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Abstract

A model study was undertaken to investigate the optimization of

sampling strategies for returning low-uncertainty sea-air CO
2

flux mea-

surements in the Southern Ocean.

Replicating Lenton et al. (2006) using the ORCA2/PISCES ocean

biological model shows that sampling 4 times a year, every 2� in lati-

tude and every 40� in longitude reduces the uncertainty of estimating

annual CO
2

flux estimates such that sampling at a higher frequency

does not reduce the total uncertainty in proportion to the increase

in sampling e↵ort. Sampling at this frequency results in a annual

CO
2

uptake estimate of 0.347 PgC.yr�1 with a sampling error of 0.55

PgC.yr�1 and a total sampling uncertainty of 0.089 PgC.yr�1.

Investigation of the variability of the model shows that certain re-

gions (eg. eastern Weddel Gyre, coastal Southern Ocean) show high

variability. In these regions, the contributions to variability from the

annual cycle and the non-seasonal variability are approximately equal.

Therefore, there are areas that should be sampled at higher frequencies

than others. This knowledge suggests that sampling using objective

sampling strategies would be more e�cient in reducing uncertainty in

flux estimates.

Employing a genetic algorithm approach to find optimized sampling

strategies (not relying on a regularly spaced grid) enables the calcula-

tion of uncertainty for objective sampling strategies. optimized sam-

pling strategies using 1000, 2000, 5000 and 7000 are tested and it was

shown that the uncertainty from using optimized sampling strategies

is much lower than the uncertainty from a regular gridded approach.

Sampling using 1000 locations results in an annual sea-air CO
2

flux

estimate of 1.81 mmol.m�2.day�1 with a total sampling uncertainty

of 0.07 mmol.m�2.day�1 which is equivalent to sampling at the model

resolution.

An optimisation method that makes use of successive Radial Basis

Function (RBF) interpolations to identify sampling locations of im-

portance is used. The resulting locations selected by this optimisation

method are shown to be found in high variability locations according

to the model and observational studies.

If these sampling locations were to be sampled by wave-gliders with

pCO2 sensors in addition to the current ship-based sampling e↵orts,

the uncertainty in regional CO
2

flux estimates can be reduced to 10-

15% of annual flux estimates.
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1 Introduction

1.1 Background: The problem

Opportunities for oceanographic measurements in the Southern Ocean are

far fewer than in the Northern Hemisphere oceans. This is especially true for

measurements of CO2 concentrations and fluxes (Lenton et al., 2006; Lenton,

2009; Monteiro et al., 2010; Wanninkhof et al., 2012). The use of underway

pCO2 measurements in commercial shipping has provided valuable and ex-

tensive data in the Northern Hemisphere, but the Southern Hemisphere

lacks the intensity of commercial shipping lanes and therefore the required

temporal and spatial coverage of surface ocean pCO2 data.

The Southern Ocean and its role in the changing global carbon cycle

needs to be more extensively observed and understood in order for mean-

ingful constraints to emerge for ocean-atmosphere and climate models. The

trajectory of atmospheric CO2 and its impact on climate change will not be

understood or accurately estimated without a sound knowledge of the re-

sponse of Southern Ocean CO2 concentrations and fluxes. The inter-annual

change in the flux of CO2 needs to be resolved but, due to there being

too few observations, the uncertainty is too high (Takahashi et al., 2009;

Wanninkhof et al., 2012).

The Southern Ocean is a sink for atmospheric carbon in that it has the

ability to take up carbon from the atmosphere. As the CO2 concentration

in the ocean increases, the ability of the Southern Ocean to act as a sink

becomes weakened.

”Without understanding the carbon exchange at the boundary with a

high degree of certainty and being able to account for random events which

may a↵ect data gathered or phenomena being measured, it is not possible to

estimate the long term impact of changing ocean CO2 sink on the e↵ective-

ness of global emission reduction targets.” - ScienceScope Volume 6 Number

1

1.2 CO2 and Climate in the Southern Ocean

The Southern Ocean is a regulator of regional climate and global atmo-

spheric CO2. While the Northern Hemisphere is dominated by terrestrial

landmass, the Southern Hemisphere is dominated by the circumpolar South-

ern Ocean. The seasonal variability of atmospheric CO2 is dominated by

1



the land biosphere; whereas the Southern Ocean governs long-term trends

on decadal and greater time scales.

Climate change puts the long term balance Southern Ocean-atmosphere

system at risk. Changes to ocean systems are not as manageable as terres-

trial and atmospheric systems and can have significant positive feedback (i.e

negative impacts).

The Southern Ocean (south of 50�) holds 9% of the global oceanic an-

thropogenic CO2 (Sabine et al., 2004). Two mechanisms, the solubility pump

and the biological pump, mediate the storage. The solubility pump is the

result of uptake due to cooling and sinking of sub-tropical waters and the

biological pump is the result of phytoplankton taking up carbon and trans-

porting it to the ocean interior (Volk and Ho↵ert, 1985).

While the Southern Ocean is a net sink of anthropogenic carbon, there is

a large outgassing of CO2 due to Circumpolar Deep Water upwelling south

of the Polar Front (Bakker et al., 2008). This is the only place in the world

where water from below 2000m with pCO2 greater than 450 µatm is in direct

contact with the atmosphere. For the Southern Ocean, the median annual

sea-air CO2 flux is calculated between -0.27 and -0.43 PgC.yr�1 (Lenton

et al., 2013). There are large di↵erences between sources and sinks in the

region which are sensitive to small adjustments in climate forcing.

1.3 Concurrent research

To determine the partial pressure of CO2 at the ocean-atmosphere interface,

ship cruise data are being used to find a numerical model to couple measure-

ments of sea surface temperature, mixed layer depth (MLD) and chlorophyll

concentration with pCO2.

Statistical methods are also used to provide an empirical relationship

between the partial pressure of CO2 and bio-geographic factors measured

by shipboard instruments.
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2 Literature Review

2.1 Anthropogenic Activities and CO2 or CO2 and Society

Anthropogenic activities have been driving an increase in the concentration

of CO2 in the atmosphere since the Industrial Revolution in the 1850s (Keel-

ing et al., 2011). Estimates put the pre-industrial atmospheric CO2 concen-

tration at 280 parts per million per volume (ppmv) which is 112 ppmv less

than current day estimates of 392 ppmv (Keeling et al., 2011). In the last 420

000 years, this rate of increase of Atmospheric CO2 concentration has not

been as rapid as we now observe (Falkowski et al., 2000) since the advent of

the Industrial Revolution. As CO2 in the atmosphere acts as a greenhouse

gas, an increase in atmospheric CO2 is believed to lead to an increase in

global temperature (Schimel et al., 2001).

Not all anthropogenic emissions of CO2 remain in the atmosphere. A

large percentage (±60%) is taken up by the other two reservoirs of the carbon

cycle, the ocean and the terrestrial biosphere. According to Sabine et al.

(2004), 48% of anthropogenic CO2 that has been emitted has been taken up

by the oceans. The increase of CO2 in the surface oceans has resulted in a

global pH decrease of 0.1 (Raven et al., 2005).

The role of the oceans in atmospheric CO2 was not much considered

until 1966 Revelle and Suess (1957) suggested that oceans were the long

term regulator of atmospheric CO2. This led to further studies into the role

of the oceans in both the short term and the long term carbon cycle.

2.2 The Carbon Cycle

2.2.1 Selection

The global carbon cycle consists of di↵erent reservoirs that operate on di↵er-

ent residence times or flux rates (Sigman and Boyle, 2000). As the smallest

reservoir with the smallest residence time, the atmosphere is said to be a

good indicator of the state of the global carbon cycle (Sarmiento and Gru-

ber, 2006). Past atmospheric CO2 concentrations have been reconstructed

from air bubbles trapped in ice cores (Indermühle et al., 1999; Petit et al.,

1999). Variations of CO2 concentration from 180ppm to 280ppm were ob-

served to occur in time with glacial-interglacial cycles with glacial maxima

coinciding with CO2 minima.

3



Figure 2.1: A schematic of the pre-industrial carbon cycle, including the

size and residence time of each reservoir, from Sigman and Boyle (2000).

The terrestrial reservoir has a residence time of 6 to 8 years, whereas

the surface ocean has a residence time in the order of tens of years. It is

the deep ocean, with a residence time in the order of thousands of years,

that controls the atmospheric CO2 variations seen in the glacial-interglacial

cycles (Sarmiento and Gruber, 2006).

Glacial-interglacial cycles have dominated global climate and are be-

lieved to have been a result of variations in Earth’s orbit , known as Mi-

lankovitch cycles (Sigman and Boyle, 2000). The ice-core records show a

close correlation between atmospheric CO2 and temperature (Petit et al.,

1999). According to Paillard and Parrenin (2004), Antarctic sea-ice extent

could alter CO2 fluxes enough to switch from one phase to another.

Deep water formation in high latitudes plays a role in transporting CO2

from the atmosphere to the deep ocean. The deep oceans are 12% richer in

inorganic carbon than the surface (Sarmiento and Bender, 1994). A mech-

anism transporting carbon across the concentration gradient is needed to

sequester carbon in the deep ocean. Volk and Ho↵ert (1985) recognise three

such carbon pumps: the solubility, the soft-tissue, and the carbonate pumps.
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The geological reservoir has a residence time of over 500 000 years, and

it is from this reservoir that anthropogenic emissions of CO2 have primar-

ily been sourced. As a result, the carbon cycle, once considered to have

been in quasi-steady state, is now unbalanced as anthropogenic emissions of

CO2 begin to build up in the terrestrial and surface ocean reservoirs. An-

thropogenic CO2 emissions, through the carbon cycle, perturb the natural

carbon fluxes at a rate greater than the ocean is able to store. The build up

of carbon in reservoirs with time scales shorter than geological, such as the

atmosphere and the surface ocean, has created an imbalance in the system.

2.3 Carbon Dioxide in the Oceans

The Keeling Curve (Keeling et al., 1995) (a graph that plots the ongoing

change in atmospheric CO2 concentration since 1958) shows that global

atmospheric CO2 is increasing, but this is more di�cult to demonstrate in

the oceans. In the 1990s, ship based pCO2 measurements were dramatically

increased through the e↵orts of the Joint Global Ocean Flux Study (JGOFS,

1990). The focus of the JGOFS was to quantify air-sea CO2 exchange in

the open oceans. Takahashi et al. (1997) published the first global estimate

of air-sea CO2 flux based on in-situ data. An ocean CO2 uptake of 0.6 to

1.34 PgC.yr�1 was estimated from 250 000 data points.

Takahashi et al. (2002), utilized 0.94 million surface water measurements

of pCO2. Takahashi et al. (2009) made use of about 3 million measurements

to construct a climatological mean distribution for surface water pCO2. Ob-

servations made in the equatorial Pacific during El Niño and observations

in coastal waters were excluded. Using a mean rate of +1.5 µatm.y�1, the

data captured in di↵erent years was corrected by Takahashi et al. (2009) to

a reference year, 2000. The increase of +1.5 µatm.y�1 is consistent with the

decadal mean rate of increase of atmospheric pCO2. Takahashi et al. (2009)

estimated the annual mean net CO2 uptake flux to be -1.6±0.9 PgC.yr�1

and the total ocean uptake flux, including anthropogenic CO2, to be 2.0±1.0

PgC.yr�1

Di↵erent methods have been used to constrain carbon dioxide (CO2)

fluxes. The Intergovernmental Panel on Climate Change (IPCC) (2001)

uses atmospheric O2/N2 observations (Keeling and Shertz, 1992) to derive

rates of anthropogenic CO2 uptake. Inverse atmospheric models have been

used to calculate land and ocean fluxes from atmospheric CO2 data (Gurney

5



et al., 2002). Oceanic uptake of anthropogenic CO2 can also be estimated

from Chlorofluorocarbon (CFC) data sets of McNeil et al., 2003. Observa-

tions of reduced isotopic ratio (13C) of Dissolved Inorganic Carbon (DIC)

was used by Gruber and Keeling (2001). The Ocean Carbon Cycle Intercom-

parison Project (OCMIP-2) evaluated 19 ocean carbon cycle models with

radiocarbon and CFC-11 data (Matsumoto, 2004).

Using a biogeochemical carbon cycle model (HAMOCC5) coupled online

to a global ocean general circulation model (MPI-OM), Wetzel (2005) simu-

lated and analysed the trends and variability in sea-air CO2 flux from 1948

to 2003. The model study showed a global inter-annual variability of ±0.50

PgC yr�1 dominated by ocean dynamics in the equatorial Pacific (Wetzel,

2005). Wetzel (2005) observed two patterns that emerge on a global, decadal

scale. Firstly, the inter-annual variability of the equatorial Pacific decreases

from ±0.32 PgC yr�1 to ±0.23 PgC yr�1, and the mean outgassing of CO2

goes from 0.70 PgC yr�1 to 0.58 PgC yr�1. Secondly, the Southern Ocean

CO2 flux increases over the simulation period due to increasing wind ve-

locities causing stronger upwelling and deeper mixed layers (Wetzel, 2005).

Globally the estimated CO2 flux from Wetzel (2005) was 1.49 PgC yr�1 into

the ocean for 1980-1989, and 1.74 PgC yr�1 into the ocean for 1990-1999.

The impact of mesoscale and submesoscale oceanic processes on sea sur-

face pCO2 is examined by Mahadevan (2004) in order to explain variability

observed at length scales of order 10km. According to Mahadevan, 2004 ,

only small variations in surface pCO2 are induced by submesoscale upwelling

while larger variations are generated at larger scales.

A high-resolution ocean biogeochemical model, validated against ship-

board and float data, was used by Resplandy et al. (2009) to estimate oceanic

pCO2 and air-sea CO2 flux in the NE Atlantic. The study showed large sub-

mesoscale variability of the carbon system with gradients of 25 µatm over

20km, which is similar to the mean seasonal drawdown of pCO2. A com-

parison of air-sea flux derived from their model, together with that of the

floats and shipboard observations, gave a sampling error of 15 to 30%, and

results from coarser model simulations showed that model resolution only

accounts for 5% error. Thus, their findings indicated that the net air-sea

CO2 exchange is largely una↵ected by the submesoscale variability of pCO2.
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2.3.1 Calculating Carbon Flux

The error in the annual mean CO2 uptake flux from Takahashi et al. (2009)

shows high error in the estimates. Much of the error is a result of how flux

estimates are derived.

CO2 flux ( F ) is calculated as:

F = kw ·K0 ·�pCO2 (2.1)

where kw is the gas transfer velocity, K0 is the solubility parameter and �

pCO2 is pCOsea
2 � pCOair

2 , the di↵erence between the partial pressure of

CO2 in the ocean and the atmosphere. The uncertainty in the gas transfer

is estimated to be around 10-20% (Ho et al., 2011).

Several theoretical models have contributed to the understanding of em-

perically determined gas transfer velocity. The stagnant-film model (Liss

and Merlivat, 1986; Broecker and Peng, 1974) assumes a thin layer (stag-

nant film) of water in which di↵usion between the atmosphere and surface

water occurs, but addresses mixing between the surface layer and the film. A

dynamic interface is defined in the replacement film (Danckwerts, 1951) and

the eddy impingement models (McCready and Hanratty, 1985) to address

mixing between the layers. The models have the following concepts:

• The transfer velocity is dependent on the turbulence at the interface

and the thickness of the film.

• Turbulence at the interface is a↵ected by wind stress.

Nightingale (2009) refers to factors such as wave breaking, bubble forma-

tion, humidity and temperature gradients, and surfactants which may alter

the gas exchange velocity.

The Schmidt number (Liss and Merlivat, 1986), Sc, is the thickness of

the film and is determined by the ratio:

Sc = v/✏ (2.2)

where v is the kinematic viscosity of water and ✏ is the molecular di↵u-

sivity of a particular gas ,therefore allowing the gas transfer velocity to be

determined for di↵erent temperatures and gases.
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2.4 Marine Carbonate Chemistry

CO2 in the ocean is influenced by biology, temperature, and transport.

These factors can determine whether or not an area of the ocean is a sink

or a source. The reaction of CO2 in seawater is described in the following

equation:

CO2(aq) +H2O
K0 ! H2CO⇤

3

H2CO⇤
3

K1 ! H� +HCO�
3

HCO�
3

K2 ! H� + CO2�
3

(2.3)

Carbon in the ocean is found in three forms: dissolved inorganic car-

bon (DIC), dissolved organic carbon (DOC), and particulate organic carbon

(POC). Most of the CO2 in the ocean is stored as bicarbonate (HCO�
3 ).

2.5 The Southern Ocean

The Southern Ocean is a unique and important region that is strongly con-

nected to global ocean circulation, and to climate change. It is believed to

be a carbon sink. The Antarctic Circumpolar Current (ACC) connects the

three major ocean basins: the Pacific, the Atlantic, and the Indian Oceans.

It therefore acts as an interface for heat and fresh water transfer between the

oceans. Regions of upwelling in the Southern Ocean allow for heat transfer

from the deep ocean to the atmosphere. The Southern Ocean is also the

only source of Antarctic Bottom Water.

Orsi et al. (1995) investigated the Antarctic Circumpolar Current and

fronts in the Southern Ocean. The northenmost extent of the Sub-Antarctic

waters is the Sub-Tropical Front (STF). The Sub-Antarctic Front is found

further south, and the Polar Front even further south.

Thomalla et al. (2011) provide a regional characterization scheme for

the Southern Ocean that improves understanding of regional di↵erences in

ecosystem sensitivity to climate forcing. The seasonal cycle is defined by

four zonal regions: the Subtropical Convergence Zone (STCZ), the transition

zone (TZ), the Antarctic circumpolar zone (ACZ) and the marginal ice zone

(MIZ). These authors contend that the extent of inter-annual seasonal phase

locking and the magnitude of integrated seasonal biomass led to additional

classification of the four regions. The regions are described by high or low

chlorophyll and high or low seasonality. Any combination of chlorophyll

or seasonality is possible, and the combination of the two classifications
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Figure 2.2: Map of the Southern Ocean including the important oceanic

fronts and zones (Pickard and Emery, 1990).
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can help with understanding the role of physical and biological drivers of

production and CO2 flux in the Southern Ocean.

2.6 Carbon in the Southern Ocean

According to Friedlingstein et al. (2003), model studies show a positive feed-

back between climate change and the carbon cycle and demonstrate that the

Southern Ocean circulation, which controls geochemical uptake of CO2, is

poorly constrained in these models.

Rangama (2005) used shipboard and satellite measurements to assess

small-scale variability of pCO2 and estimate the net air-sea CO2 flux in the

Southern Ocean south of Tasmania and New Zealand. An oceanic sink of

-0.08 GtC.yr�1 was estimated with an error of 0.03 GtC.yr�1.

According to Le Quéré et al. (2007) climate change has caused a decrease

in Southern Ocean CO2 uptake. Matear and Lenton (2008) used a model

study to investigate how changes in heat and freshwater fluxes as well as

winds a↵ect Southern Ocean CO2 uptake. They show that while increase

in heat and freshwater fluxes drive an increase in uptake, increase in wind

stress drives an approximately equal and opposite response, resulting in

a Southern Ocean response equal to that with no climate change. The

positive feedback of the Southern Ocean carbon cycle on climate change

will, according to Matear and Lenton (2008) become a negative feedback

mechanism once the partial pressure of atmospheric CO2 reaches that of

Circumpolar Deep Water. Matear and Lenton (2008) also show that climate

change could reduce the aragonite saturation state in the Southern Ocean.

The decadal variability in the fugacity of Carbon Dioxide (fCO2) at the

sea surface was analyzed by Metzl (2009) The area of focus was the south-

western Indian Ocean and corresponding Antarctic sector. This study was

based on seasonal cruises during the period 1991-2007. According to the

shipboard observations the average annual rate of the atmospheric CO2

increase was 1.72 ppm/yr, which is equivalent to the annual growth rate

recorded at monitoring stations in the Southern Hemisphere. The oceanic

fCO2 increased at a rate of 2.11±0.07 µatm.yr�1 for the period 1991-2007.

They found that the rate of increase is greater (0.4 µatm.yr�1 faster) in the

oceans than in the atmosphere. This has implications for the ocean carbon

sink.

Studies have been done in specific areas of the Southern Ocean to de-
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termine the sources and sinks of atmospheric carbon and how they change

over time.

Bakker et al. (1997) looked at changes in carbon dioxide in surface waters

during spring in the Southern Ocean. According to their study, in November

1992 the fCO2 decreased in the Polar Frontal Zone (PFZ) from just below

the atmospheric level to 50 µatm below. This was accompanied by a diatom

bloom. Biological drawdown and formation of Antarctic Intermediate Water

makes for combined biological and physical uptake of CO2. According to

Bakker et al (1997) the boundary between the ACC and the Weddel gyre

was a significant CO2 source as ice-cover disappeared.

Bakker et al. (2008) investigated the eastern Weddell gyre and showed

how Circumpolar Deep Water (CDW) enters the Weddell gyre in the south-

east and sits under the ice cover. When the sea-ice melts, the high CO2

concentration water interacts with the atmosphere and outgassing occurs.

According to Bakker et al (2008), the outgassing is counteracted by increased

biological activity.

In austral autumn and early winter the southern ACC and the north-

ern Weddel gyre were found to be supersaturated with CO2 (Hoppema et

al., 2000). The southern Weddel gyre was very undersaturated and they

demonstrated that potential for autumn cooling could lead to undersatura-

tion.. The northeastern Weddel Gyre is a CO2 source (outgassing) due to

upwelling of CO2 rich deep water (Hoppema et al. 2000).

Metzl et al. (1999) studied the annual cycle of sub-Antarctic air-sea CO2

flux and showed that the Sub-Antacric zone (SAZ) is a strong summer sink

due to the formation of shallow seasonal mixed layer leading to biological

drawdown. They found that near equilibrium values in summer account for

a small CO2 exchange and are a result of the formation of a deep winter

mixed layer (Metzl et al. 1999).

Metzl et al. (2006) went on to investigate summer and winter air-sea

CO2 flux in the Seasonal Ice Zone (SIZ) and the permanent open ocean

zone (POOZ). In the SIZ (south of 58�) during summer, the surface CO2

concentrations are below equilibrium resulting in a summer sink. Metzl et al.

(2006) show that in the POOZ (50-58�), surface ocean CO2 concentrations

increase from summer (sink) to winter (source). They used a model to

reproduce the seasonal change in CO2 flux and showed that summer primary

production and winter vertical mixing was responsible for change.
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Robertson and Watson (1995) show that observations along the ice edge

in the Southern Ocean summer indicate that the region is a sink for atmo-

spheric carbon dioxide. The strong CO2 sink in the coastal Southern Ocean

was investigated by Arrigo et al. (2008). They suggest that the estimates of

large scale fluxes in the Southern Ocean do not resolve the fluxes observed

in the coastal Southern Ocean. Their model study showed that Antarctic

shelf waters are a very strong CO2 sink due to high biological productiv-

ity, intense winds, e�cient ventilation and extensive winter sea-ice coverage.

Arrigo et al. (2008) use these results to show that highly productive wa-

ters around the antarctic continent need to be included in future budgets of

anthropogenic CO2.

Bakker et al (1997) state that a limited understanding of gas exchange

mechanisms and the large spatial and temporal variability of sea-air flux

hinder reliable estimates of Southern Ocean mean annual sea-air CO2 flux.

2.7 Sampling Strategies for CO2 flux

The uncertainty in the estimates of global and regional CO2 uptake is a

barrier to understanding the global carbon cycle and the global climate. As

a result, the sampling frequencies required to accurately estimate air-sea

CO2 fluxes have been the subject of a number of studies.

Garçon et al. (1992) investigated the sampling frequency required to

estimate air-sea CO2 flux in the North Pacific. In order to reduce the un-

certainty in estimating the air-sea CO2, a high resolution time series of

air-sea flux was sub-sampled to determine the optimal temporal sampling

frequency. According to Garçon et al. (1992) the sampling requirements

were 24 samples per year in the Pacific.

A study was done by Mémery et al. (2002) in the Mediterranean Sea

in which time scales for estimating air-sea CO2 exchange were investigated.

This study also made use of a highly resolved observational time series and

determined a sampling frequency of greater than 70 samples per year for the

Mediterranean Sea.

In the Southern Ocean, Sweeney et al. (2002) used a summer and a winter

north-south transect to determine spatial sampling required to constrain

the mean �pCO2 to ±4.3 µatm. This �pCO2 value can be calculated

as an uptake of ±0.1 PgC/yr using a mean Southern Ocean gas exchange

coe�cient. According to Sweeney at al. (2002), sampling every 5� in latitude
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in summer and sampling every 10� in latitude in winter is su�cient to meet

the requirements.

Takahashi and Sweeney (2002) determined the sampling required to es-

timate the net annual CO2 flux by subsampling monthly flux maps of the

global, gridded data set of Takahashi et al. (1997). According to Takahashi

and Sweeney (2002) , sampling every 4 months, or 3 times a year is required.

Lenton et al. (2006) combined temporal and spatial sampling strategies

to validate a sampling strategy that reduces Southern Ocean annual CO2

uptake uncertainty to ±0.1 PgC/yr. They used a time-evolving - prognostic

- high-resolution - biogeochemical model to simulate fluxes. According to

Lenton et al. (2006), an accurate representation of the Southern Ocean

CO2 uptake and its uncertainty provides: (1) the essential information to

resolve the present mismatch between observation and model estimates of

the uptake which will reduce the uncertainty in the global budget; (2) a

reference against which future changes in variability can be assessed; and

(3) an observational estimate to assess and validate numerical models.

In developing a sampling strategy that will resolve the temporal and

spatial variability, they used Fourier Transforms with signal-to-noise ratios.

This identified the dominant frequencies in time and space that control

variability in the simulated air-sea CO2 fluxes of the Southern Ocean.

Their study determined that sampling every 3 months, at 30� in longi-

tude and 3� in latitude is su�cient to determine the net Southern Ocean

CO2 uptake. They applied their sampling strategy to the simulated air-sea

fluxes in order to estimate the annual mean CO2 uptake.

Sparse ocean sampling in the Southern Ocean especially means that the

simulated data cannot be accurately assessed. Lenton et al. (2006) sepa-

rated the simulated air-sea flux variability into seasonal and non-seasonal

variability. They defined the seasonal variability as the daily (climatologi-

cal) data and the non-seasonal variability is the variability not represented

by the seasonal cycle.

Lenton et al. (2006) compared the simulated seasonal cycle to the coarse-

resolution, monthly climatological maps of Takahashi et al (2002). The

simulated seasonal cycle of Lenton et al. (2006) captured the variability

evident in the observations in Takahashi et al (2002).

Lenton et al. (2006) calculated signal-to-noise ratios (SNR) in order to

assess the air-sea flux variability. They defined the seasonal cycle to be the
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signal and the nonseasonal variability to be the noise.

SNR =
�2
SIGNAL

�2
NOISE

=
�2
SIGNAL

�2
ALLDATA � �2

SIGNAL

(2.4)

They calculated a SNR of less than 1 for most of the Southern Ocean when

computing a SNR map for the daily simulated air-sea CO2 fluxes. In those

regions where the SNR is less than 1, the seasonal cycle cannot be distin-

guished from the non-seasonal variability. The variability of the seasonal

cycle calculated in Lenton et al. (2006) was not homogenous in space; this

situation is consistent with the Takahashi et al. (2002) climatology.

Lenton et al. (2006) attempted to answer the question, ”[w]hat sampling

was required to constrain the Southern Ocean air-sea CO2 flux given the

large variability observed in the model?”. This was achieved by using two-

dimensional Fourier Transforms (2D-FT) in space and time along constant

sections of latitude and longitude. The plots that they produced showed

that the Southern Ocean was a net uptake region; there was a more uniform

spread of variability across a range of periods when the wavelength was

longer (� <5�); and the variance explained by short periods (T >20 days)

and short wavelengths (� >5�) declined rapidly.

They then derived a relationship for SNR in the frequency domain that

is equal to SNR in the temporal domain.

SNR(f) =

Pf
n=1Hsignal(n)2Pf
n=1Hnoise(n)2

(2.5)

They applied this equation to the 2D-FTs that they had calculated in

order to see how the SNR changed as time and space was sampled at higher

temporal and spatial frequencies. Their study found that variance does not

increase much once the seasonal cycle is resolved, and once the seasonal cycle

is resolved the spatial sampling frequency needs to be increased in order to

increase the SNR. This was consistent with the result of the SNR plots in

the temporal domain being less than 1 in most regions, and confirmed that

a high resolution in time or space still returns a low SNR when combined

with a low resolution in space or time.

Lenton et al. (2006) showed that the statistical properties of the model

and the proposed sampling strategy are consistent with the statistical prop-

erties of observations. They quantified the uncertainty of estimated mean
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annual uptake by applying their sampling strategy to their simulated daily

fluxes. They calculated a value of 0.6 ± 0.1 PgC/yr at the model resolution.

This result was similar to Wetzel et al. (2005) which is expected as the

same model was used. Applying their sampling strategy to the simulated

fluxes returns a sampling uncertainty of ± 0.2 PgC/yr which translates to a

sampling error of ± 0.07 PgC/yr for the 1990s. The inter-annual variability

returned by their sampling strategy was ± 0.1 PgC/yr, which is the same

as the value returned by sampling at the model resolution. The total uncer-

tainty calculated (inter-annual variability and sampling error) by Lenton et

al. (2006) was ± 0.1 PgC/yr giving an estimate of annual averaged uptake

for the 1990s of 0.6 ± 0.1 PgC/yr. The results are summarised in Table 2.1.

Table 2.1: Comparison of the total Simulated Uptake With the Uptake from

Proposed Sampling and the Sampling Error Introduced from Lenton et al.

(2006).

Year
Total

Simulated

Uptake, PgC/yr

Sample

estimate of

Uptake, PgC/yr

Sampling

uncertainty

(2�), PgC/yr

1990 0.67 0.63 0.21

1991 0.76 0.73 0.17

1992 0.99 0.97 0.21

1993 0.71 0.67 0.24

1994 0.56 0.52 0.18

1995 0.54 0.49 0.22

1996 0.53 0.49 0.20

1997 0.49 0.44 0.24

1998 0.38 0.32 0.26

1999 0.40 0.32 0.22

1990-1999 0.60 ± 0.12 0.56 ± 0.13

Lenton et al. (2006) tested the present sampling strategy in order to

compare the results to their proposed sampling strategy and came up with

a total uncertainty value of twice that of their proposed sampling strategy.

The results are summarised in Table 2.2.
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Table 2.2: Comparison of the Total Simulated Uptake With the Uptake from

the Current Sampling and the Sampling Error Introduced from Lenton et

al. (2006).

Year
Total

Simulated

Uptake, PgC/yr

Sample

estimate of

Uptake, PgC/yr

Sampling

uncertainty

(2�), PgC/yr

1990 0.67 0.67 0.37

1991 0.76 0.77 0.33

1992 0.99 1.00 0.42

1993 0.71 0.72 0.42

1994 0.56 0.55 0.38

1995 0.54 0.54 0.36

1996 0.53 0.53 0.36

1997 0.49 0.49 0.42

1998 0.38 0.38 0.37

1999 0.40 0.40 0.38

1990-1999 0.60 ± 0.12 0.61 ± 0.12

The uncertainty calculated by subsampling the simulated data in their

study was the same as that calculated by sampling at the model resolution.

According to Lenton et al. (2006) this suggests: (1) that the uncertainty

due to sampling frequency is small compared to the uncertainty due to inter-

annual variability, and (2) sampling at higher resolution would not improve

large-scale regional flux estimates,

Friedrich and Oschlies (2009) present a method for mapping surface

pCO2 on a basin scale using ARGO floats. The method was tested us-

ing an eddy-resolving biogeochemical model of the North Atlantic. They

use voluntary observed ship (VOS) and ARGO float coverage to generate

synthetic observations of the model, and use the observations to form a

training data set for self organizing neural networks. The results, once the

trained neural network is applied to the observations of SST and SSS and

compared to the simulated data at model resolution, show an improvement

of remote sensing based estimates with the resulting monthly mean pCO2

maps covering 70% of the area with a RMS error of 15.9 µatm (Friedrich

and Oschlies, 2009).

A high-latitude North Pacific and North Atlantic annual mean air-sea
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CO2 flux sampling strategy was developed by Lenton et al. (2009) following

the same methods used by Lenton et al. (2006). The study showed that a

regular sampling strategy of every 6� in latitude and every 10� in longitude

every three months returned the annual mean air-sea CO2 flux to within 15%

of the simulated annual mean. Key features that are highlighted in this study

are that i) optimising the combination of spatial and temporal sampling

results in fewer measurements than if the spatial and temporal signals are

optimized independently, and ii) inter-annual variability contributes more

to the uncertainty in decadal annual mean uptake than sampling error and

unresolved mesoscale variability.

Sampling strategies for the ARGO array in the Indian Ocean were inves-

tigated by Schiller et al. (2004) using simulation data from an OGCM. The

results show that spatial sampling of 500 km zonally and 100 km meridion-

ally is critical for resolving intraseasonal oscillations.

In situ ocean data and remotely sensed data were used in conjunction

with observations of surface-water fugacity of carbon dioxide by Chierici et

al. (2009) to estimate fCOSW
2 . Sea-surface temperature (SST), mixed-layer

depth (MLD) and chlorophyll a (chl a) contributed significantly to the fit,

and two algorithms were developed depending on the presence of chl a data.

The estimated annual CO2 uptake was 0.0058 Gt C yr�1 or 0.6 mol C m�2

yr�1.

McNeil et al. (2007) used an independent method to estimate the South-

ern Ocean air-sea flux of CO2. It exploited all available surface ocean mea-

surements for DIC and Alk beyond 1986. They estimated a Southern Ocean

(<50�) CO2 sink of 0.4±0.25 PgC.yr�1 and a CO2 sink of 1.1±0.6 PgC.yr�1

in the sub-Antarctic zone (40� to 50� S). Standard hydrographic properties

are used by to predict surface-normalised DIC and Alk, and their empirical

relation is applied to World Atlas (2011) climatologies to estimate Southern

Ocean air-sea CO2 flux.

2.8 Genetic Algorithms

Genetic Algorithms (GA) draw parallels from evolutionary biology in that

they use simulated evolution to search for solutions to complex problems.

Genetic Algorithms were developed by John Holland and have been used in

fields such as search, optimization, design and machine learning (Whitley,

2001).
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The state of a GA is given by a population, and each member of the

population is a complete set of parameters for the function being searched

(Gershenfeld, 1999). The whole population is updated in generations with

the initial generation containing a genetic pool of possible solutions. Im-

proved solutions are obtained by using recombination by crossover as well

as random alteration by mutation (Whitley, 2001). Genetic Algorithms have

the following elements (Gershenfeld, 1999; Whitley, 2001):

Representation of solution: Possible solutions to a problem are repre-

sented as a binary string of a fixed length. The solution can also be

represented by integers or another set ,but binary is the most common

or traditional method. The solutions contain genes or characteristics

which are also of fixed length.

Construction of a gene-map: A gene-map is constructed such that the

gene-map associates each gene with a value. In classical genetic algo-

rithms, each variable is represented usingm bits. Therefore, a function

with n variables will have a chromosome of length m.n (Budin et al.,

2010).

Initialisation of the population: A number of binary strings represent-

ing individual solutions are randomly created to make up the initial

gene pool or population.

Once a population has been initialised a number of steps are repeated until

some criteria is met which determines termination. The termination

criteria should be defined in such a way to best suit the needs for the

given problem.

Evaluation: Each individual solution in the population is evaluated by a

fitness function to determine a fitness value.

Selection of parents: Parents are chosen from the population or solution

space.

Reproduction: New o↵spring are created from the parents and become the

new population. Operators such as cross-over, mutation and elitism

are used to ensure that the o↵spring are di↵erent from their parents

yet have the same information.
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Termination criteria: A termination criterion, already declared, will break

the algorithm out of the loop. This can occur, for example, when the

output from the fitness function remains the same for a certain number

of generations.

The diagram in Figure 2.1 shows the flow of a genetic algorithm.

2.8.1 Selection

A genetic algorithm needs to pass on information from one generation to

another. Selection is the name given to the step which selects parents from

the current generation whose information will be transferred into the next

generation.

There are a number of selection methods that can be used in a genetic

algorithm. Tournament selection and Roulette wheel selection are the most

commonly used.

In Roulette wheel selection, the individuals of a generation are ranked

according to their fitness. Individuals with a greater fitness have a greater

probability of being chosen as parents.

Tournament selection is accomplished through randomly selecting an

individual to compete against another randomly selected individual. The

fittest individual is the winner and is then used as a parent for the next

generation.

2.8.2 Crossover

Crossover is the process whereby the parents selected in the selection process

pass on their information to children. Crossover can be done at one or more

points. A random number is selected and at that point in the individual’s

genetic code, the string is split and the two parents exchange that part of

their code. Because stronger individuals are selected in the selection stage,

crossover allows for ’better’ information to be passed from one generation

to the next. Single point crossover is the most common type of crossover

used although it is possible to use two point crossover. The probability that

crossover occurs (a value that is assigned in the algorithm implementation)

depends on the problem but the probability is usually quite high.
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


















Figure 2.3: Schematic of a typical Genetic Algorithm implementation
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2.8.3 Mutation

While Crossover can add genetic diversity to the population, another method

of adding random diversity is often used. This method is called Mutation

and involves the chance of randomly selecting a number that falls within the

mutation rate which results in the possibility of the flipping of a random bit

in the genetic code of the children. The chance of mutation needs to be set

so as to not add too much diversity or too little. The inclusion of mutation is

necessary to ensure that solutions do not simply converge to local optimum

values.

2.8.4 Elitism

Elitism ensures that the information belonging to the most fit individual

is passed onto the next generation. This is done by replacing a random

solution from the new generation by the fittest solution from the previous

solution.

2.8.5 Replacing the old generation with the new

There are many ways that one could decide to replace the old generation

with the new. Most often this is done by having the new chromosomes

replace the parent chromosomes.

2.8.6 Limitations of Genetic Algorithms

Genetic algorithms are not considered the first option in solving optimisation

problems for a number of reasons (Whitley 2001; Goldberg 1989). These

include:

• Genetic Algorithms do not perform well with expensive fitness func-

tions. It is therefore better to use simplified fitness functions that

approximate more complex fitness functions.

• Because genetic algorithms only find better solutions, it can be di�cult

to assign an appropriate termination criterion.

• Genetic algorithms tend to converge to local optima and rely on ran-

dom mutations to find global optima.
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2.8.7 Use of Genetic Algorithms in Oceanography

The problem of how to optimally deploy a suite of sensors to estimate the

oceanographic environment is addressed by Heaney et al (2007). An optimal

way to estimate and predict the ocean environment is to assimilate measure-

ments from dynamic and uncertain regions into a dynamic ocean model. In

order to determine the sensor deployment strategy that optimally samples

the region’s uncertainty, Heaney et al. (2007) present a Genetic Algorithm

approach. The scalar cost function used by Heaney et al. (2007) is defined as

a weighted combination of a sensor suite’s sampling of the ocean variability,

ocean dynamics, transmission loss sensitivity and modelled temperature un-

certainty. The advantage of the GA approach is that the user can determine

”optimal” via a weighting of constituent cost functions, which include ocean

dynamics, acoustics, cost, and time. A numerical example with three glid-

ers, two powered AUVs and three moorings is presented by in their study to

illustrate the optimization approach in the complex shelfbreak region south

of New England.

Models can better predict the ocean state with the inclusion of field data,

and the use of models can improve mapped fields generated from measured

data. The challenge is limited resources. According to Heaney et al. (2007),

an integrated optimization-assimilation-modeling system is being developed

to perform optimal ocean sampling and ocean prediction. The system in-

volves the combination of an ocean model with data assimilation capabilities,

an ensemble of measurement platforms, and a non-linear constrained global

optimization subsystem.

2.9 Questions and Aims

• Is there a temporal and spatial sampling frequency that can achieve

a significantly lower sampling error without a significant expense in

sampling?

• How can we decide what constitutes an e�cient trade-o↵ between sam-

pling error and sampling e↵ort?

• If we attempt to abandon the use of a regular grid to sample, can the

sampling e↵ort be reduced?

• Does the optimal sampling strategy of the decadal mean sample the
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simulated annual means with su�cient accuracy?

• Does the the optimal sampling strategy of the mean seasonal or annual

cycle sample each simulated year with su�cient accuracy?

• Which regions in the Southern Ocean need to be sampled at the highest

frequency to reduce uncertainty in the annual mean CO2 uptake.

• Can a new sampling strategy be proposed that optimizes for a multi-

platform approach (i.e. Ships. gliders, and moorings?
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3 Data and Methods

3.1 Observational data

Observational data from Takahashi et al. (2009) was used to assess and

validate the simulated model data. The data is based on 3 million measure-

ments of surface water pCO2 obtained between 1970 and 2007 and produces

a climatological mean distribution of CO2 flux with a resolution of 4� lati-

tude by 5� longitude. The measurements represent open ocean observations

and measurements made during El Niño are excluded.

3.2 Model Data

The simulated model data was obtained from ORCA2-LIM, an ocean model

that is based on the ORCA2 global configuration of OPA version 8.2 (Au-

mont and Bopp, 2006 from Madec et al. 1998) coupled with the dynamic-

thermodynamic ice model developed at Louvain-La Neuve (Timmerman et

al. 2003 in Aumont and Bopp, 2006). The mean horizontal resolution of the

ocean model is 2� by 2� cos(�) (where � is latitude). There are 30 vertical

levels; twelve of which are located in the top 125 m. The parameterization of

Gent and McWilliams (1990) is used for the e↵ects of unresolved mesoscale

eddies poleward of 10� latitude. Lateral mixing, both on tracers and momen-

tum, is performed along isopycnal surfaces sensu Lengaigne et al. (2003).

The flow of deep water over bathymetry is represented using the bottom

boundary layer (BBL) proposed by Beckmann and Doscher (1997). The

Blanke and Delecluse (1993) prognostic model of turbulent kinetic energy

(TKE) is used to compute vertical eddy and viscosity coe�cients. Climato-

logical atmospheric forcing is constructed from various data sets consisting

of daily NCEP/NCAR 2m atmospheric temperature averaged over 1948-

2003 (Kalnay et al., 1996), monthly relative humidity (Trenberth et al.,

1989), monthly ISCCP total cloudiness averaged over 1983-2001 (Rossow

and Schi↵er, 1999), monthly precipitation averaged over 1979-2001 (Xin and

Arkin, 1997), and weekly wind stress based on ERS satellite product and

TAO observations (Menkes et al., 1998). Surface heat fluxes and evapora-

tion are computed using empirical bulk formulas described by Goose (1997).

Modelled sea surface salinity is restored to the monthly WOA01 data set

(Conkright et al., 2002) with a timescale of 40 days.

The ocean biogeochemical model used is the Pelagic Interaction Scheme
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for Carbon and Ecosystem Studies (PISCES) derived from the Hamburg

Model of Carbon Cycle version 5 (HAMOCC5) (Aumont and Bopp, 2006;

Aumont et al., 2003). The model has 24 compartments. Phytoplankton

growth can be limited by nitrate, phosphate, ammonium, silicate and iron

(Aumont and Bopp, 2006). There are two phytoplankton size classes and

two zooplankton size classes (Aumont and Bopp, 2006).

Simulated model data from an ocean biogeochemical model are used

as an idealised world where the results from di↵erent sampling strategies

applied to this idealised world can be compared, In this way, the simulated

model data provides a theoretical ”perfect” knowledge.

The data used in this study comes from two di↵erent model runs using

the ORCA2 ocean model coupled with PISCES, a 5-day averaged dataset

from 2000-2009, and a daily resolution dataset from 1998-2007. The daily

resolution model output is used to explore the optimisation of sampling

strategies that use a regular grid (simulating ship-based sampling). The

methods explored in Lenton et al. (2006) are repeated on this daily reso-

lution model output from the ORCA2/PISCES model. In order to repli-

cate Lenton et al. (2006), daily model output is required, and the Southern

Ocean includes all locations south of 40�S. The 5-day mean model output

is used to explore the more computationally expensive methods of optimi-

sation sampling strategies that use Genetic Algorithms (GA) and Radial

Basis Functions (RBF). There is an error in the 5-day model simulation

that does not a↵ect its use in this study. This error is due to an error in

the parameterisation of mixed layer depth dynamics. As the exploration of

optimized sampling strategies treats the model output as theoretical per-

fect knowledge, errors in the model output do not a↵ect the results of the

optimisation methods.

3.3 Flux calculations

The model data set used in this study has two variables: Dissolved Inorganic

Carbon (DIC) flux and �pCO2. The model makes use of the equation

derived by Wanninkhof (1992) to calculate sea-air carbon flux. In this study,

negative sign in flux represents flux into the ocean. To calculate pCO2 from

�pCO2, the annual average of atmospheric CO2 is removed from the�pCO2

for each year in the dataset.
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3.4 Data Analysis

Data analysis was done using Python, and all scripts for the data analysis are

available in the appendix. Python packages, Numpy, Scipy and Matplotlib

are the most commonly used scientific packages.

3.5 Position of Ocean Fronts

Ocean fronts in the Southern Ocean were calculated using the Mean Dy-

namic Topography (MDT) product from (Rio et al., 2011).

The Subtropical front was plotted using the 0.35 contour. The middle of

the Subantarctic front was plotted using the 0.030 contour line. The middle

of the Polar front was plotted using the -0.48 contour. The north of the

Southern ACC front was plotted using the -0.943 contour. The Southern

Boundary of the ACC was plotted using the -1.244 contour line. The position

of these fronts are summarised in Table 3.1.

Table 3.1: Position of ocean fronts in the Southern Ocean.

Southern

Ocean

Front

Contour

from

Rio et al., 2009

Sub Tropical Front 0.35

Subantarctic front 0.030

Polar front -0.48

Southern ACC front -0.943

Southern Boundary -1.244

3.6 Signal to Noise Ratios

Signal-to-noise ratio was calculated according to Lenton et al. (2006) in

order to assess the importance of the climatological seasonal cycle and the

non-seasonal variability in explaining the overall variance. The standard

deviation of all the data was calculated as the standard deviation of the time

series at each location. The inter-annual standard deviation was calculated

as the standard deviation over the annual means for each year in the data

set. The seasonal cycle (the mean annual cycle) was calculated as the mean

climatological value for each day in the year. The standard deviation of the
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seasonal cycle is the standard deviation in the seasonal cycle or mean annual

cycle for each location. The non-seasonal data was defined as the di↵erence

between the time series for all the data and the seasonal cycle (repeated

over 10 years) at each location. The standard deviation was calculated for

the non-seasonal data.

Lenton et al. (2006) defined the seasonal cycle to be the signal and the

nonseasonal variability to be the noise and their definition is used in this

study. The signal-to-noise ratio was calculated by dividing the standard

deviation of the mean annual cycle with the standard deviation of the non-

seasonal data.

SNR =
�2
SIGNAL

�2
NOISE

=
�2
SIGNAL

�2
ALLDATA � �2

SIGNAL

(3.1)

This method was used to define SNR for each location in the Southern

Ocean.

3.7 Seasonality of CO2 flux in the Southern Ocean

Seasonality, or the part of the overall variance that is explained by the

seasonal cycle, was calculated in the same manner as Thomalla et al. (2011).

Variability in the seasonal cycle was computed as the variance explained

by the regression of CO2 flux onto the climatological mean seasonal cycle.

Values closer to 0 show less reproducibility in the mean seasonal cycle and

values closer to 1 indicate that the time series reproduces the climatological

mean seasonal cycle.

The seasonal cycle was defined as the mean value for each time step in

the year over the 10 year model period. There is no phase or amplitude

modulation.

3.8 Fourier Transforms

For a function f(x) the Fourier transform (Bracewell and Bracewell, 1986)

is:

f̂(⇠) =

Z 1

�1
f(x) e�2⇡ix⇠ dx, (3.2)

For a function f(x, y) the two-dimensional Fourier transform is:
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f̂(⇠x, ⇠y) =

ZZ
f(x, y)e�2⇡i(⇠

x

x+⇠
y

y) dxdy (3.3)

The basis functions are a product of generalised sinusoids with a fre-

quency u in the x direction and generalised sinusoids with a frequency v in

the y direction:

b(u, v) = e�2⇡i(⇠
x

x+⇠
y

y) (3.4)

So, the point (u, v) in the frequency domain corresponds to the basis

function with frequency u in x and frequency v in y.

The Discrete Fourier Transform (DFT) is a unitary transformation in

that it preserves the norm of a vector with the Fast Fourier Transform

(FFT) being an important version of the DFT that can be solved much

faster than the DFT (Gershenfeld, 1999). The Fourier transform is based

on the Fourier series in which periodic time series data can be represented

by a sum of sinusoidal components. The Fourier transform represents a

timeseries in a frequency domain.

3.9 Testing all the possible regular grid strategies

Testing each possible sampling strategy that makes use of a regular grid

can be done with time, depth, latitude and longitude dimensions. For the

purpose of this investigation, the depth dimension was not used as the study

involves surface measurements. The latitude data was assumed to be col-

lected at the same resolution as the model grid. In this case, the model grid

used had a N-S resolution of 2 � cos(�).

The method that was used is an exhaustive search method that aimed

to test all regular grid sampling possibilities. It followed the following steps:

1. A sampling strategy is selected (spatio-temporal frequency).

2. The mean is calculated for each possible permutation of a sampling

strategy.

3. The standard deviation of these means is calculated as the sampling

error.

4. A new sampling strategy is selected.

5. This is repeated until all sampling strategies are selected.
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Figure 3.1: An example of the history of a genetic algorithm run showing

the fitness value for the fittest and least fit individual in each successive

generation

3.10 Genetic Algorithm

The genetic algorithm can be used to find a subset of points from the data

set that has a minimal error in predicting the pCO2 for the entire data set.

There are two problem specific aspects of the GA, the encoding of the in-

formation and the fitness function which allows evaluation of the possible

solutions. The outputs (consider optimized sampling strategies) from the

genetic algorithm are tested in a similar manner to the regular grid strate-

gies. Sampling with a certain number of optimized locations is considered

a single sampling strategy. For example; the genetic algorithm can be used

to find a set of 1000 locations. The genetic algorithm can be repeated to

obtain a number of solutions for sampling with 1000 locations. This is done

for 2000, 5000, and 7000 locations.

An example showing how the fitness is minimised, and how the least

fittest individual converges is shown in Figure 3.1.
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3.10.1 Implementation of Genetic Algorithm

Representation of solution and construction of gene-map: The so-

lutions or chromosomes are represented as binary strings. The length

of this string is dependent on the number of locations available to

sample. Each location in the search space is represented as a unique

binary string. The binary strings are stored as keys in a dictionary or

associative array. The values associated with these keys are also dictio-

naries. These dictionaries contain the key’s ’location’ and ’value’ and

their associated location stored as a tuple (immutable list) and value

stored as a float. Initially the GA implementation included all the lo-

cations in the climatological seasonal cycle of the decadal dataset. The

gene-map not only contains valid sampling locations but it must also

hold genes that do not necessarily represent valid sampling locations.

These currently include the genes that are necessary for the ‘padding’

of the binary strings. In order to enable the genetic algorithm to search

through solutions as fast as possible, changes were made to the data

set. The 73 day by 40� by 180� data is regridded onto a 64 day by

64� by 128� grid and the last data point is removed in order for there

to be 2n - 1 sampling locations. This meant that only valid sampling

locations would be represented in the binary hash table. The loca-

tions that are non-oceanic remain unmasked and have a value of zero

which means they are considered valid sampling locations and can be

included in a solution. The same sampling locations can be selected

more than once on one solution as no additional cost is assigned to

this.

Initialisation of the population: The population was initialised with 20

chromosomes. This meant that the initial population contains 20 ran-

dom solutions. Each chromosome has a length of n times the length

of the binary string representing the gene. n is set at di↵erent values

according to how many locations are allowed in the sampling strat-

egy solution. This e↵ectively means that each solution chromosome

contains the location of 1000, 2000, 5000, and 7000 possible sampling

locations. It is important to note that the solution may not contain n

unique solutions. It is also important to note that the genes that are

used to ‘pad’ the tail of the gene-map can be selected. The length of
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the binary string representing the gene is determined by the number

of available locations that can be sampled. The GA implementation

using the regridded data removes the possibility of invalid locations

being selected.

Evaluation: There are two fitness functions available in the algorithm that

can determine the fitness value for a chromosome solution:

• The first is a combination of the di↵erence between the pop-

ulation mean and sample mean, and the di↵erence between the

population standard deviation and the sample standard deviation

with an added function that multiplies the count of non-unique

sampling locations used as well as assigning non-valid locations a

value of 1e20 which would increase the cost. The regridded data

GA implementation did away with the padded and non-valid loca-

tions and did not penalise for non-unique locations being chosen.

The inclusion of the standard deviation of the data was consid-

ered su�cient to ensure a good distribution of sampling locations.

The fitness function is defined as:

f = (x̄population � x̄sample) + (�2
population � �2

sample) (3.5)

• The second makes use of a Radial Basis Function which interpo-

lates the sampled data points. The di↵erence between the actual

data and the interpolated data is squared at each node/pixel/point

and the sum of these values is the fitness value. The RBF inter-

polation could be applied to the annual mean (a 45x180 grid)

but not on the 73x45x180 grid and was therefore discarded as a

sensible fitness function.

Selection of parents: Both tournament selection and roulette wheel se-

lection can be used to select parents for the following generations.

Reproduction: Single-point cross-over, mutation and elitism are all used

in this stage of the algorithm. The single-point cross-over can occur

at any bit in the binary string. The mutation rate is set to a very low

number so that only one in every 40 solutions experiences mutation.

Termination criteria: The algorithm terminates after a defined number

of iterations. 10, 100, 1000, 10000 iterations have been tried. In
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order to find the optimized sampling strategies using the regridded GA

implementation, it was decided that 100 iterations would be su�cient.

This implementation of a genetic algorithm addressed the limitations of

genetic algorithms in that a simplified fitness function is used. The computa-

tion time was therefore not significant. The tendency for genetic algorithms

to converge to local optima was not considered a limitation in this imple-

mentation as this problem requires that local optima are found and not

global optima. Furthermore, the use of the genetic algorithm to find local

optima makes the the choice of appropriate termination criteria simpler.

3.11 Radial Basis Function interpolation

The genetic algorithm method was computationally too expensive to use in

conjunction with multiple radial basis function calls per generation. For this

reason, a new method was proposed to return a sampling solution.

The 5-daily averaged CO2 data was used. The algorithm used a Wend-

land C2 compact support Radial Basis Function (Floater and Iske, 1996).

The Cost function used to evaluate the interpolated sample is:

1/m
mX

i=0

(sample(xi, yi)� population(xi, yi))2 (3.6)

The goal was to minimize this cost function and therefore return an inter-

polated sample with the least di↵erence from the population data. This

method finds a sample that, when interpolated, has the least error between

sample and population. Since it is computationally too demanding to solve

this problem using a formal optimization technique, it was assumed that

successively selecting sampling locations at the point of greatest error will

produce a reasonable solution. The location with the largest error was cho-

sen and placed in the sample. The steps required to find the sampling

locations are:

1. Randomly select 4 sampling locations to use in the sample data.

2. Use a radial basis function to interpolate the sample data.

3. Compare the interpolated sample data to the population data.
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4. Select the location where the error is greatest and add this location to

the list of sampling locations.

5. Repeat until N locations have been found

The locations were saved at intervals of fifty in order for the comparisons to

be made between di↵erent sampling frequencies.

The algorithm used the annual cycle as the population data set from

which the sampling locations are decided. Once the sampling locations are

chosen, the sampling strategy can be tested on each year within the decadal

data set. The expectation is that with a su�ciently large sampling size, the

mean and the standard deviation of the sampled data will closely resemble

that of the population data.

The implementation is summarised in the schematic in Figure 3.2.
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




















Figure 3.2: Schematic of Radial Basis Function implementation used in this

study to identify optimal sampling locations
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4 Results

4.1 Introduction

Two approaches were used to explore sampling strategy optimisation. The

first, relied on regular grid sampling strategies and made use of daily resolu-

tion model output. This was used as a basis to explore further optimisation

methods. The second approach used Genetic Algorithms (Section 3.10) to

identify a group of optimized sampling strategies which can be compared

in a similar way to the regular gridded approach. A radial basis function

optimisation method was used to identify a set of possible locations by suc-

cessively minimising the root mean squared error (Section 3.11).

4.2 Model Data Analysis - characteristics of variability

In this section, the simulated model data from the ORCA2/PISCES model

was analysed. The data from these model runs were used in subsequent

sampling strategy experiments. The daily resolution model data output

was used to investigate sampling strategies that relied on a regular grid,

replicating Lenton et al. (2006). The 5-day mean resolution model data

output was used in the investigation of sampling strategies that did not rely

on regular grids (using Genetic Algorithms and Radial Basis Functions).

The simulated model data was compared to Takahashi et al. (2009) and the

characteristics of variability of the data was investigated. A summary of the

comparison is presented in Table 4.1.

In order to validate the simulated model data, the data was compared

to Takahashi et al. (2009) observation data. The global mean sea-air CO2

flux in mol C per m2 per month is -0.038 for the observations (Takahashi

et al. 2009). The 5 day averaged 2000 to 2009 simulated data global mean

CO2 flux was -0.048 mol C per m2 per month and the 1998 to 2007 daily

resolution model data global mean was -0.028 mol C per m2 per month

(molC.m�2.month�1). Negative sea-air fluxes represent uptake of CO2 by

the ocean. The Southern Ocean (south of 40�) mean CO2 flux from obser-

vations was -0.046 mol C per m2 per month (Takahashi et al. 2009). For

the 5 day and daily resolution data the mean values were -0.09 and -0.029

mol C per m2 per month respectively.
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Table 4.1: Comparison of the simulated annual mean CO2 fluxes with the

annual mean from observations for the Southern Ocean South of 40� in

molC.m�2.month�1. The data is also separated into the Atlantic (70�W -

20�E), Indian (20�E - 140�E), and Pacific (140�E - 70�W) sections of the

Southern Oceans.

Region

Takahashi

et al.

(2009)

5-Day

Mean

Resolution

Daily

Mean

Resolution

Global -0.038 -0.048 -0.028

Southern Ocean -0.046 -0.09 -0.029

Atlantic -0.055 -0.092 -0.011

Indian -0.060 -0.92 -0.036

Pacific -0.032 -0.068 -0.028

The CO2 flux from Takahashi et al. (2009) ranged from values of ±-

6.0 teragrams per year to ±2.0 teragrams per year in the Southern Ocean.

Positive fluxes (outgassing) are evident in regions south of 50� and negative

fluxes to the north. Figure 4.1 shows the mean CO2 flux from Takahashi

et al. (2009) for the Southern Ocean. The Air-Sea CO2 flux ranged from

0.16 to -0.26 Mole Carbon per m2 per month for the mean data. The values

ranged from 0.50 to -0.81 Mole Carbon per m2 per month for the overall

data.
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Figure 4.1: Mean CO2 flux for a reference year 2000 from Takahashi et al.

(2009) for the Southern Ocean South of 30� in molC.m�2.month�1 with the

positions of the Southern Ocean fronts overlaid.

Figure 4.2 shows the distribution of model derived CO2 flux in the South-

ern Ocean over the period 2000 to 2009 taken from the 5 day mean resolution

model data. The data shows that the decadal mean of the 5 day resolution

model data ranged between 0.06 mol C per m2 per month and -0.44 mol

C per m2 per month. This range of 0.50 mol C per m2 per month is very

similar to the observational data from Takahashi et al. (2009) which has a

range of 0.42 mol C per m2 per month. However, the 5-day resolution model

data has a very low maximum outgassing and a larger maximum uptake.

The 5 day resolution model data overestimated uptake showing almost no

outgassing (Figure 4.2). The range over the entire (global) 5 day mean reso-

lution model data set was 2.99 mol C per m2 per month. Values greater than

the observations are mostly due to the finer spatial and temporal resolution

of the model. The maximum outagassing value for air-sea carbon dioxide

flux was 0.93 mol C per m2 per month and the maximum uptake was -2.06

mol C per m2 per month.
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Figure 4.2: Decadal mean CO2 flux for 2000-2009 (5-day mean model out-

put) for the Southern Ocean South of 30� in molC.m�2.month�1 with the

positions of the Southern Ocean fronts overlaid.

The only outgassing depicted in FIgure 4.2 is between 80�E and 100�E,

just south of the Polar Front. Strong uptake is depicted north of the sub-

tropical front.

Figure 4.3 shows the distribution of model derived sea-air CO2 flux in the

Southern Ocean over the period 1998 - 2007 taken from the daily resolution

model data. In Figure 4.3 there is a positive flux (outgassing) in most regions

south of 50� which was more similar to the values seen in the observations

than the 5 day mean data. The most striking di↵erences were south of 50�.

Strong outgassing can be observed east of the Antarctic Peninsula around

the Weddel and Scotia seas. Strong outgassing is also depicted in the eastern

Weddell gyre, south of the Polar Front. North of 50� there is more similarity

to the 5-day resolution model output. The range in the decadal mean of the

daily resolution model data was 0.62 mol C per m2 per month. This was

greater than both the observational data and the 5 day resolution model

data. The maximum sea-air CO2 flux was 0.28 mol C per m2 per month

and the minimum CO2 flux was -0.34 mol C per m2 per month. The range

in all of the data of the daily resolution model data was 9.25 mol C per

m2 per month. This was significantly higher than both the observational

data and the 5 day resolution model data. This was expected as the monthly
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resolution of the Takahashi et al (2009) observations and the 5 day resolution

of the other model data would average out and smooth over the extremes.

The maximum sea-air CO2 flux is 4.37 mol C per m2 per month and the

minimum CO2 flux is -4.88 mol C per m2 per month.

Figure 4.3: Decadal mean CO2 flux for 1998 - 2007 (daily model output) for

the Southern Ocean South of 30� in molC.m�2.month�1 with the positions

of the Southern Ocean fronts overlaid.

Table 4.1 shows that, for the observational data and 5-day resolution

model output, the Indian and Atlantic Ocean sections of the Southern Ocean

were the ocean basins with the highest mean uptake. In contrast, for the

daily resolution model output, the Atlantic Ocean had the lower mean up-

take due to outgassing in the Scotia Sea and Weddell gyre (Figure 4.3).

Figure 4.4 shows the decadal mean for �pCO2 (sea-air) for the daily

resolution model data. As expected, the regions of high positive �pCO2

closely resemble those of a strong outgassing and regions of negative �pCO2

resemble regions of uptake.
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Figure 4.4: Decadal mean �pCO2 for the Southern Ocean for the daily

resolution 1998 - 2007 data for the Southern Ocean South of 30� in µatm

with the positions of the Southern Ocean fronts overlaid.

The mean decadal �pCO2 distribution exhibits a similar pattern to the

sea-air CO2 flux. On longer timescales CO2 flux is driven by �pCO2. The

strong positive uptake around the Antarctic continent is driven by the large

�pCO2. In other regions, the positive uptake is found along western bound-

ary currents that bring tropical and subtropical water south into the cooler

temperate mid-latitudes.

Figure 4.5. shows the time series of the seasonal cycle of sea-air CO2 flux

for observations from Takahashi et al. (2009), 5 day resolution simulated

model data, and daily resolution data. The maximum CO2 flux value from

Takahashi et al. (2009) was -0.016 and the minimum is -0.079 Mole Carbon

per m2 per month. The highest average CO2 flux was in September and

the lowest was in February. The maximum CO2 flux value from the 5 day

resolution simulated model data was -0.06 and the minimum was -0.13 Mole

Carbon per m2 per month. The highest average CO2 flux was in September

and the lowest was in February. The maximum CO2 flux value from daily

resolution data was -0.02 and the minimum was -0.07 Mole Carbon per m2

per month. The highest average CO2 flux was in February and the lowest

was in December.
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The daily resolution and the 5 day resolution data di↵ered greatly. This

was due to an error surface boundary layer dynamics in the model used to

create the 5-day averaged data. The daily resolution data fits within the

range of the observation data, but shows relatively higher values in summer.

The 5 day resolution model data displays a stronger seasonal cycle, but with

lower values year round. Both the 5 day and daily resolution data show large

variability in summer months.

Figure 4.5: Climatological seasonal cycle for observed CO2 flux (solid line)

for a reference year 2000 from Takahashi et al (2009), 5 day resolution

model data (dashed line) and daily resolution model data (dotted line) in

molC.m�2.month�1 for the Southern Ocean South of 30�

Figure 4.6a provides the February (summer) map of the observations

from Takahashi et al. (2009) and Figure 4.6b shows the August (winter)

observations. From the summer observations it appears that much of the

flux was neutral with some outgassing but the majority of the Southern

Ocean exhibits strong uptake especially to the west of Patagonia. In winter

the negative flux regions move northwards and most of the Southern Ocean

exhibits neutral flux with the exception of the ice margin where there is very

strong outgassing. The maximum value for February was 0.13 Mole Carbon

per m2 per month and the minimum value was -0.67 Mole Carbon per m2
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per month. For August the maximum was 0.43 Mole Carbon per m2 per

month and the minimum was -0.46 Mole Carbon per m2 per month.

Figure 4.6: a) Mean February CO2 flux, and b) Mean August CO2 flux for

a reference year 2000 from Takahashi et al (2009) in molC.m�2.month�1 for

the Southern Ocean South of 30�

To assess and compare the regional contrasts in seasonal extremes of

the in model data and observations, the climatological Summer (January,

February, March) and Winter(July, August, September) model data were
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compared to the most recent data from Takahashi et al. (2009). The summer

and winter climatological means were calculated by taking the mean of the

average daily values for Summer (January, February, March) and Winter

(June, July, August).

Figures 4.7a and 4.7b show the summer (January, February, March)

and Winter (July, August, September) simulated CO2 data from the 5-

day averaged data for 2000 to 2009 and Figures 4.8a and 4.8b show the

summer (January, February, March) and Winter (July, August, September)

simulated CO2 data from the daily resolution data for 1998 - 2007. The

daily resolution model output seems to have captured the outgassing at the

ice margins more closely than the 5-day averaged data. The daily CO2 data

better represented the temporal and the spatial variability that can be seen

in the observations than the 5 day mean data.

Both the 5-day and the daily resolution data captured the range of the

observation data, however, the daily resolution model output shows more

widespread outgassing in summer than the observational data but is similar

to the winter observational data.
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Figure 4.7: a) Mean climatological summer (top) and b) Winter (bottom)

CO2 flux for 2000 - 2009 (5-Day mean model output) for the Southern Ocean

South of 30�
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Figure 4.8: a) Mean climatological summer (top) and b) Winter (bottom)

CO2 flux for 1998 - 2007 (daily model output) for the Southern Ocean South

of 30�

The summer mean had a very strong negative flux (CO2 uptake) along

the edge of the Antarctic continent which became a zero flux over winter.

A strong negative flux can be seen between 30� and 40� S in winter. The

seasonal shift from North to South can be seen when comparing summer

and winter flux. The sea-ice in winter resulted in a zero CO2 flux. The
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outgassing in the Weddell and Scotia seas was stronger in summer but was

present in winter whereas in most other regions the outgassing was squeezed

out by the colder waters in winter. In winter the outgassing was reduced in

the Weddell sea and predominantly occurred in the Scotia Sea.

Table 4.2: Comparison of the summer and winter simulated mean CO2

fluxes from the daily model output and the 5-day mean model output with

the annual mean from observations.

Season

Takahashi

et al.

(2009)

5-Day

Mean

Resolution

Daily

Mean

Resolution

Summer -0.012 -0.06 -0.037

Winter -0.052 -0.11 -0.001

The summer and winter Takahashi et al. (2009) observational data, 5-

day mean model data, and daily resolution model data are summarised in

Table 4.2. The di↵erence between summer and winter sea-air CO2 flux is

important in order to understand what is driving variability.

To investigate sampling strategies it is important to determine which

regions experience strong seasonality and in which regions the non-seasonal

variability contributes the most to the to the overall variability. In order to

determine this two methods were used: the signal-to-noise ratio (see Section

3.6) was calculated for each pixel and the reproducibility of the seasonal

cycle (see Section 3.7) was calculated.
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Figure 4.9: Standard deviations of Southern Ocean CO2 flux from 1998-

2007 (daily model output) for a) all the data, and b) inter-annual (standard

deviation across annual means), for the Southern Ocean South of 30�
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Figure 4.10: Standard deviations of Southern Ocean CO2 flux from 1998-

2007 for a) the seasonal (mean annual) cycle, and b) the non-seasonal (sub-

seasonal and inter-annual), for the Southern Ocean South of 30�

The inter-annual standard deviation is shown in Figure 4.9b. When

compared to the standard deviation of all the data (Figure 4.9a), standard

deviation of the seasonal cycle (Figure 4.10a), and the standard deviation

of the non-seasonal data (Figure 4.10b), it can be seen that inter-annual

variability contributed a small amount to the variability in the model data,
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especially around 60�S. The regions with elevated inter-annual variability

were also strong outgassing zones. The region with the strongest inter-

annual variability was in the Scotia Sea (between 55 to 65�S and 20 to

60�W) next to the Antarctic Peninsula, probably due to variability in ice

melt from year to year. When assessing the variability of all data (Figure

4.10a), the Scotia Sea remains a region of strong variability and was matched

in magnitude by the variability seen in the coastal Southern Ocean along

Antarctica. From the variability within the seasonal (annual) cycle (Figure

4.10a), it can be seen that the intra-annual variability (variability of the

annual cycle) was the largest contributor to the overall variability. The Sco-

tia Sea also had strong variability within the seasonal cycle. The strongest

variability within the seasonal cycle was along the Antarctic continent. The

variability in the non-seasonal cycle (Figure 4.10b) in the Southern Ocean,

contributed equally, if not more, to the overall variability than the seasonal

cycle. These results were used to calculate the signal-to-noise ratios (SNR)

values in Figures 4.11a and 4.11b.

The SNR has been computed for the 5 day resolution and the daily sim-

ulated CO2 fluxes in the Southern Ocean in Figure 4.11a and Figure 4.11b.

Over most of the Southern Ocean the SNR was less than 1. This confirms

that non-seasonal variability was contributing significantly to the variability

in the region. In these regions it would be di�cult to obtain su�cient ob-

servations to constrain the seasonal cycle and inter-annual variability. The

area around Kerguelen is an exception that returned a very high SNR for

both the 5 day resolution model data and the daily resolution model data.

The SNR for the 5 day resolution model data was generally greater since the

temporal resolution is coarser. Focussing on the daily resolution data, it can

be seen that the low variability in the mean annual cycle (seasonal cycle)

in certain areas was what contributed to the low SNR. A low variability in

the mean annual cycle (seasonal cycle) was generally consistent with a low

SNR value rather than the presence of large non-seasonal variability.
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Figure 4.11: Signal-to-noise ratios in the Southern Ocean for a) 5 day CO2

flux, b) daily CO2 flux,

Calculating the seasonality (section 3.7) of the CO2 flux was done ac-

cording to the method used in Thomalla et al. (2011) and is shown for the

5-day data in Figure 4.12a and the daily resolution data in Figure 4.12b.

Defining regions of weak or strong seasonal cycle reproducibility was based

on a comparison of the SNR plots and the correlation coe�cient plots. Re-

gions with a r2 value of 0.6 or above were also regions where the SNR value
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was above one. From the daily resolution data (Figure 4.12b) it was evident

that seasonality ( high SNR ) was strongest between the Subtropical Front

(STF) and the Southern ACC Front (SACCf) with the exception of the

Subtropical zone north of the STF where there was low seasonal variability

and therefor the the SNR is less than 1.

Figure 4.12: Seasonal cycle reproducibility (correlation coe�cient) in the

Southern Ocean (south of 30�) for a) 5-day mean model output , b) daily

seasonality
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Plots of time against latitude and time against longitude for the daily res-

olution model output enable the seasonality and inter-annual characteristics

of the data to be visualised. Sections of constant latitude and constant longi-

tude are plotted in Figure 4.13a and 4.13b. The seasonal shift of outgassing

and uptake regions from summer to winter can be seen when averaging both

over latitude and longitude. In Figure 4.13a we can see that there were 3

latitudinal bands in the Southern Ocean. A very strong, year round band of

outgassing can be seen in Figure 4.13a centering on the 60�S line of latitude.

North of 55�S the mean sea-air CO2 flux changed from positive (outgassing)

in the summer to negative (uptake) in the winter. South of 65�S the sea-air

flux changed from negative (uptake) in the summer to zero flux in the winter

due to formation of sea-ice preventing sea-air gas exchange.

The mean sea-air CO2 flux changed from positive (outgassing) in the

summer to negative (uptake) in the winter over most of the lines of longitude.

Figure 4.13: Hovmuller plots of time against latitude with longitude aver-

aged (left) for all the data and a plot of time against longitude with latitude

averaged (right) for daily resolution CO2 flux in molC.m�2.month�1
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These figures were analysed using 2D Fourier transforms resulting in

Figure 4.14a and 4.14b. These figures characterise the spectrum of the

simulated flux variability.

Figure 4.14: Two-dimensional fourier transform of a) longitudinally and b)

latitudinally averaged simulated Southern Ocean CO2 flux for daily resolu-

tion data

Figures 4.14 a and 4.14b show that most of the variance was explained by

longer periods and wavelengths. The largest values lie consistently across the

10th pixel/row in the v direction. This row represents generalised sinusoids

in the y direction with a frequency of 10 per decade or 1 per year. Therefore

the strongest signal lies in the seasonal (annual) cycle for all latitudinal and

longitudinal wavelengths. The Fourier transform has secondary peaks at the

harmonics of the annual cycle. Sampling at a resolution of finer than 20� in

latitude will capture most of the variability.
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Figure 4.15: Two-dimensional fourier transform of a) longitudinally and b)

latitudinally averaged simulated Southern Ocean CO2 flux for daily resolu-

tion data

Figure 4.15 depicts the latitudinally averaged 2D Fourier transform in

more detail. Periods larger than 180 days display the most variability but for

periods less than 180 days, wavelengths larger than 10� still show a uniform

spread of variability over all periods.
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4.3 Sensitivity of CO2 uptake to Sampling strategies using a

regular grid

4.3.1 Introduction

To further the understanding of the role of the Southern Ocean in the chang-

ing global carbon cycle, the inter-annual change in CO2 flux needs to be

resolved. The uncertainty of current estimates are too high mostly due

to the scarcity of observations. In this section, the goal was to reproduce

the findings of Lenton et al. (2006) on model simulated data from a ocean

biogeochemical model. These findings could then be used as a basis to ex-

plore non-structured sampling strategies. To assess the di↵erent sampling

errors obtained from sampling at di↵erent sampling frequencies, an exhaus-

tive search was used to calculate the sampling error obtained when sampling

the mean annual cycle using di↵erent sampling frequencies. This exhaustive

search helped to identify a range of possible sampling frequencies that could

be further applied to sampling the entire simulated model data set.

Uncertainty due to inter-annual variability, sampling error and total sam-

pling uncertainty were calculated according to the definitions in Lenton et

al. (2006).

Definition of uncertainty due to inter-annual variability:

2�inter�annual⇤ = 2�inter�annual/
p
10 (4.1)

where ✓ is the variance across the annual mean uptake.

Definition of sampling error:

2�sampling⇤ = 2�sampling/
p
10 (4.2)

where ✓ is the variance across mean values for each permeation.

Definition total sampling uncertainty:

2�total =
q
(2�)2inter�annual ⇤+(2�)2sampling⇤. (4.3)

.

4.3.2 Sampling at the model resolution

The simulated annual mean uptake was calculated as 0.348 ± 0.07 PgC/yr

at the model resolution. The uncertainty was calculated as

2�inter�annual⇤ = 2�inter�annual/
p
10 (4.4)
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where � was the variance about the annual mean uptake.

The annual mean uptake from the di↵erent sampling strategies that were

be investigated were the same as that obtained by sampling at the model res-

olution when averaged across all realisations of the sampling strategies grid.

The variability across each realisation (sampling error) was subsequently

combined with the inter-annual variability to estimate the total sampling

uncertainty.

4.3.3 Exhaustive search

By using the exhaustive search method (Section 3.9) it was possible to di-

rectly investigate the sampling error introduced by sampling at di↵erent

sampling resolutions. Sampling resolution in space was expressed in de-

grees longitude and temporal sampling resolution was expressed in days.

The mean annual cycle was sampled at each sampling frequency and the

sampling error calculated from each sampling frequency is plotted in Figure

4.16.

The results from this method show how to combine sampling in time and

in space in order to return the lowest sampling error. Figure 4.16 shows how

sampling error decreases with an input of sampling e↵ort, and the suggested

sampling strategy can be chosen according to the acceptable sampling error.

The figure confirmed the output of the Fourier transform of sea-air CO2 flux

averaged over latitude (figure 4.15), as it is evident that sampling the data

less than twice a year and every 120� longitude will result in a high variance

or uncertainty. To investigate in more detail, sampling strategies employing

3, 4 and 5 times a year at every 20�, 30� and 40� in longitude were applied

to the entire simulated model data set.

4.3.4 inter-annual variability versus Sampling error

According to the model analysis done by Lenton et al. (2006), the inter-

annual variability at the proposed sampling strategy contributed more to the

error introduced by the coarser resolution of the sampling strategy. This

implies that the sampling strategy suggested by Lenton et al. (2006) was

su�cient to resolve the seasonal cycle and reduce the sampling uncertainty

to an acceptable level.

Combining the sampling error and the uncertainty due to inter-annual

variability allowed an estimate for the total uncertainty. The total uncer-
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Figure 4.16: Plot of the sampling error (in PgC/yr) obtained when sampling

the mean annual cycle at various sampling frequencies. The finest spatio-

temporal sampling resolution are in the top right, while coarsest sampling

resolution are in the bottom left. Red indicates large sampling errors and

blue indicates small sampling errors.
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tainty was calculated as

2�total =
q
(2�)2inter�annual + (2�)2sampling. (4.5)

Additionally, a sampling strategy that results in a sampling error which,

in turn does not increase the total sampling error ,would reduce the uncer-

tainty level to one completely dominated by inter-annual variability.

2�inter�annual ⇡ 2�total (4.6)

The goal, therefore, is to minimise the 2�sampling. As with Lenton et

al. (2006), a sampling strategy that samples 4 times a year at every 30�

results in the sampling error contributing less to the total sampling error

than the inter-annual variability. In order for the total sampling error to be

una↵ected by the sampling error, a sampling strategy that samples 5 times

a year at every 24 degrees in longitude is required.

Which sampling strategy can meet the same criteria as suggested by

Lenton et al. (2006) when using the PISCES / ORCA model? A table can

be constructed for each of the possible sampling strategies in order to assess

whether or not the sampling strategy meets these criteria.

4.3.5 Sampling strategies using a regular grid

An area of interest, between sampling twice a year, every 60� and sampling 9

times a year, every 18�, was selected from figure 4.16 in order to investigate

di↵erent sampling frequencies in more detail. Sampling errors obtained from

sampling from 2 to 9 times per year and every 18� to 60� in longitude

are summarised in figure 4.17. The tables for each sampling frequency are

summarised into Tables A1-A49 (see appendices).

As the sampling density increases above 0.1%, the rate of decrease in

sampling error slows. Sampling frequencies with a sampling density of be-

tween 0.05% and 0.15% are further investigated and the results are sum-

marised in table 4.3.

Sampling 3 times a year, every 40�, resulted in 2160 realizations or grids

per year. This sampling strategy used 1215 sampling locations or a sampling

density of 0.058%. This is the equivalent of 27 north-south sampling sections
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Figure 4.17: Plot of the sampling error obtained when sampling the mean

annual cycle at various sampling densities (no. of sampling locations / total

no. of locations)
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Table 4.3: Summary of di↵erent sampling errors and total sampling uncer-

tainty for various sampling frequencies.

Sampling

Frequency

(per year,longitude)

Annual

Mean

(PgC/yr)

Sample

Error

Total

Sampling

Uncertainty

3,40 0.347±0.07 0.075 0.103

3,30 0.348±0.07 0.066 0.096

3,20 0.347±0.07 0.063 0.094

4,40 0.347±0.07 0.055 0.089

4,30 0.348±0.07 0.043 0.082

4,20 0.347±0.07 0.040 0.081

5,40 0.347±0.07 0.050 0.086

5,30 0.348±0.07 0.037 0.079

5,20 0.347±0.07 0.033 0.077

per year. The results from applying this sampling strategy are summarized

in the table A.41 in the appendices. The sampling uncertainty, double the

standard deviation (2�), from sampling at this resolution is ± 0.237 PgC/yr

for Southern Ocean uptake. The estimated sampling error was ± 0.075

PgC.yr�1. Combining the sampling error and the uncertainty due to inter-

annual variability resulted in an averaged uptake for the model period of

0.347 PgC.yr�1 with 0.103 PgC.yr�1 being the total sampling error.

Sampling 3 times a year, every 30� (see table A.39), resulted in 1800

realizations or grids per year. This sampling strategy used 1620 sampling

locations or a sampling density of 0.078%. This is the equivalent of 36

north-south sampling sections per year. The sampling uncertainty (double

the standard deviation (2�)) from sampling at this resolution was ± 0.209

PgC.yr�1 for Southern Ocean uptake. The estimated sampling error was ±
0.066 PgC.yr�1. Combining the sampling error and the uncertainty due to

inter-annual variability resulted in an averaged uptake for the model period

of 0.348 ± 0.096 PgC.�1yr with 0.096 PgC.yr�1 being the total sampling

error.

Sampling 3 times a year, every 20� (see table A.37), resulted in 1200

realizations or grids per year. This sampling strategy used 2430 sampling

locations or a sampling density of 0.118%. This is the equivalent of 54 north-

south sampling sections per year. The sampling uncertainty from sampling
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at this resolution was ± 0.200 PgC.yr�1 for Southern Ocean uptake. The

estimated sampling error was ± 0.063 PgC.yr�1. Combining the sampling

error and the uncertainty due to inter-annual variability resulted in an av-

eraged uptake for the model period of 0.347 ± 0.094 PgC.yr�1.

Sampling 4 times a year, every 40� (see table A.34), resulted in 2160

realizations or grids per year. This sampling strategy used 1620 sampling

locations or a sampling density of 0.078%. This is the equivalent of 36

north-south sampling sections per year. The sampling uncertainty, double

the standard deviation (2�), from sampling at this resolution was ± 0.175

PgC.yr�1 for Southern Ocean uptake. The estimated sampling error was ±
0.055 PgC.yr�1. Combining the sampling error and the uncertainty due to

inter-annual variability resulted in an averaged uptake for the model period

of 0.348 ± 0.089 PgC.yr�1.

Sampling 4 times a year, every 30� (see table A.32), resulted in 1350

realizations or grids per year. This sampling strategy used 2160 sampling

locations or a sampling density of 0.105%. This is the equivalent of 48

north-south sampling sections per year. The sampling uncertainty, double

the standard deviation (2�), from sampling at this resolution was ± 0.136

PgC.yr�1 for Southern Ocean uptake. The estimated sampling error was ±
0.043 PgC.yr�1. Combining the sampling error and the uncertainty due to

inter-annual variability resulted in an averaged uptake for the model period

of 0.348 ± 0.082 PgC.yr�1.

Sampling 4 times a year, every 20� (see table A.30), resulted in 900

realizations or grids per year. This sampling strategy used 3240 sampling

locations or a sampling density of 0.157%. This is the equivalent of 72

north-south sampling sections per year. The sampling uncertainty, double

the standard deviation (2�), from sampling at this resolution was ± 0.126

PgC.yr�1 for Southern Ocean uptake. The estimated sampling error was ±
0.040PgC.yr�1. Combining the sampling error and the uncertainty due to

inter-annual variability resulted in an averaged uptake for the model period

of 0.348 ± 0.081 PgC.yr�1.

Sampling 5 times a year, every 40� (see table A.27) resulted in 2160

realizations or grids per year. This sampling strategy used 2025 sampling

locations or a sampling density of 0.098%. This is the equivalent of 45

north-south sampling sections per year. The sampling uncertainty, double

the standard deviation (2�), from sampling at this resolution was ± 0.157
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PgC.yr�1 for Southern Ocean uptake. The estimated sampling error was ±
0.050 PgC.yr�1. Combining the sampling error and the uncertainty due to

inter-annual variability resulted in an averaged uptake for the model period

of 0.348 ± 0.086 PgC.yr�1 .

Sampling 5 times a year, every 30� (see table A.25), resulted in 1080

realizations or grids per year. This sampling strategy used 2700 sampling

locations or a sampling density of 0.131%. This is the equivalent of 60

north-south sampling sections per year. The sampling uncertainty, double

the standard deviation (2�), from sampling at this resolution was ± 0.105

PgC.yr�1 for Southern Ocean uptake. The estimated sampling error was ±
0.033 PgC.yr�1. Combining the sampling error and the uncertainty due to

inter-annual variability resulted in an averaged uptake for the model period

of 0.348 ± 0.077PgC.yr�1.

Sampling 5 times a year, every 20� (see table A.23), resulted in 750

realizations or grids per year. This sampling strategy used 4050 sampling

locations or a sampling density of 0.196%. This is the equivalent of 90

north-south sampling sections per year. The sampling uncertainty, double

the standard deviation (2�), from sampling at this resolution was ± 0.105

PgC.yr�1 for Southern Ocean uptake. The estimated sampling error was ±
0.033 PgC.yr�1. Combining the sampling error and the uncertainty due to

inter-annual variability resulted in an averaged uptake for the model period

of 0.348 ± 0.077 PgC.yr�1.

4.4 Sampling Strategies not constrained by a regular grid

4.4.1 Introduction

In the event of pCO2 sampling by autonomous sampling platforms, the sam-

pling will not be constrained by a regular grid. Therefore it is worth investi-

gating lower sampling densities that are not based on north-south sampling

sections. In this scenario the sampling platforms would return a mean with

the greatest certainty if the sampling platforms sampled the regions with the

highest variability in time and in space. To test the e↵ectiveness of a non-

gridded sampling strategy, a genetic algorithm approach (Section 3.10) was

used to return a sampling strategy that would best represent the simulated

data.

The genetic algorithm was set up to find optimized solutions for a number

of locations. An optimized solution was defined as a set of locations where
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the fitness function

f = (x̄population � x̄sample) + (�2
population � �2

sample) (4.7)

is minimised. A number of optimized solutions were selected for each of the

sampling density. The sampling error and total uncertainty were calculated

in the same way as the sensitivity studies of CO2 uptake calculated in the

previous section.

The genetic algorithm sampled spatial locations at a specific time. In the

following experiments, the instantaneous values selected by the genetic algo-

rithm were assembled to represent the decadal mean and the climatological

seasonal cycle.

In the first experiment, the decadal dataset was averaged over the time

axis to result in a single decadal mean value for each location in space (lat-

itude and longitude). The search space that the GA sampled and selected

locations from, was the decadal mean. The genetic algorithm selected lo-

cations from the decadal mean for 50, 100, 500 and 1000 locations. These

locations were then applied to the annual means for each year of the 5-day

averaged simulated model data set in order to quantify the uncertainty.

In the second experiment, the search space was the climatological sea-

sonal cycle. The GA selected locations from the mean climatological cycle.

These locations were then used to sample the data for each year in the

simulated model dataset.

The mean annual CO2 flux from the 5-day model data was 1.81±0.07

mmolC.m�2.day�1. The uncertainty was calculated as

2�inter�annual⇤ = 2�inter�annual/
p
10 (4.8)

where � was the variance about the annual mean CO2 flux.

4.4.2 Experiment 1: Sampling the decadal mean to estimate the

annual means

The optimized sampling strategies selected by the GA for 50, 100, 500, and

1000 locations were tested on the annual means for each of the years in the

model data set. The results are summarised in Table 4.4. Each optimized

solution has a fitness function value based on the comparison of the statistics

of the sample data and the statistics of the entire data set as explained in

the methods section. The mean value from the sample generated data was

1.81±0.07 mmolC.m�2.day�1 for the duration of the model data.
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Table 4.4: Summary of the sensitivity of the CO2 mean flux on sampling the

annual means of the 5-day mean model simulated data in mmolC.m�2.day�1

Number

of

Locations

Annual

Mean

Sample

Error

Total

Sampling

Uncertainty

50 1.82±0.07 0.13 0.15

100 1.81±0.07 0.07 0.10

500 1.82±0.07 0.04 0.08

1000 1.81±0.07 0.02 0.07

Figure 4.18: Summary of the mean fitness values obtained when sampling

the annual means at di↵erent sampling frequencies

Sampling the decadal mean using 50 locations resulted in fitness values

ranging from 0.01 to 0.3 with a mean fitness of 0.08. This mean value and

inter-annual variability was the same as the actual mean of 1.81±0.07. The

total sampling uncertainty generated by sampling using this strategy was

0.15 mmolC.m�2.day (see table B.1).
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Sampling the decadal mean using 100 locations resulted in fitness values

ranging from 0.02 to 0.1 with a mean fitness of 0.07. The mean value from the

sample generated data was 1.81±0.07 for the duration the model data. This

mean value and inter-annual variability was the same as the actual mean

of 1.81±0.07 with a mean fitness of 0.08. The total sampling uncertainty

generated by sampling using this strategy was 0.10 mmolC.m�2.day (see

table B.2).

Sampling the decadal mean using 500 locations resulted in fitness values

ranging from 0.02 to 0.07 with a mean fitness of 0.04. The mean value from

the sample generated data was 1.81±0.07 for the duration the model data.

This mean value and inter-annual variability was the same as the actual

mean of 1.81±0.07. The total sampling uncertainty generated by sampling

using this strategy was 0.08 mmolC.m�2.day (see table B.3).

Sampling the decadal mean using 1000 locations resulted in fitness values

ranging from 0.00 to 0.03 with a mean fitness of 0.02. The mean value from

the sample generated data was 1.81±0.07 for the duration the model data.

This mean value and inter-annual variability was the same as the actual

mean of 1.81±0.07. The total sampling uncertainty generated by sampling

using this strategy is 0.07 mmolC.m�2.day (see table B.4).

4.4.3 Experiment 2: Sampling the Annual Cycle to estimate the

data

The optimized sampling strategies selected by the GA for 1000, 2000, 5000,

and 7000 locations were tested on the entire data for each of the years in

the model data set. The results are summarised in table 4.5.

Table 4.5: Summary of the sensitivity of the CO2 mean flux on sampling the

annual means of the 5-day mean model simulated data in mmolC.m�2.day�1

Number

of

Locations

Annual

Mean

Sample

Error

Total

Sampling

Uncertainty

1000 1.81±0.06 0.10 0.073

2000 1.81±0.06 0.08 0.071

5000 1.81±0.07 0.05 0.070

7000 1.81±0.07 0.04 0.070
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Figure 4.19: Summary of the mean fitness values obtained when sampling

at di↵erent sampling frequencies

Sampling the annual mean using 1000 locations resulted in fitness values

ranging from 0.01 to 0.07 with a mean fitness of 0.03. Sampling using 1000

locations, the mean value for the CO2 flux was 1.81±0.06 mmolC/m2/day

similar to the mean value of 1.81±0.07 mmolC/m2/day from the entire data

set. Sampling using 1000 optimized locations resulted in a sampling un-

certainty of 0.10. The total sampling uncertainty when using this sampling

strategy was 0.07, which was the same uncertainty as sampling at the model

resolution (see table B.5).

Sampling the annual mean using 2000 locations resulted in fitness values

ranging from 0.01 to 0.04 with a mean fitness of 0.02. Sampling using 2000

locations, the mean value for the CO2 flux was 1.81±0.06 mmolC/m2/day

similar to the mean value of 1.81±0.07 mmolC/m2/day from the entire data

set. Sampling using 2000 optimized locations resulted in a sampling un-

certainty of 0.08. The total sampling uncertainty when using this sampling

strategy was 0.07, which was the same uncertainty as sampling at the model

resolution (see table B.6).
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Sampling the annual mean using 5000 locations resulted in fitness values

ranging from 0.01 to 0.04 with a mean fitness of 0.02. Sampling using 5000

the mean value for the CO2 flux was 1.81±0.06 mmolC/m2/day similar to

the mean value of 1.81±0.07 mmolC/m2/day from the entire data set. Sam-

pling using 5000 optimized locations resulted in a sampling uncertainty of

0.05. The total sampling uncertainty when using this sampling strategy was

0.07, which was the same uncertainty as sampling at the model resolution

(see table B.7).

Sampling the annual mean using 7000 locations resulted in fitness values

ranging from 0.00 to 0.04 with a mean fitness of 0.02. Sampling using 7000

the mean value for the CO2 flux was 1.81±0.06 mmolC/m2/day similar to

the mean value of 1.81±0.07 mmolC/m2/day from the entire data set. Sam-

pling using 7000 optimized locations resulted in a sampling uncertainty of

0.04. The total sampling uncertainty when using this sampling strategy was

0.07, which was the same uncertainty as sampling at the model resolution

(see table B.8).
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4.4.4 Using Radial Basis Interpolation to determine an optimized

sampling strategy

The radial basis function interpolation method was used to show which

locations are most important to sample in order to sample the model data

set with the lowest Root mean Squared Error (RMSE) between interpolation

and the model data set. Figure 4.20 shows how the RMSE is reduced as the

number of locations used to sample is increased.

Figure 4.20: The RMSE calculated from the RBF interpolations for each

number of sampling locations used

The investigation of optimized sampling strategies that do not rely on

regular gridded sampling suggested that sampling with as few as 1000 model

locations was su�cient to estimate the annual sea-air CO2 flux with a low

uncertainty. The Root Mean Squared Error (RMSE) between the values

predicted by the interpolation and the values observed in the model was 1.8

mmolC.m�2.day�1.

In order to test whether the algorithm favoured any time, latitude or

longitude band, histograms were plotted to see the frequency of samples

made for each time, latitude or longitude band.
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The longitudinal bands (Figure 4.21) which have the greatest frequency

of samples are regions of high variability but they are also mainly regions

around Antarctica allowing for more possible sampling locations in those

areas.

Figure 4.21: Number of sampling locations selected per 2� in longitude

The same can be said about the histogram of sampling frequency in lati-

tudinal bands (Figure 4.22) where locations further north are favoured. Due

to Antarctica taking up much of the area of the Southern part of the South-

ern Ocean it is possible that the algorithm has less probability of choosing

locations further south. There is a spike at ±65� which corresponds to the

zone of winter maximum outgassing and sea-ice. There are also lesser peaks

at 40�, corresponding to the Sub-antarctic front, and 50�, corresponding to

the Polar Frontal Zone.
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Figure 4.22: Number of sampling locations selected per 2� in latitude

From figure 4.23, the frequency of locations sampled in the summer

was consistently less than the locations sampled in the winter. Due to ice

forming in the winter, there was both less variability and fewer sampling

locations available. However, during this time of the year the outgassing is

at a maximum along the marginal ice zone, and in order for the algorithm

to capture the range of the data set it would have to sample in this period.
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Figure 4.23: Number of sampling locations selected per 5 day period

To assess the accuracy of sampling locations chosen by the RBF method,

1000 locations chosen by the RBF method are plotted against a map of

standard deviation distribution of the CO2 data. Figure 4.24 shows that the

sampling locations favoured by the RBF method were mostly found in areas

of high variability in time. Plotting these same locations on latitudinally and

longitudinally averaged plots (figure 4.25a and 4.25b) gives the same results

i.e. zones that have high variability also have the highest concentration of

sampling locations..
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Figure 4.24: The location of 1000 sampling locations selected plotted on the

standard deviation of CO2 flux data for the Southern Ocean south of 40�S.

The plot shows that sampling locations have been selected in regions of high

variability.
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Figure 4.25: The location of 1000 sampling locations selected plotted on

the standard deviation for a) latitudinally averaged, and b) longitudinally

averaged CO2 flux data for the Southern Ocean south of 40�S

Plotting the sampling locations on the mean CO2 flux time-averaged map
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(figure 4.26) shows that the sampling locations were adequately distributed

to capture the spatial distribution of the data. Repeating this for latitudi-

nally and longitudinally averaged plots (figure 4.27a and 4.27b) shows that

the locations capture the distribution along all axes.

Figure 4.26: The location of 1000 sampling locations selected plotted on the

mean of interpolated CO2 flux data for the Southern Ocean south of 40�S.

Sampling locations that have been selected are shown to be in regions where

extreme fluxes occur.
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Figure 4.27: The location of 1000 sampling locations selected plotted on the

mean for a) latitudinally averaged, and b) longitudinally averaged CO2 flux

data for the Southern Ocean south of 40�S

The locations selected by the radial basis function interpolation ensured
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that the di↵erence between the simulated model data and the RBF interpo-

lated data was kept to a minimum. In order to achieve this, the locations

with extreme values were preferred.

5 Discussion

5.1 Introduction

The Southern Ocean lacks su�cient coverage of pCO2 observation to re-

solve the inter-annual change of the CO2 flux with low uncertainty. Present

sampling is inadequate (Wanninkhof et al., 2012), and needs to increase.

The most e↵ective way to determine how to increase sampling e↵orts needs

to be determined. The main aim of this dissertation is to investigate sam-

pling strategies for measuring Southern Ocean CO2 flux that can resolve

the seasonal sea-air CO2 flux within the natural variability of the system.

The goal is to find a sampling strategy that optimally balances sampling

e↵ort and sampling uncertainty. Methods that can determine the e�cacy

of sampling strategies to achieve this goal are explored, and this allows the

di↵erent sampling strategies to be compared. Simulated model data from

an ocean biogeochemical model (ORCA2/PISCES) are used to create an

idealised world and results from di↵erent sampling strategies can be applied

to this world and compared. 5-day mean model output and daily resolution

model output are both used in this study. The daily resolution model out-

put is used to replicate a study done by Lenton et al. (2006) The genetic

algorithm and radial basis function experiments use .he 5-day mean model

output.

5.2 Model Data Analysis - Characteristics of Variability

In order to assess whether or not the simulated model data captures the

large scale variability present in the observations, the two model data sets

are analysed and compared to observation based on a a reference year 2000

from Takahashi et al (2009). The analysis shows that the simulated data

does capture the general variability present in the observations. The main

di↵erence between the three datasets are that the 5-day mean model out-

put results in little outgassing, and therefore overestimates the role of the

Southern Ocean as a atmospheric CO2 sink. The 5-day model output data

shows the western Weddell gyre and Scotia sea as a strong drawdown region
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whereas the observational data (Takahashi et al., 2009) and the daily res-

olution model output show these regions as strong sources for atmospheric

CO2.

The 5-day mean data is smoother than the daily resolution data but has

a larger amplitude in the seasonal cycle. The di↵erence is due to an error

in the model run for the 5 day data. The daily resolution data gives an am-

plitude in the mean annual cycle which is more similar to the observational

data. It should be noted that using the 5-day mean model data does not

have a negative e↵ect on the experiments that were used to determine the

e↵ectiveness of the sampling strategies. Repeating the experiments on the

5 day mean data obtained from the daily model run was not possible due to

time constraints. Similarly, attempting to do the experiments on the daily

resolution data would not be possible due to computational cost.

The daily resolution model data (Figure 4.3) reproduces results from

studies conducted around theWeddel Gyre, the Ross Sea and coastal Antarc-

tica which found the northeastern Weddell Gyre to be a strong source of

atmospheric carbon and the coastal Antarctic is a strong sink (Arrigo et al.,

2008; Bakker et al., 1997; Bakker et al., 2008; Robertson and Watson, 1995).

Analysis of the variability of the daily resolution data (Figure 4.9) showed

a small contribution by inter-annual variability. This contribution is smaller

than the contribution from inter-annual variability seen in Lenton et al.

(2006). This has implications with regard to determining the e↵ectiveness

of the sampling strategies if using the same definitions as Lenton et al (2006).

The method used by Lenton et al (2006) and in this study compares uncer-

tainty due to inter-annual variability with uncertainty from sampling and

uses the comparison to quantify the e↵ectiveness of sampling strategies (Sec-

tion 4.2.4).

The contribution variability by the annual cycle and the non-seasonal

variability (Figure 4.10) are of the same magnitude. The climatological

seasonal cycle is responsible for similar CO2 flux variance as the spatial

variability. Areas of low and high seasonal and non-seasonal variability

generally correspond (Figure 4.10). This has important implications for

the e↵ectiveness of di↵erent sampling strategies. A sampling strategy that

mostly selects locations in areas where non-seasonal and seasonal variability

are large will perform better than a sampling strategy that is regularly

spaced spatially and temporally.
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The regions in which the model shows the greatest variability (Figure

4.9) are the eastern Weddell Gyre (Scotia Sea) and the coastal Southern

Ocean. According to observational studies by Bakker et al. (1997, 2008),

the eastern Weddell Gyre is an outgassing region that has large variabil-

ity due to Circumpolar Deep Water bringing CO2 rich water to the winter

mixed layer. Significant amounts of CO2 are released when the ice cover

recedes. Variability is also a↵ected by the biological drawdown of CO2 in

the region. The shelf region of the Southern ocean is a strong sink for at-

mospheric CO2 due to summer biological productivity, intense winds and

e�cient ventilation (Arrigo, 2008). The time scales at which these occur re-

sult in a high variability in CO2 fluxes. The model investigation undertaken

into the daily resolution model output shows similar results to observational

and model studies. This means that sampling locations resulting from this

study are not based solely on the the data from a single model.

Having defined the annual cycle as the signal and the non-seasonal vari-

ability as the noise, the signal-to-noise (SNR) ratio of the Southern Ocean

CO2 flux is determined as in Lenton et al. (2006). The SNR is generally

higher in the 5-day mean resolution. This is thought to be due to averaging

over 5 days which would smoothe the data and removes part of the synoptic

non-seasonal variability. The higher amplitude in the mean annual cycle for

the 5-day resolution model output also contributes to the higher SNR due

to larger values for the annual cycle variability.

Irrespective of this potential shortcoming, the SNR is less than 1 in

most of the Southern Ocean for both the daily resolution model output and

the 5-day mean model output datasets. In regions where there is a low

signal-to-noise ratio (SNR<1), it would be di�cult to separate the seasonal

cycle variability from the non-seasonal variability. However, the regions

that have large variability in the mean annual cycle are the same as the

regions with large non-seasonal variability (Figure 4.10). This is important

in determining which type of sampling strategy to use.

Sampling regularly (4 times a year) will not be the best sampling strategy

due to the SNR value being less than 1 in most of the Southern Ocean.

This suggests the occurrence of shorter timescale events contributing to the

variability. The objective sampling strategy selects locations in areas where

both the non-seasonal and seasonal variability is large.

The seasonal cycle reproducibility of each pixel is also calculated as in
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Thomalla et al (2011). Areas with low seasonal cycle reproducibility are

areas where the seasonal cycle is not key in attempting to explain the overall

variance, i.e. the annual seasonal cycle is di↵erent to the climatological

seasonal cycle. This corresponds strongly to the regions with a SNR of less

than 1.

An ideal sampling strategy would be to sample in areas with high vari-

ability and low SNR. A non-structured, objective sampling strategy would

be more suitable in achieving this ideal sampling strategy than a regularly

spaced sampling strategy. The ORCA2/PISCES biogeochemical model is

used to reproduce the findings of Lenton et al (2006) and explore regu-

larly spaced sampling strategies. The results where then used as a basis for

the exploration of non-structured sampling strategies. The outcomes from

these two approaches (structured and unstructured) to sampling strategies

will now be discussed as well as their implications.

5.3 Design of observational strategy using regular grids (struc-

tured approach)

The structured approach uses regular grids (regular sampling in time and

space) to sample the Southern Ocean CO2 flux. The daily resolution model

output is used for this approach.

Uncertainty due to inter-annual variability, sampling error and total sam-

pling uncertainty are calculated according to the definitions in Lenton et al.

(2006). The results are summarised in table 4.3 in the results section. Un-

certainty is expressed as variance. The three terms Lenton et al (2006) use

are:

1. Uncertainty due to inter-annual variability:

2�inter�annual⇤ = 2�inter�annual/
p
10 (5.1)

2. Sampling error:

2�sampling⇤ = 2�sampling/
p
10 (5.2)

3. Total sampling uncertainty:

2�total =
q
(2�)2inter�annual ⇤+(2�)2sampling⇤ (5.3)
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Using the current sampling e↵orts, from Lenton et al. (2006), of sampling

regularly every 3 month, every 2� in latitude and every 60� in longitude,

results in a mean CO2 uptake of 0.352±0.11 PgC.yr�1 compared to sampling

at the model resolution in which the uptake is 0.348±0.07 PgC.yr�1. This

sampling strategy is an overestimate of the actual current sampling e↵orts.

In this study, all sampling strategies have a meridional resolution of 2�.

This is the model resolution and thus a model constraint. According to

Lenton et al. (2006), sampling at every degree instead of every 3� in latitude

does not change the estimate of sampling uncertainty. Also, according to

Lenton et al. (2006), sampling with or without sub-grid scale variability does

not change the estimates in uptake or sampling error. This is in agreement

with Mahadevan (2004) and Resplandy et al. (2009) who suggest that large

scale CO2 flux variability is not a↵ected by mesoscale and sub-mesocale pro-

cesses. This implies that variability is not a↵ected by mesoscale variability.

Sampling strategies are di↵erentiated according to the daily and meridional

sampling resolution.

A number of criteria are used in this study to determine the suitability

of a sampling strategy in calculating the net Southern Ocean CO2 uptake.

These criteria use the definitions in Equations (5.1) - (5.3).

The first criterion that is used to assess whether or not a sampling strat-

egy can produce suitable flux estimates is whether the sampling error of the

strategy is less than the uncertainty introduced by the inter-annual variabil-

ity, i.e.

2�sampling⇤ < 2�inter�annual⇤ (5.4)

This is not considered a good criterion to assess sampling strategy e�ciency

but it is useful to identify at which sampling resolution this occurs.

The results show that sampling regularly every 4 months (3 times per

year), at every 2� in latitude and every 30� in longitude is su�cient to

make the total sampling uncertainty to approximately equal to inter-annual

variability. The sampling uncertainty at this resolution is 0.66 PgC.yr�1

(see Figure 5.1).

The second criterion used to determine the e↵ectiveness of a sampling

strategy when calculating suitable flux estimates is to test if the sampling

strategy can calculate the net CO2 exchange with an uncertainty approxi-

mately equal (equal to within one significant figure) to the uncertainty when

calculating net flux at the model resolution (i.e. uncertainty due to inter-
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Figure 5.1: Plot of the sampling error obtained when sampling the mean an-

nual cycle at various sampling frequencies highlighting the sampling strategy

sampling 3 times a year, every 30�. The dotted line represents the uncer-

tainty due to inter-annual variability.
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annual variability). The second criteria is expressed as:

2�sampling⇤ << 2�inter�annual ⇤

2�total ⇡ 2�inter�annual⇤ (5.5)

Figure 5.2 shows that sampling regularly every 2 months, at 2� in latitude

and every 24� in longitude is su�cient determine the net CO2 uptake with a

total uncertainty approximately equal to sampling at the model resolution.

Figure 5.2: Plot of the total sampling uncertainty obtained when sampling

the mean annual cycle at various sampling frequencies highlighting the total

sampling uncertainty obtained when sampling 6 times a year, every 24�.

Reducing the total uncertainty to below 20% of the regional CO2 flux

estimate could not be achieved because the uncertainty due to inter-annual

variability is already 20% of the regional estimate. Although not ideal, it

was decided to use the global mean ocean uptake. According to Takahashi

et al. (2009) the global mean ocean uptake is 2.0±0.1 PgC.yr�1.

In order to keep the sampling uncertainty below 15% of the global mean

ocean uptake, sampling regularly every 3 months, at every 1� in latitude and
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every 40� in longitude is su�cient (see Figure 5.3). None of the sampling

strategies can constrain the total uncertainty to less than 10% of the global

mean ocean uptake, however, sampling every 3 months, at 1� in latitude

and 40� in longitude is also su�cient to constrain the total uncertainty to

less than 15% of the global mean ocean uptake.

Figure 5.3: Plot of the total sampling uncertainty obtained when sampling

the mean annual cycle at various sampling frequencies highlighting the total

sampling uncertainty obtained when sampling 4 times a year, every 30�, and

4 times a year, every 40�

Figure 5.3 shows that sampling regularly every 3 months, at every 2�

in latitude and every 30� in longitude is a acceptable compromise between

these di↵erent criteria. This is because the total sampling uncertainty is at

0.082 PgC.yr�1 which is 0.012 PgC.yr�1 greater than sampling at the model

resolution.

To design an observational strategy for the Southern Ocean uptake of

CO2, Lenton et al. (2006) applied two-dimensional Fourier transforms and

signal-to-noise ratios to simulated model air-sea CO2. In the present study
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an exhaustive search (see Section 3) on the seasonal cycle of simulated model

data is used to compare the sampling error obtained at each di↵erent sam-

pling resolutions (see Figure 4.16). The results shown in Figure 4.16 of

the exhaustive search show that sampling more than 3 times a year and

more than 6 times in longitude (every 60�) reduces the uncertainty due to

sampling error.

To compare the results with that of Lenton et al. (2006), the relevant

sampling strategies are repeated using the simulated model data that has

been remapped to a 360� meridional resolution. The results do not di↵er

more than ±0.001 PgC.yr�1.

Lenton et al. (2006) tested the present sampling strategy on an ocean

biogeochemical model driven with NCEP-R1. They calculated a mean an-

nual uptake for the Southern Ocean of 0.6±0.2PgCyr�1.

Lenton et al. (2006) designed and proposed a sampling strategy that

sampled the Southern Ocean at a resolution of 3 months, 3� in latitude

and 30� in longitude. They tested their proposed sampling strategy on the

same simulated model data and calculated a mean annual uptake for the

Southern Ocean of 0.6±0.1PgCyr�1. The error introduced by sampling at

their proposed sampling strategy was half of that of the current sampling

strategy.

The mean annual uptake calculated in this study is less than Lenton

et al., 2006, but still falls within the range of estimates from model and

observational studies (0.2 to 0.8 PgC.yr�1 for the 1990s).

Inter-annual variability is substantially greater in Lenton et al. (2006).

The primary di↵erence between the calculations of uncertainty in Lenton

et al., 2006 lie in the di↵erence between the inter-annual variability in the

model used by Lenton et al., 2006 and the model used in this study.

The di↵erence in models is as follows:

The total sampling uncertainty of the present (current sampling e↵ort)

Southern Ocean sampling strategy calculated in this study is less than that

calculated by Lenton et al. (2006). However the sampling error is significantly

larger than the uncertainty due to inter-annual variability. The results in

this study confirm that sampling at the present sampling strategy cannot

result in flux calculations that are as accurate or precise as sampling at the

model resolution.

Using the proposed sampling strategy of Lenton et al. (2006), sampling 4
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times a year, at every 30�, the total sampling uncertainty is larger than the

uncertainty obtained by sampling at the model resolution, unlike the results

obtained by Lenton et al. (2006). This is due to the greater inter-annual

variability in Lenton et al. (2006) contributing more to the total sampling

uncertainty than in this study. Sampling using the proposed Lenton et al.

(2006) sampling strategy on the daily resolution model output does not

result in a situation where the criteria for Equation 5.5 are met.

In order to meet the same criteria (Equation 5.5) as Lenton et al. (2006),

i.e. sampling every 2 months, every 24�, would result in 90 north-south

sampling sections per year. This is almost twice the number of the 48

sampling sections that would be used by implementing the proposed Lenton

et al., 2006 sampling strategy.

Sampling every 3 months, at every 1� in latitude and every 40� in lon-

gitude (see Table 5.1) is the equivalent of 24 north-south sampling sections

per year and results in an uncertainty of within 15% of the global mean CO2

uptake. Although the sampling strategy increases the uncertainty by more

than 0.019 compared to sampling at the model resolution, the number of

sampling sections made per year is half that of Lenton et al., 2006. If the

results from Lenton et al., 2006 are calculated to the same accuracy as this

study (i.e. using uncertainty due to inter-annual variability as 0.12, sam-

pling error as 0.068, and rounding o↵ to two significant figures), then the

uncertainty is closer to 0.139 which increases the uncertainty of 0.1 PgC.yr�1

by 0.019, the same increase that sampling every 3 months at every 40� in

longitude does in this study. Therefore it is proposed to sample every 3

months, at every 2� in latitude and every 40� in longitude as a basis to

optimize e↵ort and reduce uncertainty.
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Table 5.1: Comparison of the total Simulated Uptake With the Uptake from

Our Proposed(Sampling every 90 days and every 40 degrees in longitude)

Sampling and the Sampling Error Introduced. The sampling error is 0.055

and the total sampling uncertainty is 0.089

Year Total Simulated Up-

take, PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.206 0.189

1999 0.199 0.199 0.182

2000 0.26 0.26 0.157

2001 0.224 0.224 0.2

2002 0.412 0.412 0.162

2003 0.419 0.419 0.172

2004 0.363 0.363 0.193

2005 0.426 0.426 0.172

2006 0.443 0.443 0.165

2007 0.522 0.522 0.154

1998-2007 0.348±0.07 0.347±0.07 0.175

The advantages of investigating sampling strategies with a regular grid

is that it is easier to quantify uncertainty as the mean. Each of the permuta-

tions of each grid resolution can be used to quantify uncertainty. Regularly

spaced north to south sampling lines are e↵ective for ship based sampling

strategies but according to the model, large areas in the Southern Ocean

have high mean annual cycle and non-seasonal variability. Using regular

spaced sampling strategies are likely to result in areas of low variability be-

ing oversampled and areas of high variability being under sampled. This

could be in a waste of sampling e↵ort and invokes the need for a scale sen-

sitive sampling strategy.

5.4 Design of observational strategy using Genetic Algorithm

It is contended that optimized sampling strategies that do not adhere to a

regularly spaced grid should be able to more e�ciently sample the model

data set. An optimized strategy would sample preferentially in areas of high

variability and less in areas of low variability.
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With these optimized strategies, the sampling frequency is dependent

on the number of sampling locations allowed by the GA to sample the data

set. Each sampling frequency requires a number of permutations in order to

compare the sampling frequency in the same way as done by the regularly

spaced data. The result should be a group of solutions that represent the

data optimally.

A genetic algorithm is used to characterise sampling strategies that are

not based on regular sampling in time or space. Genetic algorithms are

relatively straightforward to implement and are designed to find successively

better solutions than a random solution. Therefore they meet the needs

of this study. The limitations of Genetic Algorithms (Section 2.8.6) are

thought to have a low impact since the fitness function can be very simple

and because local optima are su�ciently good solutions

In order to allow the genetic algorithm to perform e�ciently, some com-

promises are made (Section 3.10.1) with regards to sampling the data. This

allows for many solutions to be obtained. Firstly, the data is regridded onto

a 640 day, by 64� latitude by 128� longitude grid. Then the last value is re-

moved to obtain a data set with a size of 2n-1. As explained in the methods

section, this reduces the number of possible locations by half. Secondly, sea-

air fluxes over land (which are 0) are included in possible sampling locations.

Thirdly, it is possible that the genetic algorithm can select the same location

twice. Better solutions would avoid sampling the same location twice as the

additional sampling point can be utilised better at another location .

The most important aspect of the genetic algorithm is the fitness func-

tion f (Equation 5.6). With the population defined as the data being sam-

pled, and the sample being defined as the location selected by the genetic

algorithm, the fitness function selected for the study calculates the sum of

the absolute di↵erence between the data mean and the sample mean, and

the di↵erence between the data standard deviation and the sample standard

deviation i.e.

f = (x̄population � x̄sample) + (�2
population � �2

sample) (5.6)

The genetic algorithm aims to select a solution, or set of locations, that

minimise this fitness function.

As shown in experiment 1 (Section4.4.2), the genetic algorithm is set up

to estimate the decadal mean. The decadal mean is sampled with varying

sampling densities. The genetic algorithm selects a number of locations that
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minimise Equation 5.6. These locations are suggested as good locations for

moorings. Using di↵erent sampling densities one can determine how many

moorings one would need to capture the annual means with a reasonable

degree of certainty, as well as the ideal locations. These sampling locations

are then tested on the annual mean for each year in the data to determine

whether the sampling strategy selected by the genetic algorithm can ac-

curately capture the inter-annual variability over the years and the spatial

variability within the annual means. The results are summarised in table

4.4.

The mean fitness values (from Equation. 5.6) of the sampling solutions

are <5% of the annual mean. This indicates that these solutions are a good

representation of the overall data.

In order to quantify the sampling uncertainty, and therefore the total

uncertainty generated by sampling with this many solutions, ten solutions

are selected by the genetic algorithm. The tables generated by these exper-

iments are available in Appendix B.

The sampling error of the annual means is calculated. This sampling

error can be compared with the sampling errors calculated by using sampling

strategies based on regular grids.

Table 4.4 shows a summary of the sampling error and total sampling

uncertainty for Experiment 1. Sampling the annual mean with 50 locations

results in a mean CO2 flux of 1.82±0.15. Sampling the annual mean with

100 locations results in a mean CO2 flux of 1.81±0.10. Sampling the annual

mean with 500 locations results in a mean CO2 flux of 1.82±0.08 (0.077).

Sampling with this many (optimized) locations returns a mean CO2 flux with

a total sampling uncertainty approximately the same as that of sampling

at the model resolution. Sampling the annual mean with 1000 locations

results in a mean CO2 flux of 1.81±0.07. In spite of sampling with double

the number of locations, the total sampling strategy is approximately the

same as sampling with 500 locations. Once the sampling error is small, the

total uncertainty cannot be reduced without a reduction in the inter-annual

variability.

The genetic algorithm is then set up to sample the mean annual cycle

(Experiment 2: Section 4.4.2). Locations are selected by the genetic algo-

rithm. These locations are tested on the data for each year to determine

whether or not the sampling strategy can capture the inter-annual variabil-
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ity as well the spatial and seasonal variability within each year (the standard

deviation of the data). The results are summarised in table 5.5.

In order to quantify the uncertainty, solutions are selected by the genetic

algorithm. The sampling error of the annual means is calculated. This

sampling error can be compared to the sampling errors calculated by using

sampling strategies based on regular grids.

The sampling errors show a significant improvement over sampling with

regular grids. The sampling error obtained from sampling with 1000 loca-

tions is significantly smaller (0.089 vs 0.073) than sampling regularly 5 times

a year, every 2� in latitude and every 20� in longitude. Sampling regularly

at this time and space frequency would require 4050 locations.

Sampling the annual mean with 100, 2000, 5000, and 7000 locations re-

sults in a mean flux of 1.81±0.0725, 1.81±0.0712, 1.82±0.0703, 1.81±0.0701

respectively. The total sampling uncertainty is insensitive to the number of

locations because the sampling error is already low in comparison to inter-

annual variability.

Using fewer sampling locations, the optimized sampling strategies still

return levels of uncertainty similar to sampling strategies that use regular

grids. Even using 1000 locations, the sampling uncertainty is approximately

the same as sampling at the model resolution. The sampling error is low

enough using 1000 locations to meet the conditions in Equation 5.5, i.e.

the sampling error is su�ciently smaller than inter-annual variability such

that total sampling error is approximately equal to inter-annual variability.

Using more sampling locations does not result in a significant reduction in

the total sampling error. This shows that the use of optimized sampling

strategies chosen by a genetic algorithm is more e↵ective at reducing the

uncertainty of Southern Ocean CO2 flux sampling than using regular grids.

This is expected from the analysis of the model data which showed that

certain regions experienced greater variability than others (Figure 4.9, 4.10,

4.11 and 4.24). Sampling strategies that sample more in these areas and less

in areas that do not have a lot of intraseasonal variability are more e�cient

at estimating the Southern Ocean CO2 flux with a low uncertainty.
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5.5 Design of observational strategy using iterative maxi-

mum error reduction

As it has been shown, is i spossible to sample with fewer sampling locations

using optimized, non-grid sampling strategies. As a basis to further opti-

mize unstructured sampling of high variability areas, RBFs are now used to

return a highly optimized sampling strategy that will enable an investigation

addressing which areas are the most important to sample.

A radial basis function interpolation is used to interpolate the sample

data and determine where the greatest error is. As stated in Section 3.11,

starting with four locations, the algorithm finds the location with the great-

est error and then does the next interpolation with that location included

until the number of locations used for the interpolation reaches the number

required to fulfil the required sampling density. For the Experiment 2 in

the Genetic Algorithm Section, it is decided that 1000 optimized locations

is su�cient to sample the Southern Ocean CO2 flux with low uncertainty.

The Root Mean Squared Error (RMSE) between the values predicted by the

interpolation and the values observed in the model is 1.8 mmolC.m?2 .day?1.

Plotting the chosen locations against standard deviation along all axes

(Figure 4.24 and 4.25) shows that this method selects locations where the

variability is highest. Most of the locations are along the Antarctic Conti-

nent and the South American Continent. These are strong uptake regions in

the summer months (Figure 4.7a and 4.8a). More locations are selected in

the summer months as many locations are covered by ice in winter. There

are also many locations in the Scotia Sea, which is a strong outgassing region

(Figure 4.3). The goal of this radial basis function method is to perform

an interpolation using the information from locations that will minimise the

di↵erence (RMSE) between the sample data and the population data. To

do this it must capture the variability in the data. In order to minimise

the error between the interpolated data set and the original data set, areas

with extreme flux values will be selected. The reasons for high variabil-

ity in these areas are due to variability in sea-ice interaction, productivity

and upwelling (Arrigo et al., 2008; Bakker et al., 1997; Bakker et al., 2008;

Robertson and Watson, 1995). Sea ice retreat leads to a strong outgassing

in the eastern Weddel Gyre as the CO2 rich Circumpolar Deep Water comes

into contact with the atmosphere (Bakker et al. 1997, 2008). This is coun-

teracted by biological drawdown which makes this region highly variable as
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well as extreme. In the coastal Southern Ocean, biological drawdown due to

increased productivity results in this region being a strong CO2 sink in sum-

mer whereas in winter there is no flux due to sea-ice-coverage (Robertson et

al, 2005;Arrigo et al. 2008).

This method (using RBF interpolation to successively reduce RMSE)

is good because it finds specific locations to get the most e�cient sample.

The disadvantage is that it is dependent on the model data, which may not

represent the real world well.

5.6 Further work and issues

The methods employed in this study would benefit from being implemented

on a finer resolution data-set in both time and space. Investigation into the

appropriate fitness functions to determine the optimized solutions from the

Genetic Algorithm would be advantageous. A platform specific approach,

similar to Heaney et al. (2007), would benefit observational oceanography.

Di↵erent combinations of sampling platforms could be tested on fine reso-

lution model data in order to determine which combination is the best.

6 Conclusion

Using an ocean biogeochemical model and methods developed by both Lenton

et al. (2006) and this study, regularly spaced sampling strategies are investi-

gated in order to determine a sampling strategy that returns the same level

of uncertainty as sampling at model resolution.

This level of uncertainty is determined to be attained when the un-

certainty due to sampling is significantly less than the uncertainty due to

interannual variability, such that, the total sampling uncertainty is approx-

imately equal to the uncertainty due to interannual variability.

It is determined that sampling regularly every 3 months, at every 2� in

latitude and every 40� in longitude is su�cient to estimate the annual mean

CO2 uptake with a low uncertainty.

This sampling strategy is infeasible due to the limitations of ship avail-

ability and high intraseasonal variability. However, using a regular grid ap-

proach ensures that a sampling strategy is likely to perform robustly should

Southern Ocean behaviour di↵er from the model.
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In order to determine if sampling e↵ort can be reduced by using a tar-

geted sampling strategy instead of a regular grid approach, a genetic algo-

rithm is utilized to determine targeted or optimal sampling solutions.

Unlike the regular grid approach, the sampling strategy elected by the

genetic algorithm resemble a sampling strategy that could be used by a

multi-platform observation network including platforms such as gliders and

floats.

For various sampling densities, a number of targeted sampling strategies

are selected by the genetic algorithm. The sampling uncertainties of these

sampling strategies are calculated and return lower uncertainties than sam-

pling strategies that rely on a regular grid. Sampling the data using 1000

optimized sampling locations is enough to estimate the annual mean CO2

flux with a low uncertainty. Beyond this, the extra e↵ort does not return a

significant gain.

Although the method allows more freedom in selecting sampling loca-

tions as well as requiring less sampling e↵ort than using a regular grid ap-

proach, real-life application of this method would require a thorough un-

derstanding of the variables being measured and a good confidence in the

model used to generate the sampling strategy.

The genetic algorithm approach indicates a su�cient sampling density to

estimate the annual mean CO2 uptake. In order to suggest the best possible

locations to sample at, a method is developed that calculates the maximum

error between the data and a set of sample locations. The method uses

a radial basis function (RBF) interpolation to successively find optimized

sampling locations. The sampling locations are investigated to determine

the locations that are most important to sample when attempting to sample

with low sampling densities.

The sampling locations returned from this method closely follow areas

that exhibit a high variability in the seasonal cycle and non-seasonal vari-

ability. Using RBF interpolation to successively find optimized sampling lo-

cations can therefor be considered a good tool to develop a sampling strategy

for estimating mean annual CO2 flux in the Southern Ocean.

The methods described to design a sampling strategy have their advan-

tages and disadvantages. This study shows that, for a given model dataset,

it is possible to reduce both sampling e↵ort and sampling uncertainty by

targeting sampling locations.
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1 Appendix A

Table A1: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 40 days and every 18 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.025 and the total
sampling uncertainty is 0.074

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.094

1999 0.199 0.199 0.077

2000 0.26 0.259 0.074

2001 0.224 0.224 0.092

2002 0.412 0.412 0.082

2003 0.419 0.419 0.081

2004 0.363 0.363 0.075

2005 0.426 0.426 0.065

2006 0.443 0.443 0.076

2007 0.522 0.522 0.072

1998-2007 0.348±0.07 0.347±0.07 0.079

Table A2: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 40 days and every 20 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.026 and the total
sampling uncertainty is 0.075

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.097

1999 0.199 0.199 0.079

2000 0.26 0.259 0.077

2001 0.224 0.224 0.106

2002 0.412 0.411 0.084

2003 0.419 0.419 0.085

2004 0.363 0.363 0.081

2005 0.426 0.426 0.066

2006 0.443 0.443 0.082

2007 0.522 0.522 0.076

1998-2007 0.348±0.07 0.347±0.07 0.083

1

Table A3: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 40 days and every 24 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.024 and the total
sampling uncertainty is 0.074

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.091

1999 0.199 0.199 0.082

2000 0.26 0.26 0.067

2001 0.224 0.224 0.085

2002 0.412 0.412 0.077

2003 0.419 0.419 0.075

2004 0.363 0.363 0.068

2005 0.426 0.427 0.061

2006 0.443 0.443 0.072

2007 0.522 0.522 0.07

1998-2007 0.348±0.07 0.348±0.07 0.075

Table A4: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 40 days and every 30 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.029 and the total
sampling uncertainty is 0.076

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.098

1999 0.199 0.199 0.093

2000 0.26 0.26 0.079

2001 0.224 0.224 0.103

2002 0.412 0.412 0.105

2003 0.419 0.419 0.087

2004 0.363 0.364 0.086

2005 0.426 0.427 0.09

2006 0.443 0.444 0.091

2007 0.522 0.522 0.082

1998-2007 0.348±0.07 0.348±0.07 0.092
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Table A5: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 40 days and every 36 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.038 and the total
sampling uncertainty is 0.08

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.137

1999 0.199 0.198 0.147

2000 0.26 0.259 0.133

2001 0.224 0.223 0.143

2002 0.412 0.412 0.109

2003 0.419 0.419 0.106

2004 0.363 0.363 0.105

2005 0.426 0.426 0.106

2006 0.443 0.443 0.097

2007 0.522 0.522 0.107

1998-2007 0.348±0.07 0.347±0.07 0.119

Table A6: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 40 days and every 40 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.043 and the total
sampling uncertainty is 0.082

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.206 0.145

1999 0.199 0.199 0.124

2000 0.26 0.26 0.105

2001 0.224 0.224 0.16

2002 0.412 0.412 0.118

2003 0.419 0.419 0.156

2004 0.363 0.363 0.148

2005 0.426 0.426 0.126

2006 0.443 0.443 0.137

2007 0.522 0.522 0.133

1998-2007 0.348±0.07 0.347±0.07 0.135
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Table A7: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 40 days and every 60 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.072 and the total
sampling uncertainty is 0.1

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.211 0.237

1999 0.199 0.203 0.208

2000 0.26 0.264 0.202

2001 0.224 0.229 0.24

2002 0.412 0.417 0.231

2003 0.419 0.423 0.235

2004 0.363 0.368 0.231

2005 0.426 0.432 0.254

2006 0.443 0.447 0.191

2007 0.522 0.526 0.234

1998-2007 0.348±0.07 0.352±0.07 0.226

4



Table A8: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 45 days and every 18 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.024 and the total
sampling uncertainty is 0.074

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.081

1999 0.199 0.199 0.077

2000 0.26 0.259 0.082

2001 0.224 0.224 0.083

2002 0.412 0.412 0.081

2003 0.419 0.419 0.068

2004 0.363 0.363 0.08

2005 0.426 0.426 0.07

2006 0.443 0.443 0.068

2007 0.522 0.522 0.068

1998-2007 0.348±0.07 0.347±0.07 0.076

Table A9: Comparison of the total Simulated Uptake With the Uptake from Our
Proposed(Sampling every 45 days and every 20 degrees in longitude) Sampling
and the Sampling Error Introduced. The sampling error is 0.025 and the total
sampling uncertainty is 0.074

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.085

1999 0.199 0.199 0.079

2000 0.26 0.259 0.085

2001 0.224 0.224 0.098

2002 0.412 0.411 0.083

2003 0.419 0.419 0.073

2004 0.363 0.363 0.086

2005 0.426 0.426 0.069

2006 0.443 0.443 0.074

2007 0.522 0.522 0.073

1998-2007 0.348±0.07 0.347±0.07 0.08
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Table A10: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 45 days and every 24 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.023 and the
total sampling uncertainty is 0.074

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.078

1999 0.199 0.199 0.082

2000 0.26 0.26 0.074

2001 0.224 0.224 0.075

2002 0.412 0.412 0.076

2003 0.419 0.419 0.062

2004 0.363 0.363 0.073

2005 0.426 0.427 0.065

2006 0.443 0.443 0.062

2007 0.522 0.522 0.065

1998-2007 0.348±0.07 0.348±0.07 0.071

Table A11: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 45 days and every 30 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.028 and the
total sampling uncertainty is 0.075

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.086

1999 0.199 0.199 0.091

2000 0.26 0.26 0.086

2001 0.224 0.224 0.098

2002 0.412 0.412 0.105

2003 0.419 0.419 0.076

2004 0.363 0.364 0.093

2005 0.426 0.427 0.095

2006 0.443 0.444 0.084

2007 0.522 0.522 0.08

1998-2007 0.348±0.07 0.348±0.07 0.09
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Table A12: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 45 days and every 36 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.037 and the
total sampling uncertainty is 0.079

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.131

1999 0.199 0.198 0.148

2000 0.26 0.259 0.136

2001 0.224 0.223 0.14

2002 0.412 0.412 0.109

2003 0.419 0.419 0.098

2004 0.363 0.363 0.11

2005 0.426 0.426 0.113

2006 0.443 0.443 0.091

2007 0.522 0.522 0.103

1998-2007 0.348±0.07 0.347±0.07 0.118

Table A13: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 45 days and every 40 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.043 and the
total sampling uncertainty is 0.082

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.206 0.14

1999 0.199 0.199 0.122

2000 0.26 0.26 0.112

2001 0.224 0.224 0.159

2002 0.412 0.412 0.121

2003 0.419 0.419 0.151

2004 0.363 0.363 0.156

2005 0.426 0.426 0.13

2006 0.443 0.443 0.135

2007 0.522 0.522 0.132

1998-2007 0.348±0.07 0.347±0.07 0.136
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Table A14: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 45 days and every 60 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.072 and the
total sampling uncertainty is 0.1

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.211 0.234

1999 0.199 0.203 0.209

2000 0.26 0.264 0.208

2001 0.224 0.229 0.241

2002 0.412 0.417 0.232

2003 0.419 0.423 0.23

2004 0.363 0.368 0.235

2005 0.426 0.432 0.256

2006 0.443 0.447 0.19

2007 0.522 0.526 0.236

1998-2007 0.348±0.07 0.352±0.07 0.227
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Table A15: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 60 days and every 18 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.029 and the
total sampling uncertainty is 0.076

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.11

1999 0.199 0.199 0.075

2000 0.26 0.259 0.088

2001 0.224 0.224 0.114

2002 0.412 0.412 0.084

2003 0.419 0.419 0.081

2004 0.363 0.363 0.1

2005 0.426 0.426 0.096

2006 0.443 0.443 0.094

2007 0.522 0.522 0.086

1998-2007 0.348±0.07 0.347±0.07 0.093

Table A16: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 60 days and every 20 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.031 and the
total sampling uncertainty is 0.077

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.112

1999 0.199 0.199 0.079

2000 0.26 0.259 0.091

2001 0.224 0.224 0.126

2002 0.412 0.411 0.086

2003 0.419 0.419 0.085

2004 0.363 0.363 0.105

2005 0.426 0.426 0.095

2006 0.443 0.443 0.098

2007 0.522 0.522 0.09

1998-2007 0.348±0.07 0.347±0.07 0.097
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Table A17: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 60 days and every 24 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.028 and the
total sampling uncertainty is 0.075

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.109

1999 0.199 0.199 0.082

2000 0.26 0.26 0.083

2001 0.224 0.224 0.11

2002 0.412 0.412 0.079

2003 0.419 0.419 0.075

2004 0.363 0.363 0.094

2005 0.426 0.427 0.094

2006 0.443 0.443 0.091

2007 0.522 0.522 0.084

1998-2007 0.348±0.07 0.348±0.07 0.09

Table A18: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 60 days and every 30 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.034 and the
total sampling uncertainty is 0.078

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.117

1999 0.199 0.199 0.092

2000 0.26 0.26 0.098

2001 0.224 0.224 0.128

2002 0.412 0.412 0.109

2003 0.419 0.419 0.089

2004 0.363 0.364 0.112

2005 0.426 0.427 0.118

2006 0.443 0.444 0.109

2007 0.522 0.522 0.098

1998-2007 0.348±0.07 0.348±0.07 0.107
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Table A19: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 60 days and every 36 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.042 and the
total sampling uncertainty is 0.082

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.153

1999 0.199 0.198 0.151

2000 0.26 0.259 0.143

2001 0.224 0.223 0.163

2002 0.412 0.412 0.116

2003 0.419 0.419 0.105

2004 0.363 0.363 0.131

2005 0.426 0.426 0.132

2006 0.443 0.443 0.115

2007 0.522 0.522 0.117

1998-2007 0.348±0.07 0.347±0.07 0.133

Table A20: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 60 days and every 40 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.047 and the
total sampling uncertainty is 0.084

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.206 0.16

1999 0.199 0.199 0.127

2000 0.26 0.26 0.119

2001 0.224 0.224 0.179

2002 0.412 0.412 0.124

2003 0.419 0.419 0.16

2004 0.363 0.363 0.167

2005 0.426 0.426 0.147

2006 0.443 0.443 0.15

2007 0.522 0.522 0.143

1998-2007 0.348±0.07 0.347±0.07 0.148
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Table A21: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 60 days and every 60 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.075 and the
total sampling uncertainty is 0.103

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.211 0.248

1999 0.199 0.203 0.212

2000 0.26 0.264 0.212

2001 0.224 0.229 0.262

2002 0.412 0.417 0.239

2003 0.419 0.423 0.24

2004 0.363 0.368 0.245

2005 0.426 0.432 0.27

2006 0.443 0.447 0.202

2007 0.522 0.526 0.243

1998-2007 0.348±0.07 0.352±0.07 0.237
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Table A22: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 72 days and every 18 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.032 and the
total sampling uncertainty is 0.077

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.118

1999 0.199 0.199 0.09

2000 0.26 0.259 0.097

2001 0.224 0.224 0.102

2002 0.412 0.412 0.105

2003 0.419 0.419 0.123

2004 0.363 0.363 0.09

2005 0.426 0.426 0.122

2006 0.443 0.443 0.083

2007 0.522 0.522 0.085

1998-2007 0.348±0.07 0.347±0.07 0.102

Table A23: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 72 days and every 20 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.033 and the
total sampling uncertainty is 0.077

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.12

1999 0.199 0.199 0.092

2000 0.26 0.259 0.099

2001 0.224 0.224 0.116

2002 0.412 0.411 0.108

2003 0.419 0.419 0.125

2004 0.363 0.363 0.094

2005 0.426 0.426 0.122

2006 0.443 0.443 0.089

2007 0.522 0.522 0.089

1998-2007 0.348±0.07 0.347±0.07 0.105
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Table A24: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 72 days and every 24 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.032 and the
total sampling uncertainty is 0.077

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.117

1999 0.199 0.199 0.097

2000 0.26 0.26 0.092

2001 0.224 0.224 0.098

2002 0.412 0.412 0.103

2003 0.419 0.419 0.119

2004 0.363 0.363 0.083

2005 0.426 0.427 0.122

2006 0.443 0.443 0.08

2007 0.522 0.522 0.085

1998-2007 0.348±0.07 0.348±0.07 0.1

Table A25: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 72 days and every 30 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.037 and the
total sampling uncertainty is 0.079

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.124

1999 0.199 0.199 0.106

2000 0.26 0.26 0.105

2001 0.224 0.224 0.119

2002 0.412 0.412 0.129

2003 0.419 0.419 0.13

2004 0.363 0.364 0.105

2005 0.426 0.427 0.142

2006 0.443 0.444 0.103

2007 0.522 0.522 0.1

1998-2007 0.348±0.07 0.348±0.07 0.116
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Table A26: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 72 days and every 36 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.045 and the
total sampling uncertainty is 0.083

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.161

1999 0.199 0.198 0.159

2000 0.26 0.259 0.152

2001 0.224 0.223 0.157

2002 0.412 0.412 0.136

2003 0.419 0.419 0.147

2004 0.363 0.363 0.126

2005 0.426 0.426 0.155

2006 0.443 0.443 0.109

2007 0.522 0.522 0.12

1998-2007 0.348±0.07 0.347±0.07 0.142

Table A27: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 72 days and every 40 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.05 and the
total sampling uncertainty is 0.086

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.206 0.171

1999 0.199 0.199 0.137

2000 0.26 0.26 0.131

2001 0.224 0.224 0.175

2002 0.412 0.412 0.143

2003 0.419 0.419 0.186

2004 0.363 0.363 0.162

2005 0.426 0.426 0.168

2006 0.443 0.443 0.147

2007 0.522 0.522 0.147

1998-2007 0.348±0.07 0.347±0.07 0.157
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Table A28: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 72 days and every 60 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.077 and the
total sampling uncertainty is 0.104

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.211 0.257

1999 0.199 0.203 0.22

2000 0.26 0.264 0.222

2001 0.224 0.229 0.256

2002 0.412 0.417 0.249

2003 0.419 0.423 0.262

2004 0.363 0.368 0.245

2005 0.426 0.432 0.283

2006 0.443 0.447 0.202

2007 0.522 0.526 0.249

1998-2007 0.348±0.07 0.352±0.07 0.244
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Table A29: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 90 days and every 18 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.039 and the
total sampling uncertainty is 0.08

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.141

1999 0.199 0.199 0.143

2000 0.26 0.259 0.127

2001 0.224 0.224 0.139

2002 0.412 0.412 0.127

2003 0.419 0.419 0.092

2004 0.363 0.363 0.127

2005 0.426 0.426 0.126

2006 0.443 0.443 0.107

2007 0.522 0.522 0.094

1998-2007 0.348±0.07 0.347±0.07 0.122

Table A30: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 90 days and every 20 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.04 and the
total sampling uncertainty is 0.081

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.144

1999 0.199 0.199 0.145

2000 0.26 0.259 0.13

2001 0.224 0.224 0.149

2002 0.412 0.411 0.128

2003 0.419 0.419 0.097

2004 0.363 0.363 0.132

2005 0.426 0.426 0.126

2006 0.443 0.443 0.111

2007 0.522 0.522 0.098

1998-2007 0.348±0.07 0.347±0.07 0.126
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Table A31: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 90 days and every 24 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.038 and the
total sampling uncertainty is 0.08

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.14

1999 0.199 0.199 0.147

2000 0.26 0.26 0.125

2001 0.224 0.224 0.136

2002 0.412 0.412 0.127

2003 0.419 0.419 0.09

2004 0.363 0.363 0.126

2005 0.426 0.427 0.125

2006 0.443 0.443 0.105

2007 0.522 0.522 0.094

1998-2007 0.348±0.07 0.348±0.07 0.121

Table A32: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 90 days and every 30 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.043 and the
total sampling uncertainty is 0.082

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.149

1999 0.199 0.199 0.156

2000 0.26 0.26 0.136

2001 0.224 0.224 0.153

2002 0.412 0.412 0.149

2003 0.419 0.419 0.103

2004 0.363 0.364 0.14

2005 0.426 0.427 0.147

2006 0.443 0.444 0.122

2007 0.522 0.522 0.109

1998-2007 0.348±0.07 0.348±0.07 0.136
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Table A33: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 90 days and every 36 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.05 and the
total sampling uncertainty is 0.086

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.18

1999 0.199 0.198 0.196

2000 0.26 0.259 0.174

2001 0.224 0.223 0.186

2002 0.412 0.412 0.154

2003 0.419 0.419 0.124

2004 0.363 0.363 0.156

2005 0.426 0.426 0.159

2006 0.443 0.443 0.13

2007 0.522 0.522 0.129

1998-2007 0.348±0.07 0.347±0.07 0.159

Table A34: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 90 days and every 40 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.055 and the
total sampling uncertainty is 0.089

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.206 0.189

1999 0.199 0.199 0.182

2000 0.26 0.26 0.157

2001 0.224 0.224 0.2

2002 0.412 0.412 0.162

2003 0.419 0.419 0.172

2004 0.363 0.363 0.193

2005 0.426 0.426 0.172

2006 0.443 0.443 0.165

2007 0.522 0.522 0.154

1998-2007 0.348±0.07 0.347±0.07 0.175
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Table A35: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 90 days and every 60 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.082 and the
total sampling uncertainty is 0.108

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.211 0.272

1999 0.199 0.203 0.255

2000 0.26 0.264 0.241

2001 0.224 0.229 0.277

2002 0.412 0.417 0.261

2003 0.419 0.423 0.25

2004 0.363 0.368 0.265

2005 0.426 0.432 0.289

2006 0.443 0.447 0.218

2007 0.522 0.526 0.257

1998-2007 0.348±0.07 0.352±0.07 0.259
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Table A36: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 120 days and every 18 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.063 and the
total sampling uncertainty is 0.094

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.198

1999 0.199 0.199 0.196

2000 0.26 0.259 0.219

2001 0.224 0.224 0.195

2002 0.412 0.412 0.191

2003 0.419 0.419 0.202

2004 0.363 0.363 0.18

2005 0.426 0.426 0.205

2006 0.443 0.443 0.184

2007 0.522 0.522 0.208

1998-2007 0.348±0.07 0.347±0.07 0.198

Table A37: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 120 days and every 20 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.063 and the
total sampling uncertainty is 0.094

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.2

1999 0.199 0.199 0.198

2000 0.26 0.259 0.22

2001 0.224 0.224 0.203

2002 0.412 0.411 0.192

2003 0.419 0.419 0.205

2004 0.363 0.363 0.183

2005 0.426 0.426 0.206

2006 0.443 0.443 0.186

2007 0.522 0.522 0.21

1998-2007 0.348±0.07 0.347±0.07 0.2
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Table A38: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 120 days and every 24 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.063 and the
total sampling uncertainty is 0.094

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.199

1999 0.199 0.199 0.201

2000 0.26 0.26 0.218

2001 0.224 0.224 0.195

2002 0.412 0.412 0.19

2003 0.419 0.419 0.202

2004 0.363 0.363 0.18

2005 0.426 0.427 0.206

2006 0.443 0.443 0.184

2007 0.522 0.522 0.209

1998-2007 0.348±0.07 0.348±0.07 0.198

Table A39: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 120 days and every 30 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.066 and the
total sampling uncertainty is 0.096

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.205

1999 0.199 0.199 0.209

2000 0.26 0.26 0.226

2001 0.224 0.224 0.207

2002 0.412 0.412 0.207

2003 0.419 0.419 0.21

2004 0.363 0.364 0.191

2005 0.426 0.427 0.221

2006 0.443 0.444 0.197

2007 0.522 0.522 0.216

1998-2007 0.348±0.07 0.348±0.07 0.209
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Table A40: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 120 days and every 36 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.072 and the
total sampling uncertainty is 0.1

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.23

1999 0.199 0.198 0.241

2000 0.26 0.259 0.256

2001 0.224 0.223 0.234

2002 0.412 0.412 0.214

2003 0.419 0.419 0.22

2004 0.363 0.363 0.205

2005 0.426 0.426 0.231

2006 0.443 0.443 0.203

2007 0.522 0.522 0.23

1998-2007 0.348±0.07 0.347±0.07 0.226

Table A41: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 120 days and every 40 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.075 and the
total sampling uncertainty is 0.103

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.206 0.237

1999 0.199 0.199 0.232

2000 0.26 0.26 0.24

2001 0.224 0.224 0.247

2002 0.412 0.412 0.219

2003 0.419 0.419 0.251

2004 0.363 0.363 0.232

2005 0.426 0.426 0.242

2006 0.443 0.443 0.225

2007 0.522 0.522 0.245

1998-2007 0.348±0.07 0.347±0.07 0.237
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Table A42: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 120 days and every 60 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.097 and the
total sampling uncertainty is 0.12

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.211 0.309

1999 0.199 0.203 0.291

2000 0.26 0.264 0.303

2001 0.224 0.229 0.32

2002 0.412 0.417 0.305

2003 0.419 0.423 0.316

2004 0.363 0.368 0.301

2005 0.426 0.432 0.339

2006 0.443 0.447 0.272

2007 0.522 0.526 0.322

1998-2007 0.348±0.07 0.352±0.07 0.308
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Table A43: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 180 days and every 18 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.115 and the
total sampling uncertainty is 0.135

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.407

1999 0.199 0.199 0.325

2000 0.26 0.259 0.364

2001 0.224 0.224 0.333

2002 0.412 0.412 0.406

2003 0.419 0.419 0.426

2004 0.363 0.363 0.411

2005 0.426 0.426 0.356

2006 0.443 0.443 0.302

2007 0.522 0.522 0.314

1998-2007 0.348±0.07 0.347±0.07 0.364

Table A44: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 180 days and every 20 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.116 and the
total sampling uncertainty is 0.135

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.408

1999 0.199 0.199 0.328

2000 0.26 0.259 0.366

2001 0.224 0.224 0.338

2002 0.412 0.411 0.407

2003 0.419 0.419 0.428

2004 0.363 0.363 0.413

2005 0.426 0.426 0.356

2006 0.443 0.443 0.304

2007 0.522 0.522 0.316

1998-2007 0.348±0.07 0.347±0.07 0.366
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Table A45: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 180 days and every 24 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.116 and the
total sampling uncertainty is 0.135

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.408

1999 0.199 0.199 0.329

2000 0.26 0.26 0.365

2001 0.224 0.224 0.335

2002 0.412 0.412 0.407

2003 0.419 0.419 0.427

2004 0.363 0.363 0.412

2005 0.426 0.427 0.357

2006 0.443 0.443 0.303

2007 0.522 0.522 0.316

1998-2007 0.348±0.07 0.348±0.07 0.366

Table A46: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 180 days and every 30 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.118 and the
total sampling uncertainty is 0.137

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.415

1999 0.199 0.199 0.335

2000 0.26 0.26 0.372

2001 0.224 0.224 0.344

2002 0.412 0.412 0.417

2003 0.419 0.419 0.434

2004 0.363 0.364 0.419

2005 0.426 0.427 0.369

2006 0.443 0.444 0.313

2007 0.522 0.522 0.324

1998-2007 0.348±0.07 0.348±0.07 0.374
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Table A47: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 180 days and every 36 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.122 and the
total sampling uncertainty is 0.141

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.207 0.429

1999 0.199 0.198 0.361

2000 0.26 0.259 0.39

2001 0.224 0.223 0.363

2002 0.412 0.412 0.421

2003 0.419 0.419 0.441

2004 0.363 0.363 0.43

2005 0.426 0.426 0.377

2006 0.443 0.443 0.318

2007 0.522 0.522 0.333

1998-2007 0.348±0.07 0.347±0.07 0.386

Table A48: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 180 days and every 40 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.125 and the
total sampling uncertainty is 0.143

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.206 0.434

1999 0.199 0.199 0.355

2000 0.26 0.26 0.386

2001 0.224 0.224 0.373

2002 0.412 0.412 0.425

2003 0.419 0.419 0.459

2004 0.363 0.363 0.442

2005 0.426 0.426 0.384

2006 0.443 0.443 0.338

2007 0.522 0.522 0.348

1998-2007 0.348±0.07 0.347±0.07 0.394
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Table A49: Comparison of the total Simulated Uptake With the Uptake from
Our Proposed(Sampling every 180 days and every 60 degrees in longitude) Sam-
pling and the Sampling Error Introduced. The sampling error is 0.142 and the
total sampling uncertainty is 0.158

Year Total Simulated Uptake,

PgC/yr

Sample estimate of Up-

take, PgC/yr

Sampling uncertainty

(2�), PgC/yr

1998 0.207 0.211 0.483

1999 0.199 0.203 0.408

2000 0.26 0.264 0.433

2001 0.224 0.229 0.437

2002 0.412 0.417 0.482

2003 0.419 0.423 0.503

2004 0.363 0.368 0.487

2005 0.426 0.432 0.457

2006 0.443 0.447 0.372

2007 0.522 0.526 0.412

1998-2007 0.348±0.07 0.352±0.07 0.447
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2 Appendix B

Table B1: Comparison of the simulated annual mean CO
2

with the annual mean
from sampling the annual mean with 50 locations.

Year

Model

Mean

Sample

Mean

Sampling

Uncertainty

2�

2000 1.61 1.61 0.28

2001 1.63 1.64 0.23

2002 1.83 1.85 0.25

2003 1.80 1.78 0.17

2004 1.83 1.84 0.14

2005 1.87 1.88 0.24

2006 1.91 1.90 0.23

2007 1.98 2.00 0.24

2008 1.82 1.81 0.14

2009 1.81 1.84 0.20

2000-2009 1.81±0.07 1.82±0.07 0.21

Table B2: Comparison of the simulated annual mean CO
2

with the annual mean
from sampling the annual mean with 100 locations.

Year

Model

Mean

Sample

Mean

Sampling

Uncertainty

2�

2000 1.61 1.61 0.13

2001 1.63 1.65 0.15

2002 1.83 1.80 0.13

2003 1.80 1.81 0.12

2004 1.83 1.84 0.12

2005 1.87 1.87 0.06

2006 1.91 1.92 0.10

2007 1.98 1.97 0.15

2008 1.82 1.82 0.13

2009 1.81 1.80 0.13

2000-2009 1.81±0.07 1.81±0.07 0.12
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Table B3: Comparison of the simulated annual mean CO
2

with the annual mean
from sampling the annual mean with 500 locations.

Year

Model

Mean

Sample

Mean

Sampling

Uncertainty

2�

2000 1.61 1.63 0.05

2001 1.63 1.64 0.05

2002 1.83 1.84 0.06

2003 1.80 1.81 0.05

2004 1.83 1.84 0.05

2005 1.87 1.88 0.07

2006 1.91 1.93 0.05

2007 1.98 2.00 0.06

2008 1.82 1.83 0.05

2009 1.81 1.81 0.06

2000-2009 1.81±0.07 1.82±0.07 0.06

Table B4: Comparison of the simulated annual mean CO
2

with the annual mean
from sampling the annual mean with 1000 locations.

Year

Model

Mean

Sample

Mean

Sampling

Uncertainty

2�

2000 1.61 1.61 0.04

2001 1.63 1.63 0.03

2002 1.83 1.83 0.04

2003 1.80 1.81 0.04

2004 1.83 1.83 0.03

2005 1.87 1.87 0.05

2006 1.91 1.91 0.04

2007 1.98 1.99 0.05

2008 1.82 1.83 0.02

2009 1.81 1.81 0.05

2000-2009 1.81±0.07 1.81±0.07 0.04
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Table B5: Comparison of the simulated annual mean CO
2

with the annual mean
from sampling the simualted data with 1000 locations.

Year

Model

Mean

Sample

Mean

Sampling

Uncertainty

2�

2000 1.61 1.63 0.10

2001 1.63 1.65 0.05

2002 1.83 1.83 0.09

2003 1.80 1.82 0.09

2004 1.83 1.82 0.11

2005 1.87 1.86 0.12

2006 1.91 1.92 0.10

2007 1.98 1.98 0.13

2008 1.82 1.85 0.12

2009 1.81 1.80 0.09

2000-2009 1.81±0.07 1.81±0.06 0.10

Table B6: Comparison of the simulated annual mean CO
2

with the annual mean
from sampling the simualted data with 2000 locations.

Year

Model

Mean

Sample

Mean

Sampling

Uncertainty

2�

2000 1.61 1.61 0.07

2001 1.63 1.62 0.07

2002 1.83 1.82 0.08

2003 1.80 1.80 0.09

2004 1.83 1.84 0.08

2005 1.87 1.87 0.06

2006 1.91 1.90 0.09

2007 1.98 1.97 0.08

2008 1.82 1.82 0.08

2009 1.81 1.82 0.06

2000-2009 1.81±0.07 1.81±0.06 0.08

31

Table B7: Comparison of the simulated annual mean CO
2

with the annual mean
from sampling the simualted data with 5000 locations.

Year

Model

Mean

Sample

Mean

Sampling

Uncertainty

2�

2000 1.61 1.61 0.06

2001 1.63 1.62 0.04

2002 1.83 1.83 0.06

2003 1.80 1.80 0.03

2004 1.83 1.84 0.04

2005 1.87 1.88 0.05

2006 1.91 1.92 0.05

2007 1.98 1.99 0.04

2008 1.82 1.82 0.06

2009 1.81 1.81 0.05

2000-2009 1.81±0.07 1.81±0.07 0.05

Table B8: Comparison of the simulated annual mean CO
2

with the annual mean
from sampling the simualted data with 7000 locations.

Year

Model

Mean

Sample

Mean

Sampling

Uncertainty

2�

2000 1.61 1.61 0.03

2001 1.63 1.63 0.04

2002 1.83 1.83 0.04

2003 1.80 1.80 0.06

2004 1.83 1.82 0.05

2005 1.87 1.87 0.05

2006 1.91 1.91 0.03

2007 1.98 1.97 0.05

2008 1.82 1.82 0.05

2009 1.81 1.80 0.04

2000-2009 1.81±0.07 1.80±0.07 0.04
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