
Univ
ers

ity
 of

 C
ap

e T
ow

n

Participatory Cloud Computing:
The Community Cloud
Management Protocol

Taariq Mullins

A thesis presented for the degree of

Masters of Science

ISAT Laboratory

Department of Computer Science

University of Cape Town

South Africa

August 2014

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Dedicated to
My mother

Participatory cloud computing: The community

cloud management protocol

Taariq Mullins

Submitted for the degree of Masters of Science

August 2014

Abstract

This thesis work takes an investigative approach into developing a middleware so-

lution for managing services in a community cloud computing infrastructure pre-

dominantly made of interconnected low power wireless devices. The thesis extends

itself slightly outside of this acute framing to ensure heterogeneity is accounted

for. The developed framework, in its draft implementation, provides networks with

value added functionality in a way which minimally impacts nodes on the network.

Two sub-protocols are developed and successfully implemented in order to achieve

efficient discovery and allocation of the community cloud resources. First results

are promising as the systems developed show both low resource consumption in its

application, but also the ability to effectively transfer services through the network

while evenly distributing load amongst computing resources on the network.

Declaration

The work in this thesis is based on research carried out at the ISAT Laboratory,

the Department of Computer Sciences, The University of Cape Town. No part

of this thesis has been submitted elsewhere for any other degree or qualification

and it is all my own work unless referenced to the contrary in the text. I hereby

declare that this written work I have submitted is original work which I alone have

authored and which is written in my own words. With the signature I declare that

I have being informed regarding normal academic citation rules and I conform to

citation conventions customary to the sciences. This written work may be tested

electronically for plagiarism.

Taariq Mullins Date

Copyright c© 2014 by Taariq Mullins.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iv

Acknowledgements

There are many people to thank for me being here. I am very grateful to have been

awarded this opportunity to dedicate myself and my time to a task that will hopefully

benefit others. The University, UCT, and the National Research Foundation have

to be thanked for making this possible. But before all of that, my Supervisor, Dr

Bigomokero Antoine Bagula, has to be thanked for his patience and time. All the

afternoons we spent in his office discussing the craziest ideas relating to our work only

served to expand my consciousness in a way I never imagined. His impressive work

and dedication to his students will be missed by the University and the students.

My friends and family for motivating and supporting me along the way. Devin,

Chris and all the staff at WhereIsMyTransport for supporting me and providing me

with the flexible working hours so I could finish my masters. Lastly, I have to thank

the Daniels family. Most importantly, Nicole. You helped me out when I needed

help the most, and did so in ways I could never repay. I will always love you and

you are forever in my thoughts.

v

Contents

Abstract iii

Declaration iv

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 5

1.3 Contribution . 7

1.4 Thesis outline . 7

2 Community Cloud Management Protocol 9

2.1 CCMP . 9

2.2 Project framing . 10

2.3 Network architecture . 12

2.3.1 Agents . 13

2.4 System Monitoring . 16

2.5 Database . 18

2.6 Service Allocation . 19

2.7 Data Storage . 24

2.8 Security . 26

3 Lightweight Network Management Protocol 28

3.1 Introduction . 29

3.1.1 The Simple Network Monitoring Protocol (SNMP). 29

vi

Contents vii

3.1.2 Lightweight Network Monitoring Protocol (LNMP) 30

3.2 Experiment Evaluation . 31

3.2.1 Experimental Setting . 31

3.2.2 Computation Accuracy . 34

3.2.3 Computation Time . 37

3.2.4 Resource requirements . 38

3.3 Conclusion . 38

4 Distributed Databases 41

4.1 Introduction: . 42

4.2 Related Work: . 45

4.3 Experiment Setup: . 48

4.3.1 Using Persistent Storage . 53

4.3.2 Using ‘tmpfs’ . 54

4.3.3 PC insertion . 54

4.3.4 Replication insertion . 55

4.4 Results . 56

4.4.1 CPU usage . 57

4.4.2 RAM usage . 61

4.5 Conclusion . 64

5 Lightweight Resource Allocation Protocol 66

5.1 Introduction . 67

5.2 Experiment Setup . 71

5.2.1 System installation: . 72

5.2.2 Hosts in the network . 73

5.2.3 Experiments . 75

5.3 Results . 80

5.3.1 Stress tests . 80

5.3.2 Performance tests . 86

5.4 Conclusion . 93

November 27, 2014

Contents viii

6 Conclusion 95

6.1 Reflection on the work . 96

Appendix 102

A Sample configuration file 102

B Sample service declaration file 104

C Sample BigCouch View 105

D Code Samples 106

D.1 Convert partition . 106

D.2 Database scripts . 106

E Service Diagrams 108

November 27, 2014

List of Figures

1.1 Three most common commercial cloud computing implementations:

Infrastructure as a Service, Software as a Service and Platform as a

Service . 3

1.2 Various possible applications for a community cloud infrastructure . . 6

2.1 example of a long range wireless mesh network with 1 exit node con-

necting to a desktop PC . 11

2.2 The envisioned architecture layers within the middleware stack 12

2.3 Agents in concert in a participatory cloud network 15

2.4 The community cloud management protocol 16

2.5 2 methods for calculating processor load 17

2.6 Updated load processing formula . 18

2.7 Service request flow . 20

2.8 Allocation cycle . 22

2.9 Sample allocation resource calculation 23

2.10 Storage selection procedure . 27

3.1 Idle CPU times for Windows and Linux 33

3.2 Idle CPU times for Windows and Linux over a longer time period . . 33

3.3 RAM readings for Windows and Linux 35

3.4 RAM readings for Windows and Linux over extended time frame . . . 35

3.5 Profiles of system running SNMP tests 36

3.6 Profiles of system running LNMP tests 37

ix

List of Figures x

4.1 A record seen via the BigCouch web interface examining the contents

of a single document . 51

4.2 Sample time output when running an application with the time com-

mand . 52

4.3 PC RAM usage . 62

4.4 Alix system board RAM usage . 62

5.1 DNS request flow . 69

5.2 More detailed DNS flow . 70

5.3 The service request process . 80

5.4 Graph showing the DNS query success rate versus the number of

requests per second sent by the polling server 85

5.5 CPU utilisation of the DNS server over time during the tests 85

5.6 Queries per second and their corresponding received response per-

centage levels . 87

5.7 Table displaying the number of service requests made to each host in

the test . 88

5.8 Graph displaying requests made during the experiment 89

5.9 The number of service requests made to each host 90

5.10 Graph displaying the number of requests made during the second run

of the experiment . 91

E.1 Allocation cycle . 109

E.2 Analyze cycle . 110

E.3 Connection Flow . 111

November 27, 2014

List of Tables

3.1 Base resource requirements . 38

4.1 Common properties associated with relational distributed databases . 45

4.2 Table showcasing various distributed database technologies with their

drawbacks in relation to the project 47

4.3 Table schema for MySQL data insertions 50

4.4 Table showing time values recorded when performing insert and read

experiments measured in seconds . 56

4.5 Table showing time values recorded when performing insert and read

experiments measured in seconds . 57

5.1 Table showing the hosts part of the network 74

5.2 Service list and associated weights . 74

5.3 Hosts and their associated services 74

5.4 UUIDs and the corresponding hostname associated with it. 75

5.5 Table showing the values being fed into dnsblast 83

xi

Chapter 1

Introduction

1.1 Motivation

Why Cloud Computing

As the division of labour increases in line with the automation of industries, hu-

man intervention in labour becomes more robotic[1]. The machine like operation of

factory workers can be observed all around the world, where due to the division of

labour it is easier for factory owners to subscribe machine intervention. But com-

puter science is not only related to issues of production. It is involved in almost every

aspect of being in modern society, from e-voting stations[2] to medical procedures

which involve participants which are continents apart[3].

Cloud computing is one such method where we aim to make the role of comput-

ing in society more ubiquitous and alleviate the strain placed on organisations that

require large amounts of infrastructure in order to execute their business require-

ments. The problem faced with carrying out such tasks is that for each business

that has these requirements, all of them require massive expenditure for hardware

and software solutions which do not always guarantee optimal solutions[4][5][6].

Problems arise from the fact that hardware is not always utilised to their maxi-

mum capabilities and service providers/businesses need to cater for their highest user

requirements (an example is catering for largest volume in processing or bandwidth)

resulting in underutilized hardware for the majority of the equipment lifetime. Indie

1

1.1. Motivation 2

developers and start-up companies are also not usually able to outlay the kind of

capital that this sort of infrastructure requires[4].

Thus cloud computing came to be the saviour of enterprise in that third party

providers could ensure a scalable distributed architecture would ensure that cus-

tomers could ensure that their applications and services could be accessed world

over and ensure uptime based on Service Level Agreements (SLA) with their third

party solution providers. This platform is shared amongst other clients with similar

requirements[7].

Why Participatory Cloud Computing

There is a compelling case for the cloud to be provisioned from a network topology

such as that provided by grid computing[8]. This would allow spare resources on

networked computing devices, not just personal computers but routers, supercom-

puters, storage systems, data sources, specialised devices, mobile phones to join the

grid and perform actions to thus further enable the virtual data centre. Which,

conventionally is a space used to solve specific problems in science, engineering and

commerce[9].

The solution described here forms a so called community cloud. This is different

from cluster computing in that members or participants in the grid, that form the

cloud fabric, are not tightly coupled, heterogeneous platforms in terms of both hard-

ware and operating systems as well as being more geographically distributed[8][9].

Digital Ecosystems are self-organising, scalable and sustainable distributed adap-

tive open socio technical systems inspired by natural ecosystems. This employs local

players to play a pivotal role in our modern era of globalisation to locally create value

networks at a global level[8]. Green Computing is the efficient use of computing re-

sources with the primary objective being to account for the triple bottom line, i.e.

people, planet and profit. This captures a broader means of measuring an organisa-

tion’s success in terms of economic, ecological and social impact. These are values

for measuring organisational and societal success[8]. Community cloud computing

puts forward the proposition that to combine concepts from grid computing and au-

tonomic computing, principles from digital ecosystems and sustainability from green

November 27, 2014

1.1. Motivation 3

Figure 1.1: Three most common commercial cloud computing implementations:

Infrastructure as a Service, Software as a Service and Platform as a Service

computing to form the cloud would provide an alternative to the current implemen-

tation. As there are no concerns or flaws with current cloud conceptualisation that

have been raised, problems lie with current vendor implementations[8].

Community clouds can be viewed as a step up or progression from academia-

focused grid

Computing. This relates to cloud computing in that virtualised services are

being provisioned over the internet without the users having knowledge, expertise

or control of the infrastructure that is running the services they are requesting.[8]

When using the word grid, further on in this thesis, we are referring more towards

the physical and semantic nature of the network

It is also posited that community cloud computing is much more of a social

infrastructure which implies ownership of all participants in the network of it[8]. The

nodes are autonomous meaning users are still free to use their systems as they please,

thus vendor control of such systems would be non-existent. A community cloud is

not owned by any one particular vendor or organisations and therefore transcends

the current generation of frameworks with regards to organisation lifespan which is

directly related to product and support lifespan.

Artur Andrzejak displays how the desktop user would participate in this sort of

scenario and can become a contributor in the face of large competing vendors such

as Microsoft and Google [10]. Where the user’s desktop machine joins the grid and

is able to reclaim his or her workspace at any time, synonymous with Amazon’s spot

November 27, 2014

1.1. Motivation 4

instances.

Community cloud computing is envisaged to have a lower carbon footprint than

current data vendors[5]. This is based on the assumption that underutilised user ma-

chines consume less energy than dedicated data centres. Embedded devices, such as

those powered by DC power sources (modems, routers), use the exact same amount

of power when they are idle compared to when they are operational. (Obviously

if the device has advanced power management capabilities this is not the case but

this usually drives up the prices of electronics.) These sort of devices could also

participate in such frameworks.

A community currency, free from a central authority such as a particular re-

serve bank or nation backing it, would be required to run and consume services

in the cloud. Here service providers, large or small, would be compensated by a

form of digital currency for hosting and providing consumed services to the cloud

which could be used to consume other services. Community cloud computing sees

this paradigm facilitating existing cloud computing vendors to gather a significant

amount of this currency which they can monetise against participants running a

community currency deficit[8].

The relevance of using wireless sensor technology in the developing world to en-

hance research in environment monitoring has been stressed in [11] and a ubiquitous

sensor network architecture that reveals the importance of a middleware to hide the

complexity of the lower layers of the architecture from the application layer was

described in [12]. The focus of the work presented in this thesis was on lightweight

processing to mitigate the resource limitations associated with lightweight devices

such as sensor motes which are often deployed unattended with instable power sup-

ply. This work may be used to design intelligent middleware for wireless sensor

networks when applied in the context of pollution monitoring [11], smart irrigation

[13], water quality monitoring [14] and drought mitigation as proposed [15].

November 27, 2014

1.2. Related Work 5

1.2 Related Work

The cloud is conceptually made up of three layers. These are the coordination layer,

resource layer and service layer. Where the service layer is the tertiary layer and

coordination is the primary layer.

It is proposed we borrow from economics the market oriented approach to deal-

ing with commodities[6]. This follows from what was discussed earlier that if an

open collaboration standard is established for members of the cloud, services can

be commoditised and thus traded. A directory would be required for tertiary level

providers to locate the appropriate primary level providers with the resources that

they require in order to perform their desired tasks.

An auctioneer would be required to control requests from various participants

for resources, suppliers and consumers. The auctioneer(s) would be an independent

authority that does not represent the consumer or provider in order to guarantee

impartiality but since they are in total control of the trading process they need to

be trusted by the users[9].

Brokers would act as the middleman between the tertiary and primary levels

in the same way a broker functions today via requests in the market directory. It

will buy up resources from providers and sub-lease these to consumers on a needs

basis. This way locating providers to provide geo-dependant services becomes more

appropriate and easier to do. This also means that providers will be able to dynami-

cally expand or resize their resources based on workload demands. Thereby enabling

these providers to stay within the bounds of their SLA, by providing reliable location

aware QoS aware services[9].

Optimum resource allocation will have to be calculated based on service require-

ments. This has to be maximised at all times due to rising costs of energy as well

as operating costs of larger participants in the cloud. So it will be essential that

service requirements are calculated along with resources available, taking into ac-

count the location to provide optimum QoS aware applications becomes quite a

complex task for a constantly changing environment. This is a multi-dimensional

optimisation problem which the solving of is tasked to heterogeneous optimisation

algorithms such as hill climbing, dynamic programming, parallel swarm optimisation

November 27, 2014

1.2. Related Work 6

Figure 1.2: Various possible applications for a community cloud infrastructure

and multi-objective genetic algorithms[9].

Monitoring is essential to optimal functioning of the cloud. Via real-time sensor

updates systems can be monitored and adjustments can be made, should critical

levels be reached in terms of heat, power and performance. Nodes should also be

allowed to fail gracefully allowing services to continue uninterrupted in the cloud.

This information should be provided in a manner that is scalable throughout the

cloud[9].

When this is coupled with protocols such as Yao’s protocol, this allows data to

be secured. It uses secure two party computation to obfuscate (encrypt) data and

then de-obfuscate it on the client side to reveal the results of the computation[16].

This requires communication between the cloud and client during computation. By

ensuring that facilities such as traceable access, rights management (adding and

revoking privileges), fine granularity and security parameters are in place, we can

provide data protection to information stored in the cloud. Decryption is done as

late as possible and performed usually on the end user devices.

These end user systems could also include mobile phones, as this has proved to

be a useful resource when coupled with medical data gathered in the field by the

Fontane project[10]. This would allow doctors to monitor patients and get alerts

regarding particular patient health status without having to participate in heavy

November 27, 2014

1.3. Contribution 7

computational queries when receiving and reviewing data[10].

1.3 Contribution

This thesis proposes to address some of the issues related to cloud computing by

proposing a participatory cloud computing framework where a lightweight database

management system is used to store data and two protocols are designed to achieve

resource discovery and allocation. The developed framework, in its draft implemen-

tation, provides networks with value added functionality in a way which minimally

impacts nodes on the network. Two sub-protocols are developed and successfully

implemented in order to achieve efficient discovery and allocation of the community

cloud resources. First results are promising as the systems developed show both

low resource consumption in its application, but also the ability to effectively trans-

fer services through the network while evenly distributing load amongst computing

resources on the network.

The thesis extends itself out of a previous work conducted by the author for the

honours thesis with the title, ”An Adaptive Middleware in a Participatory Cloud

Computing Environment” in 2012. The investigation that was conducted in a similar

fashion using the Tahoe-LAFS file system and SNMP to produce a middleware that

would allow us to provision services in wireless mesh networks to provide cloud like

services. The work was submitted as a paper at SAICSIT 2013[17]. Following this

a paper was submitted to IEEE-UIC 2013[18] and was published in the subsequent

conference proceedings.

1.4 Thesis outline

This thesis follows a somewhat unconventional flow. This is partly inspired by a sub-

mitted paper by the author which was presented at IEEE-UIC 2013. Each chapter

presents itself as its own study into an acute area of work within the project; each

containing its own abstract, introduction, readings, investigations and conclusions

where appropriate. This will allow for much more fluid reading of the work as the

November 27, 2014

1.4. Thesis outline 8

examinations are all distinct from each other while each step being reliant on the

prior work. The flow of the document is broken up as follows. This chapter includes

an introduction into the work as well as providing an overall context within which

the project was borne and framed.

Following this is a design chapter of sorts where the details of the framework or

architecture are described herein. This will include descriptions of all the protocols

developed. Thereafter 3 chapters will follow which provide both the rationale for

decisions taken in selecting these designs as well as proving the solution. It must be

noted that the solution provided or rather described in these 3 chapters represent

a draft implementation of what is a much broader work. After these chapters the

document is wrapped up in its concluding remarks and also presents the user with

possible future projects that could enable further research efforts.

November 27, 2014

Chapter 2

Community Cloud Management

Protocol

Abbreviations:

6LoWPAN: IPv6 over Low power Wireless Personal Area Networks

Swap space/area: A memory storage area on Linux akin to virtual memory on

windows.

802.11b/g/n: A group of wireless protocol standards used world wide in wireless

device communication

IO: Input/Output

AES: Advanced Encryption Standard

CBC: Cypher Block Chaining

2.1 CCMP

What is a cloud? The cloud commonly refers to a networked environment usually

separate from the user’s own immediate computing environment, where computing

services are made available for the users with appropriate access.

What is a community cloud? This commonly refers to the practice of users

volunteering their own private hosts for use in a grid computing fashion. Where each

9

2.2. Project framing 10

user that connects to the network, volunteers a few of their available resources on the

network adding to the resource pool of the network. These networks usually span

over much larger areas than conventional cloud infrastructures, which are usually

confined to data centres. The resource pool can consist of either raw computing

resources such as hard drive space and CPU time, or it can consist of services

running on the host such as VoIP, printing or web services.

2.2 Project framing

To frame the project better we can consider an example of a wireless sensor net-

work being deployed in a rural setting monitoring the moisture content in the soil.

Typically these installations consist of a large number of small wireless sensor de-

vices connected wirelessly to each other using a low power wireless protocol such as

6LoWPAN[19]. The wireless range of these devices typically extend to quite lengthy

distances if outside and within line of sight of additional access points running the

same protocol. However, this does not compare to the range one can usually achieve

when connecting with network protocols such as 802.11b/g/n[20].

These wireless sensor nodes are usually connected to a gateway device which

in turns connects with other gateway devices, communicating with 802.11b/g/n, to

form a mesh network. At some predefined point in this network a termination node

is selected. In this context the meaning of a termination node is one that acts as a

gateway between the private wireless mesh network and a user operating outside this

wireless environment. This termination node could also provide external services to

nodes in the network such as internet access but that will not be expanded on further

in this document.

In order for sensor data to be collected, each node would have to be visited by

the administrator of the network. This does not lend itself to be very flexible, as

nodes can go down and data can become unavailable. Additionally, if services were

to be provisioned on the network, it would need to be done without overburdening

one node in the network.

By aggregating these resources and providing a way of easily allocating services

November 27, 2014

2.2. Project framing 11

Figure 2.1: example of a long range wireless mesh network with 1 exit node con-

necting to a desktop PC

to incoming user requests will allow us to easily allocate users services in a manner

that alleviates strain on one particular node in the network. This also enables

the subject of investigation of distributed storage through the pooling of storage

resources on the network.

But the very nature of this network puts very severe constrains on the type of

technologies that can be deployed. Should the functionality provided by the network

infrastructure need to be expanded beyond provisioning of a transport layer this

becomes an issue. Low power devices typically have two characterising traits, i.e.

low processing power and low memory capabilities. Which means whatever solutions

is developed must when, when deployed, operate with care when allocating services.

This very nature though becomes beneficial when the context of their use changes.

With no moving parts, the risk of equipment breaking down decreases. The low

power constraint now also turns into an advantage when one looks at deploying

devices where constant power supply is not an option. Making these the perfect

devices for unattended installations.

With the distributed storage system and service provisioning layer in place, users

will be able to connect to the network and interact with the services. Users with

November 27, 2014

2.3. Network architecture 12

Figure 2.2: The envisioned architecture layers within the middleware stack

smart phones or laptops will be able to wirelessly connect to gateway devices and

access an expanded remote storage. Or perhaps even connect to one of the various

services running on the network.

2.3 Network architecture

It is understood, as described in the background reading described in the previous

chapter, that a middleware designed to manage our community clouds or cloudlets

would need to be split up into three discrete areas of operation. Figure 2.2 presents

a broad overview of this envisioned architecture.

Instead of the resource layer being the intermediate layer in-between the coor-

dination and service layer it is instead put here as the primary layer. We shift the

predefined meaning of resources as implied by the background to instead relate more

towards raw resources and coordination to imply to the direct management of these

resources and users in the network. Here our resources consist of the individual

nodes and the services that they will provision to the network. This can consist of

providing storage facilities, data warehousing where database capabilities are made

available or locations where certain services can be executed.

The coordination layer consists primarily of a resource broker. The resource

broker is responsible for keeping tabs on the current performance status of all nodes

November 27, 2014

2.3. Network architecture 13

in the network. Upon the resource broker receiving a request for services, it can then

determine if there is a host in the network that is capable of handling the requested

task, and then subsequently allocate the task to the host if one is available.

The service layer acts almost as a meta layer, since the services are already

provided in part by the nodes themselves. The resource broker acts as a gateway

between the end user/service and the desired resource it wishes to access on the

network.

The project itself in this sense sees two distinct areas in which service provision-

ing occurs. The allocation of access to services such as webservices and software

solutions running on nodes. The other is the storage capabilities that are enabled

by aggregating storage space from each node in the network.

It was determined that only one of these areas should be tackled for a work of

this nature and so service provisioning will primarily be the subject of 3 chapters of

this work. The subject of storage will be expanded on further in this chapter, but

will primarily remain the subject of a future work.

The allocation of services is based on the resources available on the various nodes

within the network. This means that resource monitoring must occur before any

allocation of a service can be conducted.

2.3.1 Agents

At each layer of the network we can think of various agents working in concert with

each other. Here agents are defined as independent services running on each node in

order to provide overall goal. In our case our middleware aims to provide a means

of managing our networks to ensure optimum performance.

Here an agent is defined as a process that runs in a network highly coupled

to their environment, in a sort of autonomous fashion. Here they will perform

various tasks on the network, instead of network administrators to achieve the task

of maintaining a healthy networked environment.

We shall consider the network to consist of the following agents:

1. Cloud Coordinator:

- Co-ordinates all the resources in our cloud.

November 27, 2014

2.3. Network architecture 14

- Responsible for allocation of services and resources for services.

2. Storage Coordinator:

- Resides at the cloud coordinator.

- Allocates storage and services storage requests.

- Aggregate storage resources in the network.

3. Service Coordinator:

- Resides at the cloud coordinator.

- Aggregates and allocates services to the various nodes in the network.

4. Hash Agent:

- Resides at the cloud coordinator.

- Allocates unique identities to nodes in the network

5. Knapsack Agent:

- Resides at the cloud coordinator.

- Responsible for calculating optimal nodes in the network for servicing various

requests.

- Calculates values based on values received from client nodes in the network.

6. Monitoring Agents:

- Resides on all the clients (the cloud coordinator is also a client of itself).

- Responsible for sending system values from the client to the cloud coordi-

nator. - Returns values only if the node notices a trend which indicates a

difference in performance values.

7. Discovery Agent:

- Resides on all nodes in the network.

- Discovers neighbours on the network.

- Responsible for the detection of nodes on the network and selecting the node

that will be in charge of coordinating the network.

- Responsible for selecting a new cloud coordinator when the current coordi-

nator goes down.

November 27, 2014

2.3. Network architecture 15

Figure 2.3: Agents in concert in a participatory cloud network

8. Service Agent:

- Resides on all clients.

- Responsible for the injection of various service modules into the service list

available on the network.

Figure 2.3 demonstrates all these services in operation in a network. While

being decoupled from each other, they still require the presence of other agents in

the network to be effective in anyway. As stated in the service list, the coordinator

of the network acts as an agent of the network itself. So it too can take part in the

provisioning of services, if deemed appropriate by the administrator.

All these services working in concert with each other demonstrate what will be

referred to here as the Community Cloud Management Protocol, CCMP. This is

further highlighted in Figure 2.4. We can see it being composed of two distinct

sub-protocols; i.e the Lightweight Network Monitoring Protocol, LNMP; and the

Lightweight Resource Allocation Protocol, LRAP.

The investigation into these two distinct parts is examine further in chapters 3

and 5. What we have not mentioned yet, is the database layer which is somewhat

November 27, 2014

2.4. System Monitoring 16

Figure 2.4: The community cloud management protocol

abstracted from this diagram which manages the data storage in the network. This

is explained in more detail in chapter 4.

Many of the agents mentioned above overlap in the two protocols and they are

essentially part of one but split up because the functionality can be modularised.

LNMP, can be considered the collection of agents forming part of the overall network

monitoring framework built in order to facilitate client monitoring, while LRAP can

be seen as the collection of server side agents that are required by a variety of services

or processes to perform allocation operations

2.4 System Monitoring

The correct system metrics must be collected in order to best indicate the perfor-

mance status of the particular nodes in question. The CPU and memory usage was

determined to be the best metrics with which to perform performance evaluation.

Memory includes both primary and secondary memory, that is RAM, SWAP;

and hard drive storage (this information becomes necessary when storage services

are accessed). CPU usage consists of various metrics depending on what operating

system one uses.

Figure 2.5 demonstrates 2 different means of calculating CPU usage. These

November 27, 2014

2.4. System Monitoring 17

Figure 2.5: 2 methods for calculating processor load

formula are extracted from Rich Wolski et al.’s work regarding the predicting of

CPU availability of Time-shared Unix systems on the computation grid[21]. In the

formula, ’rp’ is the run process length, or rather the number of processes running in

on the system.

The value for load could be used, but this value is only available for Linux

machines. Even if the solution was to be deployed in a Linux only environment, load

averages do not give nearly enough information about the CPU state. Machines are

known to report very high load averages simply because of processes that have broken

or are waiting on IO operations but are still in the CPU run queue (This adds to the

load while not imposing any additional performance penalty to the machine). The

values are also not normalised for the number of CPUs on the system, so knowledge

of that also has to be obtained before hand. The first example is discarded as the

load average does not provide a good enough metric to determine CPU activity.

It is better however, to select a combination of the CPU idle time, along with its

user(usr) and system(sys) times and perform calculations based on this. This value

is more universal for Windows and Linux operating systems.

The second formula however, does not sufficiently penalize CPU activity on the

hosts enough. The primary function of the nodes in the network are to act as gateway

devices and provide a transport layer for the wireless sensor data being collected.

Since this is the case we have to ensure that when executing tasks on a particular

node, that it has enough resources available to perform its primary functions in the

network. As this is the case, the formula is modified and illustrated in figure 2.6.

The system also stores the values for the available swap area, if available, as well

as the amount of free RAM on the host machine. These values can either be stored

in a database or held in memory for a limited amount of time. The current solution

November 27, 2014

2.5. Database 18

Figure 2.6: Updated load processing formula

is set to hold values for up to 60 minutes or 60 measurements (one measurement

taken every 60 seconds); where after 60 minutes the first value inserted is the first

value removed from the list.

Various database options exist. If this is a local only database or no database,

updates should be sent to the cloud coordinator at regular intervals (30 minutes) or

whenever an event occurs where it is determined that the load has spiked beyond a

defined value. This value is selected by calculating the standard deviation of system

values for the last 60 minutes. If the newly monitored value falls within the standard

deviation, the updated value is not sent to the server; otherwise it is.

This means that the server will most likely receive quite a few updates from

the node when the node is brought online for the first time as it should still be

in the process of trying to find its median operating performance values. These

calculations are carried out individually for RAM, CPU and SWAP values. If any

of these values indicate a spike an alarm is triggered and sent off to the server.

The SIGAR library is used here to collect the system resources values. The

justification for this decision is expanded upon further in chapter 3. Numerous

tests are conducted which indicate that LNMP, using SIGAR, proves to be a more

lightweight solution in its application than SNMP for network monitoring.

2.5 Database

The selection of BigCouch as the recommended distributed database solution was

a complex one. We needed a method that put as few memory constraints on the

system as possible, as the devices used were limited in their memory capabilities.

The database also could not be wholly contained within a single node.

Initially a solution considered where SQLite was installed on each host and each

host contained its own database. The manner in which this was to be made into a

November 27, 2014

2.6. Service Allocation 19

distributed database proved to be too complex and was beyond the research ques-

tions required of this task

Using BigCouch though means that no database drivers were available at the

moment of writing of this thesis as the solution is fairly new. An attempt was made

to use the CouchDB drivers but when noticing that the drivers did not support view

operations, this was abandoned. In BigCouch\CouchDB a view is a JSON object

with functions as properties of that object which allow you to access your data based

on filters you can specify in these functions.

Since BigCouch allows any sort of document to be stored, users need to ensure

they are getting the correct documents. You can specify a document type on storage

of your unique data and retrieve your data from the database based on the document

types specified. Note though, that this is not some unique property inherent to the

document. All data is stored in JSON and defining a document type is as simple as

setting an attribute on a JSON object.

Database connectors were developed using curl since BigCouch, like CouchDB,

expose a Web API which allows a full range of interaction with the database by

sending various HTTP messages along with the content to alter the database state.

curl is a command line tool which allows transferring data with URL syntax[22].

The database agent though provides an abstraction layer to all connecting sys-

tems which require database access. So technically this could easily be replaced with

connectors to any other sort of database. Configuration file as references in Appendix

A, can be configured to select any database host to store the data. Selecting of a dif-

ferent database technology can be selected by configuring the ’database type string’

field. Currently changing this in configuration file has no effect, but future support

for it has been enabled.

2.6 Service Allocation

Service allocation primarily falls within the operating functions of LRAP. That is

the allocating of services to incoming requests. The applicability of this solution is

tested out in chapter 5 with very promising results being presented.

November 27, 2014

2.6. Service Allocation 20

Figure 2.7: Service request flow

Allocation would come as a direct response to services being requested in the

networked environment. It should be noted that this is the behaviour being explored

instead of a pre-emptive service management infrastructure; where processes that

are already running on certain nodes are migrated across the network when the

appropriate changes arise. On a pre-emptive infrastructure, a task will be moved

from node A to node B if the usage on node B runs a certain percentage or level lower

than node A. This sort of infrastructure makes more sense when one is performing

raw computing tasks such as that in the SETI project.

Incoming service requests would access a networked or locally global API which

would either return the location of the host where the request could be executed

or forward the request to the particular node/service that the user application has

requested. This is of course only in the circumstances that the requests made are

actually successful.

The allocation process developed in this project took inspiration from the greedy

approximation algorithm which is used to solve the knapsack problem. The knapsack

problem is described as being given a number of items, each having its own weight

and value. The idea is that the knapsack is of finite size and the desire is to have

the most optimized ratio of value and weight in the bag.

In our case each host on the network has a finite amount of resources available. If

one examines the configuration file in appendix A you can see that a ’penalty max’

value has been defined. This determines the maximum load allowed on the node in

question, i.e. the finite size of the bag.

Not only that, the ”bag” is not empty to begin with. These nodes are running

their operating systems with whatever processes they need to be active, let alone

November 27, 2014

2.6. Service Allocation 21

the LNMP daemon which is collecting system performance statistics as well as the

database layer (This performance impact is negligible when looking at the heap

values in chapter 3).

Each service running on the network typically consumes a certain amount of

resources, such as CPU and memory. For example, loading a web page via Apache2

would place certain constraints on the disk, memory and CPU. These can all be mea-

sured and with it an average can be calculated to determine a resource consumption

profile for the application in use.

This profile can be translated into a weight that the process would be typically

associated. This weight though should typically consist of multiple variables as

each process could have different sort of impacts on the system. For example, some

process might consume more RAM whereas another would be more CPU intensive

and some might even consume a lot of everything available on system.

Working with this sort of multidimensionality was a bit too complex for this

work and was not the focus, so instead a broader single valued weight was decided

upon for each process in the system. In our examples used we simply applied integer

values which had no upper bound, but applying. The reader is now also directed to

appendix B where a sample service definition file has been stored. Each service has

a name, weight, port and URL associated with it.

It shall be noted however, that in order to better allocate services to nodes, the

multidimensionality of the service resource requirements and that of the systems

involved has to be brought to the table as this will only make the allocation algorithm

all the more robust. This too is marked for future work.

Each node on the network is thus offering its own bag or ’execution bin’ where

services can run. Instead of trying to fully optimize one bin, the filling of the bins is

distributed by filling the least empty bin at the time of each insertion. This outlined

in the following steps.

• All the hosts on the network are connected to the cloud coordinator. The

coordinator ensures that for all the nodes connected it has the latests stats

concerning their performance status.

November 27, 2014

2.6. Service Allocation 22

• It then arranges these hosts in ascending order by how much absolute availabil-

ity they have. This means that if a host is connected and it has a much higher

’penalty max’ value defined than another node on the network, the chances

are much more likely that the node with the higher maximum penalty defined

will be selected to be on top of the list.

• The node connects with all its available services to the cloud coordinator and

shares this list. The services are then added to the connection pool and the list

of hosts associated with particular services is updated. The nodes that connect

have their penalty values adjusted. This is done by the following method.

• A value out of 3 is calculated for the system performance. The proportion of

non free to total RAM is calculated. This can go to a maximum of 1. The

same procedure is carried out with SWAP space as well as CPU idle time as

well. If no swap area is defined then the system defaults to selected 1 as the

swap value. This was deemed appropriate seeing as the lack of swap area leads

to the system being more resource constrained.

Figure 2.8: Allocation cycle

• These values are added up and divided by 3 to get a percentage of usage for

the system. Here, in this case, 3 represents a system that is completely loaded;

0 indicates the inverse. This same percentage value is then used to get the

percentage of the maximum penalty which is used as the user’s current penalty

value.

• When services are requested from the allocation server, it proceeds from the

top of the list to determine firstly if the node has the particular service being

requested and then if the first node that it has encountered has the available

November 27, 2014

2.6. Service Allocation 23

Figure 2.9: Sample allocation resource calculation

resources for the service to be executed on that particular node. This is done

by adding the weight of the requested service to the current penalty value of

the queried node. If the new weight exceeds the maximum penalty then the

service request is rejected. Should it be successful an address is returned.

• Thereafter the currently penalty is readjusted by adding the weight until the

next evaluation cycle (every 60 seconds) completes and the new penalties are

adjusted based on any new performance values retrieved from the client nodes.

Testing of the solution proved itself to be a somewhat complicated procedure

as it becomes pointless to test on its own without complex simulation so a real

life implementations was decided upon. A DNS server was considered the perfect

application to test the system. This also become a crucial part of the infrastructure,

at least for the current vision of the system.

It was determined that each service on the network would be requested by its

unique domain. We did this by defining our own network domain for services, ’.site’.

Services would be referenced by adding the service name as the subdomain on the

network. That is, to accesss the Asterisk service on the network one would query it

with ’asterisk.<network domain>’. This would allow easy setup of the DNS server

to capture all service requests made in the network.

November 27, 2014

2.7. Data Storage 24

The DNS server would in tun then interpret the messages received from the

domain request and determine if a particular request was valid by first checking

the network domain. Should this value not fall within the designated domain for

the network then the request will be immediately rejected. So if we define our

search domain[see appendix A] as ’.site’ and a request comes to the DNS server for

’asterisk.local’, the DNS query will be rejected. Should this process occur with a

valid domain name, the query is then forwarded on the the LRAP agent with the

extracted service name, i.e. ’asterisk’. The LRAP agent would then return the

UUID of the host that would be able to fulfill the request.

The DNS server has to then query the network agent which manages all the

connections and tracks information such as UUID to IP address mapping. This will

then return an IP address which is in turn retuned from the DNS server.

One more dimension which has not been alluded or inferred upon so far in this

work, is the particular network topology involved with these calculations. All the

service operations involved in the network require the transmission of data via the

network. This data transmission applies its own load on the various systems involved

in the network and when topology is not considered, nodes could be selected would

require datagrams to pass through nodes that are already burdened with their own

tasks.

This could lead to cases where the nodes being traversed become overly burdened,

or situations can occur where nodes packets are dropped or delayed due to the

increased load being put on the network. In a performance sensitive context such

as VoIP, this becomes a very crucial determination step. This performance graph of

the network will also remain the subject of future investigation.

2.7 Data Storage

This section was not included in the draft implementation of the architecture de-

veloped. This was deemed infeasible due to time and resource constraints. It is

included as time spent developing the solution and may serve as guide for possible

future work.

November 27, 2014

2.7. Data Storage 25

Storing data in the cloud will be a slightly different procedure to service allocation

as we wish to ensure that data when stored is done in a way that is both secure

and redundant. This requires two concepts, replication and security. Security on

lightweight devices is not to be taken lightly as they are small and the processing

power is very limited.

We will limit ourselves in this context by applying our techniques in a very lim-

ited manner, by only considering Alix Boards, to take full advantage of the on-board

cryptographic accelerator on these devices. The Alix board crypto accelerator only

works with AES 256 CBC. In an ideal situation the encryption standard would be

negotiated between the devices (perhaps a device performance rating could be in-

corporated in the communication and the device with the lower performance/higher

priority can get preference over the encryption techniques used.)

Redundancy measures will need to be implemented to ensure that if one par-

ticular node goes down or leaves the network that the files stored thereon should

be fully recoverable from other nodes on the network. Figure 2.10 illustrates the

storage node selection procedure.

Each host that joins the network will have in its configuration a predefined n-

copies variable. This value determines the number of copies to make on the network

for each file storage request.

Files will be broken into 100kb blocks, encrypted and distributed through the

network to a number of hosts. The top three available hosts in the network are se-

lected as the storage repository. This is recalculated for every storage write request.

Even though a host might have available storage space, the file might require

additional hosts just to store one copy of a file. The idea in this scenario was to add

up the total storage available in the network and divide that by the size of the file.

Should the answer be less that n-copies (the required number of times a file needs to

be duplicated in the network) then the request to store the file should be rejected.

There is also the notion of including a maximum file size based on the available

storage in a network. This means that as files are being added to the network there

is a downward sliding scale which will negatively impact the file storage sizes in the

network.

November 27, 2014

2.8. Security 26

There is also the impulse that this file size should be determined by the nth-copy

node. I.e if we select that we wish to have our redundancy set at 7 nodes, then the

7th largest node in the network (in terms of storage space) will be used as the bar

for selecting the largest file size limit.

The request to store the file should be rejected if the number of copies stored in

the network is less than the defined n-copies value.

Initially the thought was to provide a storage facility for computational and ser-

vice activities that would be carried out in the grid. A cloud file system implemented

on a network such as this will allow for a much richer experience in terms of the

applications that can be developed and will also aid in the increase in accessibility

of data in a large distributed network of nodes.

While it might be possible through the use of smart streaming techniques, work-

ing with files that are much larger than the available system memory would most

likely be an incredibly difficult task. This left out of the feature specification for

this part of the project.

Initially a ratio of 3(nodes) to 1(file) was envisioned as a sufficient enough to

ensure availability in the network. Making this procedure dynamic or customizable

per node can be looked at at a later stage. For the sake of simplicity, the n-copies

variable will be set to a hard limit of 3 in the configuration files on each host.

2.8 Security

It must be equally duly noted that no security means have been included in this

first draft of the project. It has not been possible to expand on these features but

it must be emphasised the requirement for it to be incorporated in order for this

service to become useful in real networked environments.

November 27, 2014

2.8. Security 27

Figure 2.10: Storage selection procedure

November 27, 2014

Chapter 3

Lightweight Network Management

Protocol

The simple network monitoring protocol is currently seen as the de-facto standard

for network monitoring in IT settings. It is usually used in conjunction with tools

such as Cacti, Zabbix and Zenoss to provide most of the features that IT profes-

sionals require to efficiently monitor network systems. However, SNMP is not be

suitable for the emerging ubiquitous networking application environment where en-

ergy constrained devices operate with limited storage and processing capabilities.

These devices are usually deployed unattended and sometimes with intermittent

power supply. Furthermore, the client server model underlying SNMP may cre-

ate traffic bottlenecks and a single point of failure for the underlying monitoring

systems. Building upon these limitations, we aim to showcase LNMP and demon-

strates its relative efficiency when compared to SNMP. Preliminary experimental

results reveal that LNMP simplifies the network monitoring process and provides a

lightweight approach in monitoring low power network devices.

Abbreviations

SNMP: Simple Network Monitoring Protocol (Version 3)

LNMP: Lightweight Network Monitoring Protocol

SOHO: Small Office, Home Office

28

3.1. Introduction 29

IoT: Internet of Things

MIB: Management Information Base

ASN.1: Abstract Syntax Notation 1

3.1 Introduction

Network monitoring is a critical part of large corporate IT infrastructure, although

it extends far beyond that. Almost every network that extends its reach further than

the typical home or even Small Office/Home Office (SOHO) environments require

some sort of network monitoring system. This is due to the fact that critical IT

decisions need to be taken based on network performance metrics. In this sense,

the term network monitoring does not only relate to network throughput but also

to the health and performance of the actual equipment on the network.

With the growth of complex infrastructure, Internet-of-Things (IoT) and the

multitude of smart devices that connect to networks to access various services, the

need for reliable network monitoring is even more pressing.

3.1.1 The Simple Network Monitoring Protocol (SNMP).

SNMP [23] [24] [25] was created in 1988 and has largely been used as the standard

tool for network monitoring. SNMP is built upon a client-server architecture where i)

physical resources are represented by managed objects and ii) collections of managed

resources are grouped into tree-structured management information bases following

the ASN.1 format.

The user installs the SNMP daemon on a particular machine which is then con-

figured to have some local or remote process to connect to it. It is then able to reply

to requests for data, which usually come in the form of community strings and user

credentials. Usually in large scale IT deployments this is done at one central hub

and all devices are accessed remotely. This process is not limited to data collection.

SNMP is able to modify, albeit in a very limited manner, the behaviour of processes

on the devices by sending a SET request to the particular device. This collected

November 27, 2014

3.1. Introduction 30

data is then usually converted into readable graphs that can be interpreted by the

IT staff managing the network.

In very large IT deployments, scenarios can arise where the central SNMP mon-

itoring hub can become overburdened with traffic data from hosts due to the sheer

number of devices on the network and the large volumes of requests and data that

would need to be collected. Furthermore, a failure of the central hub may become

fatal to the whole IT infrastructure that might become unavailable until repair,

maintenance and/or replacement actions are undertaken. Moving forward we need

to re-examine what software solutions we will have to deploy in order for us to

make the most efficient choices for monitoring our networks while ensuring that our

attempts at mitigating problems do not cause problems itself.

Mobile agents [23] have been suggested as a method to mitigate the circumstances

outlined above. In the process outlined in [23], SIGAR is used instead of SNMP

to monitor system performance. Here the values are collected on the nodes by an

agent running on the local machine and when the system or network administrator

wishes to find out more detail about the machine(s) in question the data is then

transmitted from the target machine to a server which in turn displays that collected

data to the user.

3.1.2 Lightweight Network Monitoring Protocol (LNMP)

The system information gatherer (SIGAR) [26] is a cross-platform API for collect-

ing software inventory data. It provides auto-discovery functionality and can be

extended to add new functionalities to a network management which could not be

possible with simple network management protocol (SNMP). SIGAR is a platform

independent API that provides support for Linux, FreeBSD, Windows, Solaris, AIX,

HP-UX and Mac OSX across a variety of versions and architectures.

Its main offers to users and developers includes portable access to inventory

and monitoring data. These include i) System memory, swap, CPU, load average,

uptime, logins, ii) Per-process memory, CPU, credential info, state, arguments, en-

vironment, open files, iii) File system detection and metrics, iv) Network interface

detection, configuration information and metrics and v) Network route and connec-

November 27, 2014

3.2. Experiment Evaluation 31

tion tables.

The lightweight network monitoring protocol (LNMP)[18] is a monitoring tool

which is built around the functionality of SIGAR to provide a means of network

monitoring of cloud infrastructures underlying community networks. Its lightweight

processing capability and agent-based architecture enable more flexibility compared

to the client-server SNMP architecture in terms of deployment, storage of the data

that is gathered in the network.

The clients themselves on the network thus become responsible for monitoring

themselves and detecting noticeable changes in the operating parameters. Only

noticeable changes are reported, this in turn reduces load on the network when

compared to SNMP by not having the hosts continuously reporting to a single point

on the network. In the proposed network management architecture in figure 2.4, we

seek to describe a system that is able to effectively monitor and respond to system

demands. The system aims to be lightweight in its design in terms of its CPU and

memory consumption but also in the way it consumes very little resources on the

network. The LNMP software architecture depicted by Figure 1 includes various

agents described below.

3.2 Experiment Evaluation

We conducted a number of experiments to compare SNMP to the newly proposed

LNMP in terms of network monitoring under both Linux and Windows operating

systems.

3.2.1 Experimental Setting

It should be noted the extreme difficulty of gathering system data with SNMP com-

pared to the LNMP. To create code that is immediately cross platform portable,

one needs to ensure that all the MIBs (Management Information Base) are in place.

Then implementing accurately the querying of the correct object identifiers (OIDs)

for each operating system as these OIDs differ for Linux and windows platforms.

This is due to each operating system having different interpretations of system re-

November 27, 2014

3.2. Experiment Evaluation 32

sources.

For this experiment we conducted a simple comparison between values retrieved

from the CPU (user and kernel utilisation) and RAM usage values on Windows and

on Linux systems. This immediately proved to be not straightforward at all. The

only values that could be retrieved on windows relating to the CPU was the CPU

load.

This is differs from load value collected from Linux as this is only a percentage

statistic based on the amount of time that the CPU was not idle in the last minute.

The value presented was also only for only one particular core and thus separate

queries have to be made for each core in order to calculate the total usage value for

a multi-core processor. When one compared this to the values in the task manager,

it was shown that the values did not match up. This was due to SNMP gathering

the average values of the system over the course of 60 seconds.

We contrast this with the collection process on Linux. Upon querying idle CPU

time, only one value is returned. The returned value on linux is a 60 second value

that is calculated from the moment the query is made.

CPU idle times.

For the first experiment we decided to compare CPU idle times retrieved by the

LNMP and SNMP libraries. This was the simplest experiment to conduct as

the hrProcessorLoad (1.3.6.1.2.1.25.3.3.1.2) OID gave us the average, over the last

minute, of the percentage of time that this processor was not idle. According to

[25], the return value might be subject to a one minute smoothing if necessary. This

value is then subtracted from 100 to get the percentage of the idle time. This value

has to be calculated for all cores on the particular system so knowledge of the system

specifications are required before hand.

With LNMP we simply had to execute the query the SIGAR API for CPU idle

which returns the total time (all cores) the system spent in the idle process.

November 27, 2014

3.2. Experiment Evaluation 33

(a) 20 minute monitoring window, Windows (b) 20 minute monitoring window, Linux

Figure 3.1: Idle CPU times for Windows and Linux

(a) 24 hour monitoring window, Windows (b) 24 hour monitoring window Linux

Figure 3.2: Idle CPU times for Windows and Linux over a longer time period

November 27, 2014

3.2. Experiment Evaluation 34

Total RAM values.

During our second experiment we discovered that, when trying to query the value

of total RAM used for Linux hosts with SNMP, the discrepancies were noted. We

compared the results returned when calls were made using the GNU ’free’ utility and

the results returned when querying SNMP for returning the value for the amount

of RAM being used. (This value was queried because SIGAR only provides calls

for the total amount of RAM available and the amount of RAM being used). The

results returned from LNMP and ’free’ matched up but not with the SNMP values.

This can only be reduced to possible error in the SNMP libraries as all other queries

returned the correct values. The work around was to instead query the amount of

free RAM via SNMP and subtract that from the total RAM value.

The SIGAR API reports only current system readings contrasted to SNMP which

collects averages over 1 minute. This same behaviour is emulated with LNMP where

values are collected at 5 second intervals and then averaged out. This was to get rid

of any variance spikes that could be picked up.

The values retrieved from SNMP were rounded off to two decimal places. The

same effort was made with the LNMP protocol as SIGAR by default gave values

that had 10 decimal places. Both test environments were Ubuntu and Windows

XP virtual machines (VirtualBox) running on the same host machine at the same

time. Specifications of the host machine are: HP Pavilion dv6-3124si, AMD AMD

Phenom II Quad- Core Processor N950, 6 GB DDR3 RAM, 500 GB Seagate SATA

2 HDD.

3.2.2 Computation Accuracy

Figures 3.1a and 3.2a illustrate the collected statistics on a Windows operating

system over two different time periods. Figure 3.1a illustrates the variance that

in the readings when collection of performance values through LNMP occurs. The

peaks and troughs though, show that the data is following a similar pattern to what

the SNMP library is reporting. This is confirmed when looking at Figure 3.2a which

simply two stacked graphs for the reported LNMP statistics to better visualise the

November 27, 2014

3.2. Experiment Evaluation 35

(a) 20 minute monitoring window, Windows (b) 20 minute monitoring window, Linux

Figure 3.3: RAM readings for Windows and Linux

(a) 24 hour monitoring window, Windows (b) 24 hour monitoring window Linux

Figure 3.4: RAM readings for Windows and Linux over extended time frame

November 27, 2014

3.2. Experiment Evaluation 36

(a) CPU profile (runnable) of SNMP moni-

toring.

(b) SNMP CPU and Heap values.

Figure 3.5: Profiles of system running SNMP tests

rise and fall of system readings across the two monitoring tools. Figure 3.2a reveals

that the reported values are identical in the trends in idle CPU time.

The LNMP readings appear much thicker due to the erratic nature of the values

being captured, but average around similar values to those reported by SNMP. This

can be seen in figure 3.1b and 3.2b which display the Linux monitoring process, the

results yielded similar results to those achieved in the Windows environment. They

also reveal that on immediate polls of gathering system data, the LNMP suffers from

erratic spikes once again when examined over a shorter time-frame in more detail.

We have also included the results we received while experimenting with the

exact same two monitoring protocols but when monitoring the RAM usage. As

noted above, there was a lot of discrepancy in the results we received back from

SNMP. The values would fluctuate quite wildly at times from what the system was

actually reporting. At times the values would drop straight down to zero (i.e. no

RAM being used) during normal operation, which should not be possible at all.

The values at times would also not match up with the values being reported

by the system utilities. We noted that the LNMP values offered the most constant

values when compared to the retrieved system values (this is probably due to LNMP

querying the system directly). This issue with SNMP was apparent on both Linux

and Windows test environments as can be seen in Figures 3.4a and 3.4b. It also

appears that SNMP also implements a 60 second smoothing window on the RAM

data as it does with the CPU data. The system was regularly queried via use of

the conventional system administration tools to verify correct values were being

collected.

November 27, 2014

3.2. Experiment Evaluation 37

(a) CPU profile (runnable) of LNMP moni-

toring.

(b) LNMP CPU and Heap values.

Figure 3.6: Profiles of system running LNMP tests

3.2.3 Computation Time

Calculating the computation and resource requirements of the two protocols required

us to perform some profiling of the software as well as examining the system resources

required for running any additional system resources needed. For this purpose, we

used the following tools: Windows task manager, htop, JProfiler 8 and VisualVM.

VisualVM (bundled with JAVA 6 and up) and JProfiler (proprietary) are profiling

tools which allow us to examine the memory and computation costs related to the

software solutions used in the monitoring process.

The solutions require the system to be calibrated first which involves running

the profiling software when then system is operating at a stable equilibrium. It then

stores this data as the mean operating values (i.e. CPU and memory size) for the

system and any overhead caused by the profiled software solution is then gathered

by subtracting the mean operating values from the current operating values. We

then ran our software solution twice, first we got the LNMP performance values

from the system. Then this process was terminated and subsequently followed up

with monitoring the system with the SNMP daemon running in the background and

the solution with the SNMP library now being used to monitor the system statistics.

We proceeded to change the software solution so that it would attempt to query

the system for values every 500 milliseconds. This way we could get a better view

on how the system is actually performing when making these calls to the system. It

must be noted in the results that the times displayed are for the runnable portions

of the threads. Times were slightly longer when considering the waiting time by

the threads. SNMP queries went via the network, even when on the local machine,

November 27, 2014

3.3. Conclusion 38

Table 3.1: Base resource requirements

so time is taken for UDP message transmission. In the figure 3.5b, the values for

SNMP CPU monitoring spiked to as high as 15% in the application but most of the

time the values averaged around 2-5%.

In the LNMP implementation, as with the SNMP CPU profile, we have taken

the runnable portion of the process and detailed it here. As with both, parsing of

strings takes a considerable amount of time of the total running time (15%). There

is noticeably less CPU activity dedicated to similar processes when compared to

the LNMP. This was most likely due to the printing out the values directly to the

terminal. The heap size was also a bit smaller than that of the SNMP process.

3.2.4 Resource requirements

Table 3.1 illustrates the difference in values between the two different solutions.

All unused/unnecessary libraries were excluded for these tests to ensure as lean a

possible solution.

3.3 Conclusion

It can be seen from the experimental results presented in this paper that the newly

proposed LNMP protocol retrieve similar results to SNMP, which demonstrates its

accuracy but also shows itself as a good candidate for monitoring solutions. Granted,

the system is not a drop in replacement for SNMP and all the network administration

functionalities that has. But this is not what we were looking anyway.

It can be seen that the results are almost massaged to drive home the point that

the solution is more lightweight. In some cases we are talking about a few megabytes

November 27, 2014

3.3. Conclusion 39

of data here and there as well as minor advantages in computation time which are

more leaning towards LNMP being advantageous. In a conventional workstation

or desktop environment this would largely be considered a futile exercise, trying to

preserve those extra execution cycles. This however, can not be the attitude adopted

when managing resource constrained devices.

One needs to be frugal about what resources usage. We can see by measuring

the RAM and CPU usage from the system we can see that LNMP proves to have

the definite advantage. SNMP consumes too much resources processing community

strings, which in turn translates to a larger system footprint. Similar to the uncer-

tainty principle here, the more information we want to know about a system’s status

the more the monitoring solution impacts the system and becomes dependent on

free system resources. In our case we want to consume as little of that as possible.

The solution, also by only recording values at a much more infrequent time inter-

val as well as when the system status changes noticeably, provides a way for network

administrators to ensure that their networks remain as unburdened as possible by

the solution.

On its own, the fact that resource monitoring on lightweight networks via the

LNMP proves to be slightly more lightweight is great. A version of SNMP could

also probably be created to just include the features required for our monitoring

requirements. LNMP does not even have to use SIGAR as its means of collecting

system data. It could even do this with SNMP as a backend resource collection

agent. (Albeit a slightly more bloated solution.)

That is the real benefit from providing this solution. When coupling its lightweight

impact on system resources with its impact on network traffic data, the picture

changes. The point here, is the more optimised methods of gathering performance

data provided by LNMP far outweigh SNMP in its current form.

LNMP though is not a panacea for network administration solutions. Currently

the software will not work on a lot of routers as these usually come with some

proprietary kernel which is only configured to allow SNMP at best. More efforts

could be invested in expanding the current solution to include both local (SIGAR)

and remote monitoring (SNMP) capabilities in the project.

November 27, 2014

3.3. Conclusion 40

Combining this with the agent based monitoring infrastructure proposed by this

project, you can have a solution that greatly alleviates bottle necks in large IT net-

works. Where LNMP enabled nodes are used to retrieve data from their surrounding

nodes which only support SNMP, thereby removing the need for the central moni-

toring station as all the data is distributed through the network.

Whether the system resources gathered by the proposed solution is sufficient

enough, remains to be seen. From the experience of working with the solution so

far it would seem that is the case. In all likelihood, the metrics used to determine

performance load on the network proposed by this protocol will have to be examined

in detail and perhaps extended in a way which provides much more insight to a

systems performance capabilities.

November 27, 2014

Chapter 4

Distributed Databases

Besides the need for a lightweight networking monitoring system, a cloud computing

architecture requires a lightweight distributed database for storing and sharing data

over the grid infrastructure. The purpose of this chapter is to display the perfor-

mance differences between BigCouch and MySQL on the Alix system boards and

a desktop PC. The goal here was not to use the fastest database technology but

rather one more suited to the constraints or design decisions made in the project.

While these constraints would not necessarily all be applicable to a global applica-

tion of the software solution, in our focus we are working specifically with low power

hardware and as such the constraints are specific.

Abbreviations:

NoSQL: Not Only SQL

JSON: JavaScript Object Notation

fstab: A file in Linux where all the partitions that the system needs to use are

defined

DB: Database

TCP: Transmission Control Protocol

NAND: A Tyoe of flash memory

chroot: An environment that is used within the current operating system to create

a separate virtual operating system

41

4.1. Introduction: 42

SQL: Structured Query Language

MySQL: A popular open source database management software solution

SQLite: A very lightweight database library that can even run almost anywhere

WPA: Wi-Fi Protected Access

AES: Advanced Encryption Standard

VM: Virtual Machine

PMI: MySQL insert on persistent storage

PMR: MySQL read from persistent storage

IMI: MySQL insert to in-memory storage

IMR: MySQL read from in-memory storage

PCI: BigCouch insert to persistent storage

PCR: BigCouch read from persistent storage

ICI: BigCouch insert from in-memory storage

ICR: BigCouch read from in-memory storage

PCM: MySQL PC

PCC: BigCouch PC

PC-MR: MySQL read on PC

PC-MI: MySQL insert on PC

PC-CR: BigCouch read on PC

PC-CI: BigCouch insert on PC

PCCNQWR: BigCouch cloud insert insert n,q,w,r = 1

4.1 Introduction:

While exploring the greater solution of providing services in low power environments,

as well as intelligence about the network environment, the need to monitor and store

performance data in the network became more apparent. While initially the decision

to mimic mobile phones in their decision to use SQLite as the database technology

with which to store data for and about their operation, it was investigated upon

that the technology was insufficiently capable for executing our requirements.

The specific constraints placed upon the solution by our unique operation on

November 27, 2014

4.1. Introduction: 43

low power hardware and the inconstant nature of wireless itself, let alone long range

wireless in low power mesh networks left a lot to be desired. Simply choosing the

common database technology was not an option as much needed to be considered.

Our requirements for our database technology were the following:

• Low RAM usage

• Low CPU usage

• Small Binary size

• Distributed

• Not self contained (not restricted to being wholly contained on one host)

• Has redundancy features

• Fast (relatively fast, while understanding that a distributed database would

not be able to provide speed on the same level as a local database such as

MySQL, the slow down should not be noticeable that it causes human visible

delays in operation)

We required low RAM and low CPU usage from the database solution because of

the limited resources available to us on the Alix system boards. Ideally the solution

would be a small package as well, with the binary itself being small enough to be

easily contained within the available set of working memory. Typically a few hours

after powering up the Alix system board, the GNU/Linux command ’free’ displays

that there are around 16MB of free RAM available.

The data being stored in the database is to be distributed and redundant so

that if a node leaves the network, data can still be easily accessed from the available

nodes with no reconfiguration being required. Seeing as this solution would exists

in a wireless mesh network, this constraint would be essential for smooth operation

in the network.

The requirement that the database not be self contained was decided upon the

fact that Alix systems boards have very limited storage capacity. If we were to

use MySQL circular replication in the network, it would mean that all the data

being generated and stored in our database would be equally copied throughout

the network. This would mean that for every N nodes in the network, N copies of

the data would exists within the network, each wholly contained in each node; the

November 27, 2014

4.1. Introduction: 44

database size would be N * R, where R is the number of records stored for by the

host. This not only a waste of space in lieu of better storage options, but as the

network increases in size, the cost of sharing this data would also increase.

Every insert, edit and delete operation would have to be synced across the entire

network. If additional nodes are added, additional storage space would need to be

added to every existing node on the network should the user wish to prevent the

storage space from filling up faster. This would be more acceptable on a desktop

or server solutionin cases where 1:1 replication is necessary, but as we are dealing

with very limited secondary storage, that is not very fast in the first place, this is

an unacceptable trait that cannot be considered in our selected database solution)

On highly available systems it proves almost impossible to maintain ACID prop-

erties while scaling across multiple machines when large datasets are involved (CAP

Theorem). The only way to perform this is by using master-slave replication, which

itself introduces a single point of failure. With MySQL replication one can not have

more than one host set as a master[27]. This means that in introducing circular

replication, you introduce a single point of failure. This is an unacceptable solution

to a wireless mesh network.

This was were the start of the NoSQL movement began. Amazon’s white paper

on Dynamo, a highly available key-value store database[28]; spured a thousand

NoSQL databases into existence. Since relational databases were severely limiting

the ability to provide the always on experience, it became essential for databases to

be re-thought.

It should be mentioned here that it was indicated that the project, although

framed in a low power wireless sensor environment, has ambitions for broader adop-

tion and usage. This means that the database being used was something that

should be able to function on a scale much larger than a wireless sensor network. At

the same time we wished to include all the functionality available in commercially

available cloud computing environments such as Windows Azure. For this reason

non-academic database solutions were investigated.

November 27, 2014

4.2. Related Work: 45

Relation databases

Table, Columns, Rows

ACID properties fully satisfied

Normalized to avoid data duplication

Strong storage schema

Queries fully supported

Distributed databases

Table like domain

Data identified only by a key

Schema-less

Data integrity on applications code

Eventual Consistency

Support for queries is limited

Table 4.1: Common properties associated with relational distributed databases

4.2 Related Work:

Various distributed database solutions were examined to find ones with features

that would allow for installation on the Alix system boards. Some of these systems

are extremely complex and required more capacity than what would be available

on the Alix system boards. As such, a database engine which runs with as little

overheads as possible was desired. This decision or design constraint again threw

out most NoSQL solutions. While some of the solutions appeared near perfect, it

would usually come down to requiring implementing the technology in some memory

expensive process, or VM to run.

It should be noted that this is but a small fraction of the available NoSQL

distributed databases available. It would be impossible, considering our time con-

straints, to look at them all let alone test them. The data with which we assimilated

this table was constructed from a previous study[27]. For a more complete list of

NoSQL databases please refer to [29], currently 150 databases are listed.

Database Technology Name Description Shortcomings

November 27, 2014

4.2. Related Work: 46

Voldemort Big, distributed, persistent,

fault tolerant hashtable.

Uses MySQL or BDB as

backend for persistence on

each node

Impossible to install a node

to a live cluster. Entire

system has to first be shut

down. Requires load bal-

ancer nodes.

HBase It is an Open Source, dis-

tributed, column-oriented

store modeled after Googles

BigTable [Chang et al.

2008]

Near perfect solution, albeit

slightly complex in its con-

figuration and large size.

Redis Redis is an open source,

BSD licensed, advanced

key-value store

Master Slave relationship.

Redundancy through repli-

cation not sharding.

Cassandra It is a more complete key-

value database based on

Dynamoss fully distributed

database design [DeCandia

et al. 2007] and BigTables

Column family based data

model [Chang et al. 2008].

Bad/Non Existent docu-

mentation and very obscure

and difficult API.

MongoDB MongoDB is document-

oriented approach for scal-

able distributed databases

Intricated cluster schema

introduces several single

points of failure. No full

support for sharding and

data replication constraints

November 27, 2014

4.2. Related Work: 47

Tokyo Cabinet/Tyrant Tokyo Cabinet/Tyrant is

an Open Source project

claimed to be in use at

mixi.jp, a japanese so-

cial network with 10000

updates/second through

MemCache[27]

Does not have good doc-

umentation. Very few

projects are using it.

Kyoto Cabinet/Tyrant insert 1M records / 0.8 sec

= 1,250,000 QPS, search

1M records / 0.7 sec =

1,428,571 QPS. Based on

Tokyo Cabinet/Tyrant. No

limit on database file

Poor documentation.

CouchDB It has a totally unstructured

schema-less storing backend

throught the use of JSON

format as data handling

similar to Amazon’s Sim-

pleDB

Data needs to all fit on a

single device. Redundancy

through replication

Memcache Open Source, high-

performance, distributed

memory object caching

system

Does not have a persistence

layer and requires underly-

ing database technology for

persistence.

BigCouch BigCouch is in an elastic

cluster, acting in concert

to store and retrieve doc-

uments, index and serve

views. Based on CouchdB

Table 4.2: Table showcasing various distributed database technologies with their

drawbacks in relation to the project

November 27, 2014

4.3. Experiment Setup: 48

—

BigCouch was selected due to it being, extremely lightweight, and very simple to

install. The solution itself did not provide much by the way of documentation and

simply gave numerous instructions on how to configure the cluster storage of the

database solution but not how to interact with the software solution at all.

This was due to the solution being based on CouchDB. A single instance of

BigCouch, i.e. one node in the network, acts as a CouchDB node. So almost all

the documentation applicable to CouchDB applied to BigCouch. There are some

minor feature differences in BigCouch that arose due to the distributed nature of

the project[30].

It should also be noted that no database drivers are provided with the software

solution. As noting a common trend in access layers to database technologies, Big-

Couch and CouchDB moved to using HTTP as the transmission protocol and JSON

for the encapsulation and serialisation of objects.

BigCouch is a document store database. This means as opposed to normal

relational databases which have relations and tables, document store databases are

oriented around documents and key-value pairs. This means that in one particular

databases, each inserted record can be as different in structure and meaning as the

previous. There is no predefined schema, and in the case of BigCouch, files can be

attached to individual records.

MySQL was selected as the relational database with which we BigCouch will be

compared against. MySQL was selected simply because it is the worlds most popular

open source relational database[31] and with that all the optimizations and maturity

that go with the solution. Something that most NoSQL solutions will not match.

4.3 Experiment Setup:

The idea for the experiment was to test the relative performance of the distributed

database system and the conventional relational database technology. It was as-

sumed that the experiments showing the performance of a distributed database

November 27, 2014

4.3. Experiment Setup: 49

would obviously be slower due to synchronous operations that would need to occur

when information is being stored or retrieved over the network. Since BigCouch

does not apply a memcache solution on top of its database infrastructure, this made

all queries query the disk. MySQL on the other does apply very clever caching

techniques.

The hardware being used for this experiment included an Alix systems board

(alix2d2), a Raspberry Pi and a Pentium Dual Core. The alix2d2 ran a 500MHz

AMD Geode LX800 with 256MB of DDR ram. The operating system is installed

on a compact flash card and the disk runs in read only mode. On booting of the

device, a virtual filesystem is loaded into memory to allow tasks to run that require

read/write access to the filesystem. This mirrors the storage on the compact flash

card.

The Raspberry Pi features a 700 MHz ARM1176JZF-S, 512 MB of RAM. The

operating system is installed on an SD card which is used both for booting and

persistent storage. This was used purely as a reference and would not be used as

a standard technology in the project, we were merely in possession of a unit and

was able to include it for some basic tests. The results obtained from it will not be

discussed or be part of any final decision made in the project.

The Pentium dual core was running an Intel E2200 CPU running at 2.20GHz,

2048 MB RAM, and an 72GB SATA 1 drive. This system was running Ubuntu

12.04. Gnome was removed in favour of LXDE as the former proved too resource

intense. It should also be noted that while the Alix2d2 and the Raspberry Pi were

both running in headless environments, the desktop PC ran with Xorg running.

All devices were connected on a private LAN via a TOTOLINK N100RE wireless

N router. All the Alix system boards were connected wirelessly to the access point

using WPA2 AES encryption using 802.11g. The desktop PC was connected with a

standard CAT 5e cable to the router operating at 100BASE-TX.

A series of tests would be performed on each device to determine the speed at

which it is able to perform read and write tasks to the database. The tests would

also measure the state of the machine under load when performing these speed tests.

It was determined that 10 000 write operations would be measured on each

November 27, 2014

4.3. Experiment Setup: 50

Table 4.3: Table schema for MySQL data insertions

platform along with 10 000 read operations. The system performance measurements

would be made with the GNU/Linux tools time and vmstat.

time would be used to measure the time it takes for the entire insert and read

procedure to take place. The command outputs three different times on the comple-

tion of the task, namely real, user, sys. Real is the amount of time that has passed

according the the wall clock. User indicates the amount of time the CPU has spent

executing code in user-mode. ‘sys’ indicates the amount of time the CPU has spent

executing code in the kernel space. ‘user’ and ‘sys’ indicate the total amount of

time that the CPU has spent executing the process. Hence if multiple processes or

threads are being used then this value is cumulative. This is not an issue since we

are only executing single threaded inserts on single CPU devices.

According to the vmstat man page, it reports information about processes, mem-

ory, paging, block IO, traps and CPU activity. And when the command is issued

for the first time since reboot, the output will be the averages from boot. Subse-

quent issues of the command will be based on a sampling period of a specified delay.

For the purpose of this experiment a delay of 1 second was chosen to wait between

capturing system performance snapshots.

Initially the idea was for each row to have random data inserted into each row,

but it was made clear in a previous work[17] that the use of the random number

generator was quite an expensive process. Using this on an Alix system board would

end up more being an exercise for the random number generator than anything else.

It was then favoured that incrementing integers would be used as the data inserted

into each column value for each row.

Table 4.3 displays the base database table schema that will be used for the

insert and read test operations. Where the values val1 to val9 would all be the

same integer, with the value increasing in each row. On completion we should have

10 000 rows in the database with the final row having val1 through val9 containing

November 27, 2014

4.3. Experiment Setup: 51

Figure 4.1: A record seen via the BigCouch web interface examining the contents of

a single document

the value 10 000 in each column.

We create a similar schema for our BigCouch database. By schema here though

we simply mean the general structure we will follow when constructing each docu-

ment. This structure is not formally defined in the database technology, and only

exists in each individual record inserted and in our insert and retrieve code. Checks

have to be performed here to ensure that the correct data is being inserted or re-

trieved.

Each BigCouch database can be configured with the following performance pa-

rameters:

• N The number of copies to make of each document when storing it in the

database.

• Q The number of partitions to divide the database into.

• W The number of nodes that must confirm successful write of the data before

the write is acceped. If this is omitted the majority of nodes in N is used as

the default value.

• R The number of nodes that must confirm they have the same result when

making a query for a particular value before that value can be returned. The

November 27, 2014

4.3. Experiment Setup: 52

Figure 4.2: Sample time output when running an application with the time command

default value if this is ommited defaults to the majority of N nodes.

The scripts used to insert and retrieve data from the database are available in

appendix D2 for closer inspection

The process of insertion and delete are fairly simply and straight forward for

both MySQL and BigCouch. Each record is inserted and queried sequentially to

ensure a fair comparison and a large enough data set is used to average out query

times(insert) over the course of database growth.

While the number of records used does not by any means constitute a large

amount of data It does provide a large enough set for the Alix board which operates

in a much more diminished capacity when compared with current server hardware.

vmstat -n 1 —awk ’now=strftime(”%Y-%m-%d %T ”); print now $0’ >

/tmp/vmstatlog.txt

The command issued above is to store the monitored system statistics. Stats

are gathered every second, a date time is prepended to each gathered value which

is subsequently piped into a file (vmstatlog.txt). This file is then used for analysing

the system performance during the insert and retrieval procedure.

Each script is then executed by having the time command issued in front of the

script command.

> time bash couchinsert.bs

With the results of this command returning output which is visible in figure 4.2

Before any of the scripts could be executed the databases had to be created on

the various devices first. Since the Alix board was installed with a readonly file

system it was in our interests to test this in comparison with an Alix board with

persistent disk storage. It should be noted that before any experiments were done

November 27, 2014

4.3. Experiment Setup: 53

with either database technology, the other was disabled to prevent any interfering

or skewing of the results. Each system was also rebooted before each subsequent

test.

It was tricky getting the information into a read only filesystem. As we did not

want to perform the writes directly to the files system, writes were performed to

the in memory file system. The results then copied directly over the the persistent

storage and then written to the compact flash card. It was chosen that this would

be the better option instead of performing 10 000 write operations to disk which

would most likely severely reduce the lifespan of the disk as compact flash cards

have a very limited write lifespan.

The tests performed are also here to indicate relative performance of each tech-

nology, and while not wanted to compare apples to oranges, it was decided that

BigCouch would operate in stand alone mode. This means that it operates as if it

is a single CouchDB installation. No replication or distributed query operations are

performed except where explicitly stated.

4.3.1 Using Persistent Storage

A USB storage disk drive attached to the Alix system boards in the network, was

installed to act as a persistent storage area for the device. This was a Transcend

JetFlash 600, which provides the fastest possible write/read speeds for NAND tech-

nology via USB 2.0. [32]. The flash memory device would also act as the storage

location for files related to the databases software. That means, both MySQL and

BigCouch would have to be reconfigured to perform all read and write operations

from the new data directories.

While normally the procedure of moving data directories is fairly simple and can

be done with simple symlinks, the Alix system boards being used in this project

are running ‘debian-for-alix’ which makes this procedure a bit more complex. All

configurations must be made within a ’chrooted’ environment which gives read-write

access to the underlying file system which is being stored on the compact flash card.

Once chrooted, ‘fstab’ can be accessed and persistent changes made. We then

proceed to create symlinks from the various data directories to folders on the USB

November 27, 2014

4.3. Experiment Setup: 54

disk where the various database files are being stored.

Since ‘debian-for-alix’ mount’s the removable drives before ‘tmpfs’ has been

mounted. This means that when the applications running, using ‘tmpfs’ the rel-

ative paths to symlinks are all incorrect. To solve this we use the ‘rc.local’ scripts

file, as this allows us to specify startup scripts to run after the system has completed

its booting procedure, and manually script system changes to run.

We also disable MySQL and BigCouch automatic startup on system boot, as this

would assume to use the incorrect paths. Instead we rather indicate in the ‘rc.local’

file that the database services only start up after the USB drive has been mounted.

4.3.2 Using ‘tmpfs’

While it is great to see the performance of MySQL and BigCouch using secondary

storage, it is also interesting to compare those results with results gathered from

the same experiments run using ‘tmpfs’ as its primary storage without using other

means to provide persistence.

This means that typically on reboot all the data we stored in the ‘in-memory’

filesystem would be lost. The experiments were performed immediately after each

other for both MySQL and BigCouch. MySQL and BigCouch were configured as per

the installation manual and started up normally. By default they would be using

the volatile storage paths as their default paths.

4.3.3 PC insertion

The experiments performed on the PC will be to compare relative performance of

MySQL and BigCouch on the two hardware profiles. We will also be performing the

replication tests on PC. This operation does not really test the hardware limitations,

but more how quickly the software solution itself can sync and store data across the

network. It is assumed here that the biggest cost of transaction here will be the

network I/O.

November 27, 2014

4.3. Experiment Setup: 55

4.3.4 Replication insertion

The replication performance test would operate with 4 Alix system boards con-

nected and 1 desktop PC. All were configured to have the BigCouch connected and

configured to use each other as additional nodes in the same BigCouch cluster.

In order to perform this we needed to ensure that the Avahi-daemon was installed

on each machine and configured each one’s host name accordingly. This is because

in the BigCouch configuration, a simple requirement for joining the network is for

all the hosts to share a secret and that each host added is added to connect via

the same unique network address. So this can either be a static IP address or a

resolvable hostname.

It was deemed a much simpler solution to have the hosts operate in a dynamic

network environment, as this is much closer to what the reality of a field situation

would look like. In the ‘hosts’ file on each of the nodes in the network the line with

the address for localhost is modified. Usually it reads as follows:

127.0.0.1 localhost <hostname>

Where <hostname>is the actual hostname of the machine. We now simply

add another value immediately after <hostname>and separated by a space, <host-

name.local>. This allows the Avahi daemon to pick up which hosts in our network

we wish to connect to each other. Two reasons for using Avahi for DNS resolu-

tion are, the router itself would not resolve local addresses and Avahi works well

in wireless mesh networks. So its great for discovering new devices on the network,

meaning minimal configuration has to be done on the actual network itself when

adding new nodes.

BigCouch would be configured and tested in the following configurations:

1. r-insert (Replication insert): Here we would create a database with fairly

standard parameters: N = 3, Q= 32

2. noq-insert (Noquorum insert): Here we would create a database with the

aim of having fast write and read operations with low reliability in ensuring

the data stored and retrieved are correct: N = 3, Q = 32, R = 1, W = 1

November 27, 2014

4.4. Results 56

Table 4.4: Table showing time values recorded when performing insert and read

experiments measured in seconds

3. rwnq-insert: Here we will create a database that will be accessible via the

network, but each document created will only be stored on one host. So,

providing no redundancy and offering even less reliability than the query above.

4.4 Results

The first set of results displayed are tabulated results displaying the time taken for

the experiments to complete. The results are grouped into different groups.

The first will be the CPU usage results of read and write tests performed on

MySQL and BigCouch on the Alix Board with the in memory file system. This will

be followed up with the test results using NAND type flash memory as the persistent

storage area. The next set of results will be that gathered from performing the tests

on the desktop PC and the tests performed to note comparatively the distributed

storage and retrieval of data.

Following this the free RAM of the various devices will be displayed both before

and during the tests.

November 27, 2014

4.4. Results 57

Table 4.5: Table showing time values recorded when performing insert and read

experiments measured in seconds

(a) BigCouch tmpfs insert Alix
(b) BigCouch tmpfs read Alix

4.4.1 CPU usage

Table 4.4 contains a list of the DB performance readings. As can be seen from the

table, MySQL outperforms BigCouch on the Alix system boards in terms of real

world time. But it can clearly be seen that BigCouch spends way less time in user

space than MySQL and spends about the same amount of time in kernel space as

MySQL. It is assumed that the extra wall clock time taken by BigCouch can also

be attributed to it communicating via a TCP socket to a webserver which returns

JSON. So even though we are running this node in stand alone mode, a great deal

of time is spent on I/O operations and waiting.

MySQL on the other hand is communicating via the local socket file instead of

using networked communication. We could have changed it up to force MySQL to

use the local connection, but this is not the default mode of operation for most

MySQL installation in stand alone environments.

November 27, 2014

4.4. Results 58

(c) BigCouch NAND insert Alix (d) BigCouch NAND read Alix

(e) MySQL tmpfs insert Alix (f) MySQL tmpfs read Alix

Also MySQL shows itself here as a very mature solution where years of research

and development have been put into the product. It offers basically the exact same

performance using the tmpfs and the NAND based disc storage. It is assumed

here that some clever pre-caching techniques are being used here by MySQL. When

previous work[17] was conducted experimenting with MySQL and TahoeLAFS, it

was noted that MySQL is continuously interacting with the database. This could

probably allude to the background optimisation that was going on ensuring queries

are quick and responsive.

Upon further investigation it was noted that the MyISAM storage engine was

being used. According to the MySQL manual, the AUTO INCREMENT column

is updated by MySQL on insert and update operations making it least 10% faster

(a reference to a baseline performance metric was not specified). MyISAM also

employs a cache mechanism to keep the most frequently accessed table blocks in

memory[33].

The BigCouch solution on the other hand seems to be suffering more from being

a new solution with less applications using the solution and therefore less research

being made available for the solution. With the times of using the NAND based

November 27, 2014

4.4. Results 59

(g) MySQL NAND insert Alix (h) MySQL NAND read Alix

(i) MySQL PC insert (j) MySQL PC read

storage being roughly double that of the tmpfs solution. So on top of having to

access the data via a webserver, the database engine now also has to query the disk

which carries its own I/O burden.

As of yet BigCouch does not offer the same sort of performance and caching

speed ups that MySQL has. The solution seems to have focused more on developing

its B-tree storage engine[10] which focuses on maintaining efficient access operations

(O(log N)). Alternate means of speeding up the performance of BigCouch will have

to be examined but for now that will be considered out of scope of the current work.

Unsurprisingly both BigCouch and MySQL perform noticeably better on the

desktop PC than on the Alix system board. This is mostly likely attributed to

(k) BigCouch Standalone PC insert (l) Bigcouch r-insert insert

November 27, 2014

4.4. Results 60

(m) MySQL PC insert (n) MySQL PC read

(o) BigCouch Standalone PC insert

faster processing and bus speeds, larger and faster RAM, and faster secondary disk

storage access. It is interesting to note the BigCouch inserts on the PC are as fast

as the BigCouch inserts using the tmpfs on the Alix board. While noting the much

lower user and system times, it is also another indicator here that either waiting on

I/O or some other process within the BigCouch architecture is slowing this down.

It is slightly alarming to note how much longer it takes when data is inserted into

the database using the default parameters when it is running in distributed mode.

8259 seconds is almost 138 minutes and most certainly won’t suit high performance

applications. Albeit in this instance we were running with predominantly low power

hardware; our application, like most applications in this sort of setup, would preclude

a high performance requirement. The system and user time also indicate very low

values for storage, which leads us to conclude that an incredible amount of time is

taken up by syncing and ensuring validity of the write.

The noq-insert yields results similar in terms of wall clock time to the Alix

NAND inserts even though the user and system times are comparatively similar to

the r-insert values. Having to not wait on confirmation of all participating nodes

regarding the validity of documents being stored greatly improves performance. The

November 27, 2014

4.4. Results 61

replication read time is double that of single instance read times. This is attributed

to having to wait for network I/O to complete before the query can be completed,

documents can be stored on different hosts.

Looking at the performance graphs of the CPUs on the various platforms and

tests we see that BigCouch performs nominally better when using the NAND based

storage. Looking at this result and noting that the slowest read time took place when

using ‘tmpfs’ it is assumed here that due to the limited free RAM being available,

that some unused memory must have been swapped out at this time in order to

make room available for newer processes.

MySQL performs comparatively the same across both file systems in terms of

CPU usage, but we could have already inferred this result due to the similar time

durations taken for the experiments with MySQL.

On PC we see both database technologies occupying very little CPU time, where

the BigCouch stand alone inserts and reads perform comparatively the same accord-

ing to CPU impact as MySQL does on the same hardware profile. Although MySQL

does perform its read operation in approximately half the time as BigCouch and its

writes in less than half the time. As we compare the performance of the machine

though we can see it really is not struggling to complete the task at all.

When comparing these results to the distributed/grid inserts it becomes apparent

that the host CPU is doing no work and just waiting. With the CPU idling for almost

100% and 80% of the time when performing r-insert and noq-insert respectively.

4.4.2 RAM usage

When looking at the RAM usage on the machines over the different tests, it shows

a slightly different picture. Off the bat we can see that MySQL requires a greater

amount of starting memory in order to function. These systems were stripped of

all extra software solutions that were not required for the running of the developed

software solutions.

We should note that in looking at table 4, that when comparing the free memory

available on desktop PC systems with the MySQL service installed VS the BigCouch

service that there also a noticeable difference. This change to a system just by having

November 27, 2014

4.4. Results 62

Figure 4.3: PC RAM usage

Figure 4.4: Alix system board RAM usage

November 27, 2014

4.4. Results 63

a process loaded into memory was not made apparent by the previous CPU tests.

This could be the way Linux manages the memory of libraries and files. This

in combination that all the running programs on the Alix board are brought into

memory, it would make sense that the MySQL service would be more costly upfront

to load, when referring to memory.

The only requirement required for running BigCouch in memory, is its HTTP

server[34]. Upon examining the source code[35], we can see that it has been im-

plemented in Erlang. And from the Erlang documentation[36], we can see that an

Erlang process is very light when compared to operating system threads and pro-

cesses. Thus it should not a surprise to note that the two systems consume very

different amounts of memory. This more noticeable on the Alix Board simply due

to the strict memory constraints placed upon the system and also not having any

swap memory available to which could be used as cache for any running processes.

We can see that although MySQL has a greater cost to get the service loaded

into memory, during operation it holds a fairly constant memory. Over the course

of the operations MySQL seems to typically consume around 5 to 10 megabytes.

BigCouch, however, does not yield similar results. The system appears to use

much more memory when compared to MySQL. Although the system still seems to

get away with using less memory in total than what MySQL does. The only case

where this is not the case is where we are reading from the database that is using

RAM as its storage space. It is understandable that this uses considerably more

space.

More research reveals that because BigCouch is a document store database it

does not optimise the raw storage and retrieval of documents. It is up to the user

to create views. Views are means for users to access specific data in a database. We

can compare this to its SQL equivalent, a query. BigCouch optimizes these results

by storing them in a tree. This tree is then updated whenever data is inserted into

the database or queried, making the queries much faster. On first run, however,

the tree must still be created; thus making the first run, i.e. our entire experiment

sample to being this first run. (It is not entirely clear if the process of querying a

document by its name/id has the same impact as querying a document based on a

November 27, 2014

4.5. Conclusion 64

particular parameter)

In fact we can take it one step further and note that we did not use any views in

our experiments. Meaning the results are never cached. Although it is not apparent

as of time of writing this report if that amount of data is even cacheable or how

BigCouch performs when querying the exact document vs querying a document

based on parameters of that document.

We should also notice that on the desktop PC we get similar results showing

that BigCouch occupies less system RAM in total as compared to MySQL. Its delta

usage is higher than MySQL as we noticed before. We do note however, that the test

PCCNQWR, which is a distributed BigCouch insert,(although in this case a single

document is only ever stored on one particular node) that the system performance

values remain pretty constant. This is in-line with the CPU performance values that

we noted up earlier in the study.

4.5 Conclusion

MySQL should definitely be a first choice pick when deploying environments where

performance is critical. Along with its popularity, its maturity has made it one of the

most robust and polished solutions. It is arguable in the Open Source community

whether the new ownership of Oracle can properly articulate the desires of the Open

Source community at large. This is the reason why the MySQL project was forked

and now MariaDB moves forward at least in the community as the forefront of Open

Source relational databases.

MySQL, however, is not suited for installations which require high volumes of

traffic and concurrency has it does not scale well horizontally. On large installations,

the database becomes the bottleneck and distribution of data becomes a must.

In our experiments we have also shown that it might not necessarily be suited to

environments where memory constraints are an issue. While in these experiments

we show that BigCouch does consume more memory when conducting the tests, this

is a stress test where we are reading all the available data and does not reflect the

regular operation of the network, which will be considerably lower. (By design and

November 27, 2014

4.5. Conclusion 65

on reflection on its desired implementation and environment)

BigCouch has also shown to occupy less operating system resources when waiting

for requests. This means that more system memory will be available for additional

processes on the machine. On more than one occasion the system has suffered from

being unable to install or run packages because the available RAM had reached

0MB.

BigCouch does suffer from being significantly slower than MySQL and does not

seem to contain all the performance tweaks that MySQL can boast about. Users

accessing data might have to access it knowing that they might not be in possession

of the latest copy of the particular document. But this seems largely ok. We don’t

seem to mind that our email is eventually consistent. A few refreshes of your gmail

inbox are usually all that is required.

This measured slowness is not necessarily a bad thing in this particular context.

It is not slow at the expense of system resources. It’s perceived slowness in this case

is actually its saving grace as it does not consume a lot of system resources when

the system is loaded into memory. This is perfect for our low power environment

and makes the solution highly suited because of its low system footprint.

Application developers just have to be aware of this issue when dealing with

BigCouch, although it would be in our interests to conduct the experiments again on

more enterprise grade hardware and make comparisons again to notice the difference.

It should also be noted that much more investigation is required into BigCouch

performance tweaking. The solution is rather new and both MySQL and BigCouch

installations were deployed with the default parameters configured in order to get

the system up and running. A few performance tweaks were applied but not enough

to consider it a thorough investigation. Not enough information is known about the

solution in order to determine the most optimal performance settings.

At a later stage, we would like to re-conduct experiments using Tokyo/Kyoto

tyrant. The authors claim magnificent database speeds. The only problem was

the lack of documentation, which made its use difficult in this project as the time

investment was too high.

November 27, 2014

Chapter 5

Lightweight Resource Allocation

Protocol

The purpose of this document is to describe LRAP and its application. We go into

detail of how the allocation protocol works and its place in the PCC ecosystem.

LRAP provides a lightweight framework with which resources and services can be

managed in wireless or wired networks. This particular application focuses on low

power wireless mesh networks as that is the theme of the overall project. As de-

scribed, one specific application is displayed but others have come to mind. The

DNS server developed was chosen as it most readily displays the applicability of the

framework. We show promising results with the DNS server being able to effectively

manage requests and service dissemination throughout the network to allow for a

more balanced approach to managing services in a network.

Abbreviations

LNMP: Lightweight Network Monitoring Protocol

LRAP: Lightweight Resource Allocation Protocol

UUID: Universal Unique Identifier

PCC: Participatory Cloud Computing

DNS: Domain Name Server

EC2: Amazon Elastic Compute Cloud

66

5.1. Introduction 67

VOIP: Voice over IP

SIP: Session Initiation Protocol

5.1 Introduction

As with LNMP, we enthusiastically named this the Lightweight Resource Allocation

Protocol. And, as with LNMP, we use lightweight here in the sense of the process

itself being low on its resource requirements. LRAP is designed that services can

be provisioned in the network while distributing any possible impact these services

might have throughout the network.

While it is essential in network management to perform monitoring of the net-

work to ensure that we are aware of changes in the network and respond to issues

arising, we are ever in engaging in a world where our digital life is autonomous and

requires less and less human interference in order for the operating and running of

services.

This requires that our networks be carefully constructed. Huge cloud services

such as Gmail and Amazon’s EC2[37] do not have a team of engineers sitting be-

hind desks, carefully watching systems logs and effecting changes in the networks

themselves manually by analysing these results.

No, these changes are carried out in large by automated scripts and processes

which monitor the state of the various systems involved. Then, either by predictive,

heuristic or even static allocation processes, assign tasks to various nodes in the

system in order to carry out the various tasks.

Human, interaction in these large datacenters are now left to rebuilding broken

storage arrays or lean highly paid emergency response teams waiting for something

to go wrong. Cloud computing system has now long evolved from the support desk

agent sitting around waiting for a customer telephone call in order to set up a new

web hosting environment. Now, one can spin up an Amazon EC2 instance in a

matter of minutes.

So equally in this project where lightweight monitoring processes are in place, we

need to also ensure that once our changes are detected in the network that we can in

November 27, 2014

5.1. Introduction 68

turn act upon those changes and make effective decisions in service allocation in our

network based on these decisions. If we can make these sort of changes/decisions in

our networks, we can ensure that service provision is somewhat attainable.

The problem of allocation needed to be solved in this part of the thesis was an

optimization one. The problem that this most resembled was the greedy knapsack

algorithm. We then modified the greedy knapsack algorithm to be more suited

towards this problem space that we were dealing with.

With our modifications to this algorithm and also our implementation, we are

able to easily connect existing services with our algorithm to solve service requests.

Current resource allocation protocols for grid computing systems focus on compu-

tation tasks as this is usually the primary function of compute grids. The LRAP

focuses on lightness and no complex calculations are performed when deciding where

services are allocated.

Services in the network could be anything ranging from VoIP services such as

Asterisk or servicing various web services/websites to users. Services, which are

usually accessed in networks by various domain names.

These names are usually the addresses of nodes on a particular network or span-

ning multiple networks. These host names in turn usually reflect the names of the

services that they are running should they be solely dedicated to serving a particular

task in the network.

Servers though can have multiple domain aliases though depending if the machine

will be used for multiple tasks on the network. This is useful because it allows us to

query services without binding the service to a specific node in the network. Should

we wish to move our printing service running on ‘print.local’ pointing to IP address

‘192.168.1.7’ to instead point to ‘192.168.1.8’, we can do so without reconfiguring all

the other nodes on the network. We can simply reference the same hostname which

has just been moved to a new host.

This portable service management is the idea behind this implementation of the

LRAP. It makes sense in networks that when we refer to services we do so in a way

which allows us to easily identify nodes and services in our networks. This makes

the job as a network administrator much easier.

November 27, 2014

5.1. Introduction 69

Figure 5.1: DNS request flow

In this instance the services are queried by the networked name; when we query

our VoIP/Asterisk server, we would query ‘asterisk.site’ on the local network and

have the DNS server resolve it. The prerequisite here being that each node would

have to be preconfigured with the correct DNS server to resolve it.

In this case we are running our own DNS server which in turn connects to the

LRAP agent. The incoming service name is analysed. The service name is extracted

from the full domain name and all we are left with is ‘asterisk’. This value is then

piped into the LRAP agent which in turn searches through all the available hosts it

has connected to it and only upon finding suitable candidate, will it return an IP

address. It returns the equivalent of ‘host not found’ in the case that the service

does not exist or the domain name was invalid. (It will only accept requests for

services in the particular defined domain, in this case ‘.site’.) If the service does

exist but there is no available host to accept the request then the service returns

‘host rejected’.

The DNS server then reviews the response from the LRAP agent and returns

the correct output to the program making the request. The process of querying

the LRAP agent is totally transparent to the user application and it appears as an

November 27, 2014

5.1. Introduction 70

Figure 5.2: More detailed DNS flow

ordinary lookup has taken place. This is ideal since no changes to the way that

networked software communicates has to change.

While an application in DNS with LRAP is one way to display the effectiveness

of LRAP, it is not the only application that comes to mind. One could use it

in a situation where you have a highly connected system of telephony switches.

Switches are more advanced PABX (private branch exchanges) typically responsible

for handling extremely large volumes of telephone calls.

Usually the approach in VoIP environments to manage call loads is by using

round robin techniques via DNS or SIP proxies to split the calls to each server.

This could be changed so that instead of using simple load balancing techniques,

our more deterministic method could be applied. As VoIP is a service which the

quality is very much affected by the underlying infrastructure, anything which can

cause latency to rise above 200ms can introduce delay or even jitter in the call which

makes communication more difficult.

This approach presents itself as a solution in which problems were resource allo-

cation and load balancing can be optimized instead of simple load spreading tech-

niques. Where load spreading is just the simple task of distributing tasks between

November 27, 2014

5.2. Experiment Setup 71

execution points by some predefined ratio.

5.2 Experiment Setup

The purpose of this experiment is to test the applicability of LRAP in a low power

wireless networked environment. It was decided that the easiest implementation

thereof could be demonstrated through an application using DNS.

A DNS server is installed on one of the nodes in the network. All service requests

made in the network will be done through this DNS server. This required that all

services in the network be labelled appropriately. What we mean by this is that, if

there is an Asterisk service on the network, then the URL required to access that

service has to be labelled asterisk.<domain>.

By default the default service domain of the network is ‘.site’ and will be used

unless an alternative is provided in the configuration file. This means the way to

fully specify a domain name to access a service on the network, in our case the

asterisk service, is by its full domain name: ‘asterisk.site’. Obviously one could

access the service on a specific node directly if one knew the IP address of the node.

This would be counter-intuitive to the experiment that we wish to conduct here.

The DNS server, after receiving the request will connect to the LRAP agent and

request an IP address to provide to the connecting client. If it receives a ‘FAILURE’

from the allocation agent then it proceeds to inform the querying client:

ping: unknown host maps.site

On the other hand, if it does return a ‘SUCCESS’ and the correct IP address,

then the IP is returned to the connecting client.

The selection of the library to use for implementing the DNS server was a bit

tricky. Eventually it was settled on using ‘evldns’. The package is described as being

a combination of libevent’s high speed event handling code with ldns’ DNS packet

manipulation. As indicated the library requires libevent (>=1.4.9) and ldns (>=

1.5.0).

The library proved to be extremely light and was relatively easy to install. What

November 27, 2014

5.2. Experiment Setup 72

was really tricky was understanding the DNS protocol itself and understanding how

to return meaningful results to user requests.

5.2.1 System installation:

An interesting observation was made when each node was completely reset from the

previous installation. Since a new image was installed which had to account for the

additional packages which needed to be installed on the machine, to facilitate the

running of the LRAP system, the system state was altered and the nodes needed

to be reinstalled one by one. This process was completed with each node being

disconnected from the network one at a time, formatted, and then reinstalled.

After the process was complete the machines were examined and it was discovered

that the databases had been restored to each individual machine. Since BigCouch

stores each nodes’ identity based on each username as well as the state of each host

in the network on each node in the network, the databases are easily restored to an

operative state when anomalies are detected.

Each host was disconnected for close to an hour, so it is not clear how long this

process took and should be tested at a later stage, as it is not part of the current

study. However, it is good to get a first hand look at how impressive the solution

has been constructed and reliable the redundancy features are.

The process of getting each node prepared for the installation of the LRAP

solution proved to be quite difficult. As the default ‘debian-for-alix’ solution only

comes with a default partition size of 2GB. While this is fine for most deployments

on these devices, since they will primarily be used as routers and small file sharing

devices, it proved to be quite limiting for our project.

We had to thus first expand the local storage. But this was not a straight forward

process either, as the tools to expand the partition require the device to formatted

as ext2, while the ’debian-for-alix’ image comes with ext3 as default. Thereafter the

block device can be expanded. A filesystem check is performed and it is converted

back to ext3. This process is detailed in appendix d1.

This process however, was only the start of our woes. The issue of expanding

the filesystem only came up after repeatedly trying to install the base packages we

November 27, 2014

5.2. Experiment Setup 73

required to run the LRAP prototype. After struggling to install the latest version of

libboost available on debian squeeze. It was realised that this version (libboost1.43-

all-dev) was too low and did not contain the correct feature set in order to run the

solution properly. The system needed to be upgraded. Usually debian distributions

prefer the complete re-installation in order to switch to the latest software packages.

This is usually because the distribution runs to a point where the system is con-

sidered stable and no new packages are added to the repository except if they are

security updates.

Sometimes boot processes change, such as moving from ‘initrd’ to ‘systemd’.

These are two completely different ways to manage system service and booting of

the system. We however did not have this luxury of installing the system from

scratch. Instead, the apt-sources were changed from squeeze to wheezy. The apt

tree is then updated, and the installation of the latest boost libraries then proceeds

(libboost1.49-all-dev). To note, this is the latest package available for wheezy. The

latest release of build-essential is also required.

After the complete system was installed, tests were conducted to ensure that all

the correct packages were in place, and any errors encountered were rectified. An

image was taken of this completed system and used as the base flash for each of the

other nodes in the network.

Each system was then just edited to ensure that each node had its own unique

hostname and BigCouch identifying information as well as its own LRAP configu-

ration. All of the hosts in the network were acting in client mode except alix1.local

which was also the node selected to act as the DNS server.

5.2.2 Hosts in the network

The hosts taking part in this experiment are detailed in table 5.1 Each host has a

defined set of services. These services are listed in table 5.2 along with their weights.

The weights defined are approximations of what the system impact would be. Ideally

these values would be computed and dynamically adjusted for each node type in the

network depending on the particular impact of each service on the system.

We would also like to note that the total processing power(TPP) left for the so-

November 27, 2014

5.2. Experiment Setup 74

Table 5.1: Table showing the hosts part of the network

Table 5.2: Service list and associated weights

lution, is the defined upper limit which prevents new processes from being allocated

to the host once this value has been reached. This value, as explained before, is

realised by calculating the current load on the system and proportionally allocating

a penalty to the host based on that load calculation.

Table 5.3 is a list of services available on the network and show which services

are available on which hosts. It should also be noted that the desktop machines in

the network have been allocated a greater TPP as their capacity to perform is much

higher than the Alix boards connected in the network.

The following table maps the UUIDs for each to their host. The solution does

not reference a host by its hostname or IP address. All information is managed

Table 5.3: Hosts and their associated services

November 27, 2014

5.2. Experiment Setup 75

Table 5.4: UUIDs and the corresponding hostname associated with it.

by UUIDs in the network. This way, if IP addresses change on the network due to

dynamic configuration, the system still maintains the same identifying information.

5.2.3 Experiments

DNS Tests

The experiments will be conducted to demonstrate both the limits of the system

as well as its ability to reduce load on specific nodes in a network by spreading it

around in the network. The demonstrability of the solution itself is inherent in these

tests so showing the system running in its entirety as its own separate test becomes

redundant and is omitted.

Stress Tests

These tests will be used to detect the state at which the system collapses. The

results will be compared to that of the results achieved by the creator of ’evldns’.

The stress tests will be performed by slowly increasing the number of requests

being performed on one node. The frequency will be adjusted at punctuated time

intervals as to better monitor and notice changes on the nodes.

The system statistics will be recorded as before by using ‘vmstat’ to collect the

system information every second. For this experiment an initial value was selected

of 120 seconds was selected. This was representative of the amount of time that had

November 27, 2014

5.2. Experiment Setup 76

to elapse before the frequency of requests is raised for the given time period. The

frequency of requests was set to be raised by 20%. A large time window was selected

to determine if there was any cumulative load effects burdened on the system by the

running of the software solution.

In this experiment two hosts are selected. One will be the node where the LRAP

service is being run, whilst the other will be the node making the requests to the

server.

While this experiment will be conducted the following assumptions and param-

eters will be set/determined:

• Upon making a request (for these request ‘nslookup’) will be used to perform

the hostname lookups.

• A service will be selected out of the list of available services. (see table 5.2)

• The host will not contain all these service so some services will not return IP

addresses. This however is irrelevant as we are not testing the responsiveness

of the server to specific requests.

• The list of available services should quickly expire as the services are being

polled.

• Thereafter the node should return the equivalent of ‘host not authorized’

(’LDNS RCODE NOTAUTH’) error codes.

• The system will continue to perform scheduled monitoring of itself as well as

the determination of free resources within the system and ordering of services.

• It should manage this while continually receiving an increasing amount of

requests.

• The frequency of requests will start at 1 request per second and continue until

it becomes clear from the visible output on the command line that the system

is unable to cope with the load.

• These tests will be performed on the Alix system board(alix1.local).

• It is also understood that it might not be possible reach the maximum load

on the machine due to the process of querying taking too long, while not nec-

essarily putting load on the system. That is, the system is waiting for various

November 27, 2014

5.2. Experiment Setup 77

I/O operations to complete instead of the having the CPU active at the time

computing the results.

The polling script was written in python, which will echo system commands.

‘nslookup’ will be called by the subprocess module[38]. This particular version is a

backport from python 3.2 as it is guaranteed to be reliable in threaded applications.

This is used because the calling method is spawned as a process and will not delay

subsequent calls. So query requests per second can be ramped up without having

to wait for the previously polled operation to complete.

This is to better ensure that the experiment is not waiting on any operations

of the node being tested to complete as this might cause delays which might not

necessarily be pushing the limits and give an inaccurate reading of what the system

might actually be doing. This would be the case as discussed above where slow

queries could halt the entire process. Using threads allows us to work around this

and better control the queries being sent out.

Performance Tests

These tests will just be used to determine the overall operating values of the system

within the network while the software solution is running and DNS requests are

being made. The requests will be made at constant time intervals as opposed to the

previous test. This is so we can better detect changes in the network and operating

performance on the host nodes.

All performance values will be stored in the network using the existing BigCouch

database infrastructure that was setup in the previous experiment. The idea here is

to make requests in a similar fashion to the stress tests. This however is not a test for

the systems’ limits but more to demonstrate the effects in a networked environment.

The experiment will be described as follows:

• The entire network is connected in its simulated deployed environment, where

all the nodes are connected to each other wirelessly.

November 27, 2014

5.2. Experiment Setup 78

• The BigCouch database instances are running on all the connected nodes in

the networks. So each instance will store its system data within the BigCouch

cloud. This will allow for the allocation agent to monitor and calculate new

performance values based on the load information stored over the previous

minute.

• The DNS server is started on the dedicated DNS node (alix1.local) This is

simply configured in the configuration file and the DNS server is started on

boot. The correct permissions are required as port 53(DNS listen port) requires

privileged access.

• A polling server (VirtualBox VM) is setup with python installed to run the

testing script. As before, the subprocess module is used again as the Popen

call that it provides is non blocking. This will allow us to easily send multiple

packets to each hosts in the network in quick succession.

• The polling server is then selected to send payload packets to send service

requests to each node in the network. This will be done with all the nodes

being connected in the network. The polling server will make a request to

resolve the hostname selected which will be chosen by randomly selecting from

a list of available services.

• The ICMP protocol will then attempt to resolve the service with the present

DNS server specified in ‘/etc/resolv.conf’. This will then in turn query the

contact the DNS server which should resolve the received request to one of the

service nodes on the network before the ping process occurs.

• The first attempt at sending a payload consisted of attempting to send various

network attacks to the hosts on the network in an attempt to cause them

to increase system resource consumption by processing the exploits of these

attacks. It seems that with recent kernel updates over the years that most of

these tools are now just simply unavailable to exploit. The only feasible way

to recreate similar scenarios where systems fall over involve more than just the

November 27, 2014

5.2. Experiment Setup 79

node in question. The various methods glanced over were SYN attacks, Nuke

attacks (old), application level floods, ICMP floods to name a few.

Distributed attacks would be necessary to carry this out. This would

meant that other hosts in the network would need to be added just to perform

the attacks. Then synchronisation would also have to be established as well

as taking into account the slow down that might occur. It also came to light

that the performance hit, while in terms of access to resources would be fairly

quick, we were looking for something that would on a more immediate impact

the system.

To work around this, then Apache web service was installed on each ma-

chine in the network along with PHP5. The process of sending a payload was

replaced with running an actual process on each machine. The idea here being

when the polling server requests a service on the network, the DNS server will

respond with the appropriate IP address. The polling server will then take the

IP address returned by the DNS server and in turn query a PHP script via

Apache2. Take a look at the example service request displayed in figure 5.3.

• The polling server will then access the PHP script. The type value supplied in

the URL is in reference to the service being accessed on the machine. This is

done by creating a bash/python script which uses curl to access the resource at

the specified IP. We are able to retrieve this value with relative ease by using

the ‘host’ command. This even allows us to specify the DNS server that we

wish to query, without having to change the default nameserver on the system

specified in ‘/etc/resolv.conf’.

• The PHP script will then proceed to execute a loading process while will

consume a portion of the CPU time and memory representative of the weight

that the process is associated with. The aim is to capture the overall system

load averages across all systems.

Various techniques were investigated to have the system simulate load on each

machine using PHP. The first investigation looked into performing floating point

November 27, 2014

5.3. Results 80

Figure 5.3: The service request process

operations for a specified amount of time. These processes did not have lots of con-

trol about them and would differ from machine to machine. Instead the ‘stress-ng’

solution was opted for as it delivered far more granular control over the loading pro-

cess. The original solution, ‘stress’ was developed Amos Waterland[39] at Harvard

but was rewritten (Colin King[40]) to provide even more fine tuned control over the

loading process.

5.3 Results

5.3.1 Stress tests

A frequency level raising of 20% was selected as it was determined that this would

be adequate enough to determine where the point is when the system collapses. This

initial setup though proved not to test the system at all. Requests were being made

to the system every 0.00241785163923 seconds and the system processor levels were

not even breaking past 2%.

These experiment values were thus tweaked again new values were selected. In-

stead of 120 seconds, a value of 20 seconds was selected to allow to pass. The

previous experiment had taken quite a long time to ramp up its query times and

November 27, 2014

5.3. Results 81

still yielded no results. The frequency of requests was also changed from 20% to a

30% increase in polling requests.

It is assumed at this stage that the slowdown could have been partially affected

by output the values being sent and received to stdin and stdout respectively. This

information was also been sent over SSH. This could have resulted in skewed results

as the output from the scripts to the terminal could have been delaying the iterations

as the terminal starts reaching a limit to how fast data can be transmitted and

printed to the screen. The script values were tweaked as mentioned above and all

output to the command line was discarded and sent to ‘/dev/null’ so as to not have

the console and network I/O slow any of the apps down.

It was also determined that in our tests we were using a random number generator

to select a particular service from the network which was causing the CPU to perform

a lot more calculations per iteration. Random number calculations are expensive

when you are making a query every 1ms. This would cause the CPU on the side of

the testing machine to become more loaded than the DNS server. This was disabled

in favour of one particular service being selected for in the DNS queries. In this case

‘asterisk.site’ was the hostname selected for query.

It was noticed that when increasing the amount of requests too quickly, we missed

the point where the DNS server became burdened and we notice a trend of rising

CPU load values, but suddenly this falls due to the polling server becoming too

overburdened with the task of sending out queries to the network. It also came to

light that the use of threads in the testing scripts was redundant and was causing

overhead which prevented us from attaining better results.

The problem still remained though. The polling server would become overbur-

dened way before the DNS server was indicating any level of load which could be

considered high for the system. This process was then abandoned in favour of a

bash script which would send the task to the background. This means that as soon

as the command is executed, the program is moved to a ’background’ state and the

user gains access to the terminal without having to wait for the task to complete.

Allowing us to execute another almost immediately after the command has been

issued. This is possible in Linux by appending an ampersand after the ‘nslookup’

November 27, 2014

5.3. Results 82

command. Thereafter the script would sleep for a calculated duration. This pro-

cess of spawning tasks though still proved to be too resource intensive on the host

machine.

This process was again abandoned. The task of loading the DNS server with

request was again approached this time via a distributed angle. We took 3 different

nodes in the network (beige.local, cheddarcheese.local and an I7 HP envy notebook),

and proceeded on all three nodes to begin to spam nslookup tasks. On the notebook

this process was spawned multiple times as each script would be run on its own

execution thread which in turn would occupy its own CPU thread.

This still proved to be a fruitless activity and external solutions were queried;

spawning multiple ‘nslookup’ tasks was far more resources intensive than responding

to the query performed by ‘nslookup’. The solution provided by Frank Denis was

downloaded and modified. Frank’s solution(dnsblast)[41], bombards a DNS server

with resolve requests. The solution had to be modified since the original was just

spamming 4 random bytes and appended a ‘.com’ suffix to whatever randomly gen-

erated URL was formed. This was changed to be modified to be an address which

was appended with a ‘.site’ suffix instead. This is because the DNS server does

not perform a lookup to see if a URL exists if it does not end with ‘.site’. Thus

performing considerably faster than validly suffixed requests.

The server does however perform the same amount of work when look and re-

turning a valid URL ending in ’.site’ as well as an invalid site ending in ’.site’. It

is noted that ’dnsblast’ is not a tool for DoS’ing resolvers, though in our case while

our goal was to determine the moment where the system collapses(in essence a DoS

attack), we needed to monitor its progress until that point. Thus making it the

correct fit. We could monitor this point because we could adjust the number of

queries to send as well as the frequency of the queries sent.

We modified our bash script and used the following values to ensure we have

a constant time time measurement for each frequency level. The values can be

inspected in table 4.

The multiplier values selected were as follows: The multiplier is a product of

itself :

November 27, 2014

5.3. Results 83

Table 5.5: Table showing the values being fed into dnsblast

November 27, 2014

5.3. Results 84

multiplier = multiplier * 0.8

Total represents the total amount of queries to be made during the 20 second

duration, duration remains constant throughout the experiment.

total = 20 / multiplier

QPS (Queries per second) represents the number of queries sent from the polling

server to the DNS server per second.

QPS = total / 20

The experiment was conducted for 15 minutes and 20 seconds before it was

terminated. It seemed (from observing the output from ‘top’ and ‘vmstat’ and the

DNS server host), that a maximum threshold is reached where raising the amount of

requests per second on an already loaded server seemed to make no difference. This

was probably an issue relating to the network I/O of the Alix system board as they

do not possess separate network and I/O controllers and everything is managed by

the CPU.

It should also be noted here that these tests were not being conducted over a

wireless connection. The results received when spamming the DNS server over a

wireless connection were far off from even the first attempts before we started using

DNS blast. This is probably due to greater latency when connecting via wireless.

This is confirmed, when we examine the average result returned from ping tests

(17ms) to various nodes in the network. As this network latency would be a prede-

fined value in determining our maximum rate at which we could expect results to

be sent and received. As this was more a test of the maximum load on DNS server

and not a test involving the DNS server running in the wild, the fact that we tested

this over a cabled connection is irrelevant.

We can see by examining figure 5.4 that the response from the DNS server

becomes very unstable as the number of requests per second increases. We can cross

examine this with the results being made visible in figure 5.5 and we can see that

the CPU idle drops to zero eventually and does recover during the tests.

November 27, 2014

5.3. Results 85

Figure 5.4: Graph showing the DNS query success rate versus the number of requests

per second sent by the polling server

Figure 5.5: CPU utilisation of the DNS server over time during the tests

November 27, 2014

5.3. Results 86

It does fine initially but as it nears 482 seconds (136 169 requests per second)

the system starts to keel over and the reliability falls. The system seems to recover

somewhat at around 808 requests per second. There is no way to reliably determine

the cause of this. There seems to be a trend downwards but the spikes only confirm

the assertion that the system becomes unstable/unreliable as the number of requests

increase.

The system therefore seems to only be able to reliably respond to requests that

are coming in every 5 - 7 milliseconds. Everything else after that seems to indi-

cate a sharp drop in reliability of the system. Table 5.6 is included to show the

related monitor levels to the corresponding query per second value which was fed

into ’dnsblast’.

5.3.2 Performance tests

The performance tests were conducted twice. We had initially loaded the the desktop

machines with a much higher ’penalty max’ value. This meant that these host

machines could take a lot more punishment by way of more processes being allocated

to it. The Alix boards also had the ‘handicap’ of by default having higher penalty

values by not having any swap space on the disks. This meant that by default the

swap value in our penalty calculations would be set to the value of 1.

This was expected behaviour of the system. The overzealous ’penalty max’ val-

ues did attribute those systems being loaded with much more processes than what

they could handle. And it was noticed that the machines were thrashing badly. This

was partly due to the misconfiguration of the stress utility. We had loaded much

higher performance penalty values that what should have been.

We also loaded them disproportionately. Some tasks were set out to max out

CPU for 90 seconds and make no subsequent impact on memory and swap. This

caused the systems to be loaded with more processes than what they were able to

handle. So it seems that this was a combination of bad ‘penalty max’ values and

poor configuration of the ‘stress-ng’ application.

Table 5.7 displays the number of queries made to each host in the network. As we

can see, high volumes of calls are made to the two desktop machines when compared

November 27, 2014

5.3. Results 87

Figure 5.6: Queries per second and their corresponding received response percentage

levels
November 27, 2014

5.3. Results 88

Figure 5.7: Table displaying the number of service requests made to each host in

the test

to the Alix system boards. Table 5.8 also gives us insight into the behaviour of the

DNS server. We can see that even though the systems do get loaded and absorbing all

the service requests. Eventually the ‘penalty max’ values for each host are reached

and the requests get denied to the querying service; in this case our bash/python

script.

Of the overall request sent, we can see that the majority of the requests got

denied by the polling server. We can confirm the performance hits taken by the

various machines in the network by comparing the various CPU charts in included.

As we can see from the graphs, the two desktop machines are taking a lot of

punishment. While the relative ‘penalty max’ values protect the Alix system boards

from experiencing the same sort of punishment as the desktops. The two desktop

machines were extremely unresponsive and it was quite difficult to stop the tests

towards the end of the experiment as they were too busy trying to complete the

‘stress-ng’ tasks that had been allocated to them.

The experiment was conducted again, this time the desktop machines had their

penalty values adjust to be the same as that of the Alix system boards (60). The

machines were all rebooted to clear up any resources that might still be occupied

before the experiments were conducted again.

When we compare the service requests in the network we can see that the load

November 27, 2014

5.3. Results 89

Figure 5.8: Graph displaying requests made during the experiment

(a) CPU usage on alix1.local (b) CPU usage on alix2.local

(c) CPU usage on alix3.local (d) CPU usage on alix4.local

November 27, 2014

5.3. Results 90

(e) CPU usage on beige.local (f) CPU usage on cheddarcheese.local

Figure 5.9: The number of service requests made to each host

now appears to be much more distributed than before. The desktop machines still

absorb considerably more tasks than the Alix system boards. It is assumed that

due the the desktop machines having a much lower penalty than the Alix system

boards would attribute it to being allocated more tasks. Also, having a much lower

‘penalty max’ value means that the device wont be allocated too many heavy tasks.

This allows it to both complete tasks with relative ease and free itself up for

other tasks. The Alix system boards in all likelihood were never even hit with a

request to load one of the more weighty tasks (map, calendar, store).

We can see from figure 5.10 that the system seems to perform relatively similarly.

We can examine this further to note the actual difference between the number of

calls made by looking at the tables 5.6a and 5.6b. The first run allows 10 more

requests than the 2nd run of tests which is 2% more. It is not sure whether this

value is statistically significant as the experiment would need to be run a deal many

more times in order to determine this. But it is assumed that since the polls were

sent out at random, the distribution should be fairly uniform.

November 27, 2014

5.3. Results 91

Figure 5.10: Graph displaying the number of requests made during the second run

of the experiment

(a) Service request 1st run (b) Service request 2nd run

November 27, 2014

5.3. Results 92

(a) CPU usage on alix1.local (b) CPU usage on alix2.local

(c) CPU usage on alix3.local (d) CPU usage on alix4.local

The performance of the various nodes in the network can once again be examined

by the performance graphs that follow. We can see that the Alix system boards

perform relatively the same when to the previous run. The desktop machines though,

seem to have a considerable amount of more free resources available to them. This

confirms the view that fewer higher weight tasks were allocated during this run of

the experiment.

(e) CPU usage on beige.local (f) CPU usage on cheddarcheese.local

November 27, 2014

5.4. Conclusion 93

5.4 Conclusion

Ray Bellis, on his implementation of the ’evldns’ solution that he created was able

to achieve a query to answer rate of 60 000 queries per second. Ray however, was

testing on an HP DL385 server. Somewhat considerably faster than our Alix system

board. Also, it is not entirely apparent how Ray tested this but we will consider

that a similar technique to ours was applied.

Our solution was only able to reach 136 queries (95% accuracy) per second before

the great decline in reliability started kicking in. Considerably speaking though, the

system performs reasonably well.

Especially since will most likely not be able to receive data even close to the max

value(136-169 DNS queries per second) we tested in a wireless networked environ-

ment. The various controllers on the device are simply far too slow to keep up with

the amount of network traffic coming and the packets just get dropped or lost.

Even if the solution was employed in a wired environment, the application of this

solution would require deployment in a highly specialised network environment, so

it is unlikely that this amount would ever be reached in a wired environment either

unless the network falls victim to various network attacks.

That however would become the subject of a different investigation and beyond

the scope of this project. This brings on questions of lightweight security prac-

tices, which is not handled in this text either. It is duly noted though that these

investigations must be made in order to complete the solution.

The performance tests indicate the systems ability to distribute the load among

various nodes in a wirelessly networked environment.

We had initially set too high of a ‘penalty max’ value for the desktop machines

in the network. This had side effect is that the two host seem to absorb most of the

system calls made in the network and having the effect of not evenly distributing

the tasks. This does however give us a key insight into the solutions behaviour in a

heterogeneous network where multiple devices are connected.

Also having high ‘penalty max’ values should really be discouraged unless the

machine is really high performance. This is because the current penalty calculation is

done with a relative comparison of performance to the ‘penalty max’ value. However,

November 27, 2014

5.4. Conclusion 94

the services, when being allocated to hosts in the network are adding a fixed not a

scaled penalty value. Which is the correct intended behaviour. But this means that

when the ‘penalty max’ value is decided upon it must be done in a way which most

accurately describes the performance state of the machine, especially in relation to

the processes it must run.

This however should be a secondary concern. Ideally, we would like the solution

to automatically calculate the impact on the system the allocated process occupies

and dynamically manage the penalty values according to each host. This will prevent

any issues with misconfigured hosts from being a problem in the network as we

experienced. This too will be the subject of a future investigation and optimisations

in the inner workings of LRAP.

We noticed the issue of calculating the system availability. Using the CPU load in

itself is not enough and it seems here we reach the limits of our IDLE calculations,

where on the desktop machine, because of a misconfigured ‘penalty max’ value;

systems were getting way more requests than what they could handle.

This should have had the effect of preventing additional processes from spawning

due to increasing the system resources, but the ‘stress-ng’ process was not configured

to add much by way of RAM and SWAP ballooning. Meaning the system still had a

relatively good score when compared to the Alix system boards, which already had

the penalty handicap of appearing to have its SWAP space full. Not to mention the

operating system is loaded in half of the systems memory leaving around half to a

quarter for the system to play with.

Its still not convincing to say whether this case is alluding to the penalty calcu-

lation needed some more rework, or if the way performance is monitored with the

LNMP process needs to be re-examined. This too should be the subject of future

investigations into optimising this solution.

November 27, 2014

Chapter 6

Conclusion

This thesis has contributed toward a lightweight storage and service infrastructure

for cloud computing that is built around BigCouch and a network management

protocol that uses two protocols: The LNMP for cloud network monitoring and the

LRAP for grid network service allocation.

The initial results showing off the performance of the proposed protocols, LNMP

and LRAP, are very promising. Both protocols show promise and their combination

in running in tandem with each other allow for easy service provisioning on the

network.

Each section of the project has displayed its own promise in its implementation.

Chapter 5, while showing the ability of the protocol to effectively disseminate tasks

to the various worker nodes in the network, it also presents an effective display of

all the parts in the system working in concert with each other.

Both the distributed nature of the databases being used and the monitoring

service which was feeding the allocation agent the updated performance values,

were not necessary. The protocol operates independently of these conditions being

true.

The service should be expanded further though. At the moment no network

agent discovery is present. Currently it does feed into Avahi, which proves to be an

excellent tool, but does not take it any further than this. Network discovery would

be a great added feature, because once this is present the cloud can then start

performing more interesting functionality, such as the auto assimilation of networks.

95

6.1. Reflection on the work 96

Through auto discovery nodes could find each other and automatically construct

the grid.

Being able to move the grid coordinator to a different node automatically de-

pending on the network load or even network topology would also be possible. The

possibility of networks dynamically growing and then perhaps even segmenting itself

to contain multiple coordinators would also be an interesting direction to take.

These little clouds of computing resources all operating together on a sea of

wired and wireless connections, working in concert to perform what can be only the

most imaginative step forward in our current age of digital watch dogs and growing

privacy concerns.

Data requires liberation from the costly data centres where machine learning

techniques are put to work mining the meta data of our lives. The only way we get

to transcend our current mode of operation is to develop the means to escape these

shackles.

The project has thus framed itself in a very acute context but the ideas explored

herein should be expanded ever further. We hope to have illuminated the reader

in these concluding remarks to a more subtle vision which has been the underlying

aspiration of the project.

The undertaking of a work such as this is quite interesting in and of itself. One

hopes that when starting the journey into research, that you start asking questions

to yourself and not just about the work. “What is the point of this work? Why did

I start? And after 15 months of working on this, why am I still here at the end? I

am no longer the same person that started out.What would motivate me to continue

with this vision?” These are questions which I have had to answer and relate to in

my work. The embodiment of this work is hopefully reflected herein as well as any

experienced personal growth associated with it.

6.1 Reflection on the work

We note possible shortcomings on the ideas proposed and note the over ambitious

nature which this projects lends itself to be. Either that or the author reveals a

November 27, 2014

6.1. Reflection on the work 97

lack of imagination in conceiving possible greatness. The protocol described in here

should contain much more detail and being a protocol would require a somewhat

different format of proposal. What we have here is an draft outline of what should

be a more complete description. But the ideas discussed should illuminate readers

into the framework being developed here. The use of the word protocol in this sense

would be somewhat incorrect and instead a framework is proposed.

Separately it should also be noted that the project’s predominantly focus relates

strongly to issues playing in the low power wireless space. Desktop machines are

however added wherever possible to introduce heterogeneity into the solution space

as well. The wish was to not constrain the solution developed here to the resource

constrained environment, but wished to act as a solution that could be applied on

a much broader scale.

This thesis also freely uses the words grid, community cloud and participatory

cloud interchangeably. These all ostensibly infer similar meaning throughout the

document.

November 27, 2014

References

[1] W. A. Faunce, “Automation and the division of labour, social problems,” Au-

gust 1965.

[2] L. Burke, “Report says e-voting is unsafe,” April 2000. Retrieved 21 August

2014, http://archive.wired.com/politics/law/news/2000/07/37504.

[3] J. A. et al, “A remote surgery experiment between japan and thailand over

internet using a low latency codec system,” 2007.

[4] P. T. Park, “Case study: Building your own data center vs. buying colocation

services.” Retrieved 21 August 2014, http://www.vnetusa.com/uploads/PTP -

build vs buy.pdf.

[5] R. B. et Al., “Cloudbus Toolkit for Market-Oriented Cloud Computing,” in

CloudCom, p. 2444, 2009.

[6] R. B. et Al, “Market-Oriented Cloud Computing: Vision, Hype, and Reality

for Delivering IT Services as Computing Utilities,” in HPCC 08. 10th IEEE

International Conference on High Performance Computing, 2008.

[7] National Institute of Standards and Technology, “NIST definition of

Cloud Computing,” September 2011. Retrieved 19 August 2014,

http://csrc.nist.gov/publications/nistpubs/800- 145/SP800-145.pdf.

[8] Gerard Briscoe and Alexandros Marino, “Community Cloud Computing,” in

First International Conference on Cloud Computing, 2009.

[9] R. B. et Al., “InterCloud: Utility-Oriented Federation of Cloud Computing

98

REFERENCES 99

Environments for Scaling of Application Services,” in ICA3PP 2010, Part I,

p. 13 31, 2010.

[10] T. H. et Al, “A Hybrid Articial Intelligence System for Assistance in Remote

Monitoring of Heart Patients,” in HAIS 2011, Part II, p. 413 420, 2011.

[11] M. Zennaro, B. Pehrson, and A. Bagula, “wireless sensor networks: a great

opportunity for researchers in developing countries”.,” in In the Proceedings of

WCITD2008 Conference, Pretoria, South Africa, 2008.

[12] A. Bagula, M. Zennaro, G. Inggs, S. Scott, and D. Gascon, “ubiquitous sensor

networking for development (usn4d): An application to pollution monitoring,,”

in Sensors ISSN 1424-8220, Vol 12, Pages 391-414; doi:10.3390/s12010039.

[13] M. Mafuta, M. Zennaro, A. B. Bagula, G. W. Ault, H. S. H. Gombachika, and

T. Chadza, “Successful deployment of a wireless sensor network for precision

agriculture in malawi,” in International Journal of Distributed Sensor Networks

04/2013, 2013.

[14] M. Zennaro, G. D. A. Floros, T. Sun, Z. Cao, C. Huang, M. Bahader,

H. Ntareme, and A. Bagula, “on the design of a water quality wireless sen-

sor network (wqwsn): an application to water quality monitoring in malawi,”

in in the proceedings of the IEEE NGWMN 2009 conference, 2009.

[15] M. Masinde and A. Bagula, “itiki: bridge between african indigenous knowledge

and modern science of drought prediction,,” in Knowledge Management for

Development Journal 7 (3), 274-290.

[16] C. N. et Al., “Secure Cloud-based Medical Data Exchange,” in erschienen im

Tagungsband der INFORMATIK, p. 192, 2011.

[17] T. Mullins, J. Martin, and A. Bagula, “Participatory Cloud Computing : A

Smart Middleware for the Internet-of-Things,” SAICSIT, 2013.

[18] T. Mullins and B. Bagula, “Monitoring Community Clouds: The Lightweight

Network Management Protocol.,” IEEE-UIC, 2013.

November 27, 2014

REFERENCES 100

[19] C. S. N. Kushalnagar, G. Montenegro, “RFC 4919,” 2007. Retrieved 21 August

2014, http://datatracker.ietf.org/doc/rfc4919/.

[20] L. A. N. Man, S. Committee, and I. Computer, Part 11 : Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) S pecifications, vol. 2012.

2012.

[21] R. Wolski, N. Spring, and J. Hayes, “Predicting the CPU Availability of Time-

shared Unix Systems on the Computational Grid *,” 2014.

[22] D. Stenberg., “curl and libcurl,” 2014. Retrieved 21 August 2014,

http://curl.haxx.se/.

[23] N. I. o. S. Department and Technology, “SNMP host mibs,” 2013. Retrieved

19 August 2014, http://net-snmp.sourceforge.net/docs/mibs/host.html.

[24] M. R. McCloghrie and K., “Structure and identification of management infor-

mation for tcp/ip-based internets,” 1988.

[25] G. N. S. Srivastava, “Enhancing the efficiency of secure network monitoring

through mobile agents,” in First International Conference, CloudCom, pp. 141–

148, 2010.

[26] Hyperic, “SIGAR,” 2014. Retrieved 19 August 2014,

http://www.hyperic.com/products/sigar.

[27] L. Carlos, D. Junges, and I. L. Martins, “Achieving High Availability , Scalable

Storage and Performance at Portal do Aluno - Distributed Databases Overview

Study -,” 2009.

[28] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo : Ama-

zon s Highly Available Key-value Store,” pp. 205–220, 2007.

[29] CloudAnt, “NOSQL Databases,” 2014. Retrieved 19 August 2014, http://nosql-

database.org/.

November 27, 2014

REFERENCES 101

[30] CloudAnt, “BigCouch: API,” 2012. Retrieved 19 August 2014,

http://bigcouch.cloudant.com/api.

[31] solid IT, “DB-Engines Ranking - popularity ranking of database management

systems,” 2014. Retrived 19 August 2014, http://db-engines.com/en/ranking.

[32] Transcend, “JetFlash600-USB Flash Drives.,” 2013. Retrieved 19 August 2014,

http://www.transcend-info.com/Products/No-267.

[33] Oracle, “MySQL :: MySQL 5.1 Reference Manual :: 8.6.1 The MyISAM Key

Cache,” 2014.

[34] Apache, “3.3. CouchDB HTTP Server Apache CouchDB

1.7.0 Documentation,” 2014. Retrieved 19 August 2014,

http://couchdb.readthedocs.org/en/latest/config/http.html.

[35] CloudAnt, “couch httpd.erl,” 2012. Retrieved 19 August 2014,

https://github.com/cloudant/bigcouch/blob/master/apps/couch/src/couch httpd.erl.

[36] Ericsson, “Erlang - Processes,” 2014. Retrieved 19 August 2014,

http://www.erlang.org/doc/efficiency guide/processes.html.

[37] J. Barr, “Amazon ec2 beta,” August 2006. Retrieved 21 August 2014,

http://aws.ambzon.com/blogs/aws/amazon ec2 beta/.

[38] Gregory P. Smith, “subprocess32 3.2.6 : Python Package Index,” 2014. Re-

trieved 19 August 2014, https://pypi.python.org/pypi/subprocess32/.

[39] A. Waterland, “stress,” 2014. Retrieved 19 August 2014,

http://people.seas.harvard.edu/ apw/.

[40] Colin King, “stress-ng,” 2014. Retrieved 19 August 2014,

http://kernel.ubuntu.com/git?p=cking/stress-ng.git;a=summary.

[41] F. Denis, “dnsblast,” 2014. Retrieved 19 August 2014,

https://github.com/jedisct1/dnsblast.

November 27, 2014

Appendix A

Sample configuration file

#Sample configuration file Comments are denoted with the #

#storage size in gigs

storage_size=4

#either fqd or ip address, along with port to connect to

hostname=127.0.0.1

hostport=30000

#1 is server mode, 2 is client mode

type=2

#not required in this release

gui=false

#the port to listen on locally

port=29999

#the storage dir to store files in, using relative pathing

storage_dir=storage

#the n-copies variable for determining how many copies of files to

102

Appendix A. Sample configuration file 103

#store

n-copies=3

#a dynamically allocated uuid. auto generated and inserted if the

#file does not contain a valid uuid

uuid=43412349a9b99accc89812

#used to detirmine if we are going to store the stats that we

#collect or send them to the server

store_stats=true

#If we are going to store the stats, are we going to do so in a

#local only db. If that is the case we are going to have to notify

#the server when alerts get raised.

local_db=true

#If we require a special db access string, it must be defined here.

database_type_string=bigcouch

database_host=localhost

#If we want the DNS server to run, set the following to true;

rundns=true;

#The following operator sets the search domain the server runs in.

#Any requests not in the search domain, automatically get rejected.

#For more information, check the wiki.

searchdomain=site

#the maximum penalty value allowed on the host

penalty_max=60

November 27, 2014

Appendix B

Sample service declaration file

<xml>

<service>

<name>asterisk</name>

<weight>3</weight>

<port>5060</port>

<service-url></service-url>

</service>

<service>

<name>storage</name>

<weight>2</weight>

<port></port>

<service-url></service-url>

</service>

.

.

.

</xml>

104

Appendix C

Sample BigCouch View

{

"_id": "_design/systemreadings",

"_rev": "1-d13a953963f47e3412f20a4d9b5541e6",

"language": "JavaScript",

"views": {

"allreadings": {

"map": "function(doc){if(doc.type ==’reading’){emit(date,doc);}}"

},

"everything": {

"map": "function(doc){emit(null,doc);}"

},

"latest": {

"map": "function(doc){emit(doc.uuid,doc);}"

}

}

}

105

Appendix D

Code Samples

D.1 Convert partition

fsck -n /dev/sdb1

tune2fs -O ^has_journal /dev/sdb1

e2fsck -f /dev/sdb1

resize2fs /dev/sdb1 4000M

fdisk /dev/sdb

fsck -n /dev/sdb1

tune2fs -j /dev/sdb1

D.2 Database scripts

BigCouch insert

for i in {1..10000}

do

echotext={\"var1\":\"$i\",\"var2\":\"$i\",\"var3\":\"$i\",\"var4\":\"$i\",\"var5\":\"$i\",\"var6\":\"$i\",\"var7\":\"$i\",\"var8\":\"$i\",\"var9\":\"$i\"}

curl -X PUT http://localhost:5986/test_db/doc_$i -H content-type:application/json -d "$echotext"

done

106

D.2. Database scripts 107

BigCouch Read

for i in {1..10000}

do

curl http://localhost:5984/test_db/doc_$i

done

MySQL insert

for i in {1..10000}

do

mysql -u root -e "insert into test_db.testdata (val1,val2,val3,val4,val5,val6,val7,val8,val9) values ($i,$i,$i,$i,$i,$i,$i,$i,$i)"

done

MySQL read

for i in {1..10000}

do

mysql -u root -e "select * from test_db.testdata where id=$i"

done

November 27, 2014

Appendix E

Service Diagrams

108

Appendix E. Service Diagrams 109

Figure E.1: Allocation cycle

November 27, 2014

Appendix E. Service Diagrams 110

Figure E.2: Analyze cycle

November 27, 2014

Appendix E. Service Diagrams 111

Figure E.3: Connection Flow

November 27, 2014

	Untitled

