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Fi~urf' 2.3 -', rcrrcscntatlOll of a 24.86~6),.~4 g62''h~4~('26 A oox containing 5] 2 \lster (TlPJI') 

mulr<;ulcs 

Ir during th~ \10 simulalioll. II molecule or alOIn ''lI'' "" ",n "r th~ origin.11 ,"(:11, .1'lOlher molecule 

("'lLL .. al~m) ",,11 mo\'~ into th~ cell to rqlJa.::e It (FiJ:ur.· 2.4) Th is ''ne,,'' fTl()keulc comes from (lne 

"I' lh~ ,I<lJa~en\ ccll~. In this "II}. not onl} the 100ai number ur molecule on the origin31 uni, cell" iJl 

remain C<.>ll~\~nl. bLLI it j ~ al'iQ ensured that all the 'nClkcuic". in parti~ldar th~ 011\: at the boundari~s. 

"ill experienc,' lh~ ,am~ ],m:<'S ol'lhe molecules in the b~lk_ Thi~ procedure is In,,,,n as Pa;<Jd;~ 

Boundary ('o"dil;,lII f (PRe). 

In addition 10 Ih~ im~r~<.1.i"ns amoog mokcllics in the SlIme 00"_ il is n'''''''"I[) I" consider 

uller.lCt iQll.' beI"ccn a 'n<""",-,I~ .-LI'd ,l1h,'r mol~tJlcs in the SJnQl.mding <.:el ~ o,,~ ~.m ~rgu,· lh.-tt. h~ 

11:I,-i"l: considered an Inli,., t" n .. ",""r "r "'.~~;; surro"nding (Ilc- cent flll 00)", J Inolceu".' in th., ,;"ntr.oJ 

bo~ I' i II tltt~ 13Ct \\ ilh ;111 inti nile r " ... I><-, nf "'!T.>un •. lIng molcc;ul~s. by iocrt::lsmg eoo"nou~l) rhe I,m" 

drn13nd of ch~ simulllhc>n. llo"e>ef, ,, " h tho: ""1IImll'" ima).,,,, ,·um·'7'/;"". onl} the imer-.o.cti,m' 

"'-'l."C'('n a molccuk i and Its ,Io~st irnages aT~ t.,ktn ,nto ~ceoont. Ihe tloscst 'm:lJ:es are 1111 th~ 

panidcs surrOUltd,ltg molecule i:11 the <I;st"",·~ !lI,t greatcr that Ihe side of the 00)" cho'oCL1I1' ~"il ,~ II 

(Fi::ur.·2.S) 
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Figur{> 2.4. The PRe (in two dimensions) ensures that all the molecules on the border of the central 

box (highl ighleJ in light I'll ue) experience forces as if tocy were in the bulk fllL id. 

--~------ (.) 
(,)j 0 

! 

Figure 2.:> Representation of the Jlmi",,,,,, lmuX" COffi'e1J/ion rhis method requires that the 

inlnaclion, fi,r a mnk<:ule i are only c~lculmcJ bctv.cen that m<,lecule ~nd closest im~gr of ~vcry 

olh~r molecule in the system. 

Z.I.3 The SHAKE Alg"rilhm in D) narnies 

Ihe I;mcstcl' to be used in MD simu i3(ions i, "ho,en b} considering the f~stes( motion present in th~ 

,)"tem. Rond vibrations for light atoms. such 3S h)'urogen,_ are so fast that an extremel) short 

lime,,-Iep ,,(lUld be required to solve the equations or mOlion. However. these vcry high frequency 

motions are ",ua[[ y of lilll~ interest than the IO\\icr frequency mod~s, which .. nen corrCS]XlIld 10 major 

~onrormalional changes, ["or this reason, one is al[{J\,~J 10 ~on'traint lhe fastcst nUJlions, 

21 
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2.3 II) brid Sysl~m QU:U.rUIli MtthanicslMokcullir I\Ttchanics «()\lJl\1l\1). 

I h., ,~a combination 01 mdlll .. ,h which Heal' dill<:rell. pMl' uf a <~~'" al "'~r)jng lc,ds of prc:~"iQll 

ftlld. a, the name s u g!:~",_ makc usc oftxnb das.,ica land Qu~~!Um mctl1<xk dt!<,t;ribo..'<.l aoo,~. 

Tlicrei;,rc:. in the ,pc:dlk ("ase of n hyhri<.l s}'t~m Q'-l/ \fM, [roe accume) "f a quantum mechanical 

de:...·ription is coupled ",i lh the low COOljlUWli0ll8J C051 () j" m"kc .. lar mech:mic~_ A~ , (."Sull ... nll~ tan 

m::al ,~ ilh a g.cal ao.:~ur .. q fal Q \l lc:~dl a I"cah<ed n-i):".' nf Ij).: ~lem ~Ild trclll Ilk rc:~1 at M\1 

le,d (u'llally ponioo nf the ' y>lcm thaI art' no. dir..cdy il1'o l\oo in tiJ(' chemical ~OO ph),;c,11 

pmpeni~, of intCl'C,l an<.llnr tile surroundl ng water). '" 5cht!nu)li<:uliy reprcS<:nte<.l in Figu re 2.6 . 

./ 
.' 

/ 

./ 

FiiO:u ~ 2.(,- Hcprcs.ental)(m of a h} brid QMiMI> I system. 

noo: H •• miJto~lan for;\ h) br;,j Q\1 ' \IM ')<lcm (/!,) IS d..".·, irn:u b~ Ij).: f{'lIo",ill~ equmion: 

H, UQM + 11",..,+ H"lfMJI (l.5J) 

"bere HQ'f is the qu~mUln potential ~ncrgy of the quantum I'~n of the syslcm, II,,,, describe, th~ M~I 

r<llcnlial fOl lOC \I\.\ pan ofloc syslenl all<.l Ille illl~roc l i., n tletwccn Ilk Q:'>I and M\I comjlon~nN of 

th( ~> <;tcm arc dc",-'l'it>N b} Ihe HVIf ,",u [76) 

An in=sin It ,je~dopmcn1 of "ljlOrd!!m, for hyt.rid '~'ll:ln; h.I> re,-""nti) occurred. ni~ j, maiol> 

du~ 10 lhe facl that MM and MD J('r~e fields n"gloct lhe chan£Cs in til<:- ",iectronic s.truduro:: of a 

'y'tem. Such change' in electronic 'tru~1U 'C in proce,'>C', Ihut ill\olv~ b<mu·~rcakjllg 3nd hondo 

f"nnin&- charge: lr-.m,fcf. lI.'ld/or .-]et: I,."n ic ncitaliOlL r~uire quan1~m m"ch~ ... ,c~ (Q~I ) ,"" ... proper 

tre&lmcnl. H~e"er. due: 10 IOC h.igh demanding COnipullllional COs.! . lIl .. applleauon of Q"I i~ -...I ill 

l;lllllro to relat;\d~ ,mal! 'yskm, con;is.ting 01 up to t~n< or sc\cral hun,jr~d" of atom,. or e~Cll 
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structures. 

structures 

np,~f:"'''''''f'' ..... n'' IS one 

atom or un""",,,, .... ,",, 

to a 

a source 

structures. 

matter. 

R= * 
n ... 'ruu· ... n states i 

an 

to 

It use 

-1 

moment 



Univ
ers

ity
 of

 C
ap

e T
ow

n

., r,..,.,~". , •• 
•• • '--,. -
'm '-1---
-- r ,- ==-l l:='~ ,., ... . '"'' ... ... --- ,.- _'M,w - <0 .. ~ ,. W_,,_.,J., '" 

Fil!ur~ 2.11 "I he clcctrom~g!1etic spectrum_ InfraRed OR) region" a pilrl of the electromagnetic 

spectrum. just tx-}ond the visihlc reginn. 11 is divided into lhr~c ,ub-region,: the ncar-infrared. from 

14000 to .,1000 Lin I (or 0.70-2.0 j,m), toc middlc-infrJrcd regirln. from 4000 10 200 lTIl I (or 2-6 ~,m) 

and the lar-il1fr~rcd region, 200·1 {1 em-L (or from 6-1000 )101). 

I' j, the electric dip<lic moment "pcraUlr and for vii:>ralionailllo(ion can]x cxprcs,cd as: 

P IjD+(r - ~J(iip/N)" j hrr r, )'(/i',.,//'.r'),,-t. (2.5S) 

where "" is the rermanenl dipole ll1<'mCIl[. r i, the diswncc octween \\\0 nuclei and r, " lh~ 

~'llLilibrium bond di'>lancc. 

II" in equation 2S1 the wave fUllctions have >ymrn"lry it give, R-O and nO ,ibrational transition IS 

ob,ervcd.ln the OPPOSilC easc. thc tran,itiOl1s il1\'ol,cd are allo\\ed transition,. 

Thi, i, mathematicali} expressed in equatiol1 2.56. "here by l1eglecting all but the fiN two tenns in 

equation 2.55 and th~n 'lLh,tituting the resulting expression for ji i n equatiOl1 2.5..\ . one ~an obtain: 

F'luatiol1 2.56 ,ho.v, that there must be a changc in the dipole moment of th~ mole~lLle during the 

vi\)ration in order to obs~r"e ab'oOrption of the II{ radiation 

When a displacem~nt ol'the bond, of a molecule occurs and thcy arc far from their ~quilihrilLm bond 

distal1ce r, .• these motions ar~ de,cribed as harmonic oscillations. Due to thc qual1tum m~chanical 

restriction,. SUch mol~cule, can a~,ume onl" ccnain valuc of vibratiOl1al energ)- and from the 

SchrOdingcr cquation for a ham10nic o~cillator. the allowed encrg} states arc: 

t:,. = 11l'(V + h) (2.57) 

3" 
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'(,m.'!". a~ in this Cd<C) 1, ,,311). tile "ptilllis..x1 Interaction dl~tancc ;, measured ~ 'h! th~ intcrall;()n 

energ, i,Jdermined, 

l·jl! lIr~ 2.10"'11 thc I"':;sitok c'll11rkxe, ,'omr<.'und~" .. ler h:l~e to be con,tnK'lc,L In ordcr \0 ohl~in 

mleI"llU":'" m"'l/"'" I h,s n~mplc rq"lrcsenlS p~rl()l;d;nc COn1rk>.C. "ill! 1"11'11' "llicr a' ;1 j. 

dq"tlc,j in Tef..-mcc [66J. 

H~\il1e "blaineJ the ~h:orgcs for tile n'n\~(>Unds~"·al~" ;nlcll'dlon and tlie rdal;~r. int rrac\i(lll 

c'fl<.'fgICS. the -ame modds (an be 1J""u in CHA KMM and a OOIllpi.rison to~"'cen Ih,- obtained charge. 

call ~ ro:rfonnoo. 

\\ hile '''I!:hrr le,els "fQ\llheor) m~~ l(ad to mme accur~lc 1l>lil'O!;en b<md en ... glCS and I!:CI)ll1C\flCS. 

th,- ir usc as target dllta will lead 10 a "rong compari"", "'Ih thc cl'15siculmcthlld (;n pmticular, rllr 

the non-ootid il1\~I'".JCII(lMs). \'(lr polar. n~"tra l molecule<. empirical rcsu lt' should oycrestinlatc the 

magullUdc of the QM d'p"le moment b) 20 to SO"/o and should reproducc ils "rielllalioll /66[, 

Some nrk's l"8I1 f3cilil~l~ charRe liumg 

• Chdrgcs a~ ~dju"I~J to maintain 'nlc~er charges on I;roup" or atoms.. such B' ring.~ . 

• A li phati c hydros~n ~l"ms arc al"a)'~ ~>"Ign oo a charl!~ 01'+0.09, except "h~n they arC located 

on an aliphatic ca!'bOiI 110m directly adja.:Cllltt.l a pos;ti,dy chMScd nitmg~n alom. ",here tile) arc 

:lssigned a slandard charge of +0.28. Similarly. aromatrc ('-1\ mOlel'e!< nul a<lj:lCl:'1lI 1<> 8 hec"malom 

arc 3s'il!n~d ch~rgc~ of .. 0, I 15 and -0.1 J 5 on Ihc C ami 11l~ H alOlil. rc;.p"cli, d) [66J. 

In th i, di,s,'rtaliol1. a' aro rementioned. thc paramel'-II"mioll uoo \8lLualtOn proccdu= hJ\e 

lx-cn .1pplicd in ord,-r to .lUd) a class ()j compound. i.e. imino,uRars. "hich are described in ("hapkr 

6 
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other word~, the aim has been to give a ditTerentiMion between '"generic" water molecule; entering 

and ka~ ing th~ Ii"t coordination ,hell too fast from "speciflc" ",aler 1110 leeule' enter! ng in that regIOn 

I"r a l"ng en""gh time range, thus tnking plnce to the diftusive motion of the solute. 

• b , 

Figur" 3.3. Schematic representmion of the binning procedure for the spati al di~tributiOil fUTlCtion. 

The ,imulntion hm' (al j, div>ded into nxhi. , n"hm and n,,," (b) along x. y and z axes, respectivel)". After 

th~ hinning procedure, we generate the SDF. (c) depict, the contour of the probabilit} den,it} fOf the 

ox yg~n atom, of th~ "at~r m()l~cule, around gl u~{)pyrano,e (a, calculated from MD simulation). 

3.3 D~ namic Propct1ics 

3.3.1 Tim~ Correlation Function 

In the tifties, the non-equilibrium statistic~1 mech~nlCS ><tw it, begmnlng: this area ,hawed thal the 

phenornenologJcal cocrtkients describing man} transport processes and time-dependent phefl()mena 

In g~n~ml wuld he 'Mitten as integrals o,er n type of functiOll called lim" correiaJionjunclion. I his 

fundi"n pla)S a 'tmilar role in non-equilihrium ,tali,tical mechanics as the partition (unction plays III 

e'luLiibrium 'l<lli'li~al mechanics [5]. 

The Weat ad~anlagc ,,('lhe lime correlation function,,, that the resulting tormulas for the transport 

coctr,cienh do not depend on the details of any particular model and are nO\ limited to any particular 

density region. For e"amplc, the sdt:diffusi"n co~f!;ci<'nI can be expre,sed in terms of a velocity time 

correlalion (iLnclion by: 

," 
D\ =-::;- J(v(l).v(OI)dl 

~ , (3.4) 

52 
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n"'ig"r~ J.l. Th~ ullr"s(1und inlcrferC>loclCr ocvicc (g,~nerator and mea <,uring C~ ll) used f\'r experiments 

inllii, li"',i~, 0" the' kft band ,ide. On lh,' right. a delailcd im~ge "rIlle medsuring: "ell, as Jcpkted in 

ref~rence [16J, 

4.2l\1r:1surenwnls of Hydration I\"umbcl'!> 

4.2.1 I Tltr~'on ic 'peed 

Mea,uremenls of lh~ ullrasoni<: 'peed. which travels through thc solution. arC based 011 finding tbe 

wa,denglh, ~,ofthe ultrasonic '-'ave in soiUliOil. When a multiple o('halflh~ wavelenb'th is achieved. 

b} moving the adju,tablr mctallic plmc. a maximum is oblained in the observed current. 

the ultrasonic specd. u, can ca.~il) be calculated using the relatiOll: 

u=fx~ (J.l) 

where f i, tbe frequenC)' (of the bigh-frequcncy gencrator) and J. i, lhe wavelength. The "a"elength 

is calculaled a, ('ollows: 

A.=2xd (4.2) 

where d j, lhe di,lance bem'e~n the '-jualt7. cr}stal and the reflector platc, oblained by turning the 

mkromeler ,crew. for a maximum or a minimum dcflcction. Hell<:e lhe ultrasonic 'peed can be 

calculaled u,ing: 

u=f x 2 x d (J.3) 
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10 the \'ariation in the rate 01' cnnl"rmalional mmion e~hihited by linear compared ,1,ith c,yC\ic 

systems_ A daSSlc' ~lud). hy Sh i io. of cadXlhydrate water interactions lIsing u llrasonic int~rI"romd''ry 

concluded that the dominant clTect in distinguishin~ tho' h)'drmi"n bchaYLours ofcarhohydrates from 

tach nth~r "erc th,> number or h~'dr<l~yl, and their relative positions to each other.'1 In a later ,tudy 

us"'g a ,imilar ~xperimell\al technique, (jalema and Hoiland. proposed that carboh)'dr.lle, with 

smaller hydration nllmbers have a st,>rcochcmistl) m(lrC suited to fit i11lo the three dimensional 

hydrogen bonded structure 0l'water. 1o 

'00 

~ • -00 ~ 

~ -" :E , 
C " ~ &., , .. *- 9: ' _. .', .' "" , 

, 
" '" IV V 

Fi~u rc 5.1 Schematic rcprcs~ntati"n of the >ystems: [ C)" lohexanoi. [I I ,2-c) clohexaned iol and 1.4-

eyc lohc\ancdiol. III m."o-inosilOl. I V [-I-D-x yl"p) r31""C and V [I-i)-glucop;.-ranose. 

\', hile there has heen a great focu s On the immediatc .'fkcl "I' p<llarit) (Hl hydrati"n properties the 

conlormational flexibility that underlies the imcrnal molecular ~ntropy has not been s)stematically 

im e,tigated for carbohydrates, 1'0 uncover the nature of carboh) draw pyranose hydration "e consider 

he~acyciic systems where the number of hydroxy Is is progr~ssi,el)' varied on a homogeneous ring 

skcieton (c)clohcxane) followed b) th~ introdllCtion of an ox:gen alom into tnc ring to make a 

pyr.tno,e fi-ame The cyclonexane based molecules that were studied arc cyc\ohcxanol, 1.2-

cyclohexal1ediol. 1,4,cyciohexanediol and m)o-inositol (in order of inc,-"a,ing number "I' hydroxyl 
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groups) "ihi I e I1-D-x y lopyrunos~ and 11-1 l-gl ucop)'ranose are the pyranose ha'ed molenJies that "~re 

stuliied. 

The fip;t clue that the h)dration of hexa 9c1i~ systems cannot simply be lie'lCrihed in terms of the 

Ilumber of hydroxyl groups call be sccn from their >ollibililics (i'iglile 5.1), lllCl'c is a millor 

ddlercllCC in sollLbilitv bctwcm ~yclohc>.anoL 1.2-cyclohe>.anediol, IA-cyclohe>.ancdiol anli 

1 ,2.3.5/4,6-~yclohexanehexol (111) o-In,,,itol) '" fl<>re the On I) ~hange is the in<:re~.'e in the numlwr of 

hydroxyl groups, Thc big challgc is obscrvcd with the introduction of an ether linkage into the ring. 

The ~ycoh~xane based mol~cules (cyclohe.,anol through to myo inositol) are lar Ie" ,ollLble than lhe 

pyrallose based I'illgs (xylopyranose anli glocopyranose). 

In thi, paper, "c compare the hydration properties of thesc si>. t1c>.ib1c, non aromatic, cyclic 

1l10lecuieS that are ba-.:d on the hexane and p)'ranose rings. We explain the relationship bi't"een 

conl()ffiational pl'opertics and hydration for cach moleculc. Wc do this by mcasurillg hydratioll 

numbers from ultrasounli interferometery experimenh anli compare these with ,'alues caklLlated Irom 

:>.tD simlilations. 10 make sense of the hydration trend ill relati~llo the molecular thernlod)nalllics 

and relalive conl'lrmationallreeliom "e prob~ I) lhc Iree energy, 2) Ihe rotatiollal distriblltion ofthc 

h) dro'l.) Is. 3) the cooformational probabi I ity d i stri bulion of ring pucker anli 4) the libraljonul rale 0 I' 

ring pucker lor each molecule. The,c mea,lIre, and complltatiolls ,how that moleclilar flcxibility is a 

fundamelltal property from "hich lhe relati,'e hyliration properlies of hexacydi~ ')',Iem, can b~ 

~>.lrapolatcd. 

'lea~urjug and Aual}sing Hydration 

UltrasolLnd interferometcr cxperiment, are used to mcaSlll'C dynumic hydrationnUlllber. I his is the 

number of sol'em molecules interacting "ilh the sollLte I"r l))nes long enough so lhm lhey liilTlI>C 

logdh~r lhrough lhe sol,ent. The hydration nllmber (n,.) is calculatcd from 
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(I) 

",111\:11 i~ ~ r~la\ion betweenlhc nUIlIiJ.cr of moles of"aler (n.). numbcr of mote!; nflh e ""Iu(e (n,). (h~ 

i«enlrop,,· ~"dlicicnb of compre~,ihilily of water (k,(j) :md lh ~ !>u iulion (k,l. I hi . l'eJal i 0 n~ir wa' 

frOl1) tl>c ["place equalioll 

\\hcrc p is rhe do:'n~i:} o r the aqucous solU\lon ~nd " IS .I-,c ulU'lhooic sp.-ed Th" :t:;Stomplion is Ihal the: 

thaI afC f(lr the so I utes at 'nlin; Ie dihaions. 

awmlmuwm of water molc~\lk, abou( ions." fa calculate :, h~-dr:u ioo numt,er, from ~ lTIob::ular 

d~n3mi('~ (MOl computer simlllallon. lhal is comparab le to thut mea>urcd froul the ultra,CH.Lnd 

1;1'$1 " .. c;,k"lmc :t:c numt>a of "all"!' in the fifSl h)OIlll iOl1 -;t.d! (n...-) Ih! tan II< found fr .. m 

the njf 

(3) 
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where the first index A refers to a solute atom at the origin. and the seeond index 13 refers 10 a solvent 

alom Ft r is the distance hetween th~ atoms. and PB i~ the hlilk density of R in the solvent. T",o types 

of rdfs. xcdr) and x(x;{r) were calculated lor the hexacyclic mole<:ul~s in ",at~r. Coordination 

numl>e,." ,,~re obtained by integrating gAdr) out to th~ lirst minimum. The g(r) radiol distributions 

sho", for most of the rdfs in the hexacydic molecular series th~t the first maximllm appears arollnd 

3.5 A for C-O~ and 2.8 A /,)r 0-0" interactions.2J 

N"xt w~ calculate the r~sid~ncc tim~. following Impcy', work. using a Kronccler delta function 

Pjt,!"; t*). A V~llle I is assigned if the solvent molecule; lies ",ithin the coordination shell of an atom 

on the solute for a time interval At without leaving the coordination ,hell for any pcriod longer lh"n 

1*. A v"ILIe of 0 is 3ssigned iflhis condition is not met.' 

Th~ prohahilit y p(t) of a sol \o~nt mole<:ul~ smvi vi ng in the coordination ,h~1I I,)r li me I " then 

(4) 

rhis probability dec",s exponentially "ith tim~ and can be litt~d by P(I) - ">.p(-Ih). ",here" is the 

residence time that is insened into 

(5) 

"here n"""". is the number water molecules coordinated to the solut~ atom A in it, first hydration sh~1l 

calculated from the rdfrelation (equation 3). The h}dration number (nh) from the MD simul"tion IS 

then cJlcllialed for each of the hexoc}'clic mol~cul"s. 

F.x(lcrimcntal Mcthod, 

All chemic"ls used were purchased I"rom 'ligma-Aldrich Inc. St. l.ouis. 3050 'lpruc~ St"'~l. MO 

631 03 \ J'lA. A II lhe ,ubslanc~~. '" ith purities higher than 99"/0 were used", ithout further purification. 

, Impc:> t"ed the '·nl, .. ~f I' f~r iom M 2]'<. H.,,,, COIll[laTi>01l l>etwcen dilt':rmt " hove !>cC"n m.de .nd e>c"ntu.lly the 
Te,ult> with th 11'" h.ve been ,een tu bc110T r<pTuJueo expeTimonlnl T",uIIS. 
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The water ,,'as doubly' di<;tilled. Solutions were prepared by weighting belore measurements "ith a 

A fcosct-LR-120A I'lith ~ precision of ±O.O I mg. The compositions of solutions are given in molarity 

(mol/L) throughout this pafl<'r. The ultrasoni~ speed of all the four solutions was measured using an 

Ultra80nk Interferometer Model M-SIU set to an operating freqlocnC)' or 3MHz. Density 

measurements "ere carried out at 27 'C through an Anton Paar digital \1odel DMA 35 ",ith a 

preti,ion of 0.0 I gcm-} The temperature of the samples during the me~surements ,,'as maintained to 

an ac~uracy of .I 0.1 "C in an electronically controlled thernto~tatic Huber water bath "ith wmpati b Ie 

control CC I. 

V,hile the "Jf. are ahle to give information in one·dimension, i.e, the number of neighbours about 

each site, the sdfs provide ~ three-dimensional location or water probabilit} llensit) about a solute. 

When generating a probability density map 01' the water struduring a solute. all the rotatiOllai ~nd 

translational diffusion throughout the simulation have to be removed. To achie\e this, the 

instantaneous positions and orientmions of the solute in eath coordinate '>C\. which make up the 

trajedory. are translat~d and rotated to obtain a hest least-square overlap with ~ retCrence Irame. The 

~o()fllinate transformations performed dming this reorientation procedure are applied to all the atoms 

in the sy<;tem. If two or more traje~tories are to be compared. then the original rcl"erence Ii-arne is used 

in order that the resulting density maps will ha,e the same relative orientation Care must be taken 

when choosing the atoms for the least squares fit: by using atoms that move around too much, an 

unsatisfactory overlay of solute moietuies and a tonsequem possible blurring or the water densities 

wLiI he obtained. Therel',re. Choosing only heavy atoms i8 the best option. lJcre we caleulated the 

distriootion "fwater around the solute, using onl~ the oxygen atoms of the water molecules and these 

are sho"'n in blue, A more complete de<£nption 01' the method used to caklLlate we have described 

the methods used to c"mpl~e sdfs elsewhere. " 
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Cumputation'Melhuds 

\h: simulat~d infinile d;lutf,' c('>nditJlm' ""ing :I po.'rtodt<. cubic oo.~ "r 2-1 M21\ A m kngth. 

containing -ISS "ater mokcul<:s a'id a single solut~ mnlecule. Rcc~ntly publis.ll~d CH.flKMM force 

fi~l<l p;'mm~ler' ,,~rc' usc<l for nI~o-ino~il()I>" "hilt Ih~ CSFF force fkld wa~ us~d for dll lh~ ,other 

s~·~ms.l' A stud} b~ C .. r~:lr1~ d. ~I. in\<cst:galed lhe co'npar.ali'e ""lllli"n b<:hal'iottr of 'il,,·crn[ 

c:lfbuh)<lrate foo:c fidJ~ .... ',:1ara)" in I ..... cunlnl ,)f , I}cosidi, hnkll~e~" In that " .... ~ 11K: CSFF 

parameter; ""s ~h"wn to pnlllucc r~awflable hydration num}",r, ~,)ffipa",J '" ilh diffcn'lIlial so:a,ming 

caillrimel f) C ~peri menls. for Ih~ "'~lhyl_'kD_mal[ll,iJ~ nll)\t,ule. 1 he' TlP3 P model n~ Implemenle<l in 

CI{Art.MM" "a, u.,.,.j [I, modd IhI.' w~tcr Il10lecules ~in .. -e (hi, "at"... model Wi> uscd in the 

pammelcrilmion of Ix>t.h force field,. All ,JntJ:lI:ons IVCR' pC1fe>mH:d as an i"'t ..... rm:ll-,sub:uic 

CfI';Cmhlc I''''''n using Ih~ CIIAK\I;l.I progr.: .. n.'~~'1 .. ith chc-mLcal bonds to Il)dro~en ammo kepi 

fix~d using "H.flKL." The ~y"cnl' ,,~n: then h~al~d to 301Jr.: over 2 ns :md ~'II!llitJrnl~d for 2 ns. 

Lach SC\Ul~ molecule" 3, lilcro JIl(.1 p~'" over separale 5n~ ItlIjectonc,. 

T~ .'kl/ C(""i.'iI""( CI",rt:<' ll,""fin Flfncrkmm TI ... • .. m; Ti~l" LJit~lit/f: (SCC-UfTf"I) ha. =""-tl, 

b«onl( d peru[:.r m<1hnd fi.,. 0\1. \ 1~1 rnol«uJar 5imt)ldliun~~ melu"'ing e3rboh>dra1~~.' "c .. "" 5 

ns of OM 1\1"-' <'CC-DFTA d~ nami's ror c}clohexarlol, 1.~-c)clohcx:medi"L 1.4-cydohn3llediol. 

III yo-inositol. p-D- ~ yl"!;e anelll · D gl ucose usiug CHAR[l.1M'· ,.«1>2. The", ,,~rc rlln with the l11io-O-

1)( pardm~l~r' ood an imPf"O\~tncn\ 10 h:dmg.en h"n<.ling IIll.::roction W3. include~ "itll Ih~ HBON 

1.:C"}\\ord. <..1\1·'1\1 s}-...e ... " \\ef"C n.H1 lI[ld~r lhe samc c<,,,di t ~'ns (24.8626 II /lo.\·[englh, 488 ,,;ncr 

mokcllks \\ Ilh onc indepcndelll .... ["l~. h~mcd 10 3OUJ.. 0\ er ~ n~ and e'lui [ i."..ll~J Ii" 2 IlS~ Ho"~\Cr. 

in \h~.,~ 'i,nulations Ewald \.l,mnlations ,,~'" lL"~d l"or Ih..' dcctro~unic imcracti Qn~.J: along "ith the 

T1P4Pr" "al~r model?) We U'.: th~ 'SCC -DFTB Q\l'MM mel hod to g~nemle' lrajccl,me" 3S lili, is 



Univ
ers

ity
 of

 C
ap

e T
ow

n

the most aCCllarate and computational I} cost efficient sinHllation proccdurc availablc for thc 3Ilalyse, 

of carhohyurme conlormational motion ,peeiticali} their ring puekering34.ll 

Free Energy Perlurhatjon 

lJI'e used the Free Energy Perturbation (FEP) method to calculate the relati\e free energy ditTerencc 

bctwcen cyclohc'\anc anu caeh of thc si'\ cyclic systcms. A oon-physic31 path \\3S chosen ensuring 

that the uilTerence between ,ucces>ive perturb€d Stales remained less than 3 k"ailmoi (it varies and 

values are in the range of l-:!.~ kcallmolJ. 

Sincc the frce encrgy dcpends only on the thcrmodynamic Slate. the reslllt, do not Jcpcnu on the 

chosen path and the number of A. point' but Lall b€ imprnveu by increasing the overiap bet\\een the 

Lvclohe"ane structure (A) and the structure B. i.e. by choosing many), points. rhe frec encrgy 

differcnce (LlG) betwccn states A anu 13 i, givcn b/" 

(6) 

with partition fllnetion (Z) for NVI' ensemble "hieh is used in our "mulation" This expre"ion Lan 

be r,,-written in the fOlm of 

,A /' _ k n ( -[ff().) - H().A)l/kBT) 
'->v -- II ne 

", (7) 

Hcre ( ) reprcscnts thc cnsembic avcragc taken over the contigurations rcpresentative of state A 

(eyclohc"anc) \'vhcreas II. Ie" and T reprc,ent thc Hamiltonian of the system. the BoltLmann ConStalll 

and the temperature respeLliveiy. The free energ) uifference b€tween two states ~an b€ given as thc 

Slim of the free energy differen~es between the intenncdiate steps 

!1G =-kllnn~(e -[1I0i ' t)-lIml'kHT ) 

i 0 ), 
") 

86 
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are 

ms'tantanemlS or SDCmUme~[)us ,,,,u,uvu at zero 

can 

I"Ip1'",,,·P1"I two co:ntC)mlatlonIS. 
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is eX1DOIlenitl a O'P!npl'!'I c 
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um;u(ms are structure. 

are nnU""'~'r not 
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to an ~V'f'r::lll.Jf'! most or()OaOle 
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between the innease in water their pmt>ahility dw,ities (Figure 5.2 a-d) and their rcl,,(ive solubi lity 

(Figur~ 5.1). 

I urther cVLdcnce "upporting thi, observation i, hourn~ Ollt "h~n "e analyse the prohJhilit) 

Jcnsiti~, 

-
, • 

• 
b , 

-
• 

d , f 

figure 5.2. SDFs of the six aqll~ous "ystcms. contollred at 50% abO\e blllJ... density; a) cy"Clohexanol: 

b) l.-1-cyclohexanediol: c) 1.2-cyclohexancdiol: d) myo-inositol: c) J:l-xylopyranol.C: I) p-

gIll"" pyranol.C. 

of xylopyranosc (rigur~ 5.2 c) and glucopyranose (Figure 5.2 I). Ollr results presented here proviu~ 

the sal11~ ob,~n alions of the anisotropi" "ate. structure about th~se carhoh}drat~ mokcu ks as havc 

be~n previously r~ported by Urau} et. al.'" Hcr~ our alwmion is drawn to thc similarity in th~ overall 

90 
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Fi!:u r~ 5.4. l'ud:cr pamm(>lC' prob.. ... bi li l~ ci i'lribo.,ti.lrl" for .I) ~ydohe~ru"oOl: l'l) I A·<)clohe~an(diok c) 

I.~-c~doh .. " .. nediol: d) myol-m",itol. c) J:I-;., ~ l"p~ r;lIIOSC: f) [i-glut<'p) mno<'c. 
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....... ""' ....... ' .. waters 

to 

measurements c 

nh 

2.7±1.3 1.4±2.0 1.9 0.89 

3.8±1.5 2±2.1 1.7 0.98 

3.7±0.6 1.9±1.6 3.4 1.1 

6.4±1.0 4.8 1.4 

6.3 2.6 

........ " ... '5 the ultrasound measurement 

number agrees with studies in ref 

c) Errors on each measurement have been calculated from the vl".5 .... v' of errors '"'', .. ''''''''' for a distribution. 
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1.l3±O.003· 

0.922±O.01· 

-10.3 

-11.4 

-12.7 

-15.8 

0.913 

0.974 

0.774 

0.748 

0.610 
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4>11 = Hl-CI-01-H01 l.34 

$11 = Hl-CI-01-HOl 4.73 
3.71 

= H2-C2-02-H02 3.11 

<Pl1 = HI-CI-Ol-H01 1.95 
0.98 

= H4-C4-04-H04 1.S6 

$11 = HI-CI-01-H01 6.72 10.8 
H2-C2-02-H02 9.75 S.70 

$33 = H3-C3-03-H03 8.28 S.70 
= H4-C4-04-H04 10.S 4.50 
= HS-CS-05-HOS S.93 $56 7.60 
= HI-CI-01-H01 S.94 10.9 

<P11 = Hl-Cl-01-H01 4.70 $12 8.90 
= H2-C2-02-H02 5.64 8.88 
= H3-C3-03-H03 6.40 8.89 
= H4-C4-04-H04 S.14 $41 14.9 

$11 Hl-CI-01-HOI 4.45 
$22 = H2-C2-02-H02 4.60 6.76 
$33 = H3-C3-03-H03 6.47 <P23 12.7 

= H4-C4-04-H04 12.2 13.4 
CS-C6-06-H06 7.80 36.7 

= H61-C6-06-H06 8.10 10.9 

<1>77 = 05-CS-C6-06 82.S 69.4 

1 



Univ
ers

ity
 of

 C
ap

e T
ow

n

e 

3.9±O.lB 

3.B±O.13 3.9±O.17 

4.8±O.21 4.5±O.23 

4.6±O.15 6.6±O.86 

6.7±O.49 6.B±2.7 
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TOC tOr manueript "TlIC Extent of COIl forma tiOlla I Rigidit} J)ctcrmincs Hydration in Non Aromatic 
IlcxaCyclic Systems" 
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Chapter 6 

G Iyeosid ase-inhihitON 

In this chaptcr. an imp<>rtant da>s <>fmlnpounds "presented. "hose main [unction is thc inhibition of 

carb(lhydrate-degmding en~yme~. More expli~itly. gl}cosidasc- inhibitors arc described, I hese 

molecules have blocn found to convert carbohydrates into simple sugars. i.e, monosaccharides. "hich 

can then be abmrhed thwlIgh til<" InIC'line, Hence. glycosidase-inhibitor; can reduce the impact of 

~arl>oh}drates on blood sug~r Mod to act as gl}cemic controller o\-cr hypcrglyccnlia, Tlmillly III 

dU1b('/~., mellrll/." I .. "" 2. Therefore" i1 is clear their Importance as anti-diabetic drug, 

I mill a 8trudur"1 ]x}int or VIe". lhn sh(l" mun, similarities with carbc>hydrates. as they arc six

meml>ered non amm<lllC hC!erocycli~ rin£s. ]('I positi(ln (> tlICY ha'e nitrogclI. "hcrca, carhohydmte8 

h,,' eo., y gen. Figo rr 6, I repn'sen!> nOJ irim,c ]('I (a) and glucopyranose (I> I. T'oj iriln}'cin is <'lie ,,(' the 

N '"gars ,wdi~d inthi, the,;,. 

• 
Figure 6.1 Nojirimycin (a) and J)-D-glucopyranose (bl. Ihey difter for the atom in p<:"ition 6. "here 

nojirimycin has nitrogen (biliel. "hile gilicopyranose ha, oxy'gen (l1:d). 

P~nicular mtention has ]-,cen here devoted to understanding similaritie< and differences in hydmtion 

~nd. more partiell brly. in conformational behaviour" ithin the "'0 classes of slLgars 

The dyn~mie hydration and conformational propertie8 of glyc(lsida-.e-inhibitors have been 

inve,tigated through the "'l11e simulation tools (PDF. SDF. Resid~nce Time. Ring Puckering 

anal y,i <). "hich are extensi'cly d~scrilx-'d in Chap(~r J. and Ihe obtained prelimi nary result, are ilCre 

g"en. 

107 
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atoms is 

3.33 4.3 6.0 1.8 
3.39 4.3 5.8 1.8 
3.13 4.4 5.8 1.6 
5.83 5.7 10 10 
3.39 3.4 2.0 0.6 
5.15 5.0 14 6.4 
2.88 3.5 3.6 0.9 
3.38 3.8 4.7 1.4 

2.72 3.7 3.6 0.8 
2.20 3.4 3.1 0.5 

atoms 

to a 

113 
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Fill.urt' 6.5 Contour plots for the puckering results lor ON1. lelt pan~L and NJ, right rand A~~()"lintt: 

to lh~ Cr~mer and Porlc notation. both DN] and 1\1 adopt lh~ -'" ~hair c()I1Ii)l'matiOI1 

(O"'O,¢F[0.360]1· 

On lh~ olher side. by ob,erving lh~ MD lraje<:lory forNJ, il call be noted that after abOllt 3.5 ns of 

simulation, ils ~()nfmmali()11 ,[art, to ~hal1ge: it goes thnlligh a boat conformation, n~mcly a HI3. to 

e'~nlltall)' going ba~k to lh~ 'C, c()I1I'lrmaliol1. Th~,~ ('hal1g~s are r~p()n~d in Figure 6.6, "here the 

diff~renl conlimnali(HlS mlopled by the rillg during the simulation ~an [x, identified hy using (he 

PupnChuin ,-;stLah,alion algorilhm, freely available in Visual 'v1(lle~lLlar D}l1ami~ (V\1D j3 sofiW'lre. 

P"fN"haj" high lights Ih e ring "I' tht mokCtlle structure" ith a pol} gon, wh ich is colou~d "ccording 

10 lhe rillg pllcker 1121_ In Figure 6.7 " repre'~nled the colouring nolalioll for Pllpt:r('hll;n (onl) for 

the puckerillg COlllormalion> of illteres!), oS reported ill referellce 1 I 21. 

The'e pul'lering all~l}ses hme ~en coupled with the reioxation times for 0 and., ~ngks. rcportcd In 

T>lhle 6..4 . From lhcse rcsult,. smn~ cOlldu,i,"" can oc made. -'lilhough b(\lh moln'Uics are found ill 

thc c>.pcctcd 'c, chair conlOrrn~lion (Figure 6.5), howe"cr Dl\J rcmain, 11~~d in lhal c,,,,t'HTrmli(~l 

for a longer lime (to ~_~ps and I. (,fjp'l in respect 10 NJ (t~ · ~.4rs ~nd t+ - :i.4ps). rhe l~ltel" is morc 

Jlexibk and con,~quwlly a l~mrmary lrmlSition of conl'>rmalion is p'"sible. Further. if comparing 

Ihe two iminosllgars wilh glucopyranose's rcla~alion limes (t>l=6.7 and 1,=6.8). onc can ob,er\-e lhal 

the O·sugar i> more rigid in it> conformation. The re lati\"ely high flexi bi I ily of NJ mo) be responsible 

for obseryillg r---J in a boot conformotion during its \-lD simlilation. 

' VM[) is "" .. loped wi,h NIH SH]1pOrt by lhe Thoor",i,",1 and Computa,ion,1 liic)[>hy,ie< grO\l[l allh. (J.d."",,, In llilute. 
Uni,,,,ity of lilinoi, ill l·roon.·C'h<lmpai!:Jl 
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The nIl r¢!"dls for,.,J and glu(op~ ranosc d i SCtl5~ ab",..- (lin IIIl\ e nO" a e l"an:r ",pIJllIItion in light 

"f pllcl ering anal)~is and TCF lur ij and 0 angk ... The preo.C n..:c of Ihe nitro!!'-.... in p",ilio" 6 glu"s 

mo re n~\ ib ili t) 10 the mol\'..:tll c with respect I" h~vmg [he ox)gt' n in Ill ... .arne POSlliOri (for 

gluH'P)'anosc ). NJ 'pend, less time slacked ill a 'f1ecifk conlo rmation. thus ha,i n!! I..-s,> lime to form 

H-bondi ng "ilh Ihe ,urmunding " ale r (ons.eql .... llll y. althOugh lhe two moleellk, (noJlnm:\ cin and 

i'lucop~ ranose) h:iw t:qual rlumbo.'r of functiunal ~mtJ flj; of the same nalure ami '" lho: ,·.:Ime position 

of [he rill~ .. IllI:~ end ..,.. III a d l n"'rclll Illlmlrr of "aler m"k-.; uk:s in thei r r¢'lf"'C\i, ... fir..\ coordi.-.... ion 

" " 
Fi~urc 6.6 The different cOllli ... m~\jo ns adopted by NJ. ·C, (a). 1"8 (b) and hac~ In "c, (e). 

hi~hli!!ht~'(j h~ using l'al'crChai/, al r"'rlthm The colol.Il;l1g "".atinn i, reponed in H\:" r~ (,.7 

mok"culf"S l. lp:< 1 , , 1[>::' 
1l 0Jirim~cin " 5. 1 

'ko~Yllojirimycin .; ~ "" !(iuc0l')' .,,11 Cl'>e " •• 
I hercfort ... frum I ~,", rrchmillar~ rt'slIhs. i. fnlh", ~ 1h~1 1110,' pn'SCI'<:C of tho: "ilmgcll ill Ihe ring g;"es 

a highocr f1exibilll) In NJ and O"'J stru~"lJ "'~ it C<>tllp:1rcd "11h gJllcopyr~noo;e. Thi, coo ld rcah~Iican~ 

rcprcloCl\I 0""' "I' the n:asOlis lor imi nosu~ars In ad as mil Ibl lers \O"ard~ ~pe<:i r or 'Ilb~rnlcs. 

!'urther ~ud les "I' similar comrou nds (i<kall). ur Ihe compklc se ries of im irl,,,u!:ars reponed In 

Fll!ul't' 6 .. J). arid ill particular til e in vesliga tiun ur the inl1l1cncc of pll _ and cUll...:quen l protonal ion uf 

the hclcroatom · " ill ""~a! more illsight into Ibis c!as, \.r"ompotloo aoo ""r elilll> 11 "ill joli'e 

imporl.wl IIlfo.-maliun "n """ il IS possibk 10 ""hanc" 1 ..... 1[ aaivit)'. 
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Coo_ 
r...."..¥ C"'"""~ .. n-,., ... , c....."~'7!',,.-'" 

""""'" CtiOo>~. """"'" Col"", ~ 

• • c • • c • 
'0. . ",) •• '" 00 ." 0.0 - 00 " ", -·c, .. ",) 0 ,." .. .. " " - " " •. " = '. •• 0 ,. 0 .• " 0.0 - " " " -" • • " " .. 00 - .. 00 .. -Figure ft.7 Th, colouring melho<,l for ,ome puckering COn formati()/ls, 3, rcporled m rert'r~n<:e 11 

1121,The wlouring nolali('ltl u>~d ill f'''f''!rCh"in algorithm follows the gcner31 ere'mcr alld Pople 

mnho<,l for ring po.,ckering. 

TABLE ft.S Compari'('Itl rn,twe~l1 1R frequenc ies values for Dl\J. Irom CHAR\1M, HFlfi-.llCi(g) 

alld "lP2/fi-31Ci(d) [81. Although , II the frequenci ~, arc' r~ported for g-iY11lg ~ c()]l1plt'l~ compari,ol1 

het,,~en lhe three levels of theory (on overage, llw:\-, differ b} 5%), onl~ the' m()st ch~r"('lcrislic pea ks 

for OXI !1wlecule have heen highlightcd and iden tificd. 

Charrnm GHu.,iHl1 Q.\I Gau"~iall OM 

\'IURi\~ IIF/6-JIG(g) 
~ 11'2/6-3 1 G(g) 

"'alo,l~, e.NJ fado,' 
'5l.~1~74' In.1981 lJ6 2M~ 
-'7~,11'.o;m )81-119; lM 1191 
4n.llWJ7~ ,m '7S1 379 7lI1~ 
-Ij~ 2119<J-,11 4241'1') 4l2.l?93 
111" . ~g6.1111 ~1I.~r;'1) ~34 , ll~1 

119.,0/;277 132. 1 044 4 ~J.041>3 

141.Sfl7ln .S(; 1.?'l12 141 l(I73 
1~~.692~" 600,M2<J 168 1-163 
614.2754% @i.2~0 1 168.633& 
M~.7~71"~ 660.)) .19 0l2 ,lM3 
""".57'0-" 121i.?'J10 69991S3 
'~2.1'I'i-'-'l 1R4,9)71 7r;1-19-19 
H"".,,2'lH" ~HROl.U ~00,624J 

H"L11J~'0l 9.1~'I~~ ~44l1 19 

9n.wn ll 941RI') ~4'J,R(j71> 

%9.7~9-11>l "R' R~(>\ ~~'J 11>89 

" 9JO.29M 
917 \07 

1121.0.S4ooj 
1127~4877~ !O15.l8l 
lllJr;I .'.QR 1229,2l9! 1081.812 
111>7 6~041j 1242,81>17 1089.71 
122" lbS29H 129.\.2·199 ll 42.06l 
126].1~.11L1 1)1 1 .42~1 1146.JJI 
12FJ21.S(ll UJJ 1(191 1l811A-IH 
12')1.991709 jJl5,7611 1211U2 
11]] 4"01J1 1 1)7K47g, 1219.202 
U1' {l7~ .16' I-Wj.J~Q~ 12J6.(I(,(, 
134J 00.1'111> 1429 4823 1"~~.7H'i 
I."" (>OAA.II 1413.6600 1295.2ll 

I 16 



Univ
ers

ity
 of

 C
ap

e T
ow

n

DSioIH" lIS:! ;'I~ "~'lr 
13'1" lI'Il .. :!':I I~I MIIX I.;!O.'·~~ 

1 ~ 1~·m!H 1'18121._ 1."' ___ 4 

l1J.621171 4 1'."6Y4! 1118 IoIlT 
1\71.8C1t>"~ I 'I(i 1 l1"'U 1~4-l> 

Ilm.NInl~ Ij7H1~l IYT-.hIl 
11330'.111, IISO~724 I.WI.1 41 
1 ~ '!7 '~""' ~~ 1f,()l.oTo l.lO7.7l7 
1627 0l.26W 1612_12M Inl.260 
16l'IIHll IM7.11"; 14)1.'11 

1 1"-'1111101 
1"'7.1/0 

.!I!""- 3IX""I14 l!IIt"; UI 
:!'IlIHllIIMl _H.lI 14.1 1'11'_ 
!Q'O lIJ1!>I'IIY J.!17.lUn 1'1!' l'l\l 
1')31'1/>1"" '!.lb.b1l1 l'I-,1 .w7 
;><'3·ll~124J ,l~3-l1-1Zl 2")1~ 'HO 

;><'-'7.0\11'1 Jlt>.' M'l NlU~ 

]').14 1X41~~ 1%711>.1 
2%-11 110110 1'188_011 

I . I I 

""1.111'1"'4 
-trAJ<l Tnl 

.13 ..... _"'''0. 4111.7.!M 3.1<]..,' 
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