
Univ
ers

ity
 of

 C
ap

e T
ow

n

LINEAR LIBRARY 

C01 0088 1483 

11111111 

SPLINE WAVELET IMAGE CODING AND SYNTHESIS FOR A 
VLSI BASED DIFFERENCE ENGINE 

A DISSERTATION 

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE, 

FACULTY OF SCIENCE 

AT THE UNIVERSITY OF CAPE TOWN 

IN FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF SCIENCE 

By 

Patrick Craig Marais 

June 1994 

Supervised by 

Professor E.H. Blake 

Th , Lltu\ cr ity of Cape Tl)wn ha be~n l:iven 
the r;ght to r£>r .. J(.\olce tl •'1 th ·r•s tn .,.,hole 
or In part. Copyrrght is h I.J by the author. 



 

 

 

 

 

 

 

 

 

The copyright of this thesis vests in the author. No 
quotation from it or information derived from it is to be 
published without full acknowledgement of the source. 
The thesis is to be used for private study or non-
commercial research purposes only. 

 

Published by the University of Cape Town (UCT) in terms 
of the non-exclusive license granted to UCT by the author. 
 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Abstract 

The efficiency of an image compression/synthesis system based on a spline multi-resolution 

analysis (MRA ) is investigated. The proposed system uses a quadratic spline wavelet trans­

form combined with minimum-mean squared error vector quantization to achieve image 

compression. Image synthesis is accomplished by utilizing the properties of the MRA and 

the architecture of a custom designed display processor, the Difference Engine. The latter 

is ideally suited to rendering images with polynomial intensity profiles, such as those gener­

ated by the proposed spline :V1RA. Based on these properties , an adaptive image synthesis 

system is developed which enables one to reduce the number of instruction cycles required to 

reproduce images compressed using the quadratic spline wavelet transform. This adaptive 

approach is computationally simple and fairly robust. In addition , there is little overhead 

involved in its implementation. 



Contents 

1 Introduction 

1.1 Image Compression and Synthesis 

1.2 Wavelet Image Coding and Multi-Resolution Analysis 

1.3 Adaptive Multi-Resolution Synthesis on the Difference Engine . 

1.3.1 

1.3.2 

The Difference Engine . . . . . . . . . . . 

Image Synthesis on the Difference Engine 

1.4 Second Generation Image Coding . 

1.5 Outline of Dissertation . .. . .. . 

2 Wavelet Theory 

2.1 Mathematical Preliminaries 

2.2 Time-Frequency Analysis . 

2.3 The Integral Wavelet Transform (IWT) 

2.4 The Discrete Wavelet Transform (DWT) . 

2.5 Wavelets and Multi-Resolution Analysis . 

2.5.1 Wavelet Series and Decompositions . 

2.5.2 Multi-Resolution Analysis of 1-D Signals. 

2.5.3 Multi-Resolution Analysis of 2-D Signals. 

2.6 Concluding Remarks ...... . 

1 

1 

3 

3 

4 

4 

5 

5 

7 

9 

11 

13 

15 

18 

19 

21 

26 

31 



3 A Spline-Based Multi-Resolution Analysis 

3.1 Cardinal Splines .. . 

3.2 Cardinal Spline \tiL\ 

3.3 Boundary Conditions . 

3.3.l Symmetric signal extension s . 

3.4 Comparison of Cubi c and Quadratic Card inal Spline Schemes 

3.5 Calculation of [nitial :\ pproximation Coefficients 

3.6 Concluding Remarks ... .. .. . 

4 Spline-Wavelet Image Compression 

4.1 Compression Strategies and Standards 

4.1.1 The JPEG 1 Compression Standard . 

4.1.2 Fractal Image Compression 

4.1.3 Sub-Band Coding schemes . 

4.1.4 The Laplacian P yramid 

4.2 Wavelet Image compression 

4.3 Quantization .... 

4.4 Vector Quantization 

4.4.1 The LBG Algorithm 

4.5 Analysis of Quadratic Spline-Wavelet Compression 

4.5.1 General Discussion .. 

4.5.2 Results and Analysis . 

4.5.3 Huffman Coding ... 

4.6 An Alternative Compression Scheme 

4. 7 Concluding Comments . 

1 Joint Photographic Experts Group 

II 

32 

34 

36 

44 

45 

49 

56 

61 

63 

64 

65 

66 

67 

68 

69 

71 

73 

74 

76 

76 

82 

89 

91 

92 



5 The Difference Engine and Image Synthesis 

.)0 l The Difference Engine 0 0 0 0 0 . 0 0 0 . 0 0 . 0 .. 0 0 0 . 0 

0'5o2 .\lulti-resolution Image Synthesis on the Difference Engine 0 

503 Adaptive Synthesis 0 0 0 0 0 0 0 0 0 

5030 t Adaptive Detail Generation 

5030 2 Instruction Merging 0 0 0 0 

50303 Calculation of the Cycle Count 

5.4 Results and Discussion 0 . 0 0 0 . 

5.4.1 Alternative Architectures 

505 Concluding Comments 0 0 0 0 0 0 

6 Second Generation Image Coding 

601 The multi-scale edge characterization of images 

602 Edge detection methods . 0 . 0 0 0 0 . 0 0 0 . 0 

60201 Standard approaches to edge detection 0 

60202 Wavelet based edge detection 

603 Contour coding 0 0 0 0 0 0 0 0 0 0 

60301 Edge point Connectivity 0 

60302 Edge point chaining 

60303 Edge-Chain coding 0 

6.4 Contour reconstruction 0 0 0 

60401 Carlsson's approach 

60402 Multi-scale edge reconstruction 

605 An alternative proposal for edge interpolation 0 

606 Some preliminary tests 0 

60 7 Concluding comments 0 

lll 

94 

95 

97 

102 

103 

105 

106 

107 

111 

114 

115 

116 

116 

117 

119 

120 

120 

122 

122 

124 

125 

125 

127 

130 

133 



7 Conclusion 

7.1 Oven·iew of .\lain Result s 

7.1.1 The Spline \\.;wckt Tr:~.nsform 

7.1.2 Multi-Resolution S.vnthesis .. 

7.1.3 Second Generation Coding: edge extraction and coding 

7.2 Fut.ure Work ............ . 

7.2.1 Edge Extraction and Coding 

7.2.2 Alternate Quantization Schemes 

7.2.3 Alternate Spline Schemes . ... 

7.2.4 Alternative Architectures for Spline Image Synthesis 

Bibliography 

IV 

134 

134 

135 

137 

138 

139 

139 

139 

140 

140 

142 



Chapter 1 

Introduction 

1.1 Image Compression and Synthesis 

Image data are playing an increasingly important role in our society, primarily as a result of 

the emergence of multi-media applications and services. The evolution of a world-spanning 

network, and the ever-expanding expectations of its users with regard to multi-media in­

tegration, demand that mechanisms be found to transmit a rapidly increasing volume of 

image data more efficiently. 

To achieve data reduction , one uses either a lossless or lossy compression scheme - the 

former enables one to reconstruct the input data precisely, whereas the latter approach 

sacrifices perfect reconstruction in favour of far higher compression ratios. The gains that 

such schemes can produce are dependent on the requirements imposed by the type of data: 

text data must be compressed losslessly, and is thus only am~nable to low compression 

ratios (of the order 2:1). On the other hand, for video (or sound) data, one can employ 

lossy compression techniques since the human visual (audio) system is insensitive to the 

loss of certain kinds of information. At the most primitive level, such techniques exploit 

the correlations between neighbouring samples: much of the information used to represent 

an image is redundant , and can thus be neglected in the encoding. The gains can be be 

enormous - around 30:1 , with good reproduction, using techniques such as wavelet or 

fractal compression. For video streams the gains are even more astounding, since one now 

has a large measure of temporal redundancy - images do not change much from frame to 

1 
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frame , and this redundancy can be exploited. The current standards for image compression 

are JPEG (for still images) and \lPEG (for compression of video streams) - Section 4.1.1. 

Real-time applications. such as teleconferencing. require that both the encoding and syn­

thesis of the (image/sound ) data be accomplished quickly. To accommodate these specifica­

tions, such compression/synthesis systems arc normally implemented in hardware. However, 

even hardware cannot always produce data at an adequate rate to ensure a smoothly chang­

ing video sequence. Thus , any mechanism which could accelerate this final reconstruction 

phase would be extremely useful. The effici ency one can achieve when reconstructing com­

pressed (image) data is of great importance. In the context of this dissertation , synthesis 

efficiency is quantified by the number of di splay processor cycles required to render the 

image. It should be noted that the attainable efficiency will depend on the amount of detail 

one wishes to maintain in the reconstructed image. For example, if only a crude image 

approximation is required for , say, identification purposes, then much of the detail may be 

discarded and rendering time will be accordingly reduced. In addition , this 'efficiency' mea­

sure does not take account of the time needed to compute the information required by the 

display processor - it only considers the time required to render the image. However, since 

the required information (inverse transform data) can be computed quickly using optimized 

convolution hardware, this is not a serious objection. 

'Standard' image synthesis hardware computes each pixel value explicitly before generat­

ing instructions to illuminate the corresponding screen locations. The complete system 

proposed in this dissertation consists of two phases 

• wavelet compression (at the encoder) 

• adaptive image synthesis (at the decoder) 

The former ensures that the amount data required to represent an image is significantly 

smaller than that present in the input image, while the latter provides an efficient means to 

reconstruct the transmitted image. To facilitate image synthesis on the Difference Engine 

(See Section 1.3.1), the input image is taken to lie in the space of polynomial spline ap­

proximations. In fact , the framework within which the synthesis algorithms are developed 

- spline multi-resolution analysis - lends itself to the implementation of the compres­

sion phase as well , since the analysis provides the wavelet representation upon which the 

compression algorithms operate. 
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1.2 Wavelet Image Coding and Multi-Resolution Analysis 

Multi-resolution analysis (MRA) provides a means of investigating an image with differing 

degrees of precision. A low resolution image is one which has a slowly varying intensity 

profile, while a high resolution image exhibits considerably more variation in its inten­

sity values. The analysis decomposes an image by subjecting it to a variety of filtering 

operations; each of the resulting sub-bands contains information about the image at the 

specified resolution. There are two kinds of images in such a decomposition: approxima­

tion and difference images. The former are low-pass filtered versions of the input, and 

a consequently less 'detailed' . The difference images are obtained by simply differencing 

consecutive approximation images. The complete representation consists of the lowest res­

olution approximation and the sequence of difference images which may be added to this 

image to reconstruct the input. 

Such an analysis can tell one important things about the image, such as the location and 

strength of dominant edges or the orientation of such edges. 

The approximation and detail spaces (in which these images reside) are spanned by 'scaling 

functions' and 'wavelets' , respectively. These kernel functions are scaled and translated to 

produce resolution-dependent bases. The basis coefficients describing the MRA may be used 

as an alternative representation - they are obtained through the wavelet transform. The 

wavelet transform produces a sparse representation, in that many of the basis coefficients are 

zero or close to zero. Consequently, such a transformation may be used for data compression. 

1.3 Adaptive Multi-Resolution Synthesis on the Difference 

Engine 

Given a compressed representation, one must rebuild the input image by means of an inverse 

transform. In terms of the representation above, this means weighting the relevant bases 

by the stored coefficients and summing the resulting functions. 
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1.3.1 The Difference Engine 

The 'Difference Engine:, developed at the CWI in Amsterdam, is a display processor which 

allows efficient rendering of images expressed in terms of polynomial primitives. Intensity 

data which lies on a polynomial can be rendered in a small number of processor cycles, 

by employing forward difference calculations; the time taken to perform the calculations is 

proportional to the degree of the polynomial to be interpolated but is independent of the 

length of the span. In other words, it costs the same to interpolate a thousand pixel span 

as it does to interpolate a ten pixel span. Since the processor clock runs at 90MHz and 

the difference calculations are cheap, the Difference Engine can produce pixel values at the 

line refresh rate. The Difference Engine has an accumulator to which successive (positive 

or negative) pixel values can be added before the final value is rendered. This feature is of 

vital importance in the proposed multi-resolution synthesis scheme. 

It should be noted that , while wavelet decomposition is amenable to progressive transmis­

sion, the hardware is unable to buffer scan-line information from previously rendered levels 

and so cannot perform this function at present. 

1.3.2 Image Synthesis on the Difference Engine 

The spline MRA provides an image decomposition which can be easily synthesized on the 

Difference Engine (scan-line by scan-line). However, such a direct multi-resolution synthesis 

is not efficient, since each pixel will have several levels of accumulated detail , each of which 

requires additional processor cycles to produce. The aim of the synthesis algorithms is to 

reduce the number of cycles required to render the image below that required for direct 

image rendering i.e., setting each pixel explicitly. 

To achieve this, one uses adaptive reconstruction, that is, rather than adding back each 

pixel in the detail images , only visually relevant information is used. The method presented 

in this dissertation uses a two pronged approach: 

• The wavelet detail coefficients are used to provide an indication of visual relevance. 

Large coefficients are retained (typically those preserved by the compression phase) 

and only the wavelet basis elements which these weight are used in the reconstruction. 
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• A spline merging algorithm merges redundant splines (neighbouring splines with the 

same or similar differences) into larger non-redundant spans. Since the time required 

to render a polynomial span is independen t of the span length , this is desirable since 

it is cheaper to render one span than to render several. 

Using these two methods significant gains can be achieved (as measmed by the reduction 

in rendering time). This subject is treated fully in Chapter .5. 

1.4 Second Generation Image Coding 

The wavelet transform algorithms used to compress the image use the fact that high fre­

quency noise (quantization error) is less visually disturbing than low frequency noise. How­

ever, edge information, which plays a very important role in perception, is not used to any 

benefit. This edge data can be used to provide a compact image representation ([7], [29]), 

communicating much of the visually relevant content to the viewer. Unfortunately, such a 

representation does not represent texture information well. This problem can be remedied 

by subjecting the residue (the difference between the input and the edge reconstruction) to 

wavelet coding. Since the strong edges have been removed, the wavelet representation will 

be amenable to higher compression and , providing the edge representation is compact, one 

should experience compression gains over direct wavelet coding (See Chapter 6). 

1. 5 Outline of Dissertation 

The dissertation is set out as follows: 

Chapter 2 The notation used in this dissertation is summarized in Section 2.1. The the­

ory of multi-resolution and wavelet analysis is then introduced. This work lays the 

foundation for the more specialised theory that follows. 

Chapter 3 The semi-orthogonal spline MRA is introduced and the framework established 

for subsequent difference engine manipulations. The unexpected advantages of quadratic 

over cubic splines are presented and analysed. Techniques are developed to overcome 

the difficulties which usually hamper quadratic spline implementations. A complete 
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set of boundary conditions are derived which permit perfect reconstruction and do 

not require that the image have a particular origin or size i.e., one does not have to 

pad the image to a power of two or have the origin on the zero vector. 

Chapter 4 Wavelet compression (using vector quantization) is investigated. An analysis 

of the compression results is undertaken and some suggestions are made as to how 

performance might be improved, through the use of adaptive vector quantization with 

a distortion measure better suited to the Human Visual System than the Mean-Square 

Error (MSE). 

Chapter 5 Efficient image synthesis on the difference engine is investigated. New algo­

rithms are developed which enable the DE to render images more efficiently than 

would be possible by direct synthesis alone. These algorithms are based on the 'trun­

cated' MRA generated by wavelet compression and also use the C1 continuity enforced 

by the choice of a quadratic MRA to reduce the number of instructions required to 

render each scan-line. The results obtained indicate that images with a high degree 

of smoothness are particularly suited to synthesis on the Difference Engine. 

Chapter 6 Edge extraction and edge coding are introduced in this chapter. Some prelim­

inary results on edge extraction are presented. 

Chapter 7 The results of the dissertation are summarized in this chapter. Chief amongst 

these is the effectiveness of the Difference Engine as a means of accelerating the 

reconstruction of spline wavelet compressed images. Suggestions for future extensions 

are discussed, with the intention of sparking research into the development of a more 

specialized spline rendering engine and more effective compression strategies. 

Each chapter is concluded with a summary of the most salient observations and results. 



Chapter 2 

Wavelet Theory 

The Wavelet Transform ( WT) has attracted a great deal of interest from a wide variety of 

disciplines, essentially because it is such a versatile tool for analysis - of both data and 

more abstract structures. In general. the WT produces data which is sparse in the transform 

domain in the sense that many of the transform coefficients are (relatively) small; this is 

desirable since the smallest of these coefficients may be approximated by zero and ignored in 

subsequent computations. However , this property alone could scarcely justify the interest 

surrounding the WT and indeed, this transform has some very definite advantages over 

other transform methods. 

The Fourier Transform {and its derivatives) only provide information about global spectral 

characteristics - a consequence of the sinusoidal transform kernel upon which they are 

based. Since one usually desires information about local signal features , e.g. , the location 

of a spike in a time varying signal , these transforms are of limited use in signal analysis. 

However, if the sinusoid is multiplied by a windowing function, i.e., a function which has 

localised extent or dies away very rapidly, then the transform provides a frequency analysis 

of this windowed piece of the signal , and one can then deduce the nature of local phenomena 

by examining the transform coefficients. Such a transform is known as a Short- Time Fourier 

Transform or STFT. The entire signal can be decomposed and analyzed in this fashion, the 

accuracy of our analysis depending on the size of the windowing function and the constraints 

imposed on the time-frequency window by the u ncertainty Principle: when we analyze the 

frequency spectrum of a signal with great precision, we loose the ability to accurately 

determine the location of corresponding phenomena (a spike in the signal , perhaps) in the 

7 
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time domain (and vice-versa). As the range of time/space over which we wish to consider 

the signal grows. the corresponding increase in non-local spectral information muddies our 

analysis and we can say progressively less about local signal features. The problems of 

localised signal analysis with the STFT are further exacerbated by an additional constraints 

on the time-frequency window - it must be fixed prior to the analysis , which implies that 

one must either have knowledge of the kinds of signals to be investigated (enabling one to 

choose a near optimal window for signals in this class) or risk producing spurious results, 

since the STFT will not yield accurate information for frequencies outside the frequency­

band the window was designed to analyze. 

The Wavelet Transform, on the other hand, is well suited to the analysis of signals with 

arbitrary spectra, being constructed in such a way that its time-frequency window adapts 

to the local characteristics of the signal, thus permitting the study of signals without a 

priori determination of the window. Since images generally have widely varying intensity 

characteristics, it is clear why the WT has found acceptance amongst those engaged in the 

analysis of such signals. 

In addition, the multi-resolution structure of the WT it well suited to image analysis and 

compression (see, for example, [29, 13, 15, 17, 37]). The concept of a Multi-Resolution 

Analysis (MRA} is central to much of wavelet theory- Section 2.5 discusses this subject 

at length. 

The following sections provide a simple introduction to the theory underpinning this dis­

sertation. The primary aim of this chapter is to introduce the essentials of wavelet theory 

to the non-specialist . With this in mind , Section 2.1 provides a brief explanation of the 

symbols and notation employed throughout the rest of this work. Sections 2.3 and 2.4 dis­

cuss the Wavelet Transform - the former deals with the continuous version, and the latter 

introduces the discrete form. Multi-resolution analysis (in both .the 1-D and 2-D settings) 

is covered in Section 2.5. 

Those who are familiar with the issues and concepts involved may omit this chapter. For 

the most part , I have referred only to aspects of the theory which I have actually used; 

those desiring a more extensive exposition are referred to [10, 13]. 
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2.1 Mathematical Preliminaries 

In the course of reading thi s dissertn.t ion . the rcad<'r may encounter unfamiliar mathematical 

symbols and concepts. This sect ion int roduccs the material required to understand the 

theory developed later. 

It is assumed that the reader is familiar with basic linear algebra, set theory and the concept 

of a linear or vector space. 

The following (standard ) symbols for number systems are used: 

C Complex numbers , 

N Natural numbers , 

!R Real numbers, 

Z Integers. 

The symbols 11·11 and (. , .) are used to denote norms and inner products, respectively. The 

dots represent the positions of arguments. The former is a generalized length measurement 

and the latter a generalization (to arbitrary vector spaces) of the Euclidean dot product. For 

example, if two elements of a vector space have a zero inner product, they are considered 

'orthogonal' , where orthogonality is interpreted in the most intuitively appropriate way. 

When an inner product exists on a space U, one may define a norm on the same space as 

llull2 = < u, u >, u E U. 

The following are common vector spaces which might be encountered: 

L2 (!R) The space of (measurable) square integrable functions. The concept of a measure 

is one that I shall not refer to further. For our purposes, any function which sat­

isfies J lf(xWdx < oo is contained in this space, where the integral is a Riemann 

integral. The inner product on this space is defined as (u, v) = J uvdx, where the 

overbar denotes complex conjugation. Thus , our requirement states that llull < oo for 

membership. 

f 2 (!R) The space of all square summable sequences , that is a sequence {akhez is contained 

in this space if it satisfies the criterion LkEZ lakl2 < oo. That is , it has a bounded 

norm. This space is the discrete analogue of £ 2 . 
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Cm(R) The space of all m-times continuously differentiable functions. That is , a function 

belongs to this space if its first m derivatives are continuous. C0 (R) is the space of 

continuous functions. 

Any other spaces I require will be described when they are encountered. 

The Fourier transform of an L2 function, f(x), is denoted by /(w) and is given by 

/ (w) = j e - iwx f (x) dx. 

The symbol * is used to denote both continuous and discrete convolution (one can deduce 

which easily enough ). The former is given by 

(! * g)(x) = j f(x- t )g(t)dt 

and the latter by 

u * g)(i) = L: !i-k9k. 
kEZ 

where the both the integral and sum are assumed to converge. 

The idea of a direct sum of two spaces, U, V will be used presently. If the space W is 

obtained via a direct sum then W = U ffi V = { w : w = u + v, u E U, v E V}. There is a 

subtlety here, since ffi is sometimes used to denote an orthogonal direct sum, that is , one 

is which the summand spaces are orthogonal to each other. When this is not the case, the 

symbol + will be used. 

The operation of closure adds in all the limit points of a space, thus 'closing it up'. This 

operation is usually denoted by class, where B is the set w.r.t which the closure is taken, 

that is, we take our limits in the set B. For example, if we are given a finite subset (a, b) of 

IR, then closiR(a, b)= [a, b]; the limiting points of the open interval have been included. 

The notation span{ vi : i E Z} is used to denote the span of the (basis) vectors, vi; that is, 

the space which consists of all possible linear combinations of these vectors. An alternative 

notation consists of a pair of angle brackets, thusly: < Vi : i E Z > . 

The symbol ® is used to denote a tensor product. The tensor product, U ® V, of two spaces, 

U and V, yields a new space, the elements of which are product combinations of vectors in 

the two component spaces. 
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The support of a function is the rlosurr of th e set of non-zero \·alues it assumes; for a 

sequence I will take it to mean th C' set of scqu r nre indices which have non-zero sequence 

values associated with them. If a functi on (sC'quenre ) possesses compact support , then 

(technicalities aside ) this set is of finit e ext ent (or has a finite number of members). 

To simplify summation formulae. I will oft en ignore the range subscript, it usually being 

the case that our index ranges from -oo to + x:,. Similarly, if there are no range limits on 

an integral , one may assume it is taken over t.hc entire domain. 

2.2 Time-Frequency Analysis 

When one takes the Fourier Transform of a signal , the spectral information produced pro­

vides a description of the way in which the various sinusoids which compose the signal 

contribute. While this is useful, the information which the Fourier Transform yields is 

global in nature i.e., only the global contribution of each frequency to the entire signal is 

available. Thus, any transient (and potentially important) occurrences, such as a sudden 

momentary drop in a fairly constant time-\·arying signal, will not he accurately reflected 

in the analysis performed by the FT - one might be able to infer that they occurred by 

examining the spectrum, but the location of this event will be highly indeterminate. 

The purpose of the STFT is to provide a means of extracting local spectral data, thus 

permitting a meaningful analysis of the signal. This is achieved by windowing off part of 

the signal, and performing an analysis on this segment - hence the name. This windowing 

is achieved by a so-called window function. 

Definition 2.1 A function w(t) E L 2 is called a window function if tw(t) E L 2 . This 

window function has a well defined centre, t* and radius, ~w: 

t* = llw~li2 j tiw(tWdt 

and 
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A well known example of a ST FT (wi th a Gaussian window function ) is the Gabor Trans­

fo rm, defined by 

(2. 1) 

where 

(2.2 ) 

Associated wi th such transforms is a so-called time-frequency window, which indicates the 

region in the time- frequency domain about which the transform yields information. For 

example, the Gabor window is 

1 1 
[b-.../&, b + v'a] x [w- 2.;-;;, w + 2.;-;;l· (2.3 ) 

Now, to analyze low-frequency phenomena, one would like a window which is wide in the 

time domain , since frequency is inversely proportional to period. Likewise, to effectively 

analyze high-frequency phenomena we would like a narrow time window. Unfort1mately, the 

time-frequency window is constrained by a minimum size requirement; as the time window 

narrows , the frequency window expands so as not to violate this requirement , and vice 

versa. That is, while we might be able to isolate a section of our signal with great precision, 

we are simultaneously faced with an increasing amount of frequency information which 

garbles the data we really want and mitigates the effect of our contracting time-window. 

Similarly, as the t ime-window widens, our frequency information becomes more accurate, 

but we are now faced with uncertainty as to which region of the time-window contains the 

interesting phenomena which led us to window the signal in the first place! This is the 

Uncertainty Principle; it is inviolable and places a lower limit o~ the accuracy with which 

we can investigate a signal. 

Nonetheless , provided one has knowledge of the kinds of signals which one is going to 

analyze, a good windowing function may be chosen. In particular, the Gaussian window 

of the Gabor Transform provides the optimal time-frequency trade-off for localised signal 

analysis. If the signal has widely varying spectral characteristics, however, any analysis 

provides by a STFT is going to be less than satisfactory: the window, once chosen, is 

stat ic and only suitable for analyzing a part icular type of signal. What we desire is a time­

frequency window which adapts to the underlying characteristics of the signal, becoming 
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wider in the time domain when analyzing low-frequency phenomena and contracting to 

study high-frequency phenomena. This is precisely the kind of behaviour that the time­

frequency window of the \\'a\·elet Trn.nsform exhibi ts. 

2.3 The Integral Wavelet Transform (IWT) 

The IWT is defined in terms of a special kernel function '1/J (in L2
) known as a wavelet. 

Definition 2.2 If 1/J E £2 (lR) sa lisfies the adm issibilily condition: 

J l~(w)l
2 

C..p = lwl dw < oo, (2.4) 

then 'ljJ is called a basic wavelet . 

This requirement enables us to define the Integral Wavelet Transform: 

Definition 2.3 If we are given a basic wavelet, 1/J, we may define the Integral Wavelet 

Transform, (W..pf)(b, a) , of an L 2 function f as 

I J (t-b) (W..pf)(b,a) = lal-3: f(t )'l/J -a- dt. (2.5) 

where a, bE lR and f E £ 2
. 

The overbar denotes complex conjugation. It was included for completeness - I only 

use real valued wavelets. The 'admissibility condition' is all that is required to define the 

IWT. However, one generally wishes to employ a basic wavelet which has other desirable 

properties; for example, one for which both 1/J and ~ are window functions. 

With this additional constraint, the admissibility condition implies that 

J 'lj;(t) dt = 0. (2.6) 

Consequently, 'ljJ will be localised (since it is a window function) and exhibit a certain 

measure of osscilation (Equation 2.6) -hence the name 'wavelet' (See Figure 2.1). 
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Figure 2.1: A (quadratic spline) wavelet. See Chapter 3 for details. 

The variables band a represent time (space) and frequency (scale), respectively. Because 7/J 

is localised in both time and frequency, the IWT is also localised and gives us information in 

both domains, wi thin the bounds of the Uncertainty Principle. In fact , the time-frequency 

window is 

[
w* 1 w* 1 ] 

[b +at* - a~,p, b +at*+ a~,p ] X a--;;~~ ' a+-;;~~ (2 .7) 

where w*, ~~ and t*, ~1/J are, respectively, the centres and widths of the frequency and 

time windows for the window function , 7/J (t ). If we identify :· with the frequency variable 

w, we see that the time/space window narrows for high frequency (small scale) phenomena 

(a > 0, a small) and widens for analysis of large-scale structures ( a large). Of course, the 

frequency window simultaneously dilates or contracts in accordance with the Uncertainty 

Principle (See Figure 2.2). 

Once our manipulations in the transform domain (e.g. thresholding) are complete, we wish 

to return to our original domain. This is accomplished via an inverse transform; however, 

if we permit our variables a, b to be continuous, this inverse transform involves computing 

a (n + 1) dimensional integral (if the function f has n space variables, f (x1, .. . , Xn )). The 

1-D inverse formula is 

1 jj da f (x) = C,p (W,p f )(b , a)7/Jb;a(x) a2 db. (2.8) 
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Time 

Figure 2.2: The wavelet time-frequency window. T he window provides an illustration of the time­
frequ ency localization of the IWT. When we have a low centre-frequ ency (the dots at the centres of the cell) 
the time window expands to better a nalyze these large-scale phenomena; for high centre-frequency, the time 
window narrows to provide a bet t er analysis of sma ll scale features . The window area is the same in all 
cases. 

where 1/Jb;a ( x) is defined as 

I (X- b) 1/Jb;a(x) = jaj-! 1/J - a- . (2.9) 

Since one generally only considers positive frequencies (scales ), the inverse formula may be 

modified to reflect this. One may also discretize one or the other of a and b. For details , 

see [10, pg. 60- 68]. 

2.4 The Discrete Wavelet 'fransform (DWT) 

To ensure computational efficiency, we discretize both the scale , a and the time-localization, 

b, in the following manner: a= 2-1, b = k2-1 , k , j E £:. .If we then define 

(2.10) 

we obtain 

(WvJ) (~, 2~) = j f(x){2~1j;(21x - k)}dx = (!, 1/Jj,k), (2.11) 
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Figure 2.3: Three wavelet basis elements , corresponding to 1/Jo,o(x), ¢I,2o(x) and tP-I,s(x). 
The wavelet dilation and scaling are such that II¢11L2 = 1 

where we have used inner product notation for compactness. From (2.7) we see that the 

parameter k localizes our transform about (t* + k)2-i in the time/spatial domain 1. This is 

the Discrete Wavelet Transform (DWT) of an L2 (1R) signal. Although our data is generally 

also discrete , we still employ this formalism to produce our wavelet coefficients, as is done in 

general [10, 13, 29]. This is possible since this discretized WT can be shown to be reversible 

(see below), which is all that one requires for a usable transform. Given the generality of L2 

functions, any discrete data we have may be considered as a sampled version of such function 

and we may proceed with the DWT outlined above. Since this transform is invertible, we 

can regenerate the input 'function' and hence, the original input samples. 

There is, in fact , a DWT which operates on discrete input data (see, for example, [41]); 

however, this algorithm has filter lengths which become progressively larger as the scale 

increases (it is an undecimated wavelet transform.) This implies that the filtering operations 

become progressively more expensive the further down you decompose; this is not desirable 

in most circumstances. 

In order that we may recover our original function from this sampling, we require that 

{ 1/lj,k} j,kEZ form a Riesz basis [10]. This is a less restrictive requirement than orthogonality of 

the 1/lj,k in that it permits us to construct wavelets which possess certain desirable properties 

which the latter do not. This will be expanded upon in Chapter 3. 

1 It should be noted that when 1/J is (anti- )symmetric about the origin, t• is zero. 
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Definition 2.4 Th e funct ion 1.J E /.2 (E ) grn f' rnt es a Ries:: basis if the following two prop­

erties are satisfied: 

1. the linear span < l;Jj,k: j, k E 3 > is drnsf''2 in L 2 (R). 

2. there exist positive constants A and 13. 0 < ,. \ ~ 8 < oo such that 

A II { Cj,d 11
2 £~ ~ II L I>j.k 1/Jj, k 11

2 /. ~ ~ BIJ { Cj,d 11
2

£2 (2.12 ) 
J k 

If 1p generates a Riesz basis. then there is a nn iqne Riesz basis { 1/!J,.l.: } which is dual to { 1/!j,k } 

i.e. 

(2.13) 

where Djk is the Kronecker Delta, being one when its indices are the same and zero otherwise. 

Every f E L2 then has the uniqnc series expansion : 

f(x ) = L (!, 1/!j,k ) 1/! j,.l.:(x ). 
j,k 

(2.14) 

If, in addition , there is a function ;j; E L2 which generates the dual basis in the same fashion 

that 'lj; generates the Riesz basis {1/!j,k}, then we may also expand f(x ) as follows: 

~ 'k f (x) = L.(f, 'ljil• ) 1/!j,.l.:(x). (2.15) 
j,k 

Formulae (2.14) and (2.15 ) are inverse transform formulae. These formulae relate the trans­

form coefficients to the original function . Property (2.13) is called the hi-orthogonality 

property and is satisfied by all wavelets . If a wavelet is orthogonal it satisfies 

(2 .16) 

That is , orthogonal wavelets are self-dual, having 'lj; = 1/J. Thus , when one deals with 

orthogonal wavelets, the added complexity of having a dual present is avoided. A wavelet 

which is orthogonal only between scales (frequencies) is called a semi-orthogonal wavelet; 

this is formalized as follows: 

{'1/Jj,k. '1/JL,m) = 0. j -=/= l ; j , k , l , mE Z. (2.17) 

2That is , one can approximate any L 2 function to arbitrary precision by taking an appropriately defined 
linear combination of these basis functions . 
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Properties Wavelet Classes 
Orthogonal Semi-orthog Bi-orthog 

Dual? self-dual yes yes 
Compact support ? wavelet only wavelet wavelet and dual 
Symmetry? no yes yes 
Sequences? finite truncated finite 

Table 2.1: Some comparisons between the three major classes of wavelet. Only orthogonal 
wavelets do not possess a separate Dual Wavelet. If the wavelet or dual has compact support, we can achieve 
perfect reconstruction ; otherwise we must truncate when we implement. Symmetry is important to reduce 
distortion wh en we reconstruct. Orthogonal wavelets are orthogonal between scales and , within a particular 
scale, to their translates; semi-orthogonal wavelets are orthogonal between scales only; hi-orthogonal wavelets 
are not rest ricted by any orthogonality constraints save the hi-orthogonality relation , Equation (2.13). 

Table 2.1 provides a summary of the properties possessed by these three wavelet classes. 

In some cases , all that one requires is that the reconstruction be stable, in the sense that 

small changes in the DWT coefficients do not lead to large changes in the reconstruction. 

If this is true, then one need only insist that the '1/Jj,k constitute a frame of £ 2 (1R). This is 

a weaker condition than requiring that they form a Riesz basis, and as suc.h the resulting 

'1/Jj,k may not possess certain properties (such as linear independence) which some wavelet 

algorithms require. However , since every Riesz basis is also a frame , any nice properties 

which frames possess , are automatically assumed by Riesz bases. 

The DWT as outlined above, requires that one generate coefficients for each scale, j. Since 

the number of scales is infinite, the transform has to be reworked to enable perfect re­

construction when we perform practical calculations. This remodeling is achieved by con­

sidering the multi-resolution nature of the transform; I will return to this question after 

clarifying the ideas behind a multi-resolution analysis. 

2.5 Wavelets and Multi-Resolution Analysis 

The concept of a Multi-Resolution Analysis (MRA) is of fundamental importance to wavelet 

theory. As the name implies , the notion of resolution occupies a central role: the analysis 

decomposes a signal into components of differing frequency. What does one mean by reso­

lution? Intuitively, resolution serves to quantify the amount of permissable variation in a 

region. Thus, a high resolution image has a large amount of variation (detail) in a region, 

whereas a low resolution image is much smoother over this same region. Fourier Analysis 
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also provides a description of reso lntion: th r frequency components of a signal provide a 

measure of the contribution of rach ( sp::u i;tl ) fr rqnency component. Fine detail corresponds 

to high-frequency information: t bus. a high-reso lution signal will contain a large proportion 

high frequency sinusoids. Removing some of thi s detail i.e. , leaving out some of the sinusoids 

leaves us with a 'lower' resolution. smoot her. signal. 

These ideas are formalized below. Since we wish to present as simple an introduction 

as possible, we first consider 1-D signals before generalizing to 2-D Signals. This also 

appropriate when one considers the manner in which our 2-D MRA is generated - see 

Section 2.5.3. 

2.5.1 Wavelet Series and Decompositions 

In the previous section we saw that every wavelet '1/J generates a wavelet decomposition of 

f(x ) E L2 (1R), viz. 

f(x ) = L Cj,k'l/Jj,k(x), 
j,k 

(2.18) 

where the coefficients of the wavelet basis are are given by the IWT with respect to 'lj;. If 

we define the subspaces Wj = c.losL~span { 'l/Jj,k: k E Z} , that is, define scale subspaces or 

frequency bands, Wj, then we may write 

• 
L 2 (!R) = Lwi =. · · +w-t+Wa+w1+ · · · 

j 

That is, every f (x) E L 2 (1R) has a direct sum decomposition: 

f(x ) = · · · 9-1 (x) + go(x) + 91 (x) + · · ·, 

with 9i E Wj, for all j E Z. 

(2.19) 

(2.20) 

If 'lj; is an orthogonal (or semi-orthogonal) wavelet, we have (g1, gj) = 0, j i= l where 

9k E Wk; that is, the subspaces Wj are mutually orthogonal, written as Wi l. Wj, i i= j. 
Then the direct sum in (2.19) becomes an orthogonal direct sum which is written in a similar 

manner, 

L 2(1R) = EB Wj = ... EB W-1 EB Wo EB w1 EB .... 
j 

(2.21) 
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Both orthogonal and semi-orthogonal wavelets generate such orthogonal decompositions 

of L2 (:R) (in both cases the wavelet basis is orthogonal across scales and hence the scale 

subspaces arc mutually orthogonal). 

One may now define so-called approximation spaces, Vj, which contain the jth resolution 

approximations of function in L2 (1R), in terms of our detail spaces, Wj as follows: 

(2.22) 

Approximation functions in a lower resolution subspace have had their higher (spatial) 

frequency components removed during the approximation operation and are consequently 

less detailed (they have been smoothed). 

These definitions ensures that the following properties hold when we have a valid wavelet 

[10, pg. 120- 121]: 

1. · · · c v_J c Vo c V1 c · · ·; 

3. nj VJ = {o}; 

5. f(x) E Vj ~ j(2x) E VJ+l • j E Z. 

Property 1 tells us that an approximation function at a specified resolution is also con­

tained in all higher resolution approximation spaces. This approximation may be viewed 

as an input function which does not possess intrinsic detail at a higher resolution. Thus, 

the approximation operation projects this function into all the higher resolution spaces, 

'stripping off' non-existent detail in the process. 

Property 2 states that by combining a sufficient number of detail signals (elements of the 

detail spaces) we can approximate our input function to arbitrary precision. The set union 

provides us with all the detail spaces and we then sum the appropriate difference signals from 

each, taking as many as we need to achieve a prescribed accuracy. The closure operation 

ensures that we can generate all of L2 (1R), since the procedure of adding detail levels only 

allows one to approach the input signal, and hence we need to include the limit functions 

as well. 
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Property 3 is essentially the im·erse of Property 2. since it strips away detail rather than 

adding it. As we consider more of the ;t.pproximat ion spaces. the set intersection becomes 

smaller and smaller. hence the amount of clet;t.i] we can produce becomes progressively less 

(having fewer subspaces to synt hesize our function from ). In the limit. when we take the 

intersection of all the Vj (and this includes those with near infinitely low resolution ), we are 

left with no detail at all. That is. a signal which corresponds to the zero function , possessing 

no energy and, consequently, no information . 

Property 4 encapsulates t he essence of a ,\IRA: an approximation function is the sum of 

a lower-resolution (smoothed ) approximation and the detail difference between them. The 

former resides in the approximation space, Vj, and the latter in the detail space, Wj. The 

formula itself follows immediately from Equation (2.22 ). 

Property 5 tells us that a func t ion which resides in a particular approximation space , Vj , 

also resides in the higher resolution approximation space, Vj+t, but scaled in such a manner 

that it now reflects the resolution of the latter space. The factor of two is a consequence of 

our dyadic resolution specification (i. e. resolution = 2j ). 

2.5.2 Multi-Resolution Analysis of 1-D Signals 

Just as the subspaces Wj are generated by the wavelet 'lj;, it may be possible to find a single 

function¢ which generates a Riesz basis {¢j,.d of Vj, where {¢j,k} is defined in an analogous 

manner to {'1/Jj,k}· If this is possible we have a Multi-Resolution Analysis of L2 (!R.), satisfying 

the properties listed above. 

Definition 2.5 A function ¢ E L 2 (1R), called the scaling function , is said to generate a 

MRA if it generates a nested sequence of closed subspaces Vj which satisfy Properties 1,2,3 

and 5 of Section 2. 5.1 , where 

and { ¢o,k} forms a Riesz basis of Vo. 

This definition emphasizes an important subtlety involved in the construction of a MRA: 

the scaling function is assumed to have an identity which is independent from the existence 
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Figure 2.4: An example of a 1-D MRA. The top-most signal represents our input (taken from the 
space Vo). Each subsequent (lower) resolution tier consists of an approximation signal (left) and a detail 
signal (right). The detail signal for a particular level is obtained by differencing the current and previous 
approximation signals. 
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of a wavelet. Indeed. Equation (2.26) shows that the wavelet is dependent on our choice 

of scaling func t ion. One has to decide, based on the particular needs of one's application, 

which sequence {p} will describe the scaling function. For example, the choice of a binomial 

filt ering kernel produces a spline scaling function; the sequence {q} may then be deduced 

from additional constraints enforced by the user as well as those imposed by the choice of 

{p}. 

The detail spaces, WJ, referred to above, constitute additional (useful) structure which is 

imposed on the MRA; the aim is then to find a wavelet which will generate the bases to 

construct these spaces. One can always define these complement spaces; hence , Property 4, 

while not explicitly required for a MRA, is always assumed to hold. 

It is worthwhile mentioning here that the alternative wavelet-MRA convention has its nested 

subspaces defined such that those with higher indices are nested in those with lower indices, 

that is, Vj c VJ-l· Naturally, the other properties must be appropriately adjusted to reflect 

this; for example, the scale parameter j is replaced with -j in the expansion of '1/Jj,k(x). For 

details on this formalism the reader is referred to [13]. 

Given that our subspaces {Vj} and {Wj} are generated by a scaling function and wavelet, 

respectively, we wish to utilise the structure of a MRA to find an algorithm for efficient 

calculation of our different resolution approximations. From Property 2 in the list above, 

we are able to approximate our initial function f(x) as closely as desired by considering its 

projection, JN , into a subspace VN with sufficient detail for our purposes (we usually take 

this to be V0 ) . Then, by Property 4, this function is expressible as the direct sum of the 

next lower resolution approximation and the detail difference between them: 

(2.23) 

After M iterations of this decomposition, we obtain: 

fN = 9N-1 + 9N-2 + ... + 9N-M + fN-M· (2.24) 

We are free to proceed further , but after a point this becomes meaningless since the useful in­

formational content of the lowest resolution signal may be nil. Equation (2.24) expresses the 

fact that our Nth level approximation consists of a low resolution (smoothed) approxima­

tion and a series of different resolution detail functions. Using this decomposition strategy 

one is able to derive a means of calculating the basis coefficients of both the smoothed 
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and detail spaces without explicitly referring to 0ither the wa\·elet or the scaling function 

(details in [29] and [ 10. pg. 1.57 - 159]). 

Since ¢ E Vo and 7/J E Wo are in \ ·~ (by Propcrt ies L and 4) and this space has basis 

there are two sequences {pk} and { qk} E {2 such that 

¢(x) L Pk¢(2x- k ); 
k 

'lj;(x ) - Lqk¢(2x-k ); VxER 
k 

(2.25) 

(2.26) 

These formulae are known as two-scale relations (of the scaling function and wavelet, re­

spectively), since they relate the functions 1/J ( x ), ¢( x) to the scaled translates of the scaling 

function, ¢(x). Furthermore, since both ¢(2x ) and all its translates are in V1 (they are the 

unweighted basis elements) and V1 = V0--t-W0 , one is able to derive the following relationship 

[10, pg. 142- 143, 157]: 

¢(2x -l) = L[aL-2k¢(x- k) + bt-2k¢(x- k)], l E Z 
k 

(2.27) 

where the sequences are also in e2 [10]. This relation is called the decomposition relation of 'lj; 

and¢. Given these four sequences , one is able to formulate decomposition and reconstruction 

algorithms for the detail and approximation coefficients. These algorithms provide a means 

of implementing the DWT. 

Since fi E Vj and 9i E Wj, we have the following series representations: 

(2.28) 

(2.29) 

where the normalization factor 2j/2 has been included in the sequence. The superscript in 

the sequence represents the resolution level - it is not an exponent. In particular, using 

Equation (2.24): 

J(x) = fo(x) - 9-1 (x) + · · · + 9-J(x ) + f-J(x) (2.30) 

L dk' 11P-I,k(x ) + · · · + L dk'1 ¢-J,k(x) + L ck'1 <P-J,k(x). (2.31) 
k k k 
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Thus , given the sequences {df , j = 1, .. . , J, k E Z} and {c£, k E Z}, we can reconstruct 

our input function , by expanding (2.31). 

The sequence { d~hEz corresponds directly to the wavelet coefficients generated by the DWT 

(taken w.r.t. the dual wavelet ); the coefficients {c{hEz encode the information contained in 

the wavelet coefficients for the resolution levels we do not wish to evaluate. These coefficients 

are formally obtained (for the wavelet series expanded in terms of 'l/lj,k) as cfc =< J, J;j,k >, 
- -

where </Jj,k is generated from a unique dual scaling function, ¢, which satisfies the relationship 

< J;j,k. '1/Jj,L >= 0; j, k , l E Z [10, pg. 154] . However, I do not use this approach explicitly: 

rather than computing integrals, one employs the algorithms introduced in [29] to produce 

the desired transform coefficients. 

The decompos ition algorithm is given by: 

q- 1 
= L a1-2kc{; 

l 

d{-l = I: b1-2kcf. 
I 

(2.32) 

(2.33) 

That is , given the basis coefficients of a smoothed function on resolution level j, we can 

use this algorithm to find the approximation and detail detail coefficients, { c{} and { d{} 

respectively, for all successive lower resolution levels. When using this scheme to implement 

the DWT, one decompose from level 0 to a particular level, J, keeping all the wavelet (detail) 

coefficients and discarding all but the last tier of approximation coefficients. This provides 

all the information we require to reconstruct our input function. This reconstruction is 

performed by means of the following reconstruction algorithm: 

(2.34) 

Both these algorithms can be recast as convolutions. Equation (2.32) in the decomposition 

algorithm can be considered as the downsampled (discrete) conv9lution of {a-k} and {c{}. 

The second equation may be viewed similarly (See Figure 2.5). One can show that {ak} 

acts as the impulse response of a low-pass filter , while {bk} acts as the impulse response 

of a band-pass filter3 . The filter { ak} corresponds to a discrete version of the dual scaling 

function , whereas the filter {bk} may be considered as the discrete analogue of the dual 

wavelet. 
3 Band-pass, because the detail coefficients represent difference information in particular frequency bands. 
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Iligh Pass Filter 
b 

Input Level I Detail 

h 
Level2 Detail 

b 
Low Pass Filter Level 3 Detail 

b 
Level 3 Approx 

Figure 2.5: The decomposition process. The diagram represents the filtering steps that are involved 
in the decomposition process. Each box corresponds to a convolution with the time-reversal of indicated 
sequence i.e., { a_k}. The arrows indicat e that the output from each stage is decimated (that is, only even 
numbered samples are kept). The low-pass co mponent is then fed back into the filter bank and the process 
is repeated . 

The reconstruction algorithm performs a convolut ion between its sequences only after up­

sampling the detail and smoothing coefficients, i.e. , zeros are placed between consecutive 

coefficient values (Figure 2.6). As in the previous case, the filters may also be considered 

as discrete versions of continuous counterparts: {pk} corresponds to the scaling function, 

and {qk} corresponds to the wavelet . The former is a low-pass filter , whereas the latter is 

band-pass in nature. This convolutional interpretation means that one can implement these 

schemes effectively in hardware using FFT-based algorithms. 

2.5.3 Multi-Resolution Analysis of 2-D Signals 

Since we wish to apply these techniques to images , we have to extend the previous results 

to 2-D. There are different methods which one can employ in this generalization. One may, 

for example, attempt to find a 2-D scaling function , <l> (x, y), which generates a 2-D MRA, 

Vj which satisfies all the appropriate analogues to our 1-D scheme [13, pg. 317-318] . This 

approach provides us with one 2-D wavelet , w(x, y); however, the extra degree of freedom 

that 2-D space provides us enables us to have several wavelets underlying our detail spaces, 

as the next paragraph illustrates . 

However, the most popular method for constructing a MRA of £2 (1l~_2), is to define the 

space V j as the tensor product of the space \!j with itself [13]. Then V j induces aMRA of 
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Low Pass Filter 
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·I {p} 
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b ·I {q) 
Level 3 Detail 

High Pass Filler 

b {q} ·I Level 2 Detail 
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Level I Detail 

...._ __ ___,~Output 
----------------l·l {q} I t 

Figure 2.6: The reconstruction process. To reconstruct the approximation coefficients for a particular 
level from the D\NT representation , one again uses a convolutional scheme. Now however, the input sequences 
to each stage are upsamplcd and the outputs are added together. This process is repeated until all the detail 
tiers have been used . 

L2(!R_2) : Vj c Vj+l with the properties we discussed before and a scaling function 

Defining Wj to be the orthogonal complement4 of Vj in VJ+1 then gives us: 

= VJ+l 0 Vi+l 

(Vj EB Wj) 0 (Vj EB Wj) 

(Vj 0 Vj) EB [(Wj 0 Vj) EB (Vj 0 Wj) EB (Wi 0 Wj)] 

Vi EB Wj. 

So the complementary subspace Wi consists of three pieces, with Riesz Bases, 

1/Jj,m(X )</Ji,n(Y)' 

</Ji,m(X )1/Jj,n(Y ), 

1/Jj,m( X )1/Jj,n(Y)' 

for 

for 

for 

(Wi 0 Vj); 

(Vj 0 Wi); 

(Wi 0 Wj) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

These three detail spaces contain the detail lost between two consecutive resolution approx­

imations. In fact , each space contains the sharp variation (high frequency) information of 

the previous approximation in a particular direction5 

4 We will use EB rather than+ since this is appropriate for the spline-based MRA we will consider shortly. 
5 ljl(x) and <P(x) may be viewed as the impulse responses of a band- and low-pass filter, respectively. The 

parameter j produces scaled filters , whereas k allows these filters to pick out localised detail information 
about (t* + k)Tj. 
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Figure 2. 7: The first four approximation images in our quadratic Multi-Resolution structure. 
The resolution decreases clockwise from top left. 

Equation (2.37) gives the basis for the detail space which detects (represents) sharp vari­

ations in our 2-D detail signal which are orientated in the x-direction, i.e. vertical edges. 

Similarly, the basis given by (2.38) will represent edges in the horizontal direction. Equa­

tion (2.39) is the basis for the detail space which detects diagonal edges. We now define 

three 2-D wavelets as follows , 

w[ll(x,y) 

w[2l(x, y) 

w [3l(x, y) 

¢(x)7j;(y) 

7j;(x)¢(y) 

7j;(x)7j;(y). 

(2.40) 

(2.41) 

(2.42) 

Th {,y, [i] ( ) - 2j,y,[i] (2j 2j )· . - 1 2 3· '77} . Ri b . £ en ~ j;m,n x, y = ~m,n x- m, y- n , 1, - , , , m , n E /U IS a esz as1s or 

Wj; when we allow the scale parameter j to vary over all integers this basis is then a basis 

for L2 (~). As in the 1-D case, we can also find a dual basis , q,t lm,n which satisfies the 



CHAPTER 2. WAVELET THEORY 29 

Figure 2.8: Third level detail images. These images illustrate the directional sensitivity of the Wavelet 
Transform. It decomposes the detail lost between consecutive levels into images which contain the detail 
information in the horizontal (top left), vertical (top right{ and diagonal (bottom) directions. The bases 
underlying these images are (respectively) the wavelets llt[2 (x, y), llt[tl(x, y) and llt[3l(x, y) - cf. Equations 
(2.40, 2.41,2.42). 

hi-orthogonality relationship 

(,T, [m] ~[n] ) _ J: J: J: .. J: 
'i!' k;i,p' l;j,q - UmnUklUtJUpq· (2.43) 

In our analysis, we will use a 2-D L2 function, I(x, y), to represent the intensity profile 

of our image, on the understanding that the lattice of points Z x Z contains our image 

description. We will thus manipulate the image as if it were in 'L2 (~), until we wish to 

produce output; at such time we will sample I(x, y) on this integer lattice to produce our 

pixel values. As explained earlier, the DWT which is generally employed is defined for L2 (1R) 

functions, rather than a discrete data set. Thus, the introduction of an image function, 

while apparently out of place in a discrete digital scenario, is in fact quite standard: no 

mathematical rigour has been sacrificed. Furthermore, the issue of efficient computation of 



CHAPTER 2. WAVELET THEORY 30 

the transform coefficients has already been dealt with: the decomposition and reconstruction 

algorithms ensure that we do not have to compute integrals at all. I will return to these 

considerations in the next chapter, in which a full discussion of the spline-wavelet scheme 

employed will be undertaken. 

The kth resolution approximation of our image. l(x , y) , is given by 

h(x, y) = :~::::Ct<Pk;i,j(x , y). (2.44) 
l,J 

This relationship has the same form as the 1-D case - a consequence of the tensor product 

technique used to generate the 2-D MRA. Similarly, just as we did in 1-D, we may write 

h+l (x , y) = h(x, y) + 9k(x , y). (2.45) 

where 9k(x, y) encodes the detail lost between resolutions k and k + 1 and is given by 

3 

9k(x , y) = L dk~1w~L (2.46) 
i,j,p=l 

The 2-D decomposition algorithm is a simple extension from the 1-D algorithm; the same 

sequences are used, but now they occur in product combinations. 

(2.47) 
m n 

(2.48) 
m n 

(2.49) 
m n 

d j-1 "'"'b b _i 3k1 = ~ ~ m-2k n-2lL"tnn· (2.50) 
m n 

As with the decomposition algorithm, the 2-D reconstruction algorithm employs the same 

sequences as its 1-D counterpart: 

. 1 
I:z I:P Pk-2lPm-2pcf; + 
I:1 l:pPk-2lqm-2pdi{;l + 
I:1 L:p qk-2lPm-2pd2f;

1 + 
"' "' d j-1 L...tl L...tp qk-2lqm-2p 3lp · (2.51) 

Once again, a convolutional interpretation can be attached to these formulae; however, 

these 2-D convolutions are separable and can thus be implemented by successive horizontal 
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and vertical filtering operations with two 1-D filters - a far more economical approach. 

Our decomposition algorithm proceeds by filtering the 2-D coefficient matrix, {cij}, along 

each of its rows , downsampling each in turn, and then repeating this procedure (with the 

second filter ) on the resulting columns. The reconstruction algorithm differs in that the 

input 2-D sequence (the detail and approximation coefficients) are first upsampled before 

the convolutions are applied. 

Given the input approximation coefficients, one can decompose and reconstruct as desired; 

the only time we must explicitly concern ourselves with function evaluations is when we 

wish to compute our difference or approximation images. The former are computed via 

Equation (2.46), and the latter with Equation (2.44). The means of determining the input 

coefficients, {c?), will be dealt with in the next chapter. 

2.6 Concluding Remarks 

Having read this chapter , the reader should now have a working knowledge of the Wavelet 

Transform and a good understanding of the relationship between this transform and multi­

resolution analysis. The reason for choosing the WT over a STFT should be apparent: it 

provides a better analysis of general signals. In addition, the transform can be described 

by a series of convolutions, making it suitable for hardware implementation. 

The 2-D wavelet scheme is a simple generalization from 1-D and is constructed by means of 

tensor products. This construction adds a new element, which was absent in one dimension: 

directional sensitivity. That is, the (separable) filters which characterize the 2-D Wavelet 

Transform, are oriented: they only pass information which is oriented in the same manner 

that they are. This aspect is useful in image analysis, where one might very well wish 

to extract features which have a particular orientation. The wavelet MRA is a sub-band 

filtering scheme, hence the directional sub-band interpretation of human visual processing 

which is associated with these schemes [28, 15] is applicable. These issues will be discussed 

in great depth when we deal with the WT in the context of an image compression scheme. 

However, before doing this, we must negotiate a little more theory, viz. that of the semi­

orthogonal spline MRA. 



Chapter 3 

A Spline-Based Multi-Resolution 

Analysis 

The previous chapter introduced the general theory of multi-resolution analyses - the 

function of the following sections is to fix the particular MRA upon which the image com­

pression/synthesis algorithms which follow are based. I shall be using a spline-based semi­

orthogonal MRA, independently developed by Chui [10] and Unser [48] . This MRA has a 

number of desirable features: 

• It provides a wavelet and scaling function with compact support; 

• Closed form or non-iterative expressions are available for all the formulae employed 

(compare this with the orthogonal scheme of Daubechies, [13] - where the scaling 

function is obtained as the limit of an iterative process); 

• Both the scaling function and the wavelet, as well as their duals, possess either linear 

of generalized linear phase. This property, a consequence of the symmetry possessed 

by these functions , is also reflected in the decomposition and reconstruction filters. If 

a filter has (generalized) linear phase then distortions in the input sequence (perhaps 

from thresholding or rounding errors) are not unduly magnified by the filtering op­

eration. If a wavelet is orthogonal and has compact support it cannot possess linear 

phase [10] (the exception being the Haar wavelet, which does not provide a window 

function and is consequently not well suited to signal analysis). 

32 
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• Fast and effici ent algori t hms exi st to comput e the values of the sequences required. 

For example, one can usc so-railed l. in rar Pascal Triangular Algorithms (LPTA 's) 

to compute the values of the reconstntction sequences rapidly. Furthermore, the 

symmetry of the sequences implies that one need only compute a subset of all the 

coefficients. 

• The symmetry of the sequences means that one can use simple symmetric boundary 

conditions. 

The are, of course, some drawbacks associated with this approach: 

• Separate, non-orthogonal dual func t ions exist; 

• These dual func t ions have infinite support and , consequently, so do the decomposition 

sequences {ak} and {bk} . They are infini te impulse response (IIR) filters. 

The latter point implies that these infinite sequences have to be truncated before implemen­

tation - this is , in fact , what I have done. An alternative approach, which does not involve 

explicit truncation, was proposed by Unser in [48]: rather than truncating the sequences 

directly, one decomposes the inverse filter components of these sequences (which are respon­

sible for their having an IIR) into a pair of recursive filters which can be implemented with 

very few arithmetic operations. The stopping condition on the recursion implicitly encodes 

the sequence truncation. The details of this approach are given in [47]. 

The final decision as to which MRA scheme one should employ will ultimately depend 

on the nature of the applicat ion involved. An important consideration was the fact that 

the above scheme was based on polynomials. The hardware implementation underlying 

the synthesis algorithms discussed later, achieves optimal performance when reconstructing 

polynomials; hence, any scheme based on polynomials is highly desirable. While there are 

orthogonal schemes (such as that of Le Marie, used in [29]) which are also spline-based, the 

wavelet no longer possesses compact support. This , in turn , implies that the underlying 

decomposition and synthesis filters are IIR fil ters and must consequently be truncated. 

In contrast, the semi-orthogonal spline approach out lined below, only requires that the 

decomposition filters be truncated. The decomposition sequences for both methods decay 

exponentially and consequent ly induce similar errors upon truncation. The reconstruction 
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filters are very short FIR filters. This implies that reconstmction is very fast with the latter 

method, which is desirable when retrieving and reconstructing an encoded image. 

Furthermore, since wavelet compression involves extensive quantization of wavelet coeffi­

cients, the linear phase characteristics of the spline filters is very useful. 

The following sections are intended to provide fairly extensive coverage of the issues sur­

rounding this spline MRA, particularly those concerning implementation. Section 3.1 and 

Section 3.2 provide the theory one needs to utilize the spline MRA as well as sketching the 

derivation processes employed to obtain the decomposition and reconstruction sequences. 

The issue of boundary conditions is extensively addressed in Section 3.3. A brief comparison 

between cubic and quadratic spline schemes is then given in Section 3.4. Finally, the means 

of producing the initial input approximation coefficients is discussed (Section 3.5). 

3.1 Cardinal Splines 

A (polynomial) spline curve consists of polynomial segments which are pieced together at 

knot-points with a pre-defined level of continuity. 

One normally requires that they have at least C 1 continuity, that is, that the tangent does 

not change abruptly when one moves across segment boundaries. Of course, the degree of the 

polynomial determines the maximum permissible smoothness across a knot-point: a linear 

spline curve cannot possess more than simple continuity across a join. Spline curves are 

normally encountered in the context of data set interpolation; in this case, the knot-points 

constitute a set of pairs, {(xi, f(xi)) : i E Z,} through which the interpolant is constrained 

to pass. The intervals between the knot-points are smoothly filled by the spline curve. The 

term knot-sequence is used to mean the set of abscissas corresponding to the knot-points. 

If the knot-points are spaced at regular intervals one speaks of a cardinal spline. The 

functions which underlie the spline MRA are of this kind. The space of cardinal splines, 

Sm, contains all cardinal spline functions, of order m: 

Definition 3.1 For a positive integer m, the space Sm, of cardinal splines of order m and 

with knot-sequence Z, is the set of all functions f E cm-2 such that the restrictions off 

to any interval [k, k + 1), k E Z, are in the space of polynomials of degree at most m- 1, 

'lrm-1," that is 
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f i[k,k+ll E 7Tm-1 , J.· E 2 . ( 3.1) 

The elements of Sm are expressible as a weight ed sum of mth order cardinal B- splin es: 

(3.2) 

The mth order cardinal I3-spline is defined as 

Nm(x) = (Nm- 1 * N1 )(x) = fol Nm- l (x -l.)dt , m ~ 2, (3.3) 

where 

{ 

1 if x E [0. 1); 
N1(x) = X[o,l)(x) = . · 

0 otherwise. 
(3.4) 

The cardinal B-splines are thus generated by repeatedly convolving the unit box with itself. 

Figure 3.1 shows some of these functions . The 'central limit theorem' implies that this 

iterative process converges towards a Gaussian function. 

Cardinal B-splines satisfy the following identity, which enables one to compute their values 

without resorting to integral formulations : 

x m- x 
Nm(x) = --Nm-!(x) + --

1
Nm- l(x- 1). 

m-1 m-
(3.5) 

The following list summarizes some of the properties which B-splines possess. 

Compact Support: supp Nm = [0, m], where supp means support, 

Positivity: Nm(x) > 0, for 0 < x < m, 

Partition of Unity: l:k:::-oo Nm(X- k) = 1, for all x, 

Symmetry: Nm(r:J: + x) = Nm(r:J: - x), x E !R.. 

So, B-splines are symmetric , have compact support and are never negative in value. They 

are also easy to compute - Equation (3.5) . I will return to the computational advantages 

of cardinal spline functions when I discuss implementation of the spline multi-resolution 

analysis. 
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Figure 3.1: Spline scaling functions. The cardinal spline scaling functions are generated by repeatedly 
convolving Nl(:z:) with itself. 

3.2 Cardinal Spline MRA 

The cardinal spline spaces sm have equally spaced integer knot-points. However , if one 

defines the spaces Sj, which contain cardinal splines with knot-points 2-j Z, .J E Z, then 

we have the following relationship 

···CS1:.\cS0 cSi··· (3.6) 

since any cardinal spline curve defined on the knot-sequence 21Z is also a cardinal spline on 

the finer knot-sequence 2mz, when l > m; the converse is, however, not true. This type of 

behaviour is precisely what one requires of aMRA. However, before one can say that the 

spaces ~m = Sj constitute aMRA, one must establish whether the 'scaling function' Nm 

generates a Riesz basis for V0m. If this is the case, then the set 

is a Riesz basis for vr and we have a valid MRA, satisfying the properties given in Defi­

nition 2.5. It turns out that is is indeed so [10, pg. 87-90]. Our scaling function , Nm(x), 

must satisfy the two scale relation 
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Figure 3. 2: The reconstruction sequences {pk}. ' A' shows this sequence for the quadratic case, 
while ' 8 ' provides fo r the cubic case. T he height of t he impulse provides the magnitude of the sequence 
value at that index. Observe that these sequences have compact support and are symmetric. 

m 

Nm(x ) = L pk'Nm(2x - k ), (3 .7) 
k=O 

as explained in Chapter 2. By taking the Fourier t ransform of both sides of the equation 

and matching coefficients, this sequence is shown to be the binomial filter (Figure 3.2) . 

m { 2-m+l ( m) 
Pk = k 

0 

for 0 ~ k ~ m; 
(3.8 ) 

otherwise. 

A full characterization of the smoothing spaces , vr, generated by these scaling function is 

given by 

(3.9) 

This states that functions which are both in L 2 and satisfy the indicated continuity condition 

are elements of the jth resolut ion approximation space, provided that their restriction to 

the indicated interval shows that they are polynomials of degree at most m - 1. We see 

here, that as j becomes smaller , the intervals over which the function is required to have 

a uniform polynomial character become progressively larger. This explains the smoothed 

nature of low resolution approximations to the original function. 

Having established the structure of the approximation spaces, one must now decide on the 

nature of the detail spaces and their associated wavelets. The wavelet must satisfy two 

constraints , in addition to those imposed by the choice of Nm(x ) as our scaling function: 
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Figure 3.3: The reconstruction sequences {qk} for the quadratic ('A') and cubic ('B') cases. 
The height of the impulse provides the magnitude of the sequence value at that index. Observe that these 
sequences have compact support and are symmetric: ha.lf-sa.mple anti-symmetric for 'A' and whole-sample 
symmetric for ' 8 '. 

1. it must be orthogonal across scales and 

2. it must have compact support. 

The B-wavelet, 1/Jm(x), has support on [0 , 2m- 1] and is given by [10, pg. 178- 183] 

3m-2 

1/Jm(x) = L qk Nm(2x- k) (3.10) 
k=O 

where 

(-l)n m ( m) 
qn= 

2
m- l ~ l N2m(n +1-l), n=0, ... , 3m-2. (3.11) 

This wavelet generates Riesz bases for the detail spaces Wt, in the manner discussed in 

Chapter 2. Figure 3.2 shows the quadratic and cubic wavelets. Note that the cubic wavelet 

is symmetric, whilst the quadratic wavelet is anti-symmetric. These symmetry conditions 

ensure that the former has linear phase and the latter, generalized linear phase. For this 

reason the cubic spline scheme is normally used; however, in this case a quadratic scheme 

was preferred. The motivations for this choice are discussed in Section 3.4. 

The derivation of the decomposition sequences {akhEz and {bkhEz is somewhat more 

difficult. I will provide an outline of the derivation; those desiring more information should 

consult [10]. 
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Figure 3.4: Cardinal spline wavelets. The cubic wavelet , 7/J4(x) is symmetric , while the quadratic 
wavelet, 7/J3(x) is anti-symmetric . 

As a first step, one defines the following 'symbols ' (which are modified Z-transforms) 

( ) 1 ~ k 
p Z 2 L....Pk Z 

k 

Q(z) = ~ L qk zk (3.12) 
2 k 

where the sequences {pk} and { qk} are the two-scale sequences referred to previously. 

The matrix 

MP,Q(z) = ( P(z) Q(z ) ) 
P(-z) Q(-z ) 

is used as a hasis for the definition of two more complex functions , G(z) and H(z): 

G(z) 

H(z) -

Q(- z) 
(det Mp,q)(z) 

P( - z) 
(det Mp,q)(z) 

(3.13) 

(3.14) 

where 'det M' refers to the determinant of the matrix M. These functions are defined in 

this manner so that one may produce a simple inverse for the matrix MP,Q· In fact, 

MP,Q(z)Mb,H(z ) =I, 

M'J,H(z )MP,Q(z) =I, izi = 1. (3.15) 
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where f is the identity matrix and T represents a matrix transpose. The first of these 

equations (the only one referred t.o subsequently) is equivalent to the following pair: 

P(z) G(z) + Q(z)Ff(z) = 1, 

P(z )G( -= ) + Q(z) H ( -=) = 0, lzl = 1. 

One may also write the following , when detMp,Q i= 0 on lzl = 1 

G(z ) 

H (z) 

1" k = ? ~9kZ , 
~ k 

~ 2: hkzk. 
2 k 

where the sequences are in €1 (i.e., they are absolutely summable). 

Equations (3.16) may be restated as follows: 

P(z )[G(z ) + G( -z)] + Q(z)[H(z) + H( -z)] = 1; 

P(z)[G(z) - G( - z) ] + Q(z)[H(z)- H( -z)] = 1, lzl = 1. 

When this reformulation is coupled with Equations (3.17), one has 

P(z) 2:92kz2k +Q(z) Lh2kz2k = 1; 
k k 

P(z ) L 92k-I Z
2
k-l + Q(z) L h2k-1 Z

2
k-l = 1, lzl = 1. 

k k 

(3.16) 

(3 .17) 

(3.18) 

(3.19) 

Taking z = e-iw/2 and multiplying the first equation by¢(~) and the second by zJ;(~), one 

obtains the following relationships , 

¢(~) 
2 

¢(~ )e-iw/2 
2 

Now, the two-scale relations for the scaling and wavelet functions are given by 

¢(x) = LPk¢(2x- k) , 
k 

1/J(x) = L qk¢(2x- k). 
k 

(3.20) 

(3.21) 

Taking their Fourier transforms, yields J;(w) = P(z)J>(!f) and -J;(w) = Q(z)¢(!:f). Substitut­

ing these expressions into the above formulae and taking the inverse Fourier Transform of 
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bot h equations t hen gin•s 

2<b(2x) 

2¢(2x- l ) 

which is equivalent to 

L (92ko(.c- k) + h2kdx- k}); 
k 

L (92k - I<P(x- A·)+ h-u-- 1 ~;J(x - k) 
k 

¢(2x -l ) = ~ L (92k- iO(x - k ) + h2k- i1!J (x - k ) ), l E Z. 
2 k 

41 

(3.22 ) 

(3.23} 

since t he firs t equat ion yields the resul t for even integers and the second for odd integers, 

l (as a little algebra will show). Making t.he identification an = ~9-n and bn = ~h-n 
provides us with the decomposition relat ion referred t o in Chapter 2. The decomposition 

and reconstruction algorithms follow fairly simply (See Chui [10, pg. 158- 159]) . Details 

are given in [10, pg. 178- 183] on t he derivation of a wavelet with compact support. This 

process yields the following pair of equat ions 

Am(z) T m(1 + .:)m £2m- 1(.:~ ; 
zE2m- l (.: ) 

Bm(z) - (2m- 1)! (1 _ z)m 1 
2-m zE2m- t(z2)' 

(3.24 ) 

where Am(z) = 'Lk akz- k and Bm(z) = 'Lk akz- k. The complex function E2m-1 (z) is the 

Euler-Frobenius polynomial of order 2m- 1: 

m- 1 
E2m-l(z) = (2m- 1)! L N2m(m + k)zk+m-l. (3.25) 

k=-m + l 

The roots of the Euler-Frobenius polynomials are used to derive values for the sequences 

{ak} and {bk}· Table 3.1 provides the firs t few polynomials. The roots , )..kl are simple, 

real and negative and satisfy Aj A2m-1- j = 1. The quotient E;:_-
1
(z ) occurs (in one guise or 

another) in the both the symbols Am(z) and Bm(z) . Hence , if one can deduce the coefficients 

of the complex polynomial t his product induces, t he values of {ajhEz and {bjhEz can be 

deduced. 

That is , given the Laurent 1 series 

1 A Laurent series is a complex power series . In this context, the coefficients of this series are required to 
be absolutely sumrnable. 
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n En(:} 
1 1 
2 l+: 
3 1 + 4: + ::'.!. 
4 1 + 11:: + 11:2 + ::3 

5 1 + 26:: + 66z'.!. + 26zJ + z4 

6 1 +57::+ 302::2 + 302:3 + 57z4 + z~ 
7 L + 120: + 1191::~. + 2416zJ + 1191z4 + 120z" + : 0 

Table 3.1: Euler-Frobenius polynomials. The first seven E-F polynomials. The variable z E C 

~m-1 

.<. -"' (m)~j j~j-1 
E ( ~) - L__, Cl'.j - , - - , 

2m-! - jEZ 

(3.26) 

one must find the sequence { ak}kEz· Since the quotient referred to is not a (complex) 

polynomial when m 2: 2, this sequence has infinite support for both the cubic and quadratic 

schemes. 

In [11], the following result is derived: 

Lemma 3.1 Let m be a positive integer and Aj = >.)m), j = 1, .. . , 2m-2, be the zeroes of 

E2m-1 ( z) arranged such that 

A2m-2 < A2m-3 < · · · < )..1 < 0. 

If we write 

m-1 
z = L:a(m)zj jzj = 1, 

E2m-l(z) jEZ J ' 
(3.27) 

then 

m-1 ( )..m-2 ) . _ (m) _ k IJI · 
Cl'. J = Cl'. j - L E' ().. ) ).. k , J E z. 

k=1 2m-1 k 
(3.28) 

In addition, Cl'.j = Cl'.-j, for all m. 

With this result, one can deduce the values of the decomposition sequences: 
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{bm}• bm _ (-I )i(2m-1 )1
"' ( m ) (m ) 

k • j - 2m ~IEZ . Ql ' 
2l +2m- J- I 

To show how t.hese are produced, I will deriYc the first result; the second result is derived 

similarly. 

Am(:: ) = 2-m(l+::)m E2m-I(:: ) 
::E2m-I(::2) 

(2m- 1)! Q( -::) (::2)m-l 

2 ::2m-l £2m- I (::2 ) 

(3.29) 

(3.30) 

(3.31) 

Now, from Equations (3.12) (the factor of 1/2 has been included in the sequences for 

convenience), and the quotient discussed above, one has 

Q( -z) 
z2m-l 

(z2)m-l 

E2m-l (z2) 

L qjzj+1-2m( -1)1 and 
j 

""'"' ~-21 ~'-<l- . 

I 

Taking the products indicated above , then yields 

() ''{(2m-1)!l m I } -n Am Z = ~ ~ 2 q21+2m-n- l CXI Z ' 
n I 

(3.32) 

(3.33) 

(3.34) 

which then provides us with the sequence { a.khEz· The absolute value sign occurs be­

cause ( -l)iqj = jqil· The symmetry relations are easily deduced by substitution. The 

decompositions sequences for the quadratic case are tabulated in Figure 3.2. 

The issue of truncation error will be taken up in Section 3.4. 

The sequence { cxkhEz has further significance: it is the coefficient sequence (barring a 

multiplication) for the dual wavelet, hence the infinite support of this function. The dual 

wavelet is given by 

- (-l)m+l(2m- 1)!""' (m) (m) 
'1/Jm(x) = 

2
m-l ~ CXk L2m (2(x + m + 1- k)- 1), 

k -
(3.35) 

where L~:} (x) is the mth order derivative of the 2mth order interpolatory spline. which 

This function is defined as 
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{ad {bk} {ak} {bk} 
0 0.033978977 0.0,19781017 12 -0.008232310 0.034166241 
1 0.65.'5340376 0. ·123982818 13 -0.000934671 0.003879280 
2 0.655340376 -0.140377187 14 0.003544624 -0.014711266 
3 0.033978977 -0.900597911 15 0.000402447 -0.001670285 
4 -0.243780520 0.900597911 16 -0.001526227 0.006334313 
5 -0.025936016 0.140377187 17 -0.000173284 0.000719182 
6 0.103311291 -0.423982818 18 0.000657155 -0.002727399 
7 0.011654634 -0.049781017 19 0.000074611 -0.000309662 

8 -0.044411988 0.184116960 20 -0.000282955 0.001174351 
9 -0.005039196 0.020974988 21 -0.000032126 0.000133332 
10 0.019119634 -0.079343472 22 0.000121833 -0.00050564 6 
11 0.002170658 -0.009011510 

Table 3.2: The decomposition sequences for the case m = 3. 
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Figure 3.5: The cubic and quadratic dual wavelets. These functions have infinite support but 
decay exponentially. They also possess the same symmetry a.s their corresponding wavelets. 

L2m(x) =(2m -1)! L a~m) N2m(x + m- k). 
k 

(3.36) 

and satisfies L2m(k) = Dk,o, k E Z. Figure 3.5 shows the quadratic and cubic dual wavelets. 

3.3 Boundary Conditions 

For the wavelet transform to be usable, one must be able to ensure reversibility. This is 

achieved by paying careful attention to the boundary conditions (BCs) one imposes when 

applying the various wavelet filters - these cannot be arbitrary, but must interact in just 



CHAPTER 3. A SPLINE-BASED 1HULTI-RESOLUTION ANALYSIS 45 

the right way if our transform is to be reversible. Fortunately, since the filters all possess 

either symmetry of anti-symmetry, one can use simple symmetric boundary extensions. 

Since wavelet boundary condit ions pose many problems for implementors , I have attempted 

to make their derivation as clear as possible. Two papers which provided important insights 

were those of Brislawn [4] and Unser [48] ; the former went so far as to enumerate various 

categories of symmetric boundary conditions - but only for quadrature mirror filters , and 

the spline-wavelet transform does not constitute a quadrature mirror filter-bank. 

3.3.1 Symmetric signal extensions 

There are two major classes of signal extensions [4]: 

• those with whole-sample symmetry and 

• half-sample symmetry. 

Whole-sample sequence extensions have their centre of symmetry on a integral index, while 

those with half-sample symmetry are symmetric about a half-integer 'index' (See Figure 3.7). 

It is assumed that the sequences are extended periodically using the given boundary con­

ditions. Conceptually, one extends the sequence (using the indicated BC's) by folding it 

around the end-point and shifting the resulting sequence along tJ-te index axis, for as many 

periods as required. In practice, one uses modulo operations to map overflowing indices 

back into the range covered by the input signal. The modulo operations must be chosen 

carefully to take account of the different extension types at the end-points. Provided the 

BC's have been chosen correctly, this periodic extension ensures that we can deduce the 

correct sequence value of any index. 

Definition 3.2 The four basic sequence extensions are 

Whole-Sample Symmetric A sequence is whole-sample symmetric (WSS) about an in­

dex k if Sk-n = Sk+n , for all n. 

Whole-Sample Anti-symmetry A sequence is whole-sample anti-symmetric (WSA) about 

an index k if Sk-n = -sk+n' for all n. 



CHAPTER 3. A SPLIN E-BASED M ULTI-RESOLUTION ANALYSIS 46 

HSS wss 
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' ' 
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' ' 
' 
' ' ' ' ' 
' 

Centre of symmetry Centre of symmetry 

Figure 3.6: Symmetric extensions. The dashed line indicates the centre of symmetry. 

HSA WSA 

Point of Symmetry 

Figure 3.7: Anti-symmetric extensions. The centre of symmetry is indicated by a dashed line. 
Observe that WSA forces the sequence to assume the value zero at the point of symmetry. HSA enforces 
this zero condition at a half-sample point of symmetry i.e. , an 'index ' of the. form k + ~. k E Z . 
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Half-Sample Symmetry .-1 sequ ence is half-sample symmetric ( !ISS) about the ·index ' 

k + t if Sk - n = s~·+ l +n. for n/1 n. 

Half-Sample Anti-symmetric :1 seqll cnrc is hal f-sample symmetric (liS'S) about the 'in­

dex' k + t if Sk-n = -SJ.:+!+n· for all n . 

Observe that WSA requires that the sequence value at the index about which the extension 

takes place be zero (this will have important consequences for the quadratic spline-wavelet 

transform). 

A signal may have several points of symmetry, all with different characteristics. I only 

consider signals which have symmetry conditions imposed on their end-points- the exis­

tence (or not) of other symmetry points within the signal is of no consequence. Hence, the 

analysis will only consider the four basic types of end-point extension enumerated above. 

Suppose that one imposes a specific symmetry on a finite signal. How does the filter (which, 

we will assume, possesses symmetry of its own ) interact with this extension? That is, what 

symmetry (if any) will the resul ting signal possess? To answer this question, one must know 

how convolution responds to the presence of symmetry. 

Given a signal { sk} with symmetry described by sk = ±s1_k (one can describe any symmetry 

by this sort of constraint) and a filter {/k} which satisfies !k = ±ft-k, we have 

ak ( s * J)k 

L_±sk-nfn 
n 

- L ±sl-k+n ft- n 
n 

- L ±sl+t-k-n' f n' 

n' 

±al+t-k· (3.37) 

(3.38) 

Thus , the centre of symmetry will be at 1!t and will be either whole-sample or half-sample 

in nature depending on whether l + t is divisible by two or not. Using this relationship, 

one can enumerate the various permutations of signal/filter symmetry. The complication 

that arises when implementing the wavelet filter- bank scheme arise from the down- and 

up-sampling which occurs. This will , in general, alter the symmetry relationship, and this 
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must be taken into account when determining the BCs one is going to apply. The only cases 

I considered were those based on cubic and quadratic wavelet filters. The signal sequence 

may be of arbitrary size - it is not constrained to have a size which is a power of two, etc . 

To ensure a more convenient analysis, the sequences {af} and {/;} are used, where af = 

a'.::k and so on . Wi th this change i.e. , using these sequences in place of the unbarred 

sequences, the decomposit ion algorithm corresponds precisely to filtering by {ar'} or {~} 

followed by down-sampling. No similar adjustment is required for the {Pk'} and { qk'} 

sequences. The following symmetries hold, for an mth order cardinal spline scheme: 

Pk - P~-k 

qk' QJm-2- k 

- m - m 
ak = a-m-k 

/; ( -l )m~(3m-2) -k (3.39) 

To determine the BCs, we need only consider a one level decomposition - the procedure 

developed can be used for all subsequent levels. The goal is to ensure that one (or more) 

of t he symmetry extensions holds after filtering and down-sampling. This means that one 

has to select an appropriate input BC. It is important to realise that some input extensions 

lead to expansive transforms , that is , the number of output coefficients is greater than the 

number of input samples. This is undesirable from a compression point of view. Hence, we 

desire an input extension which will result in a non-expansive transform. 

The boundary condit ions depend on the nature of the start anc;l end indices of the input 

sequence i.e., whether they are even or odd. This also means that the input sequence need 

not start on any particular index - most schemes require that it start on index 0. The 

input BCs I chose are given in Table 3.3 and Table 3.4 and are presented in terms of the 

start and end-points of the input sequence and the type of symmetric extension required. 

The output values stated represent the new points of symmetry etc. after filtering and 

decimation. The same boundary conditions are used when decomposing for each input 

sequence. Because the same extension type is always used at both end-points for each input 

level , we are guaranteed periodic output: after down-sampling the extensions at each end­

point are likely to be different, but because of the periodic input BC's (and the particular 

choice of input extension) the output BC's continue to be periodic. 



CHAPTER 3. A SPLI:VE-B:\SED .\IL 'LT!-Rt;SOLL;TION A1\'ALYSIS t(9 

The boundary conditions for reconstruct ion ar0 simply those resulting from the previous 

level's filtering and decimation. They arc dct0rmincd by exam ining Table 3.3 or Table 3.4 

after processing each level's input sequences. These BCs must either be stored on re-created: 

I decided on the latter option. since [ wi sh to perform compression and storing unnecessary 

information would be counter-productive. To re-create the BCs, one just simulates the filter 

bank operation , without actually performing the the filtering operations - this requires very 

few calculations. This approach is in stark contrast to t he method employed when signals 

are constrained to have, say, lengths that are a power of two. In this case, one can deduce 

the necessary BCs beforehand based on the length of the input signal . Nonetheless, the 

additional freedom one obtains when using unrestricted signal sizes more than compensates 

for this minor inconvenience. 

The reconstruction process itself is as follows: 

1. retrieve BCs for signal , 

2. extend the signal using these BCs (for as many periods as desired) 

3. up-sample the signal , 

4. apply the appropriate reconstruction filter. 

Figure 3.8 illustrates these ideas with a simple partial decomposition/reconstruction exam­

ple. 

3.4 Comparison of Cubic and Quadratic Cardinal Spline 

Schemes 

The spline MRA conceived by Chui and Unser may be generated by any cardinal spline 

scaling function , Nm(x). However , for practical and theoretical purposes, some choices 

of m are undesirable. For example, when we use the unit pulse, N1(x), as our scaling 

function , the resulting wavelet , 'I/J1 = '1/JHaar , does not constitute a window function, and is 

thus unlikely to be of great use in signal analysis. The approximation signals generated by 

this MRA are piecewise constant approximations to the input function (See Figure 3.4) and 

contain very sharp transitions . When the wavelet representation is intensively quantized, the 
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Figure 3.8: Partial decomposition and reconstruction. This example illustrates the ideas referred 
to above, by working through the filtering steps for the (quadratic) decomposition filter {a,~;} and the 
reconstruction filter {p,~;} . 'A' shows the input signal and its extension (HSS, as required by Table 3.3). This 
signal is then filtered with {a.~: } (' 8 ') and down-sampled ('C'). This process would yield the approximation 
coefficients for the next level. The next three diagrams illustrate a partial reconstruction. 'D' shows how the 
stored signal is extended, with the extension it had after the decomposition phase. This extended signal is 
then up-sampled (' E' ) and finally filtered with the ' interpolative ' filter, {p.~:} ('F'). To complete the process, 
one would extract the stored detail coefficients, extend, up-sample and filter them, in a similar manner, 
before adding the two resulting signals together. 
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II II Case 1 I Case 2 I Case 3 I case 4 II 
Start (s) Even Even Odd Odd 
End (e) Even Odd Even Odd 

Ext Start (in) HSS HSS HSS HSS 
C.O.S Start (in ) s- 1/2 s - 1/2 s- 1/2 s- 1/2 
Ext End (in ) HSS HSS HSS HSS 
C.O.S End (in ) e + 1/2 e + 1/2 e + 1/2 e + 1/2 
Ext Start (out) wss wss HSS HSS 
C.O.S Start (out) s-,f s · L s~- 1/2 5~- 1/2 - ?-

Ext End (out) wss HSS wss HSS 
C.O.S End (out ) e - e 2~ + 1/2 "r eT + 1/2 - ?-

Ext Start (in ) HSS I-ISS HSS HSS 
C.O.S Start (in ) s- 1/2 s - 1/2 s -1/2 s -1/2 
Ext End (in) HSS HSS HSS HSS 
C.O.S. End (in ) e + 1/2 e + 1/2 e + 1/2 e + 1/2 
Ext start (out ) HSA HSA WSA WSA 
C.O.S. Start (out ) ST -1/2 ST -1/2 s ::J ST "'"'2 
Ext End (out) HSA WSA HSA WSA 
C.O.S End (out) ~+1/2 y 9+1/2 I_ 

Table 3.3: Quadratic Boundary Conditions. The First block provides the boundary conditions 
for input and output sequences when filtering with {~} ; the second block provides the same information 

for {ii!}. The abbreviation C.O.S stands for Centre Of Symmetry, while Ext denotes extension. Those 
conditions applying to input are qualified with (in) and those associated with output with (out) . 
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II II Case 1 I Case 2 I Case 3 I case 4 II 
Start (s) II Even Even Odd Odd 
End (e) Even Odd Even Odd 

Ext Start (in ) wss wss wss wss 
C.O.S Start (in ) s s s s 
Ext End (in) wss wss wss wss 
C.O.S End (in) e e e e 
Ext Start (out) wss wss HSS HSS 
C.O.S Start (out ) s~ s-,f 5-f -1/2 5~- 1/2 
Ext End (out ) wss HSS wss HSS 
C.O.S End (out) e~ eT + 1/2 eT eT+ 1/2 
Ext Start (in) wss wss wss wss 
C.O.S Start (in) s s s s 
Ext End (in) wss wss wss wss 
C.O.S. End (in) e e e e 
Ext Start (out) HSS HSS wss wss 
C.O.S Start (out ) y-112 Y-1/2 ~ ~ 
Ext End (out) HSS wss HSS wss 
C.O.S. End (out) e~ + 1/2 eT eT + 1/2 eT 

Table 3.4: Cubic Boundary Conditions. The First block provides the boundary conditions on input 

and output sequences when filtering with {at}, while the second provides this information for the filter {b!}. 
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Figure 3.9: Approximation in the Haar MRA. T he MRA generated by N1 (x) uses piece-wise constant 
(0-degree) polynomials to approximate functions . Unless the resolution is high, these approximations are 
unacceptably blocky. 

distortions introduced on reconstruction are likely to possess sharp boundaries , and as such 

this scheme would be unsatisfactory in the context of image compression. However, even 

MRA's which possess a higher degree of inherent smoothness may be unacceptable. While 

a high order polynomial has more degrees of freedom and is thus able to produce 'better' 

approximation signals than a lower order scheme this comes at greater computational 

expense: the wavelet and scaling function dilate and this results in longer reconstruction 

sequences and, consequently, slower signal reconstruction. Thus, one would like to strike 

a balance between smoothness and reconstruction time. The scaling function N2(x) is 

certainly preferable to the unit pulse; however , it has only zeroth order continuity- one 

would prefer at least C 1. The quadratic scaling function , N3(x) is next in line; while 

the MRA generated by this function does indeed have the requisite smoothness , there are 

certain theoretical problems which cause implementors to pass this scheme over in favour 

one based on cubic splines. 

In the spline formalism , schemes with odd order only possess generalized linear phase rather 

than linear phase. Since linear phase filters are less likely to magnify quantization errors, 

one would certainly prefer such a MRA. Nonetheless, this does not constitute a strong 

reason for dismissing the quadratic MRA - others approaches, such as Daubechies compact 

orthogonal scheme, do not possess linear or even generalized linear phase and yet they 

function more than adequately. A more serious problem is posed by the inability to generate 

a 'nice' interpolation using a quadratic spline basis. By this I mean that the quadratic-spline 
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interpolation 

I (x, y ) = L L cZ1N3(x- k)N3(y- k), 
k I 

54 

(3.40) 

is ' ill-posed' on Z x Z, in the sense that some of the data which one would require to proceed 

is not available. This is most unsatisfactory, since this is precisely the form we need to start 

the decomposition algorithm. Initially, it seemed that this problem would render the whole 

quadratic approach infeasible. Fortunately, I discovered a way to circumvent this problem, 

involving the use of a shifted multi-resolution analysis - see Section 3.5. Assuming, then, 

that one can produce such a suitable initial interpolation, why should we choose quadratics 

over cubics? 

Beyond the obvious speed gain (resulting from a decrease in reconstruction filter length), 

there is another reason. If one truncates the decomposition sequences ( { ak} and {bk}), 

the approach adopted in this work2 , then it turns out, that the quadratic filters can bear 

fiercer truncation than their cu hie counterparts. Only after careful examination of the filters 

did the reason become apparent. The decomposition filters must, not unexpectedly, obey 

certain pass-band conditions if they are to filter out the right information. It turns out [10] 

that the following conditions must hold for these filters 

Lak 1· 
' 

k 

I)k 0. (3.41) 
k 

If these conditions are not (approximately) satisfied, the filters will not function correctly 

and they will pass frequencies outside of their intended pass-band. Examination of the 

decomposition filter symmetries shows that the cubic detail filter, {bk}, possesses a whole­

sample centre of symmetry, whilst the quadratic detail filter possesses a half-sample centre of 

symmetry and is anti-symmetric. While this seems unremarkable, if one progressively takes 

fewer terms from each of these sequences, the cubic filter fails its pass-band condition much 

more rapidly than the quadratic filter, for comparative levels of truncation (See Table 3.5). 

The reason for this failure lies with the nature of the symmetries these two filters possess. 

The quadratic filter has the structure ( ... ,-a, -b, -c, c, b, a, ... ) while the cubic filter has 

2The alternative is to truncate the { cq,} sequence which generates the decomposition sequences, but the 
benefit of doing it this way is not immediately obvious. 



CHAPTER 3. A SPLINE- BASED .HCLTI-RESOL UTION ANALYSIS 55 

II #a I #b I O (l::a ) I O (l::b ) II 
Quad 26 26 10 - J 10 ·-1 

Cubic ?~ 
-1 27 10 ·'l 10 ·J 

Quad 20 20 10 · '!. 10 ·4 

Cubic 21 21 10 ·L 10 ·L 

Quad II 18 18 10 ·J 10 - 4 II 
Cubic 19 19 10 ·'!. 10 ·'l II 
Quad 16 16 10 ·L 10 · 4 

Cubic 17 17 10 ·"1. 10 ·l 

Quad II 14 14 10 · "1. 10 · 4 

Cubic II 15 15 10 ·L 10 ·"1. 

Table 3.5: Failure of band-pass conditions. The left-most two columns indicate the number of a, b 
coefficients maintained after truncation. The final two columns indicate the order of magnitude of the error 
to within which the sequences approach their band-pass conditions, Equations {3.41 ) . 

the has the structure ( ... , a, b, c, b, a, ... ). In the former case, provided one tnmcates about 

the centre of symmetry, one is guaranteed that the sum will be close to zero - because of 

the negative signs. However, in the cubic case this is not so, and at low truncations, there 

are no longer sufficient terms to (nearly) satisfy this condition. Figure 3.10 show the effect of 

this failure: the incorrectly registered frequencies add ripples to the signal. I experimented 

with the cubic filter , tweaking the trailing sequence values in the truncated filter until 

the condition was approximately satisfied and , as expected, the ripples disappeared. One 

cannot , however, apply such arbitrary sequence manipulations and still expect to get the 

correct results -modifying the filters will introduce distortions of some kind, the magnitude 

and type of this noise depending on the number of coefficients which are modified. This 

lack of robustness on the part of the cubic spline wavelet scheme has evinced surprisingly 

little comment in the literature. 

Another reason for not choosing the cubic scheme arises from the form of interpolation I 

employ - quasi-interpolation. Section 3.5 reveals a somewhat startling result: quadratic 

quasi-interpolation produces a better fit than cubic quasi-interpolation! The details are 

given in that section. 

There does not seem to be an overwhelming reason to use cubics. Indeed, the quadratic 
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Figure 3.10: Failure of the cubic filters at low truncations. 'A' gives the input data, ' B ' t he 
2nd resolution level cubic decomposition approximating the image and 'C' the reconstruction to level 2 
after decomposing with the over truncated cubic decomposition sequences. When the cubic filters are not 
over truncated, they result in a reconstruction which has these sinusoidal ripples smoothed out. Note: the 
reconstruction sequences are never truncated. 

scheme seems to offer some advantages. The use of quadratic curves has additional compu­

tational advantages beyond the obvious, directly related to our hardware platform, and will 

only become apparent once the synthesis algorithms have been discussed. This is deferred 

until Chapter 5 

3.5 Calculation of Initial Approximation Coefficients 

Before any of the algorithms referred to above can be implemented, one must produce the 

initial set of input coefficients, {c?). Some authors use the input pixel values for the 2-D se­

quence. This is perfectly acceptable if one only wishes to use the MRA coefficient sequences 

for something like image compression. However, if one wishes to compute the various ap­

proximation and detail images, as I do, then one cannot assign the input coefficients in 

this manner. Indeed, these coefficients must be chosen such that they provide the correct 

weights for the basis elements </Jj,kl which we then sum to return the values of our input 

pixel values (which are taken to lie on Z x Z, as discussed previously). The question now 
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arises as to how one obtains these coefficients, given that we do not wish to use any sort of 

integral formulation. 

We would like to 

1. construct a surface which interpolates all the pixel values and 

2. determine the expansion coefficients which describe this surface. 

So, we need to find the 2-D spline interpolant which passes through our (discrete) pixel 

data: 

L c?k<I>(l- i , m- k) = I(l , m)lxxY, l, mE Z, 
i ,kEZ 

where X x Y is the domain of our image. 

(3.42) 

This is equivalent to inverting a large (sparse) matrix and as such can be fairly expensive. An 

cheaper alternative exists, however, if one is prepared to weaken the interpolatory require­

ment. That is, rather than requiring true interpolation, one settles for quasi-interpolation, 

in which the input data may be arbitrarily closely approximated, the accuracy of the fit 

determining the computational load. 

In order that we may use a quasi-interpolant we require that the function we are inter­

polating by bounded and continuous. This does not present a problem: the image data 

is certainly bounded and our pixel values may be considered a sampling, on Z x Z, of a 

continuous image function, I(x , y). 

Definition 3.3 If a 2-D, symmetric, origin-centred piece-wise polynomial function <l>(x, y) 

satisfies the Fix-Strang conditions {9] 

1. ~(0, 0) = 1; 

2. Da~(21ri , 27rj) = 0, 0 =/= i,j E Z , jaj ~ p (p ~ ~), 

then one may define the kth order quasi-interpolant, (Qkl)(x, y), k E z+, of I E 08 (~) 

as 

(Qkl)(x, y) = L :L(.Xki)(l, m)<l>(x- l, y- m). (3.43) 
l m 
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Th e conwlul ional opr mlor ,\ 1. oprm l rs 011 thr in put lmor; r- .H'flll r nrr . / 0 (/. m ). l . m E -

and i s defin ed by 

{ ( .\,~.:/)(i ) } = (b- m + · · · + ( - I )1. m o< • • • "' m ) ,, / 0 ( i }. i E J:". 
"-..--" 

1.· ttnw.· 

wh ere 8 = Oi.J;O = I if i. j = 0. :~.nd 0 otherwise and 

m i . = { <f>(O.O ) - I 
, j <f> ( i. j ) 

for i.j = 0: 

for i.j i= 0. 

This quasi-interpolant has the following properti es: 

( 3.· 1:1 ) 

(3.:1.5 ) 

• only local data (the ext ent of which is determined by the parameter k ) is used to 

determine the values of the sequence { (/\ ,~.: /)(i.j ) } 

• any polynomial of degree p ~ 2k + L will be reproduced by this scheme 

• the sequence of operators Q,~.: converges to a true interpolation operator, Q00 , as 

k- oo; i.e. , (Qcx.J- !)(!. m ) = 0, i. mE Z. 

The Fix-Strang conditions are satisfied by the cardinal splines Nm (x ) and consequently also 

by their tensor products. To use the above scheme. we must recast it in our framework. In 

this case 

(3 .46) 

where the shift is required to centre the cardinal B-spline functions . Equation (3.43) then 

looks like 

""""'""""' m m (Qkl)(x , y) = L- L-(.\,~.:I)(l , n)Nm(x +? -l)Nm(Y + 2- n ). 
I n -

(3.47) 

What we desire is that (Qkl) (x , y ) = I 0 (x , y ) = 2:::1 Lm c?nNm(x -l)Nm(Y- m). From this 

we can see that , barring the shift in the arguments, the input approximation coefficients 

correspond to the lambda sequences. Of course. one cannot simply disregard the shift -it 

forms an integral part of the equation. If we are dealing with a scheme for which '; is an 

integer, such as the cubic (m = 4) scheme. one can apply a simple change of variable and 

include the shift in the lambda sequences indices: 



,')!) 

Quadr:u ic Case .\ lc·an St anda.rd De\·iat ion ! ~lax Error ! 
k=l 0.00 L.6!J 21 
k=2 0.0 1 O.!JO 10 

Cubic Case 
k=l 0.01 2.74 3/1 

k=2 0.00 1.79 21 

Table 3.6: The error induced b,v quasi-interpolation of our test image. T he quadratic scheme 
ensures both a lower projectio n error and a lower maximum error. The benefit of using a highe r order 
quasi-interpo lati o n is clear: e\·cn k = 2 provides a considerable gain over k = I . 

(QiJ )(x, y ) = L L P·k!)(l + ~ , m + m
2 

)Nm(X -l )Nm(Y -l ). 
I m -

(3.48 ) 

We may then make the identification: c?J = p.,kf)(i + !!f , j + ';' ). 

However, if the shift is not integraL as is the case for the quadratic scheme (m = 3), then one 

cannot do this. The question is, given our desire to use the quadratic scheme, how do we get 

around t his? I used the following approach. Since ( Qkf)(x , y) = J0(x + ';' , y +!if) , we may 

still match the coefficients , prorided that we remember that what we are now dealing with 

is a shifted version of the input image. This means that all our subsequent approximation 

images will also be shifted ; in fact. our filtering scheme will now generate the coefficients for 

our shifted detail and approximation images . .:\lonetheless, by evaluating the functions with 

a negative shift added to the arguments , we can compute values as we normally would. 

In [10], Chui derives an interest ing relationship which quantifies the interpolation error 

which arises when using a quasi-interpolant rather than a true interpolant. After a few 

algebraic manipulations, one can deduce the following [10, pg. 113- 114]: 

. 1 1 2 
max I(Qkf- lmf) (l ) ~ (maxf (l) + mm f(l )) -

2
f3:n+l. /33 = -

2 
and /34 = -

3
, 

IEZ IE Z IE£ ' 
(3.49) 

where the sequence {!khEI is bounded. 

The function (Jm!)(x ) is an mth order true interpolant i.e., it satisfies the conditions 

(Jmf)(l ) = f(l ), l E Z. This shows that the maximum quasi-interpolation error is lower 

when we use quadratics than when we employ cubics as our underlying spline. One should 

bear in mind , however, that this estimate is only valid at the integer knot-points , and 

consequently cannot b e used to infer that quadratic quasi-interpolation in globally 'better ' 
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Figure 3.11: Quasi-interpolation Error Effects. The interpolation error is biased by 128. 'A' gives 
the quadratic quasi-interpolation (k = 2) of the scan-line, ' B' the cubic interpolation (k = 2). The graph 
'C' gives the input data. Graph's 'D' and 'E' give the interpolation error for the quadratic and cubic cases, 
respectively. Observe that the interpolation error for the cubic scheme is greater than that of the quadratic 
scheme for the same k. 
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than cubic quasi-interpolation . Tablr :3.15 prm·id rs some results which quantify thi s r laim 

while Figure 3. 11 pro,·idrs a graph whi rh ill ust ratrs both th rse intrrpolant s. Ewn for low 

order quasi-interpolation . the intrrpolation r rror is small. In fact. for quadratic quasi­

interpolation , this error was less th an one grr.\·-scalr ,·alue (for our test image ) when k = 2. 

Since this image is typical oft he sort one would normally encount er in image processing, 

there seems to be no need to emplo~· higher order quasi -interpolation . 

3.6 Concluding Remarks 

Although the cardinal spline ).lRA has dual fun ctions with infinite support. it possesses a 

host of properties which counterbalance this undes irable aspect. For example, the wavelet , 

scaling function and their duals all possess either linear or generalized linear phase - a 

property which is absent from non-trivial orthogonal implementations. There are also simple 

(analytical) calculational procedures to deri,·c the decomposition/reconstruction filters as 

well as the wavelet and scaling fun ction. 

For computational and implementational reasons one desires that the scaling function be 

smooth and oflow order. Ideally one would like to employ the quadratic B-spline - however, 

theoretical problems usually ensure that implementors chooses the cubic scheme. Nonethe­

less , Section 3.5 showed that these theoretical objections can be circumvented by employing 

a shifted multi-resolution analysis and adjusting all :'viRA computations accordingly i.e. , 

adding the correct offsets to image function eYaluations. 

Having selected a scaling function, one must produce the initial set of approximation coef­

ficients , which amounts to solving a large system of linear equations. The computational 

overhead may be reduced by using quasi-interpolation, rather than true interpolation. Al­

though this scheme results in only approximate interpolation, it only uses local data to 

compute each coefficient. The quasi-interpolant is parameterized to allow control over the 

locality of the data used; one may obtain arbitrarily close approximation by increasing this 

parameter. Low order quasi-interpolation is shmvn to be adequate for our purposes. Fur­

thermore, quadratic quasi-interpolation is shown to produce lower interpolation error than 

cubic quasi-interpolation at the integer knot-points (pixels). This additional benefit, when 

coupled with the others already discussed or alluded to, implies that a quadratic based 

spline MRA is the ideal choice. 
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The preceding chapters ha\·e establi shed the basis for our image compression and synthesis 

algorithms. \\'ith the theoretical framework established, we may now address these issues. 



Chapter 4 

Spline-Wavelet Im age 

Compression 

The study of digital image compression techniques. whether for still or video images, is 

an area of research which enjoys a particularly high profile. The advent of the information 

society and the emergence of multi-media applications, which often include high band-width 

video services , have resulted in a dramatic increase in the amount of data which computer 

systems have to process and store. [mage data (in its raw form) requires a large amount of 

storage, in the region of 3Mb for a full colour ( 24-bit ) 1024xl024 image. When one wishes to 

store a large number of such images, the restrictions imposed by limited resources become 

acute. Image compression techniques seek to alleviate this problem, by changing the image 

representation so that the ne\v form occupies less space. 

This chapter begins by considering the most common methods of achieving image com­

pression, before moving on to consider the efficacy of the wavelet transform as an image 

coding scheme. Section 4.3 introduces the concept of quantization and describes the type 

(vector quantization) which was used in this dissertation. The remaining sections provide 

an analysis of the compression results ( 4.5 ) and briefly discuss an alternative that one might 

employ to better exploit the properties of the wavelet transform (4 .6). 

63 
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4.1 Compression Strategies and Standards 

The natme of the data to be> rompressed plays a fundamental role in determining the 

rompression ratios 1 one ma.\· achieYe. If the data m11st be prec isely reprod11ccd . that is . 

the compression must be lo .s.slc.ss. then the compression ratio will seldom exceed :3: I. Text 

compression is an exam ple of a somcc which m11st be losslessly compressed. 

If. howeYcr. one need not reproduce the input precisely, but only a suitably ·close ' ap­

proximation. then one may achieve significantly higher compression ratios (> IO:L). Image 

and audio streams provide examples of sources which can benefit from such lossy compres­

sion techniques. Such methods exploit the inherent redundancy present in the source; for 

example. the correlation between neighbouring pixels in an image. There is much debate 

concerning he means of determining the optimal trade-off between compression and fidelity, 

that is, how far one can compress and still have sufficient data to reconstruct an acceptable 

approximation. ln particular. the choice of a fidelity metric is highly contentious; for ease of 

computation and mathematical simplicity one usually seeks to minimize the mean-squared 

error, implicitly assuming that if the difference between the original and the reconstruction 

is small under this metric , that the human visual system (HVS) will likewise find the arti­

facts induced by the compression to be acceptable. This is not, unfortunately, the case since 

HVS is an extremely complex system and cannot be so easily quantified. An interesting 

case is made by De Yore et al [15] for the use of the L 1 norm as the distortion measure 

which should be minimized. These issues will be touched upon in this chapter as well as 

those subsequent to it. 

How does one remove the redundant information contained in an image? There are sev­

eral accepted techniques, some simple (and less effective) and others fairly complex. On 

the simple side of the spectrum, one has Delta Modulation (DM) [26]. Here one encodes 

the difference between neighbouring pixels. Since the pixels intensities are (usually) highly 

correlated, one can make do with a much smaller dynamic range for the differences; conse­

quently only a small number of bits are needed to encode this data. Unfortunately, if the 

image data varies too dramatically, one is faced with slope overload: the intensity differ­

ences exceed the allocated range and the coding scheme no longer accurately represents the 

input. There are more sophisticated coding techniques, such as Differential Pulse Coded 

Modulation (DPCM ), which are based on similar principles , but the compression ratios one 

lTh t · th t · input size a IS , e ra 10 o utput aizc. 
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can achicYe using th esc lllC't hods .1.rc fund:-tnwnt:'tll\· limitcd. ami arc scarrcly lwtt c-r th an 

those a\·ai lable wh cn using losslcss:.' trrhniqu c·s. 

Tran sform Coding [26] constitutrs :-t f:-tr n1 orr· robust and po\\'crful mf'thod of achicYing 

lossy compression. The i magc is act ccl 11 pon by an ope rat or (the transform ) which scrws 

to dccorrclat e the input pixel ,·alues. Thf' nf'\\' image. which only encodes non -redundant 

information and thus const it ut cs a more compact representation. is examined and only 

rele,·ant pixel values (the transform coe fll ricnts) arc retained. Reconstruction is achieved 

via an inverse transform. The success of such a meth od relies upon the efficacy of the 

transform, i.e., 

• how well docs the tran sform de-correlate' the input and 

• arc the important (large magnitude) transformed pixel values clustered m the new 

image? 

The de-correlation manifests itself as a dcCJ·casc in the magnitude of pixel values , in all but 

a small region of the image. That is. most of th e transformed pixel values are near zero, and 

those which are not, encode the non-redundant information content of the image. These 

near-zero regions may be discarded with minimal distortion in the reconstruction. 

The clustering of the pixel values one decides to encode, determines the simplicity with which 

such an encoding may be achieved. Clearly, if these values always lie within a particular 

region , one can develop simple coding strategies to encode their position. If, on the other 

hand , the values to be stored are scattered randomly over the entire image, then one must 

encode positional information explicitly and hence suffer a loss in compressibility. 

4.1.1 The JPEG3 Compression Standard 

Having said all this , which transformations are used to effect de-correlation? The current 

still image compression standard ( JPEG ) utilizes the Discrete Cosine Transform (DCT) -

a derivative of the Discrete Fourier Transform. The new pixel values specify the relative 

strengths of the two-dimensional sinusoids which compose the input image. For most im­

ages, these coefficients are clustered in a narrow region around the x and y axes . This 

2 0M could be considered a lossless coding method, provided one guarantees that slope overload will not 
occur. DPCM uses predictive encoding and this element means that it constitutes a true lossless scheme. 

3 Joint Photographic Experts Group 
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enables a simple ::on i ng st rat e>gy to h0 use>d for pixel select ion : one always assum e>s the> th e> 

high-magnit ud0 coefficients lie within a prescribed region. Zonal coding can be less than 

satisfactory. since it ,,· ill not code large coefficients which fall beyond its boundaries. A fur ­

ther problem with the DC'T nsed in JPEG . arises from its block implementat ion . In order 

to acceler<tt e the transform computations. the image is decomposed int o small 8x8 blocks 

and each ll lock is then coded i.e .. treated like a separate image. Unfortunat ely, at high 

compression ratios the assumption of independence amongst the blocks fails and so-called 

blocking e fTects occur i.e .. noticeable intensity discontinuities between blocks. These can be 

treated. to a limit ed extent. b.v post -processing, but this adds to the efTective decompression 

t ime and counteracts the computational savings obtained by blocking. Nonetheless, JPEG 

remains the method of choice for most implementors and is endorsed by ISO . This method 

produces good results up to about 16: L [49]. 

4.1.2 Fractal Image Compression 

A new arrival on the compression scene is fractal compression. This technique uses the 

mathematics of iterated function systems (IFS ) [2, 16] to compute a compact representation 

of the image. The IFS approach describes the image as a sequence of 2-0 affine (linear) 

maps. When these maps are iteratively applied to an arbitrary input , the fixed point to 

which they converge (the 'attractor') provides an approximation to the input image. Since 

only the parameters which characterize this set of maps need be stored , this representation 

can achieve fairly high compression ratios - around 30:1 - without serious degradation . 

The word 'fractal ' arise because the attra.ctor (the decoded image) is self-similar at every 

scale. Of course, digital images (and consequently, the input image) are not self-similar at 

every scale, but t his aspect is only revealed when one expands the image: the IFS produces 

additional self-similar 'detail '. This detail is essentially fractal noise; one cannot create 

detail the image did not originally possess. The usefulness of this zoom facility of the 

IFS encoding is thus questionable, since one usually desires to investigate a. region more 

thoroughly when performing this action, not to see a. fuzzy (albeit cunningly interpolated) 

blow-up. 

The major problem confronting this approach is the excessive time required to produce the 

IFS maps - several minutes in the case of large images. Decompression time, however , is 

very rapid - around a. few seconds for the same class of images. The issue of compression 
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Input Image 

2 ~ 

Sub-band I Sub-band 2 Sub-band 3 Sub-band 4 

Figure 4.1: An example of 4 sub-band decomposition. Each box represents a 2-0 filtering of the 
input {from the previous level) with the indicated filtPr . The symbol 2 .Lis used to denote 2x2 down-sampling 
of the filter output. 

artifacts is also somewhat contentious. Adh erents oft his approach claim that the blotchy 

patches introduced at high compression ratios are preferable to blocking artifacts. This is 

a highly subjective issue and currently one cannot render a meaningful objective decision 

as to which is better. Of course. constant ad,·ances are occurring and there are attempts 

underway to eliminate (or at least ameliorate ) these problems. 

4.1.3 Sub-Band Coding schemes 

Another popular class of methods for achieving compression are sub-band filtering schemes. 

Such systems apply a series of different filters to the input image and down-sample the 

output , i.e., keep every alternate sample. See Figure 4.1. This decomposes the image 

into a number of sub-bands which contain the frequency information filtered out by the 

corresponding filter. The method may be applied iteratively (i .e. , cascaded) to produce 

additional decimated sub-bands , provided that some suitable terminating criterion is pro­

vided. The size of the input signal is preserved by such a decomposition. Of course, these 

filters cannot be chosen arbitrarily and there should be a corresponding set of filters which 

enable one to perform the reconstruction. This reconstruction starts with the last level of 

sub-band coefficients and proceeds upwards , up-sampling and adding each level to reproduce 

the input. 
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If one wishes to obtain compression. the filters must chosen to ensure that the input image 

is de-correlated by the filtering operations. This de-correlation is reflected in sparsely popu­

lated sub-bands which may then be compactly encoded. Such an image coding scheme was 

proposed by Woods and 0 ':'\eil in [.52]. They achieved compression ratios of around 15:1 

with good reproduction. These results do not imply that one cannot do better than this us­

ing such a scheme: indeed. the wavelet t ransform may be recast as a sub-band decomposition 

scheme and the results obtained in this case may be substantially higher [1]. 

4.1.4 The Laplacian Pyramid 

As with all compression schemes, the Laplacian pyramid [.5] seeks to eliminate the redun­

dancy inherent in the input (image). This is achieved by a series of filtering and decimation 

operations , in much the same manner as sub-band coding. However , unlike the latter, the 

Laplacian pyramid is an implicitly redundant representation since it contains more pixels 

than the original image by a factor of 1· The decomposition proceeds as follows: 

1. The image is filtered with a low-pass filter , producing a less detailed approximation. 

2. this approximation is the subtracted from the original and the difference is retained. 

3. the approximation is then down-sampled and the low-pass filter applied once more. 

4. the new difference image (produced as before) is stored and the process repeated, until 

the detail left in the down-sampled approximation is sufficiently uniform. 

5. this low-resolution, down-sampled image is then stored, along with the difference 

images. 

The information contained in each difference signal is highly localised and concentrated, 

since only the application of a low-pass filter differentiated the images we subtracted. Thus , 

one need only encode a small subset of the information in each image as well as the small low­

pass image, when contains contrast and intensity information. So, even though it would 

seem that one is increasing the redundancy, the de-correlating effect of the construction 

ensures that one experiences a net gain. As with basic sub-band coding, good results are 

obtained for compression ratios up to about 15:1. 
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Figure 4.2: Quadratic spline wavelet transform. The first image provides the input image, while 
the second provides a 3 level quadratic spline wavelet transform. Observe that the coefficient images have 
different sizes; in the cubic scheme the sub-bands on a particular level have the same dimensions. 

4.2 Wavelet Image compression 

The wavelet transform may be implemented as a sub-band decomposition [29, 13]; in this 

approach one need only compute simple convolutions rather than evaluating integrals. This 

formulation was presented in the preceding chapter, although little was said there concerning 

the application of the wavelet transform to image coding. Figure 4.2 provides an image as 

well as its representation in the transform domain. This representation comprises a sequence 

of detail coefficient images (three for each level of the decomposition) and a low-pass down­

sampled approximation coefficient image: 

(4.1) 

The supports of these 2-D sequences shrink with lower resolution; consequently, one requires 

fewer coefficients to represent lower resolution approximation and detail images. The total 

number of coefficients is the same as the number of input pixels. 

The wavelet transform detects detail i.e., sharp intensity variations, such as those associated 

with the transition across an edge. Since texture may be viewed as a collection of edges on 

an appropriately small scale [34], the WT is also adept at describing texture. The (detail) 
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coefficien ts pro\·idc a mca.smr of 1 he st rcngt h of the variation. Smooth imagr regions arr 

reflected in the approximation coefficient s. The multi -scale aspect of the decomposition 

allows text mcjrdgc in format ion at different resolutions to be discriminat ed. One generally 

discards \·cry high frequency texture in formation in favour of higher compression ratios. 

The approximation coefficien t sequence { c;j} is normally stored using the full range of bits 

that the origin al image possessed - 8 bits , in most case, which corresponds to 2.56 grey 

levels. while the detail coeffi cient s are quantized much more coarsely. 

The highest-resol ution level (which has not been smoothed) will have a large proportion 

of non-zero detail coeffici ent s. but many of these may be ignored since they correspond to 

wavelets with small support and the error induced by their loss will be insignificant. In fact , 

one may go so far as to ignore the whole first level detail tier (thus immediately eliminating 

75% of the information in the representation ) - the induced error manifests itself as a 

slight blurring of high frequency texture. 

Most images produce detail coe ffi cients which are clustered around prominent edges, the 

remaining coefficients arc considerably smaller and , for the most part , may be discarded. It 

is this detail coefficient sparseness which endows the WT with a high compression potential. 

The sub-band structure of the WT means that the transform has a complexi ty of O (n ) The 

(unblocked ) DCT has O(n logn) complexity - blocking decreases the overall complexity 

to O(n) . There are also means of making the inherently fast wavelet calculations faster, 

although these methods are dependent on the particular characteristics of the filters [41]. 

Because of the efficiency with which the WT can be performed, one need not resort to 

blocking the t ransform, and consequently blocking artifacts do not occur. Comparative 

studies (for example, [14]) have shown that the DWT is also able to retain structure and 

reconstructive fidelity at much higher compression ratios than the DCT. 

The positions and magnitudes of the coefficients may be encoded in various ways. An 

obvious candidate is run-length coding, in which the runs of a particular coefficient are 

recorded along with that coefficients value; so, (30, 0.0) would represent the fact that, 

moving sequentially along the image rows , 30 coefficients from the previous non-zero value 

were zero. There are many variations on this theme, some fairly sophisticated and capable 

of more compact representation. 

Another alternative, if one is assured of a very small set of non-zero coefficients, would be to 

code the position and magnitude of each non-zero coefficient in full. Such a scheme would 
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prohabl:v he the bC'St onC' to li St' wh c·n C'ncodin .!.!, illl:~.pps wit h few C'dges or tC'X tnrC's . 

One can also code pos it ion ,·:~.lu es implicit h· i.t' .. in fN the posit ion from tiH' w:~.y in whi ch the 

magnitude information is storC'd. Thi s is thC' nl f' th od th<l.t W<l.S usC'd in this di ssertation. The 

most obvious implicit scheme im·oh·C's cod in g C'ach coeffi cient scque ntiaJI~·. row after row. 

Of course. coding each coe ffi cient in full (K hits ) would not result in image compress ion . 

HmYc\·er. it turns out that one can get bv without using the full d.yn<l.mic range for each 

coeffici ent. fnd ccd. for those coe ffici ent s whi ch arc close to zero. we would like to use zero 

bits i.e., not encode them at a ll. The dec ision as to th e number of hit s to use in coding 

coefficients is called bil-ollocalion and is u su:~.ll .v based on the statistical properties of the 

coefficient sub-hand under consideration. Based on such allocation strat egies , and given that 

one wishes to achieve a certain pre-specifi ed compression ratio (i.e. , a pre-specified number 

of bits to code the entire wa,·elet represent a ti on ) with the minimum possible distortion , 

these calculations yield an es timat e of the number of bits which should be used to code 

each sub- band . 

Suppose that one has a cert ai n number of bits with which to encod e a floating point value. 

\vhat should the new value be i. e .. how does one quanti::e this number? 

4.3 Quantization 

Quantization is the process whereby a value which has a large (possibly infinite) dynamic 

range, is curtailed so as to fit within the dynamic range of an alternate representational 

system. For example, a real number (which has infinite dynamic range) must be quantized 

so that it can fit within the 32 or 64 bit format which a computer allows for such a repre­

sentation. If the number exceeds the capacity of the format , it might be truncated to the 

maximum value or generate an overflow trap . However, even if the value lies within the 

permissible range , the accuracy with which it can be represented is limited. For example, 

one cannot specify a fraction such as 1/3 beyond a prescribed accuracy. The quantization 

process determines which alternative value amongst the permissible permutations best fits 

the input value. 

The values which are associated with the wavelet transform are real values and ifrepresented 

in ' full ' would require several bytes. At best, one would need the same number of bits as 

the input pixels possessed to represent each coefficient - 8 bits in this case. However, the 
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accumcy with which on0 ne0ds to r0present a coefficient varies from l0wl to l0wl :Lnd quit 0 

oft en one can m:1.k0 do with consid0rabl:v less accuracy and still maintain a high dcgr00 

of fide lit y. For 0xampl0. coC" ffi<i C" nt s which arc near zero might well be left out. implic'it ly 

coding them with zero bit s. In :Lddition. a coarse representation (few bits per coe ffi cient ) 

of the detail coefficients producrs errors which are less irritating to the eye. since these 

inaccuracies induce small high contrast errors in the reconstruction . which the IIVS is less 

likely to em phasize. 

There arc two di fferent approaches to quantizing an input value: uniform and non-uniform 

quantization. L'niform quonli::olion divides the permissible range into a number of uni­

formly spaced bins or porlil-ions. Any value which falls within the bounds of a particular 

bin is (usually) represented by the mid-point value of the bin (mid-step quantization ). Non­

un iform quantization uses bins which have varying size; this is useful if one, a priori , knows 

that a particular range of values has to be accurately represented while another can be 

coarsely quantized. One ensures that the bins are more closely spaced within the former 

region. 

Rather t han representing the quantized value directly, it may be more convenient to insert it 

into a code-book, and to refer to it by an index, which generally has fewer bits and is easier 

to manipulate (if one wishes to, say, perform Huffman coding on the quantizer output ). 

The existence of the code-book adds to storage requirements; however , if the code-book is 

static, only one copy need exist (usually as a separate file , which quantizers can reference). 

The indices used in the code-book must have a sufficiently large range to label all the bins 

present. Thus, using this approach , an eight bit quantizer would allow 256 distinct indices 

and hence 256 quantized real values to represent the input. 

Using the above approach, one cannot achieve a bit-rate4 of below 1 bpp , since one needs 

at least two bins for quantization to be meaningful. Vector quantization provides a way of 

bringing the bit-rate below unity. 

4 A measure of compression, given in bits per pixel (bpp ). Since each index encodes a particular pixel, a 
quantizer with 256 partitions, and hence an 8 bit index, implies a bit-rate of 8 bpp. 
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4.4 Vector Quantization 

If one only employs scala.r qu:.ntiz:.tion (discii ssed .a.bow ). then each pixel must be repre­

sent ed by at least one bit [18. '21. K. '11. '26]. llf'n cc . the upper bound on the compression 

ratio is n : I. where n is the num l)(' r of hit s r0qu ired to represent th e grey-scale values of 

the input image. I lowc\·cr . if onr uses a single index to refer to a block (or vector) of pixels. 

the bit-rate can he drawn below Hnity. The bins (partitions ) in such a vector quantization 

(VQ ) scheme arc now multi-dimensional. and the means of deciding which vectors should 

be mapped into a particular part it ion becomes decidedly more expensive. One uses a dis­

tortion metric to make this decision. Such a met ric compares the vector to be quantized 

with all the vectors in the reproduction alphnbcl (i. e .. the set of representative vectors for 

all partitions) and determines which reprodl!ction vector. and hence partition. minimizes 

the distortion (the error induced by qHantization ). JHst as with scalar quantization, each 

reproduction vector resides in a code-book and has an associated index. Now, however, one 

can achieve a minimum bit-rate of* bpp when quantizing an n-dimensional vector. Hence , 

the compression ratio is determined by t.hc vector dimensionality, n - larger n implies a 

lower bit-rate and higher compression. 

One cannot simply choose a large n and assume that the quantization will be satisfactory. 

Consider the following example: assume that each pixel in the vector can have 32 distinct 

quantized states (a fairly conservative number ), and assume that the vector is of size 4. 

The number of possible reproduction vectors is then 324
. This, in turn , implies that the 

index would have to contain 20 bits to fully represent this range. This results in a bit­

rate of 2
4° = 5 bpp - it seems that scalar quantization would have been as useful and 

computationally cheaper. Nonetheless , if the vectors to be coded (such as n x n blocks in 

an image) have a high degree of correlation, this scheme may be effectively applied, since 

the number of reproduction vectors can then be small. 

The performance of the quantizer (as measured by the distortion metric) will become in­

creasingly degraded as the dimensionality increases, unless one simultaneously increases the 

number of reproduction levels. However, this leads to a growth in computational time and 

a decrease in the bit-rate (since each index now requires more bits to represent it). 

We are faced with two conflicting requirements: 

• to increase the compression ratio (whilst minimizing the distortion) and 
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• to minimize' the compntat ional load of the qnant ization opcrat ion. 

The optimal rcsolntion of thi s conOict depends largely on the nature of the data to be 

quantized. For image data. the pixel correlation enables one to make do with a small 

reproduction alphabet and low bit -rates arc attainable. However, direct image quantization 

often results in noticeable image blocking. If one applies VQ to the transformed image. 

any resulting blocking effects arc skewed and distorted by the inverse transform. and are 

generally less offensive to the eye. One might question the efficacy of applying VQ to a 

transformed image. since the correlation has supposedly been removed. It is perhaps better , 

to consider a transform as a 'redundancy extractor' , which gives a new representation which 

is non-redundant , in that. it does not contain (much ) unnecessary data . The transformed 

image still has correlat ions amongst its coefficients, hut these arc necessary ones (most 

transforms are continuous, thus there will he no discontinuities when smooth input data is 

transformed ). 

How does such a system fun ction in pract ice? In the case of the WT, most detail coefficients 

are clustered around zero and those that are not may be coarsely quantized , for reasons 

referred to earlier. Due to this state of affairs, one can achieve a low hi t-rate using VQ with 

the wavelet transform [1]. Good results may also be obtained using more general sub-hand 

schemes [46]. 

Ha,·ing discussed the basic ideas behind VQ, one would like to construct such a quantizer. 

There are many ways of doing this [8, 18] ; for reasons of simplicity and computational 

economy I chose to implement LBG vector quantization, which is discussed below. 

4.4.1 The LBG Algorithm 

The Linde-Buzo-Gray (LBG ) algorithm [27] provides an interactive method for constructing 

a k dimensional vector quantizer with n reproduction levels , k, n E Z. The distortion metric 

may be of any kind desired , although for reasons referred to earlier , I have opted for the 

mean squared error (MSE) criterion. The MSE metric, d(x , x), provides a simple measure 

of the error between the reproduction vector x and the input vector x , and is given by 

k 

d(x ,x) = L lxi - xil 2
- (4.2) 

i=O 
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The algorithm proceeds from :a.n in it i:a.l gw ·:-;:-; :a.nd r0lines this guess until :a. qu:a.nt izer ( cod0-

book ) has been designed wit irlt prod ttcC's an :1 \., ·r:a.g0 distort ion wit irlt is wit It in :-;om0 speci ­

fied tolerance. Central to thi s proc0ss. is the im rodurtion o f :a. rcpresent:a.tin' set o f lmining 

ueclors i.e .. a set of \·cctors from the input somr0 ( in our r:~.sc. a l:a.rgr numl)('r of trans­

formed pixel blocks ). The sourer is a.ssuntcd to hc a r:a.ndom process with an underlying 

cumulative probability distrilmtion functi on (which is unknown ); the tr:a.ining vec tors (as 

representatives of this source ) me nscd in li Pu of r xplirit distribution information to ' train ' 

the quantizcr. There arc certain :a.ssumptions im·oh·cd in this iterative development (the 

stationarity and crgodicity of the random process ) which in general will only hold approx­

imately. :.Jonethelcss. it has proven itself pract irally and is commonly used. [n generaL 

the LBG a lgorithm will com·crge to a lorallv optimal quantizer i.e., one which docs not 

necessarily minimize global distort ion. 

The algorithm is as follo·ws [27]: 

1. Given: the initial reproduction alphabet. : 10 , a distortion threshold £ ~ 0, the se­

quence of training vectors. {xJ : j = 0 ... .. n- l }, and N (the number of reproduction 

vectors). Set D_ 1 = oo and m = 0. 

2. Find the minimum distortion partition of the training sequence; that is , using the 

distortion metric , map t he vectors to those reproduction vectors which minimize the 

distortion metric. 

3. Compute the average distortion of the newly distributed training vectors w.r.t. the 

current reproduction alphabet, Am: 

1 n-1 

Dm = - 2::= min d(xj, y). 
n . O yEAm 

J= 

(4 .3) 

If 0"'-r;,:Dm ~ £, stop with the current set of reproduction vectors as your quantizer , 

otherwise continue. 

4. Find the optimal reproduction alphabet, Am, by taking the centroid of all the vectors 

in each partition, S: 

1 
TISIT 2::= x , 

xES 
( 4.4) 
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where IISII indica.tcs tiH' numhf'r of \·ectors in the partition. 

In crement m ~nd rf't urn to step (2). 

';"(j 

The generation of the initial alphabet must he accomplished before the ~lgorithm is ap­

plied. There arc t\\"0 methods suggested for this is [27]: uniform quantization ~nd splitting. 

The former im·olws constructing a regular lattice of k-dimensional points (the initial re­

production vectors ) which contains all the training vectors. This method docs not pay any 

attention to clustering oft he training vectors, and consequently generates many empt y p~r­

titions (partitions int o which no vectors are mapped). Empty partitions often persist once 

they have developed and cause the quantizer to lose efficiency, since they arc redundant 

and occupy space which may have been used to quantize the data more finely. The !at ter 

method, splitting, seems to be the method of choice (see, for example, [I]), and it is the 

one I used . Splitting requires that the number of reproduction levels he a power of two. An 

initial one level quantizer is obtained by taking the centroid of the entire training set. This 

vector is then split into two vectors by adding and subtracting a perturbation vector which 

has small components. This new two level quantizer is then subjected to the LBG algo­

ri t hm and once a suitably low distortion level has been achieved, both the vectors are then 

spli t (by application of the same perturbation vector) and fed back into the LBG algorithm. 

This splitting process is continued until the required number of reproduct ion levels has been 

reached . This then provides the initial alphabet upon which the final LBG iteration will be 
' 

based. This method generates all lower level quantizers (which are expressible as a power 

of two) and is better able to approximate clustered input data. 

An analysis of t he performance of the LBG algorithm , with splitting, and applied to t he 

quadratic spline wavelet transform, is presented below. 

4.5 Analysis of Quadratic Spline-Wavelet Compression 

4.5. 1 General Discussion 

The application of VQ to (hi-orthogonal) wavelet image compression [1] and general sub­

band coding schemes [46, 51] has produced promising results. · Inspired by this work , I 

decided to apply the technique to the compression of the spline-wavelet transform sub­

bands. I will refer to the results obtained there when discussing my own. The approach 
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that was taken (th e dcsig,n of multi -rr·solut ion codf'-books ) is bn-scd dirrrtly on [I]. 

I did not usc a dynamic bit -all ocati on stra tegy: t hr a\-ai lablr hit -allocati on opt ions \\'ere 

hard-coded and remained constant for all itnagrs. This allo\\'rd for f':L'l if'r anal.\·sis of the 

results . since d~-namic bit -all ocation (in th r cont rx t of\ 'Q J ran result in tiH' application of 

widely varying sub-hand quantizcrs to different tC'st images and also increases the compres­

sion time (although this is normall.Y negligible- ). 

Only 11x4 and 2x2 blocks were used to quantize th e detail sub-bands (as in [l]} while scalar 

quantization was used on the approximation sub-band. The number of levels oft he multi­

resolution decomposition was a function oft he bit -rat e des ired: high bit-rat es did not require 

the use of more than 2 levels. \Yhile the lowest bit -rates required a four level decomposition. 

The number of levels permitt ed for detail quantization were: 256. 512 and l024 (i.e .. 8-10 

bits per block ). The approximation indices were each coded with eight bits - hence the 

need to decompose further , since decreasing the coefficient support will improve compression 

performance. Figure 4.3 sho,,-s the available bit-allocations. The positional information for 

each coefficient block was implicitly encoded in the data stream. since the block decomposi­

tion of the sub-bands was implemented sequentially. Blocks which overlapped the sub-band 

boundaries were coded in full. using the symmetry extension dictated by the sub-band. 

This resulted in a very small decrease in coding efficiency. The zero coefficient boundaries 

of the quadratic transform sub-bands were not exploited - such manipulations result in 

only marginal compression gains and are not worth the effort. 

Two training set were used for the tests - See Figure 4.4 and Figure 4.5. The first training 

set was a collection of some fairly dissimilar images , the second contained only the heads 

of men and women. The resulting code-books were written to disk and occupied between 

17Kb (256 level , 2x2 blocks ) to 68 Kb (1024 level , 4x4 blocks ) each. 

A problem which became apparent during training, was the small number of training vec­

tors produced by blocking the lower levels of the wavelet decomposition: each level of the 

decomposition decreases the number of blocks by a factor of four. There are two methods 

that might be used to overcome this problem 

• increase the number of training images 

• use the existing vectors to expand the training set. 
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c 0 1. 
0 1.3 

0 2:4 0 3:4 
0 1:2 

02 :3 0 3:3 

01 :1 

0 2:2 0 3:2 

' 
' 

I 

0 2:1 03 :1 

I 
I 

Cornp 01:1 02:1 03:1 01:2 02:2 03:2 01:3 02:3 03:3 01:4 02:4 03:4 

0 2 2 2 - - - - - - - - -
1 2 2 2 2 2 2 - - - - - -

2 4 4 4 2 2 2 - - - - - -
3 0 0 4 2 2 2 - - - - - -

4 0 0 0 2 2 2 - - - - - -
5 0 0 0 2 2 2 2 2 2 - - -

6 0 0 0 2 2 4 2 2 2 - - -

7 0 0 0 4 4 2 2 2 2 - - -

8 0 0 0 4 4 4 2 2 2 - - -

9 0 0 0 4 4 0 2 2 2 - - -

10 0 0 0 4 4 0 2 2 4 - - -

11 0 0 0 4 4 0 4 4 2 - - -
12 0 0 0 0 0 2 2 2 4 2 2 2 
13 0 0 0 0 0 4 2 2 2 2 2 2 
14 0 0 0 0 0 4 2 2 4 2 2 2 
15 0 0 0 0 0 4 4 4 2 2 2 2 

Figure 4.3: Bit-allocation. This table provides a list of the hard-coded quality settings and the corre­
sponding block sizes for the sub-band quantizers (2 = 2x2 etc). The bit-rate decreases monotonically as the 
compression parameter increases. Hyphens indicate that the sub-band decomposition was terminated before 
reaching the corresponding level. Zero entries mean that no coefficients from that sub-band were encoded. 
The approximation coefficient sub-band is always scalar-quantized. 



CHAPTER 4. SPLINE- WAVELET IMAGE COMPRESSION 79 

Figure 4.4: Generic Training Set. The training set used for generic quantization training. The images 
shown here have been scaled down. 
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Figure 4.5: Alternate Training Set. This training set was used to examine the effects of subject-specific 
quantizer training. As before, the images shown are not necessarily to scale. 



Cll:\PTEH ·1. SPU.\'E- \\':\\ 'EU:T 1.\1 .\ C;r: C'O .\!PHESS/0.\' ~ I 

Increasing the size of th0 tr:~.inill )..', sc· t is tt! H i f'sir:~.h le sin c0 011 0 would n00d :1. l:~.rg0 Jntmh0r 

of training images to gcncr:Ltf' t h0 rf'<ptirf'd numhc·r of tr:~.inin g blocks for. s:~.y . :1. 102·1 l0wl. 

4x'l block quantization of a. fourth )0\'f'l s ub- b:~.ntl. Th0 second option im·oh·0s :~.ppl,ving 

a. de-correlating action to the ttv:~.ii:Lhl 0 blocks so that they may he used <tS new training 

vectors. The approach I used w:~.s suggest0d in [ 16]: th e wavelet coefficients on each lc,·cl 

arc shifted one index left. right :~.nd di a.gon a.Jl~·. :~.nd each shifted ima.g<' serves as the source 

for a new wavelet decomposition. This shift is suffi cient to de-correlat e the coefficients and 

consequently provides us with suitable training ,·ectors. The method is applied recursively, 

until the maximum depth of the decomposition is reached. This ensmcs that the number 

of blocks produced on each le,·el of the decompos ition is the same: thus. one can make do 

with a small initial training set. 

The splitting process which generates the initial alphabet turned out to be problematic. 

When an arbitrary (small ) splitting vector \\'ttS chosen. the initial alphabet invariably con­

tained a large number of empty partitions (particularly at lower levels ). These partitions 

had to be removed , to bolster the performance oft he quantizer (empty partitions serve no 

purpose). I devised a strategy to alleviate this problem: rather than splitting each and every 

partition, only those satisfying some 'splitability' criterion are split. After each iteration of 

the splitting algorithm, the number of partitions which have still to be split are determined 

and the required number are selected, based on their splitability, and propagated; the others 

are left untouched. This means that more than log2 n steps might be required , and also 

introduces a bias into the generation of the initial alphabet; but this is unavoidable if one 

wishes to eliminate empty partitions. The splitability index for each partition is simply the 

average distortion of all the vectors that map into that partition. Thus, partitions which are 

well represented will not be split, while those which are coarsely represented will be. This 

seems to be the most logical choice; the results are given in the next section. Weighting 

the splitability based on the magnitude of the reproduction vector (thus implicitly favour­

ing either smooth or detailed regions) proved to be unsatisfactory. One could undoubtedly 

conceive more cunning measures of splitability, but the impact that this would have on the 

production of good quantizers is questionable. 

The distortion measures used to determine reconstruction performance were the signal-to­

noise ratio (SNR) and the normalized mean squared error (NMSE). These were defined 
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S\"R ( 
\·;tr ( I ) ) 

I 0 log 10 ,·;tq I _ R) dB (- I..') ) 

\"\ISE IOO \·ar (l- H ) 7c 
\·a.r ( I i 

where I and R represent the original and reconstructed images , respect ivcly, and var ( L) 

denotes the ,·ariancc of the image '" [26] . The choice of these fidelity met rics was based 

on simplicity: there arc some cases in t.he following results in which recon structions with a 

poor S\"H. arc actually ,·i sually more acceptable than those which have a high S!\H.. The 

reconstruction error was taken with respect to the projected image - this serves to decouple 

the errors introdJJccd by quantization from those produced hy the input approximation . 

The fil e format fort he compressed image is presented in Figure 4.6 . Currently, only pgm files 

(grey-scale) are compressible. 24-bit ppm images could also he incorporated by applying 

the same techniques to each col om component. Greater compression ratios (for colour 

images ) could he achieved by converting the input to YIQ colourspace and down-sampling 

the chrominance components before applying the encoding techniques. 

4.5.2 Results and Analysis 

This section presents data which quantifies the performance of the LBG quantizers produced 

under the assumptions discussed above. The test images were chosen from both within and 

without the training sets. These test images contained varying amounts of texture and 

smoothness. Some, like 'square ' did not contain any texture; ' tree ', at the other end of the 

spectrum, was almost exclusively texture. 

Figure 4. 7 shows SNR and :\:\-ISE vs compression ratio for the images 'tree ', 'lenna' and 

'square'. These images were quantized w.r.t. training set one; that is, 'tree ' and 'square' 

were in the training set, 'lenna' was not. The SNR figures imply that those images which 

are highly textured (' tree ') are not well reproduced , while those with little or no texture 

are. The inclusion of a test image in the training set is no guarantee of good SNR perfor­

mance. However, examination of Figure 4.8 shows that ' tree' produces a far more acceptable 

reproduction (as measured by a human subject) than 'lenna'; this effect is known as 'texture­

masking' . 'Lenna' possesses large smoothish regions and it is here where quantization noise 

is readily discerned. A dramatic increase in HVS distortion of 'lenna' occurs when the num­

ber of decomposition levels passes two. This may be partially explained by considering the 
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Wavelet Magic ·wr (2 char) 

!Iuffman Detail Coding 
011 (char) 

Width Width of Input Image (int) 

Height 
I Ieight of Input Image (int) 

Compression Param 
0-15 (char) 

< -- -, 

Huffman Table 

Huffinan Bit Stream Optional (variable) 

Size of Bit Stream 

Approximation Bit Stream 

<- --

Size of Bit Stream Size of Joint Bit Stream (long) 

Combined Detail I Approx 

Bit Stream (variable) 

Figure 4.6: The format of the compressed wavelet file. T he dotted lines indicate that the Huffman 
coding of detail block indices is optional . If this option is not chosen , a single unified bit stream is used for 
both the detail and approximation blocks. The quality parameter (0-15) provides an approximately linear 
increru'\e in the compression ratio: 0 = best , 15 = worst. 
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Figure 4.7: SNR and NMSE figures for reconstruction. These images were quantized with quan­
tizers derived from training set one. Despite a poor SNR, 'tree' is by far the most acceptable visually. 
The different curves in each diagram represent the performance obtained when the indicated number of 
reproduction vectors is used. 
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Figure 4.8: SNR VS HVS fidelity metric. The compression ratio is 15:1 and the signal-to-noise 
ratios are 14.1 dB (lenna) and 8.5 dB (tree) . Nonetheless, the texture in 'tree ' serves to mask the (bad) 
quantization errors, while 'lenna', despite having a substantially better SNR, is heavily distorted. 

nature of the quantization errors induced as a function of level. As one proceeds to lower 

levels in the multi-resolution pyramid, the support of the wavelet grows from 4 pixels at 

level 1 (quadratic case) to 78 pixels at level 4. Any bad quantization decision at low levels, 

will result in a modulation of the corresponding synthesis wavelet which will consequently 

fail to sum correctly and produce ripples and blotches (of level-dependent size) into the 

reconstruction. Errors produced in the level 2 detail images , are still small enough to be 

minimally irritating. However , if the image was highly textured to begin with, these errors 

may be adequately masked and the reconstruction may still be acceptable ('tree') . The 

degradation in performance at high compression ratios is also dependent on the block size 

which underlies the quantizer (for reasons elucidated earlier). Unfortunately, high compres­

sion ratios (low bit-rates) necessitate the introduction of large (4x4 in this case) blocks, 

which cannot adequately describe the coefficients they encode. 

The second training set is based exclusively on (the head and shoulders of) human subjects. 

The test images used in this case were ' tree' and 'lenna' (outside the training set) and 'lee' 

(inside the training set). The SNR and NMSE results are plotted in Figure 4.9. Once more 

the acceptability of the reconstruction for 'tree' is belied by the numerical results. The test 

image 'lee', also performs remarkably well; it is in the training set and has a large region of 

black, in which contrast errors do not readily show up (See Figure 4.10). 
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Figure 4.9: SNR and ~MSE figures for reconstruction. These results were obtained using training 
set two . The figures are very similar to those obtained using the generic training set ; once more, inspection 
of the corresponding images revealed that the SNR figures are deceptive. 
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Figure 4.10: HVS VS S R. The image shown here (' lee' ) has a preponderance of dark colours which mask 
quantization errors. The signal-to-noise and compression ratios are 11.8 dB are and 23.8:1 , respectively. 

Despite the fact that 'lenna' qualitatively falls within the same category as the training 

set, both sets of quantizers produce very similar performance (Figure 4.11). It may be 

that the images, while qualitatively the same i.e. , under our inherent HVS metric, are not 

mathematically similar enough to really make any difference. 

In general , then, the performance of the spline-wavelet LBG VQ system on images without 

an excessively high texture content would seem to be somewhat unsatisfactory. Certainly, 

the results achieved by Mathieu et al [1] were not realised when (semi-orthogonal) spline 

wavelets were used. The following might be cited as possible reasons for this lack of perfor­

mance: 

1. semi-orthogonal wavelets may be inherently unsuited to image compression 

2. the means of producing the initial alphabet may be incorrect or inappropriate. 

3. dynamic bit-allocation may be of fundamental importance. 

There is no obvious reason why semi-orthogonal wavelets should be any less satisfactory 

than general hi-orthogonal wavelets: the statistical characteristics (at least those which 

underlie the compressibility) of all wavelet transforms are very similar. There is, how­

ever, a difference between orthogonal and non-orthogonal wavelet schemes as regards their 
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Figure 4.11: Typical compression results . The left image was compressed to 3.2:1 while the right 
linage was compressed to 8.7:1. The maximum number of reproduction vectors for each sub-band was 256 
(Figure 4.3) and no Huffman coding was used . The SNR's are 19.2 dB and 16.8 dB , respectively. Observe 
that quantization effects are immediately apparent as soon as a sub-band decomposition of two or more 
levels is used; in this example, both images exhibit these artifacts. The quantizers used were generated from 
the generic training set i.e., training set one. 

compressibility when using a MMSE quantization scheme. Under an orthogonal wavelet 

transform the L2 norm is preserved; hence, minimizing the (mean-squared) quantization 

error in the transform domain ensures that one simultaneously minimizes the reconstruc­

tion (L2 ) error in the image domain. The fact that non-orthogonal schemes do not possess 

this property means that they are generally 'sub-optimal ' under such a distortion met­

ric. Nonetheless, norm preservation may be assumed provided the wavelets are 'almost' 

orthogonal. This seems to be the case with hi-orthogonal compression scheme used in [1]. 

Semi-orthogonal spline wavelets (despite nominally being near orthogonal) do not appear 

to possess a high enough degree of orthogonality to successfully employ a simple MMSE 

quantization rule. The question of what (visually relevant) norm might be preserved un­

der such a transformation is not one I have examined. However , [38] offers a method of 

working around this problem: one employs a 'multi-scale relaxation' algorithm to minimize 

the £ 2 error explicitly, rather than performing this minimization in the transform domain. 

The alternative is to minimize some other distortion measure, such as the £ 1 norm (of the 

image). However, if this approach is taken, one then has to produce the corresponding 

analytical expressions to allow the minimization to proceed in the transform domain, which 

is sometimes impossible. 
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The Sl lpport of the wawlet \\·ill also play an important role in uetrrmining thf' f'Xtf'llt of 

quantization f'rrors. :\ wawlet with small extent is uesireu. since t lw error is t h<'n w<'ll 

localizeu. The support of the \YaYelet doubles with each subsequent resolution step which 

explains the more conspicuous natme of low frequency quantization rrrors. The support 

of the quadratic wavelet is [0 .. 5]. which is of intermeuiate size. 'v\'r1ile it can certainly be 

argued that a smaller wavelet would be better (i.e., produce more localized quantization 

error ), the manner in which quantization is undertaken is of greater importance. It would 

seem that the combination of non-orthogonality and (MMSE) vector quantization is highly 

inappropriate for the lower le\-els oft he spline-wavelet decomposition. 

It seems unlikely that the absence of dynamic hit-allocation could account. for the con­

sistently poor results obtained. While performance without 'noise-shaping' will he sub­

optimal , this implies a small decrease in coding efficiency - not the dismal results produced 

here (for low hit-rates ). 

The issue of initial alphabet generation is one which I find highly unsatisfactory. One 

must remember that the quantizers produced by the LBG algorithm are only guaranteed 

to minimize distortion locally; it is quite conceivable that the manner in which the initial 

alphabet is generated is such that the subsequent iteration does not converge to a good 

quantizer . If this is the case, then the manner in which empty partitions are discarded and 

new ones chosen is most likely to be the source of additional distortion. 

Section 4.6 describes a method which might be employed to circumvent these problems. 

4.5.3 Huffman Coding 

The detail coefficients of the wavelet transform have a 'generalized Gaussian distribution ', 

a property which the block indices (approximately) retain after vector quantization [1]. 

Since this implies that the block indices are not arbitrarily distributed , one may use an 

entropy coding to exploit this source of redundancy. Huffman coding is such a method and 

it generally allows one to approach the entropy of the sequence to be coded. The entropy, 

H, a measure of the information contained in the sequence, is given by 

(4.7) 

where 
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L Pi = l and p; 2: 0. ( -I.K ) 

Here p; represents the proh:t.hilit\· of indf'x i orrnrring. This ,·:~.ln e is tkriwd from a his­

togram of index occurrences. 

\'lany of the transform coding techniques that I examined. follow the quantization phase 

with some sort of entropy coding. Some go so far as to usc the entropy of the index sequence 

as an objective measure oft he attainable bit -rate for each index, implicitly assuming that 

a perfect entropy coding foll ows quantization. This is not accurate. however. since 

1. one can only approach the entropy asymptotically 

2. the amount of header information which inevitably accompanies the compressed file 

might well he significant 

3. for the case of static Huffman coding. at least. the Huffman code sequences must be 

stored with the file; the size of this information depends on the statistical properties 

of the sequence, but it a\·eraged about 2 bytes per table entry in my implementation 

-see Table 4.1. It is quite easy to produce cases in which additional Huffman coding 

actually increases the size of the compressed file. 

In addition to this, one has the overhead of performing the encoding and decoding. While 

Huffman encoding can he done fairly rapidly, the decoding requires a linear search of all the 

hit strings and can be comparatively lengthy. \Iany of these objections can he overcome; for 

example, dynamic Huffman coding allmvs one to reconstruct the bit-strings when decoding, 

rather than having to store them, although one pays for this with a decrease in coding 

performance. In addition, one may use a scheme such as arithmetic coding, which also 

performs well and does not have as much accompanying baggage. The size of the header 

information depends on the complexity of the encoding. The compression ratios I cited were 

based purely on file size , since I feel that any information which is part of the compressed file 

is non-redundant and therefore forms an integral part of the new representation. Table 4.1 

provides some information which illustrates these points. It would also be possible to provide 

an 'adaptive' Huffman encoding, in the sense that the program could decide whether the 

entropy in the coefficients justified the application of additional entropy coding. 
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II File Size I :\o- lluff I \\'ith -lluff I Table I T-Ent A-Ent I 7c Gain Q-LYIS II 
lenna 6.5.5.5 I 10//.5 LOOm 5.5!) 6.32 6.36 I ~.56 

house 6.5.5.5 L L0/1.5 9-50() 618 .5.6.5 5.61 II 2.16 
tree 6842!) L 1103 113.-J!I 528 7.62 7.6tl -2 2.56 
hanna 10631.5 L /!).5:1 156!)!) 564 6.37 6.40 9 256 

Table 4.1: Huffman coding overhead. This table provides some data on th e over heads imposed by 
static Huffman codin g in the proposed compression scheme. Table denotes the size of the Huffman table (in 
bytes), T-Ent and :\- Ent the theorc>tical and attained entropies (in bpp), Gain is th e overall compress ion 
gain and Q-Lvls give the max numb C' r detail reproduction levels. 

4.6 An Alternative Compression Scheme 

The above discussion should make it apparent that VQ does not exploit the wavelet trans­

form (or at least the spline-wavelet transform) to its full potential. This failure is , at least in 

part, due to the manner in which the quantizers are produced viz. by some sort of learning 

or training mechanism . In the case of VQ, the training process 'averages' the training set 

and unless one has a very high number of reproduction levels, the results are, in general, less 

than satisfactory. A far better , approach, in my opinion , would be to consider each image 

on its own merits, rather than attempting to extrapolate general image characteristics from 

a t raining set. This is the approach taken by Lewis et a! in [25]. 

One starts at the lowest level of a four level decomposition, by first encoding the approx­

imation coefficients with eight bits each. Each 2x2 coefficient block in each of the 4th 

level detail sub-bands is then considered. The visual threshold of each block is computed 

and if that block is considered to be important (its energy normalized w.r.t. the visual 

threshold is large enough ) then the block is encoded; if not, the block is not encoded. Each 

coefficient in the block is coded with a linear mid-step quantizer, the step size of which is 

determined by another HVS calculation. Once a block has been transmitted, the 4 pixel 

values which correspond to each of the block 's pixels in the higher-resolution sub-band (i.e., 

the one that was down-sampled ) are considered. They are subjected to the same sort of 

HVS thresholding and , if they are deemed important enough, they are transmitted. This 

process of checking and transmitting coefficients continues recursively, for each sub-band, 

until all the spawning blocks on level 4 have terminated (reached level 1). The encoding 

process exploits Ylarr 's observation that important detail persists over multiple resolution 

levels - if an edge exists at level l , it should also exist at level l - 1 (one level up) and 

thus the higher level blocks which give rise to the block under consideration should also be 
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considered. 

Another bonus for the scheme is that the explicit positional information for each block 

may be inferred from it s position in the quantized stream, provided the recursi\·e encoding 

includes tokens to indicat e when a stopping condition (no transmission) is reached. Contrast 

this to VQ, in which every block has to be coded. Since the quantization is based on 

characteristics of each image, rather than projected statistics , the coding should be more 

robust and can certainly be called adaptive. The quantization itself is preferable , since each 

coefficient is quantized separately allowing for better reproduction of the coefficient values. 

The coefficients are HulTman coded. There will be some overhead in storing quantizer 

parameters , but this is minimal - most of the information to describe the quantizer may 

be regenerated recursively during reconstruction , since this information depends only on 

information already re-created . 

Some final observation are in order. Firstly, the method described will result in an image 

dependent compression ratio: highly uniform images will fare better than those with much 

variation. Secondly, the method was implemented using the Daubechies order four orthogo­

nal wavelet , which has smaller support than that of the quadratic spline wavelet. A wavelet 

with small support ensures that quantization errors are well localized. 

4. 7 Concluding Comments 

Wavelet image compression is capable of producing high compression ratios whilst main­

taining important structural information. The efficiency with which the transform can be 

implemented means that one does not need to apply image-domain blocking operations , 

thus eliminating blocking effects. 

MMSE vector quantization has been successfully used with coding of hi-orthogonal wavelets ; 

however , the use of a mean-squared error distortion measure would seem to be inappropriate 

for the spline-wavelet compression used in this dissertation: the poor compression perfor­

mance can be ascribed, at least in part, to the non-orthogonality of the transform and the 

subsequent non-preservation of the L2 norm. This should not be seen as an indication of 

poor compression potential: provided a suitable mechanism can be found to encode the nec­

essary (sparse) information in the transform domain , spline-wavelet coding should achieve 
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similar performance to it's orthogonal counterparts . Ilere it was the quantization scheme 

which was inadequate, not the variant of the wavelet transform employed. 

The alternative compression method outlined above seems a more natural and appropriate 

means of attaining the desired performance. However , the choice of an appropriate distor­

tion measure for use in the quantization phase remains problematic. Despite these objection, 

it was shown that texture-masking effects may permit the VQ compression scheme described 

above to remain feasible for heavily textured images. 



Chapter 5 

The Difference Engine and Image 

Synthesis 

Once the wavelet-encoded image has been decompressed , the array of data values must be 

converted into a visual representation i.e., the pixels corresponding to the reconstructed 

image must be appropriately illuminated. This phase is usually accomplished by directly 

mapping the data values into video memory or by means of special display processors , 

which may perform a variety of higher level pixel manipulations. In both of these cases it 

is assumed that the value for each pixel will be explicitly provided by the front-end. This 

assumption seems to be axiomatic. This need not, however, be the case. The Difference 

Engine provides a means of circumventing this requirement, provided that the scan-line 

data are restricted to lie on a polynomial of some specified degree. In this case, all that 

this display processor requires is a list of the polynomial's forward differences and initial 

intensity (hence the name) . Although the full complement of pixel values is eventually 

displayed, those which are not specified can be determined very speedily and without the 

aid of complex logic. 

There are a number of issues which must be considered before such a scheme can be effec­

tively implemented and these will be discussed in the following sections. 

Section 5.1 provides an overview of the Difference Engine (DE). The manner in which a 

spline multi-resolution analysis can be used to synthesize an image on the DE is investigated 

in Section 5.2. Section 5.3 examines methods of improving the efficiency of the synthesis 

94 
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procedure. whil e Sf'ction .1. ·1 :t.n:~.h· sc·s t hf' pC'rrorlll:t.llC(' or t hf' proposf'll S.\'S tf' ll l. 

5.1 The Difference Engine 

The DifTerence Engine is the final compon0nt in the rendering pipeline or a new display 

architecture de,·eloped a t ('\\ '[ [:3]. Originall.v d0signcd to pro,·ide rapid rendering of Phong 

shaded objects. which hav0 polvnomial int f' nsit_v profi les [3], this display processor has the 

ability to interpolate an arbitrary length span of such pixels with a single instruction. 

The interpolatory logic is implemented as a systol ic array - each new cycle produces the 

complete set of values for the specified span. 

An nth degree polynomial span may be spec ifi ed by a starting point, a set of n forward 

differences and the width of the span. The pth order forward difference of ! (x) is 

(flp!)(x) = (6p- I f)(x + l ) - (C.p-1 f)(x ). ( 5. 1) 

where 

(flo!) (x) = I(x ). (.5 .2 ) 

Once the required differences are comput ed, using the simple recursive scheme presented 

above, the polynomial values at uniformly spaced intervals (Z, in this case) may be obtained 

by using the following simple update rule 

(5.3) 

for consecutive values of x. The 11ns cycle time of this processor means that one can 

perform these calculations with sufficient speed to ensure pixel production at the display 

refresh rate. 

The proposed architecture does not employ a frame-buffer. Instead , the image is repre­

sented as a list of primitives and the objects selected from this list are converted into DE 

instructions by customized hardware, at a sufficient rate to provide real-time video display. 

The complexity of the image determines the size of the list and consequently the number 

of instructions which are produced. 

The instruction set for the DE is presented in Table 5.1. 

There are two important points which should be noted: 
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operati on 
acc_modc 

di s(x,dx ) 

evalO (x. dx .i ) 

evall ( x.dx,i ) 
eval2 ( x,dx,i ,di ) 

eval3 (x,dx,i ,di.ddi ) 

eval4 (x,dx,i,di,ddi ,dddi ) 

eval n 

nop 
refresh 
setddi (x ,ddi ) 

setdi (x,di ) 
seti ( x,i) 

setpddi (x,dx,ddi ) 

setpdi(x ,dx ,di ) 
setpi (x,dx,i) 

dcscript ion 
Accumulate mode: if enabled negative int cnsit ics arc 
not added to accumulator 
di sable accumulation of intensities from pixel ·x ' for 
'dx ' pixels (cleared after next 'eva! *' command ) 
Set pixel (i. e. , accumulator) from 'x' for span of 'dx ' 
directly, disable further additions until next refresh. 
add i to accumulator for span from 'x ' for 'dx ' pixels 
First order forward difference, starting at pixel 'x ' wi th 
value ' i' and increment 'di ', for 'dx ' pixels 
Second order forward difference - like 'eval2 ' except 
now 'di ' is also changed by 'ddi ' at each st ep 
Third order forward difference, like 'eval3 ' mutatis 

mutandis 

Higher, n- 1, order forward differences 
No operation 
Output accumulator value and clear everything 
Set (i. e, override) second differenceb at the point 'x ' 
with 'ddi ' (issued before an 'eval* ') 
Like 'setddi ' only it affects the lower forward difference 
Like 'setdi ' except that this creates a span of 
intensities 
Set (i.e, override) second differenceb at points 'x ' , 
'x+ dx' , 'x+2dx', . .. in the middle of the next 'eval ' 
command 
Like 'setddi ' only it affects the lower forward difference 
Like 'setdi ' except that this creates a pattern of 
intensities 

Table 5.1 : Difference Engine Instructions and Their Costs in Cycles 

cycles 

n + 2a 
1 
2 
2 

2 
2 

2 

2 
2 

N ote: The costs mentioned above are incurred whether a span is 1 pixel long or covers the 
whole width of t he scan-line. 

aThe cost of this operation can be reduced by 2 cycles in future versions 
bif there are higher order differences then this sets the highest order difference 
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• the DE ca.n int0rpolat0 arhitr ar~· ord0r polnJomia.ls. in timf' proportional to th f' df'grf'f' 

(cmren tl_,. n + 2 c~· rlf's for a poln1omial ci f df'grf'f' 11- I ). 

• the DE pro\· ides a. sran-l ine arrmnu lator. 

The DE can interpola te polynom ia.l spans accm atcly up to a length dependent on the degree 

of the polynomial - cmrcn tl~' about -'1096 pix0ls fo r a quadratic and:) 12 pixels for a cubic. 

This limit poses no problems. sinre the imag0 data can be segment ed into several spans if 

the need arises. whirh 1s unlikcl:v if one uses t I](' quadra.tic scheme proposed in earlier in 

this dissertation. 

The existence of an int ensity arcunmbtor is f'sscnt ial if one wishes to usc the DE for multi­

resolution image synt hcs is. sinrc one th en needs to accumulate several levels of detail for 

each scan-line. Furthermore. since one would like to produce the pixel stream as quickly 

as possible, the first point implies that a low order polynomial should be selected. These 

issues will now be taken up. 

5.2 M ulti-resolution Image Synthesis on the Difference En-
. 

g1ne 

The DE provides a means of effici ently di splaying images which are based on polynomial 

patches. Thus , if one can find a means of decomposing an arbitrary input image into a series 

of polynomial primitives , the DE can put its speed and architecture to good use and (in 

appropriate conditions) provide performance gains over conventional display hardware. In 

particular , since only a small set of pixel values are required to interpolate an arbitrarily1 

long span the computational demands on front-end processor (which must compute the 

intensity values) may be drastically reduced. This is of particular benefit when one performs 

image reconstruction after compression, since the process of computing each restored pixel 

value may be computationally expensive - if the restored values are constrained to lie on 

a polynomial one need only compute sufficient values to determine the forward differences. 

The DE will implicitly, and at negligible cost , provide the remainder of the pixel values. 

But how does one achieve this polynomial segmentation? The means of providing such a 

decomposition was introduced and developed earlier in this dissertation: polynomial-spline 

1 Note: numerical accuracy eventually becomes an issue. 
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multi-resolution ana.l~·s is . It shank! now be clear that the semi-orthogonal \liL\ was chosen 

for the following rrasons: 

l. to prm·ide the (reput edl.v ) high compression ratios of wavelet coding 

2. to enable the efficient synthesis of compressed images on the DE. 

The reconstructed image consists of a series of detail images and an approximation image, 

as discussed in earlier chapt ers. On level j , the approximation image satisfies t.he following 

relationship 

IJ (i , l )I[J.:2i, (k+l )2 i ]2 E 7r~_ ,, i , j,k , l E Z (.5.4 ) 

That is, the restriction oft he approximation function, fJ (x , y ), to the cardinal integer knot­

sequence indicated provides us with a polynomial of degree m - 1 in two variables. The 

detail image, gl (x , y ), on level j satisfies a similar relationship, but with j- 1 substituted 

for j . Thus one arrives at a segmentation of the image in terms of polynomial patches (of 

order m ). Once the bounding dimensions of a patch have been determined (Equation (5.4) ), 

the 2-D polynomial can be interpolated using successive horizontal sweeps of a 1-D forward 

difference scheme, since the x cross sections of such a (tensor product) patch are themselves 

polynomials in one variable. One could also employ a scheme based on 2-D finite differences , 

but such an approach is rather cumbersome, prone to inaccuracy and introduces additional 

overheads - this issue will be taken up in a later section. 

Thus , to recreate an image from its multi-resolution (MR) decomposition , we have the 

following algorithm (for each scan-line): 

1. Determine the size of the polynomial spans 

2. For each scan-line in the detail image and approximation image 

2.1 For each span on the scan-line 

2.1.2 compute the required differences 

2.1.3 compose the appropriate DE instruction to interpolate 2j pixels and send. 

The pixel values which must be computed are determined from the approximation and 

detail image formulae presented earlier. The latter, in particular, is expensive since there 

are three detail signals involved at each point. Some comments are in order. 
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Firstly. sin ce the goal o f th e schcnH' is to achif·w· mor<' <' ITi c i<'nt produ cti on of pi xe l \·aln<'s b~· 

only computing essentia l informa tion. Oil <' dof·s no t wish to comput e difTrrence information 

unn ecessarily. For au n th degree polyn om ial \\'e need n pixels to comput e th e required 

difTcrenccs: if th e spans a rc of t hi s length or short er. one should set each pixel in the sca n­

line directly (using th e L cycle c\·alO instru cti on. cf. Ta ble .).I ) . 

Secondly. although the spans arc of lengt h 2{J:J- I} + I pixels. only the first 2{J:J - I} o f 

th ese are set: the last pixel serves as th e startin g point for the next span and is set by the 

a ppropriate cvaln instru ct ion . Of course, th e instruct ion whi ch int erpolat es the las t span on 

the scan-line will set t he last pixel. The semi-colon not a tion is used to distinguish between 

the indices for t he approxima tion and th e detail span lengths, respect ively. 

Thirdly, the full ~1R synthesis is more expcnsi\·e than simply set t ing each pixel directly, in 

t erms of both pixel evaluation cost s and the number of cycles required to interpolate each 

scan -line . The number of function evaluat ions ( i.e .. 9J..:(i , j ), h (i,j)) required for multi ­

resolution synt hesis of a scan-line is 

lxl L lxi 
F (m,L ) =m L + m ~ . 

1 
• 

max(2 , m ) ~ max(2J- , m ) · 
(5.5) 

where L ~ 0 is the number of levels in the decomposi t ion , I xi is the length of the scan­

line (in pixels ) and m is, as usuaL the order2 of the polynomial. This cost function does 

not t ell one anything about the actual comput at ional cost of each function evaluation. 

The approximat e number of multiplications required 3 (a fair indicator of computational 

complexity - the number of additions is roughly the same) is 

~ ~ [ m!xl ] d [ m ix! ] a 
M(m, L ) = ~~ max(2J- l , m) W (p, m) + max(2L , m) W (m ), (5 .6) 

where the the weighting func t ions wd and wa provide t he approximate number of multi­

plications required to evaluate a pixel in the detail and approximation images , respectively. 

These weights are as follows: 

d { 2m
2 

p = 1, 2 
W (p,m) = 

2 4m p = 3. 
(5.7) 

2 Recall that an order m polynomial is of degree m - l. 
3This approximation is based on direct evaluation of only necessary pixel values. 
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( :1.K ) 

The baselin e complexity count ( JJCC), the number of multiplications required to directly 

determine each pixel on a scan-l ine. is then 

BCC = ,\f(m. 0) = lxlm2
. (.'5 .9 ) 

However. a 4 le\·el, m. = 3 .\I R reconstruction would require 

(.5.10) 

One should, however , hear in mind that this estimate is based on direct application of the 

formulae for the detail and approximation images. The only optimizations used in these 

computations were a) the calculation of the minimal set of pixel values (those required to 

produce the initial differences) , h) the use of pre-initialized lookup tables to avoid repeated 

evaluation of the wavelet and scaling function formulae. Closer inspection of these formulae, 

however , reveals that they are separable 2-D convolutions with wavelet/scaling function 

kernels. Hence , if one used optimized convolution hardware these values could be determined 

speedily. However , doing so would mean that all the pixel values would have to be produced, 

rather than just those we need. All the subband convolutions can be computed in parallel : 

in fact , because of the separability of the wavelet kernels , the computational cost is only 

slightly more expensive than doing a direct IWT and applying the zeroth level expansion 

(normalization ). If one uses optimized FFT hardware, the difference should be negligible. 

The number of DE cycles required to produce a scan-line will depend on the number of evaln 

instructions which are issued. The Baseline Cost (BC) is the number of cycles required to 

produce (without the use of MR synthesis) a full scan-line worth of data. This value is 

merely lxl - that is, one cycle to set each pixel (using evalO, cf. Table 5.1). Full MR 

synthesis (in which an evaln instruction is issued for each span) would require 

MRCC(m, L) = lxl [~ Cj-l,m + CL,m l 
~ k 1 kL j=l J- ,m ,m 

where 

Cj,m = { 
( m + 2) if 2J > m 

(1 + 2) otherwise. 

(5.11) 

(5.12) 
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and 

if ·]_J > m 

otherwise. 

The function \I RCC( m. L ) (.\I ult i-Resolu t ion cycle count ) provides an estimat e oft he num­

ber of cycles required to perform full ). JR scan-line synthesis, under the following assump­

tions 

l. an mth order polynomial can he interpol ated in m + 2 cycles (see Table .) . ! ) 

2. spans which are too short to provide all the difference information have each pixel set 

explicitly by means of 'evall ' instructions. :'\ote: one can't use 'evalO ' because this 

turns off accumulation and would overwrite the information for previous resolution 

levels. 

This number is clearly higher than BC, which implies that it is more economical (in terms 

of instruction cycles) to perform a direct di splay of the image, rather than using the full 

multi-resolution reconstruction. 

When L = 4 and m = 3, it requires lxl (;6+
2
l cycles to produce a scan-line of the approxi­

mation image, about a third of the time required for the full direct approach. Of course , 

this approximation would be unacceptably blurred, unless the source image did not possess 

detail on the levels which were ignored (such as a high variance Gaussian or some simple, 

smooth, geometric shape). However , since such shapes are unlikely to feature prominently 

amongst the images one wishes to process , simply displaying the approximation image would 

not be a viable alternative (except perhaps , for a simple overview search in a compressed 

image database/ archive). 

If one added only visually significant detail to the approximation image, then there is a 

chance that the cycle cost would remain below the baseline cost, since many images possess 

regions in which little variation exists and these could be exploited to lower the instruction 

count. In addition, since the computation of detail pixels is expensive, the fewer one has 

to compute the more rapidly the pixel instruction stream can be produced. The issues 

surrounding such an approach are now discussed. 
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5.3 Adaptive Synthesis 

The cost of computing the full \!R synthesis is significantly more exp0nsin' thn.n setting 

each pixel directly. :\onetheless, the \ ·1R scheme can provide savings (in terms of DE 

instmction cycles required to interpolate a scan-line) over the direct approach. provided it 

is applied in an intelligent manner. By this, I means that, rather than blindly applying the 

reconstmct ion , a suitable metric is devised to determine whether such a reconstruction is 

desirable. The metric proposed here is simply the cycle count (CC) - t.he precise number 

of cycles required to interpolate t.he scan-line using adaptive MR synthesis. The way such 

a value is derived will he discussed shortly. The CC provides an immediate indication of 

the desirability of using \1R synthesis for a particular scan-line. The emphasis on scan-line 

measures is not only a consequence of the DE's architecture; an image may have regions 

which contain no detail and others which are highly detailed. If one used a global cycle 

count, the textured regions might convince one (through the global CC value) to use direct 

reconstmction on all pixel values. However, use of the scan-line measure would ensure that 

these empty regions were filled at low cost, while the textured regions were set directly. The 

use of such a criterion ensures that the scan-line cycle count never exceeds the baseline cost 

- in the worst case, each pixel on the scan-line will he set directly (requiring lxl cycles) , 

and one gains no benefit over conventional display processors. 

There are three methods one can use to produce a viable MR synthesis algorithm: 

• adaptive generation of detail information 

• merging of instructions 

• using the constraints imposed by C 1 continuity. 

The first of these involves the generation of DE instructions only for those detail regions 

which a human subject would perceive as relevant. 

Instruction merging is appropriate whenever the splines which comprise the various ap­

proximation/detail images show little variation from span to span. For example, a scan-line 

with near uniform intensity could he interpolated in one cycle using a simple zero-degree 

polynomial. This would provide a tremendous gain over issuing set pixel instructions for 

each pixel in the scan-line, since each set pixel also requires one clock cycle. One must 



CHAPTER 5. TilE D/FFEHE:\'C'E E.\'(;/.\'E .-\.\'[) 1.\f .-\(;F; SL\TIIESJS 

be careful , howe\·cr . th a t th e optimizations m ;~.d c arc not too time consuming or l e ;~.d to 

inaccuracies. In part icu Jar. since th e ;~.c rmm t b t ion of several sma ll pixel \·a! ucs ran lead 

to a discernibl e and import ant output ,·a lues. it seems prudent that one only apply such 

instruction merging to th e approximation image and not th e consccutiw• detail tiers. In 

any event , if the detail selection fnncti ons properly. there should be no redundancy worth 

exploiting in th e detail images. 

The constraint that th e quadratic splines b e elements of C 1 has an important implication 

for us: only th e second difference need be changed as we cross a span boundary. The entire 

scan-line can then be interpola ted by a single ·e,·al3 ' . Since the the set difference instruction 

is very cheap (2 cycles . currently), this provides a dis t inct advantage over issuing 5-cycle 

'eval3 's for each span. 

5.3.1 Adaptive Detail Generation 

If the object to be synthesized has little texture or edge information , t here will be few wavelet 

transform coefficients and , consequently, little information in the detail images. Given this 

scenario , one would like to generate instructions to produce the small information bearing 

regions in the detail images only. Of course. heavily textured images will have few 'quiet ' 

regions and will be less likely to yield instruction compression using such an approach. In 

this case , the CC must reflect this and the default (direct ) construction method should be 

invoked. 

Assuming, then , that one wishes to perform such an adaptive synthesis operation, how does 

one do this? The answer, not surprisingly, is to use the decoded wavelet coefficients - or 

more precisely, those which are large. These large coefficients will correspond to prominent 

texture/edge features in the original image (which is why they were preserved) . Having 

selected a coefficient , the extent of the 2-D wavelet basis which that coefficient weights is 

determined (from the expressions for their supports , see Equations (5.14)-(5.17)) and a 

structure is built for each scan-line which contains information on the resulting span extents. 

suppw[ll. .k 1 Jl I 

supp\lf[2Jj;k
1
1 -

suppw[3l..k 1 Jl I 

supp<I>j;k
1
1 

[k2J , (m + k)2j] x [Z2J, (2m- 1 + l)2j], 

[k2J , (2m- 1 + k)2j] x [Z2J , (m + l )2J j, 

[k2j , (2m - 1 + k )2i] x [Z2J , (2m - 1 + l)2i], 

[k2i, (m + k)2j ] x [l2J, (m + l)2i] , 

(5.14) 

(5.15) 

(5.16) 

(5.17) 
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The structure is es tablished in such a way that overlapping basis clements arc merged to 

produce a single span. where necessary (See Figure .).l). The structure contains information 

Basis Element I 

Span A 
Basis Element 2 

Span B 

F = a*BE I + b*BE2 

Merge(SpanA. SpanB) 

Figure 5.1: Merging of basis elements. When basis functions are summed (to arrive at the output 
image) the resulting basis elements generally overlap. In this example, two linear basis elements are weighted 
and summed; the extent of the output function is just the union of the basis element spans . Since many basis 
coefficients may be zero, the merging operation will generally yield a number of disjoint non-zero regions. 
If MR synthesis is chosen, DE instructions are produced to generate the non-zero regions intersecting the 
current scan-line. 

on the cost of building each scan-line using the MR approach - it is this information 

which governs the choice of reconstruction method for each scan-line. No actual function 

evaluations occur at this stage, since one may wish to opt for direct construction, which 

does not require these values. If MR reconstruction is selected, based on the CC, then the 

span lists for each level are traversed and the appropriate instructions generated. For direct 

construction, the level 0 image is computed from the level 0 approximation coefficients 

(derived from the inverse wavelet transform). Since some scan-lines may require direct 

synthesis, the approach used is to perform a complete inverse WT (which can be done 

quickly) and to proceed from that point. 
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5.3 .2 Instruction Merging 

The merging of instruct ions is dep0nden t on the· ,·;ni:u ion of the d ifTPrf' nccs :t.'i onf' pa.ssf's 

across span hou ndaries. One 111 ight also group ·i nst ruct ion demotion· with thi s oper;tt ion 

i.e .. deciding that the order of a spline segment should be lowered because the differences 

indicate that it has degenerat ed into some lO\\'N order polynomial. In this ca.se one could 

output a lower cost DE instmction. In the extreme case of a zero-degree polynomial with 

zero intensity, one would not output an instruction at. all. 

The span merge proceeds as follows: 

1. Compute the differences for the two spans under consideration 

2. [f the differences are the same with in the prescribed tolerance 

2.1 Create a new span with starting point of the old one and 

the extent of hath combined. 

else 

2.3 Emit processor instruction to int erpolate the (accumulated) span. 

3. Fetch next span. 

4. If no is span available emit last one and exit else return to 1. 

Another reason for only using the span merge on the approximation level is that the like­

lihood of there heing mergeahle spans is significantly greater (the image has been low-pass 

filtered ). The possibility of merging instructions is another reason to employ the MR ap­

proach: the only merging one can easily do when pixels are set directly is zero-degree 

merging i.e. , merging neighbouring pixels with more or less the same value. This is so be­

cause the pixel data may be arbitrarily irregular, unlike the pixel values in the spline MRA 

which are constrained to lie on a polynomial of known degree - one can merge very large 

spans provided the differences are more or less the same. For example, if one decomposed , 

say,~( 1~8 , rls) (a very dilated quadratic scaling function! ) the synthesis/merging procedure 

would ensure that very few instructions were needed to reproduce this image. The direct 

approach would have no way of exploiting the special nature of this test image, and would 

require many wasteful operations in reproducing this simple shape. This is, admittedly, a 

highly contrived example, but it serves to illustrate the point that the characteristics of the 

spline MRA allow one to eliminate this kind of 'redundancy' with great ease. 
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5.3.3 Calculation of the Cycle Count 

The decision a.s to whether a sca.n-line should be set directly or synthesized from the multi­

resolution analysis is based on the value of the Cycle Count (C'C'). This number provides 

the precise number of DE instruction cycles required to build the scan-l ine using a.da.ptivc 

s,ynthesis and is derived as foll ows: 

I . The number of cycles required to interpolate the current scan-line in the approxima.­

tion image is comput ed. Each span will require one instruction , at a. cost reflected 

in Table .5. 1 (except in the case where the span has insufficient pixels to produce the 

requisite differences - in this case each pixel is set separately). To reduce the count, 

'setddi ' instructions are issued on all adjacent spans except the first and an 'eval3 ' is 

then emitted to interpolate the entire scan-line. 

2. The wavelet bases corresponding to the retained (or largest ) wavelet coefficients are 

examined, and the support of the bases which intersect the current scan-line arc found. 

3. The number of cycles required to interpolate these (arbitrarily sized) spans arc com­

puted as before. 

4. The sum of these two values provides the Cycle Count 

It should be observed that merging operations are not taken into account in these calcu­

lations. Although this seems to be a serious oversight , it was a necessary one: as soon as 

merging takes place, function evaluations are required to compute difference information 

and these are very costly in relation to determining span supports . Thus , in cases where 

merging in the approximation image would serve to lower the CC below the baseline cost, 

the system would opt for direct reconstruction. However, subsequent experiments revealed 

that this is unlikely to occur. In general , approximation merging will only be beneficial if 

the input has substantial smooth regions; when this occurs , the CC will generally fall well 

below the BC and adaptive reconstruction is invoked. In any event , zero-order merging 

is always applied to the reconstructed scan-lines when direct reconstruction is used , which 

will ensure that near uniform regions which slip through are generated more efficiently. 
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5.4 Results and Discussion 

The test images used here were presented in Chapter 4, with the exception of 'circle', 

'sugar bowl' and 'hanna', Figure 5.2. In order that one might clearly see the effects of 

Figure 5.2: The test images 'circle' , 'sugarbowl' and 'hanna' (scaled versions). 

the MR synthesis operation, which depends on the number of large wavelet coefficients 

present on each level , the wavelet compression phase was simulated by zeroing all wavelet 

coefficients below a selected threshold. This threshold was arbitrarily chosen to ensure that 
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most images were \\'ell reconstl'llct f'd : OTH' <' a. ,·a. lu r ,,·a.s sclcC'Ied it \\':1.'> used \\'it h all th e 

experimental images . Th(' proportion o r \\',').\'<' If' ! C'O(' fllcif'nts r lirnina.t C'd W:l.'i rrcorded. a.s 

well as the effec ts (in terms or in SII'IICiiOn cyc]r rrductiOll J or tiW nmlti -rC'SOlution syn th esis 

and merging. To provide a. qua.ntita.tiw• m0:t.'i11r(' or instmction cycle reduction. we define 

Image h:ept :VIR used I G F L I G F2 Description 

Lenna L/.2 No/Yes l.23 1.22 Complex. texture and edges 
hanna 1.4 .. 5 0.oj~o 1.3;J 1.33 Complex. uniform regions, edges + texture 
square 1.0 Yes/ Yes .5.89 11.66 Simple. uniform regions. sharp edges 
house L0.3 Yes/Yes 1.63 l.57 Complex. uniform regions , edges + texture 
bowl 1.0 Yes/ Yes :3 .113 :3.87 Simple. Phong shaded convex surface 

Table 5.2: Compressibility vs image t.ype. Thf' fi eld ' Kept ' refers to the percentage of wavelet 
coefficients retained {by the 'compression ') . ' M ll usPd ' indicates whether MR synthesis was invoked for 
any scan-lines; the first entry gives the result fo r the o ld instruction costs, while the second provides this 
information for the new instruction costs . The fie lds ·c F l ' and 'G F2' give the gain factors for the old and 
new instruction costs, respectively. A three leve l d ecomposition was used. 

the 'Gain Factor ' (GF ) as 

(.5 . 18 ) 

where IYI is the number of scan-lines , BC is the baseline cost and CCi is the number of 

instruction cycles required to produce the ith scan-line. For example, a GF of 2.0 means 

that only half the number of instruction cycles were required to produce the image when 

compared to direct synthesis. Because of the manner in which reconstruction takes place , 

GF ~ 1.0. 

Examination of Table 5.2 reveals that as the complexity of an image increases , as measured 

by the proportion of detail coefficients retained for a given threshold, the GF decreases. 

This observation is only approximately true: an image which has sub-regions with widely 

varying characteristics may yield a larger GF than an image of 'lower' complexity (fewer 

detail coefficients above the given threshold). The smoothness of an image determines 

the degree to which it may be efficiently synthesized since such images possess very little 

detail. The nature of the smoothness is also of importance: if the image is in fact a spline 

(particularly a low resolution one), then it can be rendered very cheaply. In Low resolution 

approximation images can be generated very cheaply - this is of interest if one intends to 

use the DE for progressive transmission. To sum up, then: the gain factors were between 
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1.2 and 1.7. for images with hea\·y textures and between 3.0 and .'J .O for images with a high 

degree of smooth n0ss. 

II % 1-:ept II Setddi IJ Eva! L II Eval3 II GF ~viR 

1/.2 0.0 1.5 100.0 97.4 0.0 1.0 0.0 0. L 1.23 1.22 N/Y 
L0.7 0.0 3.9 100.0 93. L 0.0 2.7 0.0 0.3 1.22 1. 20 N/Y 
6.9 0.0 tl..) LOO.O 91.8 0.0 3.3 0.0 0 .. 5 1.20 l. 2-1 NjY 

1.0 ()2.0 6.5.7 32.9 L4 .0 0.2 14.7 4.9 .5 .7 3..13 3.87 Y/Y 
0.3 65.9 19. L 26.5 0.0 3.7 14.7 3.9 6.23 3.39 tl.3 L Y/Y 
0.2 13.4 81.2 L6.6 0.0 5.3 12.1 4./ 6.7 3.08 4 .. 57 Y/Y 

Table 5.3: The effect of detail thresholding (compression) on MR synthesis. The left and 
right columns of each entry provide data for the old and proposed instruction costs, respectively. A 3 level 
d ecomposition was used with the thresholds 0.01 , 0.05 and 0.07. The first sub-table gives the data for 
' Lenna', while the second provides information for ' Sugarbowl' . 

Table 5.3 provides a clearer indication of the role which compression plays in rendering gains. 

One would expect the GF to rise steadily as the number of detail coefficients decreased -

however, this behaviour is not immediately apparent. The reason for this somewhat counter­

intuitive state of affairs can he found in the transition of directly rendered scan-lines to those 

generated hy YIR synthesis. This occurs because the synthesis decision calculations do not 

take merging into consideration, and often the directly rendered scan-lines (which have zero­

degree merging applied to them) can he produced more efficiently than those generated hy 

MR synthesis. However, the discrepancy is normally quite small; the trade-off between 

function evaluations and accuracy seems acceptable. Of course, if all the MR images are 

computed then additional merge checking could be implemented without great cost. In the 

case of 'sugarbowl' , when the cheaper instructions are used, the GF does indeed increase 

as the number of wavelet coefficients decreases. 

It should he remembered that the gain factors given above are for reconstruction of the 

entire image ; as already stated , approximation images can be computed very efficiently. 

Since the DE was not designed for the express purpose of manipulating MR analyses , there 

are some inefficiencies in the manner in which the algorithms used render this structure. In 

particular, 'set* ' instructions cannot be reset once they have been issued, and this has the 

effect of forcing one to issue unnecessary 'set ' instructions. 

There is a strong connection between the G F and the number of levels involved in the 

decomposition. Table 5.4 provides some data to quantify this observation. There are two 
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Cost II 2 II ;~ I 

Le\'el II Setddi II GF II \IH 

2 0.0 1.-1 100.0 06.0 0.0 I 1.6 0.0 0.1 1.2:1 1.2-1 ":'./Y 
3 0.0 l..) 100.0 07.-1 0.0 I 1.0 0.0 0.1 1.23 1.22 ~/Y 

4 0.0 0.9 100.0 08.7 0.0 I 0.-1 0.0 0.0 L.23 L.23 ":'t/Y 
2 75.3 / tl./ 22.9 3 .. ; 0. 1 10.7 1..7 2.1 2.62 3.:38 Y/Y 
3 62.0 6.5 .7 32.9 14 .0 0.2 [cl./ 4.0 5.7 3.'13 3.87 Y/Y 
4 58.3 63.2 :32.2 16 .. 5 0.2 11..3 .5.6 9.0 3.1 3 .. 51 Y/Y 

Table .).4: The effect of decomposition level on \lR synthesis . The cost indicated above is 
the time requi red (in clock cycles ) to execute the indicated instruction: the first column provides the old 
instruction cost, while the second provides the proposed instruction cost . Data is given for both cases. 
The values in each column are the percentages that ea ch instruction type cont ributed towards the total 
instruction cycle cost. 'GF' stands for gain factor (as described in the text) and ' MR' indicates whether 
MR synthesis was invoked during image reconstruction. Note: if MR is ' Y', this does not imply that MR 
synthesis was used for every scan-line - only those for which it was more economical. ' N' means that no 
scan-line could be synthesized more cheaply. The same threshold - 0.0 l - was used to generate all the 
data. The first sub-table gives data for ' Lenna', while the second g ives data for 'Sugarbowl' . 

conflicting costs which have to be balanced when one decides on the optimal level of the 

decomposition: 

• as one increases the number of levels, more detail has to be accumulated, with a 

commensurately higher instruction cost 

• when few levels are used. the approximation image will require many more instructions 

to generate (because the polynomial spans are smaller) and there is little chance of 

polynomial merging occurring. 

Of course, the complexity of the image will also have an important role to play. It is evi­

dent from the data in Table 5.4 that Lenna and Sugarbowl (images with a great complexity 

difference) respond differently to the number of levels used in the decomposition. For Sug­

arbowl , a 3 level decomposition seems best. For Lenna, however, a zero level decomposition 

seems optimal- because of the preponderance of texture. Although one cannot extrapo­

late from two examples, experiments with a wider class of images indicated that a level 3 

or 4 decomposition was preferable to one with fewer levels. 

Direct pixel merging plays an important role in the magnitude of the GF for most images. 

There are several reasons for this. Most of the images have sizable uniform regions , which 
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are easily exploit ed by (direct ) zero-degree merging. Higher-order sp;m mNgin g is lf'ss 

successful because the complexity inherent in the images leads to widely \·arying difTerencf's 

across neighbouring spans on all but the lowest levels. ~atural imagrs arc grnerally too 

complex to allow any sort of real gain from a pure multi-resolution approach. hm·ing too 

many wavelet coefficients at lower levels . However, if the image to he decomposed consists 

of polynomial primitives , such as the Phong shaded images referred to earlier. the gains 

can become significant since the high resolution detail tiers may be entirely discarded. In 

addition , there is also apport unity for higher level span merging, resulting from uniform 

polynomial segments intersecting several consecutive spans. Since these are precisely the 

kind of images the DE was designed to synthesize, the usefulness of iv1 R synthesis and 

merging should be evident. Furthermore, such images will have few wavelet coefficients 

and will not require many detail evaluations , thus lowering the computational burden and 

allowing more rapid instruction generation. 

Merging is not without its pitfalls , however. In particular , if neighbouring spans with 

dissimilar differences are merged , the resulting interpolation errors can become acute. This 

problem is exacerbated by consecutive span merges , since the resulting span may be very 

long. For the purposes of the polynomial merge, the difference were required to be identical 

within the accuracy provided by a single precision float , except in the case of direct pixel 

merging. In this case, all pixel values within one gray-scale of the of the chosen pixel would 

be approximated by that pixel , using an 'evalO' of the appropriate length . 

5.4.1 Alternative Archit ectures 

A 2-D Difference Engine 

The 2-D spline multi-resolution analysis ensures that detail and approximation images on 

level j have constant polynomial character over patches with with support 

[2{j;j-l} k, 2{j;j- l } (k + 1)] X [2{j;j-l} k, 2{j;j-l} (k + 1)]. (5.19) 

The semicolon is used to differentiate between the approximation and detail images, re­

spectively. This coherence is not exploited by the synthesis algorithm , because the DE is 

inherently one dimensional. One could, however, introduce a 2-D Difference Engine i.e. , one 

which performed interpolation across scan-lines as well. Of course, the output would still 
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haYe to he a t-D pixel stream onr could thus maintain th e DE ;end pr<'C<'dr it b_v some 

sort of 'Y-processor ' . which w01dd ut ili z<' simihr logic to pro\·idc sc;cn -lin e intNpol;ct ion . 

The 2-D DE would interpolat e a rectangular r<'gion gin•n the necessary .c and .11 differences 

and input intensity (fort he top left hand corner of the rectangle) . outputting a scan-line 's 

worth of DE instmctions aft er processing ewry new y value. To int erpolat e a quadratic 

patch. one would need to specify nine differences . 

the starting co-ordinates. the starting int ensity value and the x and y dimensions - l 11 

pieces of information in all. To interpolate a square of size n x n, we would require 5n pieces 

of interpolation using the DE with quadratic splines. The gain becomes more significant 

with larger block sizes. Of course. the amount of information one has to provide is not. 

the only measure of gain that should be employed. The number of cycles required to 

execute the instruction would be the real indicator of success. Obviously, for small patches , 

a straight DE interpolation would perform better - one could devise some sort of pass 

through mechanism, which would allow the previous instruction set to function in the way 

it had before, just forwarding the instruction straight to the scan-line DE. 

The major limitation with such a scheme is the rapid build-up of interpolation error, result­

ing from the lack of additional precision bits. Quadratic interpolation error in 1-D grows 

as O(n2 )- in 2-D this would be O(n4
), limiting the size of the region one could accurately 

interpolate (with 24 precision bits ) to a square of size 64x64. Of course, one could increase 

the number of precision bits , but if the MR decomposition does not proceed beyond j = 4, 

this would be unnecessary - the patches on this level are of size 16x16 (this discounts 

merging operations, though, which could increase the effective span support substantially) . 

Assuming that the number of precision bits (and the precision of the input) were up to 

the task, one could (in theory) interpolate the entire image with one Y-processor instruc­

tion (once again , this is a contrived but illustrative example ). Before one could deliver a 

meaningful decision as to the viability of such a scheme, a full analysis would have to be 

undertaken. 
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Direct Basis Accumulation 

The express ions for the support of the wavelets and scaling function (Equations (.').14 )­

(5.1/ )) show that there arc only a limited number of basis functions for each resolution - the 

three wavelets and the scaling function . The basis values can he generated by multiplying 

the appropriate functions on the appropriate resolution level and the resulting intensity 

information for each x cross-section can he entered into a table indexed by resolution, 

orientation and the position of the cross-section in the 2-D basis. A special instruction 

could he implemented which could multiply each intensity value in a specified cross-section 

and accumulate it at a given location in the scan-line accumulator - like an 'evalO ', hut 

with span data determined from the table. This basis data could he operated on in parallel 

(the multiplications, shifting and accumulation would he done in parallel ). 

Image synthesis would proceed in a similar fashion to that proposed earlier in this chapter: 

1. the wavelet coefficients would he used to generate a scan-line list containing infor­

mation about bases which overlap each scan-line (i.e., the resolution, type and cross­

section identifier, the basis coefficient and location of the basis on the scan-line.) 

2. each scan-line would he traversed and each basis cross-section would he generated by 

issuing the special 'eval ' instruction, which would accumulate the weighted basis at 

the appropriate location in the accumulator in a very short period of time. 

The new instruction would probably require 3 clock cycles, one to do the multiplications, 

another to shift the intensity data to the appropriate point and the last to accumulate the 

data. In addition, there are three wavelets which have to he accumulated when generating 

detail , which means that 3 of these instructions would have to be issued to accumulate detail 

which was present in all orientations. Nonetheless , since the time required to generate each 

basis is independent of the resolution, and the low resolution bases will be far more numerous 

than high resolution bases, there would he marked gains (Most of the high resolution bases 

would be removed by the compression phase). In addition, it would he even cheaper to 

produce approximation images than in the scheme proposed earlier. 

In this scheme, there is no need to interpolate splines - or even do interpolation, for that 

matter. Indeed, the scheme is more general in that arbitrary wavelet (or other) basis can 

reside in the table: orthogonal , hi-orthogonal etc., provided they have compact support. 
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An option could be included to load the table with new wavelet data. to allow maximum 

flexibility. 

5.5 Concluding Comments 

Adaptive multi-resolution synthesis offers a means of exploiting the structure of the wavelet 

compressed images - or more precisely, the associated ~1RA - and the architecture of the 

Difference Engine. While the gains attainable using this approach depend on the complexity 

of the image involved, the inclusion of a span-merging procedure ensures that one can 

always4 achieve some sort of reduction over the baseline cost. While the computational 

overheads involved in direct computation of the various multi-resolution images seems, at 

first glance, to be excessive, fast convolution schemes can be designed (and implemented in 

hardware) to ensure that these calculations can be performed efficiently. 

The decision governing the choice of image synthesis (direct or multi- resolution) is made 

independently for each scan-line, providing a simple but effective kind of image adaptivity. 

The number of processor cycles required to render a scan-line is bounded above by the 

baseline cost: under no circumstances will the BC be exceeded. In addition, to ensure com­

putational efficiency, no function evaluations occur until the relevant type of reconstruction 

has been selected. The calculations required to make this determination are straightforward 

and do not require much CPU time. 

To improve rendering performance, the spline continuity is used to ensure that low cost set 

difference instructions are used rather than full interpolation instructions, where possible. 

Furthermore, the possibility exists to improve rendering efficiency by exploiting scan-line 

coherence i.e. , to introduce a processor which performs rapid 2-D interpolation. Alterna­

tively, one could opt for a more general image synthesis approach, which would not tied to 

any particular image representation. While there are many issues which would have to be 

examined before such a device could become a reality, the ideas raised above certainly bear 

closer scrutiny. 

4 Except in extreme pathological cases! 
\ 



Chapter 6 

Second Generation Image Coding 

There are a variety of methods for achieving image compression, ranging from the exotic 

to the trivial - some of these were discussed in Chapter 4. These 'Classical' image coding 

schemes are known as first generation techniques. Included in this category are (differential ) 

pulse-code modulation , delta modulation. predictive coding and transform coding. Such 

methods make little or no attempt to use any but the most trivial properties of the human 

visual system (HVS). These techniques may he lossy or lossless. When low hit-rates are 

required, lossy coding must be employed. since lossless techniques are limited by their 

requirement of perfect reconstruction. 

Second generation methods are those which are specifically designed to exploit the inad­

equacies of the HVS , such as its insensitivity to high-frequency noise. Wavelet sub-band 

coding, as discussed in [1, 25. 15] falls into this category. Such compression schemes at­

tempt to simulate the action of visual processing i.e., to extract and retain only visually 

relevant information. Wavelet-based schemes are not alone is in this regard; Watson [50] 

has developed another such scheme, which uses the suggestively named cortex transform to 

model the action of the visual cortex, the region of the brain in which visual information 

is processed. There are many other examples of HVS models (see, for example, [44, 17]); 

one might almost say that any worthwhile image compression scheme will be built around 

some sort of HVS model. Kunt et al [23 , 24] explores this topic in great detail. 

The method used to compress the wavelet transform coefficients - MMSE vector quanti­

zation - proved unsatisfactory in that it failed to adequately exploit the compressibility 

of the wavelet representation (Section 4.5.2). This can be attributed, at least in part, to 

115 
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the use of too simple an 11 \ 'S model. The following sections arc aimed at dr\·f'loping a 

satisfactory means of exploiting both the redundancy inherent in the transform a.nd the 

nature of the II VS to achie\·e a higher level of compression performancr. The di scussions 

presented here should be considered as preliminary to future work. 

Sect ion 6. L proYides a simple introduction to edge detection techniques. The manner in 

which edges may be construct ed from these points, and efficiently represented , is discussed 

in Section 6.3. Edge-based image reconstruction is covered in Section 6.4. An alt.erna­

tiYe coding scheme. geared towards the Difference Engine, is suggested in Section 6 .. 5 -

Sect ion 6.6 presents the results of some simple investigations into facets of the proposed 

scheme. 

6.1 The multi-scale edge characterization of images 

There is wide consensus on the important role that edges play in our interpretation of visual 

information. Marr [34] suggested that the brain extracts a skeletal edge representation of an 

image as a prelude to higher visual processing - the so-called primal sketch [34 , 35]. Marr 's 

conjecture, which holds that all the information necessary to fully describe an image may 

be extracted from the edge information present on all scales, is a formalization of this idea 

- see Section 6.4.2. The Conjecture is intuitively appealing: images are made up of edges 

and texture- however , upon closer inspection, texture is subject to the same analysis i.e .. 

it too is composed of edge and 'texture' information. This process may be repeated until no 

additional detail is discernible. Such an edge-map encoding would seem to offer a means of 

obtaining a very compact image code, given the sparse nature of such a representation. Of 

course , one first has to extract the edges- a task which will be examined in the following 

sections. 

6.2 Edge detection methods 

Many of the algorithms used to detect edge-points are unexpectedly simple. It is this very 

simplicity which underlies the major difficulty inherent in edge detection viz. , which edge 

points lie on 'legitimate' edges and which are merely the by-products of computational or 

image noise? In fact , the problem may be worse, particularly if one is aiming to develop a 
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compact image code. In thi s C:L.<;P. hrsidPs th P kgi timac~· issur. thP whole quPstion of rrlcranl 

edge select ion comes tot lw forP . . \ ft er a ll. one· dors not wi sh to maintain unnecessary edge 

information in such a represen tati on . Cnfortunat cly. the !attN problem is. in general. one 

which cannot be automated i.e .. it call s for some measure of subj ec tive judgment. One can 

at tempt to classify edges ba.c;ed on obvious crit eria such as edge length. the aYerage grey-scale 

value along the edge etc. but a ll of these fail und er appropriate conditions. ~onetheless , 

while a general solution is (presently ) un att a inab le. one can still use the standard methods 

to obtain a generally satisfact ory Pdge decomposition. 

Edge detection is a two phase procedure consisting of 

1. the determination of edge points and 

2. linking these points into edges or cont ours. 

The latter problem will be cons idered in Section 6.3 ; t he former is addressed now. In the 

following sections the phrase ·edge detection ' is used rather t han 'edge point detec tion ', 

since this is the usage most prevalent in t.he lit erature. 

6.2.1 Standard approaches to edge detection 

Before any meaningful attempt can he made to extract the edges from an image, one 

must have a clear idea of what an edge is. An edge point is one at which the intensity 

undergoes maximum change as one moves in a prescribed direction. The totality of all 

such simply1 connected points . for the selected direction , is said to constitute an edge with 

a direction perpendicular to the direction of maximum change. (See Figure 6.1). This 

kind of directional edge detection is accomplished (in the continuous domain ) hy taking the 

directional derivative of the image function , and checking to see whether the point under 

consideration maximizes this function for the given direction. If so , it is a point in the edge 

with the prescribed gradient. For example, ~ provides a means of detecting vertical edges. 

In many cases , however, one wishes to use an edge-detector which is isotropic i.e. , which 

does not perform directional edge detection. In this case, one can use a gradient-based 

operator. This involves the computation of the magnitude of the 2-D gradient operator , 

(\7 I ) ( x , y) defined as 

1By this I mean that an edge point will have a maximum of two other points connected to it . Naturally, 
the end point of an edge will only have one neighbouring edge point . 
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Figure 6.1: Edge detection. The directionn.l derivative attains its maximum in the direction of the gra­
dient vector (which is perpendicular to the surface under consideration). The edge direction is perpendicular 
to the direction of this vector. Edge points are located at the centre of an edge, since this is the point at 
which the intensity change attains its maximum . 

(nl)( ) = 8I(x, y) ~ 8I(x , y) ~ 
v x , Y - ax 1. + oy J (6.1) 

The magnitude value is then thresholded, and all points above a prescribed threshold are 

considered edge points. The problem with this approach is that of broad edges: all the edge 

points above the threshold are selected, not only the maximal ones. This problem can be 

resolved by edge-thinning techniques [26]. 

Since the images one works with are composed of discrete samples , the partial derivatives 

have to be replaced with finite difference approximations. The precise manner in which the 

derivatives are approximated determines how successful the edge detection phase will be. 

A number of edge detectors [26] have been developed for images with varying requirements. 

An alternative to computing the first (directional) derivative is to use a second derivative 

formulation. In this case , an edge point is one which produces a zero in the second derivative, 

rather than maximizing the first derivati ve [6, 35]. One can use the Laplacian operator, 

(
" 2!)( ) = 82 I(x , y) 82 I(x , y) 
v x , Y - o2x + o2y (6.2) 

to provide an isotropic second derivative. 

Because the finite difference operations are sensitive to noise, Canny [6] precedes the gradient 

operation by Gaussian smoothing. This serves to de-sensitize the detection process and leads 
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to more accurat e edge <'Xtrartion. \I:Lrr and llildrf'th [:3.1] usc a similar approach. although 

in this case the Laplacian formulati on is llS<'d in st 0ad of maxima dct cc t ion . \' O\\' hmn' wr. in 

keeping with :\larr 's conjcct urc. the edge J ctf'C t ion becomes a multi -scale process. Gauss ians 

of differing variance arc used to smooth the image before the detection phase: important 

edges are considered to he those which persist over se,·eral scales. The detection and 

smoothing phases may be combined and treated as one filt ering operation. The impulse 

response of the resulting com·olutional operator then has the shape of a 'mexican hat '. 

6.2.2 Wavelet based edge detection 

The connection between wavelet transform coefficients and edges has been stressed repeat­

edly throughout this dissertation . These coefficients are large in the vicinity of rapidly 

changing intensity values. prec isely the sort of behaviour exhibited by edges and texture 

regions. However, one cannot construct a wavelet edge detector in an arbitrary manner. 

The construction in [33] is based on a cubic spline wavelet. The scaling function is chosen so 

that its integral is unity; the wavelet is obtained from the scaling function by differentiation: 

j ¢(x)dx = 1. 

'lj;(x) = d¢(x ) 
dx 

(6.3) 

(6.4 ) 

Since the wavelet transform may be re-writt en as a convolution [10], and convolution 'com­

mutes ' with differentiation , one may write 

(W1/!J )(s, x) = (! * 'l/Js)(x ) = s d~ (! * 6s)(x) (6.5) 

where sis the scale and <Ds(x) = ~¢(~). Thus, in 1-D, the wavelet transform defined w.r.t. 

to the wavelet 'lj;(x ), is equivalent to a Canny edge detector [6] (the scaling function assumes 

the role of the smoothing gaussian). To find edge points one searches for wavelet transform 

maxima. In fact , it is advantageous to use the modulus of the wavelet transform for this 

detection, since this detects only sharp variations in the signal. 

The above generalizes in an obvious way to 2-D , where we have 

(6.6) 
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wi th lPl( x .y ) = Dob: ·!l l and t:2 (x .y ) = DoK vl . 

T hus. edge point can be detected from the components of (an appropria.t ely d0fin cd ) 2-D 

wa\·elet transform . This formul ation has the advantage that the wavelet transform compo­

nents also give expli cit information about. the orientation of the edge [33]. The modulus of 

the component vector serves as an indication of of edge strength. This information is very 

useful when attempting to resolve the difficulties referred to at the beginning of Section 6.2. 

6.3 Contour coding 

If one wishes to derive an image coding scheme based on edges, then detection of edge points 

alone is insufficient . These points must he associated with the edges to which they belong, 

in order that one may code these edges. If t his is not done effectively, the resulting contours 

may be highly fragmented. Fragmentation of contours has two major consequences: 

Inefficiency the effect iveness of subsequent contour representations is degraded , 

Informa tio n Loss there may he an unacceptable loss of information, since short edges are 

often discarded in favour of a more compact edge coding. 

There are a number of situations in which contour coding will he desirable [20, 22] . The 

most obvious is when the image itself consists of line/contours only- for example , circuit 

diagrams, iso-surface maps etc . In these cases , the kind of redundancy in the image makes 

this sort of coding a natural choice. 

6.3 .1 Edge point C onn ectivity 

An edge point may be four-connected or eight-connected. In the former case, the point may 

only bind to the four neighbours which are in direct contact with it. In the latter case, it can 

also connect to the four points which only touch it diagonally ( Figure 6.2:A). The choice 

of connectivity can affect both the accuracy of the contours produced and the amount of 

processing required to construct them. If one opts for four-connectivity, then a sequence of 

diagonal edge points would not he merged (Figure 6.2:B), unless 'filling ' edge points were 

inserted to connect them. An eight-connected chaining scheme would have no problem with 
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Figure 6.2: Connectivity. A point is a digital image is surrounded by eight neighbours (A). Points 0 , 2, 
4 and 6 are four- connected to the centre point. Points 0 through 8 are eight-connected to the centre point. 
The implications of connectedness are easy to see: a sequence of diagonal points can be easily joined when 
they have eight-connectedness. When the contour building algorithm is based on four-connected techniques, 
however, special 'filling' points have to be inserted before such a contour can be built . This introduces a 
small measure of inaccuracy and makes edges seem thicker (B). 
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such a sequence of edge points. llowever. one then has to do more work. sinrP additional 

directions haw to be searrhed to determine potential edge points. 

6.3.2 Edge point chaining 

If there arc se,·eral points to which a given edge point can he connected, some sort of 

logic must be im·oked to ensure that the most likely candidate is chosen. There is no 

fool-proof method of doing this. In general , the only information available to assist in 

making this decision is the spatial position and grey-scale value attached to the edge pixels. 

Such information is of limited use in a noisy environment. Clearly, some other means of 

identifying legitimate edge points must he employed. 

Such a scheme is presented in [33]. In this system, candidate points are only chained if their 

respective strengths and directions are within a prescribed tolerance. The magnitude of the 

wavelet transform is used as the measure of edge strength. The direction of the (tangent 

to the) edge is obtained by noting that the gradient vector is perpendicular to the edge 

contour. The direction of the gradient vector can he easily determined from the wavelet 

coefficients - see Section 6.2.2. Thus, by determining the disparity in the direction of the 

gradient vectors of the two candidate points , and checking the wavelet magnitude associated 

with each point: a choice can be made as to whether they are logically connected. 

A problem which arises in this scheme (and in general) is that quantization of edge directions 

occurs , regardless of whether the edge points are eight- or four-connected. In other words: 

while the tangent to the 'true' contour may vary smoothly, the number of edge directions 

is (generally - - see [22]) limited to four or eight. However, since one can only extract 

approximate edge positions anyway, this objection is more aesthetic than practical- pro­

vided one uses 8-connected chaining. As mentioned above, four-connected chaining imposes 

some irritating constraints. ~onetheless, there may be situations in which a four-connected 

chaining scheme is preferable. 

6.3.3 Edge-Chain coding 

Once the edges (or acceptable approximations thereof) have been extracted, some means 

must be found to encode this information in as compact a form as possible. 
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Figure 6.3: A four-connected chain code. A cont our may be described non-uniquely. In the first 
diagram , the contour is traversed left t o right. while in the second it is traversed right to left. Three {relative) 
directions are used , rather than four nbsolute directi ons. 

The standard approach is contour run-length coding (CRLC) [20, 22]. As the name suggests , 

this method steps along the contour , emit ting pairs of the form (n, dirn ), where n in the 

number of occurrences of the unit interval in the direction 'dirn '. Of course the starting 

point of the contour must also be stored. The directions referred to are relative i.e ., they 

are given in relation to the previous contour direction vector. For example , using four­

connected chaining, one would have three relative directions; to go 'backwards ', you would 

start with a reversed direction vector and proceed as before. See Figure 6.3. In many cases , 

the edge chaining and contour coding are combined in one step. In this case, edge searching 

algorithms [22] are employed to resolve ambiguities (although somewhat contentiously). 

CRLC, and its generalizations (See, for example, [22]), work well for edge segments with 

long runs , such as those encountered in circuit diagrams. However , for the arbitrary kinds of 

edges one is likely to encounter in natural images, the overhead of storing a number with each 

direction symbol is likely to cause a loss of efficiency (even if one employs an entropy coding 

to reduce the size of the data). An alternative approach is suggested in [7]. Rather than 

coding runs directly, the contour is blocked into into segments of B edge points. The possible 

(relative) directions are enumerated and the direction symbols generated when traversing 

the contour are Huffman coded (Figure 6.4 ). Although this method will not, in general , 

achieve the same performance as the algorithm used in [22], it is computationally cheaper 

and easier to implement. For small block-sizes the limitations on contour torsion (imposed 
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Figure 6.4: Edge blocks for block sizes 8 = 1, 2. When using a four-connected code, there are 

'2:~ 1 3' possible blocks codes for a given size 8, since a coding scheme based on B-sized blocks needs all 
the smaller block cod es to deal with contour end-points. 

by the small blocks ) allow rates of around 1.3 bits per contour pixel to be attained (using 

B = 3). This performance is , however , for four-connected contours. For eight-connected 

contours there are many more possibilities and coding efficiency -rapidly decreases. 

6.4 Contour reconstruction 

The above process generates a series of (compactly) represented edges or contours. These 

contours may be used as the sole image representation, in which case one is still able to 

extract important contextual information (providing the encoding has not deleted too many 

edge segments). Alternatively, some sort of interpolative method may be used to produce 

a smoother, more visually appealing image. 

Two methods will be described here. The first, developed by S. Carlsson [7] , uses only 

directly available information (i.e gray-scale and geometric information) to perform image 

reconstruction. The second method, that of Mallat_ and Zhong [33] , uses wavelet edge 

detection and chaining, as discussed above. In addition, rather exotic use is made of the 

information contained in the wavelet transform to enable image reconstruction. 
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6.4.1 Carlsson's approach 

The contours extracted in [I] arf' four-conn rc tcu (because oft he edge chaining algorithm 

used ). The edge points thcmseh·cs arc located on half-pixel points: rather than storing this 

non-integral value, the grey-scale Yalue is encoded hy keeping the two pixel values which 

lie on either side of the 'virtual' edge point. The difTerencc in these values is a measure of 

edge strength. 

The geometry of the edges is stored using the block coding scheme referred to above. Grey­

scale information (edge strcngt h ) is compressed by exploiting the slow variation of grey-scale 

information along a contour. The starting positions of edges are coded using a form of run­

length coding: the distance between consecutive starting positions is coded, rather than the 

actual x, y co-ordinates. These runs are then Huffman coded. 

The contour interpolation is posed as a variational problem: minimize the variation of the 

surface constrained by the grey-scale values of the contours. This turns out to be equivalent 

to solving of a non-linear quadratic PDE [7, pg. 61]. A finite difference equation can be 

set up and solved via successive over-relaxation. This is an iterative approach, in which the 

grey scale values on the contours (which retain their value throughout) 'diffuse ' outward to 

fill the regions between the contours . In general, eight iterations is sufficient to achieve an 

acceptable level of smoothness. 

Unless the edge representation is very rich (in which case compression performance will 

be degraded) the image reproduced will suffer from a major loss of texture information as 

well as minor, but visually irritating, edge loss. To overcome this, Carlsson uses Laplacian 

image coding to code the residual (the difference between the input image and the recon­

structed one). Because much of the high-frequency information (the strong edges) has been 

subtracted from the image, one can code the residual fairly compactly without sacrificing 

intelligibility. The price paid for this gain will be the loss of small scale texture. The overall 

compression ratios are not particularly noteworthy when good reproduction is required, 

seldom exceeding 10:1. 

6.4.2 Multi-scale edge reconstruction 

While the method proposed in [33] is conceptually similar to that described in Section 6.4.1, 

the implementation is radically different. The edge detection and chaining algorithms are 
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based on the modulus and direction of the wavelet (gradient) vector, produced by the spe­

cial two-wavelet transform mentioned earlier. This approach already sen·es to distinguish 

the two methods; the conceptual correspondence becomes even more hazy when the recon­

struction algorithm is examined . 

Taking the message of ~1arr ' s conjecture to heart, Mallat and Zhong derive an inverse (recon­

struction procedure) based on the multi-scale edge information extracted, which produces 

a very close approximation to the original image. That is, the inverse wavelet transform is 

modified to deal with the edge representation. 

In their system, a series of angle and modulus images are generated from the input image. 

These 'images' represent the decomposition of the gradient vector (the wavelet transform) 

into its polar components. The extracted edges have their geometry encoded using the 

method introduced in Section 6.4.1. To make the representation efficient, only the modu­

lus/angle values along edges should be stored. The modulus values are coded using pre­

dictive coding (they are assumed to vary slowly along the edge). The angle values are not 

stored at all - they are only used in the edge chaining process. To recreate them, the 

tangent to the edge curve at each point is approximated (using simple geometry) and the 

gradient vector direction is assumed to be perpendicular to that of the tangent vector. Since 

the wavelet transform is only taken over a finite set of scales (as discussed previously) the 

information at smaller scales will reside in the approximation image, which is then also part 

of the representation and must be stored to enable reconstruction. 

Since the detail images are now encoded in the edge representation, some means must be 

developed to perform an inverse WT based on this representation. Analysis of the problem 

reveals that, in order to perform the inverse transform, one must find the element, of 

a sub-space of wavelet transforms, which minimizes a smoothness criterion (i.e., it must 

minimize a particular 'Sobolev' norm on this sub-space). It turns out that one can define 

two projection operators, Pv and Pr to determine this element. The former is merely the 

composition of the wavelet transform/inverse transform operators, while the latter modifies 

its argument by adding on sections of exponential curves (See the Appendix of [33]). When 

these projection operators are alternated, using the zero function as the initial 'point', the 

output converges (with a fair degree of certainty2) to the desired element of the wavelet 

sub-space. 
2 Certain approximations are made which affect the stability of the convergence; however, the authors 

insist that they have yet to encounter an image for which their system would not function adequately. 
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Vlhen image compression is desired. the edge representation has to be ma.de significantly 

smaller. In [17], a three level wavelet edge decomposition is used. but rather than coding 

the edge maps for all three levels , only the second level map is retained. This is used to 

approximate the other two. As in Section 6.4 . l. edge culling leads to loss of texture and 

edge information. The problem is resolved in much the same way as before - a residue 

is generated and subjected to an image compression scheme. Now, however, orthogonal 

wavelet compression is applied , a method noted for its texture preservation at fair compres­

sion ratios. Intelligible results are obtained at very high compression ratios (of the order of 

100:1) , although the image is then of poor quality. 

6.5 An alternative proposal for edge interpolation 

There are a number of problems with the edge reconstruction techniques discussed above. 

These may be summarized as follows: 

Multi-scale edge reconstruction 

1. The number of calculations required is excessive. Although the projective operators 

are 0( n log n) these operators must be iterated several times in order to get good 

convergence. Each iteration requires a wavelet transform and inverse transform as well 

as a series of exponential calculations. Running on a reasonably powerful workstation 

(SGI R4000 based Indigo2) it takes several minutes to complete the recommended eight 

iterations. Admittedly, the operations could be made more efficient, but even if one 

could improve performance, the complexity of the calculations makes this approach 

unsuitable for real-time hardware implementation. 

2. The existence of the approximation image places a fundamental limit on the achievable 

compression ratios. This image is required to make the edge representation complete, 

given the finite nature of the wavelet decomposition. There is a tradeoff involved 

here: the more levels one decomposes , the smaller the approximation image, but the 

more sensitive the resulting wavelet coefficients are to quantization. It should be 

remembered that wavelet coding the residual will introduce another approximation 

image. 
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3. [t is a non-tri\·ial problem to J ctcrminc which cugcs arc visually rclc\·ant (for recon ­

struction). The more edges one retains. the better the reconstruction. but the less 

compact the code. This is a problem common to all such edge representations . It 

seems best to allow a user-specified threshold (on edge length. say) and experiment 

until a suitable compromise is reached . 

4. The storage requirements are fairly substantial, since each detail image is now replaced 

by an angle image and a modulus image. One can improve memory utilization, but 

this complicates matters , particularly for hardware implementation. 

Edge interpolation 

1. The use of a four-connected chaining algorithm leads to the problems discussed in 

Section 6.3.1. 

2. The approach used to code the starting positions of edges (a run-length scheme) 

is unsatisfactory, since there is no guarantee that edge starting points will be nicely 

distributed across the image - Huffman coding could then prove extremely inefficient , 

given the overhead of maintaining the Huffman table. 

3. Without the information provided by the wavelet transform, it is more difficult to 

chain the correct points together. 

4. The residual is compressed using a Laplacian compression scheme, rather than wavelet 

com pression. 

From the above one can begin to see what form the alternative approach should possess. 

At the very least , the residual should be subjected to wavelet compression, preferably aug­

mented by some sort of HVS image model - the scheme discussed at the end of Chapter 4 

would fulfill this requirement. 

Since the existence of the approximation image in the multi-scale edge representation places 

a fundamental limit on the attainable compressibility, and the computations involved in im­

age reconstruction are excessive, the multi-scale compression scheme envisaged in [17, 33] is 

not viable (for us). Although Carlsson's approach utilizes a very simple edge interpolation 
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scheme, it is also it erative and multiple sweeps are required before an acceptable approxi ­

mation is produced. Ideally, one would like some sort of simple, non-iterative interpolative 

technique. 

An important part of this new approach, will he the manner in which it produces edge­

points and chains them together . From the above, it is clear that Carlsson 's recommended 

way of coding chain starting point information is less than satisfactory: it is not clear that 

Huffman coding the sequence of runs for an arbitrary image will produce a more compact 

representation ; perhaps it would be best to exclude this aspect of the coding. Wavelet edge 

chaining techniques seem more intuitively appealing and accurate. The most important 

requirement, however, is that the strong edges are extracted from the image - even a 

simple scheme should be able to manage this. Nonetheless, given the advantages of a 

wavelet edge detector , it remains the method of choice. In any event , the existence of the 

residual image ensures that we will catch any coding errors which emerge in this stage. 

Since the interpolated image will not be used as a stand-alone visual representation, the 

interpolation does not have to be accurate. However, to ensure that we do not introduce 

sharp edges in the residual , the interpolation across edges must maintain a certain amount 

of continuity. 

An important concern in our case is the manner in which such a compression scheme would 

affect Difference Engine performance. The performance gains reported earlier were based 

on the properties of the spline MRA. Unless the interpolation scheme also exhibits some sort 

of polynomial character, these gains will be sacrificed. The obvious approach is to settle for 

a (quadratic) spline interpolation scheme. Ideally, one would like to interpolate the region 

between knot points (the irregularly spaced contour points) with a single quadratic patch, 

but continuity conditions might not allow this. Nonetheless , it should be possible to arrive 

at a simple interpolation (perhaps using Beta splines, because they are more general) which 

~vill give a near-optimal decomposition, given the lack of constraints (except at edge points). 

Thus , the proposed scheme should provide the following (more or less): 

• edge point detection (via wavelet transform) 

• edge chaining (using wavelet transform info) 

• grey-scale and geometry coding using Carlsson's approach 
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Figure 6.5: Edge point map. T he edge points extracted from the second level of the wavelet decompo­
sition, using the method of [33] . 

• simple (polynomial) interpolation scheme for an irregular set of knot-points (the con­

tour pixels ) 

• compress the residual using the semi-orthogonal wavelet transform, as before. 

The final form of the decomposition/synthesis algorithm would depend on hardware re­

quirements. 

6.6 Some preliminary tests 

As a prelude to deeper investigations, a raster-based edge chaining algorithm, built around 

the public domain software of S. Mallat , was developed. The algorithm used the wavelet 

modulus/angle information to decide which points to chain. The edge chaining was an eight­

connected process, however, in order to use Carlsson's contour block coding, (for contour 

geometry) , the increment list produced was down-graded to a four- connected increment 

representation, which was then coded using a block size of 3. The starting points of the 

edges were coded in full. No compression was done on the modulus values- the intention 

was to check the effectiveness of the wavelet chaining and edge geometry representation. 

The following observations were made: 



CHAPTER 6. SECOND GENERATION IMAGE CODING 131 

)

I I 
)r 
I 

Figure 6.6: Extracted edge maps. The edge map on the left has 860 edges, while that on the on on 
the right has 416. A edge length threshold was used for both- the left had all edges containing only one 
point removed. All edges with less than six edge points were removed from the second edge map. 

1. The wavelet edge point detection works well - Figure 6.5. 

2. While the chaining is generally acceptable, one must carefully choose the tolerance 

between neighbouring angle and modulus values along a contour. If the angle toler­

ance, in particular, is too fine , the contour will be fragmented. However, choosing the 

value too coarsely allows unwanted points to be linked into the edge. 

3. The edges exhibit the thickness associated with a four-connected coding scheme. 

4. Various thresholds on contour length and average modulus value along the contour 

were tried as a means of culling edges. (See Figure 6.6) . 

The scan-line edge-chaining scheme was based on linked lists (of evolving chain sections ­

See Figure 6.7) and was a little inefficient. There was some overhead involved in 'fixing' 

edge chains to make them suitable for contour block coding. One could certainly use an 

eight-connected contour code, although the efficiency of Carlsson's approach would then 

drop - nonetheless , it is computationally less demanding than, say, Generalized CRLC 

[22] , so this might be acceptable. Alternatively, a simpler but less desirable contour coding 

method might be chosen. 



CHAPTER 6. SECOND GENERATION IMAGE CODING 132 

S ee e e e e e e E 

s ..J••••••: E 2 

,rL. 4 

s E 
Input Contour 

6 

S E 

Figure 6.7: Scan-line edge chaining. The start and end of the evolving edge are represented by'S' 
and 'E', respectively. Since the algorithm proceeds down the screen, only the directions above the current 
scan-line need be searched. When an edge point is encountered, a check is made to see whether it is already 
linked to an edge, if not it is bound to the appropriate edge. If an edge segment can be merged with an 
existing edge, this is done. 
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6. 7 Concluding comments 

This final chapter has touched on some ways in which the spline wavelet image code can 

be improved. Besides using a more effective (HVS) model to exploit the redundancy in the 

wavelet transform, one can employ edge interpolation techniques to reduce the amount of 

high-frequency information in the image. This information increases the number of wavelet 

coefficients and thus decreases the efficiency of wavelet compression. All that the edge 

interpolation need do is provide a smooth enough transition across edge regions so that 

subtracting the input and interpolated versions (to arrive at the lower energy residual) 

doe not introduce any discontinuities at the edge locations - this would defeat the whole 

purpose of the scheme. Provided the edge representation is compact, such a method should 

yield gains over straight wavelet compression. 

Image synthesis involves the reconstruction of the residual (via an inverse wavelet transform) 

and the addition of the regenerated contour image. Given our desire to use the DE, it seems 

natural that we opt for an interpolation method which can use the chip's architecture -

otherwise, we risk losing the advantages gained from spline MR synthesis. Bearing this in 

mind, the best alternative would be a spline interpolation method based on quadratics. The 

method should allow easy decomposition into DE instructions and be as general as possible 

- Beta splines have variable skew and tension parameters and would seem to be an ideal 

candidate for the job. 

The above suggestions are only tentative. However, they offer some direction, and with suf­

ficient refinement , they may form the basis for an enhanced compression/synthesis scheme. 



Chapter 7 

Conclusion 

7.1 Overview of M ain Results 

The image coding system presented here consists of two parts: 

• an image compression system, based on the quadratic spline-wavelet transform, 

• and an image reconstruction or synthesis system, generated from the associated Multi­

Resolution Analysis (MRA ). 

The choice of the quadratic MRA , rather than one based on cubics , was justified in Sec­

tion 3.4: quadratics are cheaper to evaluate than cubics but still maintain a degree of 

smoothness, a property which is absent from lower order schemes. They are also less costly 

to produce on the Difference Engine and generate less noticeable quantization errors in the 

image domain (the wavelets are smaller). Most importantly, they are a viable alternative 

- the problems associated with this scheme were shown to be tractable. 

It was clear that the distortion measure used in the quantization (minimum mean-squared 

error) was not appropriate (Section 4.5.2) - only images with few or no edges exhibited 

acceptable reconstruction fidelity for rates below 1 bpp. This was a consequence of using 

a metric which did not preserve edge coefficients and the fact that, in the semi-orthogonal 

framework , the L 2 norm is not preserved - see Section 7.1.1. 

Image synthesis starts by performing an inverse DWT. After this is accomplished, the 

algorithms developed in Chapter 5 are invoked to render the decompressed image. These 
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algorithms enable one to decrease the rendering time for most im;tgcs when compa.red to 

directly setting each pixel - the ga.ins ca.n be wry substa.ntial for smooth ima.gcs (;t factor 

of 4+). The rendering algorithms a.re designed to exploit the architectme of the Difference 

Engine , which can render splines very rapidly. and the continuity imposed by the choice of 

spline. In particular. (lower leYel) multi -resolution approximation images can be rendered 

very cheaply, since they consist of quadratic spline patches and contain no high-resolution 

detail. 

There are a number of areas for future research . The quantization algorithm must certainly 

be improved - at least to deal with edges . Further improvements should be possible using 

second generation coding techniques, particularly those based on edge-coding. Finally, the 

architecture of the Difference Engine can be modified to improve performance or entirely 

an new architecture may be developed specifically to render quadratic spline images. 

7.1.1 The Spline Wavelet Transform 

A quadratic spline wavelet transform was employed to de-correlate the image - a variant 

which has been neglected because of certain implementational complications. This thesis 

has , however, demonstrated that such a wavelet is preferable to the (more widely used) cu­

bic spline wavelet from a computational point of view, and that the 'problems' referred to 

are easily dealt with (Section 3.4). It is also more suited to multi-resolution image synthesis 

than a linear spline wavelet, since quantization errors in the latter would be more visible 

(as Mach banding). Spline wavelets per se were chosen since they are eminently suited 

to the architecture of the Difference Engine (DE). In addition, the formulation of the ap­

proximation and detail spaces in this system allows for easy generation of DE instructions, 

something that other splines schemes (hi-orthogonal, for example) do not readily permit. 

The quadratic wavelet has short reconstruction filters, which implies that one can decom­

press the coded image rapidly - an important aspect for the display of compressed video 

material. FFT processors can be used to implement the filtering operations in hardware. 

Vector Quantization 

Minimum Mean-Squared Error (MMSE) vector quantization (Section 4.4.1) was used to 

quantize the transform coefficients i.e., the reproduction vector which minimizes the mean 
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squared error when compared with the input is selected. The results obtained (Section 4 .. !).:2 ) 

showed that a .\1.\ISE distortion metric was not sufficient for the proposed semi-orthogonal 

wavelet scheme. Poor rep rod net ion of edges was evident, as well as transform domain 

blocking effects . Besides the dubious visual relevance of such a measure. the lack of complete 

orthogonality within the semi-orthogonal system poses some theoretical problems: non­

orthogonality implies that one no longer has equivalent norms for the transform and image 

domains. Thus , minimizing the transform quantization error does not ensure that one 

simultaneously minimizes the reconstruction error in the image domain (under this MSE 

metric ). 

The effects of quantization errors were amplified at low resolutions because the quadratic 

spline wavelet has a fairly large support, which in turns implies that the dilated wavelets on 

the lowest levels cover a significant area - if we had used a cubic wavelet the problem would 

have been worse, since the cubic wavelet has a larger support. However, simple thresholding 

tests (on the detail coefficients) indicate that the vector quantization did not exploit the 

sparseness of the representation very well - image fidelity was seldom acceptable below 

bit-rates of 1 bpp, unless there was a large measure of texture masking, while the number 

of wavelet coefficients which could be discarded (for a comparable level of reconstruction 

fidelity) resulted in a far lower effective bit-rate. 

While the results obtained can be partially blamed on the lack of dynamic bit-allocation 

(pre-allocated quality settings were hard-coded and remained constant for all images) , the 

uniformly poor showing for all non-trivial test images seems to rule this out as a major 

contributing factor. Examination of the transform domain representation showed obvious 

blocking effects around edge coefficients - further evidence of the inappropriateness of the 

MMSE measure. The number of reproduction levels in the VQ code-books was generally 

limited to 256, which does not enable much scope for good vector matching. Nonetheless , 

this number is of the same order as that used in other VQ sub-band schemes [1, 46]. 

However, even larger code books only provided marginal gains (Section 4.5.2). 

Entropy Coding 

Optional Huffman coding was used to exploit the redundancy in the VQ indices, a carryover 

from the non-uniform distribution of wavelet coefficients. However, static Huffman coding 

imposes the overhead of storing the Huffman code strings (or probability information), 
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which can overwhelm the gains achieYed b.\· appl_v·ing this entropy coding. 

All the images tested in this work deriwd some benefit from a perfect en tropy coding; 

however, in many cases the additional data required by the llufTman table actually increased 

the size of the compressed in format ion. The theoretical compression gain resulting from 

Huffman coding was generally in the ran ge of L0-30%. Very large images experienced a 

better practical gain than small images, since the table size is independent of the image 

size. It should he noted that the compression results cited in Chapter 4 exclude entropy 

coding. 

7.1.2 Multi-Resolution Synthesis 

The synthesis scheme exploits the Difference Engine's architecture and the properties of 

the spline multi-resolution analysis, to reduce the number of instruction cycles needed to 

produce an image. This is a two phase process, consisting of: 

• adaptive reconstruction using the MRA of the image and 

• the merging of similar adjacent polynomials. 

In this context, 'Adaptive' means that only important detail from the MRA is used to 

rebuild the image. Polynomial merging only takes place in the approximation image, since 

it is here where such 'redundancy' is likely to exist. Experimentation revealed that most 

images can be rendered more efficiently using this approach (Section 5.4). 

A series of simple computations are performed to determine whether the adaptive synthe­

sis/merging operations reduce the time to render the image below that required when each 

pixel must be set individually. If this is not the case, instructions are generated to ex­

plicitly set each pixel, otherwise multi-resolution synthesis is used to rebuild the scan-line. 

It is important to note that no expensive function evaluations occur during this testing 

- only if multi-resolution synthesis is chosen, will the required detail and approximation 

image functions be evaluated. The calculations which are used to evaluate these image 

functions can be recast as separable 2-D convolutions and implemented in hardware using 

FFT processors. 

To further improve rendering performance, the continuity constraint ( C1 ) is used to lower 

the number of separate interpolation instructions which one requires to generate a scan-
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line: to interpolate a sequence of adjacent spans. one sets the second difference for each and 

issues one interpolation instruction. 

~oteworthy rendering gains were obtained for images with a high degree of smoothness. For 

such images, the reduction in rendering time can exceed a factor of 4. Natural, textured 

images typically experience gains of between 10-60% (this is a consequence of naturally oc­

curring pixel correlations). For many images, the application of the adaptive reconstruction 

alone (i.e., with no subsequent merging) was insufficient to ensure a gain over the baseline 

count. 1 onetheless , there was a dramatic decrease in cost compared to that required for 

htll MR synthesis, since only small patches of the detail images were accumulated. The in­

clusion of the merging process in the approximation image was thus necessary for improved 

performance for a more general class of images. 

7.1.3 Second Generation Coding: edge extraction and coding 

A wavelet-based edge-point extraction and chaining system was developed as a precursor 

to a fully fledged second generation edge coding scheme. The edge extraction followed the 

implementation in [17]. The edge-point chaining algorithm, developed during this work, was 

based on the information extracted from the wavelet transform. In general , the edge chains 

are satisfactorily extracted (Section 6.3.3). However, for such a chain code to be of use, only 

longer edge chains must be maintained; there is a fair degree of difficulty involved in making 

an optimal decision. If one keeps too many edges, compression performance is sacrificed. 

On the other hand, if too many edges are thrown out, the reproduction becomes highly 

distorted. There is still much debate about the usefulness of current HVS models- this is 

an ongoing area of research which is unlikely to yield a satisfactory model until the processes 

which underlie vision are more clearly understood. Fortunately, in the context of the edge 

coding proposed in [17], one need only ensure that the dominant edges are extracted - the 

error image (the difference between the input and the approximation generated from the 

edge representation) will then be more amenable to wavelet tr~sform coding. The results 

obtained indicate that this minimal requirement is not difficult to satisfy. 
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7.2 Future Work 

7.2.1 Edge Extraction and Coding 

The last chapter of this dissertation makes a case for edge coding as a means to enhance 

compression performance. The idea is to remove the edges from an image and to code them 

in some compact manner [7]. One then generates an image from this edge map, which 

contains much of the information needed by the HVS. The residual image will generally 

contain texture information, which can be compressed using a scheme such as wavelet 

compression, which can represent such information well. The HVS's insensitivity to high­

frequency error implies that one can attain fairly low bit-rates for this data. Thus, provided 

the edge image can be coded compactly, one should achieve a higher compression ratio. 

Initial experimentation with this kind of coding has been promising [7, 17]. 

7.2.2 Alternate Quantization Schemes 

It is evident from the results obtained earlier that Vector Quantization with a MMSE 

distortion measure did not function well for the given wavelet. Possible reasons for this 

poor showing have already been discussed above. There are several options which could be 

considered to improve quantizer performance 

• use a perceptually relevant distortion measure during VQ training and quantization 

• use an adaptive VQ quantization scheme which uses more bits to qualify edge/texture 

information 

• abandon VQ and use some sort of run-length encoding. 

The question of relevance of a particular metric to quantization is generally considered to 

be an open one. There is, however, fairly wide consensus that the MSE metric is not a 

good measure of visual fidelity. It seems that the use of some sort of adaptive (predictive) 

VQ would be the most fruitful course to choose. Run-length coding has the advantage of 

simplicity, and may be useful if applied to the detail coefficients after appropriate threshold­

ing. Of course, the means of determining an appropriate threshold is problematic, requiring 

some sort of HVS model. 
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7.2.3 Alternate Spline Schemes 

It might prove beneficial to examine other spline MRA 's in detail , to determine whether 

they offer any advantages over the present scheme. For example, the hi-orthogonal spline 

wavelets seem to he amenable to MSE quantization [1]. Another possibility, and one which 

was also previously discarded , was the idea of using a spline of lower order than a quadratic. 

It may be that the decrease in the support of the wavelet can be traded off against the loss 

of smoothness and the less appealing nature of quantization errors. Such a choice might 

well be implementation specific or he forced upon one by hardware limitations. 

7.2.4 Alternative Architectures for Spline Image Synthesis 

The ideas presented below were introduced and discussed in Section 5.4 .1. The reader is 

referred there for a more thorough treatment. 

A 2-D Interpolation Engine 

The Difference Engine is an inherently one dimensional device. Consequently, it cannot 

exploit the vertical correlations which exist within the 2-D spline MRA. A way around this 

problem would be to develop a 2-D Difference Engine, i.e. , one which performed interpola­

tion in two dimensions - across scan-lines as well as along them. Among the problems one 

faced would be 

• the rapid growth of (2-D) interpolation error 

• the overhead imposed by the additional information required to interpolate a rectangle 

• the increased complexity of the logic required to handle the 2-D interpolation and the 

consequent decrease in speed. 

While these problems can probably be overcome, the gains that such a system could provide 

would only be worthwhile at low resolutions, and as such the benefits are not immediately 

apparent. 
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Direct Basis Accumulation 

Since there are only a small number of basis clements for each resolution and orientation, 

one could build a dictionary of these wa,·cforms and usc them to rcconst ruct the image: 

the image (represented in terms of its multi-resolution analysis) is just the weighted sum 

of a series of appropriately scaled and shifted basis functions. To reconstruct a scan-line 

(assuming a scan-line wide accumulator) , the orientation and resolution of the 2-0 bases 

which intersect that scan-line are determined and this information is used to identify the 

basis cross-sections which cut the scan-line (it is these cross-sections which reside in the 

dictionary). The cross-sections are accumulated into the buffer after the components in 

each waveform have been multiplied by the weighting factor and shifted into position. Since 

each of these operations (multiplication, shifting and accumulation) can be done in parallel, 

the scan-line could he rapidly reconstructed. A further bonus of this approach would be 

the ability to use arbitrary basis elements in the dictionary- a function could be provided 

to load a new set of waveforms. Thus , different image representations would he supported. 

The logic to determine the basis intersections etc. would have to be done externally, since 

this is highly dependent on the kind of representation. Nonetheless, the speed of the parallel 

operations and the configurability of the device would make it an attractive alternative to 

the Difference Engine. 
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