can be hidden by overlapping this communication time with 

computation time. This overlapping technique is implemented automatically by 

some parallel compilers such as Fortran D [Hira94]. 

Cloud was written to hide communication latency by overlapping 

communication with computation. To do this the master initially sends two task 

messages to each slave. Thus, when the slave has sent the result messages for 

a task to the master, it can immediately begin working on the next task, 
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without having to wait for the round-trip communication time for the master 

to receive the results, and send the next task. By the time the slave has 

completed the task it has on "standby", the following task should have been 

received from the master, and be waiting in a buffer to be received. In this 

way no processes should have to wait for work. 

To prove that this queue of available work improved efficiency, the 

length of the task queue was implemented as a run-time parameter, so that the 

user could specify how many tasks were to be sent initially to each slave. The 

default value if no queue length is specified is two - one task to work with, 

and one immediately available when the previous task has been· completed. 

3.3.5 Reducing communication overheads 

There is a basic component of the overhead in sending and receiving messages, 

which is independent of the size of the message and cannot be reduced. Thus, 

if fewer messages are sent there will be less overhead. There is therefore a 

potential advantage in combining several smaller messages to make one larger 

message. Some modern parallel compilers perform this optimization 

automatically [Hira94]. The remaining overhead in sending a message is 

proportional to the length of a message. As a message increases in size it takes 

longer to get it from one processor to another, which can result in delays as a 

processor waits for a message [Dennis94]. 

There are also additional overheads to be taken into account when 

choosing an optimal message length. These include the Ethernet overhead of 

18-26 bytes per packet, with a maximum of 1500 bytes of data per packet, and 

the p4 overhead of 40 bytes per message. 

To see whether it was more efficient to use a number of shorter 

messages, or one longer message, two slightly different versions of Cloud were 

implemented. They were identical except for the number and size of the 

messages sent. In the first version of Cloud, which was used for most of the 

experiments, each slave returned, for each task, the contents of the five 

collection arrays in five messages of sizes 4064, 34608, 34608, 69208 and 

69208 bytes. In the second version, all five collection arrays were returned in 

one long message of size 211688 bytes. 

Overheads to allocate memory for sending and receiving messages 

can also be reduced by using the p4 feature which allocates re-usable buffers, 

to be used for sending and receiving messages, at the beginning of the 
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program. The sizes of these buffers can be specified to match the sizes of the 

messages, so as not to waste time by sending unnecessarily large messages 

which are partly empty. For this program the sizes of the first four buffers 

were left as the default sizes, and the last four buffers were set to sizes just 

larger than the sizes of the messages used in the program. Sizes were chosen 

that were a multiple of 64 bytes which meant they were also multiples of 4, 

8 and 16 bytes. This was because it is often more efficient to send messages 

in blocks of these sizes 

The overhead of copying data from a data structure into a message 

buffer can also be avoided by using the p4 memory allocation routines to 

allocate data structures as message buffers (with headers), which are ready to 

be sent, and do not need to be copied first. Cloud was not implemented in this 

way, as this would have necessitated considerable rewriting of serial code. 

However, when a program is written as a parallel program, and not by 

parallelizing an existent serial program, it may be advantageous to allocate 

some data structures as message buffers to avoid copying overheads when 

message-pass mg. 

Communication overheads can sometimes be reduced by using an 

alternative algorithm needing less communication. However, this should be 

undertaken with care as an algorithm with less communication may require 

more iterations to converge, and thus require more overall run time. It is 

pointless to use a numerically inefficient algorithm merely to exhibit artificially 

high performance rates on a particular parallel architecture. [Bell94] 

3.3.6 Exploiting redundancy and fault tolerance 

A distributed network of workstations used as a multicomputer has both 

advantages and disadvantages. Any part of the network may fail at any time. 

However if the program is designed to degrade gracefully, so that if one 

processor fails the others will continue with the program, then as long as one 

processor is working the program can continue. If all processors are functional 

then peak performance can be achieved [Y en93]. 

Cloud has been parallelized so that, if a slave finishes its last task, 

and there is no more work available, the master will look in a table to see if 

there are still results outstanding. If so, it will choose one of the tasks for 

which results have not yet been received, and send this duplicate task to the 

slave that has no work. Although this does mean duplication of effort, it could 
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result in the job being completed quicker if this faster slave completes the 

duplicate task before the slower slave which was allocated the original task. 

This feature is idempotent in that only the first set of results received for a task 

will be accepted by the master. All subsequent results for the same task will 

be discarded. 

This feature also provides fault tolerance in that, if a slave fails, 

then it will not return the results of the tasks which were sent to it. However, 

eventually other slaves will finish their work, and then the master will send 

these undone tasks to other slaves, which have completed their work. The total 

job will take longer than if all slaves had been functioning, but at least the job 

will be completed, so long as the master, and at least one slave, remain 

functional. The program could easily be extended to ensure that even if all 

slaves failed, but the master remained functional, the job could be finished, 

even if it took a long time. 

In performance testing, it is important that all slaves are functional, 

as the best times can only be achieved in this case. Also, it is necessary that 

all runs perform a known number of tasks, which should be the same for each 

repeatable run, so that results can be compared. Therefore, the feature to 

exploit redundancy, and provide a fault-tolerant program, has been disabled for 

the performance tests. For these tests, all runs of the same set executed the 

same number of tasks, and if a slave failed then the run was aborted, and 

repeated later. However, this feature is present in the program and easily 

enabled. 

Due to frequent failures of the parallel program it was necessary 

to implement a "timeout" feature in the program, so that if the master heard 

nothing from a slave, for a period longer than the longest time expected for the 

slave to finish the sub-task, then the run was aborted. The results of these 

aborted runs were not included in the performance studies. 

3.3.7 Dynamic load balancing 

The best performance for a parallel program will usually be achieved if all 

processors are busy for the entire duration of a run, and if all processors finish 

as nearly as possible at the same time. To achieve this in a heterogeneous 

system requires careful load balancing. If the work is equally divided among 

the slaves, so that each slave does exactly the same number of tasks as the 

others, then the faster machines will finish first, and will then have to wait for 
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the slower machines to complete their tasks. The idle time of the faster 

machines is wasted time, as it is not used for processing, and as a result the 

total time for the whole run will not be optimal. It is therefore better to 

allocate more work to the faster machines, and Jess to the slower. 

A group of workstations may be heterogeneous either because the 

processors have different performance capabilities, or because on a non­

dedicated network the load on each machine, and on the network, changes 

constantly. For a heterogeneous network it is therefore impossible to determine 

beforehand how much work should be allocated to each machine, and this must 

be done dynamically while the program is running. 

More work can be sent to faster processors either by sending larger 

tasks with a dynamically varying task size, or by keeping the task size static 

and sending more tasks. The computation/communication ratio wiJJ be better 

if larger task sizes are used, but the administration of dynamically varying task 

sizes is more difficult. Also, if the load situation changes, so that a processor 

which was previously cJassed as a fast processor becomes heavily loaded, and 

takes longer to complete a task, then if large task sizes are being used it wiJI 

take longer for the master to adjust to sending smaller tasks to this processor. 

In Cloud, the task size is kept static throughout a run, and dynamic load 

balancing is achieved by sending more tasks to faster processors, and fewer 

tasks to slower processors. 

Dynamic load-balancing was relatively easy to implement, as all 

tasks were independent, and no machines had to wait for any others as in a 

data-parallel program .. Load-balancing in Cloud was designed so that the 

master sends a new task to each slave as soon as a slave returns the result of 

the previous task. At the same time, whenever the master is not engaged in 

communication and collation of results, it itself does work. In this way more 

tasks wiJJ be sent to the faster processors, and fewer to the slower ones, and 

all processors will finish at more or less the same time. Also, if the workload 

of a machine on a non-dedicated network increases, so that the processor takes 

longer to complete a task, this wiJJ be compensated for automatically as Jess 

work wiJI then be sent to this slave, and more to the others. 

At the end of the run, some of the slaves may finish before others. 

This wasted time can be minimized if small sub-tasks are sent to each slave. 

It was simple to change the sub-task size for a run, since each main task could 

be divided into a number of equal-sized sub-tasks. The total size of the task for 

the run is read in from a file of input data. The size of the sub-task, in 
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photons, can be adjusted for each run by specifying it as a command-line 

parameter, although there is a default sub-task size of I 0000 photons if no sub­

task size is supplied. 

The size of the sub-task is not adjusted dynamically while the 

program is running because, for performance testing, it is important to achieve 

repeatable results. Also, one of the factors being studied in this thesis was to 

determine the optimal sub-task size, so it was important that this should not 

change during the run. However, a proposal of a load balancing method where 

the task size is changed dynamically is suggested in section 6.7.2 

The method of load balancing used in these experiments also takes 

into account failed slaves, and apportions the extra work to the other 

processors. So if one or more slaves should fail the work will still be done, 

even though the best performance will not be achieved. 

Efficient dynamic load balancing is considerably more difficult to 

achieve for programs that require communication and synchronization between 

processes, such as data-parallel programs. For these programs some method has 

to be developed to adjust the workloads of each processor dynamically, so as 

to minimize the delays due to synchronization [Cap93]. 

3.3.8 Scalability 

Amdahl's law states that the speedup of a program is limited by its serial 

overheads [Wils93]. The ideal program will scale linearly with an increase in 

the number of processors. By scaling a problem to a sufficiently large size to 

improve the computation to communication ratio, overhead can be reduced to 

increase processing rates [Sing93][Gram93][Bell94]. Workstations provide size 

scalability and evolvability to some degree, although LAN communication rates 

have remained constant [Bell94] 

In practice, scalability may be limited by such factors as 

communications overheads, synchronization bottlenecks, granularity and load 

balancing problems. For instance, adding further processors does not always 

produce an increase in performance, and may even result in a decrease in 

performance as a result of increased overheads. Bell claims that there is a lack 

of understanding about application scalability for scalable machine 

characteristics, and this guarantees a negligible application market using 

existing third-party vendors [Bell94]. 
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It is particularly difficult to assess the scalability of a heterogeneous 

network, particularly if there is a large difference in the performance 

capabilities of the machines used. Sometimes little or no gain will result if a 

slow processor is added to a network of much faster machines. For this reason, 

experiments with different numbers of slaves were also run on the smaller 

homogeneous sub-groups, · to establish whether Cloud scaled well for 

homogeneous groups. 

This program has been implemented so that it is easy to investigate 

its scalability. It is simple to change the problem size in the file of input 

parameters, and easy to adjust the sub-task size which is an input parameter. 

The number of slaves for a run can be changed simply by altering the number 

of entries in the process group file. This program was run with various 

numbers of slaves, for all task sizes, on from I to 18 processors. The results 

of these experiments can be seen in Chapter 5. 

3.3.9 Generation of random numbers 

Monte Carlo simulation requires the generation of millions of random numbers. 

Numbers generated by computers are not truly random, but rather pseudo­

random, in that a sequence of machine-generated random numbers has a finite 

length and will ultimately repeat itself. This is important for Monte Carlo 

simulation, because there is no point in producing photon histories which have 

already been generated. Ma discusses the subject of generation of random 

numbers for Monte Carlo simulation at some length in [Ma93]. Another point 

made by Ma is that some random number generators are faster than others, 

which is significant in Monte Carlo simulation when millions of random 

numbers must be generated. Usually the better random number generators, 

which have a longer cycle before repeating themselves, are slower. It is 

therefore important, when choosing a random number generator for Monte 

Carlo simulation, that these points be taken into account, so that the results are 

valid, and at the same time the program runs· as quickly as possible. 

The original serial program has a specially written random 

generator, which is seeded from the clock of the processor. For the parallel 

program this same random number generator was used, but it is seeded 

separately for each slave from the slave's clock. It is therefore extremely 

unlikely that any two processors will begin with the same seed, and thus 

produce the same photon histories. However, the random number generator 
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used by this program should be checked by a statistician, to ensure that valid 

results are produced. 

During this study, the problem of choosing a good random number 

generator has been largely ignored. This thesis concerns primarily the factors 

affecting the performance of a parallel program, and for this it is does not 

matter whether photon histories are repeated. 



Chapter 4 

Design of Experiment 

This chapter de~cribes the experiments that were conducted to investigate the 

factors which affect the performance of a parallel program on a network of 

heterogeneous workstations. Since the performance of a heterogeneous network 

is a complex issue, some experiments were conducted on homogeneous sub­

groups of the heterogeneous group. The results of these experiments were 

useful for understanding the behaviour of Cloud on the heterogeneous system. 

4.1 Experimental environment 

The network used consisted of 18 heterogeneous uniprocessor workstations, 

connected by an ordinary Ethernet. These were l Silicon Graphics lndigo2 

Extreme, 2 Silicon Graphics Indigo, 2 Sun ELC, 9 Sun SP ARCclassic and 4 

Sun SPARCstation l + workstations. Technical specifications of these 

machines, and Ethernet, are given in Appendix B. All these machines are in 

several different rooms on the same floor of one building. The experiments 

were run on various groups of these workstations with the groups ranging in 

·size from l to 18 machines. 

Since most of this work was done during term-time in an academic 

teaching environment, it was not possible to have dedicated use of either the 

workstations, or the network. Approximately fifty people had access to the 

workstations involved in the experiments, and about three hundred people used 

the network via other terminals and computers. In addition, all the machines 

are Network File Servers (NFS) and some were also Network Information 

Servers (NIS) which had some impact on the performance. 

All files involved were stored on the hard disk in one of the Silicon 

Graphics Indigos. The minimal 110 in Cloud was performed only by the 

master, and had little impact on the performance. 

38 
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The primary purpose of this thesis was to study performance, so 

most runs were at night and at weekends, usually between midnight and 08h00, 

when there was the lightest load on the network, and the best results could be 

achieved. These results, which are described in Chapter 5, were as close to 

being repeatable as possible on a non-dedicated network, and gave a good 

indication of the best performance that would be possible on a dedicated 

network. Few real users have exclusive use of a network of workstations, so 

these results are generally more realistic than those that would be obtained on 

a dedicated network. 

4.2 Compiler options and executables 

The parallel library, p4, supports running a parallel program on a network of 

either homogeneous or heterogeneous processors. 

For this study there were two primary architectures - Sun and 

Silicon Graphics. The executables for both architectures were compiled from 

exactly the same source code. The executable for the three Silicon Graphics 

machines was compiled on the Silicon Graphics Indigo2 Extreme, using the 

native cc compiler with the compiler optimization option of 03. (The higher 

04 optimization produces R4000 specific code which will not run on the two 

R3000 Indigos) The Sun ELC, SPARCclassic and SPARCstation l+ 

workstations all used a second executable, which was compiled on a 

SPARCstation 1 + workstation, using the native cc compiler with compiler 

optimization option of 04. 
The same executable was used for both the master and the slave 

computers. In Cloud, the master itself does Monte Carlo simulation whenever 

it is not involved in communication with the slaves. The Monte Carlo code 

comprises the bulk of the program, so little would be gained in separating the 

tasks of the master and slaves into two different executables. 

The number of slaves used in any run does not affect the 

executable, as this is dependent only on the machines listed in the p4 process 

group file, which is external to the program. Thus, for a serial run there will 

be no slave machines listed in the p4 process group file, and the master will 

do the entire run by itself. This means that exactly the same executable was 

used for both serial and parallel runs, which made it simpler to conduct the 

experiments, and was particularly beneficial in the calculation of speedup. 
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4.3 Problem size 

It has been noted that small benchmarks lose their predictive value with the · 

advent of on-chip caches, and sophisticated optimizing compilers [Weic91]. 

Frequently, such small benchmarks do not reflect the impact of input and 

output on the performance of a program, or the proportion of computation to 

input/output is different to that of a real application. Also, some small 

benchmarks may run with only a subset of data, which may fit entirely in 

cache, thus giving good performance results. However, when the full data set 

is used in a real application, it may be too large to fit in memory, thus 

resulting in increased swapping, which causes a deterioration in performance. 

Also, if the actual elapsed time of a program is very short, the startup and 

closedown times of the parallel run may constitute such a great proportion of 

the total time that it is difficult to separate this from the actual parallel run 

time, thus giving misleading results. For these reasons, many current 

benchmark efforts, such as SPEC [Dixi91], now concentrate on larger, 

complete applications, which have a real use. 

In this study a realistic problem size has been chosen, even though 

in its serial version it runs for nearly an hour on the fastest workstation used, 

and almost six hours on the slowest machines, and even the parallel version on 

a group of 18 workstations takes from 16-18 minutes. The task size chosen 

was for 120000 photons to be fired through the cloud. This task size is typical 

of the actual task size that would be used by climatologists, and is large 

enough to give meaningful results. Thus the performance results obtained in 

this study are typical of those that would be obtained for this application in 

actual use. 

As a result of this approach, it took a great deal of time to collect 

the results of these experiments: over a period of several months, groups of 

between 1 and 18 workstations were running this program for anything up to 

8 hours per night. In all, over 800 runs, comprising more than 3000 hours of 

elapsed computer time, were executed. 

4.4 Number of runs for each experiment 

For any experiment such as this, it is necessary that the results should be 

repeatable. This is particularly difficult in a non-dedicated network, where the 

environment is constantly changing. Therefore, each experiment should be 
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repeated a number of times to ensure that the results are consistent. Although 

the program took so long to run for each test, most runs were repeated at least 

three times. Where there were more than three runs the best (fastest) three 

results were taken. The variations in the results for such long runs was found 

to be so small that it was felt justified to repeat the run only three times. The 

means of the three best runs were used for the graphs, and in the calculation 

of speedup. 

There was one exception to the repeating of each run three times. 

The experiments using very long messages caused such serious network 

congestion that performance was seriously degraded, and sometimes the run 

even failed entirely due to lost messages. In these experiments it was too time­

consuming, and too difficult, to repeat the runs as often as three times, 

particularly as the network congestion seriously interfered with other users of 

the workstations, and the network. However, sufficient results were obtained 

to show the effects of such an experiment. 

In some of the other experiments, such as those testing the 

performance of the Ethernet, the tests were repeated more than three times to 

obtain more accurate results. These tests are described more fully later in this 

chapter. 

4.5 Timing of runs 

There is considerable discussion concerning the correct way to time parallel 

programs [Crow94]. The generally accepted view is that the total elapsed time 

is of primary importance. However the CPU time and system time are also of 

interest, as it is useful to know the time each process spends on computation, 

and how much time is spent on overheads such as communication. Thus the 

experiments conducted in this study were timed in a number of ways. 

First, all runs were timed using the Unix 1 time command. This 

provided, for the master, the CPU time used by the application, the system 

time used by the application, and the overall elapsed time for the run. 

In addition, the p4 timing functions were used to measure the time 

taken by various parts of the program. The times were wallclock times, and 

included time when the application was swapped out. These times were 

recorded in milliseconds. In addition to these timing statistics, the number of 

1 Unix is a trademark of AT&T Bell 
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sub-tasks executed by each workstation was recorded. The items measured 

were as follows: 

For the master: 

• 

• 

• 

• 

• 

• 

• 

the number of sub-tasks executed by the master, 

the overall execution time from start to closedown, 

the time the master spent in starting up and initialization before 

any tasks were sent to the slaves, or Monte Carlo work executed 

by the master, 

the time spent by the master in the parallel section of the program, 

(i.e. not including initialization and closedown), 

the time spent by the master in executing Monte Carlo simulation, 

the time spent by the master in waiting for messages from slaves, 

the time spent by the master in computing the final results after all 

work is completed. 

For each slave: 

• 
• 
• 

• 

the number of sub-tasks executed by the slave, 

the overall execution time from start to closedown, 

the time spent by the slave in executing Monte Carlo simulation, 

the time spent by the slave in waiting for messages from the 

master. 

The remaining time that was not spent in computation, or wa1tmg for . 

messages, was primarily that needed for the sending and receiving of 

messages, and this could be calculated from the above measurements. 

4.6 Calibration of the workstations and network 

It is particularly difficult to evaluate the performance of a heterogeneous 

network, as all the machines have different performance capabilities. 

Conventional methods of evaluating performance, such as speedup, are not 

immediately suitable for assessing the performance of a heterogeneous system. 

Thus, before evaluating the performance of a heterogeneous system it is first 

necessary to understand the performance of the individual components of the 

system. 
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The following experiments were conducted to measure the serial 

performance of each individual machine, and the performance of the network. 

These serial measurements were then used to group the workstations into sub­

groups of like machines, so that the behaviour of Cloud on homogeneous 

machines could be studied. It is. easier to study the performance of such 

homogeneous groups, and to establish whether the program is performing 

efficiently in such aspects as load balancing, and whether there is a constant 

improvement in performance as like processors are added. These results can 

then be used to understand and assess the performance of the parallel program 

on a network of heterogeneous workstations. This method of first studying the 

performance of homogeneous sub-groups, and then the performance of the 

combined heterogeneous group was also used by Altevogt et al, as described 

in section 2.3.2 [Alte93]. 

4.6.1 Serial runs on every workstation 

At least three serial runs of Cloud were run for each workstation involved in 

the study. The executable was the same as that for the parallel experiments but 

there were no slaves in the process group file. In some cases more than three 

serial runs were executed, but in all cases the three runs with the shortest 

overall elapsed time were used for the calculation of means, standard 

deviations and speedups. 

4.6.2 Performance of the Ethernet 

Part of this study concerns the size and number of messages used in 

communication between the slaves and the master. The impact of message size 

on performance was established by measuring the optimal data rate that could 

be achieved on Ethernet, by using the p4 library, and comparing this with the 

performance achieved for different message sizes when running the parallel 

program. 

4.6.2.1 Bandwidth of Ethernet 

Nanayakkura et al observe that, although the theoretical performance of 

Ethernet on a dedicated strand is 10 Mbits/second, this is seldom achieved in 

practice. They found the rate to be approximately 5-7 Mbits/second on a 

dedicated strand [Nana93]. Halsall confirms this, and points out that even 
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under light load conditions, and with a cable bandwidth of l 0 Mbits/second, 

the actual performance of Ethernet is more likely to be nearer to tens of 

kilobits rather than megabits/second. This is a result of processing delays 

associated with the higher protocol layers. [Hals85] 

4.6.2.2 Packet size of Ethernet 

The message length may have considerable impact on performance. In 

Ethernet, there is an overhead of 18 or 26 bytes per packet, and each packet 

may transfer from 1 to 1500 bytes of data. If the amount of data is less than 

46 bytes, then this is padded to 46 bytes. If the messages are longer than 1500 

bytes, they must be broken down, sent, and reassembled. There is also an 

additional overhead of 40 bytes per message in p4. This reduces the maximum 

amount of data that can be sent in the first packet of a message to 1460 bytes, 

but all subsequent packets, of the same message, may carry 1500 bytes of data. 

The optimal message length should be such that the most data is sent for the 

least message overhead, which will occur when the maximum amount of data 

is sent in each packet. Ponnusamy et al, in their experiments with the CM-5 

(non-Ethernet network), showed that the best data rate was obtained with full 

packets [Ponn93]. 

For Ethernet, the required interpacket spacing (i.e. the minimum 

time between consecutive transmissions from a single station) is 9.6 µs. This 

means that a station transmitting a message must pause between each packet, 

and another station may seize the line at this time. This will delay the first 

station, which will have to wait for a break in transmission before it can 

continue transmission. 

When a station detects a collision, it backs off an increasing integer 

number of slot times for each collision detected. Thus for very long messages 

needing many packets, on a heavily loaded network, a workstation can be 

considerably delayed in waiting for a chance to transmit, and this can have a 

serious impact on overall performance. If there are a number of stations, all 

trying to transmit at the same time, this can result in considerable delays for 

all stations. This problem is alleviated to some extent on a heterogeneous 

network when the slaves take a different amount of time to finish a task, so the 

communication is more evenly spaced as the slaves will send at different times. 
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4.6.2.3 Experiment to test Ethernet performance 

A separate test program was written, using p4, to establish the data rate of the 

Ethernet network used, whether the message size affected this performance, 

and whether performance could be improved by sending longer messages so 

that the proportion of data, as compared to overhead, was increased. This 

program was a modification of part of the program systest, which is released 

with the p4 library as an example program. 

The largest messages used Cloud were approximately 210 kb long, 

so in the test program messages, of lengths ranging from 1 byte to 210 kb, 

were sent between the master and one slave, with messages of each length 

being sent 15 times each. Each message was sent from the master to the slave 

and then back to the master. The time was measured using the p4 timing 

functions. The data rate was then calculated, using the size of the message in 

8-bit bytes, and the time of the round trip in milliseconds, to give a rate in 

Megabits/second, so that this could be compared with the theoretical 

performance of Ethernet of 10 Mbits/second. These results were also used to 

calculate the time required for sending and receiving a NULL message. The 

results of this test program are given in section 5.2.2. 

4. 7 Grouping of machines into homogeneous and 
heterogeneous groups 

The results of the serial runs described in section 4.6.1 were used to define 

approximately homogeneous and heterogeneous groups of machines, which 

were used for the experiments. It is useful to group machines into 

homogeneous groups, so that any improvement in performance of the program 

that is gained by adding extra machines can be better evaluated, when 

compared to the expected performance for that number of machines. These 

results can then be used to understand the performance of the heterogeneous 

system. 

Homogeneity is a complex issue for a group of workstations 

connected by a network. Workstations are generally only considered 

homogeneous if they have the same CPU chip, and the same amount of 

memory and cache. Similar machines with differing amounts of memory and 

cache are not truly homogeneous, as a different amount of paging or cache 
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misses may result in different performance. Also, if the workstations are in a 

non~dedicated environment where either the workstations, or the network, or 

both, are shared by other users and processes, then these external processes 

may affect the performance, so that the workstations can no longer be 

considered truly homogeneous [Cap93]. This will be most evident in the longer 

overall elapsed time, and the uneven distribution of work, as the machines will 

no longer perform the same amount of work as they would. if they were 

dedicated. 

The machines used in the experiments were grouped into 

approximately homogeneous groups, according to their serial performance, as 

described in section 5.2.1. These groups were not truly homogeneous because 

they were in a shared-environment, and some of the machines had different 

amounts of memory, and even different CPUs. However, the serial 

performances of the machines in each group were sufficiently similar, that for 

the purposes of these experiments the groups could be considered 

homogeneous. 

For the purpose of these experiments the "homogeneous" groups defined on the 

basis of their serial performance were: 

• 

• 

The ELC/Classic group, consisting of 2 Sun ELCs (33 MHz) and 

9 Sun SPARCclassics (50 MHz), which all had approximately the 

same performance (see section 5.2.1). The ELC with. the most 

memory (32 Mb), and the best serial performance, was used as a 

master for this group. The other ELC (16 Mb memory) was used 

only as the tenth slave, and was excluded from all runs with 1 to 

9 slaves, so as to obtain the best homogeneity possible. Three of 

the Classics had 32 Mb of memory, and the remaining six had 

16 Mb. 

The SPARCstation 1 + group, consisting of 4 Sun 

SPARCstation 1+ machines (25 MHz). For this group, the 

workstation with the largest amount of memory (28 Mb) was used 

as the master, and the other machines, with 12 Mb of memory 

each, were used as slaves. 
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• The SGI group, consisting of I Silicon Graphics Indigo2 Extreme 

(I 00 MHz, 128 Mb memory), and 2 Silicon Graphics Indigos 

(33 MHz, 24 Mb & 16 Mb memory), where the Indigo2 was 

considerably faster than the other 2 Indigos. The Indigo2 was used 

as a master in this group so that the 2 slaves had similar 

capabilities. 

The heterogeneous groups were: 

• 

• 

The 18-machine group, consisting of all 18 machines that were 

available, with the lndigo2 as the master, since this was the fastest 

machine and had the most memory, with the other 2 SGis, the 2 

Sun ELCs, the 9 Sun SPARCclassics and the 4 Sun SPARCstation 

1 + workstations as slaves. 

The 14-machine group, consisting of same machines as the 18-

machine group, but excluding the 4 Sun SPARCstation 1 + 

workstations, which were the slowest machines. 

Most of the initial experiments were conducted on the ELC/Classic group 

because this is the largest group of nearly homogeneous slaves. 

4.8 Slave startup times 

The time taken to start up slaves can be significant in a parallel program 

[Minn93]. To establish whether the startup time for Cloud was a significant 

proportion of the overall elapsed time, Cloud was modified so that the master 

terminated immediately after starting up the slaves listed in the process group 

file, and similarly the slaves finished immediately they had been started. The 

resulting executables were exactly the same size as those used for the other 

tests. The results of this test therefore reflect the actual times for the starting 

up of the Cloud program. 

The modified version was run 20 times for each of 10 groups of 

slaves ranging from 1 to 10 in number for the ELC/Classic group, for each of 

2 groups of from 1 to 2 slaves for the SGI group, and for each of 3 groups 

from 1 to 3 slaves for the SP ARC station 1 + group. These runs were timed 

using the Unix time command. 
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4.9 Varying the number of slaves 

For each "homogeneous" group, experiments were conducted to measure the 

performance of the program, with the number of slaves varying from l to the 

maximum number of slaves in that group. These experiments with the 

homogeneous groups were useful in assessing whether there was a constant 

improvement in performance as additional slaves were added. These results 

could then be used to understand the performance of the heterogeneous group. 

The heterogeneous groups of 14 and 18 machines were 

combinations of the machines in the "homogeneous" groups, so performance 

tests for the heterogeneous groups were run only for the maximum number of 

14 and 18 slaves. 

4.10 Load balancing and granularity 

The efficiency of the load balancing was investigated by dividing the work into 

a number of smaller sub-tasks, and running the program with different sub-task 

sizes for each run. For each run, the size of all the sub-tasks was static. 

As described in section 3.3.8, the number of photons to be 

processed in each sub-task was a parameter. The overall number of photons to 

be fired for each wavelength was chosen to be 120000, since this was a 

realistic problem size, and it also factorized easily into sub-task sizes of 5000, 

10000, 20000, 30000, 40000, 60000 and 120000 photons. 

For each experiment the program was run three times for each sub­

task size, but in all cases the total number of photons fired for each wavelength 

was 120000. For these experiments there were 50 wavelengths. 

Thus the experiments were as follows: 

50 sub-tasks of 120000 photons, (1 for each wavelength) 

100 ·sub-tasks of 60000 photons, (2 for each wavelength) 

150 sub-tasks of 40000 photons, (3 for each wavelength) 

200 sub-tasks of 30000 photons, ( 4 for each wavelength) 

300 sub-tasks of 20000 photons, (6 for each wavelength) 

600 sub-tasks of 10000 photons, (12 for each wavelength) 

1200 sub-tasks of 5000 photons. (24 for each wavelength) 
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4.11 Overlapping communication with computation 

As described in section 3.3.4, the Monte Carlo program has been written so 

that, at all times, the slave process has its next task waiting in a queue. 

An experiment was conducted to see if having the next task 

immediately available for the slave was significant in reducing the overall 

elapsed time. Additional experiments were conducted to see if having one task 

available was sufficient, or whether it was advisable to have more than one 

task in the queue. 

The ELC/Classic group with 10 slaves was used for these 

experiments, as this was the largest homogeneous group available, and it is 

most likely that there will be communication delays when the master has more 

slaves. This is also the case which is most likely to have network congestion, 

as there are more machines sending messages in a shorter overall time. This 

homogeneous group was used for this experiment because it was easier to 

assess the impact on perfonnance where all slaves were similar. If this 

experiment was run using the heterogeneous group the results may be confused 

by other factors arising from the disparate nature of the slaves. 

Three runs were run for each task size for queues of 0, 1, 2 and 3 

available tasks. The queue length was a command-line parameter so the same 

executable was used in all cases. 

4.12 Changing the number and size of messages 

As described in section 3.3.5, two versions of Cloud were implemented to see 

ifthere was an improvement in perfonnance if communication overheads could 

be reduced by combining several messages in one longer message. In the first 

version, each slave returned the results of the simulation in five different 

messages of sizes 4064, 34608, 34608, 69208 and 69208 bytes, and in the 

second version, all the results were returned in a single message of size 211688 

bytes. In both cases the master sent each new task to the slave in a single 

message of 8088 bytes. 

The data for the version returning five result messages has been 

collected in the other experiments, since all experiments, unless otherwise 

specified, used this version of the program. So this experiment consisted of 

running the version returning one long result message, using the ELC/Classic 

group of machines, as this was the largest homogeneous group available. This 
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version of Cloud was run several times for each task size, as described in 

section 3.3.7, on groups of 5, 6, 7, 8, 9 and IO slaves. It was considered that 

running it for these groups of slaves would be sufficient to compare the results 

with those for the program returning five result messages, and using the same 

groups of machines; and it was not necessary to run it for groups with 1, 2, 3, 

and 4 slaves as well. The groups with larger number of slaves were chosen to 

increase the chances of network congestion. 



Chapter 5 

Results and Discussion 

The usual met~ods of presenting parallel performance results include the 

measurement of elapsed time, speedup and efficiency. However, there is at 

present no firm consensus on how to measure the performance of a parallel 

program on a heterogeneous distributed system. This chapter investigates some 

of the issues involved, and discusses some alternatives proposed by others. 

These issues are illustrated by using various methods to present the 

measurements obtained from the experiments in Chapter 4. The technical 

specifications of the workstations and of Ethernet, can be found in 

Appendix B. 
The first section of this chapter discusses how a parallel program 

should be timed. The next section considers what is meant by serial 

performance, and presents the serial performance results for Cloud. Speedup 

and efficiency are defined in the following section, and the difficulties of using 

these measures in a heterogeneous environment are discussed. The next 

section shows some alternative methods for evaluating the performance of a 

parallel program in a heterogeneous environment. Several different methods of 

presenting parallel performance results are compared by using these alternative 

methods to present the results of the experiments described in Chapter 4. After 

that some of the factors which affect parallel performance are discussed, and 

illustrated with the results of the experiments. The chapter concludes with 

some predictions of the expected performance of this program if the number 

of slaves was increased. 

All results in this chapter, unless otherwise specified, are the mean 

of the 'best' three runs for that particular experiment, where 'best' means the 

shortest elapsed time for the run. 

Each experiment, using Cloud, was run for all seven task sizes and 

for all numbers of slaves in the group being tested. For those graphs in which 

serial performance is · compared with parallel performance, the serial 
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perfonnance for the program executing the task size of 120000 photons is 

used. This is because there is no point in breaking the work into smaller tasks 

when running the program on a single processor. Thus the value for serial 

perfonnance for all task sizes was arbitrarily chosen to be that for the 120000 

photon size. In some graphs this value for serial perfonnance is repeated seven 

times, so as to correspond to the seven task sizes. The serial results shown in 

these graphs are therefore not seven different values for seven task sizes, but 

the same result for the 120000 photons repeated. 

In all the line graphs presented in this chapter lines are used to 

connect sets of results. This is not strictly valid as these results are· discrete 

rather than continuous. However, the lines serve as guidelines to indicate 

which sets of results belong together. 

5.1 Elapsed time vs CPU time 

It is well established that elapsed time should be used to measure the 

perfonnance of a program, since this is most representative of the actual time 

a user must wait for a result [Henn90]. It is relatively simple to measure the 

elapsed time for experiments on a dedicated system, where it is easy to obtain 

repeatable results. Difficulties arise, however, when timing runs on a non­

dedicated system, when the perfonnance of an application may be seriously 

affected by other processes, whether these are other users or operating system 

daemons. Thus, some researchers have been tempted to use CPU time alone 

to measure the perfonnance of their applications, since the elapsed times 

measured when repeating runs may vary widely [Crow94]. However, CPU time 

alone may be misleading, and may not reflect the true perfonnance 

characteristics of the program. 

This is well illustrated by the experiment in which two different 

versions of Cloud were run on the same group of machines to produce the 

same output. These experiments showed that while the CPU time was almost 

identical for both versions, there was a considerable difference in the elapsed 

times measured. In both versions the same output was returned, and the total 

length of the messages (207 kb) was the same. The only difference between 

the versions was that, in one version, five shorter messages ( 4064, 34608, 

34608, 69208, 69208 bytes) were used, and in the other version, one long 

message (211688 bytes) was used to return the results. 
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Figure 1: CPU times for ELC/Classic group - 1 & 5 result messages (grouped by 
number of slaves) 
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Figure l and Figure 2 compare the measurements for these two 

versions of Cloud. Figure l shows the CPU time, and Figure 2 shows the 

elapsed time. The results are grouped first by the number of slaves for the run, 

and within this group by the size of the sub-tasks for the run. The number of 

slaves in each group is shown on the x-axis. For each group of slaves the 

results are grouped with increasing task size from left to right, from 5000 up 

to 120000 photons. For each group of results the 5 on the left indicates the 

result for the 5000 photon task size, and the 120 on the right indicates the 

result for the 120000 photon task size. The intermediate points represent the 

results for the l 0000, ~0000, 30000, 40000 and 60000 photon task sizes in that 

order. 

Figure l shows that there is relatively little difference in the CPU 

time for the two versions, but Figure 2 shows that there is considerable 

difference in the overall elapsed time, with the one-message version taking 

from 1.5 to 8 times as long as the five-message version. The reasons for this 

are discussed in section 5.6.4. In this experiment~ the CPU time alone would 

give misleading information about the performance of the program. (The 

missing data in Figure l and Figure 2 is because the network congestion from 

some experiments was so serious that some of the experiments could not be 

completed, owing to lost messages, and inordinately long run times.) 

These results show that the overall elapsed time is more 

representative than CPU time in assessing parallel performance, as the elapsed 

time includes not only the time spent in computation, but also the time spent 

paging and performing 1/0. Even though some of the elapsed time may be 

spent while the program contends for resources with other unrelated programs, 

much of the waiting is integral to the program and must be considered when 

timing performance [Crow94]. 

However, it is also informative to measure both CPU and system 

time, as these can give some indication of the behaviour of the program, and 

may suggest ways in which performance can be improved. In the example 

illustrated by Figure 1 and Figure 2, the excessive system time measured for 

the version returning a single results version indicates that there is a problem. 

Similarly~ if the total elapsed time differs significantly from the 

sum of the CPU and system time, this may be due to time-sharing and sharing 

resources with other applications, but could also indicate that the program is 
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blocking', such as when waiting for messages. If the waiting is inherent to the 

program, then redesign may reduce this waiting time, perhaps by overlapping 

communication with computation, and thus improve performance. 

For all the experiments conducted for this thesis the elapsed times 

were used to compare performance, even though it was difficult and time­

consuming to obtain these ·times. The elapsed time is what the user of the 

system will experience. The CPU time, as has been shown in this section, is 

a poor indicator of elapsed time, even though it is easier to obtain repeatable 

measurements of CPU time. 

5.2 Basic performance measurements of the 
hardware used 

This section presents measurements of the serial performance of the 

workstations, and measurements of the data rate that could be expected for the 

network. 

Figure 3 is a schematic diagram of the network topology, and 

shows the positions of the workstations used. The technical specifications of 

the workstations, and of Ethernet, can be found in Appendix B. 

The network consists of five sections, with each section connected 

to a multiport repeater. This is as a result of the limitations of Ethernet which 

limits the maximum length of each section to 186 metres. The multiport 

repeater repeats each signal received from any section to all the other sections, 

so for practical purposes the network used in these experiments can be 

considered as one single broadcast network. 

5.2.1 Serial performance of the workstations 

To evaluate the performance of a parallel system, the parallel performance is 

compared to the serial performance of the workstations used. Thus, in a study 

such as this, the basic serial performance of each workstation must be 

measured before parallel performance can be evaluated. However, the question 

then arises of what is meant by serial performance. Should it be the elapsed 

time of the best serial version available, or the elapsed time of the parallel 

"blocking" is used in this dissertation to mean that the program is halted for some 
reason, such as when waiting for messages, or competing for resources. 
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A parallel program contains additional code to implement 

parallelism, and this creates additional overheads. If a parallel program is run 

on a single processor, there is no advantage to be gained by parallelism, and 

the parallel overheads will reduce the possible performance. Also, a parallel 

algorithm may perform badly on a serial processor, where a serial algorithm 

for the same problem may give much better results on a single machine. 

Cloud has been parallelized so that if there are no slaves present, 

then the code for implementing parallelism is ignored, and Cloud behaves 

almost exactly the same as the original serial program. 

Table I shows a comparison between the performance of the 

original serial program, and the serial performance of the parallel version of 
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Table I: Comparison between performance of original serial program and 
performance of parallel program on a single processor 

Workstation Elapsed time of Elapsed time of Percentage 
the original parallel program difference 
serial program (I processor) 
(Seconds) (Seconds) 

a - SGI2 [-03] 3017 3111 1.0 

b - SGI (16 Mb) [-03] 5769 5565 -3.5 
-

c - SGI (24 Mb) [-03] 6220 6366 1.0 

d - ELC (32 Mb) [-04] 12858 12715 -1.1 

e - ELC (16 Mb) [-04] 12754 13226 3.7 

f-n - Classics (Mean) 13245 14105 6.5 
[-04] 

o-r - SPARCstation I+ 19873 20464 3.0 
(Mean) [-04] 

Cloud, but running on a single processor. The serial performance of the 

parallel version of Cloud was very similar to the performance of the original 

serial program, with differences in elapsed time ranging from l % to 6.5%. The 

CPU times for both versions were nearly the same, and most of the difference 

was caused by an increase in system time for the parallel version, which uses 

considerably more memory. The compiler optimization used is shown in square 

brackets [] in the first column of Table I. 

In the evaluation of the parallel performance of Cloud, the serial 

performance of the parallel program, running on a single processor, was used, 

rather than the performance of the original serial program. This was because 

it was easier to use exactly the same executable for both the serial and the 

parallel runs, and because the differences in performance of the original serial 

program and the parallel program running on one processor, as shown by 

Table I, were so small that they could be considered negligible. 

Thus, the serial performance of all workstations used in this study 

was measured by running the parallel version of Cloud, compiled with the 

highest possible compiler optimisation, on each processor alone without any 

slaves. The ·program was run on each of the 18 workstations at least three 

times, and the shortest three elapsed times for each computer were used in this 
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study. These measurements were then used as serial performance measurements 

for the calculation of speedup. 

Table II: Serial perfonnance of workstations 

Name Arch. CPU Time System Time Percentg Total Elapsed Time 
Mean Mean Utiliztn Mean (Std.Dev)[%] 
Seconds Seconds Seconds 

a SGI 3079.67 15.47 99.47 3111(6) (0.2] 
b SGl 5338.67 85.63 97.50 5565 (109) (2.0] 
c SGI 5944.00 215.00 96.75 6366 (63) (l.O] 
d ELC 11655.17 151.60 92.86 12715 (116) (0.9] 
e ELC 12677.37 28.90 96.07 13226 (19) [0.1] 
f Cls 13760.00 8.67 98.02 14047 (53) (0.4] 
g Cls 13799.33 7.67 97.25 14198 (142) [ l.0] 
h Cls 13777.00 8.67 98.04 14061 (63) (0.4] 
I Cls 13531.67 8.67 98.05 13810 (96) (0. 7] 
j Cls 13789.00 8.67 96.83 14254 (269) [ l.9] 
k Cls 13789.00 8.33 97.55 14145 (150) [1.1] 
1 Cls 13773.00 5.00 97.25 14168 (278) [2.0] 
m Cls 13880.67 4.33 98.38 14114 (105) [0.7] 
n Cls 13786.33 9.33 97.53 14144 (57) [0.4] 
0 SS l+ 19889.23 141.60 97.19 20610 (144) [0.7] 
p SS l+ 20033.53 72.73 98.28 20458 (189) (0.9] 
q SS l+ 19857.77 72.47 98.31 20272 (49) [0.2] 
r SS l+ 19975.97 90.07 97.80 20517 (121) [0.6] 

Table II shows the mean serial performances of the workstations 

used. The CPU time, system time and elapsed time for these runs were 

measured using the Unix time command. The mean times for each processor 

are shown in seconds, with the standard deviation of the elapsed time given in 

curved brackets (), and the standard deviation as a percentage of the elapsed 

time in square brackets []. The percentage utilization is the sum of the CPU 

and system time, expressed as a percentage of the elapsed time. 

The high utilization in Table II shows that all computers could be 

considered as dedicated for these serial runs. The percentage utilization ranges 

from 92.86% to 99.47%, and fourteen of the eighteen machines have a 

percentage utilization of more than 97%. Of the four machines with a value of 

less than 97%, three ( c, d and e) are on the same network segment. One of 

these machines ( c) gave better performance in earlier experiments. Then it was 

moved to a new location, one step along the network towards d and e, and 

there was a noticeable deterioration in its performance (refer to Figure 3). In 

the earlier experiments c gave approximately the same serial performance as 
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a similar machine, b. After the move, c showed elapsed times approximately 

10% longer than that of b. Also Table II shows that c and d use a considerable 

amount of system time, which is much more than that for similar machines on 

other links of the network. All these factors indicate that there is a network 

problem which affects the performance of both c and d, and to a lesser extent 

e. This problem is allegedly because the network cables connecting these 

machines is very old, and in a bad condition. However, the deterioration in 

performance was very small, and was considered negligible as it did not 

invalidate the performance results of these experiments. 

Table II also shows that the standard deviation of the elapsed time 

was less than l % of the total elapsed time for 12 of the 18 workstations, and 

for the remaining 6 machines it was between 1 % and 2% of the total elapsed 

time. These standard deviations, together with the closeness of the elapsed 

times for machines of the same architecture, indicate that the performance 

values for these serial runs were reasonably repeatable, and may legitimately 

be used for the evaluation of parallel performance. 

Serial runs 
CPU time, System time and Elapsed time 

20000 - - - - - - - - - - - - - - - - - - - - - - - - - - - - ;:: - - - - - i= 

en 
"C c: 
8 15000 
~ 
c: 
·a; 10000 
E 
F 

5000 - iii 

= = = = = ~ = F ~ , 
r-- ~ ' ; , ~ , -

·,~ •/. 

g h i j k 
Computer 

m 

·" 

~--~ :.j ?" 

. /, :~ .. .·,· 
;~ 

n 0 p 

·;·, 

~-~ 
'· 

q r 

ID CPU time •System time D Additional time I 
Figure 4: Serial performance of all workstations used in parallel performance 

experiments 

The closeness of the elapsed times for machines with the same 

architecture can be seen more clearly in Figure 4, which is a stacked-bar graph 

~----------------------------
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showing the mean CPU time, the mean system time and the mean elapsed time 

for each processor. The bottom, and by far the largest section of the bar, shows 

the CPU time for each processor. For some processors (particularly c and o), 

a very small amount of system time is shown by the next section of the bar. 

For the remaining processors the amount of system time was too small to be 

seen on this graph. The top section of the bar shows the difference between the 

sum of the CPU and system time, and the total elapsed time, so the elapsed 

time for each processor is represented by the top of each bar. The small 

difference between the sum of the CPU and system time, and the total elapsed 

time, for most processors, illustrates the high utilization shown in Table II. 

This small difference is because all runs were run when the workstation was 

not otherwise being used. 

The performance of each workstation is affected by three factors: 

the CPU performance, the memory access time, and other overheads, such as 

interference from other processes and communication overheads. The memory 

access time is a function of application behaviour, and of the memory 

hierarchy which includes TLB, cache and virtual memory. Figure 4 shows that 

machines with the same type of CPU all have similar performance. Even 

though not all machines in each group have the same amounts of memory, 

there is no discernible trend between the performance and the amount of 

memory. 

Figure 4 shows that the 4 SP ARC station 1 + machines ( o, p, q, r) 

gave virtually identical performance, regardless of the amount of memory, as 

did the 9 SPARCclassics (f, g, h, i, j, k, I, m, and n). 

The two Sun EL Cs ( d, e) were similar in performance, but the one 

with 32 Mb memory was faster than the one with 16 Mb memory. It is not 

clear whether this difference in performance is due to the different amount of 

memory, but if the results on the Classics and SPARCstation l+s are compared 

it seems that the amount of memory makes little difference to the performance 

for this program. 

The Silicon Graphics Indigo2 (machine a) has by far the best 

performance, about 6 times as fast as the SPARCstation 1 +s, 4 times as fast 

as the Classics, and 3.5 times as fast as the ELCs. Part of the reason for this 

good performance was the high processor speed. However, a contributing 

factor was the fact that this machine has a I Mb secondary cache, 8 kb 

instruction cache, and 8 kb data cache. The other two SGis have no secondary 

cache, although they have a 32 kb instruction cache and a 32 kb data cache. 
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The Sun workstations appear to have 64 kb write-through caches. (See 

Appendix B for further hardware details.) 

The other two SGis (b and c) gave very similar performance, but 

the one with 16 Mb (b) performed better than the one with 24 Mb memory (c). 

This was probably due to bad network cables, since the SGI with 24 Mb (c) 

was moved along the network as discussed earlier. In the earlier tests these two 

SGis gave almost identical performance, with the 24· Mb SGI (c) tending to 

have slightly better results. 

The results in this section thus show that for serial performance the 

amount of memory makes little or no difference in the performance results 

obtained for machines of the same CPU, but with different amounts of 

memory. However, the results in Table I show that there was a difference of 

about 6.5% in the performance of the original serial program, and the parallel 

version of Cloud run on a single processor, on the Classics. Six of the nine 

Classics have 16 Mb of memory, and the remaining three have 32 Mb. The 

operating system running on these machines is Solaris, which takes up most 

of the 16 Mb memory available on most of the Classics. The parallel version 

of Cloud needs approximately fifty times the amount of memory needed by the 

original serial version. These different memory requirements account for the 

6.5% difference in performance between the serial and parallel versions of 

Cloud, as shown in Table I, as the parallel version with its greater memory 

requirements will cause considerably more paging of the small amount of 

available memory. 

In the parallel experiments with Cloud the slaves use about the 

same amount of memory as the original serial version, and the master needs 

about fifty times as much memory as the serial version. Thus, for each group 

of machines used, the master is the machine in that group with the largest 

amount of memory. Since the slaves need so much less memory it does not 

matter if some slaves have more memory than others. This is also confirmed 

by the results of the parallel experiments, where it was seen that for most runs 

all slaves did nearly exactly the same amount of work, regardless of the 

amount of memory. 
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5.2.1.1 Grouping the workstations into "homogeneous" groups. 

This thesis is to study the factors affecting the performance of a parallel 

program on a heterogeneous network. However, it is difficult to evaluate the 

performance of a heterogeneous•system, and to determine whether there is a 

linear improvement in performance as more processors are added. To 

understand a heterogeneous system one first needs to understand the 

performance of-each individual component. It is much easier to evaluate the 

performance of a homogeneous system, and to identify any problems such as 

bad load balancing, and to establish whether linear speedup can be obtained. 

For this reason all the workstations in the heterogeneous group were first 

grouped into three approximately homogeneous sub-groups, by using the data 

summarised in Table II, so that the parallel performance results obtained for 

these sub-groups could be used to understand and calibrate the performance of 

the heterogeneous group. 

The four SPARCstation l + machines ( o, p, q, r) had nearly 

identical serial performance, and could be considered as homogeneous. The 

only difference was that one machine had more memory than the others. 

Therefore these four machines were grouped together to form the 

SPARCstation 1 + group, with the machine with the most memory as the 

master. 

Table II and Figure 4 show that the serial performance of the ELCs 

was fairly similar to that of the SP ARCclassics (machines g-n), so that for the 

purposes of these experiments the ELCs and Classics could be considered to 

be the same type of machine. The ELC with most memory ( d) took 90% of the 

mean serial time taken by the Classics, and the other ELC (e) took 94% of the 

mean serial time taken by the Classics. Thus these eleven machines were 

grouped into one so-called homogeneous group, the ELC/Classic group, with 

the faster ELC as the master, and the other ELC and the nine Classics as the 

slaves. To make the group as homogeneous as possible, the slave ELC was 

used only as the tenth slave. For all experiments with fewer than ten slaves 

only Classic slaves were used. Of these Classics, three had 32 Mb of memory, 

and the other six had 16 Mb. For these experiments this difference in memory 

did not matter, as the slaves did not need more than 16Mb of memory, and 

there was no noticeable difference in the performance of those slaves with less 

memory. 
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The three Silicon Graphics machines (a, b, c ), were grouped 

together into the SGI group merely because all three were SGis, and there 

were too few to make a truly homogeneous group. Only two of the three SGI 

machines had similar performance, so the fastest machine was used as the 

master, and the two similar machines were slaves. 

Table Ill: Mean serial performance of homogeneous groups of workstations 

Group of CPU time System time Elapsed time 
workstations 

9 SPARCclassics 13765 (141) [1.0] 8 (2) [24.9] 14105 (198) [1.4] 

2 ELCs and 13474 (667) [4.9] 22 (42) [186.4] 13898 (486) [3.5] 
9 SPARCclassics 

SPARCstation I+ 19939 (104) [0.5] 94 (33) [35.5] 20464 ( 184) [0.9] 

Table III shows the mean times for the SPARCstation 1 + group, 

and ELC/Classic group, and also for the Classics alone. The results in this 

table are to illustrate the homogeneity of the SPARCstation 1 + and 

ELC/Classic groups. The SGI group is not included in this table because this 

group was not homogeneous. These mean times were calculated by taking the 

best three runs for each machine in each group, and using these to calculate the 

mean and standard deviation of the group. The first value in each column is 

the mean time for the group, in seconds. The next value, in (), is the standard 

deviation for the group, in seconds. The last value in each column, in [],is this 

standard deviation, as a percentage of the mean time. 

The data shown in Table III shows that the SPARCstation 1 + 
group can be considered as homogeneous. The standard deviation in elapsed 

time for the four machines was only about 184 seconds, which was about 0.9% 

of the mean serial time for these machines. 

The means of the 9 Classics and the 11-machine ELC/Classic 

group, given in Table III, are used to illustrate that the ELC/Classic group can 

be considered as virtually homogeneous. The mean of elapsed time of the 

Classics ( 14105s) differs from the mean of elapsed time of the 9 Classic and 

the 2 ELCs (13898s) by just over 200 seconds, which is less than 1.5% 

difference. The standard deviation in elapsed time of the Classics only, was 

also just less than 200 seconds, which was about 1.4% of the mean serial 

elapsed time for the Classics. When the mean of elapsed time of the 2 ELCs 

together with the 9 Classics was calculated, the standard deviation was just 
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under 500 seconds, which was about 3.5% of the mean serial elapsed time for 

the group of I I machines. These differences are small enough that, for the 

purposes of these experiments in a shared environment, the ELC/Classic group 

can be considered as homogeneous. 

These means shown in Table III were the values used for the 

calculations of speedup in section 5.5. The SGI values used for the calculation 

of speedup in section 5.5 were taken from Table II. 

5.2.2 Network performance 

Although Ethernet bandwidth is specified to be IO Megabits/second (see 

Appendix B), reported performance falls short of this, typically between 5 and 

7 Megabits/second [Nana93][Gart93][Nede93]. 

The data rate that could be expected for this experimental 

environment was established with a small p4 program, which measured the 

round-trip time for a master to send a message to a slave, and for the slave to 

receive this message, and send it back to the master. 
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Figure 5: Ethernet data rate 

As the largest message used in Cloud was just under 210 kb long 

this program sent messages ranging in size from I byte to 210 kb. There is a 
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p4 header of 40 bytes per message, which will be included in the first packet 

of a message. Since the maximum amount of data that can be sent in an 

Ethernet packet is 1500 bytes, it is not necessary to test messages of every 

length, as the results would vary minimally for messages of similar sizes. So 

the message size was incremented in steps of 300 bytes, making 5 increments 

per packet. 

All experiments were run in the early hours of the morning when 

there were generally no other users of the network. The loop sending messages 

from l byte to 210 kb in steps of 300 bytes was repeated 15 times. The best 

10 times, for each size message, were used to calculate the mean round-trip 

time for each message size. This value, together with the message size, were 

used to calculate the data rate for an uncongested network. These experiments 

were run using the master and one slave for each of the SGI, ELC/Classic and 

SPARCstation 1 + groups. 

Figure 5 shows the data rate achieved on a lightly loaded network 

for the SGI2 Extreme master and 1 SGI slave, for a SPARCstation 1 + master 

and I SPARCstation 1 + slave, and for an ELC master with 1 Classic slave. 

The size of the message in kilobytes is shown along the x-axis, and the data 

rate in Megabits/second on the y-axis. 

The best data rate was achieved with the SGI2/SGI machines. Apart 

from the very high data rate of about 8.5 to 9 Mbits/second, for messages 

between 5 kb and 10 kb, the best data rate for the SGis was nearly 8 

Mbits/second for messages between 10 kb and 40 kb. This dropped to about 

7.5 Mbits/second for messages between 40 kb and 60 kb, and then to 

7 Mbits/second for messages longer than about 60 kb, and then remained more 

or less constant. The unexpectedly high data rates for messages less than 5 kb 

long may well be due to an inability of the timing routine to measure too short 

a time accurately. 

For the ELC/Classic group the data rate was the slowest. For 

messages larger than about 10 kb the data rate is fairly constant at about 6 

Mbits/second. 

The data rate for the SPARCstation 1 + group is slightly better than 

that for the ELC/Classic group, being just over 6.5 Mbits/second for messages 

larger than about 10 kb, and then remaining more or less constant at 6.5 

Mbits/second for messages of 30 kb onwards. 

In all three cases Figure 5 shows that the data rate for messages 

less than about 5 kb (about 3 packets) is poor, and that the best data rates are 
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Table IV: Comparison of p4 and PVM data rates 

Msg Test - Test - ELC ·Test - ANL - p4 PVM-
Size (kb) SGI +classic SPARC I+ SPARC 10 

4 6.5 5.1 6.2 2.4 4.4 

16 8.6 5.8 6.4 2.7 5.2 

20 8.2 6.0 6.4 2.7 -
64 7.3 6.1 6.5 - 6.2 

achieved for messages bigger than about 10 kb (about 6 packets). Thereafter 

the data rate remains fairly constant regardless of message size, although a 

slight drop in the rate is observed for the SGI machines for messages longer 

than 60 kb (about 40 packets) . 

The data rates achieved with these three groups of machines are 

compared, in Table IV, with those obtained by the developers of p4 at ANL, 

using 2 SPARCstation 10 machines connected by Ethernet [Butl94], and those 

obtained by the developers of PVM, using 2 workstations connected by 

Ethernet [Sund94]. It is not known which workstations were used in the PVM 

experiments. 

PVM is reputed to handle communication more efficiently, in that 

its message-passing is not blocking, and processing can continue while a 

message is being sent, as communication is handled by daemons working in 

the background. However, if one examines the data presented in the last 

column of Table IV it appears that, depending on the workstations used, p4 is 

not inferior to PVM, although the data rate for PVM does appear to improve 

as the messages get longer. This is probably because in PVM the process is not 

delayed by message-passing. 

The data rates achieved at ANL [Butl94] (5th column of Table IV) 

are surprisingly low, especially as these were probably measured using the 

program systest, which is supplied as a sample program with the p4 library, 

and which was the basis of the program I used for measuring the data rates for 

this thesis. 

This data rate measured at ANL seems more likely to be that 

obtained when other users were using the network, or there may be a mistake 

in the calculations made at ANL, with the data rates shown in [Butl94] being 

calculated from the full time for the round trip instead of half the time. If this 
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mistake was made, then the rates would be 4.8 and 5.4 Mbits/sec, which is 

comparable with the results obtained in my experiments. 

5.3 Speedup and efficiency 

The overall elapsed time is of fundamental importance m measuring the 

performance of a parallel program, as users are primarily interested in how 

long it takes to achieve a solution. The problem with a conventional elapsed 

time graph is that it is difficult to see how well the system is performing, as 

the values for higher numbers of processors receive little visual space. It is 

important to understand whether the performance achieved is optimal, and 

whether or not there is room for improvement. 

Speedup and efficiency are commonly used to evaluate parallel 

performance in this way, by comparing the parallel performance to the serial 

capabilities of the processors used. Poor speedup and efficiency may indicate 

such problems as inefficient load balancing or synchronization, and that 

redesign may improve performance. Good values for speedup and efficiency 

show that the performance is close to optimal, and there is not much that can 

be improved. For a parallel program to be worthwhile, substantial benefit 

should be obtained by using more processors, and speedup and efficiency are 

means of measuring this benefit. 

However, there are a number of difficulties inherent in the use of 

speedup and efficiency to evaluate parallel performance, and some of these will 

· be discussed in this section. In particular, this section shows that the 

conventional means of calculating speedup and efficiency are not directly 

appropriate for evaluating the performance of a heterogeneous system, and that 

it is actually very difficult to evaluate parallel performance on a heterogeneous 

system. 

Speedup for homogeneous parallel machines is generally defined 

as the ratio of the sequential execution time of a program on a single 

processor, divided by the execution time of the program on a number of 

processors. Yet, even this simple definition raises the question of what serial 

program should be measured on the single machine. Should it be the best serial 

version available, or the parallel version running on a single machine? As 

described in section 5 .2.1, the serial performance of Cloud, used to determine 

speedup in this dissertation, was the elapsed time of the parallel program 

running on the single processor, because this was sufficiently close to the 
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elapsed time of the original serial program, and it was easier to use the same 

program for all experiments. 

A complementary measure of performance to speedup is efficiency, 

which is a means of measuring how efficiently the processors are utilised. This 

is defined, for a homogeneous system, to be the ratio of the speedup divided 

by the number of processors. Ideally efficiency should be l, as the perfect 

speedup should be equal to the number of processors. However, as processors 

are added, it is likely that the efficiency will decrease as a result of increased 

overheads [Eage89]. 

Ideally, performance should improve linearly, as processors are 

added. However, there is even confusion in what exactly is meant by "linear 

speedup". Is speedup linear only when the efficiency remains at l as the 

number of processors increases (perfect speedup), or can speedup be 

considered linear when speedup is directly proportional to the number of 

processors, but the efficiency is less than l [Eage89]? Since true linear 

(perfect) speedup can rarely be achieved, most researchers consider speedup 

to be linear if there is a constant rate of improvement in speedup as processors 

are added. 

Then it is commonly known that slow machines often exhibit better 

speedup than faster machines [Sun91]. Since communication costs may depend 

more on the communication medium, such as an Ethernet network, than on the 

communicating machines, a slow machine may have a better 

computation/communication ratio than a fast machine, thus exhibiting better 

speedup. 

Amdahl's Law states that speedup is limited by the serial 

component of the application. This serial component may be composed of 

many factors, one of which is likely to be the time to access disk, or slow 

memory. However, as more processors are used there is generally more 

memory available, and some of this may be caches. So it may be that 

increasing resources, such as memory, could lead to superlinear speedup as 

more data can be in cache and memory at the same time, thus reducing the 

time needed for accessing disk [Gust88][Fisc9l][Dona94][Sing94]. On the 

other hand, increasing the number of processors increases the communication 

overhead, thus reducing the efficiency, and the potential speedup. 

All these points make it difficult to judge whether speedup and 

efficiency are portraying good performance or not. These difficulties are 

compounded when it comes to measuring the· speedup and efficiency of a 



CHAPTER 5. RESULTS AND DISCUSSION 69 

heterogeneous system, such as that used in the experiments described in this 

dissertation. 

There is considerable discussion on just how to measure the 

speedup of a heterogeneous system, but this has not yet been consistently 

defined [Dona94]. In a heterogeneous system the processors have different 

performance capabilities. In addition, some processors may have special 

capabilities, such as graphics or floating point chips; which enable them to 

perform certain tasks much faster than processors without these capabilities. 

It is also possible that some applications cannot even be run on some serial 

processors, which do not have the required capabilities. Another factor to be 

considered is that if the system is not dedicated, then the performance of 

processors will be impacted by other processes, and users external to the 

application. 

It is easy enough to measure the elapsed time of a parallel program 

on a heterogeneous system, but with what should it be compared to determine 

its speedup? If the execution time for the program on the slowest processor is 

used, then artificially high speedups will be obtained, and these may even be 

superlinear. On the other hand, if the time of the fastest processor is used, then 

the speedup will appear low. 

Donaldson et al suggest that the serial elapsed time of the fastest 

processor should be used for calculating the speedup of a heterogeneous 

system [Dona94]. On the other hand, Kumar et al use the sum of the time 

spent by all the processors on useful computation, as the single processor time 

in the speedup calculation [Kuma94]. Schnekenburger goes further in 

considering the problem of determining the efficiency of parallel programs in 

heterogeneous, non-dedicated, multi-tasking environments, with dynamically 

changing service requests of external tasks, and arbitrary scheduling strategies 

[Schn93]. Schnekenburger develops the concept of dynamic efficiency, which 

takes into account the effect of the service requests of external tasks, which 

affect the service rate of resources. He thus calculates for a resource, the time 

spent in serving the application being studied, the time spent servicing other 

applications, and the time spent idle, and uses this as a term in his equation. 

Since there exist an immense number of external loads it is impossible to 

compare different results. He therefore takes this concept further by using a 

stochastic process to determine the stochastic efficiency. 

Donaldson's proposal to use the time of the fastest processor would 

show very poor speedup in the system studied for this thesis, as the fastest 
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machine is up to 6 times as fast as the slowest machine. Kumar's method does 

not include the cost of overheads in the calculation, and, as has been shown 

in section 5.1, these could be highly significant. It is quite difficult to 

determine some of the terms in Schnekenburger's equation, and this may 

involve the use of sampling techniques such as found in several existing 

performance analysing tools [Schn93]. 

In calculating heterogeneous speedup, one must consider exactly 

what one is trying to show. In essence, speedup is a measure to show how 

performance is improved by using more processors. If the parallel performance 

is compared with the single processor time of the fastest processor, the speedup 

shows the number of machines, with the same capabilities as the fastest 

processor, that would give the result achieved. But if the system consists of 

widely disparate processors, as in the system studied in this thesis, is this 

relevant? 

Correspondingly, the efficiency of a homogeneous system can be 

easily understood, as the ratio of the speedup ·divided by the number of 

processors. However, this calculation of efficiency is not necessarily relevant 

for a heterogeneous system. If the speedup of a heterogeneous system is 

calculated by comparing parallel performance to the serial performance of a 

particular machine, such as the fastest or slowest processor, then a value for 

efficiency that is derived by dividing this speedup by the number of processors 

is meaningless. 

For example, when the parallel performance for 14 processors is 

compared to the serial performance of the fastest SGI2 processor, giving a 

speedup of 3.3, the corresponding efficiency, calculated as this speedup divided 

by the number of processors, is 0.3. However, this is not a true reflection of 

parallel performance, since for Cloud all processors are in fact working to a 

high efficiency. This suggests that using this formula for the calculation of 

efficiency of a heterogenous system is not valid. 

On the other hand, if the speedup of the heterogeneous system is 

calculated by comparing the parallel performance with the mean of the serial 

performances of all the machines used, this gives a speedup of 11, for 14 

processors. Dividing this speedup by the number of processors, will give a 

corresponding efficiency of about 0.8. This speedup and efficiency give a 

better indication of the improvement in performance gained by adding more 

processors. 
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Thus, if the parallel performance of a heterogeneous system is to 

be compared with the performance of a particular machine, then the serial 

performance of that machine should be used to calculate speedup. On the other 

hand, if, as in this study, the parallel performance is to be compared with the 

actual performance capabilities of the machines used, then the mean of the 

serial performances of all the machines used, should be used for the calculation 

of speedup, and thus efficiency, as this gives a more accurate measure of the 

improvement in performance through parallelization. These points are 

illustrated by the results presented later in this chapter. 

5.4 Alternative ways of evaluating parallel 
performance 

Graphs of elapsed time, speedup and efficiency are common ways of 

presenting parallel performance. However, as described in section 5.3, and 

illustrated in this section, and section 5.5, there are many problems associated 

with this, and particularly when evaluating the performance of a heterogeneous 

system. 

Crowl has critically evaluated several methods of portraying 

parallel performance, and suggests some alternatives to the conventional 

elapsed time and speedup graphs [Crow94]. Most of the discussion in this 

section can be related to Crowl's paper. 

Two sets of results are used to illustrate Crowl's arguments. These 

are the results for the 40000 photons task size, run on the ELC/Classic group, 

and the results for the 20000 photons task size, run on the group of 18 

heterogeneous machines. These examples were chosen because these task size 

gave the best performance for these two groups, and these two groups were the 

largest groups of near homogeneous and heterogeneous machines. These sets 

of results are used for all the graphs in this section. 

The results for a homogeneous group were used because it is easier 

to understand Crowl's points when examining the results for a homogeneous 

group, as it is easy to see if there is a constant improvement in performance 

as more processors are added. The results for the heterogeneous group then 

illustrate how Crowl's proposals are especially valid for evaluating the 

performance of a heterogeneous system. Crowl's proposal of linear speed is 

used in section 5.5 to present the performance results of the experiments with 

Cloud. 
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5.4.1 Conventional elapsed time graph 
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Figure 6: CPU, system and elapsed time for ELC/Classic group - 40000 photon 
task size 

Figure 6 shows a conventional elapsed time graph for the 40000 photons task 

size, for the ELC/Classic group. CPU time and system time are also shown 

for interest. The system time is the difference between the line showing the 

sum of the CPU and system time, and the line showing the CPU time. The 

elapsed time is very close to the sum of the CPU and system time, thus 

indicating that, for these runs, the system could be considered as dedicated. 

The number of slaves is shown along the x-axis. 

This graph shows a consistent decrease in elapsed time, as the 

number of slaves is increased. However, on a graph in which a linear decrease 

in elapsed time is represented by a curve rather than a straight line, the results 

for higher numbers of processors have little visual space. This makes it 

extremely difficult to see whether such a graph is showing improving or 

deteriorating performance as processors are added. 
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5.4.2 Conventional speedup graph 
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Figure 7: Speedup for ELC/Classic group - 40000 photon task size 
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10 

Speedup can be used to illustrate whether the improvement in performance is 

linear. The speedup, for the same data as in Figure 6, can be seen in Figure 7. 

Three different methods of calculating speedup are shown, to 

illustrate one difficulty of using speedup as a measure of performance. The~e 
are the speedups showing the parallel performance compared to the serial 

performance of the fastest processor (the ELC master), the parallel performance 

compared to the serial performance of the slowest processor (mean of the 

Classics), and the parallel performance compared to the mean serial 

performance of all the processors used (9 Classics and 2 ELCs). 

Figure 7 shows that the speedup where the parallel performance is 

compared to the mean of the serial performance of the Classics, and the 

speedup compared to the mean of all the processors used, are virtually 

identical, thus confirming that the performance of the ELCs and of the Classics 

are close enough for this group to be considered homogeneous. As is expected, 

the speedup, when the parallel performance is compared to the fastest machine 

(ELC master), is not as good as the other speedups. 
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All three speedups show that there is a near linear increase in speed 

up to 9 slaves ( 10 processors), with a slight decrease in performance for 7 

slaves. After that there is an improvement in the speedup for 10 slaves. This 

improvement in speedup for the tenth slave is because this slave is an ELC, 

which is slightly faster than the other 9 Classic slaves. The reduction in 

performance for 7 slaves is probably because of uneven distribution of work 

among this number of processors, leading to increased idle time for some 

slaves, and a corresponding reduction in efficiency. 

5.4.3 Conventional efficiency graph 
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Figure 8: Efficiency for ELC/Classic group - 40000 photon task size 

The efficiency for the same data as in Figure 6 and Figure 7 is shown in 

Figure 8, with the three measures of efficiency shown corresponding to the 

three calculations of speedup shown in Figure 7. 

Figure 8 shows that there is a noticeable difference in the efficiency 

as compared to the fastest machine, and as compared to the slowest machine. 

This indicates how easily calculations of efficiency may be misleading, and 

that it is important to state clearly how efficiency is calculated, and what it 

means. 
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The graph of efficiency shows variation m performance more 

clearly than the speedup graph in Figure 7. The higher efficiencies for l and 

2 slaves are because, for these numbers of slaves, the master does up to half 

the Monte Carlo work, and since the master has no communication overhead 

the overall efficiency is better. From 3 to 7 slaves the efficiency remains fairly 

constant. For 8 and 9 slave·s there is an improvement in the efficiency. This 

may possibly be because it is more efficient for the master to receive 8 or 9 

sets of results before changing back to Monte Carlo work, than when for fewer 

numbers of slaves it receives 4 or 5 sets of results, and then changes to Monte 

Carlo work. Thus, for higher numbers of slaves, the efficiency seems to 

improve, and this may be due to the master being either consistently busy on 

communication, or on Monte Carlo work, and changing between these less 

often, thus resulting in less paging. The higher efficiency for the tenth slave 

is because this is the ELC slave, which is faster than the other 9 slaves. 

5.4.4 Linear speed graph 

Because of the problems associated with speedup and efficiency, especially in 

the evaluation of the performance of a heterogeneous system, Crowl suggests 

a graph of linear speed as an alternative to speedup. 

A linear speed graph shows the inverse of elapsed time, plotted 

against the number of slaves. This graph is visually similar to speedup, but it 

is independent of hardware and other considerations, and is therefore not a 

derivative measure, unlike conventional speedup which is related to the serial 

performance of individual processors. This makes linear speed particularly 

useful for the evaluation of the performance of a heterogeneous system. This 

section first illustrates the use of a linear speed graph for a homogeneous 

system, and then for a heterogeneous system. 

Linear speed is a way of showing how much work is completed in 

unit time. In the experiments in this study the total amount of work for all runs 

was the same, so linear speed could be computed simply as the inverse of 

elapsed time, without calculating how long it took for each separate solution. 

However, linear speed is a good way of comparing runs where different 

amounts of work are done, by comparing how many solutions are obtained in 

unit time. 

For linear speed graphs an increase in the gradient of the graph 

indicates an improvement in performance as processors are added, and a 
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decrease in the gradient shows a deterioration in performance. 
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A graph of linear speed is a good way of showing how 

performance changes as further processors are added. However, it would be 

useful to have some way of establishing whether the performance is the best 

that could be achieved, or whether there is room for improvement. 

We propose that, as an extension of Crowl's work, a line showing 

. the sum of the serial linear speeds should be used to indicate the best 

performance possible for that system, in the same way that the line depicting 

perfect speedup is used to indicate perfect performance on a conventional 

speedup graph. The serial linear speed is the amount of work that can be 

performed by a processor in unit time. Therefore, the total performance 

capability of a system, whether homogeneous or heterogeneous, can. be 

expressed as the sum of the serial linear speeds of the processors comprising 

the system. 

Figure 9 shows the linear speed graph for the same data as the 

graphs in Figure 6 and Figure 7. Also shown in Figure 9 is a line depicting the 

sum of the linear speeds of the serial runs for the processors used in the 

experiment. The changes in performance discussed in sections 5.4.2 and 5.4.3 

can be seen clearly in Figure 9, where the changes in the gradient of the linear 
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speed graph show the changes in performance as processors are added. The 

closeness of the linear speeds achieved to the line showing the sum of the 

linear speeds of the serial runs indicates that good performance was achieved. 

This is discussed further in section 5.4.5. Since this graph is for a 

homogeneous group the line depicting the "perfect linear speed" is a straight 

line, which will not be the case for a heterogeneous system, as will be shown 

in Figure 11. 
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Figure 10: Elapsed time, speedup and linear speed for ELC/Classic group - 40000 

photon task size 

The three different ways of showing parallel performance with 

elapsed time, speedup (with speedup calculated according to the mean serial 

performance of the processors used), and linear speed graphs are compared in 

Figure 10, which combines the graphs for the same data shown in Figure 6, 

Figure 7 and Figure 9. The left-hand y-axis in Figure 10 de~icts the elapsed 

time in seconds. The values of linear speed were multiplied by l 0000 so that 

the graph of linear speed could be shown on the same axes (right-hand side 

y-axis) as the speedup graph. 

Figure l 0 shows that both the speedup and linear speed graphs 

show changes in performance more clearly than the elapsed time graph. This 

graph also shows that this linear speed graph has the same shape as a speedup 

--------------------------------------' 
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graph, so that it is valid to use linear speed instead of speedup to illustrate 

performance. Note that it is the shape of the graph that is important, and that 

the overall slope is dependent on the scale used. The different scales used in 

Figure 9 and Figure 10 are the reason that the same linear speed graph has a 

different slope in the two figures. 
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Figure 11: Linear speed for heterogeneous groups - 20000 photon task size 

Linear speed is particularly useful for portraying the performance 

of a heterogeneous system as shown, in Figure 11. This graph illustrates the 

linear speed for a system of 18 processors, where values are shown on the 

graph for 2 slaves (2 Indigo slaves), 13 slaves (2 Indigo+ 2 ELC + 9 Classic 

slaves), 17 slaves (2 Indigo + 2 ELC + 9 Classic + 4 SP ARC 1 + slaves), and 

18 slaves (2 Indigo + 2 ELC + 9 Classic + 4 SP ARC 1 + slaves, plus an 

additional slave on the same processor as the master). The results are shown 

for the 20000 photon task size, which is the task size that gave the best 

performance results. 

In Figure 11 the line showing the sum of the serial linear speeds 

of the processors used gives a good indication of the potential total 

performance in this heterogeneous system, according to the serial capabilities 

of the processors used. The steep slope of the line showing the sum of the 

serial linear speeds between 0 and 2 slaves indicates the good performance of 
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the two Indigo slaves. The slope of this line then decreases between 2 and 13 

processors, when the group of 11 ELC and Classic slaves are added. This 

shows that the ELC and Classic slaves have less performance capability per 

processor than the two Indigo slaves. The slope of the graph decreases again 

between 13 and 17 slaves, when the four slow SPARCstation l + slaves are 

added, thus showing the limited processing potential of the SPARCstation l + 
slaves. This line then remains level for 17 and 18 slayes, because the 18th 

slave is run on the same processor as the master, and eighteen processors are 

used for both 17 and 18 slaves. 

The line showing linear speed (inverse of elapsed time) shows that, 

for this group of 18 processors, very good performance is achieved for the two 

Indigo slaves, as the slope of the line showing linear speed is very close to the 

line showing the sum of the serial linear speeds. When the 11 ELC/Classic 

slaves are added (slaves 3 to 13) the improvement in performance by adding 

more processors is not so good, and the line showing linear speed diverges 

from that showing the potential performance. And when the four slow 

SPARCstation 1 + machines are added (slaves 14 to 17) the gradient of the line 

showing linear speed decreases even more, indicating that the SPARCstation 

1 + machines do not contribute much in processing potential. There is a distinct 
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drop in the perfonnance when the extra (18th) slave is run on the same 

processor as the master processor, since no extra processors are added, just that 

one is shared between two processes. 

The deceptive nature of a graph showing speedup for a 

heterogeneous system can be seen if the speedup graph in Figure 12 is 

compared to the linear speed graph in Figure 11. Figure 12 shows the speedup 

for the same group of 18 processors, with the speedup·calculated as compared 

to the mean serial perfonnance of the processors used. Figure 12 shows the 

perfect speedup as a straight line. The graph showing the observed 

experimental speedup suggests that the improvement in perfonnance was near 

linear, but this not a true representation of the actual perfonnance, as has been 

shown by the linear speed graph in Figure 11, and will be clearly shown in 

section 5.5.4. 

The graphs in Figure 11 and Figure 12 show clearly that speedup 

is not a valid means for evaluating the perfonnance of a heterogeneous system, 

and that linear speed will give a better indication of the actual perfonnance. 

5.4.5 Linear efficiency 

A linear speed graph gives a good indication of how well a system is 

performing. However, the actual percentage utilization of the processing power 

of a heterogeneous system is not immediately obvious from a graph of linear 

speed. 

We therefore propose, as a further extension to Crowl's work, that 

the concept of linear efficiency should be used to show this percentage 

utilization, where the linear efficiency is calculated as the linear speed divided 

by the sum of the linear speeds of the processors used. This concept of linear 

efficiency is thus analogous to the conventional measure of efficiency for a 

homogeneous system. 

Figure 13 shows the linear efficiency for the same group of 

processors as the linear speed graph in Figure 11. Here the deterioration in 

efficiency as compared to the total potential performance is clearly visible, 

with the highest efficiency of just over 0.9 for the two Indigo slaves, 

deteriorating to 0.65 when the ELC and Classic slaves are added, and again to 

0.6 when the SPARCstation l + slaves are added. 
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Figure 13: Linear efficiency for heterogeneous groups - 20000 photon task size 

5.4.6 Log-time graphs and Log-speed graphs 

81 

Normal x-y plots, such as the elapsed time graph in Figure 6, do not show 

qualitative changes well, as performance for large numbers of processors 

receives very little visual space. Also a constant improvement in performance 

is seen more clearly as a straight line on paper, and conventional elapsed time 

graphs are curves, on which it is difficult to see changes in performance. 

Logarithmic graphs can be beneficial in these circumstances, as 

they give more visual space to the results for the higher number of processors, 

and may even accentuate changes in performance. Crowl therefore suggests 

two further ways of showing performance. The first of these is a Log-log time 

plot, where the log (to the base 2) of the time is plotted against the log (also 

to the base 2) of the number of processors. A similar graph to the Log-log time 

graph is a Log-log speed graph, where the log (to the base 2) of the speed 

(inverse of time) is plotted against the log (also to the base 2) of the number 

of processors. The improvement in performance, as the number of processors 

increases, is shown by the changing slope of the graph as the number of 
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processors increases. For further information on Log-log time graphs and Log­

log speed graphs, refer to Crowl [Crow94]. 

For the experiments described in this dissertation these last two 

graphs show little that is not also apparent in the Linear Speed graph. 

However, all three graphs proposed by Crowl are good ways of showing 

qualitative change. For example, if the program began slowing down at a 

certain number of processors, then this would be· difficult . to see on a 

· conventional elapsed time graph, but is easy to see on any of the graphs 

proposed by Crowl. 

5.5 Performance of Cloud on groups of 
homogeneous and heterogeneous workstations 

It is difficult to understand t~ performance of a heterogeneous system, 

because of the widely varying performance capabilities of the processors used. 

Thus, it is first necessary to evaluate the performance of the homogeneous sub­

groups, since if good performance can be shown for all homogeneous sub­

groups this indicates that the performance of the combined heterogeneous 

group is close to optimal. Also, most researchers typically report speedups, so 

if linear speedups can be shown for a homogeneous group, then in some sense 

the results are comparable with other researchers. 

This section presents the performance results obtained from testing 

Cloud on various groups of workstations. This performance is shown using 

graphs of elapsed time, speedup, efficiency, linear speed and linear efficiency. 

Conventional graphs of elapsed time, speedup, and efficiency are used to 

present the results of the homogeneous sub-groups. However, as speedup and 

efficiency have been shown to be inappropriate for evaluating the results of a 

heterogeneous system, linear speed and linear efficiency are used to evaluate 

the results of the combined heterogeneous group. The results for the 

homogeneous sub-groups are shown first, and then the results of the 

heterogeneous group consisting of the combination of these sub-groups. 

The data presented in section 5.4.2 has illustrated, that for this 

study, the speedup should be calculated by comparing the parallel performance 

to the mean of the serial performances of the actual machines used for that 

run: for example, the mean of the serial performance of the ELC master and 

1 ELC slave and 9 Classic slaves for the l 0-slave runs; the mean of the serial 

performance of the ELC master and 9 Classic slaves for the 9-slave runs; and 
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so on. Therefore all the speedups presented in this section were calculated in 

this way. In all cases the means were calculated from the results of the best 3 

runs for each machine. 

For each group of slaves, the graphs show the results grouped first 

by the size of the sub-tasks (5000, 10000, 20000, 30000, 40000, 60000 and 

120000 photons), and within these groups by the number of slaves for the run. 

Thus the graphs for all task sizes are shown on the same graph. 

5.5.1 Performance of "homogeneous" Sun ELC/Classic 
group - 11 machines 

~ 10000 
c: 
0 
() 8000 
~ 
c: 6000 
Q) 

E 
i= 4000 

2000 

ELC/Classics 
Elapsed time 

I-- Elapsed time I 
Figure 14: Elapsed times for "homogeneous" ELC/Classic group (grouped by task 

size) 

Figure 14 shows the elapsed times for the experiments with an ELC master, 

with from 0 to I 0 Classic and ELC slaves, with the results grouped within sub­

task size. For each task size, the sub-graph shows the times for runs from 0 to 

10 slaves. 

The size of each sub-task is indicated in each header block, with 

the number of slaves increasing from left to right within each sub-task size 

group. Figure 14 shows that the times for all sub-task sizes are similar, with 

slightly better times for a sub-task size of 40000 photons, and with the overall 
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shortest elapsed time for a task size of 40000 photons and l 0 slaves ( l l 

processors in all). In all cases, there is a regular decrease in total elapsed time 

as the number of slaves is increased. 

The speedup for the ELC/Classic group, as compared to perfect 

speedup, is shown in Figure 15. Each curve refers to one task size as shown 

on the horizontal axis. Each tick on the horizontal axis indicates an increase 

in the number of slaves. For each task size the speedup is shown for runs from 

0 slaves (serial run, speedup of 1) to 10 slaves, as compared to the perfect 

speedup. 
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Figure 15: Speedup for "homogeneous" ELC/Classic group (grouped by task size) 

Figure 15 shows that initially the 5000 task size gave the best 

speedup, with a speedup of nearly 5 for 6 processors. However, from 6 slaves 

onwards (7 processors) the speedup deteriorates. This is because, for few 

slaves, the master spends less time on communication, and therefore does far 

more Monte Carlo work, with no communication overhead, so overall 

efficiency is good. As the number of slaves increases, the master spends more 

time on communication, and less on computation, so proportionately more 

work is done by the slaves. For every task done by the slaves there is a 

communication overhead, so overall efficiency is reduced, and the speedup is 

not as good as for fewer slaves. 
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Figure 15 also shows that the best overall speedup is for the task 

size of 40000 photons, with l 0 slaves, with a speedup of nearly 9 for 11 

processors. This indicates that 40000 photons is the optimal task size, with the 

best tradeoff between an efficient computation/communication ratio, and 

efficient load balancing. For larger task sizes, the computation/communication 

ratio will be better, as there is more computation per task, for the same amount 

of communication. However, since the larger task sizes take longer to 

complete, and the work is divided into fewer tasks, there is an increased 

likelihood of processor idle time due to poor load balancing. For smaller task 

sizes the load balancing will be good, because small tasks only take a short 

time to complete. However, the computation/communication ratio will be bad, 

because for smaller tasks there is only a small amount of computation per task, 

but the amount of communication remains the same. 
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Figure 16: Efficiency of "homogeneous" ELC/Classic group (grouped by task size) 

Figure 15 shows that, for the task sizes of 20000, 30000 and 40000 

photons, the speedup is improving as the number of slaves increases. As 

described in section 5.4.3, this is because for higher numbers of slaves there 

is reduced swapping of Monte Carlo and communication code in and out of 

cache for the master. 
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The "steps" which occur on the graphs in Figure 15 for I 0000, 

60000 and 120000 photons are probably due to imperfect load balancing, 

where the work is not evenly divided between the processors, because the 

number of tasks does not divide well between this number of homogeneous 

processors. 

Figure 16 shows the efficiency of Cloud, calculated from the 

speedup as compared to the mean serial performance. In each case the 

efficiency was obtained by dividing this speedup by the number of processors, 

as discussed in section 5.3. 

Each curve displays the results for the task sizes (in photons) given 

in the shaded boxes. Within each task size group, tick marks on the horizontal 

axis indicate the number of slaves used in each part of the experiment. This 

graph shows the values for each task size (in photons), with the number of 

slaves varying from 0 to 10. 

As is expected from the speedups shown in Figure 15, Figure 16 

shows that the efficiency for the task size of 5000 photons increases with the 

increase in number of slaves up to 4 slaves. This is because for this small task 

size the load balancing is very good, and there is little processor idle time. 

From 5 slaves onwards the master has to process the results of at least 5 

slaves. This takes longer than the time each slave takes to complete one task, 

and communication delays begin to occur, leading to a decrease in efficiency 

as the number of slaves increases. An efficiency of 0.8 is achieved for the 

5000 photon task size with 4 slaves, but this is deceptive since from 5 slaves 

onward the efficiency deteriorates for this task size. This indicates how an 

initially promising efficiency can be seriously affected by increased 

communication overheads, as the number of slaves increases. 

Figure 16 shows that the efficiency for the larger task sizes 

decreases initially, then remains fairly constant, before increasing again for 

larger numbers of slaves. The initial decrease is because for 1 and 2 slaves the 

master does from two-thirds to half of all the work, and for all tasks done by 

the master there is no communication overhead, and therefore a high 

efficiency. As the number of slaves increases and the master does fewer tasks, 

the efficiency decreases, due to increased communication overhead. Then, as 

the number of slaves increases, from 6 or 7 upwards, the master is more 

continuously busy with communication, and consequently spends less time 

swapping between Monte Carlo processing and communication. This results in 

increased efficiency due to reduced swapping. 
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Figure 16 also shows that the best efficiency is for the smaller and 

larger task sizes. For larger task sizes this is because there is more computation 

for the same amount of communication overhead per task, whi~h gives a better 

computation/communication ratio, and thus higher efficiency. For the smaller 

tasks it is because the tasks take a shorter time to complete, so the load 

balancing is better, with less processor idle time, and consequently better 

efficiency. 

In most cases the efficiency is approximately 0.65, and the best 

efficiency achieved is nearly 0.8, for the task size of 40000 photons, with 10 

slaves. Thus 40000 photons is the task size where there is the best tradeoff 

between efficient load balancing and a good computation/communication ratio. 
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Figure 17: Linear speed for "homogeneous" ELC/Classic group (grouped by task 
size) 

Figure 17 shows a Linear Speed graph for the ELC/Classic group. 

This graph is visually similar to the speedup graph in Figure 15 (ELC/Classic 

speedup) and gives much the same information, but is not dependent on 

hardware considerations. 

The deterioration in performance, as the number of slaves increases 

beyond 4, can be seen clearly for the 5000 photon task size. Also, the 

improvement in performance when the faster 10th (ELC) slave is added, is 
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clearly visible for the middle task sizes. This graph shows clearly that the best 

performance is achieved for the 40000 photon task size, with I 0 slaves. 

5.5.2 Performance of homogeneous Sun SPARCstation 1 + 
group - 4 machines 
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Figure 18: CPU and elapsed times for homogeneous SPARCstation l+ group 

(grouped by task size) 

Figure 18 shows the CPU time and elapsed time of the master workstation for 

the SPARCstation 1 + group. The elapsed time is very close to the sum of the 

CPU and system time, so this sum of CPU and system time is not shown on 

this graph. 

The CPU times in Figure 18 are very similar in all cases, but it is 

very clear that there is a significant increase in system time for the smaller task 

sizes, particularly the 5000 photon size, when there are many more messages 

to be sent and received. This causes an increase in overall elapsed time. This 

graph also shows a steady decrease in the elapsed time, as the number of 

slaves increases, for all task sizes. Again the best time is achieved for a task 

size of 40000 photons, with the maximum number of slaves (3 slaves, 4 

processors in all). This suggests that, for this group of machines, the best 
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tradeoff between a good computation/communication ratio, and efficient load 

balancing, is also achieved for the 40000 photon task size. 

The longer elapsed times for the 120000 photon task size can be 

attributed to increased processor idle time, due to inefficient load balancing for 

this larger task size. 

a. 
:J 

"O 

3 

Q) 2 
Q) 
a. 

en 

SPARCstation 1+ Group (Means) 
Speedup·vs Perfect Speedup 

0123 0123 0123 0123 0123 0123 0123 
Increasing task size (No of slaves) 

I-Perfect Speedup -+- Speedup (Means) I 
Figure 19: Speedup for homogeneous SPARCstation l+ group (grouped by task 

size) 

Figure 19 shows the speedups calculated for the 4 processors of the 

SPARCstation 1 + group. Only the speedup compared to the mean serial time 

for the group is shown, since all machines have the same architecture, and 

showed very similar serial performance, and can therefore be considered 

homogeneous. 

This graph shows good speedup for most task sizes. The speedup 

for the task size of 40000 photons was nearly linear, with reasonable speedup 

also obtained for the 30000 photon task size. For all other task sizes the 

improvement in speedup deteriorates, as the number of slaves increases. For 

the smaller task sizes this is due to increased communication, and for the larger 

task sizes it is because of inefficient load balancing. The middle task sizes 

have the best tradeoff between efficient load balancing, and a good 
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computation/communication ratio, and this is evident in the improved speedups 

for these task sizes. 

The best speedup of 3.09 for 3 slaves (4 processors) was for the 

task size of 40000 photons, confirming that this was the best task size. The 

worst speedups were for the task size of 5000 photons. This was due to the 

large amount of message-passing for the 5000 photon task size. 
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Figure 20: Efficiency of homogeneous SPARCstation 1 + group (grouped by task 

size) 

The next graph, Figure 20, shows the efficiency calculated for this 

group. These values are grouped together for each task size, with 0 to 3 slaves 

for each task size. 

The efficiency for one processor is marginally better than l, 

because the serial performance of the master is very slightly better than the 

mean serial performance of the 4 processors. Therefore, when the speedup is 

calculated for 1 processor, as the serial performance for the master compared 

to the mean serial performance for the group, this works out as just over 0.99 

instead of 1, resulting in an efficiency marginally better than 1. 

Figure 20 shows that the efficiency tends to decrease as the number 

of slaves increases, but still improves as the task size increases. As described 

for the ELC/Classic group in section 5.5.1, the best efficiency is achieved for 
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Figure 21: Elapsed times for ELC/Classic, SPARCstation l+ and SGI groups 
( 40000 photon task size) 

the middle task sizes, where the tradeoff between efficient load balancing and 

a good computation/communication ratio is best. There are not enough slaves 

available for this group to show whether the efficiency will improve again for 

higher numbers of slaves, as described in section 5.5.1, for the ELC/Classic 

group. 

The efficiencies for this group are better than those for the 

ELC/Classic group, being mostly better than 0.8, as compared to 0.65 to 0.8 

for the ELC/Classic group. However, the elapsed times for the SPARCstation 

1 + group are longer than those for the ELC/Classic group! To illustrate this, 

the elapsed times for the ELC/Classic group, for the SP ARC station 1 + group, 

and the SGI group, are shown in Figure 21. More details of the performance 

of the SGI group will be given in section 5.5.3. Figure 21 shows the data for 

the 40000 photon task size, because, for all three groups, the best results were 

achieved for this task size. The number of slaves Is shown on the x-axis. 

Figure 21 shows that the elapsed time to run Cloud on 4 

SPARCstation I+ machines is almost the same as the time taken on I ELC and 

2 Classics, and about four times as long as on I ELC master with 9 Classic 

and I ELC slaves. This shows that, although good speedup and efficiency can 
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frequently be achieved for slow machines, as a result of a good 

computation/communication ratio, this does not mean that the overall 

performance is good, as the elapsed time may be long. It is therefore essential, 

when evaluating performance, to consider the elapsed time, as ultimately the 

shortest elapsed time indicates the best performance. 

5.5.3 Performance of SGI group - 3 machines 

Unlike the ELC/Classic and SPARCstation 1 +groups, the SGI group was not 

homogeneous, as it consisted of a fast machine and two much slower 

machines, with the Indigo2 master being nearly twice as fast as the two slower, 

near homogeneous, Indigo slaves. These three machines were grouped together 

merely because they were all Silicon Graphics machines, and because their 

performance was so different from the two Sun groups. 
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Figure 22: CPU and elapsed times for SGI group (grouped by task size) 

Section 5.2.1 described how the performance of the Indigo with 

24 Mb memory deteriorated after it was moved from one room to another, and 

that this performance was slightly worse than the other Indigo with 16 Mb, 

when the reverse would be expected. This deterioration is largely ignored in 

the graphs presented in this section, as the difference in the results was small, 
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and, if the network fault was corrected, it is expected that the other Indigo 

slave would give nearly identical results. The graphs in this section therefore 

show the results for 0, l and 2 slaves, with the results for l slave being those 

of the Indigo slave that gave slightly better performance. 

Figure 22 shows the CPU and elapsed times for 0, 1 and 2 slaves 

for each task size. The sum of the CPU and system times is not shown, as this 

is nearly identical to the overall elapsed times for this group (The difference 

is less than l % of the elapsed time). Therefore the system time can be 

interpreted as the difference between the CPU and elapsed times. 

Figure 22 shows increased system time, and thus a longer elapsed 

time, for both the 5000 photon task size when there are many more messages, 

and also for the task size of 120000 photons, when load balancing is less 

efficient for this larger task size. Again the shortest elapsed time is for the task 

size of 40000 photons, with the maximum number of slaves. These results are 

similar to those of the ELC/Classic and SPARCstation 1 + groups. 

The elapsed times of the SGI group are compared with those of the 

ELC/Classic and SPARCstation 1 + groups in Figure 21. This graph shows 

that the shortest elapsed time, of approximately 28 minutes, for the 3 Silicon 

Graphics machines, is almost identical to the shortest elapsed time for the ELC 

master with 10 slaves. This shows how the same performance can be achieved 

for two different groups, containing 3 and 11 machines respectively. The best 

performance of the 4 SP ARC station 1 + machines is approximately 4 times as 

long as this best performance for the SGI and ELC/Classic groups. 

Some difficulties of calculating speedup for a heterogeneous system 

are illustrated in Figure 23. This graph shows the speedups for the group of 3 

Silicon Graphics machines, and illustrates how widely varying speedups may 

be obtained, depending upon how the speedup is calculated. The speedups 

shown are the speedup compared to the serial performance of the fastest 

machine (the SGI2 master), the speedup compared to the mean of the serial 

performance of the actual machines involved (1, 2 or 3 machines), and the 

speedup compared to the serial performance of the slowest machine (SGI 

slave). There is no line showing perfect speedup in Figure 23, as this would 

hide the graph showing the speedup compared to the mean of the serial 

performance of the machines used. 

Figure 23 shows a speedup, compared to the serial speed of the 

fastest machine (SGI2 master), of about 1.5 for 2 machines, and about 1.9 for 

3 machines. This indicates how many Indigo2 Extreme machines would give 
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Figure 23: Speedup for SGI group (grouped by task size) 
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the same performance. These speedups are poor, as is to be expected, seeing 

that the master is approximately twice as fast as each slave. When the parallel 

performance is compared to the serial performance of the slowest machine 

(SGI slave), then there are superlinear speedups of about 1.8 for I processor, 

about 2.6 for 2 processors, and approximately 3.4 for 3 processors. These 

speedups show how many Indigos would give the same performance as this 

group of I Indigo2 and 2 Indigos. This superlinear performance is due to the 

difference in performance capability between the master and the slaves. 

Yet, when the parallel performance is compared to the mean serial 

performance of all the processors used, the speedup achieved is near perfect, 

with a speedup of I for I processor, 2 for 2 processors, and 3 for 3 processors. 

This good performance is primarily due to the large amount of cache and 

memory in the master (8kb+8kb primary cache, I Mb secondary cache, and 

128 Mb memory), so that there is no paging necessary, which means minimal 

system time is needed, and a high efficiency is achieved. 

These three speedups show that comparing the parallel performance 

with the mean serial performance of the machines used gives a better 

indication of the efficiency of a heterogeneous system. 
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As for the ELC/Classic and SPARCstation 1 + groups, Figure 23 

also shows that the best speedups for the SGI group are for the middle task 

sizes, where there is the best tradeoff between efficient load balancing and a 

good computation/communication ratio. The poorer speedup for the smaller 

task sizes is due to increased communication overhead, because of a larger 

number of messages. For the larger task size, the lower speedup can be 

attributed to poor load balancing .. 

There is no graph showing the efficiency for the SGI group, since 

the speedup graphs in Figure 23 show clearly that, if speedup is calculated by 

using the mean of the serial performance of all processors used, then near 

perfect speedup is achieved. This is tum means a near perfect efficiency of 1, 

for all numbers of processors used, except for the task size of 120000 photons 

when the efficiency is marginally less than 1. 

5.5.4 Performance of heterogeneous groups of 3, 14 and 18 
Sun & SGI machines 

Altogether there were 18 Sun and SGI workstations used in the experiments 

with Cloud. They were all used together to find the best overall performance 

that could be achieved. This section presents the results of the experiments on 

these heterogeneous groups. 

The groups used, with the Silicon Graphics Indigo2 Extreme as master, were: 

• 

• 

• 

• 

the other 2. SGI machines as slaves (as shown in section 5.5.3), 

these 2 SGI machines, plus the 2 ELCs and 9 SP ARCclassics, as 

slaves ( 13 slaves and 14 processors in all), and 

these 13 slaves, plus the 4 SP ARC station 1 + machines, as slaves 

( 17 slaves, and 18 processors in all), 

these 17 slaves, plus an 18th slave process running on the master, 

in addition to the main process, so that the master workstation had 

two processes running. ( 18 slaves, 18 processors in all). 

The Silicon Graphics Indigo2 Extreme was used as the master 

because this machine was different from all the others. This meant that for 

each subset of slaves there were at least two with similar performance 

capabilities, so the actual performance of like slaves in the heterogeneous 

environment could be compared. 
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Figure 24: CPU, system and elapsed times for heterogeneous groups of 2, 13, 17 
and 18 slaves (grouped by task size) 

The CPU time, sum of the CPU and system times, and elapsed time 

for the master process, with these heterogeneous groups of slaves, are shown 

in Figure 24. The system time is thus the difference between the graph 

showing the sum of the CPU and system times, and the graph showing the 

CPU time. All these values are shown, so that the time when the master is 

swapped out can be seen as the difference between the· elapsed time, and the 

sum of the CPU and system time. The results are grouped together by task 

size, with the numbers of slaves shown next to the markers. 

Figure 24 shows that there is a decrease in elapsed time, as the 

number of slaves increases from 2, to 13 and 17 slaves. However, when an 

18th slave process is run on the master workstation the performance 

deteriorates, and becomes worse than that for 1 7 slaves. The increase in the 

'gap', between the overall elapsed time and the sum of the CPU and system 

time, shows the time when the master process was swapped out, in favour of 

the slave process. There is also an increase in the amount of system time for 

the master, when a slave process is running on the same machine. 

These results show, as would be expected, that it is more efficient 

for a master to do "slave work" within the master process, than to run a 
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Figure 25: Speedup for heterogeneous groups of 2; 13, 17 and 18 slaves (grouped 
by task size) 

separate slave process on the same machine. This can probably be attributed 

to increased overheads due to context switching between processes on the same 

processor, and also the increased overheads due to interprocess communication 

whenever the master communicates with the slave on the same machine. 

However, these results were obtained at the end of the cycle of experiments. 

This data is included here because it was collected, but further work is 

necessary to prove this. 

Section 5 .4 has shown that speedup is inappropriate for evaluating 

the results of a heterogeneous system. However, the speedups for this 

heterogeneous group are shown in Figure 25, so as to indicate some of the 

difficulties in using speedup as a measure of parallel performance. Figure 25 

shows the speedups obtained for these four heterogeneous configurations. The 

task size for each set of curves is indicated in the shaded block at the top. The 

numbers of slaves are shown next to the markers. 

Section 5.5.3 has shown that, when evaluating the efficiency of a 

heterogeneous system, the speedup should be calculated by comparing the 

parallel performance with the mean of the serial performances of the 

processors used, as this is most representative of the optimal performance that 
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can be expected from a heterogeneous system. Thus, the speedups for 

Figure 25 were calculated this way. For example, the mean serial perfonnance 

used for calculating the speedup of the runs with 13 slaves (14 processors) was 

calculated as the mean of the serial perfonnance of the SG Indigo2 master, the 

other 2 SGls, the 2 ELCs and the 9 Classics. For the runs with 17 slaves, the 

value was the mean of the serial perfonnance of all 18 workstations. 

Figure 25 suggests that the speedup up to l 7 slaves was near linear. 

However, remaining results in this section will show that this is not a valid 

representation of the parallel perfonnance. 

As was shown in 5.5.3, Figure 25 shows that the speedup for 2 

slaves (3 processors) is close to 3, which is near perfect. A good speedup of 

just over 11 for the group with 13 slaves (14 processors) is shown for most 

task sizes, with a speedup of just over 10 for the remaining task sizes. 

The best speedup for this group of 13 slaves was for the task size 

of 20000 photons, whereas for the ELC/Classic group alone the best speedup 

was for the 40000 photon task size. This can be attributed to the disparate 

perfonnance of the processors in the heterogeneous group. For the 

ELC/Classic group all the processors had very similar perfonnance, so they 

would be expected to finish almost at the same time, even for larger task sizes, 

such as 40000 photons. However, there is a wide difference in the perfonnance 

of the processors comprising the heterogenous group of 14 processors, with the 

master being about four times as fast as a Classic, and the other SGis more 

than twice as fast as an ELC or Classic. This means that, if the load balancing 

is such that some processors finish before other slower processors, there may 

be considerable processor idle time while waiting for the slower processors. 

Therefore, for a heterogeneous group, where the perfonnance of the processors 

varies widely, better load balancing, and therefore better perfonnance, can be 

achieved with a smaller task size such as 20000 photons. 

Figure 25 shows that a similar, but slightly lower, speedup of 

approximately 11, for 13 slaves, was also achieved for the 40000 and 5000 

photon task sizes. For the 40000 photon task size, this was because of the 

better computation/communication ratio for the larger task size. The good 

speedup for the 5000 photon size, as compared to the poor speedups for this 

task size for the homogeneous ELC/Classic and SPARCstation 1 + groups, 

illustrates one benefit of a heterogeneous system. In a homogeneous system, 

all processors will finish each task at approximately the same time, and this 

may lead to communication bottlenecks, both with clashes on the network, 
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and also there may be delays caused by the master having to process results 

from all slaves at the same time. In a heterogeneous network the processors 

have different performance capabilities, and this will mean that the slaves will 

finish their tasks at different times, thus staggering the impact on the network 

and the master. This is shown in the good speedup for the 5000 task size for 

13 heterogeneous slaves, where the benefit of good load balancing, for the 

small task size, outweighs the disadvantage of a poor 

computation/communication ratio, because the communication is staggered. 

Since part of this study was to establish the optimum task size, the task size 

remained constant throughout each run. However, some possible solutions that 

will reduce these communication bottlenecks are suggested in section 6.7.3 and 

section 6.7.4. 

Figure 25 becomes misleading when showing the speedup for 17 

heterogeneous slaves. Speedups of up to about 14 are shown for the group of 

17 slaves, with the speedup calculated as compared to the mean serial 

performance of these 17 slaves and the master. However, this improvement in 

speedup is deceptive, as is seen when the elapsed times for these runs are 

studied. These mean elapsed times, in seconds, are shown in Table V. 

Table V: Comparison of elapsed times for 13 and 17 heterogeneous slaves 

Task size Elapsed time Elapsed time Difference 
(photons) 13 slaves 17 slaves (seconds) 

[Std dev] [Std dev] 

5000 1070 [23] 1056 [14] 14 

10000 1155 [34] 997 [16] 158 

20000 1065 [37] 979 [18] 86 

30000 1122 [6] 1001 [7] 121 

40000 1088 [27] 1038 [36] 50 

60000 1126 [68] 1111 [23] 15 

120000 1141 [7] 1267 [42] -126 

Table V shows that adding four slow machines to the group of 

slaves is of very little benefit, and that almost the same elapsed times can be 

achieved without these processors. This is because the four SPARCstation l + 

machines are so slow that they do almost none of the work, and almost all of 

the work is completed by the faster processors. 
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The values in Table V show that the runs with 13 slaves and 17 

slaves have very similar elapsed times. Any improvement achieved by using 

17 slaves is minimal, and in the case of the 120000 photon task size the 

elapsed time with 17 slaves is 126 seconds slower than that with 13 slaves. 

This amount is not trivial, and compared to the elapsed time of 1141 seconds, 

for 13 slaves, it is 11 % slower. Yet the speedup shown in Figure 25, for this 

task size, still shows an improvement! This shows how speedup can be 

deceptive when evaluating performance. The differences in the elapsed times, 

for the two groups of 13 and 17 slaves, are very similar to the standard 

deviations, in seconds, of the means of 3 best elapsed times (as shown in [] in 

Table V). In some cases the difference in elapsed time is less than the standard 

deviation. This shows that there is no significant improvement to be gained by 

adding the 4 slow SPARCstation 1 + slaves. For the largest task size, it was 

actually detrimental to overall performance to use these four slow machines. 

The poor performance of the largest task size illustrates how poor 

load balancing on a disparate heterogeneous system can seriously affect 

performance. For example, for the task size of 120000 photons there are only 

50 tasks to be shared between 17 heterogeneous slaves and the master. Cloud 

initially sends two tasks to each slave, so as to ensure that, immediately after 

returning the results of the previous task, each slave has a spare task ready to 

process. So, for 50 tasks and l 7 slaves, the master would initially send out 2 

tasks per processor, 34 in all. This means that 8 tasks, 2 per processor, are 

committed to the 4 slow SPARCstation l + machines. In the time that each of 

· the SPARCstation l + takes to complete l task, each of the SGI slaves can 

complete 4 tasks, and each of the ELCs and Classics about 1.5 tasks each. This 

means that the remaining 16 tasks (50 less the 34 tasks originally sent to the 

slaves) are completed by the faster slaves before the SPARCstation 1 + 

machines have finished their second task. And since the time for a 

SPARCstation 1 + to complete one task of 120000 photons is about 6 to 7 

minutes, this could mean that the faster slaves may finish up to about 6 

minutes before the SPARCstation l + slaves, and this is inefficient, and causes 

an unnecessarily long elapsed time. In this case the technique of sending a 

spare task to each processor is not beneficial, and actually results in a longer 

elapsed time. 

Performance can be improved by reallocating the final tasks from 

slower to faster processors, which will complete these tasks in a shorter time. 

Cloud was written to do this, as described in section 3.3.6. However, to 
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evaluate performance the same amount of work should be done in each run, 

so for these performance tests the feature to reallocate tasks to faster 

processors was not implemented, as this would have meant that some tasks 

were duplicated, and the total amount of work would have varied from run to 

run. This is discussed further in section 6. 7. I. 

The other important point, illustrated by Figure 25, is that running 

a separate slave process on the same processor as the master is detrimental to 

performance. The speedup, in this case, is calculated by comparing the parallel 

performance for 19 processes (I master, 17 slaves on other machines and I 

slave on the same machine as the master), with the mean serial performance 

of the 18 processors used. Figure 24 shows that, in all cases, the elapsed times 

for the runs with the 18th slave process on the master's machine were longer 

than those for the 17 slaves. 

Figure 25 shows clearly the deterioration in speedup for the runs 

with 18 slaves. This shows that the overheads of running two processes on the 

same processor are such that it is more efficient for the master to do slave 

work in the master process, than for the master process to run a separate slave 

process on the same processor. 

Figure 25 has shown that speedup is not valid for evaluating the 

performance of a heterogeneous system. As an alternative, Figure 26 shows a 

linear speed graph as proposed by Crowl. Figure 26 illustrates the benefit of 

using a hardware-independent means to show parallel performance. 

Figure 26 gives a much better idea of the actual parallel 

performance achieved for this group of heterogeneous workstations than the 

speedup graph in Figure 25. Figure 26 shows clearly the divergence between 

the actual performance and the best possible performance, as depicted by the 

line showing the sum of the serial linear speeds. 

The lack of improvement in performance, for most task sizes, when 

the four SPARCstation 1 + slaves (slaves 13 to 17) are added is clearly visible. 

Even when there is some improvement in performance when these four slaves 

are added, for the task sizes of 10000, 20000 and 30000 photons, Figure 26 

shows that this improvement is very small, and this is more representative of 

the actual parallel performance than the good speedup shown in Figure 25. 

Also, Figure 26 correctly shows a deterioration in performance for 

the 120000 photon task size for 17 slaves, as opposed to the speedup graph in 

Figure 25, which shows an improvement in speedup for this case! The 

deterioration in performance for 18 slaves (with 1 slave process on the same 
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Figure 26: Linear speed for heterogeneous groups of 2, 13, 17 and 18 slaves 
(grouped by task size) 

processor as the master) is clearly evident. 

Linear speed graphs are independent of hardware, and the number 

of processors or processes used, and are therefore perhaps a more reliable 

method of portraying the parallel performance of a heterogeneous system, than 

a conventional speedup graph, which may be misleading. 

The linear efficiency for this group of 18 heterogeneous processors 

is shown in Figure 27. For this graph the linear efficiency was calculated by 

dividing the linear speed achieved in the experiments, by the sum of the serial 

linear speeds of all processors used, where this sum represented the total 

potential performance capability of the system. Figure 27 shows that a high 

efficiency of approximately 0.9 was achieved for the two Indigo slaves. This 

dropped to a range of 6.0 to 6.5 when the ELC and Classic slaves were added 

(slaves 3-13). This graph also shows very clearly the deterioration in 

efficiency, to about 0.6, for most task sizes when the four SPARCstation 1 + 
slaves are added (slaves 14 to 17), and even more so the poor efficiency of 

0.35 to 0.5 when a slave process is run on the same processor as the master. 

The linear speed graph in Figure 26, and the linear efficiency graph 

in Figure 27 are therefore much more representative of the true parallel 
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Figure 27: Linear efficiency for heterogeneous groups of 2, 13, 17 and 18 slaves 
(grouped by task size) 

performance of this heterogeneous group, and suggest that linear speed, as 

proposed by Crowl, and linear efficiency, as suggested in this dissertation, 

should be used to evaluate the performance of a parallel system, in preference 

to the conventional methods of speedup and efficiency, which give misleading 

. results for a heterogeneous system. 

5.6 Factors affecting parallel performance 

There are a number of factors which may affect parallel performance. These 

include the costs of starting up slave processes, the amount of memory used, 

load balancing and granularity, overlapping communication with computation, 

and the number and size of messages. This section describes the quantitative 

impact of these factors as shown by the results of experiments. 

5.6.1 Startup costs 

The time to start up slave processes can sometimes be a significant proportion 

of the overall elapsed time [Minn93]. If this time is minimized, then 
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performance can be improved. This section shows that, for Cloud, the startup 

costs can be considered negligible for the number of slaves used in these 

experiments, although for more slaves it may be necessary to investigate 

whether the startup time could be reduced, perhaps by using the p4 secure 

server. 

To determine the overhead involved in starting up slaves for Cloud, 

the first executable statement of the program was changed to exitO, so that the 

program would terminate immediately after starting up. No other changes were 

made to the program, so the size of the executable remained the same, and the 

startup costs measured would be realistic. 

Table VI: Startup costs for each group of slaves 

Group ~ ELC/Classic SPARCstation I+ SGI 
No slaves J, (Seconds) (Seconds) (Seconds) 

I 4.80 (0.91) 2 (0) 1.5 (0.07) 

2 8.87 ( 1.15) 5 (0) 2.9 (0.3) 

3 12.87 (1.26) 7 (0) -
4 17.20 (l.17) - -
5 22.00 (1.63) - -
6 25.00 (1.21) - -
7 30.93 (2.51) - -
8 36.27 (4.01) - -
9 43.00 (5.34) - -
10 44.40 (3.86) - -

This section shows the startup costs for each group of machines. 

For each experiment the master started up groups of slaves containing from 1 

slave to the maximum number of slaves in the group and then terminated. 

Slaves terminated immediately they were started. These runs were repeated 20 

times, for each number of slaves, for each group. The times shown in Table VI 

are thus the mean time needed to startup and closedown the processes. The 

values shown in brackets, (), are the standard deviations in seconds. 

Table VI shows that to start up the slaves in the ELC/Classic 

group took approximately 4-6 seconds per slave, and those in the 

SP ARC station 1 + group needed about 2 seconds per slave. The SGI machines 

showed that to start l machine as a single slave took less than 2 seconds, and 

to start both slaves was about 3 seconds. 

These startup times are a very small fraction of the overall elapsed 

times of the experiments described in section 5.5. For the ELC/Classic group 
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with l 0 slaves, the startup time is less than 3% of the elapsed time. For all 

numbers of slaves less than 10, the fraction of startup time is an even smaller 

percentage. Even when 17 slaves are started up by the SGI2 master, the startup 

time is less than 5% of the elapsed time. In most cases the time for starting up 

slaves is less than the variation in the elapsed times when the same experiment, 

with the same number of slaves, and the same task size, is repeated. This 

suggests, that for these experiments with Cloud, that little would. be gained by 

optimizing the starting of slaves, by such means as using the p4 secure server. 

5.6.2 Load balancing and granularity 

Parallel performance can be seriously affected by the load balancing. When the 

load balancing is good, all processors finish at almost the same time. If it is 

poor, there may be increased processor idle time as some processors finish 

before others. Bad load balancing is most likely to happen on a heterogeneous 

system, where some processors are faster than others. As described in section 

3.3.7 Cloud implements dynamic load balancing, to compensate for the 

different performance capabilities of the processors used. 

As shown in section 5.5, the best performance for Cloud is when 

there is the best tradeoff between efficient load balancing, and a good 

computation/communication ratio. Load balancing is best for small task sizes, 

when there is least processor idle time, as all processors finish at almost the 

same time. However, the best computation/communication ratio is usually for 

larger granularity, when there is more computation for the same amount of 

communication. 

The results in section 5.5 show that, for Cloud, the best 

performance is for a granularity of 40000 photons, for the homogeneous 

groups, and for a granularity of 20000 photons, for the heterogeneous groups. 

These were the granularities with the best balance between the optimal load 

balancing for task sizes of 5000 photons, and the most efficient 

computation/communication ratio for the largest task size of 120000 photons. 

To show the efficiency of the load balancing for Cloud, the 

following extra measurements were recorded, as well as recording the CPU 

time, system time and elapsed time using the Unix time function. The p4 timer 

was used to measure: 

• 

• 

the total elapsed time for each processor, 

the time spent on Monte Carlo work, and 
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• the time each processor spends waiting for messages which have 

not yet arrived. 

In addition, the number of tasks executed by each processor are counted. 

The time spent on communication by each processor was calculated as the 

difference between the total execution time, and the sum of the computation 

time and the time spent waiting for messages. 

This section uses these results to show the efficiency of the load 

balancing for the ELC/Classic group, which was the largest homogeneous 

group available. It is easier to show good load balancing with a homogeneous 

group, as all processors would be expected to do the same amount of work, 

and to finish at approximately the same time. 
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Figure 28: Explanatory three-dimensional bar graph. 

In the description that follows in this chapter, some three dimensional bar 

graphs will be used to illustrate certain points. An annotated example of one 

of these is shown in Figure 28, and described in detail, to assist the reader in 

interpreting these graphs. 

The directions left, right, front and back were arbitrarily chosen as 

indicated in Figure 28. All further discussion will follow this convention. 
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The vertical axis shows the number of tasks executed, as recorded 

at each event. The height of each bar is proportional to the number of tasks 

executed by each slave. 

The axis on the left shows the master (against the back wall), and 

the individual slaves (towards the front). Slaves that received their tasks first 

are shown nearer to the back wall, and the slaves that received their tasks last 

are shown near the front. This also reflects the order in which the slaves were 

started up, with the slave closest to the back wall being the first slave started 

up, and the slave closest to the front being the last slave started up. 

The front axis of the graph denotes task sizes ranging from 120000 

photons on the left to · 5000 photons on the right. In this graph only one sub­

series is shown, but in all subsequent graphs many sub-series like this are 

shown on the same graph, one for each number of slaves in the experiment. 

Figure 28 shows that the slaves that received their tasks first 

execute more tasks than those that receive their tasks later, and that this effect 

is decidedly more pronounced for smaller task sizes than for larger task sizes. 
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Figure 29: Total execution time for each processor of ELC/Classic group (grouped 
by number of slaves) 

Figure 29 shows the total elapsed time for each of the processors 

in the ELC/Classic group, from startup to closedown, for each run. The times 
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for the master are the bars along the back wall of the graph. For each group 

of slaves, the row of bars on the right is for the task size of 5000 photons, 

with one row for each task size, with the task size increasing towards the left. 

In Figure 29 it is the overall impression that is important, rather 

than the detail. Each row of vertical bars shows the elapsed times for each 

processor in each run. This graph is illustrating that, for each run the heights 

of the bars are nearly identical in height, thus indicating that the load balancing 

was good, with almost exactly the same elapsed time for each.of the processors 

in any particular run. As would be expected, the runs for the smaller numbers 

of slaves took longer than those with more slaves. 
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Figure 30: Standard deviation in total execution time, in seconds, for processors of 
the ELC/CJassic group (grouped by task size) 

The efficiency of the load balancing is illustrated in Figure 30. The 

mean and standard deviation of the actual execution times for all 11 processors 

used in each run was calculated. The standard deviation, in seconds, for these 

runs is shown in Figure 30, grouped according to task size. 

Figure 30 shows that, as expected, the load balancing for the small 

task size of 5000 photons is very good, with almost no variation in total 

execution time for the processors. As the task size increases, there is more 

variation in the time taken by the processors to complete execution. However, 
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in most cases (except for the largest task size) the variation is still less than I 

minute, which for practical purposes can be considered an acceptable waiting 

time. For the five smaller task sizes this variation, is less than 2% of the total 

execution time. For the 60000 task size it is about 4%, and for the 120000 task 

size it is about 6%. 

ELC/Classics - 5 messages 
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Figure 31: Total amount of work done by each processor of ELC/Classic group 
(grouped by number of slaves) 

The next graph, Figure 31, shows the number of tasks executed by 

each processor. Again the values for the master are along the back wall of the 

graph, and the rightmost row, for each number of slaves, is for the task size 

of 5000 photons, when there are 1200 tasks in total to be executed. This graph 

shows the actual number of tasks executed, because this is clearer than 

showing percentages. In total there were 1200, 600, 300, 200, 150, 100 and 50 

tasks, for runs with the task sizes 5000, 10000, 20000, 30000, 40000, 60000 

and 120000 photons respectively. The same total amount of 120000 photons 

is processed for each run. 

Figure 31 shows that all slaves do approximately the same amount 

of work per run, which shows that the load balancing was good. For smaller 

number of slaves the master does far more tasks than any of the slaves, even 

though its serial performance is very similar to that of the slaves. This is 
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because for small numbers of slaves the master does not spend so much time 

on communication as it does for more slaves, and therefore has more time 

available for Monte Carlo work. And when the master executes a task it has 

no communication overhead, so it can execute more tasks than can be executed 

by a slave in the same time. 
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Figure 32: Mean waiting time in seconds, for each processor of ELC/Classic group 
(grouped by number of slaves) 

The average waiting times per task, for each slave, are shown in 

Figure 32. Apart from 3 exceptions, no slave had to wait longer than 2 seconds 

for a message from the master, and in most cases for less than 1 second. The 

waiting time increased as the number of slaves was increased, and also as the 

size of the task was increased. This shows that, with more slaves, there may 

be a slight delay when the master is busy with communication. The increase 

in waiting time, as the size of the task increases, is probably due to the master 

working on tasks itself, in between handling communication. If a result arrives 

immediately after the master has commenced a task, this result will not be 

processed, and a new task will not be sent to the slave, until the master has 

finished its own Monte Carlo task. However, this graph shows that the policy 

of overlapping communication with computation, so that every slave has a 
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spare task waiting, as described in sections 3.3.4 and 4.11, is generally 

sufficient, and there are no long delays. 

Some of the waiting time could also be attributed to the cost of 

starting up all slaves at the beginning of the program, when some slaves are 

ready to receive tasks before the master has actually sent any. There is no 

easy way to avoid this, since p4 starts up all slaves in the process group file 

in one operation, and this must be done before any messages can .be sent to the 

slaves. 

5.6.3 Overlapping communication with computation 

It was proposed, in sections 3.3.4 and 4.11, that the efficiency of a program 

could be improved if no processor has to spend time waiting for a message, 

before it could continue working. To investigate this, experiments were 

conducted where the master initially sent each slave either l, 2, 3 or 4 task 

messages. If l task message was sent, the slave would do this task, then send 

the results to the master, and then have to wait for the master to send it a new 

task. If 2 task messages were sent, then, whenever a slave had sent the results 

of the previous task to the master, it already had the next task waiting in its 

message-buffer, and could continue working immediately. Meanwhile, the 

master would process the results of the previous task, and then send the next 

task to the slave, and ideally this new task would arrive before the slave 

finished processing its current task. 

Each of the two cases, where the slave had no spare messages, and 

1 spare message, was tested. In addition, 3 or 4 task messages were sent to 

each slave, so that the slave would have 2 or 3 spare tasks, to see whether any 

further improvement could be gained, in case the master had not sent the next 

task in time. Since the number of messages to be sent to each slave was a run­

time parameter, the same executable was used for all experiments. 

For each of these experiments runs were conducted for all task 

sizes, but only for the ELC/Classic group of 10 slaves. This is because this 

was the largest number of homogeneous slaves possible, and would keep the 

master busiest, thus increasing the chances that the master would not send a 

task to a slave on time, and a slave would have to wait. This homogeneous 

group was used for this experiment because it was easier to assess the impact 

on performance where all slaves were similar. If this experiment was run using 
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the heterogeneous group the results may be confused by other factors arising 

from the disparate nature of the slaves. 

ELC /Classics - Task messages sent 
CPU, System & Elapsed Time 

3000 • ~ ll1 • . . . . 

2500 ~--------------- ----- --------

(/) 

-g 2000 -/'v,,(o_ -~--~ -~ 0 
0 
Q) 

~ - - - - - - rs>. -~:Ir/_ - ->,i~ ---Cf) 1500 
.s 
Q) 

- - - - - - - - -~- - - - - - - - - - - - - - - - - - -E 1000 
i= 

500 - - - - - - - - - - - - - - - - - - - - - - - - - - - - .... - - - - - - I 

~ ~ 
0 

5000 20000 40000120000 5000 20000 40000120000 5000 20000 40000120000 5000 20000 40000 120000 
10000 30000 eoooo 10000 30000 eoooo 10000 30000 60000 10000 30000 60000 

Increasing Task Size (10 Slaves} 

I-+- CPU time ~ CPU+System - Elapsed time I 
Figure 33: CPU, system and elapsed times of the Master, for different numbers of 

task messages sent, for ELC/Classic group (grouped by number of 
messages sent) 

Figure 33 shows the CPU, system and elapsed times for runs with 

1, 2, 3 and 4 task messages (0, 1, 2 and 3 spare messages) being sent to the 

slaves. The number of task messages sent is shown in the small grey boxes 

near the top of the graph. All data is for a group of 10 slaves, with the data for 

each task-message queue length shown for increasing task sizes. 

The shortest elapsed times were achieved for a queue length of 2, 

where each slave had 1 task to work with immediately, and 1 spare task to 

work with as soon as it had sent the results of the previous task to the master. 

The times when there were no spare tasks, and the slave always had to wait 

for the next task, were by far the worst times. The times with no spare tasks 

were from 15% to 48% longer than the elapsed times with 1 spare task. 

Also, the elapsed times when the slaves were sent 3 or 4 tasks were 

worse than those for queues of 2 tasks. This is partially because the master had 

to send out 3x10 tasks, and 4x10 tasks, respectively before it could even begin 

processing, and by that time the first result messages were arriving, so the 

master did not have time to do Monte Carlo work. And then, since each slave 
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had a queue of 2 or 3 spare tasks, this meant that no other processor could 

execute these tasks, as the feature to reallocate tasks from slower to faster 

processors was not implemented (see section 3.3.6). So the master would 

possibly have to wait for I or more slow slaves to finish the assigned tasks, 

while other faster processors finished earlier, and the load balancing would be 

poor. 

The results of the serial runs described in section 5.2.l clearly show 

that there is so little system time for the serial runs that it is negligible. This 

suggests that for the parallel runs the system time is almost entirely due to 

parallel overheads, most of which are communication. Thus, in Figure 33, the 

increase in system time, and decrease in CPU time, for the master, for the 

cases where 3 or 4 messages are sent, clearly shows that the master spends 

more time on communication, than on Monte Carlo computation. 
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Figure 34: Waiting times of processors, for different numbers of task messages sent, 
for ELC/Classic group (grouped by number of messages sent) 

The time each processor spends waiting for messages was 

measured. Figure 34 is a stacked bar graph showing the total waiting times for 

all processors for all runs. The numbers of tasks sent to each slave are shown 

in small grey boxes near the top of the graph. Each shaded section of each 

stacked bar represents the length of time spent waiting by a slave or master 
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process. The waiting time for the master is the dark-shaded bottom section of 

the bar, with the waiting times of the IO individual slaves above. The total 

height of each bar shows the total waiting time of all processes for a run. 

It is evident that there is least waiting time when 2 tasks are sent 

to each slave, l to work on and l spare one. But, it is interesting to see that 

there is almost as much waiting time, and sometimes more, where the master 

sent 3 or 4 tasks to each slave, than when it only sent l task, and the slave had 

to wait for its next task. This can happen when the master is so busy sending 

out the initial 3 or 4 tasks per slave, that results return from the slaves before 

it has finished sending out the initial tasks. From then on, it is so busy 

processing results that, for the smaller tasks sizes, the slaves finish their work 

first, and eventually have to wait for the master. For the larger task sizes the 

slaves have to wait less. For the smaller task sizes the master is so busy that 

it has almost no waiting time. 

The long waiting times for the master, for the large task sizes, in 

the cases where 3 and 4 tasks were sent to each slave, illustrate the point that 

the master has to wait a long time for the slaves to finish the last 3 or 4 large 

tasks in the queue, and this is wasted time for the master. It would be more 

efficient if the master could have shared this work, as described in 

section 6. 7. l. 

Figure 35 shows the amount of work done by each processor. Each 

shaded section of each stacked bar represents the number of tasks executed by 

a slave or master process. Each whole bar represents the total number of tasks 

for each run, that is, 1200 tasks for the 5000 photon task size, down to 50 

tasks for the 120000 photon size which explains the difference in height of the 

bars. This graph shows that, as expected for a homogeneous group, the load 

balancing for all runs was fairly good, with each slave doing approximately the 

same amount of work. 

The most important point to see from Figure 35 is that, when 1 or 

2 tasks are sent to each slave, the master does at least as many, and sometimes 

more, tasks than the slaves. When 3 or 4 tasks are sent to the slaves, the 

master does no tasks at all. This is inefficient for two reasons. First, it is more 

efficient for the master to do a task, than for a slave, as the master has no 

communication overhead, so can execute more tasks in the same time. Second, 

if there are 2 or 3 spare tasks in the queue for each slave, once the master has 

despatched the last task to the slaves, it waits idle until all these tasks have 

been executed by the slaves. Figure 34 shows how the master spends more 
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Figure 35: Amount of work done by each processor, for different numbers of task 
messages sent, for ELC/Classic group (grouped by number of messages 
sent) 

time waiting, as the size of the task increases. 

Thus, the best load-balancing is achieved when each slave is sent 

2 task messages, and having too many tasks "committed" for execution by a 

specific slave is detrimental to efficient load balancing at the end of the run. 

Also, the smaller task sizes execute too quickly for the corresponding results 

to be processed in the same time. So the tasks should be large enough, that the 

master has enough time to process the results for all slaves in the time the 

slaves take to execute one task. Thus, having only one master to control a 

large number of slaves can be a bottleneck, and cause a reduction in efficiency. 

This could be solved by increasing the task sizes, but this would also cause 

poor load balancing, as a larger task takes longer to complete. Alternatively the 

program could be redesigned so that there are several "cluster masters", each 

administering a sub-group of slaves, and one overall master to collate the 

results from these "cluster masters". There would then be less chance of 

communication bottlenecks as each "cluster master" would only have to 

administer a few slaves. This is discussed further in section 6. 7 .2. 
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5.6.4 Changing the number and size of messages 

As described in section 4.12, two .versions of the program were tested to see 

if there was an improvement in performance if one longer message was sent, 

instead of several shorter ones. In one version, the results were returned in five 

different results messages, and in the other, in a single results message, with 

the same amount of data being returned in both cases. Apart from this 

difference, the two versions of the program were identical. 

Most of the experiments with Cloud used the version returning five 

results messages, and the results for these experiments have been presented in 

section 5.6.2. The graphs that will be presente? in this section should be 

compared with the corresponding graphs in sectio~s 5.1 and 5.6.2, so that the 

difference in the performance of the two versions of Cloud can be seen clearly. 

This section shows the results for the version with the results returned in one 

message, as tested with the ELC/Classic group, for groups of 5, 6, 7, 8, 9 and 

10 slaves. 
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Figure 36: CPU, system and elapsed times for ELC/Classic group - 1 result message 
(grouped by number of slaves) 

Problems with lost packets, or with packets taking too long to be 

received, made it necessary to implement a "time-out" feature in the single 



CHAPTER 5. RESULTS AND DISCUSSION 117 

message version, so that a program did not hang if a message was lost. The 

results for these runs were discarded, since if one or more slaves had failed the 

best times could not be achieved, as the work of the failed slaves would have 

to be reallocated to the other slaves, which would then have increased the 

overall elapsed time. 

The CPU time, system time, and total elapsed time of the master 

for these runs are shown in Figure 36. This graph shows that,. although the 

CPU time remains fairly constant, there is a big increase in the amount of 

system time for the runs with the smaller task sizes, and this causes long 

elapsed times. In fact, for groups with 6 or more slaves, the elapsed time for 

the task size of 5000 photons was longer than the elapsed time for the serial 

run on the master alone! 

As will be shown, the considerable increase in processing time for 

the smaller task sizes was caused by network congestion, caused by Cloud, 

which resulted from sending very long messages of about 210 kb. This 

network congestion was so serious, that it became almost impossible to collect 

these results for the groups of 9 and l 0 slaves, owing to the excessive time 

taken for the runs, and because messages were lost, and some runs had to be 

aborted. Thus, there are some results missing in this section. The results for 

groups of 5, 6, 7 and 8 slaves were taken as the means for the best 3 runs for 

each task size. However, the results for groups of 9 and 10 slaves were from 

only 2 (or even 1) runs, and some results were not obtained at all. Those 

results that were obtained for groups of 9 and 10 slaves show the same trends 

as those for the other groups. 
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Figure 37: Elapsed times for ELC/Classic group - l & 5 result messages (grouped 
by number of slaves) 
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The overall elapsed times for the runs with a single results 

message, as compared to those with five results messages, are shown in 

Figure 37. In all cases the elapsed times, for the runs using a single results 

message, were much longer than for the runs using five results messages. The 

time for the task size of l 0000 photons was approximately twice as long for 

the single message version as for the 5-message version, and that for the 5000 

photons size took even longer than the serial run! 

Figure 38 shows a comparison between the CPU times of the 

master, for the runs with a single results message, and those with five results 

messages. This graph showed that the CPU time for the master is similar for 

both versions of the program, but for the smaller task sizes the master uses 

more CPU time in the single results version, than in the version with five 

messages. This is probably because the master has spare time available to do 

Monte Carlo work, while waiting for results from the slaves which are trying 

to send results messages on a congested network. So the master does more 

tasks than in the 5-message version, when there is no network congestion. 

Figure 38 shows that the degradation in performance, of the single-message 

version, is not due to any difference in CPU time, but must therefore be 

entirely due to a large increase in system time. 
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Figure 39: System times for ELC/Classic group - 1 & 5 result messages (grouped 
by number of slaves) 
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The system times of the master, for both versions of the program, 

are shown in Figure 39. This graph shows that the system time for the version 

with a single message is considerably greater than the corresponding system 

time for the 5-message version, which is relatively little, and remains fairly 

constant for all runs. The system time for the single message version also 

increases slightly as the nu~ber of slaves increases. 

ELC/Classics - 1 message 
Amount of work per slave 
~. J!''. 

Figure 40: Amount of work per slave for ELC/Classic group - 1 result message 
(grouped by number of slaves) 

The next graphs show that the serious degradation in performance, 

of the single message version, is due to network congestion, which is caused 

by Cloud itself. 

Figure 40 shows the number of tasks executed by each processor, 

and indicates the load imbalance that arises because of communication 

bottlenecks. In this graph the number of tasks for the master are shown along 

the back wall of the graph. The number of tasks executed by the slaves is 

shown so that there is one row of slave data, from back to front, for each task 

size, for each number of slaves, and the slaves in each row are shown in the 

order in which they were started up. For each row, the slave that is nearest the 

back wall was the first slave started up by the master, and the slave nearest the 

front the last slave started up. This is also the order in which the master sends 
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messages to the slaves. For each number of slaves, the rightmost row of slave 

data is for the smallest (5000 photon) task size, with each row of slave data, 

towards the left, the data for the next biggest task size. 

Figure 40 shows that there is a drastic decrease in the number of 

tasks executed by each slave, according to the order the slaves were started up 

and received their tasks. For 5 slaves, although the decrease is quite apparent, 

slaves further "down the list" do still execute some tasks. For larger number 

of slaves, the graph shows that those slaves which are "last in the queue" for 

sending results messages, and for receiving further work, do almost no work. 

This is most serious for the small task sizes, where the time to execute one 

task is very short. 

The corresponding graph for the five-message version is shown in 

Figure 31, in section 5.6.2. This graph shows, that for the five-message 

version, there was an even distribution of work between all the processors. 

Since the only difference between the versions of Cloud used was that one 

version returned five short results messages, and the other a single long results 

message, this proves that the difference in performance, and particularly the 

variation in the number of tasks executed by each slave, is caused by the 

different ways of returning the results messages. 
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Figure 41 confirms that the degradation in performance for these 

slaves is not due to time spent waiting for messages from the master as, in all 

cases, the slaves spends almost no time waiting for messages. Therefore, it 

must be concluded that the degradation in performance is due to the 

communication delays, resulting from network congestion. 

In a homogeneous system, such as the ELC/Classic group, all 

slaves would be expected to take about the same time to execute a task, and 

thus finish the tasks at the same time. Therefore, it is likely that the slaves will 

finish in the same order as they received their tasks, with a very small time 

separating them. Thus, the first slave to finish will be able to start sending its 

results immediately. Subsequent slaves must wait their tum to send. Ethernet 

requires that each processor must wait in between packets, to allow other 

processors a chance to transmit, so all slaves will have a chance. However, 

because they all finish at approximately the same time, there is increased 

chance of network contention. As soon as one slave pauses, after it has sent 

a packet, the remaining slaves will all try and send, as soon as they hear the 

pause, and this will result in collisions, with the processors backing off. For 

messages consisting of only a few packets, this will soon be resolved, but 

when all processors are trying to send very long messages, serious congestion 

arises. This is compounded when the time to process a task is very short, as 

for the small task sizes, as those slaves, which have succeeded in sending a 

results message, will complete processing the next task, and immediately try 

and send the results of this task, while the other slaves have not yet succeeded 

in sending the results of the previous task. This means, that for small task 

sizes, the network congestion will be continuous, throughout the entire run. 

This accounts for the exceptionally long elapsed run times, for the small task 

sizes, for the single-message version. (See Appendix B for further details on 

the operation of Ethernet). 

The results in this section show that it is more efficient to send five 

shorter messages, than one long message. In the version with five shorter 

messages, there was a short time in between the sending of each message, 

when the data to be sent was copied into the message buffer, and then sent. 

This time gave the other slaves a chance to send a message, so there were 

fewer collisions. Also the messages were shorter, so each slave needed to send 

fewer packets, and any contention that did arise was resolved quickly. With the 

long messages the slave can do nothing else, while backing off and waiting for 

access to the network to send a message, and this is very inefficient. In this 
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way, a library such as PVM is more efficient, since PVM is non-blocking. That 

is, PVM starts a daemon to sent the message and can meanwhile continue 

processing. 

Keiser, in a comparison of Ethernet with a Token Ring, has also 

illustrated how, as the load on the network increases, performance deteriorates 

rapidly as a result of an increasing number of collisions [Keis89]. If the 

congestion is such, that the input rate of data at a node ·exceeds the output rate, 

this can result in buffer overflow, which may cause packets to be dropped and 

create the possibility of the whole network becoming deadlocked, with no 

packets getting through [Hamm88]. On Ethernet, if a packet is successfully 

received it can be assumed to be correct. However, according to the Ethernet 

specification, what happens to a packet, after the 16th collision in attempting 

to send this packet, depends on each implementation. In some implementations 

the packet may be abandoned. 

The results in this section have shown that significant delays can 

occur when messages are very long, when there are too many messages, too 

short a time to process the messages, and too many slaves, and that these 

delays can be caused by the program itself. However, on a non-dedicated 

network congestion can also be caused by factors exterior to the program, such 

as other applications and users. Thus, congestion could occur even for small 

numbers of slaves and short messages. These problems must therefore be 

considered, when writing a program for a non-dedicated, distributed system. 

· 5. 7 Scalability and isoefficiency 

When a real application is parallelized it is desirable that is should scale well 

if it is to be of practical use. Usually users will either want to add more 

processors to get a result in a shorter time, or run a larger problem, or both. 

Gustafson's Law states that if the size of most problems is scaled 

up sufficiently, then any desired efficiency can be achieved on any number of 

processors [Wils93]. Essentially, if processors are added, a problem should be 

solved in a shorter time. However, as the number of processors increases, so 

do the communication overheads, which decreases the efficiency achieved. 

Gustafson's Law implies that if a desired level of efficiency is to be 

maintained then the communication/computation ratio must remain constant. 

Thus, if the communication overhead is increased, then the problem size must 

be increased, so as to maintain the proportions of communication and 
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computation. For some applications this works well, but for others the 

algorithm used, or the amount of communication needed, may prevent linear 

scalability. Also, a larger problem size may require more memory, which may 

cause further constraints on performance [Sing93]. 

Isoefficiency means that the efficiency of a program remains 

constant as the number of processors is increased. Isoefficiency analysis is a 

means of determining the potential scalability of a program (Gram93 ][Kuma94] 

[Jako93]. 

It is obvious that if an application is scaled with the intent of 

obtaining a result in a fixed time, by increasing the number of processors, then, 

as the problem size increases, the potential scalability will eventually be 

bounded by such constraints as limited bandwidth. This is particularly likely 

in a network with low bandwidth such as Ethernet. 

The issue of determining the scalability, or calculating the 
' 

isoefficiency, of a program on a network of heterogenous workstations is a 

very difficult one. Singh and others show how this can be done for a 

homogenous system, but do not include the cost of bus or network contention. 

Kumar et al take contention into account in their formula for isoefficiency, but 

do not explain how to include heterogeneity in the formula [Kuma94]. 

Some other papers on this topic provide useful insight. Scaling is 

discussed in some detail in [Jako93] and [Miill91], who both develop formulae 

for predicting the scalability of a parallel program when considering the 

overheads arising from parallelism. Singh et al show that, instead of increasing 

the problem size, increased computing power can be used to reduce the errors 

arising from a simulation, so that scientists may achieve more accurate results 

("scaling for error") [Sing93]. 

Cloud is potentially ideally scalable for several reasons. One reason 

is that the memory requirements for the master, and for each slave, are 

independent of both the task size and the number of processors used, so that 

the amount of memory used by the master and each slave will always be the 

same, regardless of changes in problem size or number of processors. Also the 

amount of memory required is relatively little, so even processors with small 

amounts of memory can be used. There is relatively little communication in 

this type of computation-intensive program, so the computation/communication 

ratio is favourable for good scalability; The size and number of messages 

required for communication between the master and slaves are also 

independent of the overall problem size, and number of processors, in the same 
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way as the memory requirements. The number of messages is affected only by 

the granularity of the task size chosen. 

The structure of the program is such that if the master has to 

communicate with too many slaves, this could easily become a bottleneck 

Indeed, these experiments have shown that network contention becomes an 

inhibiting factor for as few as l 0 slaves when these are run by an ELC master. 

This is primarily because of the homogeneous nature ·of the slaves, which all 

try to send messages at approximately the same time. In this matter 

heterogeneity would be an advantage, as the sending of messages would be 

staggered and less likely to cause congestion, as described in section 5.5.4. 

This contention with I 0 slaves occurs before the master has reached the stage 

where it cannot handle any more slaves thus causing the slaves to wait for the 

master. For the communication needed for 1 task the SGI2 Extreme spends on 

average l 0% of the time the ELC master requires. This suggests that a network 

of SGI machines would scale better than one of Suns. If necessary, the 

program could be easily restructured so as to allow several "cluster masters", 

each handling some of the slaves, as described in section 6. 7 .2. This would 

enhance the scalability of the program, which would not then be limited by the 

number of slaves that one master could handle. 

Despite the good potential scalability of this program, the small 

numbers of machines used in these experiments, and the widely different 

performance capabilities of these machines, make it extremely difficult to 

predict to what extent this program is scalable. Even if the potential scalability 

is calculated for various groups of machines, there are too few machines to 

confirm by experiment whether this is valid. It is also likely that network 

contention will limit the speedup that could be achieved. The potential 

scalability would be greatly improved if a higher speed communication 

network than Ethernet was used. 
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Conclusions 

This dissertation has shown that good parallel performance can be achieved by 

running a real scientific application on a network of heterogeneous 

workstations, but that this performance is affected by a number of factors. 

The results of these experiments raised the question of what was 

the best way to evaluate the performance of a parallel program on a 

heterogeneous network. A number of methods of evaluating this performance 

were investigated. These included the conventional methods of speedup and 

efficiency, and also the alternative method of "linear speed" as proposed by 

Crowl [Crow94]. 

/ In addition, we proposed "perfect linear speed", and "linear 

efficiency" as extensions to Crowl's work in evaluating the parallel 

performance of heterogeneous systems. 

This study has provided valuable insight into the performance of 

a real scientific application on a network of heterogeneous workstations. This 

is particularly important since most networks are heterogeneous, either because 

they consist of workstations of different makes and models, with different 

CPUs and differing amounts of memory and cache, or because they are shared 

environments, and the load on the workstations and the network is constantly 
changing. 

These experiments have shown how such an existing, under-utilized 

network of workstations can provide a considerable amount of computing 

power, which can be exploited for parallel processing, with minimal impact on 
other users. 

As described in this dissertation, Cloud has been parallelized for the 

Department of Meteorology at Pennsylvania State University in the USA. 

Scientists in this department are reported to be well satisfied with this parallel 

version of Cloud, and are now extending the meteorological sections of Cloud, 

so that it can be used for a number of research projects, which could not be 

126 



CHAPTER 6. CONCLUSIONS 127 

done before because the original serial program just took too long. These 

projects are intended to take place soon, and the researchers at PennState 

expect to write a number of papers describing results obtained by using the 

parallel version of Cloud studied in this thesis. 

This chapter also includes some conclusions regarding. the 

usefulness of the p4 library as a tool for the parallelization of an application 

for a distributed network of heterogeneous workstations. 

6.1 Findings of this thesis 

The findings of this thesis can be grouped into three sections: the overall 

performance achieved, the evaluation of the performance of heterogeneous 

systems, and the factors affecting this performance. 

6.1.1 Performance achieved 

This dissertation has shown that a considerable improvement in performance 

was achieved in the parallelization of a real scientific application for a network 

of heterogeneous workstations. The experiments with Cloud showed that: 

• 

• 

• 

the performance range for this heterogeneous network was 

approximately 6.5, with the serial time of the fastest processor of 

51 minutes, and the serial time of the slowest processor of 5.5 
hours; 

the fastest parallel time was 16 minutes for all 18 processors, 

giving a speedup of 14 for 18 processors, and an efficiency of 0.8; 

the best performance will be achieved if the processors used are 

reasonably similar in performance capability. This study showed 

that adding four very slow processors as slaves only reduced the 

elapsed time from 18 minutes to 16 minutes, and that these four 

slow processors could have been better utilized for other work, as 

the reduction of under 2 minutes is too small to make it 

worthwhile to use these processors as slaves. 
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6.1.2 Evaluation of the parallel performance of 
heterogeneous networks 

This study showed that there is considerable difficulty in evaluating the 

performance of a heterogeneous system. These experiments showed that: 

• the performance of a parallel program should be measured by using 

elapsed time, and that measuring the CPU time alone can be very 

misleading. However, the CPU and system times may give useful 

insight in understanding the performance of an application, and 

may indicate ways in which performance can be improved; 

• speedup and efficiency are inappropriate for evaluating the 

performance of a heterogeneous network, and may give misleading 

information. However, if speedup is to be used to measure the 

parallel performance of a heterogeneous system, then the most 

representative values will be obtained if the parallel performance 

of the system is compared to the mean of the serial performance 
of the processors used; 

• alternative methods of measuring performance, such as linear 

speed, as proposed by Crowl [Crow94], and linear efficiency as 

suggested in this dissertation, give a more representative indication 

of the actual improvement in performance that is achieved. 

6.1.3 Factors affecting the performance 

There were a number of factors which affected the performance that could be 

achieved on this system. The experiments conducted for this study showed 
that: 

• although good performance can be achieved for Cloud on a 

network of workstations, the network performance was very 

sensitive to a number of factors. The results of the experiments 

with Cloud indicated that this sensitivity occured when the network 

traffic was very "bursty", or when the network became saturated 

when there were too many messages being sent at the same time, 

or if the messages were very long (greater than 200kb ). These 

factors caused a serious deterioration in the data rate, and the 

network degradation was so serious that messages were lost. 
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This poor perfonnance of Ethernet can be alleviated to 

some extent by reducing the "burstiness" of the traffic that may 

occur, particularly on a homogeneous system, when all processors 

try and send at approximately the same time. This can be done by 

interspersing sending messages with computation, or by using 

heterogeneous machines which will take different times to finish 

a task, and thus transmit results at different times. Also, breaking 

long messages (greater than 30 kb) into more, shorter messages, of 

sizes between I 0 kb and 30 kb will improve network throughput. 

Network latency can be hidden by overlapping 

communication with computation. A reduction of 25%-30% in the 

overall elapsed time can be achieved by sending a spare task to 

each slave, so that each slave always has a spare task on "stand­

by" and can immediately proceed with processing the next task, 

without having to wait for the time of the round-trip 

communication of results to the master, and receiving a new task 

from the master. No benefit was achieved by sending more than 

one spare task, and this can even reduce perfonnance; 

The results of the experiments also confinn that, as 

shown by others, the specified bandwidth for Ethernet of I 0 

Mbits/second cannot be achieved in practice. For this study the best 

data rate of 7-8 Mbits/sec was achieved by the Silicon Graphics 

machines. The SPARCstation 1 + machines had a data rate of about 

6.5 Mbits/sec, and the ELC and Classics a rate of about 

6 Mbits/sec. This was consistent with the findings of other 

researchers [Cap93][Nana93][Gart93][Alte93]; 

it is inefficient to run a slave process on the same processor as the 

master, and that better results can be achieved if the master does 

slave work within the master process, rather than in a separate 

process on the same processor. 

better load balancing is achieved for small task sizes, but higher 

efficiency is achieved for large task sizes. The best perf onnance is 

obtained when there is the best tradeoff between the good 

communication/computation ratio possible for large task sizes, and 

the efficient load balancing for small task sizes. On a homogeneous 

system all machines will tend to finish at approximately the same 

time, so a relatively large task size can be used, and good load 
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• 

balancing will still be achieved. On a heterogeneous system, with 

a wide range of performance capabilities, a large task size will lead 

to poor load balancing, and better results can be achieved with a 

small task size. 

it is important when choosing a task size that will ensure that the 

time taken to execute a task is longer than the time needed for the 

master to handle all the communication for tasks for all slaves, or 

else communication bottlenecks and delays will occur. 

6.2 Usefulness of the p4 library as a parallelization 
tool 

This section gives a brief evaluation of the parallel library p4, and its 

usefulness in the parallelization of Cloud for a network of heterogeneous 

workstations. 

p4 has proved to be simple to learn and implement, and efficient 

in its execution. The debugging tool, which allows a user to display error 

messages at different levels of complexity, was very useful during program 

development. 

The portability of p4 was well demonstrated in this study. The p4 

library was obtained from Argonne National Laboratories and installed at the 

University of Cape Town. Cloud was then parallelized, using p4, for five 

different models of workstation, of two different architectures. This parallel 

version of Cloud was then used successfully on both homogeneous and 

heterogeneous groups of up to 18 Sun and Silicon Graphics workstations. 

Cloud, and the p4 library, were then successfully installed on Sun workstations 

at PennState, where Cloud was recompiled and ran successfully, with no 

problems at all. 

The efficiency of p4 was shown by the good performance results 

obtained for Cloud, and by the good data rates achieved on Ethernet with p4. 

These data rates were comparable to those achieved by other researchers using 

methods of communication other than p4, and according to other researchers, 

were close to being the optimal data rates that could be achieved on Ethernet. 

There were a number of problems found in running a program 

implemented with p4, and this was also consistent with the experiences of 

Sukup [Suku94]. In both studies there were occasional problems with slave 

processes being lost, or crashing at the beginning of runs, and also with slaves 
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occasionally hanging for unknown reasons. These problems show that a p4 

application must be written to be fault tolerant, so that if there is a problem 

with lost message, or insufficient memory, then both the slave and the master 

processes should be able to recover. If one or more slaves fail, the application 

should be able to continue, as long as at least the master, and possibly. one 

slave, are still functioning. 

There was also a slight problem with using p4 on the 

SP ARCclassics. The SP ARCclassics functioned well as slaves, but could not 

be used as a master. This was because the p4 library for the Sun workstations 

was implemented on a SPARCstation 1 +, which is the sun4 architecture, and 

the SPARCclassics are sun4m architecture, and there is a difference in the way 

the SPARCstation 1 + and SP ARCclassic machines start a remote shell. The 

ELCs (sun4 architecture) appear to use the same method of starting remote 

shells as the SP ARC station 1 +s, and so could be used as masters. The p4 

library would need to be modified if SP ARCclassics are to be used as masters. 

One of the biggest advantages of p4 is that it is the only parallel 

library that implements both a shared memory and a message-passing model, 

as well as being suitable for implementing a parallel program on networks of 

clusters of shared-memory multiprocessors. The library functions for shared­

memory were not used in this study, but it is relatively simple to convert from 

a p4 message-passing implementation to a p4 shared-memory implementation. 

Another advantage of p4 is that a message-passing implementation can also be 

run on a shared-memory multiprocessor, or on clusters of shared-memory 

multiprocessors connected by a network, as the send/receive procedures are 

generic and it does not matter whether a message must travel across a network, 

or through shared-memory, or via some other mechanism [But192]. 

6.2.1 MP/ 

With the development of the new standardized message-passing interface, MP! 

[Walk94], it is likely that most future work in parallelizing message-passing 

applications will be done using MP!. MP! incorporates many of the features 

of the more well-established parallel libraries such as p4, PVM, and 

PARMA CS, and existing programs that were written using these libraries 

should be fairly easily reimplemented in MP!. 
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Future work, along the same lines as this thesis, should rather be 

implemented using MP I, since this is the new standard for message-passing 

systems. 

6.3 Future work 

This dissertation has shown that there are a number of factors that affect 

parallel performance. This section shows some ways in which the performance 

could be improved by redesigning of the program, and also suggests some 

possible research projects that could build on what has been learnt in this 

study. 

6.3.1 Using a fast or a slow master? 

Further work should be done to establish whether the best performance results 

from using a fast master or a slow master. 

All experiments in this dissertation used a fast master because, even 

in a homogeneous group, the master executes more tasks in the same time, 

than can be executed by a slave. This is because the master has no 

communication overheads when doing Monte Carlo work. This suggests that 

it is advantageous to use the fastest machine as the master, because this 

machine can be used to do slave work whenever it is not otherwise engaged 

with administrative tasks, such as communication with slaves. 

Also, as discussed in section 5.7, with the master/slave paradigm, 

the master is likely to become too busy with communication, thus causing a 

bottleneck. Thus, it would also be better if the master was the machine that can 

handle communication fastest, as the master has to do more communication 

than the slaves. 

However, it may be better to use a slow master which handles 

communication only, and does not do any Monte Carlo work, and thus use the 

faster processors as slaves where their processing power can be .better utilized, 

as a slave spends more time on processing than on communication. 

6.3.2 Better utilization of idle workstations 

The results in this dissertation have shown that, when the load balancing was 

poor, the master was idle for some time at the end of a run, while waiting for 
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the slaves to complete their last tasks, and also, some of the faster processors 

finished before the slower processors had completed their last task. Also, 

Cloud is implemented so that the master initially sends two tasks to each slave, 

so each slave always has its next task immediately available. However, at the 

end of a run this can lead to even worse load balancing, as while the faster 

processors may have finished all the available work, the slower processors may 

still have spare tasks in their task queues .. 

The wasted time of the faster slaves, and idle time of the master, 

could be better utilized if these faster processors instead did some of the work 

allocated to other, still busy, slow slaves, especially if the tasks reallocated 

were those still in the standby queue of these slaves. In this case, the slaves 

must be constrained to receive a "CLOSE" message, ifthere is one, before any 

task in its queue, to prevent a slow slave from executing a task in its queue, 

when that task has now been reallocated, and completed by another faster 

processor. 

As described in section 3.3.6, this feature to make better use of idle 

workstations was originally programmed into Cloud, but was not used in the 

performance tests. It should, however, be activated for real use. This feature 

may lead to some duplication of work, as sometimes a task may be executed 

by more than one processor, but the overall elapsed time will be shorter. 

6.3.3 Cluster masters 

This study has shown that communication bottlenecks can occur if there are 

too many slaves, and the master does not have sufficient time to handle all the 

communication from all slaves, for one set of tasks, in the time the slaves take 

to execute the next task. 

This problem could be solved ifthe program was redesigned so that 

there are several "cluster masters", each administering a sub-group of slaves, 

and one overall master to collate the results from these "cluster masters". There 

would then be less chance of communication bottlenecks as each "cluster 

master" would only have to administer a few slaves. 

6.3.4 Random size tasks 

The results of the experiments described in section 5 .5 have shown that in a 

homogeneous system all slaves will finish their tasks at approximately the 
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same time, and this causes bursts of network traffic as all slaves try and 

transmit results at the same time. 

This could be alleviated by sending tasks of different sizes to each 

slave, perhaps by getting the master to send tasks of "random" size. 

6.3.5 Dynamic adaptive load balancing 

This section describes a method of load balancing which could be 

implemented, in Cloud, to improve overall efficiency, and thus result in shorter 

elapsed times. The method is dynamic because the optimal size of the tasks is 

determined during the run, and adaptive because it takes into account the 

different performance capabilities of the processors, and the dynamically 

varying workloads on machines in a shared environment, and adapts the size 

of the tasks accordingly. 

The results in this dissertation have shown that load balancing is 

best for small task sizes, but that efficiency is greatest for large task sizes, 

which have a better communication/computation ratio. The load balancing for 

large tasks was poor, resulting in a certain amount of processor idle time, 

which could be better utilized. The best overall performance is achieved when 

there is the best tradeoff between a good communication/computation ratio, and 

efficient load balancing. 

If the program is changed to process large tasks for most of the 

run, this will improve the communication/computation ratio, and result in high 

efficiency. Then, the size of the task should be reduced in the last stages of the 

run, so the final load balancing will be good, and all processors will finish at 

approximately the same time. 

The master can determine the comparative rates of the processors 

by measuring the time taken, by each machine, to perform each task. This time 

can easily be returned by the slave, as part of the results for each task. The 

master can then keep a table of the current performance rates for each slave, 

and use this in determining the size of the task to send to each slave. This is 

particularly useful in a shared environment when the load on a machine may 

vary considerably during a run. 

The initial tasks sent by the master to the slaves should be 

relatively small, as the situation is unknown at that point. The times returned 

by the slaves, to the master, can then be used by the master for dynamic 

determination of the performance of each slave, so that the master allocates 
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larger amounts of work to faster machines, and lesser to slow machines. As the 

situation changes, and the performance of the slaves varies, the master can 

adjust the amount of work sent to each slave. In some ways, this technique is 

similar to that of THE PARFORM which is described in [Cap93]. 

Towards the end of a run, it is extremely important to determine 

the time at which the master must change from sending out large tasks, to 

sending small tasks. This is so that a situation does not arise where all the 

faster processors have finished their tasks, while the slow machines are still 

working. The point at which the master must start sending smaller tasks can 

be established by comparing the speed of the fastest and slowest machines, and 

then not sending large tasks to a slow machine, when this machine will take 

longer to finish a task than the rest of the processors will take to finish all 

remaining work. At this stage, all remaining work should be divided into much 

smaller tasks, so the final load balancing will be good. 

This combination of using large task sizes for most of the run, and 

small ones at the end to ensure good load balancing, will result in higher 

efficiency, and shorter elapsed times. The overheads introduced by this 

technique should be minimal, as no extra communication is required, and the 

extra memory requirements and computation required are small. 

This method of load balancing, although ideally suited for the type 

of program where synchronization is not an issue, could be extended for use 

in programs with more complicated load balancing and synchronization 

requirements such as data-parallel programs. 

Further suggestions of load balancing techniques can be found in 

[Kuma94]. 

6.3.6 Intelligent task allocation 

In Cloud, the largest amount of communication is when the collection arrays 

are returned from a slave at the end of each sub-task. This section suggests a 

technique for allocating tasks to slaves, which will result in reduced 

communication time, thereby improving performance. 

This technique can be implemented for Cloud, because for the 

Monte Carlo method used, the totals in the collection arrays for sub-tasks, for 

the same interval of the same wavelength, are added together before calculating 

the final results. In the current implementation of Cloud, the master receives 

the collection arrays for each sub-task, from each slave, and adds the totals for 
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the same interval of the same wavelength together. The method in this section 

proposes that if a slave is specifically allocated subsequent sub-tasks, all for 

the same interval of the same wavelength, then the slave can add these totals 

together, without returning the collection arrays to the master at the end of 

every task, and this will reduce communication costs. 

Since the input arrays total to about 210 kb, this technique would 

reduce the amount of communication to a fraction of that needed with the 

present implementation. Cloud has been programmed so that it is relatively 

trivial to implement this technique. However, there was insufficient time to 

repeat all the experiments using this methbd. The added processing cost would 

be minimal, and considerably less than the time otherwise needed for 

communication. In this way, relatively small sub-task sizes could be used, and 

the load balancing efficiency of small tasks could be achieved. However, a 

communication/computation ratio approaching that of the larger tasks could be. 

achieved, because of the reduced communication overhead. -

The simulation of all photons for one case of input conditions 

·cannot be allocated to one slave initially, as it is unlikely that the work divided 

in this way would divide evenly among the slaves, and this would lead to poor 
load balancing. 
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Appendix A 

Description of the cloud radiation model 

A stratocumulus cloud deck usually covers several hundred square kilometres. 
To study the reflectivity, transmissivity and absorptivity of such a cloud, a 
model has been set up. In this model a horizontal strip through the cloud is 
studied, with the cloud on either side of the strip assumed to continue to 
infinity. This strip is then divided into a number of identical vertical columns, 
each with a square horizontal cross-section. Each column is considered 
separately. In this way, different input data representing the atmospheric 
conditions, such as gas composition, water vapour content, and temperature, 
can be used for each column of cloud 

As photons are incident on the top of the cloud column, they either 
penetrate the cloud, or are reflected off the top of the cloud. If a photon 
penetrates the cloud it is likely that within a certain distance, known as the 
mean free path, it will collide with a molecule of gas or water vapour. As a 
result of this collision it will either be absorbed in the cloud, or will continue 
passing through the cloud in a different direction until another collision. For 
all photons each photon is traced, until eventually it is either absorbed in the 
cloud, or reflected back out of the top of the cloud, or finally transmitted right 
through the cloud, and emerges from the bottom of the cloud. For this 
simulation it is assumed that the column of cloud studied is not at the edge of 
the cloud, so photons emerging from the sides of the column are 'wrapped 
round' to appear to come in from the other side of the column. Thus, all 
photons continue passing through the column of cloud until they are either 
absorbed, or emerge out the top (reflection), or the bottom (transmission) of 
the column. 

Several collection arrays are used to count the photons reflected, 
transmitted or absorbed. Each cloud column has a square horizontal cross­
section, and this is represented by a square grid divided into an equal number 
of collection cells in each direction. There is one such collection array 
representing the top of the cloud column, and one representing the bottom of 
the cloud column. As the photon passes through the cloud column, its new 
position after each collision is calculated. If it leaves the cloud through the 
bottom, or top, of the cloud column, it is counted in the collection array cell 
though which it emerges. At the same time the angle at which it leaves the 
cloud is recorded. For this purpose, there are another two collection arrays, one 
for the top, and one for the bottom of the cloud. These arrays have the same 
number of collection cells as those for counting the photons. As the photon 
leaves the cloud its angle (in radians) is added to the total in the corresponding 
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cell. At the end of the run the mean angle of exit of photons leaving through 
that grid cell is calculated. . 

A schematic diagram showing a view of the top of the cloud 
column is shown in Figure 42. The strip of cloud is in the x direction, and the 
cloud is assumed to be infinite in the y direction. A square grid representing 
the collection array at the top of the cloud column is shown. This is schematic 
only. In the program the size of this array may be varied by the user. For the 
experiments described in this dissertation the array was 93 x 93. The view of 
the cloud column from the bottom will be similar. 

These four collection arrays are used to compute the reflection of 
light from the top of the cloud and the transmissivity of light through the 
cloud. 

x 

0 0 0 0 0 

0 0 0 0 0 

y 0 0 0 0 0 y 

0 0 0 0 0 

0 0 0 0 0 

x 

Figure 42: Schematic diagram of top view of cloud (bottom view will be 
similar) 

Another array is used to count the number of photons absorbed into 
the cloud column. This array represents the cloud column vertically. The 
distance between the top and the bottom of the cloud is divided into a number 
of layers of equal height. The number of photons absorbed in each layer is 
counted. These totals are then used to calculate the heat absorbed by the cloud 
column. A schematic diagram showing how the cloud column is divided into 
layers is shown in Figure 43. For these experiments there were 1000 layers. 

Light is composed of a number of different wavelengths, and each 
wavelength has different properties. For instance, certain gases absorb light of 
certain wavelengths, and other gases absorb light of a different wavelength. A 
cloud consists of a combination of different gases and water vapour. One of 
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Top of cloud 

x x 

-----------·~- ---------
-----------'--------------------'--------

Bottom of cloud 

Figure 43: Schematic diagram of side view of cloud 

the factors which will change according to the wavelength is the mean free 
path that a photon can be expected to travel before a collision, or being 
absorbed. Thus, to simulate the passage of light through a cloud it is necessary 
to simulate photons of all wavelengths, as photons of some wavelengths will 
be absorbed more than others, which may be reflected or transmitted. Also 
light may be either direct or diffuse, and will behave differently for each case. 
For this particular experiment there were in all 22 different wavelengths, some 
of which were divided into sub-intervals, making 50 sets of input conditions. 
Some cases were calculated for both diffuse and direct light. The properties of 
each wavelength are read in from file. 

Monte Carlo simulation has been used to trace the paths of photons 
through the cloud, since other methods would take too long. 
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Appendix B 

Hardware specifications 

This section gives the technical specifications of the workstations and the 
network used in the experiments described in this dissertation. The 
workstations, described by the letters "a" to "r" as used elsewhere in this 
report, are grouped together with their common technical description. 

First the workstations are described and then the Ethernet network. 

B. l Silicon Graphics workstations 

The following information, except for the operating system information, was 
obtained by typing the command hinv on each workstation. The operating 
system version number is displayed at login. 

Workstation "a" - Silicon Graphics lndigo2 Extreme 

1 100 MHZ IP22 Processor 
FPU: MIPS R4010 Floating Point Chip Revision: 0.0 
CPU: MIPS R4000 Processor Chip Revision: 3.0 
On-board serial ports: 2 
Data cache size: 8 Kbytes 
Instruction cache size: 8 Kbytes 
Secondary unified instruction/data cache size: 1 Mbyte 
Main memory size: 128 Mbytes 
Integral Ethernet: ecO, version 1 
Integral SCSI controller 1: Version WD33C93B, revision D 
Disk drive: unit 1 on SCSI controller 0 
Integral SCSI controller 0: Version WD33C93B, revision D 
Iris Audio Processor: version A2 revision 0.1.0 
Graphics board: GUl-Extreme 
Operating system : IRIX 4.0.SH 

Workstation "b" - Silicon Graphics Indigo - 24 Mb memory 

1 33 MHZ IP12 Processor 
FPU: MIPS R2010A/R3010 VLSI Floating Point Chip Revision: 4.0 
CPU: MIPS R2000A/R3000 Processor Chip Revision: 3.0 
On-board serial ports: 2 
Data cache size: 32 Kbytes 
Instruction cache size: 32 Kbytes 
Main memory size: 24 Mbytes 
Integral Ethernet: ecO, version 0 
Disk drive: unit 1 on SCSI controller 0 
Integral SCSI controller 0: Version WD33C93A, revision 9 
Iris Audio Processor: revision 3 
Graphics board: LGl 
Operating system : IRIX 4.0.SF 
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Workstation "c" - Silicon Graphics Indigo - 16 Mb memory 

1 33 MHZ IP12 Processor 
FPU: MIPS R2010A/R3010 VLSI Floating Point Chip Revision: 4.0 
CPU: MIPS R2000A/R3000 Processor Chip Revision: 3.0 
On-board serial ports: 2 
Data cache size: 32 Kbytes 
Instruction cache size: 32 Kbytes 
Main memory size: 16 Mbytes 
Integral Ethernet: ecO, version 0 
Tape drive: unit 4 on SCSI controller 0: DAT 
Disk drive: unit 1 on SCSI controller 0 
Integral SCSI controller 0: Version WD33C93B, revision C 
Iris Audio Processor: revision 10 
Graphics board: LGl 
Operating system : IRIX 4.0.SF 

B.2 Sun workstations 

It has been extremely difficult to obtain any specifications of the Sun 
workstations used in these experiments. The following information was 
obtained from comp.sys.sun.hardware Wed Sep 28 08:55:53 1994. It is not 
known whether these specifications accurately describe the Sun workstations 
used. For example, from these descriptions one would expect the Classics to 
perform better than the ELCs whereas the serial performance tests showed the 
reverse to be true. 

OVERVIEW 
======== 

The document posted was: 

THE SUN HARDWARE REFERENCE 
compiled by James W. Birdsall 

(jwbirdsa@picarefy.com) 

PART I 
====== 

OVERVIEW 
CPU/CHASSIS 

Last updated: 09/09/1994 

This primary focus of this document is to cover Sun-badged hardware 
in detail sufficient to be useful to buyers and collectors of used Sun 
hardware, much of which comes without documentation. Details on 
hardware commonly used with Suns, especially hardware specifically 
designed for Suns, are also included where available. 

An extract from this document describes the Sun-4/SP ARCstations as follows: 
(All Suns used were part of this group) 

Sun-4/SPARCstation 

OVERVIEW 

These machines were initially introduced with model designations in 
the same pattern as previous lines: Sun 4/xxx. However, Sun departed 
from their classic naming scheme with the name SPARCstation, and has 
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since experimented with alphabetic designations (e.g. "SPARCstation 
SLC") before returning to numbered SPARCstations. 

This model line marks the introduction of Sun's own RISC chip, the 
SPARC. There have been a number of different implementations of the chip 
from various manufacturers, with varying degrees of hardware support for 
the instruction set. 

Support for Sun-4's was introduced in SunOS 4.0. Since this product 
line is still current,· it is still supported by Sunos, which has mutated 
to become Solaris. 

Some of the later models have pictures silkscreened on their CPU 
boards. 

Note that MIP/GIP ratings for later models are deemed suspicious. 

By taking extracts from this document the following specifications of the Sun 
workstations were obtained. Further notes from this document follow these 
specifications. 

Workstations "d" (32Mb memory), and "e" (16Mb memory) -

SPARCstation ELC (4/25) 
Processor(s): Fujitsu MB86903 or Weitek W8701 @ 33MHz, FPU 

CPU: 
Chassis 
Bus: 
Memory: 

type: 

CPU chip, Sun-4c MMU, 8 hardware contexts, 
21 MIPS, 3 MFLOPS 
501-1730/1861 
monitor 
none 
64M physical; 64K write-through cache, 
direct-mapped, virtually indexed, virtually 
tagged, 32-byte lines 

on 

Notes: Code name "Node Warrior" (?). 4M or 16M x 33 SIMMs. 
No fan. 17" mono monitor built in. 8M standard. 

Operating System : SunOS 4.1.3 (ELC) 

Workstations "g", "I", "m" (32Mb memory), and 
"r', "h", "i", "j", "k", "n" (16Mb memory) -

SPARCclassic (SPARCclassic Server) 
Processor(s): microSPARC @ 50MHz, 59.1 MIPS, 4.6 MFLOPS 

(microSPARC - Texas Instruments TMS390S10. 
On-chip 4K I-cache. On-chip 2K D-cache. 
64 hardware contexts. FPU and SPARC Reference MMU 
on chip. SPARC Reference MMU has in-memory 
3-level page tables, similar to a 
de-baroqued subset of the 68030 MMU, but with 
Sun-MMU-style contexts.) 

Bus: SBus 
Memory: 96M physical 
Notes: Sun-4m, but no MBus. Code name "Sunergy". 

Uniprocessor only. 16M standard. 1.44M 3.5" 
floppy. 

Operating System : SunOS 5.3 
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Workstations "q" (28Mb memory), and "o", "p", "r" (16Mb memory) -

SPARCstation l+ (4/65) 
Processor(s): LSI L64801IU@ 25MHz, Weitek 3172, Sun-4c MMU, 

CPU: 
Chassis type: 
Bus: 
Memory: 

Notes: 

8 hardware contexts, 15.8 MIPS, 1.7 MFLOPS 
501·1632 
square pizza box 
SBus, 3 slots 
64M (40M?) physical with synchronous parity, 
512M/process virtual; 64K write-through cache, 
direct-mapped, virtually ind~xed, virtually 
tagged, 16-byte lines; 50ns cycle 
Code name "Campus B". lM x 9 30-pin 80ns SIMMs, 
possibly higher capacities as well. SM standard. 
l.44M 3.5" floppy. 

Operating _System : SunOS 4 .1 

The following information was part of this document and explains the 
preceding details. 

CPU/CHASSIS 
=========== 

For each model listed above, whatever information is available is 
given, in the following order: 

Processor: The microprocessor followed by its clock speed in MHz. The 
floating point coprocessor (FPU), if any, followed by whatever 
information is available about the MMU and number of hardware contexts 
(in the MMU?). Lastly, the MIPS (Millions of Instructions Per Second, 
aka Meaningless ... ) and MFLOPS (Millions of FLoating-point OPerations 
per Second) ratings, if available. Note that some SPARC processors are 
referred to by name; information on the SuperSPARC and microSPARC is 
available in the "Processor Data" section. 

CPU: The Sun part number of the CPU board or motherboard. 

Chassis type: "Rackmount" chassis, as the name suggests, are designed 
to fit into a standard 19" equipment rack. They usually require 
clearance over and under the chassis for cooling. "Pizza box" chassis 
are intended to sit on a desktop, typically underneath the monitor; they 
are low, wide, and deep. Older pizza boxes (2/50, 3/75, 3/50, and 3/60) 
are much wider than they are deep; newer ones are square (3/80, 
SPARCstation 1, l+, 2, etc.). Some older pizza boxes (mostly the 3/50) 
have a 'dimple top', a case top with a circular depression that allows 
the chassis to serve as a tilt/swivel monitor base directly. 9-slot 
Multibus and 12-slot VME (and probably 6-slot VME as well) "deskside" 
chassis are wide towers that must stand on the floor. 3-slot VME 
"deskside" chassis can stand on the floor as narrow towers or lie on 
their sides on a desktop as a tallish pizza box. "Shoebox" chassis are 
small rectangular boxes the size of a couple large hardcover books 
stacked. "Monitor" chassis (SPARCstation SLC, etc.) have the motherboard 
in the back of the monitor. 

Bus: Whatever bus or busses the machine has. Sun has, at various 
times, used Multibus, VMEbus, ISA, SBus, MBus, and XDBus. 

Memory: The amount of physical memory the machine can take, if known, 
followed by the maximum size of the machine's virtual memory space, if 
known, followed by the cycle time for physical memory, if known, and 
finally details of any on-chip or off-chip caches, if known. The caches 
on the Motorola 68020 and 68030 and the Intel 80386 are not described, 
since information on these chips is widely known. To save space, 
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the on-chip caches of the SuperSPARC and microSPARC processors is 
described in the "Processor Data" section. 

Notes: General information which does not belong under other 
headings. 
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SPEC Benchmark for Sun ELC 

The following information was also obtained from comp.sys.sun.hardware and 
gives some benchmark information to give a rough idea of the performance of 
the ELC. 

******** TABLE 4: SPECmark89 ******** SPEC89 Results: 

Note: - SPECmark 89 is an older figure derived from the results of 
a combined set of floating point and integer benchmarks, and 
is reported only because SPEC92 figures are not available for 
many older machines. The use of SPECmark 89 is strongly discouraged. 
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System 
Name 

CPU 
Type 

Clk MHz Cache SPEC Info Source 
Ext/Int Ext+I/D Mrk89 Date Obtained 

Sun SS ELC 
Intel 386/387 
Intel 486DX 
Intel 486DX 
Intel 486DX 
Intel 486DX2 

SP/FuWe 
80386/7 
80486 
80486 
80486 
80486 

33 
33 
25 
33 
50 
33/66 

64 
64+0 
128+8 
0+8 
256+8 
256+8 

20.3 
4.3 
8.7 

11.1 
21. 9 
25.6 

Nov92 
1992 
1990 
1991 

Oct92 
1992 

Sunflash 
Intel 
Intel 
Intel 
comp.arch 
Intel 

So, ELC is roughly equal to 486/DX50, and much faster than DX33. 
The above is from the table made by John DiMarco. But benchmarks are 
misleading :-) 

Szymon Sokol -- Network Manager 
U u M MM M University of Mining and Metallurgy, Computer Center 
U U MM MM MM MM ave. Mickiewicza 30, 30-059 Krakow, POLAND 
U U M M M M M M M M TEL. +48 12 338100 EXT. 2885 FAX +48 12 338907 

UUUUU M M M M M M finger szymon@galaxy.uci.agh.edu.pl for PGP key 
WWW page: http://www.uci.agh.edu.pl/-szymon/ 

B.3 Ethernet technical summary 

A full technical description of Ethernet can be obtained from a number of 
sources such as the IEEE-802 Standard. For the sake of brevity only those 
facts about Ethernet which are relevant to this thesis are described here. They 
were obtained from the Ethernet Technical Summary m Appendix C m 
[Keis89] unless otherwise specified. 

B.3.1 Packet size 

An Ethernet packet consists of an 8-byte preamble, a 14-byte header, from 46-
1500 bytes of data and a 4-byte CRC. Thus the minimum packet size is 72 

·bytes and the maximum packet size is 1526 bytes. 
The minimum length of the data field is 46 bytes in order to ensure 

that valid packets are distinguishable from collision fragments. If the data 
supplied is less than the 46 bytes required for proper operation of the Ethernet 
protocol this an integer number of padding bytes will be added by the Logical 
Link Control protocol layer to bring the length of the data field to 46 bytes. 

B.3.2 Data rate 

The specified data rate of Ethernet is 10 Mbits/second so that the bit cell is 
100 ns ± 0.01%. 

B.3.3 Inter-packet spacing 

The minimum time that must elapse after one transmission before another 
transmission is started is 9.6 µs. 
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B.3.4 Carrier 

The presence of data trans1t1ons indicates that a carrier is present. If a 
transition is not seen between 0.75 and l.25 bit times since the center of the 
last bit cell, then carrier has been lost, indicating the end of a packet. For 
purposes of deferring, carrier means any activity on the cable independent of 
the signal being properly formatted. Specifically, it is any activity of either 
receive or collision-detect signals in the last 160 ns. · 

8.3.5 Control procedure 

The control procedure· defines when and how a station may transmit packets. 

Defer 

Transmit 

Abort 

Retransmit 

Backoff 

A station must not transmit when a carrier is present or 
within the minimum interpacket spacing time. 

A station may transmit if it is not deferring. It may 
continue transmitting until either the end of the packet 
is reached or a collision is detected. 

If a collision is detected, transmission of a packet must 
terminate, and a jam signal ( 4 to 6 bytes of arbitrary 
data) is transmitted to ensure that all involved 
participants are notified of the collision. 

After a station has detected a collision and then 
aborted, it must wait for a random retransmission 
delay, defer as usual, and then attempt to retransmit the 
packet. 

Retransmission delays are computed using the truncated 
binary exponential backoff algorithm, with the aim of 
resolving contention among up to 1024 stations. 
The basic unit of backoff is 51.2 µs. [Hamm86] 
One version of the truncated binary exponential backoff 
algorithm allows an initial attempt plus 15 
retransmissions each delayed by an integer r times the 
base backoff time. The integer r is selected at random 
from the discrete distribution, uniform on the set of 
integers {0, ... ,2k-1 }, where k is the minimum of the 
number of retransmissions to date and the integer 10. 
i.e. For the l lth through the 15th retransmission 
attempts the upper limit of the set of values for r is 
fixed at 210-1 = 1023. After 16 attempts the Ethernet 
algorithm reports an error and a higher level protocol 
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must decide whether to discard the packet or to 
continue the attempt to access the network. [Hamm86] 

Network node congestion 

The following notes on network congestion were taken from [Hamm86]. 
Congestion occurs at a node in a computer network when the 

resources of the node are stretched to capacity. This happens when the total 
input traffic rate exceed the output rate so that all available buffers become 
full. As a consequence of buffer overflow packets will have to be dropped and 
there is a likelihood that the whole network will become deadlocked with no 
packets getting through. 




