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Abstract   

The use of photosynthesis vs. irradiance experiments to determine light controls on 
nitrogen assimilation is sparse in the Southern Ocean.  More attention has been given to 
iron and light limitation of photosynthesis, while we know that iron and light co-limitation 

play a role in nitrogen metabolism, particularly in regard to NO3
-, which is known to be 

more energetically expensive than reduced N (NH4
+) assimilation.  The use of this approach 

is important because we suspect that at depth NO3
- becomes light-limited with respect to 

reduced N uptake, as usually revealed by a declining f-ratio with depth.  However, the only 
real way to rigorously test this is by using a P-E approach combined with 15N tracer studies 
on light-dependent uptake of both oxidised and reduced N species. This study covered six 
oceanic regions within the south Atlantic sector of the Southern Ocean during austral 
summer 2008/2009. Four transects from Cape Town to Antarctica, Antarctica to South 
Georgia Island and the return reciprocal legs surveyed the following regions, the Subtropical 
zone (STZ) north of the Subtropical Front (STF), the Northern Antarctic Circumpolar Current 
zone (N-ACC) from the STF to the Antarctic Polar Front (APF), the Antarctic zone (AAZ) from 
the APF to the Southern Boundary (SBdy) of the ACC, the Weddell Gyre zone south of the 
SBdy to 68°S, the Subantarctic Islands and Shallow Bathymetry zone (SAISB) and finally the 
Antarctic Continental Shelf zone (ACS), each providing a natural laboratory to test light-
dependent uptake of both oxidised and reduced N species. Productivity and nitrogen 
metabolism experiments were performed at 11 ‘productivity’ stations to determine the 
potential for carbon (C) export using the f-ratio. Additionally, phytoplankton chlorophyll-a 
(chl-a) biomass, community structure using High Performance Liquid Chromatography 
(HPLC) pigments and the macronutrient environment were measured to give some 
indication of the effectiveness of the biological carbon pump. Biomass was high in the ACS 
(mean 1.57 ±0.37 mg Chl-a m-3) and SAISB (mean 1.17±0.59 mg Chl-a m-3) regions as well as 
along one leg of four in the WG region (mean 1.12±0.71 mg Chl-a m-3). All other regions 
exhibited low to moderate chl-a biomass. Areas of high biomass were associated with 
shallow bathymetric features and land masses or ice melt from various forms, each related 
to relief from Fe stress. In most regions phytoplankton in the >20 µm size class dominated, 
except for in oligotrophic waters in the STZ where pico plankton dominated and at one 
station in the N-ACC and one in the WG where nano plankton replaced micro plankton’s 
dominant role. Low f-ratios were recorded for all regions (mean f = 0.18±0.1) and were 
characteristic of a N recycling community where new production and carbon export is 
reduced. However, the SAISB proved to be an exception where high productivity and large 
diatoms exhibited potential for significant C sequestration. PB

max for C-fixation, NH4
+ and 

NO3
- uptake was variable between regions. NH4

+ assimilation (mean 0.16±0.2 mgN mgChla-

1h-1) always exceeded NO3
- uptake (0.02±.02 mgN mgChla-1h-1) which supports preferential 

utilisation of NH4
+ over NO3

-, a more metabolically efficient means of production when Fe is 
limiting. Relatively low irradiances were required to saturate NO3

- and NH4
+ uptake and C 

fixation at all stations where Ek values (mean for all substrates 177±20.5 µEm-²s-1) were 
generally 50% or less of surface irradiance values (regional PAR mean 362 µEm-²s-1) 
indicating communities were well adapted to low light conditions. Even still light was not a 
limiting factor and presumably Fe, microzooplankton grazing, and or deep vertical mixing 
restrained productivity and biomass at 4 out of 6 regions in this study.   
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Chapter 1. General Introduction 

1.1 The Global Carbon Cycle 

 The Earth’s radiative energy balance is undergoing change due to the increase in 

greenhouse gases, primarily CO2 from fossil fuel combustion, and from anthropogenic 

aerosols. Basic laws of physics dictate this, however what is uncertain is how the Earth’s 

climate is responding to this change and how quickly that response will happen (Bengtsson 

2010). The long term trend of increasing atmospheric CO2 has become a focal point in 

current research across atmospheric, terrestrial, and marine science disciplines. An evolved 

understanding of how our current global climate is being and will be influenced by 

continuing increases in CO2 emissions and subsequent global warming is required to predict 

how climate change will impact our livelihood and the future health of all ecosystems.  

 The concentration of atmospheric CO2 is a critical component of the ‘Earth System’ 

and plays many roles in its functioning (Watson & Orr 2003). For example, it provides an 

inorganic carbon source to support photosynthesis and thus in turn the oxygen to support 

life. It also contributes to carbonic acid formation for weathering rocks that form the basis 

of soil and nutrient formation and delivery to soils, rivers, and the sea. Lastly, it is an 

important greenhouse gas that critically helps to balance Earth’s climate.  

 It is now well documented that the anthropogenic CO2 concentration in the 

atmosphere is increasing and that as a result, the delicate balance of Earth’s climate is 

undergoing change. For 5,000 years prior to the industrial revolution (1750), global 

atmospheric CO2 variability was slight, varying less than 10 parts per million (ppm) from a 

concentration of ~280 ppm. But since the post-industrial revolution, CO2 has increased by 90 

ppm in the last 150 years (Indermuhle et al. 1999, Watson & Orr 2003, Feely 2004) bringing 

it to 383 ppm in 2007 (Le Quéré et al. 2009). Under current practices, anthropogenic CO2 is 

expected to double over the next century from pre-industrial concentrations (Watson & Orr 

2003). In 2008 total human CO2 emissions were 10 billion tons of carbon per year (1 billion 

tons = 1 Pg = 1 x 1015 g) (Doney et al. 2009a). Of this total, 8.7 ±0.5 billion tons comes from 

fossil fuel burning and cement production and an additional 1.2 ±0.7 billion tons from 

deforestation (Doney et al. 2009a, Le Quéré et al. 2009). Slightly less than half of this 

amount remains in the atmosphere as a greenhouse gas, inducing changes in the Earth’s 
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climate that are not fully understood. The remainder is taken up by the global ocean and 

terrestrial vegetation (~30% and 20% of the total respectively, Feely et al. 2004) (Figure 1.1).  

Figure 1.1 The global carbon cycle. Carbon storage and flux given in billions of tonnes. Rate of exchange 
processes indicated by coloured arrows: Red is less than 1 year, Yellow is 1 to 10 years, pale Green is 10 to 100 
years, and dark green is more than 100 years. Image courtesy of Centre for Climatic Research, University of 
Wisconsin at Madison & Department of Geography, Okanagan University College in Canada, December 1998, 
Nature. 
 

 This rapid, unprecedented increase in atmospheric CO2, not seen for at least 650,000 

and over 6 glacial-interglacial cycles, effects the Earth's climate, terrestrial and marine 

ecosystems as well as biogeochemical cycles (IPCC 2007). For example, decreased ocean pH, 

‘ocean acidification’, is leading to undersaturation of CaCO3 in polar oceans (Feely et al. 

2004, Orr et al. 2005, Doney et al. 2009a). Changing pH gradients and calcification processes 

can impact photosynthesis, nutrient transport, respiratory metabolism, phytoplankton 

growth, shellfish and benthic calcifier development, marine ecosystems and local marine 

fisheries (Doney et al. 2009a). Other observations relating to increased concentrations of 

atmospheric CO2 include temporal shifts in the onset of spring, glacial melting and changes 

in sea ice extent in polar regions (Denman et al. 2007).    

1.2 The solubility and biological carbon pumps 

 The global ocean serves as a buffer to human induced climate change by absorbing 

~30% of anthropogenic CO2 through two mechanisms which recycle CO2, termed the 

‘solubility pump’ and the ‘biological pump’ (Figure 1.2). In the North Atlantic near Greenland 

and Iceland (and in the Southern Ocean Weddell Gyre region), cold, dense (i.e. salty), CO2 
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enriched waters (because of the improved solubility of gases in cold water) at high latitudes 

sink from the sea surface layer to depths of 1000-3000 m where the residence time is on the 

scale of thousands of years (Ito & Follows 2003). This localised sinking, affiliated with 

Meridional Overturning Circulation and thermohaline circulation on a larger scale, is termed 

the ‘solubility pump’ (see Figure 1.2).  This means of exporting carbon from surface waters 

to abyssal depths is ultimately driven by differences in temperature and water density, so 

that cold polar oceans are predominantly sinks, while warm equatorial oceans are 

predominantly sources (Volk & Hoffert 1985) (Figure 1.3). Over long periods of time (100’s 

to 1000’s of years) these sinks are approximately balanced by the upward transport of 

dissolved inorganic carbon (DIC) into mainly warm surface waters (Ito & Follows 2003, 

Denman et al. 2007). While the physico-chemical processes respond on relatively short time 

scales of years to decades, the feedbacks on biological processes, mediated largely by deep 

ocean circulation, operate on much greater time scales of centuries to millennia (Sarmiento 

and Bender 1994, Raven and Falkowski 1999). Because of these varying timescales between 

the different mechanisms of exchange and the much longer response time of biological 

systems, it is more important than ever to gain a better understanding of how they work 

and how they will change. 
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Figure 1.2 Schematic of the biological (centre), physical (left and right) and solubility (air-sea interface) carbon 
pumps. The multi-faceted biological process ultimately draws CO2 to the sea floor through the settling of 
particulate organic and inorganic carbon. The physical and solubility processes recycle CO2 from the air to the 
sea surface to the deep sea. The schematic was reproduced from R. Chester 2003, H. Elderfield 2006, R. A. 
Houghton 2007, T. J. Lueker et al. 2000, J. A. Raven & P. G. Falkowski 1999. 

 Marine phytoplankton in the euphotic layer incorporate inorganic carbon through 

the process of photosynthesis thus, lowering the partial pressure of CO2 (ρCO2) in the upper 

ocean (Falkowski et al. 2008). These organisms provide the foundation of all marine food 

chains and when they die, the sinking organic matter facilitates the diffusive sequestration 

of atmospheric CO2 into surface waters in a process that is termed the ‘biological pump’ (Ito 

& Follows 2003, Falkowski et al. 2008) (see Figure 1.2). The biological and solubility pump 

work together to create a vertical concentration gradient of dissolved inorganic carbon that 

increases with depth. Globally, natural CO2 fluxes are practically balanced (except for a small 

net outgassing from the input of carbon by rivers and from volcanic activity), whereas 

anthropogenic CO2 has a global integral uptake of 2.2± 0.5 GtC yr-1.  This net positive uptake 

by the global ocean is divided into a mosaic of regional sources and sinks for natural and 
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anthropogenic CO2 (see Figure 1.3). Most tropical oceans outgas CO2 to the atmosphere 

with a combined mean flux of 0.7 GtC yr-1, whereas the extra-tropical northern hemisphere 

is a net sink for natural and anthropogenic CO2 at 1.2 GtC yr-1. Of all the world’s oceans, the 

Southern Ocean is the largest sink of both natural and anthropogenic CO2, taking up an 

estimated 1.5 GtC yr-1 (Gurney et al. 2002, Takahashi et al. 2002, Gloor et al. 2003, Roy et al. 

2003, Mikaloff et al. 2006, Denman et al. 2007).  

 

 
Figure 1.3 Annual sea-air fluxes for a nominal year of 1995. Positive values indicate a flux of CO2 
out of the ocean (Takahashi, 2002). 

 

1.3 The Southern Ocean CO2 Sink 

 When contemplating the fate of the Earth’s future climate, a critical component to 

elucidate is the ocean’s role in balancing climate over long periods of time, particularly in 

the Southern Ocean, which stores approximately 60% of the total oceanic anthropogenic 

CO2 inventory (Sabine et al. 2004). In addition, the Southern Ocean is potentially one of the 

more sensitive regions on the planet to climate variability and change, provoking in depth 

studies into understanding how it functions and is likely to respond in terms of CO2 flux in 

the future (Busalacchi 2004, Le Quere et al. 2007, Lovenduski et al. 2007).  
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 The Southern Ocean plays a major role in regulating global CO2 variability, controlled 

by physical and chemical oceanographic processes and by biological primary production 

(Sigman & Boyle 2000). Both these mechanisms have a bearing on global warming and on 

global efforts to mitigate climate change. Firstly, the Southern Ocean is the only part of the 

global ocean where CO2 rich deep waters (> 1000 m & pCO2 > 450 µatm) exchange CO2 

directly with the atmosphere. This means that despite storing ~60% of industrial CO2 

emissions, it has the potential capacity to become a CO2 source (Le Quere et al. 2007, 

Lovenduski et al. 2007, Le Quere et al. 2009). Secondly, surface nutrient concentrations in 

the Southern Ocean are predominantly high (>20 µmols NO3, >60 µmols Si) and under-

utilized, which together with the physics of Mode Water formation and flow into low 

latitudes (Figure 1.4) is responsible for  supplying the nutrients that drive > 75% of ocean 

productivity. Both mechanisms are connected to surface ocean physics that are likely to 

respond sensitively to climate change.  

 

Figure 1.4 Typical water masses found in the Southern Ocean and their generalised circulation pattern (Hannes 
Grobe, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany). 
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1.4 Factors influencing the physical solubility pump 

 Over timescales of hundreds to thousands of years, the unique climatology and 

physical structure of the Southern Ocean dictates its role in the carbon cycle. The Southern 

Ocean makes up 10-20% of the world ocean and is central to global thermohaline circulation 

(Cochlan 2008) (Figure 1.5).  It consists of two major current systems: the very strong 

eastward flowing Antarctic Circumpolar Current (ACC) and the westward flowing Antarctic 

Coastal Current, through which indirect and direct connections are made with all other 

oceans on Earth. It plays a role in the formation or transformation of all major water masses 

that make up the thermohaline circuit. For example Subantarctic Mode Water (SAMW) and 

Antarctic Intermediate Water (AAIW) formation both have a major impact on the oceanic 

sink for anthropogenic CO2 (Talley et al. 2008). 

 
Figure 1.5  A simplified schematic of the global thermohaline circulation pattern, the overturning circulation of 
the global ocean. Throughout the Atlantic Ocean, the circulation carries warm waters (red arrows) northward 
near the surface and cold deep waters (blue arrows) southward into the Southern Ocean. Image credit: 
NASA/JPL 

 One of the most influential climatic features of the Antarctic is the Southern 

Hemisphere westerly wind field (Sigman & Boyle 2000). Southern Ocean hydrography, sea 

ice distribution and biological productivity, all of which regulate atmospheric CO2, are 

greatly impacted by these westerly winds. Constrained primarily between ~40°S and ~65°S, 

the westerly’s set-up the dominant easterly surface current and the subsequent 

northwardly steered Ekman flow that contributes to the creation of Antarctic Intermediate 
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Water (AIW), a main driver of the solubility pump (Sigman & Boyle 2000, Lovenduski & 

Gruber 2005). The latitudinal position and intensity of the westerlies is established by the 

pressure gradient between Antarctic low pressure systems and subtropical high pressure 

systems centred over the South Atlantic and Pacific Oceans (Kreutz et al. 1997, Sigman & 

Boyle 2000, Pendall et al. 2001). The position and intensity of these westerlies has a pulse 

termed the Southern Annular Mode (SAM). During positive phases of the SAM, the westerly 

wind belt contracts and moves poleward, resulting in more intense westerly winds between 

50°S and 65°S. During negative phases of the SAM, the reverse happens, and the westerly 

wind belt expands equatorwards, causing winds to decrease at high latitudes. In recent 

decades, researchers have recorded a tendency towards increasing frequencies of the 

positive phase of the SAM that results from man induced climate change. This trend 

towards more positive phases of the SAM increases the amount of upwelling of CO2 rich 

deep water south of 50°S, thereby suppressing the effectiveness of the Southern Ocean's 

CO2 sink (Boning et  al. 2008, Gille 2008, Le Quere et al. 2009). While the trend in a positive 

SAM is thought to reduce the Southern Ocean CO2 sink through modification of the 

solubility pump, its impact on biology is still unclear. Lovenduski and Gruber (2005) suggest 

that a positive SAM is on average related to an increase in primary production south of the 

Antarctic Polar Front (APF).  

 In addition to changes in the SAM, model data as well as in situ observations over 

the past 30 years indicate that long term trends are developing in surface mixed layer (SML) 

characteristics of the Southern Ocean that are consistent with the expected outcomes of 

global warming driven climate change. Mixed layer stratification of the Southern Ocean is 

said to increase through increased freshening and an increase in atmosphere to ocean heat 

fluxes. Greater stratification may reduce the vertical supply of nutrients and hinder 

phytoplankton growth (e.g. Bopp et al. 2001).  With caution in mind when interpreting basin 

scale model predictions, Bopp et al. (2001) speculate that increased stratification will reduce 

vertical nutrient and trace element fluxes by up to 10%, whereas a shoaling of the mixed 

layer will elevate mean underwater irradiances (Boyd et al. 2002). Although such increases 

in mean underwater irradiances will lower iron (Fe) demands, the reduced Fe pool available 

in a shallower mixed layer may ultimately limit production despite an improved light 

environment (Boyd et al. 2002). However, such developments may be counteracted by a 
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reduction in the vertical fluxes of Fe, the primary mechanism by which Fe is supplied to 

these waters (Boyd et al. 2002).  Future implications of density stratification under surface 

ocean warming conditions thus remain uncertain (Behrenhfeld 2011). The uncertainties 

involved in understanding the complex feedback mechanisms associated with such 

predicted changes highlights gaps in our knowledge of the response of the Southern Oceans 

carbon sink to anticipated climate change.   

 

1.5 Factors influencing the biological carbon pump  

Takahashi et al. (2002) suggest that CO2 drawdown in the Southern Ocean is driven 

primarily by biogeochemical processes (‘biological pump’) rather than by sea surface 

temperature (SST) and physical solubility processes (‘solubility pump’). These findings 

prompt the current raft of comprehensive investigations into Southern Ocean biology that 

drive the carbon cycle there. Often referred to as the ‘Antarctic Paradox’ (Tréguer and 

Jaques 1992, Priddle et al. 1992), the Southern Ocean’s defining biogeochemical 

characteristic is a water body high in macro-nutrients Nitrogen (N), Phosphorous (P), and 

Silicate (Si), but low in chlorophyll-a (mostly <0.5 mg m-3), making it a high nutrient low-

chlorophyll (HNLC) ecosystem (Moore and Abbott 2000). More than 75 years ago Hart 

(1934) identified irradiance, stratification, mixing, macronutrients, micronutrients, and 

grazing as factors that regulate algal biomass and productivity in the Southern Ocean, 

preventing utilisation of all available nutrients at various locations and times. However, how 

these various regulating factors operate in combination in the complex spatial domain of 

the Southern Ocean is still poorly understood (Hiscock et al. 2007).  Equally, how they may 

respond to significant temperature change is difficult to predict. Model simulations by 

Taucher and Oschilies (2011) show two opposing results for simulated marine net primary 

production (NPP) depending on whether biological processes are deemed temperature 

sensitive or not.  This infers that indirect temperature effects like shifts in nutrient supply 

and light are not the only relevant factors to include when modelling the response of marine 

ecosystems to climate change and highlights the need for a better understanding of all 

relevant factors (Taucher and Oschilies 2011).   
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 The Southern Ocean HNLC environment is generally described as being controlled by 

“top-down” (ecological) or by “bottom-up” (physiological) mechanisms, or in other words, 

“yield” versus “rate” (Smith and Lancelot 2004, Cochlan 2008). Some of the bottom up 

controls on phytoplankton processes in the Southern Ocean include light availability 

(regulated by changes in MLD and low PAR), low temperatures (Boyd 2002, Cochlan 2008), 

and UV inhibition of photosynthesis. In addition, phytoplankton productivity is controlled by 

macro-nutrient availability such as silicic (Si) acid required by diatoms (Boyd 2002), and the 

form of nitrogen available. Si is non-limiting south of the Antarctic Polar front (APF), but may 

approach limitation in sub-Antarctic waters, particularly between the Subtropical front (STF) 

and the Sub-Antarctic front (SAF). Although nitrate (NO3
-) is abundant south of the SAF, 

nitrate uptake (NO3
-) may be Fe-limited, while ammonium (NH4

+) accumulation may also 

suppress NO3
- (Cochlan 2008). Many studies have demonstrated iron-light (and zinc) co-

limitation of both NO3
- and photosynthesis (Cullen 1991, De Mora et al. 2000, Boyd 2002, 

Sunda & Huntsman, 2005, Moore et al., 2007a,b, Cochlan 2008, Pollard et al., 2009). A well 

known, but understudied top down control on phytoplankton production in the Southern 

Ocean is grazing (Fronenman et al. 1996, Irigoien et al. 2005, Smetacek et al. 2004). A more 

detailed discussion on the top down and bottom up controls on phytoplankton production 

in the Southern Ocean follows below. 

 

1.5.1 Light  

The light environment experienced by phytoplankton in the Southern Ocean has 

three main controlling variables 1) the time of year (and thus photoperiod and solar angle), 

2) the vertical mixing depth, and 3) the amount of ice cover, including both thickness and 

overlying snow cover (Cochaln 2008). Photosynthetically available radiation (PAR) at the sea 

surface also varies with latitude, diurnal effects and sea state (angle of reflection and 

absorption relative to wave height and direction). Underwater irradiance is defined by its 

attenuation coefficient in sea-water (Kd). The depth of light penetration defines the euphotic 

zone (1% or 0.1% of surface light) where light is sufficient to support phytoplankton growth 

and reproduction by photosynthesis. Wind stress at the surface will either deepen or shallow 

the surface mixed layer (SML) and thus also control the depth to which phytoplankton cells 

are mixed through the euphotic zone. When deep mixing occurs, phytoplankton may be 
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forced into the aphotic layer and productivity decreases. Critical depth models of 

photosynthesis are built on this concept (Nelson and Smith, 1991). The compensation depth 

(Dc) is defined as the depth at which a cell’s respiration (CO2 production) during 24 hours 

exactly balances CO2 fixed by photosynthesis during the same period (i.e. Pc=Rc) – a depth 

which varies from 20-100 m over much of the Southern Ocean (Jaques 1983, Knox 1994). 

The depth at which photosynthesis throughout the water column is balanced by 

phytoplankton respiration throughout the water column (Pw=Rw) is called the critical depth 

(Dcr). Sverdrup (1953) theorized that when the critical depth is shallower than the mixed 

layer depth (MLD), no net production takes place since Rw>Pw over 24 hours. Net 

production (Pw>Rw) only occurs when the critical depth lies below the mixing depth. 

 

The Southern Ocean is well known for its inclement weather and tempestuous seas. 

Wind stress is frequently so great that a homogeneous (isothermal and isohaline) water 

column develops which reaches depths of 50 – 100 m (Nelson and Smith 1991, Knox 1994). 

Under this scenario, free-floating or slightly motile phytoplankton cells are likely to be mixed 

well below the Dcr, so that Pw<Rw. In this way, light limitation through deep mixed layers is 

considered to hinder the development of blooms and contribute to the low primary 

productivity of Antarctic waters. A recent study by Venables and Moore (2011) using  data 

on MLD from Argo float profiles and chlorophyll concentrations and PAR from SeaWiFS 

concluded, however, that light limitation did not significantly constrain the annual integrated 

standing stock of chl-a in the HNLC Southern Ocean. An increase in water column stability 

and a shallowing of the mixed layer is conversely expected to help maintain phytoplankton 

in the euphotic zone, thus promoting growth and subsequent biomass accumulation 

(Bidigare et al. 1986). This is thought to occur at the ice edge, at the Sub Tropical Front (STF) 

and around Subantarctic islands, where local water or thermal stabilisation of the upper 

water may reduce the critical depth and therefore permit high phytoplankton productivity 

and biomass accumulation (Allanson et al. 1981, Lutjerharms et al. 1985, Nelson and Smith 

1991, Dower and Lucas 1993).  

 

More recent work on light availability in the mixed layer and its influence on bloom 

initiation in the North Atlantic (see Behrenfield 2010 & Venables & Moore 2011) however, 

challenges Sveredrup’s classical Critical Depth Hypothesis. Behernfield’s (2010), Dilution-
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Recoupling Hypothesis describes how changes in MLD affect the balance between net 

phytoplankton growth rates and losses (from grazing, sinking, parasitism or viral infection 

and physical flushing losses, such as dilution) in two distinct ways. Firstly, ‘dilution’ of 

predator-prey interactions through a deepening MLD leads to a decrease in loss terms 

relative to phytoplankton growth and secondly, when the mixed layer shallows  ‘decoupling’ 

begins whereby mobile predators are concentrated into a decreasing volume  and grazing 

increases relative to phytoplankton growth. According to Behernfield’s Dilution-Recoupling 

Hypothesis, bloom initiation occurs in mid-winter when light levels are minimal and near 

surface mixing is deepest. However, given that the North Atlantic is a considerably different 

environment, a similar study would need to be addressed in the Southern Ocean before 

abandoning Sveredrup’s age-old theories completely.   

Furthermore, the current raft of Fe limitation theory suggests that improved stability 

is not the most important trigger of bloom formation, but rather a combination of extended 

day-length and Fe availability. After all, in late summer (i.e. late December onwards) when 

the water column shows the greatest degree of stratification and light is often greatest, 

blooms actually crash. Why? Fe limitation and an increase in grazing pressure (Lucas et al. 

2007, Fielding et al. 2007). 

 

1.5.2 Temperature 

 A dramatic shift in temperature occurs across the APF, where warmer Subantarctic 

waters are left behind for cold polar waters that can range between ~5°C and -1.8°C, the 

temperature at which sea water freezes. Phytoplankton physiology is directly impacted by 

changes in the latitudinal temperature gradient. In classical terms, the maximal rate of 

growth (μmax) is a function of temperature, where for every 10°C rise in temperature, μmax 

doubles (Eppley 1972, Goldman & Carpenter 1974).  However, a subsequent study found 

temperature to have opposing effects on cell division and nutrient uptake, calling attention 

to diverse and species-dependent responses to temperature (Goldman 1977a & b). While 

not a dominant controlling factor, temperature is thought to set an upper limit on 

phytoplankton growth rates, with the understanding that growth rates can be altered by 

other environmental factors (Tilzer et al. 1986, Smith & Sakshaug 1990, Wiencke et al. 1993, 

Boyd 2002). In Addition, low temperatures are known to hinder phytoplankton’s utilization 
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efficiency of incident irradiation (Tilzer et al. 1986) and their ability to enlist the 

metabolically expensive damage-repair cycle for a damaged photo-system II (PSII) reaction 

centre when recovering from photoinhibition (Alderkamp et al. 2010). 

1.5.3 Macronutrients  

Diatoms make up the most abundant group of phytoplankton in the Southern Ocean. 

They are the greatest contributors to bio-silicification and require the macronutrient SiOH4 

to form their frustules (Boyd 2002). Subsequently they are also the most affected by silicic 

acid limitation. Surface silicate concentrations in the Southern Ocean decrease northwards 

from high concentrations (~60 μM) in the Southern Antarctic Circumpolar Current Zone 

(SACCZ) to low concentrations (~4 μM) in the sub-Antarctic zone (SAZ) (Boyd 2002, Pollard 

et al. 2002). Diatoms are believed responsible for much of the carbon export from the 

surface to the deep-sea due to the increase in ballast form their opaline frustules 

(Armstrong et al. 2002). Limitation of diatom growth by low Si waters (such as those of the 

Subantarctic) can result in a physiological cascade that affects diatom /non-diatom 

community succession, with implications for food chains, export rates and CO2 

sequestration (Brzezinski et al. 2003, Sarmiento et al. 2004).  

Also important to consider when determining limitations to production is the type of 

N substrate available for uptake and growth. Evidence suggests that both NH4
+ and urea can 

inhibit NO3
- uptake by phytoplankton, especially in areas of low dissolved Fe concentrations 

(Cochlan 2008). Furthermore, it is important to note that varying concentrations of NH4
+ 

(0.1 to 1.0 μM) have been found to suppress NO3
- uptake rates (see review Cochlan 2008). 

Observed variations depend upon factors such as nutrient history, light, and the species 

composition of the phytoplankton community. For example, while complete inhibition of 

NO3
- uptake in Subantarctic Pacific assemblages, primarily consisting of autotrophic 

flagellates, occurred with NH4
+ concentrations as low as 0.1 – 0.3 μM (Booth 1987, Wheeler 

and Kokkinakis 1990, Cochlan 2008), in a diatom-dominated assemblage of newly upwelled 

waters off the coast of Oregon NH4
+concentrations of 0.6 μM had little effect on NO3

- uptake 

(Kokkinakis and Wheeler 1987, Cochlan 2008). In a more comprehensive look at the 

potential for NH4
+ inhibition of NO3

- uptake Lucas et al. (2007) found that at low 

concentrations of  (<~0.25 µmol l-1) specific uptake rates of NO3
-  were highest, indicating no 

inhibition, while at high concentrations (>~0.6 µmol l-1) specific nitrate uptake is greatly 



Univ
ers

ity
 of

 C
ap

e T
ow

n

14 

inhibited.  However, this is only so at the 1% light depth in both the North and South regions 

of the Crozet Island study.  Areas sampled outside of this light depth showed no correlation 

with depth or region when concentrations were between 0.25 µmol l-1 and 0.6 µmol l-1, thus 

implying NH4
+inhibition of NO3

- uptake at mid-range concentrations is weak.   

1.5.4 Iron 

The nitrogenous nutrition of phytoplankton in HNLC regions is compromised when 

Fe is scarce because phytoplankton are unable to fully utilize the abundant NO3
- reserves 

during the growth season. Fe plays a critical role in the bioenergetics of C and N 

metabolism. Both photosynthetic and respiratory electron transport chains, the synthesis of 

chlorophyll, and the assimilation of NO3
- require substantial amounts of Fe (Cochlan 2008). 

In terms of Fe utilisation efficiency, theoretical calculations and experimental observations 

indicate that NO3
- based ‘new’ production (Eppley and Petersen 1979) requires 60% more Fe 

than ‘regenerated’ production based on NH4
+ or urea uptake (Cochlan 2008). More Fe is 

needed to reduce NO3
- to NH4

+ at which point it can be assimilated into amino acids. This 

requires the enzymes nitrate reductase (requires one atom of Fe) and nitrite reductase 

(requires five atoms of Fe) plus, either ferredoxin (an Fe containing electron [e-] donor) or 

flavodoxin (a non-ferrous e- donor) in addition to the need for a larger amount of reducing 

power (8 mol e-/mol N) gained from Fe-dependent redox reactions (Cochlan 2008).  Thus in 

HNLC regions of the Southern Ocean a more energetically efficient means of harvesting N is 

realized through the utilization of NH4
+ over NO3

- when Fe is limited.  

 

The absence of a continental land mass makes the Southern Ocean one of the most 

Fe impoverished of the world’s oceans (Wagener et al. 2008). Iron limited phytoplankton 

production in the Southern Ocean is now unequivocally established through a number of 

artificial iron fertilisation experiments (De Baar et al. 2005, Boyd et al. 2007) while two 

natural iron fertilization experiments (KEOPS: Blain et al. 2001 and CROZEX: Pollard et al. 

2007, 2009) have further assessed the impact of Fe-fertilisation on carbon export and the 

carbon to iron (C:Fe) export efficiency, which is highly variable. Regions of relative iron 

availability are characterized by larger average cell sizes, dominance by diatoms, higher f-

ratios, faster rates of specific nitrate uptake (VNO3 d-1), lower particulate organic carbon to 

chlorophyll-a (POC:chl-a) ratios (Lucas et al., 2007) and improved photo-physiological 
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competency (Moore et al., 2007a,b). All these parameters provide physiological and 

taxonomic evidence for the impact of Fe availability which increases with proximity to sub-

Antarctic Islands such as the Crozet and Kerguelen archipelagos (Blain et al. 2001, Lucas et 

al. 2007, Moore et al. 2007a,b, Pollard et al. 2007, Poulton et al. 2007, Seeyave et al. 2007). 

Indeed, ocean colour satellite imagery demonstrates perennial blooms around all the 

Subantarctic Islands, including the Prince Edward Islands (Pollard et al., 2007). 

 

1.5.5 Grazing  

Grazing, in the form of herbivorous meso- and microzooplankton predation pressure 

is an important ‘top down’ control on primary production.  Size selectivity during grazing 

also impacts on the efficiency of the biological carbon pump. When larger cells eclipse other 

sizes in phytoplankton biomass, the majority of photosynthetically fixed carbon is 

transferred to the meso- and macrozooplankton fractions (Fronenman et al. 1996a, Irigoien 

et al. 2005). This promotes a rapid more efficient transfer of organic carbon out of the 

euphotic zone into the deep ocean via vertical migration and large faecal pellet production. 

In contrast, when the smaller size fractions dominate the phytoplankton population, a 

greater proportion of the photosynthetically fixed carbon is transported to the 

microzooplankton fraction (Fronenman et al. 1996a). In this instance the carbon pump is 

less efficient as most of the carbon is recycled within the microbial loop in the upper mixed 

layer, leaving little carbon to be transferred to the deep ocean (Fronenman et al. 1996a, 

Fielding et al. 2007).  

 

1.6 Distribution of Phytoplankton Biomass in the Southern Ocean 

While the annual average net primary production rate in the Southern Ocean is 

low, relative to the supply of macronutrients, very intense phytoplankton blooms do occur 

locally and contribute to high temporal and spatial variability in Southern Ocean 

productivity (e.g. Seeyave et al. 2007). Low production rates are associated with permanent 

open ocean zones north of the extent of the sea ice, while high production rates are 

correlated with divergent frontal zones (Moore and Abbott 2000). Elevated chlorophyll 

concentrations correlated with the major fronts of the ACC have been substantiated and 

ascribed to many processes such as cross-frontal mixing of macronutrients, an improved 
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light environment through enhanced stratification and increased Fe concentrations through 

upwelling and interaction of the fronts with shallow topography (e.g. Lutjerharms et 

al.1985, Laubscher et al. 1993, Moore and Abbott 2002). Other areas of high production in 

Southern Ocean waters are found over regions of shallow bathymetry; around and 

downstream of Subantarctic islands, the continental shelf, over mid-ocean ridges and large 

plateaus. In these regions of shallow bathymetry, current flow through relative vorticity 

(Moore et al. 1999, Hogg and Blundell 2006) and/or bottom pressure torque (Sokolov and 

Rintoul 2007a) is believed to enhance the flux of Fe into surface waters (Park et al. 2010, 

Venables and Moore 2010) governing the typical inverse relationship found between depth 

and chlorophyll in the Southern Ocean (Comiso et al. 1993). Highest chlorophyll 

concentrations are generally correlated with the marginal ice zone (MIZ) (Arrigo and Van 

Dijken 2004), through enhanced irradiance from increased vertical stratification when ice 

melts (Smith and Nelson 1986), through Fe injections from melting ice (Sedwick and DiTullio 

1997, Gao et al. 2003, Grotti et al. 2005) and mixing of Fe rich sediments along the 

continental shelf (Schoemann et al. 1998, Johnson et al. 1999). Additionally, downwind of 

dry continental areas (e.g. Patagonia, south and south west of Australia, New Zealand and 

Africa) regular deposits of atmospheric dust are deemed a salient Fe source that fuel 

primary production in the Southern Ocean (e.g. Cassar et al. 2007).  

The complexities in the various bottom up controls of primary production in the 

Southern Ocean strongly influences the characteristics of the spatial distribution of 

phytoplankton biomass described above. This study investigates regional differences in the 

controls of phytoplankton production and export using 15N tracer techniques and tests the 

light-dependent uptake of oxidised versus reduced N species using Photosynthesis versus 

Irradiance curves. A discussion of the two methods follows below.  

 

1.6.1 15N production and export estimates  

 New and regenerated production is well established as a means of connecting 

surface N dynamics with biogenic particle flux (Dugdale and Goering 1967, Eppley and 

Peterson 1979, for review see Cochlan 2008). Phytoplankton harvest nitrogenous nutrients 
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from a variety of sources and in various chemical forms.  According to Dugdale and Goering 

(1967), the source and oxidation state of the N substrate determines the partitioning of 

primary production. Nitrate originating from the deep sea (or from the land and / or from 

atmospheric aerosols – including NH4
+) is considered ‘new’ to the euphotic zone, as is N2 

fixation from the atmosphere, while ammonium, urea and amino-acids, originating from 

microbial and metazoan recycling, are considered ‘regenerated’. The proportion of new 

production (NO3
-) to total N production (N = NO3

-
 + NH4

+ + urea +DFAA) is 

described by the f-ratio (Eppley and Peterson 1979) as the proportion of new production 

relative to total production (NO3
-
 / N).  Under stable conditions and over appropriate 

time scales the f-ratio is analogous to the proportion of production available for export, 

most often in the form of sinking particles, which does not deplete the system, thus creating 

a balance of N flux into surface waters with corresponding downward N losses over 

appropriate time and space scales (Cochlan 2008). Under this scenario, when Redfield ratio 

C:N stoichiometry is applied, NO3
- gives an indirect estimate of downward carbon flux 

(Eppley and Peterson 1979, Minas et al. 1986). This concept is, however tempered by the 

recent discovery of significant surface nitrification rates (Yool et al. 2007) that renders 

equating NO3
- with carbon (C) export unreliable. However, in regions of upwelling and 

where ambient NO3
- concentrations are high (such as in the Southern Ocean) the rate of 

surface nitrification contributes only a small portion (<~10%) to the ambient surface NO3
- 

pool, such that the concepts of the f-ratio and its relationship with export production are 

not excessively compromised.  Nevertheless, until we have better estimates of nitrification 

rates in the Southern Ocean, the use of the f-ratio to infer export production needs to be 

used with caution. 

 

 Since 1977 numerous studies throughout the Southern Ocean have used 15N uptake 

techniques to calculate f-ratios (for a comprehensive list see Cochlan 2008). An exception is 

the Atlantic sector around South Georgia and the South Sandwhich Islands which forms the 

focus region of this study. Several trends to consider from previous bodies of work stand 

out. First, the permanently open ocean zone characteristically sustains low, regeneration 

dominated, N uptake rates (except in close proximity to islands), with no noticeable decline 

in surface NO3
- concentration, thus equating to low f-ratios (~0.2 – 0.3). Second, both the 

coastal and continental shelf zone and the seasonal ice zone bear resemblance to N uptake 
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measurements in temperate upwelling systems, but with lower uptake rates. Substantial 

blooms develop here due to a stable, stratified water column, iron fertilisation and cell 

seeding from sea ice retreat. These conditions lead to a decrease in surface NO3
- and with N-

nutrition early in the season being dominated by new N, resulting in higher f-ratios (~0.4 – 

0.9). Third, in both regions a shift in community structure is generally observed from 

diatom-dominated to a flagellate-dominated system with a seasonal progression in 

regenerated production and subsequent increases in surface concentrations of NH4
+ (Cochlan 

2008). For a comparison of previous work on N metabolism in various regions of the 

Southern Ocean refer to Table 1.1 below. 

 
Table 1.1 Comparison of depth integrated values of 

15
N uptake (mmolm

−2
 d

−1
) by phytoplankton for the 

following regions of the Southern Ocean. * represents no available data. 
 

Southern Ocean Region ∫ρNO
-
3 ∫ρNH

+
4 ∫ρurea ∑∫ρN f-ratio Reference 

Bellinghausen Sea       

Open Pacific (57°S) 2.6 13.65 10.13 26.38 0.09 Waldron et al. 1996 

PFZ (64°S) 0.9 8.1 9.61 9.61 0.1  

Indian Sector (summer 1994, ANTARES3)      

Kerguelen Plateau (49°S) 5.7 3.5 2.8 11.9 0.48 Mengesha et al. 1998 
Kerguelen Plateau (52°S) 7.7 2 1 10.7 0.72  

Pacific Sector (summer 1997, US-JGOFS)      
PFZ (57–61°S) 2-5±2.3 * * * 0.05–0.48 Sambrotto & Mace 2000 

Western Bransfield Strait       
Bransfield Strait 13.0±3.1 7.8±2.6 * * 0.64±0.03 Bode et al. 2000 
Bellinghausen Sea 17±2.5 40.9±10.2 * * 0.31±0.08  
Gerlache Strait 9.0±2.7 24.1±17.0 * * 0.42±0.08  

Australian Sector (spring 2001, CLIVAR-SR3)     
SAZ/STF (49–51.0_ S) * * * 4.4±0.3 0.53±0.26 Savoye et al. 2004 
PFZ/IPFZ (54–57° S) * * * 5.6±0.1 0.56±0.02  
AZ/MIZ (61–65°S) * * * 9.6±2.2 0.61±0.08  

Indian Sector (CROZEX, summer 2004)      
M3 bloom 20.3±5.7 3.6±1.3 6.1±2.0 30.1±7.5 0.67±0.08 Lucas et al. 2007 
South of Plateau (HNLC) 1.8±0.8 3.2±0.5 1.1±0.2 6.0±1.5 0.28±0.07  

Atlantic Sector (summer 2008)      
Subtropical Zone(34-41°S) 1.01±0.3 0.69±0.3 6.47±6.7 8.18±6.8 0.24±0.22 Joubert et al. 2010 
Subantarctic Zone(42-44°S) 5.11 0.92 4.31 10.34 0.49  
Polar Front Zone(45–50°S) 1.97±0.5 1.16±0.4 2.13±1.8 5.26±2.2 0.41±0.11  
Antarctic Zone(51–57°S) 3.39±1.9 1.27±0.6 2.86±1.6 7.51±3.5 0.45±0.11  

Indian Sector (late summer 1999, MIOS-4)     
STZ (31–40°S) 3.76±4.2 19.83±15.0 22.30±17.8 46.07±33.5 0.07±0.03 Thomalla et al. 2011 
SAZ (41–47°S) 2.90±3.4 14.97±16.9 6.86±3.9 24.73±21.6 0.10±0.04  
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1.6.2 Photosynthesis versus Irradiance (P - E) 

  

The N uptake response to different light fields is complex since numerous factors 

affect the relationship between light and the substrate being utilized and the exact 

mechanism(s) by which light regulates N metabolism is(are) unknown (Cochlan 2008). Three 

basic models describe the dependence of N uptake by phytoplankton upon irradiance, 1) a 

rectangular hyperbola similar to that of the Michaelis-Menten equation for N uptake as a 

function of substrate concentration (MacIsaac & Dugdale 1972), 2) this same model, but 

modified to include dark uptake (Cochlan et al. 1991), and 3) a 3-parameter, exponential (P 

vs. E) curve that accounts for photoinhibition (Priscu 1989, Kudela & Cochlan 2000) (Cochlan 

2008).  In this study, the P - E model is used as it gives a good representation under a wide 

range of conditions, is easy to fit to real data and is considered useful in predicting primary 

productivity and carbon fluxes over large areas of the ocean. It also provides information on 

the photoacclimation status of cells at the time of sampling (Platt & Sathyendranath 1988, 

Villafane et al. 2004). 

The P-E relationship is a building block for the conception of phytoplankton ecology 

and physiology and has often been used to investigate photosynthesis as a function of light 

intensity (see Platt & Sathyendranath 1988, Mitchell et al. 1991, Dower and Lucas 1993, 

Fenton et al. 1994, Dower et al. 1996, Behrenfeld & Falkowski 1997, Bracher et al. 1999, 

Villafane et al. 2003, Bouman et al. 2005). Parameters that characterize the P-E relationship 

(see Figure 1.6) are PB
max, a measure of maximum light-saturated photosynthetic capacity 

(i.e. the light-saturated maximum rate of carbon fixation or production per unit chlorophyll), 

αB,  the initial light-limited slope of the P-E curve and a measure of the quantum efficiency of 

photosynthesis, β, the photoinhibition parameter (the negative slope, Eβ, of declining 

photosynthesis at high light intensities), and Ek, the light saturation parameter (Ek = (PB
max / 

αB) (Dower and Lucas 1993, Villafane et al. 2003). These parameters are influenced by many 

factors including, ambient light, the previous history of light exposure, the duration of light 

exposure, physiological condition of the cells (influenced by light history and nutrient 

status), species composition, water temperature, CO2 concentration, environmental and 

growth conditions, the season in which and the region from where the samples are drawn 
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(Dower and Lucas 1993, Macedo et al. 2001, Villafane et al. 2003). Other factors such as 

vertical mixing and ultraviolet radiation may also influence the P-E relationship (Yoder and 

Bishop 1985, Villafane et al. 2003 respectively).   

 

Figure 1.6  Schematic of P vs. E curve. P
B

max: a measure of maximum light-saturated photosynthetic capacity 
(i.e. the light-saturated maximum rate of carbon fixation or production per unit chlorophyll), α: 

 
the initial light-

limited slope of the P-E curve and a measure of the quantum efficiency of photosynthesis, β: the 
photoinhibition parameter (the negative slope, Eβ, of declining photosynthesis at high light intensities), and Ek: 
the light saturation parameter (Ek = (P

B
max / α

B
).  

 Given that phytoplankton have evolved with the development of the Southern Ocean 

over the last 15 million years, it is reasonable to expect that phytoplankton growth ought to 

be conditioned to a low light regime through adaptive physiological responses. When 

physiological parameters of P. vs. E. curves are examined (Sakshuag et al. 1997), Southern 

Ocean phytoplankton can show high degrees of photoadaptation to low ambient 

underwater irradiance (e.g. Dower and Lucas 1993, Dower et al. 1996, Bracher et al. 1999, 

Strass et al. 2002). In experiments on Antarctic diatoms, increased light utilisation was found 

in environments characterised by fluctuating light conditions. This is likely to be an 

adaptation of the microphytoplankton in overcoming such constraints and enabling them to 

attain a higher than expected productivity (Knox 1994). In a study by Bracher et al., (1999), 

light saturation (Ek) values were considerably lower for Southern Ocean phytoplankton than 

are typical for phytoplankton in temperate regions, indicating a degree of photoadaptation 

to a low light environment. In addition, phytoplankton in polar regions are also known to 

adapt to their in situ irradiances by modifying their maximal light-saturated photosynthetic 

rates (PB
max), and their photosynthetic efficiency (the light-limited rate, αB) whereby low light 
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communities will have similar or slightly lower values of PB
max and αB than communities 

acclimated to higher irradiances (Cochlan 2008).  

 Excessive irradiance on the other hand inhibits photosynthesis and is known as 

photoinhibition, whereby damage to the photosynthetic apparatus can cause the 

(photo)destruction of the photosynthesizing pigments (Powles 1984). More recently 

however, the term photoinhibition has also been used to define a slow and reversible 

reduction of the photosynthetic efficiency that depends on the irradiation and leads to a 

partial loss of capacity to convert radiant energy into dry material and, consequently, into 

growth (Long et al. 1994, Krause et al. 1995, Laing et al. 1995). Osmond (1994) named the 

first type ‘chronic photoinhibition’ and the latter, ‘dynamic photoinhibition’ (Alves et al. 

2002). 

 Laboratory and field studies have shown that N-limited phytoplankton have greater 

dark N uptake rates than N-replete phytoplankton. Nevertheless, given the N abundant 

environment of the Southern Ocean, it is more likely that heterotrophic N uptake versus 

dark uptake drives this stress response (Cochlan et al. 1991, Cochlan 2008).  Not only is the 

relationship between irradiance and N uptake in the Southern Ocean unclear, it is often 

fraught with inconsistencies, and most of our previous knowledge is based on comparison of 

specific N uptake rates measured at multiple depths throughout the euphotic zone utilising 

either in situ or replicated in situ irradiance fields (Cochlan 2008). As expected, maximal 

rates  for both NO3
- and NH4

+ (and in some studies- urea) are regularly observed at the 100 

or 50% isolumes, however maximal specific N uptake rates are also found at the low end of 

the light spectrum, 1.0- 0.1%% isolume (Cochlan 2008). Very few N uptake versus irradiance 

experiments have in fact been completed in the Southern Ocean thus enhancing the value 

of this particular study. 

Although the P-E approach can be extended to examine light controls on nitrogen 

assimilation, this approach has received scant attention (Cochlan 2008). The current debate 

has focussed heavily on iron and light limitation of photosynthesis (Moore et al. 2007), but 

we know also that iron and light co-limitation play a significant role in N metabolism, 

particularly with regard to NO3
-, which is considered more energetically expensive than 

reduced N assimilation (Lucas et al. 2007, Moore et al. 2007a &b). Conceptually, this 

becomes important because we suspect that at depth, NO3
- becomes light-limited with 

respect to reduced N uptake, as often revealed by a declining f-ratio with depth (Lucas et al. 
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2007). However, the only real way to rigorously test this is by using a P-E approach 

combined with 15N tracer studies on light-dependent uptake of both oxidised and reduced N 

species. If such an approach can be translated into quantifying new production at the basin 

scale using satellite remote sensing, this will be a considerable advance. While variation in 

P-E parameters may exist due to the above factors, it is still considered a valuable means of 

describing spatial and temporal patterns in light-dependent phytoplankton production. 

Furthermore, P-E relationships can be used to develop and verify province-based algorithms 

central to remote sensing of primary production in the Southern Ocean, as has been done 

elsewhere (Joint & Groom 2000, Platt et al. 2008). To gain a reliable estimate of global 

oceanic phytoplankton production, we need to scale local in situ measurements to the basin 

scale. This can be achieved by combining ocean colour remote sensing with in situ 

measurements, P vs. E relationships and regional algorithm development for specific bio-

optical provinces (Platt and Sathyendranath 1988, Dower and Lucas 1993, Prince et al. 1995, 

MacFadyen et al. 1998, Moore and Abbott 2002, Demidov et al. 2007).  The establishment 

of bio-optical provinces throughout the world oceans has progressed since the mid-90s, 

however, the south Atlantic sector of the Southern Ocean has yet to be described and 

verified according to its bio-optical properties.   

 

1.7 Goals and Aims of this Study 
 

Both the solubility and the biological pumps help mediate the climate by drawing 

CO2 out of the atmosphere and into the surface waters and subsequently the deep sea. 

While the physicochemical processes operate on relatively shorter timescales (years to 

decades), biological responses take much longer (centuries to millennia) and are inherently 

more challenging to discern. The Southern Ocean, a unique and sensitive environment, 

known to sequester CO2, is already undergoing marked change through the advent of more 

positive phases of the SAM, inducing increased upwelling and potentially causing this ocean 

to become a CO2 source.  While questions of this nature and how biological responses may 

give rise to or counter these changes is beyond the scope of this study, a significant 

contribution to ‘ground truthing’ the biology augments the increasing in situ database in a 

tempestuous and remote part of the world.   
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During the summer of December 2008 to February 2009 a survey on the SA Agulhas 

crossed six oceanic regions within the south Atlantic sector of the Southern Ocean, 

providing an opportunity to compare regional differences in the controls on phytoplankton 

primary production and export. In addition, this study provided a platform to test the light-

dependent uptake of both oxidised and reduced N species utilizing 15N tracer studies 

combined with the P-E method.  For the purposes of this study the focus was on the role of 

irradiance in limiting phytoplankton productivity to help answer the following key questions:  

1) What controls the spatial variability in phytoplankton biomass?  

2) What do nitrogen assimilation rates reveal about light as a limiting factor?   

3) What does the community composition and size based community structure 

indicate in terms of iron stress and ultimately, CO2 sequestration? 

4) What do P vs. E curves reveal about regional differences in the light dependant 

uptake of new versus regenerated production? 

 Answers to the above questions, in a section of the Southern Ocean that is infrequently 

sampled, provides a more comprehensive view of the factors influencing phytoplankton 

production and biomass distribution. Such information leads to an improved understanding 

of the Southern Oceans biological carbon pump, its role in the global ocean carbon cycle and 

how it is likely to respond to ongoing change. This thesis will address these questions over 

the course of three chapters. Chapter 2 will introduce the hydrography and nutrient 

environment across six regions of the Atlantic sector of the Southern Ocean and describe 

the spatial variability in phytoplankton biomass according to these regions. Chapter 3 will 

then address the role that light plays on primary production, nitrogen nutrition and 

phytoplankton assemblages according to these same regions and finally, chapter 4 will close 

with a thesis summary and concluding remarks. 
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Chapter 2.   Regional distinctions in phytoplankton distribution with 

respect to hydrography and nutrients in the South Atlantic sector of 

the Southern Ocean  

2.1 Introduction 

The Southern Ocean has the greatest inventory of unused macronutrients in the 

World Ocean (Levitus et al. 1993), but low average phytoplankton standing stocks. Reasons 

for this include low surface temperatures (Froneman & Perrissinotto 1996a, Atkinson et al. 

2001, Boyd 2002), light limitation (Behrenfield 2010, Venables and Moore 2011), deficiency 

of trace nutrients such as iron and silica (Boyd et al. 2000, Boyd et al. 2002, Arrigo et al. 

2008), and grazing by micro- and meso-zooplankton (Froneman & Perrissinotto 1996a, 

Atkinson et al. 2001). 

Regions of high seasonal rates of primary production and phytoplankton biomass do 

however exist within the Southern Ocean and these are often dominated by diatoms (Lucas 

& Probyn 1987, Tremblay et al. 2002). These high biomass regions are known for having the 

greatest rates of biogenic silicate deposition in any of the world oceans. Subsequently, the 

Southern Ocean is the oceanic province which exports (to 1000 m) the greatest proportion 

(~3%) of its total production (Honjo et al. 2008), thus making it inordinately important as a 

biologically mediated sink for atmospheric CO2 in its more productive regions.   

One of the crucial gaps in our understanding of the variability in phytoplankton 

distribution and production lies in our incomplete understanding of biological responses to 

physical forcing mechanisms that control the nutrient environment through upwelling and 

mixing processes, as well as the light environment through buoyancy controls of the mixed 

layer. Understanding the processes responsible for the variability of the mixed layer depth 

(MLD) and impacts on primary production is important as they are likely to change in a 

future characterised by global warming, leading to both positive and negative feedbacks in 

the global climate system (Sarmiento et al. 1998, Lovenduski et al. 2007). 

 

2.1.1 Hydrographic Fronts and Zones 

The south Atlantic sector of the Southern Ocean is one of the most energetic and 

important hydrographic regions of the world oceans. It is characterised by the close 

proximity of the Aghulhas retroflection, the Antarctic Circumpolar Current (ACC), the 
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marginal ice-edge zone (MIZ) and the highly dynamic Subantarctic island area in the western 

quarter, which is heavily influenced by local bathymetry and subsequent frontal meandering 

(Lutjeharms 1985, Ansorge et al. 2004, Olbers et al. 2004, Swart et al. 2010).  

The ACC extends uninterrupted around Antarctica and is the strongest and longest 

current system in the world, driven primarily by westerly winds and geostrophic flow. The 

ACC is largely characterised by a number of circumpolar frontal jets of enhanced flow 

associated with strong meridional gradients of temperature, salinity and density, which 

separate zones of uniform water masses (Whitworth 1980, Orsi et al. 1995). South of South 

Africa the ACC is bounded to the north by the Subtropical Front (STF), and southwards by 

the Subantarctic Front (SAF), the Antarctic Polar Front (APF), the Southern ACC Front 

(sACCf), and the Southern Boundary (SBdy), which delineates the southern extent of the 

ACC (Figure 2.1). Frontal dynamics and variability associated with these fronts are now 

known to influence phytoplankton biomass as well as provide biogeographic barriers that 

separate their distribution (e.g. Levy et al. 2001, Klein & Lapeyre 2009, Levy et al. 2009, 

Sokolov & Rintoul 2007). 

Regions between these fronts comprise six distinct oceanic domains. These are the 

Subtropical zone (STZ) (north of the STF), the northern ACC zone (N-ACC) (from the STF to 

the APF)  comprising the SAZ and the PFZ, the Antarctic zone (AAZ) (from the APF to the 

Sbdy), the Weddell Gyre region (south of the SBdy to 68°S), and finally the shallow 

bathymetric regions associated with the Subantarctic islands (SAISB) and the Antarctic 

Continental shelf zone (ACS) (Treguer and Jaques 1992, Pollard et al. 2002). Each of these 

zones typically has a characteristic phytoplankton community structure and biomass 

resulting from variability in the physical forcing mechanisms that drives the nutrient and 

light environment.  

The Subtropical Zone 

The STZ is a highly dynamic region characterised by macronutrient limitation and low 

chlorophyll concentrations. Nutrients are however less limiting in winter when a deepening 

of the seasonal mixed layer replenishes surface nutrients allowing for a subsequent increase 

in winter chlorophyll-a concentrations. This region is also a major conduit for heat and salt 

transport from the Indian to the Atlantic Ocean. The Agulhas Retroflection current lies 
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directly north of the STF and serves as a source of salty warm water brought from the Indian 

Ocean to the Atlantic Ocean through frequent (about 9 per year) shedding of large Agulhas 

Rings (Lutjeharms 2006, Swart et al. 2011 in press). Recent work reveals the significant yet 

pervious role that Agulhas Rings have in influencing the position of the STF (Swart et al. 

2011 in press).  The STF forms the northern most boundary of the ACC and marks a dramatic 

change from warm (>~11.5°C) saline (>~34.9 psu) tropical waters to fresher (34.2 psu), 

cooler (<~10°C) sub-polar waters to the south. Annual mean chlorophyll-a concentrations 

range from 0.4  - 0.6  mg m-3 in winter, peaking at 1.0 mg m-3 in summer (Machu et al. 2005) 

Highest chlorophyll concentrations tend to be associated with the STF and eddy shedding by 

the Agulhas Retroflection or meandering frontal activity (Swart et al. 2011). Phytoplankton 

production is dominated by the microbial web whereby small cells out compete larger ones 

in low nutrient conditions due to surface area to volume ratios (Falkowski et al. 2008, 

Froneman & Perissinotto 2008). The implications for this are a very inefficient biological 

carbon pump in the STZ.  

The Northern ACC Zone 

The N-ACC extends from the STF to the APF, and thus includes the SAZ between the 

STF and the SAF and the PFZ between the SAF and the APF (see Figure 2.1). This region is 

characterised by fresher (~34.1 psu), cooler (~2-5°C), low productivity (0.5–1.0 gC m-2 d-1 in 

December [Arrigo et al. 2008]) waters found between fronts, as well as more productive (2 

gC m-2d-1 [Ariggo et al. 2008]), stable waters at fronts. Enhanced chlorophyll concentrations 

(>1.0 mg m-3 Moore & Abbott 2000) associated with the major fronts have been well 

documented and attributed to a number of processes that include cross-frontal mixing of 

macronutrients, an improved light environment through enhanced stratification and 

increased Fe concentrations from upwelling and the interaction of the fronts with shallow 

topography (e.g. Lutjeharms et al. 1985, Laubscher et al. 1993, Moore and Abbott 2002). 

Although traditionally, enhanced chlorophyll concentrations have been associated with 

mesoscale activities at the frontal features, Sokolov and Rintoul (2007a) more recently 

revealed that multiple frontal branches delimit regions with similar elevated chlorophyll 

concentrations and seasonality, rather than the fronts themselves being associated with 

enhanced productivity, at least where fronts are distant from topography.  
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Sokolov and Rintoul (2007a) identified the frontal positions using high resolution 

satellite sampling of sea surface height (SSH) contours. This method allows fronts to be 

tracked on a larger, more refined spatial scale across large sectors of the Southern Ocean, as 

well as over weekly periods (Sokolov & Rintoul 2002, 2007a, Swart et al. 2008). This 

approach enabled a re-investigation of the correlation between surface chlorophyll, fronts 

and topography. The SAZ is distinguished by deep winter mixed layers, low silicate 

concentrations, and a phytoplankton assemblage primarily made up of coccolithophores, 

with few diatoms (Sokolov & Rintoul 2007b). The PFZ, typically shows less seasonal variation 

in the mixed layer depth compared to the SAZ, has surface waters abundant in 

macronutrients (nitrate, phosphate, & silicate) year-round, and a phytoplankton community 

largely comprised of diatoms (Sokolov & Rintoul 2007a). 

The Antarctic Zone 

The AAZ extends from the APF, characterized by a steep gradient in high biogenic 

silica content, seasonally prolific large diatom communities and where the northern extent 

of upwelled circumpolar deep water (CDW) occurs (Moore & Abbott 2002), to the SBdy of 

the ACC, where deeper mixed layers occur (~100 m) compared to the north (Joubert et al. 

2010) and  the southern limit of the oxygen minimum is associated with upper circumpolar 

deep water (UCDW) (Sokolov & Rintoul 2007) (Figure 2.1).   The AAZ is most notable 

because of seasonal sea ice that greatly influences this region. The annual maximum of 

seasonal sea ice around Antarctica is 50 % greater than the continent itself and covers ~40% 

of the Southern Ocean at it greatest extent (Lizotte 2001). Highest chlorophyll 

concentrations are generally associated with the MIZ (Arrigo and van Dijken 2004). A flux of 

biogenic material from sea ice to the water column and benthos follows ice melt, and some 

of the sea ice algal species are known to occur in ensuing pelagic phytoplankton blooms. 

Relative dominance of these species could be important in determining their 

biogeochemical contribution to the Southern Ocean and their ability to seed blooms in 

marginal ice zones.  The MIZ is a loosely defined term, but for the purposes of this study is 

described as the region of the pack ice which is significantly affected by ocean swell because 

of its proximity to the open ocean boundary. This may extend hundreds of kilometres from 

the ice edge and in some regions right up to the coast.  It is an area of enhanced ice drift, 

deformation and divergence. Large scale annual estimates of primary production have 
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shown that as sea ice recedes during spring and summer, favourable conditions lead to 

phytoplankton blooms that persist for weeks and for hundreds of kilometres away from the 

ice edge.  Favourable conditions include the formation of a shallow and stable surface mixed 

layer driven by fresh water input from ice melt (Smith Jr. & Nelson 1986). The shallow mixed 

layer creates an optimal light environment for phytoplankton production by favouring 

increases in specific growth rates that exceed export and losses through grazing, resulting in 

biomass accumulation (Sverdrup 1953, Mitchell et al. 1991, Comiso et al. 1993). In addition, 

ice melt is known to provide seed populations of algae (Lizotte 2001) and release stored 

dissolved Fe (dFe) (de Baar et al. 2005) which fuels primary production (Sedwick and DiTullio 

1997, Gao et al. 2003, Grotti et al. 2005, Lannuzel et al. 2008). There are a number of 

possible sources of this Fe, including aeolian dust originating from Patagonia, ice-sheet 

contact with the Antarctic continent, or from ice bergs that have run aground over the 

continental shelf (Klunder et al. 2011). Equally important is the impact of seasonal ice 

growth and retreat on underwater irradiance for phytoplankton production (Vernet et al. 

2008).  

The Weddell Gyre  

Situated in the Atlantic Sector of the Southern Ocean, the Weddell Gyre is an 

elongated, mainly wind-driven, cyclonic gyre south of the ACC.  Water flows westwards 

along the southern limb and eastwards along the northern limb of the gyre.  Due to its 

divergent nature, Ekman forcing causes major upward transport of subsurface water in the 

gyre’s centre (Bakker et al. 2008). This circumpolar deep water is enriched with dissolved 

inorganic carbon (DIC) and nutrients (Hoppema et al. 1997, Bakker et al. 2008). Seasonal ice 

coverage also strongly influences the cycling of chemical species and biological processes in 

this region. For example, chlorofluorocarbons (CFCs) and oxygen (O2) are under-saturated, 

but CO2 is over-saturated in ice-covered Weddell Gyre surface waters relative to their 

atmospheric concentrations (Bakker et al. 2008), indicating that ice caps the water column, 

thus hindering air-sea gas exchange. Seasonal ice coverage is a significant feature of the 

Weddell Gyre region. This typical pattern of ice formation and retreat differs longitudinally 

in the Weddell Gyre, where in the far west perennial ice is found, while towards the east, 

the vast ice field disappears rapidly in late spring and early summer due to the highly 

dynamic hydrography of this region (Bakker et al. 2008). Large, pronounced phytoplankton 
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blooms can occur in the centre of the WG region (Moore & Abbott 2000). Such high 

biological activity can lead to an effective biological pump resulting in a net CO2 sink in the 

gyre centre in summer despite the upwelling of CO2 rich, CDW (pers. comm. Sandy Thomalla 

& Pedro Monteiro). However, it is important to note that algal blooms are not intrinsic to 

sea ice retreat.  Variability in bloom formation is more likely as ice recedes because of 

varying degrees of wind speed (and thus mixed layer depth), differences in Ekman-induced 

upwelling/downwelling by the winds, and differential accumulation of atmospheric dust on 

the ice (which affects the amount of iron released to the water column during melting) 

(Moore & Abbott 2000). 

Subantarctic Islands and Shallow Bathymetry Regions 

Other areas of high rates of seasonal phytoplankton production (chlorophyll values 

exceeding 1.0 mg m-3) are in close proximity to the continental and Subantarctic island 

margins (from here referred to as the SAISB region) (Ward et al. 2005). Here, runoff from 

the land masses or upwelled macro and micro nutrients (SiO4, NO3, PO4, dFe) fuel 

phytoplankton productivity that are in stark contrast to the Fe-limited HNLC open ocean 

zones (Moore & Abbott 2000, Ward et al. 2005). For example, at the Crozet Islands, 

downstream increases in dFe from both benthic sediments and from island run-off result in 

elevated nitrate uptake and new production by diatom-dominated phytoplankton blooms, 

as revealed by high (>0.5) f-ratios (Lucas et al. 2007, Pollard et al. 2009). Moreover, 

regionally elevated new production rates are thought to stimulate the avifaunal and benthic 

community food webs, thus promoting a local and seasonal CO2 “sink”, as is evident at the 

Crozet islands (Bakker et al. 2007). The South Sandwich Islands and South Georgia, located 

in the NE Scotia Sea, is another example of a biological ‘hotspot’ where despite their small 

area relative to the greater Atlantic sector of the Southern Ocean, they provide a rich source 

of nutrients and seeding of blooms downstream (Ward et al. 2005). Regions such as these 

create important areas for local but significant POC export and biological CO2 draw-down in 

a predominantly HNLC Southern Ocean (Lucas et al. 2007). In these regions of shallow 

bathymetry, current flow through relative vorticity (Hogg and Blundell 2006, Moore et al. 

1999) and/or bottom pressure torque (Sokolov and Rintoul 2007a) is believed to increase 

the flux of Fe into surface waters (Park et al. 2010, Venables and Moore 2010) which 

explains the commonly found inverse correlation between depth and chlorophyll in the 
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Southern Ocean (Comiso et al. 1993). These areas are in stark contrast to the open ocean 

zones, notorious for being dessert-like, where any combination of limitations including dFe, 

SiO4 and/or light maintains the HNLC condition. 

Antarctic Continental Shelf Zone 

The ACS is confined to waters that overlie the continental shelf south of 68°S 

(Treguer and Jaques 1992, Orsi et al 1995, Arrigo et al. 2008).  It is distinguished as a highly 

productive area in the Southern Ocean where spring/summer chl-a concentrations can 

reach 10 mg m-3 (Figuerora 2002, Vaillancourt et al. 2003). These high chl-a concentrations 

are thought to result from dFe and particulate Fe inputs from the ice shelf, melting bay ice, 

ice bergs (Arrigo et al. 2008, Klunder et al. 2011) and resuspension of continental shelf 

sediments (Johnson et al. 1999, Grotti et al. 2005). A consequence of the melting ice is a 

fresher, more stable water column structure allowing for favourable phytoplankton growth 

conditions (Lizotte et al. 2001). The combination of characteristically high dFe supply 

(Lannuzel et al. 2008) and improved mean light conditions in the surface mixed layer (Moore 

and Doney 2006, Arrigo and van Dijken 2004, Sokolov 2008) results in some of the most intense 

phytoplankton blooms and associated high chl-a concentrations of all the southern ocean 

zones (Moore & Abbott 2000). As an example of the influence of the continental shelf, the 

semi-enclosed Ross Sea is characterised by strong seasonal blooms of diatoms and 

Phaeocystis Antarctica where maximum surface chl-a concentrations have reached 10 – 20 

mg m-2 during a summer bloom event (Arrigo & Van Dijken 2007). 

2.1.2 The Current Study 

This study takes advantage of four research cruise transects in summer 2008-2009 

that crossed the six distinct biogeochemical provinces described above. The data collected 

addresses the causes of regionally distinct phytoplankton distribution through changes in 

hydrography that influences the available macronutrient and light environment. The four 

transects were as follows: Leg 1) Cape Town to Antarctica, Leg 2) Antarctica to South 

Georgia, Leg 3) the reciprocal southbound transect from South Georgia to Antarctica and 

Leg 4) the northbound return leg from Antarctica to Cape Town (see Figure 2.1). Results 

from this study investigate the main drivers that account for the variability in phytoplankton 

biomass distribution and the implications for CO2 flux. In so doing, the response of the 



Univ
ers

ity
 of

 C
ap

e T
ow

n

32 

Southern Ocean’s biological carbon pump to adjustments in the climate can be better 

understood and predicted.  

2.2 Methods 

2.2.1 Study Area and Cruise Track 

The South African National Antarctic Expedition (SANAE 48) was carried out on the 

MV SA Agulhas during austral summer (23 December-2 March) of 2008-2009. Four physical 

oceanography transects were carried out, three of which included biological sampling. The 

first leg from Cape Town to SANAE (23 December – 04 January, 34°S, 14°E to 70°S, 2°W) was 

primarily concerned with underway hydrographic sampling of surface waters due to the 

ship’s main role as logistical transport of materials and people to the SANAE base. The 

second and third legs, however, were dedicated to biological and oceanographic research 

where station time was available. Leg 2, a northwest track to the South Sandwich and South 

Georgia Islands (26 January – 02 February, 70°S, 2°W to 52°S, 32°W) and Leg 3, the 

southeast reciprocal leg from South Georgia Island to SANAE (02 February – 09 February, 

52°S, 32°W to 70°S, 2°W) provided the main focus of the biogeochemical observations with 

both underway and water column sampling using a CTD and in-line messenger triggered 20L 

General Oceanics sampling bottles. Unfortunately, however, due to winch system failure at 

the outset of Leg 2, water column sampling was not possible, such that only surface waters 

(to~5m) were sampled thereafter.  The lack of CTD data on legs 2 and 3 prompted additional 

biological stations on the return leg 4 from SANAE to Cape Town (21 February – 05 March, 

70°S, 0° to 37°S, 14°E). 
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Figure 2.1. Map of cruise track (discrete sampling stations and black labelled productivity stations) overlaid on 

seafloor bathymetry. The scale bar represents ocean depth in metres.  The four legs are represented by 

progressively darker symbols: Leg 1 from Cape Town to Antarctica in white; Leg 2 from Antarctica to South 

Georgia Island in light grey; Leg 3 from South Georgia Island to Antarctica in dark grey; Leg 4 from Antarctica to 

Cape Town in black. Frontal positions, determined for Leg 4, are displayed on the map and brackets delineate 

zones the study region has been divided into. Fronts from north to south: Subtropical Front (STF), Subantarctic 

Front (SAF), Antarctic Polar Front (APF), Southern ACC Front (sACCf) and the Southern Boundary of the ACC 

(SBdy). Zones from north to south: Subtropical Zone (STZ), Northern ACC Zone (N-ACC), Antarctic Zone (AAZ), 

Weddell Gyre (WG) and Antarctic Continental Shelf Zone (ACS).  

2.2.2 Discrete Underway Measurements 

On Leg 1 from Cape Town to SANAE, discrete underway samples for nutrients (NO3, 

SiO4, PO4) and , chlorophyll-a were taken from the uncontaminated surface (~5 m) sea water 

supply in the aft semi-wet lab. Following the winch failure, no CTD’s were possible, so an 

alternative water source for all biological measurements was required. Although the 

uncontaminated underway lab supply was considered suitable for chemical properties (e.g. 

nutrients), it was not clear how much stress or damage individual cells would encounter 

while being pumped from the engine room to the lab. As intact and unstressed cells are 
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essential for primary production incubation experiments, an alternate water source was 

sampled directly from the engine room (also at ~5 m). This water source consisted of an 

inlet pipe from the port side hull of the ship which opened and closed via a valve. As this 

water source was not subjected to pumping forces or pre-filters, it was considered suitable 

for incubation experiments. To provide appropriate ancillary biogeochemical variables, this 

water source was also used for all subsequent nutrient and biological sampling (Legs 2, 3 

and 4).  

2.2.3 Hydrography 

Frontal positions 

Temperature profiles to 800 m were obtained at a 20 nautical mile resolution (10 nm 

across fronts) using Sippican ‘Deep Blue’ Expendable Bathythermograph’s (XBTs) on Legs 1 

and 4. Data were processed using MATLAB to construct temperature sections and frontal 

positions were defined according to Orsi et al. (1995) who defined the fronts according to 

subsurface temperature criteria. Due to the absence of water column temperature data for 

Legs 2 and 3, fronts were identified using Sea Surface Height (SSH) data from satellite 

altimetry. The SSH information was derived from the 'Maps of Absolute Dynamic 

Topography' (MADT) produced by AVISO. This method uses the entire historical weekly 

dataset to identify the position of the maximum SSH gradient and the associated MADT 

value/contour where this maximum is found (Swart et al. 2008). Using the frequency 

distribution of all historical data, an optimised MADT contour is selected to best describe 

the position of the front and this contour is used to identify frontal positions on weekly 

maps (Swart et al. 2008). Sea surface temperature (SST) and salinity were recorded 

underway on the pCO2 instrument every minute and the data presented have been 

averaged over 5 minute intervals.  

 

Mixed layer depth  

Mixed layer depth (MLD) was calculated from the vertical temperature structure of 

the water column. MLDs for Legs 1 and 4 were defined as the depth where ∆T°C was >0.2°C 

relative to the temperature at 10 m, as outlined by De Boyer-Montegut et al. (2004). 



Univ
ers

ity
 of

 C
ap

e T
ow

n

35 

However, where stratification becomes dominated by salinity in the MIZ, this reduces the 

integrity of this proxy as a measure of MLD, so caution must be exercised.  

 

Sea Ice Concentration 

Daily sea ice concentrations were downloaded from the AE_SI25.2 dataset (Cavalieri 

et al. 2004) at the National Snow and Ice Data Centre (NSIDC) Data Pool website: 

http://nsidc.org/data/data_pool/index.html. These data come from the Advanced 

Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the 

NASA Earth Observing System Aqua satellite. The data are a level-3 gridded product, 

mapped to a polar stereographic grid at a spatial resolution of 25 km. Images were 

constructed using the M_MAP mapping package in MATLAB.  

 

2.2.4 Nutrients  

Nitrate (NO3
-), Silicate (Si(OH)4), Phosphate (PO4

3-), ammonium (NH4
+) and urea 

measurements were made according to the manual spectrophotometric method described 

in Grasshoff et al. (1983) and Parsons et al. (1984), scaled to a 5 ml sample volume. On leg 1, 

only NO3, Si(OH)4 and PO4
3- concentrations were determined as no productivity 

measurements were performed. Nitrate concentrations were determined colourimetrically 

after reduction to NO2 on a cadmium column and corrected for ambient NO2 (Nydahl 1976).  

On Leg 3 of the cruise the light bulb of the spectrophotometer blew and 17 nutrient samples 

(BRU60 to BRU77) had to be frozen until a replacement bulb was delivered in time for Leg 4.  

2.2.5 Phytoplankton Biomass  

Chlorophyll-a  

Throughout this dissertation chlorophyll-a (chl-a) concentrations are used as a proxy 

for phytoplankton biomass. The limitations in using chl-a are well known, most markedly the 

fickle C:Chl-a cellular ratios of phytoplankton (De Baar et al. 2005, Seeyave et al. 2007, Mills 

et al. 2010). But despite this variability, chl-a prevails as the most practical measurement of 

phytoplankton biomass and distribution.  Chl-a samples were collected by filtering 250 ml of 

seawater through 47 mm glass fibre filters (Whatman GF/F). The initial aim was to measure 

total chl-a fluorometrically on board the ship using a Turner Designs fluorometer, calibrated 

with fresh chlorophyll standard (Sigma, UK) and set up to measure chl-a in the presence of 
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chl-b following Welschmeyer (1994). However, as the fluorometer was malfunctioning, chl-a 

filters were stored at -29oC for later analysis ashore at the Marine and Coastal Management 

facilities. The samples were homogenized in 10 ml of 90% acetone, centrifuged and 

measured on a Turner Designs Flourometer calibrated with fresh chl-a standards (Sigma, 

UK) following the Welschmeyer (1994) protocol. Size-fractionated chl-a analyses were 

carried out for 9 of the 11 primary production surface samples. Total chl-a was filtered 

directly onto a Whatman GF/F filter. The <20 µm fraction was pre-screened through a 20 µm 

mesh screen and then filtered onto a GF/F filter.  The < 1 µm fraction was filtered through a 

25 mm Nucleopore membrane filter and then onto a GF/F filter. These sizes classes were 

used to delineate the micro- (>20 µm), nano-(1-20 µm) and picoplankton (<1 µm) size 

fractions. Where corresponding High Performance Liquid Chromatography (HPLC, see 

chapter 3) and chl-a data were available (Legs 2, 3, and 4), chl-a concentrations were 

compared as a means of quality control. At four stations on Legs 2 and 3, noticeable 

differences were observed between chl-a concentrations derived from fluorescence and 

HPLC (BR1, BR26, BR60 and BR64). As the HPLC derived values were more consistent with 

the relative spatial trends seen in the chl-a distribution, HPLC values have replaced the 

fluorescence values for those four stations. HPLC derived chl-a concentrations are however 

frequently lower than those determined fluorometrically (e.g. Arrigo et al. 2008). A 

regression analysis of both chl-a data sets (excluding the four outliers) confirmed that the 

HPLC derived chl-a concentrations were generally ~15% lower than those derived by 

fluorometry. Accordingly, the substituted chl-a data (from HPLC) have been corrected using 

the regression equation in Figure 2.2.  
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Figure 2.2 Regression analysis of Fluorometer versus HPLC derived chlorophyll-a (n = 108). 

 

Satellite Chlorophyll-a  

A monthly mean composite of chl-a concentration for the months of December 

2008, January and February 2009 were created using the GlobColour Project website, 

http://www.globcolour.info/data_access.html. The Full Product Set (FPS) data set consists 

of ocean colour merged data products using the merging algorithms recommended at the 

first GlobColour workshop in Villefranche Sur Mer (France) on the 4-6 December 2006. The 

FPS includes level 3 merged products as monthly averaged products mapped on a 

Grid/Projection of 4.63 km equal area bins on an integerised sinusoidal grid. Satellite images 

from MERIS, MODIS and SeaWiFS products are merged using a Global Simulation Model 

(GSM) method. Images were constructed using the M_MAP mapping package in MATLAB.  

2.3 Results 

2.3.1 Hydrography 

Water column structure north of the STF was highly stratified on Leg 1.  Later in the 

season stratification is even more pronounced in the subtropical zone (Leg 4) and mixed 

layer depth shoals. Stratification breaks down south of the SAF (Leg 1) and closer to the APF 

(Leg 4).  Subducting cold water (~1-2°C) reaches the surface south of the Sbdy (~60°S) on Leg 
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1 and remains submerged below warmer water (~3-4°C ) in this area on Leg 4 (Figures 2.3 a 

& b). 

Frontal positions 

Temperature sections constructed from XBT profiles together with the five frontal 

positions (STC, SAF, APF, sACCf, SBdy) are shown for Leg 1 (Figure 2.3a) and Leg 4 (Figure 

2.3b) and listed in Table 2.1 (Orsi et al. 1995). Between Legs 1 and 4 all front positions 

remained the same with exception of a slight southerly shift of the SBdy on Leg 4 (Table 

2.1). 

 

STF SAF APF sACCf SBdy 
a. 
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Figure 2.3a & b. Temperature sections for Leg 1 (a) and Leg 4 (b) constructed from XBT data. Fronts are 
illustrated by red dashed lines.  From north to south: Subtropical Front (STF), Subantarctic Front (SAF), 
Antarctic Polar Front (APF), Southern ACC Front (sACCf) and the Southern Boundary of the ACC (SBdy). 
The colour bar represents temperature in °C. 

The positions of the two fronts on transect Legs 2 and 3 (SBdy, sACCf) are shown in 

figure 2.4 and listed in table 2.1. After passing south of South Georgia (36°W), the SBdy and 

sACCf turn north and then back on themselves, returning to their initial latitude (56°S and 

57°S, respectively). During Leg 3, the ship’s track crossed the SBdy on 3 occasions and for a 

time travelled along it (Figure 2.3b). This period (55.8-56.7°S) is represented throughout this 

dissertation by the space between the vertical black dashed lines marking travel along the 

SBdy.  

STF SAF APF sACCf SBdy 

b. 
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Figure 2.4 Frontal positions for Legs 2 and 3 identified using sea surface height gradients constructed from 
Maps of Absolute Dynamic Topography (MADT). The white line represents APF, black the sACCf and red the 
SBdy. The colour bar represents the gradient in metres in sea surface height (SSH) per 100km. The values 
followed in the MADT for each front are: APF: -0.8058 m, SACCF: -1.0434 m, and the SBdy: -1.1748 m. 

The frontal positions derived from both approaches (temperature sections and SSH) 

shows very good agreement with their classical positions (Orsi et al. 1995) (Table 2.1).  

Marginal exceptions are on Leg 1 and 4 where the SAF is north of the classical position by 

~3°and on Leg 1 and 4 where the sACCf is south of the classical position by ~1° and on Leg 2 

where the sACCf is south of the classical position by ~4° (Table 2.1).  

Table 2.1 Classical and cruise related frontal positions according to subsurface temperature criteria of Orsi et 
al. (1995) together with satellite altimetry based estimates of frontal positions according to SSH contours, 
between 1992-2009, reproduced from Swart et al. (2008). STF is the Subtropical Front, SAF the Subantarctic 
Front, APF the Antarctic Polar Front, sACCf the southern ACC front, SBdy the southern boundary of the ACC 
front and θ is potential temperature.  

Front Temperature Criteria Classical 
Position  

(° S) 

Leg 1  
(° S) 

Leg 2 
(°S) 

Leg 3 (° S) Leg 4 (° S) 

STF 10°C < θ100m < 12°C 39.6 39.9 n/a n/a 39.9 

SAF θ > 4-5°C at 400m, farther 
north 

47.6 44.4 n/a n/a 44.4 

APF θ < 2°C along θmin at 
z <200m, farther south 

49.6 49.7 n/a n/a 49.8 

sACCf θ < 0°C along θmin at  
z <150m, farther south 

52.4 53.4 56 52.6 53.4 

SBdy Southern limit of vertical 
Maximum of θ > 1.5°C, (~200m) 

56.1 55.6 57 54.3, & along 
edge until 57.3 

55.9 

SBdy 

sACCf 

APF 
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 Sea Surface Temperature and Salinity 

Surface plots of SST and salinity for Legs 1 and 4 are depicted in figure 2.5a,b. SST in 

the STZ is >20°C and decreases across the ACC to <0°C in the AAZ. A simultaneous decline in 

salinity occurs from north (~35.5 psu) to south (<34 psu). There is noticeable variability in 

SST south of the SBdy, while salinities from the APF to the SBdy are continually low. The 

position of the STF and the SAF coincide with striking gradients in SST and surface salinity. 

Salinities between the SBdy and APF are again consistently fresher than values to the south 

of the SBdy, apart from waters against the ice shelf. In Both Leg 1 and 4 there was an 

exceptionally low decrease in salinity (~33.5 and 34psu, respectively) at ~61°S in the WG 

region (see feature delineated on Figure 2.5 a, b). 

 

 

 

Figure 2.5a & b. Leg 1 and 4 sea surface temperature (black) and salinity (blue). Vertical lines indicate the 
position of the STF, SAF, APF, sACCf, & SBdy. Brackets on top of the figure indicate the regions: STZ, N-ACC, 
AAZ, WG, & ACS. The position of the low salinity feature within the WG is indicated. 

Along Leg 2, SST rises from <0°C at the southern extent of the transect to ~6°C in the 

north (Figure 2.6a). Decreased salinities were detected south of 68°S, at ~60.5°S (also 

STF SAF APF sACCf SBdy 

STZ N-ACC AAZ WG ACS 

STZ N-ACC AAZ WG ACS 

STF SAF APF sACCf SBdy 

low salinity feature 

low salinity feature 

a. 

b. 
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associated with a rise in SST), ~54.5°S and north of the SBdy in the ACC. Along Leg 3 (Figure 

2.6b), decreased salinity is evident near the ice shelf (~70°S). There is also a decrease in SST 

between 58 and 59°S that is coincident with a shallow bathymetric feature in the WG 

region. Again on both Legs 2 and 3 a very low salinity feature (< 33.5 psu) occurred at ~61°S 

in the WG region (see feature delineated on Figures 2.6a,b). It appears to be a common 

characteristic of all 4 legs. 

 

 

 

 

 

Figure 2.6a & b. Legs 2 and 3 surface temperature (black) and salinity (blue). Vertical lines indicate the position 
of the STF, SAF, APF, sACCf, & SBdy. Sampling along the SBdy is indicated by the region in between the vertical 
dashed lines.  Brackets on top of the figure indicate the regions: STZ, N-ACC, AAZ, WG, & ACS. The position of 
the low salinity feature within the WG is indicated.  

 

Seasonal Sea Ice Extent and Retreat 

Daily sea ice coverage around Antarctica is depicted in figures 2.7 a-h for the 1st of 

November, the 15th and 22nd of December 2008; the 1st, 15th and 22nd of January and the 1st 
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and 15th of February 2009. In the beginning of December, intact sea ice surrounds the 

continent (Figure 2.7a), by the 15th of December the sea ice begins to break up and leads in 

the sea ice begin to appear (Figure 2.7b). Sea ice in the eastern Weddell Gyre melts faster 

than in the west, where the Weddell Sea remains ice-covered throughout the summer 

(Figures 2.7b-h).  

 

 

 

 

 

Figures 2.7 a-h. Daily Sea ice concentration (% represented by the colour bar) images for 8 selected days during 
austral summer of 2008-09. 
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During Leg 1 the ship travelled through the plume of ice just south of 60°S along the prime 

meridian on the 31st of December 2008 (Figure 2.7d) reaching the shelf on the 4th of January 

2009. The ship departed the ice shelf on the 26th of January 2009 for the start of Leg 2, here 

the least amount of ice was encountered while in close proximity to the continent.  The ship 

returned to Antarctica on 9th February 2009 where late summer conditions persisted and 

very little ice was present.  

2.3.2  Nutrients 

Cape Town to Antarctica (Leg 1) 

All nutrients were low throughout the Subtropical Zone (Figure 2.8a). At the STF, 

nitrate starts to increase to a range of 10-18 μmol l-1.  In the N-ACC region (where the SAF 

the APF are crossed) nitrate concentrations increase to 22 μmol l-1 and reach peak 

concentrations (20-35 μmol l-1) throughout the AAZ, WG and ACS zones. Silicate 

concentrations start to increase from the APF and peak (35 μmol l-1) after crossing the sACCf 

in the AAZ there high concentrations are maintained throughout the WG and ACS. There is 

one notable decline in silicate and nitrate concentrations at ~61°S, in the WG region 

coincident with the low salinity feature referred to above and marked on figure 2.8a. 

Phosphate concentrations were between 0-2 μmol l-1 for the entire length of this transect.  

Maximum concentrations of 2 μmol l-1 occurred from the APF southwards. A notable decline 

in the WG region coincided with a decline in nitrate and silicate at ~61°S. 

Antarctica to Cape Town (Leg 4) 

Nutrient concentrations follow a very similar pattern to Leg 1, where peak 

concentrations occur south of the APF, in the AAZ, WG and ACS regions (Figure 2.8b).  

Notable peaks in silicate occur at the sACCf (23 μmol l-1) and in the ACS zone (35 μmol l-1). 

Ammonium and urea concentrations are highly variable with one notable peak in 

ammonium at the STF (2 μmol l-1).    
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Figure 2.8a & b. Nutrient concentrations Leg 1(a) and Leg 4 (b). PO4
3-

, NH4
+
, and urea concentrations have been 

scaled by a factor of 10 to display Si(OH)4 and NO3
-
 on the same axis. Vertical lines indicate the position of the 

STF, SAF, APF, sACCf, and SBdy. Brackets on top of the figure indicate the regions: STZ, N-ACC, AAZ, WG, & ACS. 
The position of the low salinity feature within the WG has also been indicated (a). 
 

Antarctica to South Georgia (Leg 2) and South Georgia to Antarctica (Leg 3) 

Nitrate and silicate are highest in concentration (ranging from 20 - 27 μmol l-1 and 20 

- 56 μmol l-1 respectively) throughout the ACS and WG regions and decline significantly 

when passing through the South Sandwich and South Georgia Island region (13 μmol l-1 and 

2 μmol l-1 respectively) (Figure 2.9).  Another notable decline occurred in nitrate and silicate 

when travelling along the SBdy. On both legs sharp declines in silicate occurred at ~61°S 

which coincides with the low salinity feature referred to above (Figure 2.9). A prominent 

peak also occurred over the region of shallow bathymetry in the WG on Leg 3. Ammonium 

and urea are highly variable throughout both transects (Figure 2.9), however a prominent 

peak in NH4+ occurred at 61°S. 
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Figure 2.9 Nutrient concentrations along Legs 2 and 3. PO4
3-

, NH4
+
, and urea concentrations have been scaled 

by a factor of 10 to display Si(OH)4 and NO3
-
 on the same axis. Vertical lines indicate the position of the STF, 

SAF, APF, sACCf, and SBdy. Sampling along the SBdy is indicated by the region in between the vertical dashed 
lines.   Brackets on top of the figure indicate the regions: STZ, N-ACC, AAZ, WG, SAISB (Island Influenced) and 
ACS. The position of the low salinity and shallow bathymetry features within the WG has also been indicated.  

 

2.3.3 Chlorophyll-a and Mixed Layer Depths  

Cape Town to Antarctica (Leg 1) 

Chl-a ranged between 0-3.3 mg m-3 along Leg 1 (Figure 2.10a).  Chl-a concentrations 

north of the SAF were generally low (< 1 mg m-3), except for the first station at 34.36°S 

where a concentration of 1.2 mg m-3 occurred. Elevated chl-a concentrations coincided with 

the SAF at 44°S and continued to increase southwards reaching a peak of 1.35 mg m-3 (46°S) 

and 1.75 mg m-3 (48°S) in the N-ACC zone. A sharp decline followed this, where values 

remained under 1 until reaching 58.1°S (WG region), where highest chl-a concentrations of 

2.24 mg m-3 at 58.1°S and 2.58 mg m-3  at 65°S were encountered. In the ACS region a peak 

of 3.27 mg m-3 occurred at 69°S.  

Mixed layer depths (MLDs) were variable along this transect, ranging from 17 m 

close to the SAF to >80 m north of the STF (Figure 2.10a).  An alternating pattern from very 

shallow (<20 m) to deep (>80 m) MLDs was prominent north of the STF. MLD shallowed to 

~20 m to the north and the south of the SAF. In the AAZ, MLDs extended to >60 m south of 

the APF. South of the sACCf MLDs were ~50 m. An uncharacteristic deepening of the MLD 

(~80 to 90 m) occurred in close proximity to the sea ice in the ACS region (68-69°S).  
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Antarctica to Cape Town (Leg 4) 

Chl-a concentrations were generally low along the length of this transect (mean 0.49 

mg m-3) (Figure 2.10b). The greatest values were encountered at 68°S in the ACS region (1.5 

mg m-3), 60°S in the WG region (0.96 mg m-3), 52.3°S in the AAZ (0.66 mg m-3) and at the 

STF, ~40°S (0.62 mg m-3). 

 

 

 

 

 

 

Figure 2.10a & b. MLD (blue) and chl-a concentration (green) along Leg 1 (a) and Leg 4 (b). Vertical lines 
indicate the position of the SBdy, sACCf, APF, SAF and STF. Brackets on top of the figure indicate the regions: 
STZ, N-ACC, AAZ, WG, and ACS. The position of the low salinity feature within the WG has also been indicated.  
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MLDs along this transect were generally deeper than those experienced on leg 1 

(Figure 2.10b). In the AAZ, MLDs were generally ~100 m while in the PFZ MLDs were ~80 m. 

There were two regions, however, in the middle of these zones where the MLD had shoaled 

to ~50 m (55.6 and 47.5°S). North of the STF, MLDs were again highly variable with depths 

alternating between 60 m and 20 m in close proximity to one another. 

 

Antarctica to South Georgia (Leg 2) and South Georgia to Antarctica (Leg 3) 

On Leg 2 chl-a concentrations were generally < 1 mg m-3 with peaks in chl-a 

occurring in the WG region at ~68°S and at ~61°S where the low salinity feature is 

delineated (2.25 mg m-3 and 1.7 mg m-3 respectively) (Figure 2.11a). Another two notable 

peaks (2.94 and 1.80 mg m-3) occurred in the island influenced area (52.3°S and 52.1°S 

respectively). 

 Along Leg 3, chl-a concentration again peaked in the WG region at latitude ~61°S 

(low salinity feature) and ~59°S (2.4 and 1.5 mg m-3
 respectively), and in the ACS zone at 

68.5°S (3.0 mg m-3) (Figure 2.11b).  A decline in chl-a concentration (0.6 mg m-3) occurred 

along the SBdy, in the AAZ region. 

Satellite Chlorophyll  

Satelite chl-a concentraitons for summer (December 2008 to February 2009) allow 

us to see the transects in a larger spatial and temporal context. Greatest concentrations of 

Chl-a (> 3 mg m-3) are found in the continental shelf region of Antarctica (the ACS region), 

sampled on three of the four legs of the cruise and in close proximity to South Georgia ( > 

2.5 mg m-3) (the SAISB region), sampled on Legs 2 and 3 (Figure 2.12). The greatest 

chloropohyll concentrations associated with the island were found to the North West of the 

island just outside of our sampling area (Figure 2.12). Ensuing storm conditions unfortunatly 

neccessitated Eastward adjustments in our cruise track to turn away from the storm and the 

region of highest chl-a. Another prominent peak in chlorophyll concentration (1 to 2.5 mg 

m-3) occurs along the South Sandwich Island chain (~55 to 60°S, ~25°W) just to the west of 

our cruise track (Leg 3). Also noteable are the areas in the 1-2mg m-3 concentrations in the 

WG region (65°S, 17°W) which was crossed on Legs 2 and 3 (figure 2.12). Lowest chl-a 

concentrations (< 0.2 mg m-3) occur to the east of the Weddell Gyre (~62 - 70°S, 25°E) 
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outside of our cruise sampling and north of the APF until the STF, in the N-ACC region along 

Legs 1 and 4 where concentrations ranged from 0.1 to 0.3 mg m-3.  

 

 

 

 

 

Figures 2.11 a & b. Chlorophyll-a concentrations along Leg 2 (a) and Leg 3 (b). Vertical lines indicate the 
position of the SBdy and the sACCf. Sampling along the SBdy is indicated by the region in between the vertical 
dashed lines. Brackets on top of the figure indicate the regions: AAZ, WG, the SAISB (Island Influenced) and 
ACS. The position of the low salinity and shallow bathymetry feature within the WG has also been indicated.  

 

AAZ WG 

SBdy sACCf 

Island 

influenced 

low salinity feature 

AAZ WG ACS 

SBdy sACCf SBdy Along 

AAZ WG 

low salinity feature shallow 

bathymetry 

b. 

a. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

50 

 

Figure 2.12 Monthly mean chlorophyll-a concentration (mg m
-3

) for the entire South Atlantic sector of the 
Southern Ocean with overlaid cruise track (Leg 1 red dots, Leg 2 black, Leg 3 grey, leg 4 blue). A three month 
composite satellite image from the beginning of December 2008 through the end of February 2009, white 
areas delimit where no data was available.  Data for this image was extracted from the website GlobColour 
http://www.globcolour.info/data_access.html 

 

2.4 Discussion  

In the following discussion the spatial distribution of chlorophyll in the South Atlantic 

sector of the Southern Ocean is investigated in relation to the physical factors that regulate the 

nutrient and light environment through evolving contributions of temperature and salinity to 

changes in stratification and the MLD.  According to the literature, this region of the Atlantic 

Sector of the Southern ocean can be divided into 6 regions with distinct chlorophyll 

signatures and physical control mechanisms, these are 1) the STZ, 2) the N-ACC, 3) the AAZ, 

4) the WG, 5) the SAISB region and 6) the ACS region.  The four legs of this cruise crossed 

each of these regions whose results will be discussed in turn.  
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The Subtropical Zone  

The Agulhas Retroflection Current dominates this highly dynamic area, known for its 

warmer (>18°C), saltier (>35.5 psu) waters north of the STF (Figure 2.5 a, b). The surface 

temperature and salinity plots provide an accurate picture of this subtropical environment 

(Figures 2.3a & b., 2.5a & b), in which SST maxima at ~36°S and ~39°S (Figure 2.3a) illustrate 

the remnants of a warm core Agulhas Ring.  The MLDs on the southbound transect from 

Cape Town to Antarctica (Leg 1) in December 2008 varied from 20 m to 80 m (Figure 2.10a) 

in close proximity to one another, thus also indicating the turbulent and dynamic nature of 

this zone, i.e. dynamic front positions, meanders, and eddy shedding (Swart et al. 2011 in 

press). On the northbound transect, from Antarctica to Cape Town (Leg 4) in February 2009, 

three months later, surface waters were more stratified and MLDs were shallower (mean = 

36 m on Leg 4 compared to 46 m on leg 1) and less variable (~20 m to ~50 m).  Later in the 

season, these more stratified and stable waters (Figure 2.3b) limit the nutrient environment 

by reducing upwelling and the replenishment of deeper nutrient rich waters to the surface 

zone. This scenario was evident when comparing mean surface NO3
- concentrations  which 

were much higher on Leg 1 (1.03 ±0.87 µmol l-1) than on Leg 4 (0.13 ±0.05 µmol l-1) (Table 

2.2). The large difference in mean chl-a concentrations from early in the season (Leg 1 = 

0.43 mg m-3) compared to later in the season (Leg 4 = 0.17 mg m-3) highlights the impact of 

nutrient limitation on the phytoplankton community with seasonal progression.   

In this region, all nutrient concentrations were low (NO3
- <2 µmol l-1, Si <4 µmol l-1, 

PO4
3- <2 µmol l-1) with the exception of NH4

+ (~2 µmol l-1) on Leg 4. Low NO3
-, Si and PO4

3- 

concentrations suggest reduced vertical mixing that leads to a nutrient impoverished 

euphotic zone, while high NH4
+ concentrations suggest high zooplankton grazing and 

excretion rates, where phytoplanktonic uptake of NH4
+ does not exceed NH4

+excretion rates 

(Figure 2.8a & b) (Bopp et al. 2005, Lucas et al. 2007, Thomalla et al. 2011).  Low 

chlorophyll-a concentrations (generally <0.5 mg m3-) (Figures 2.10a, b) throughout most of 

this zone support the case for low primary production (Froneman et al. 2001, Joubert et al. 

2011, Thomalla et al. 2011a) and / or high grazing rates that suppress biomass accumulation 

(Smetacek 2004).  
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NO3
- limitation in this region establishes a phytoplankton community comprising 

small-celled organisms that thrive primarily on ‘regenerated’ vs. ‘new’ nitrogen, resulting in 

typically low f-ratio’s (Lucas et al. 2007).  Such a community results in an inefficient 

biological pump where little or no C is exported from surface waters (Cullen 1991, Salter et 

al. 2007, Pollard et al. 2009). 

Table 2.2 Table of means and standard deviation of Chl-a (mg m
-3

), MLD (m), and all nutrients (µmol L
-1

) by 
zone for each leg of the SANAE 48/49 cruise.  

Zone Leg Chl-a MLD NO3
-
 SiOH4 PO4 NH4

+
 Urea 

STZ 1 0.43 ±0.36 46±23 1.03±0.87 0.93±0.83 0.13±0.09 n/a n/a 

 

4 0.17 ±0.09 36±16 0.13±0.05 3.91±3.14 0.14±0.06 n/a n/a 

N-ACCZ 1 0.64 ±0.51 38±23 14.05±6.04 0.35±0.27 1.11±0.39 n/a n/a 

 

4 0.39 ±0.09 71±18 13.84±5.55 2.72±1.50 1.03±0.40 0.89±0.46 0.32±0.42 

AAZ 1 0.31 ±0.19 62±14 24.25±1.88 19.42±12.03 1.63±0.18 n/a n/a 

 

4 0.43 ±0.18 91±18 22.50±1.50 15.79 ±8.32 1.59±0.11 0.78±0.25 0.51±0.12 

 

2 0.59 ±0.06 n/a 22.47±0.32 16.16 ±6.13 1.52±0.06 1.14±0.35 0.38±0.09 

 

3 0.44 ±0.16 n/a 21.61±3.40 22.39±11.87 1.42±0.27 0.96±0.20 0.58±0.51 

WG 1 0.79 ±0.70 46±10 25.26±3.34  41.48 ±4.64 1.66±0.18 n/a n/a 

 

4 0.55 ±0.32 59±13 23.16±2.96  30.51 ±2.13 1.59±0.09 0.96±0.24 0.40±0.30 

 

2 0.63 ±0.37 n/a 22.39±2.33 37.68 ±4.23 1.73±0.20 0.86±0.33 0.30±0.20 

 

3 1.12 ±0.71 n/a 20.45±1.70 30.56 ±8.33 1.59±0.13 1.01±0.31 0.74±0.57 

SAISB 2 1.17 ±0.59 n/a 17.19±2.44 7.00 ±3.83 1.32±0.13 1.37±0.41 0.79±0.63 

 

3 n/a n/a n/a n/a n/a n/a n/a 

ACS 1 1.86 ±0.99 68±26 22.70±2.40 38.42 ±4.57 1.72±0.14 n/a n/a 

 

4 1.16 ±0.31 n/a 21.97±3.46 30.46 ±3.69 1.44±0.17 0.82±0.18 0.68±0.15 

 

3 1.70 ±0.93 n/a 13.88±2.04 27.18 ±4.94 1.31±0.23 0.81±0.25 0.63±0.67 
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The Northern ACC Zone    

The steep gradient in SST and surface salinity as the STF was crossed (39.9°S) indicates the 

expected change from a subtropical to a subpolar ocean (Figure 2.5a).  Surface temperature and 

salinity continued to decrease throughout this zone (Figure 2.5a & b), but even so, 

temperature still dominated over salinity in the control of density (Pollard et al. 2002). 

North of the APF, temperature decreases with depth (Figure 2.3a & b), and although 

subsurface salinity data were not available, this zone is defined by a subsurface salinity 

minimum. This is due to fresh (and cooler) inputs of AAIW and Subantarctic surface water 

from the PFZ further south, driven by wind and Ekman transport (Pollard et al. 2002). 

South of the STF, NO3
- and PO4

3- concentrations increased to ~15 µmol l-1 and ~17 

µmol l-1 respectively, while silicate concentrations remain low (<1 µmol l-1) (Figure 2.8a).  A 

similar nutrient environment has been found in previous studies (Read et al. 2000, Boyd 

2002, Pollard et al. 2002, Joubert et al. 2010), where it is understood that nutrients are 

brought to the surface from depth by isopycnic transport (advection and mixing along 

upward sloping isopycnals) and diapycnic mixing (near-vertical mixing across density 

surfaces) (Pollard et al. 2002). Nutrient concentrations in the surface layer (i.e. above the 

winter mixed layer) can be entrained from below by winter mixing events and potentially 

too by northward Ekman advection (Pollard et al. 2002).   

In summer, phytoplankton production in the euphotic zone diminishes nutrient 

concentrations, concurrently with an increase in chl-a concentrations, at least before 

zooplankton grazing pressure crops the biomass. The summer season is also associated with 

warmer surface waters, hence greater stratification and MLD shoaling.  Later in the season 

as surface waters cool and wind-strength once more increases, MLD’s deepen again, 

resulting in lower chl-a concentrations. This typical seasonal progression was observed 

during this study. 

Incredibly calm and stable seas were encountered during the crossing of this region 

on Leg 1 (Cape Town to Antarctica) (44.5°S to 48°S; 27-28 December 2008). These calm 

conditions are likely what led to the particularly shallow MLDs  (~20 m) and an improved 

light environment that allowed for the peak in chl-a biomass (max 1.75 mg m-3) (Figure 

2.10a). Mean MLDs (37.9 ±23.09 m) were shallower at the beginning of summer (Leg 1, 
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Figure 2.10a; 26-28 December 2008) compared to the beginning of autumn (70.9 ±17.9 m) 

when deeper mixing events occurred (Leg 4, Figure 2.10b; 26-28 February 2009), as 

epitomised by a storm on 26 February 2009 at ~48°S. This deepened the MLD to ~70 m such 

that dilution and an unfavourable light environment resulted in a low chl-a biomass of <1.0 

mg m-3, (Figure 2.10b).  In general, low biomass occurred throughout this zone during 

autumn, attributed to light and nutrient (including Fe) co-limitation when mixed layers 

deepen and winter Fe stores are depleted following the phytoplankton growth season 

(Coale et al. 2004, Pollard et al. 2009).  

Even so, when MLDs were shallow (~20 m) along much of the early summer transect 

from Cape Town to Antarctica (Leg 1), chl-a concentrations were predominantly low (mean 

= 0.43 mg m-3 ±0.36), indicating additional limiting factors such as nutrient (Si and / or Fe) 

limitation, as well as losses due to grazing (Read et al. 2000, Boyd 2002, Pollard 2002, Trull 

et al. 2002).    

The Antarctic Zone 

All four transects passed through the AAZ which comprises the area from the APF to 

the SBdy. Characteristic differences in water mass properties between the AAZ and waters 

south of the Sbdy are driven by differential upwelling in the respective zones. In this region 

UCDW upwells and is notably fresher and cooler than LCDW which upwells in the WG region 

and is warmer and saltier (Orsi et al., 1995). South of the APF, colder (~0°C) fresher water 

from sea ice melt overlays slightly warmer water (2°C), showing that salinity controls density 

in this region. Seasonal changes in MLD are smaller in the AAZ than those found in the SAZ 

(change in MLD for AAZ = ~28 m vs. change in MLD for SAZ = ~45 m, see Table 2.2). Surface 

waters in this region are known to be rich in nitrate, phosphate and silicic acid year-round, 

with nitrate at its maximum. South of the APF, nitrate and phosphate concentrations 

gradually increased (from ~20 to 25 µmol l-1  and from ~10 to 15 µmol l-1, respectively), 

while silicate concentrations rose sharply from ~1 to ~30 µmol l-1. In such an environment, 

diatoms typically dominate the phytoplankton community as long as Fe and sufficient light 

are present (Pollard et al. 2002, 2009, Sokolov & Rintoul 2007).   

This pool of unused nutrients is the largest in any of the world’s oceans (Levitus et al. 

1993, Boyd et al. 2000, Boyd et al. 2002, Arrigo et al 2008), and the reasons for this have 
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attracted considerable attention since the 1930’s. As winter reserves of the macronutrient 

environment have been set through physical processes, any change in concentrations over 

the course of the growing season is due to biological activity. Even so, there is little seasonal 

variability in macronutrient concentrations. Chl-a concentrations in this zone were very low 

throughout this summer study (generally <0.5 mg m-3) (Figures 2.10a & b, 2.11a 7 b), 

indicating very little biological activity. A deepening MLD in this region, particularly on Leg 4, 

suggests light limitations to phytoplankton growth (Figure 2.10a, b). This zone embodies the 

HNLC condition, where Fe and light co-limitation (Moore et al. 2007a, b) results in a shift 

from a diatom-dominated community (where Fe is available) to one dominated by small 

cells (or scarce heavily silicified diatoms, Poulton et al. 2007) characterised by low rates of 

primary production (Seeyave et al. 2007) and regenerated rather than new production 

(Lucas et al. 2007). Furthermore, extensive microzooplankton grazing controls biomass 

accumulation within a classic ‘microbial loop’ (Froneman et al. 1996a, Fielding et al. 2007), 

resulting in little carbon export (Salter et al. 2007, Pollard et al. 2009). Exceptions to this 

scenario are however, found where Fe inputs from shallow bathymetry or from recently 

receding ice–melt lead to a diatom-dominated community and carbon export as the HNLC 

condition is released, as occurs around Subantarctic islands (Pollard et al. 2009). 

The Weddell Gyre 

Near the centre of the WG, LCDW continually upwells enriching the surface water 

with macronutrients (Bakker et al. 2008). Evidence of this is seen in subsurface water 

temperatures which increase just south of 65°S and relatively high concentrations of 

macronutrients where mean Si (41.48 ±4.6 µmol l-1), NO3
- (25.26 ±3.3 µmol l-1) and PO4

3- (1.7 

±0.18 µmol l-1) attained their maximal geographically distributed values (Figure 2.8a & b and 

2.9 and Table 2.2). Even so, seasonal depletion of nutrients to support phytoplankton 

growth was apparent from early summer to early autumn (Table 2.2), although 

concentrations remained variable. Between 61°S and 65°S, a decrease in Si and NO3
- 

coincided with recent sea-ice retreat (see Figures 2.7c & d 22 December to 1 January), a 

salinity minimum, and related peaks in chl-a biomass (2.24 mg m-3 at 58.1°S; 2.58 mg m-3 at 

65°S). Arrigo et al. (2008) concluded that sea-ice recession has a lasting impact on the 

biological community for up to 14 days, further facilitated by high mean dFe concentrations 

of ~0.5 nM attributed to LCDW upwelling under the ice in winter as well as increases in Fe 
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concentration due to accumulation of Fe deposited over the ice (Klunder et al. 2011). 

Observations of locally elevated chl-a made during this study were well within the 14 day 

period, and quite plausibly were in response to Fe enrichment and an enhanced light 

environment due to freshwater stratification, as has been found in many MIZ studies 

(Lizotte 2001, Garibotti et al 2005a, Vernet et al. 2008).  

 During the transects from Antarctica to South Georgia (Leg 2) and South Georgia to 

Antarctica (Leg 3), elevated chl-a biomass (2.0 and 2.1 mg m-3 respectively) and a concurrent 

decline in Si concentrations (from 41 to 29 µmol l-1 and 39 to 28 µmol l-1) at ~68°S was most 

likely due to recent sea ice retreat, where positive buoyancy forcing, increased stratification 

and potential dFe addition, led to an increase in diatom production and a peak in 

chlorophyll.  However, at another region of elevated chl-a biomass (~64°S) (2.11b) sea-ice 

may not have played a role since more than 14 days had elapsed since sea ice melt (Figure 

2.7g), pointing speculatively instead to the upwelling of Fe-enriched LCDW as the driver in 

phytoplankton production, a situation known to occur in the centre of the Weddell Gyre 

(Hoppema et al. 1997, Bakker et al. 2008, Klunder et al. 2011). The close proximity of the 

Maud Rise and current flow of CDW over this local topographic feature could have provided 

an additional source of dFe (Bakker et al. 2008).  

  On all four transects crossing the WG there was a persistent low salinity feature 

(33.1 – 33.5 psu, Figures 2.5a, b & 2.6a, b) at ~61°S, perhaps originating from melt-water 

flowing eastwards from the Antarctic Peninsula as part of the northern branch of the 

Weddell Gyre circulation. From this study, such fresher and most likely Fe-enriched water 

(de Baar et al. 1995) probably lead to the enhanced phytoplankton biomass (~ 1.0 – 2.4 mg 

m-3) observed on three of the four transects (Legs 2,3 and 4, Figures 2.10b and 2.11 a, b).  

The Subantarctic Island and Shallow Bathymetry Region 

Coastal and shelf waters (<500 m deep) of the continent and oceanic islands make 

up a significant proportion of primary production in the Southern Ocean, where although 

only ~2.5% of the Southern Ocean by area is represented, ~9% of total primary production 

occurs here (Moore & Abbott 2000, Ward et al. 2005). Areas of shallow bathymetry are 

known to benefit from run off or from shelf sediment additions of dFe into the euphotic  

zone  (Korb et al. 2005, Planquette et al. 2007, Blain et al. 2007, Pollard et al. 2009).  
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Stations north of the sACCf on Leg 2 (from Antarctica to South Georgia) and south of the 

SBdy at ~58°S (west of the South Sandwich Trench, north of the South Scotia Ridge, in close 

proximity to Saunders and Montagu Islands) are within this classification (Figure 2.1). The 

shallow bathymetry areas south of 68°S are classified separately due to observed 

differences in the mechanism of dFe delivery there and are discussed under the Antarctic 

Continental Shelf section described below.  

  The spring bloom historically associated with South Georgia (Ward et al. 2008) and 

evident in the satellite composite image from this cruise (Figure 2.12) is generally found 

extending north and to the east of the island, entrained in the ACC flow before it retroflects 

in a southerly direction. The APF lies to the north of the island and the sACCf to the south.  

The island and surrounding bathymetry cause a divergence of the eastward flowing ACC 

whereby the Scotia Ridge deflects waters to the northwest before returning to an eastward 

flow as they approach the APF. The sACCf passes from the southwest and is steered along 

the edge of the northern shelf before it resumes its eastward flow. Current flow patterns 

and frontal positions at the time of sampling on this cruise resemble very similar 

characteristics to those described in Korb et al. (2004) (Figure 2.4). It is therefore expected 

that downstream inputs of dFe into the euphotic zone will only enhance waters to the north 

of the sACCf in similar fashion to that reported for the Kerguelen and Crozet island regions 

(Blain et al. 2007, Pollard et al. 2009 respectively) and for this area by Korb et al. (2004 and 

2005) and Whitehouse et al. (2008). 

It is not surprising therefore that chl-a biomass at all stations north of the sACCf was 

>1 mg m-3, with the greatest concentration (2.94 mg m-3) being recorded at ~52°S (Figure 

2.11a).  Although these values are lower than those measured by Korb et al. (2004), where 

mean in situ values were 4.3 mg m-3 ±2.0 to the south east of South Georgia, they still 

represent bloom conditions likely fuelled by dFe inputs from this shallow bathymetric 

region. Biomass concentrations were only moderately high because of the spatial and 

temporal aspect of the cruise track in relation to the bloom over time.  Figure 2.12 details 

the extent of the seasonal bloom and shows our stations just south of the most 

concentrated bloom to the north west of South Georgia. At the time of sampling, we were 

forced to turn south due to storm conditions and subsequently missed sampling the area of 

greatest biomass concentration.  As expected in highly productive waters, nutrient 
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drawdown ocurred down-stream of South Georgia. Macronutrient concentrations all 

declined, with Si dropping to concentrations of 1.76 µM at 54.6°S and 0.69 µM at 52.3°S 

(Figure 2.9), indicative of intense diatom production that would likely soon become Si-

limited unless replenished by deep mixing or upwelling.  Since the bloom did indeed persist 

over the time of our sampling (Figure 2.12), such a replenishment mechanism seems 

plausible (Whitehouse et al. 2008). Coincident with nutrient drawdown was an increase in 

NH4
+ concentrations (Figure 2.9). This signifies heterotrophic excretion of regenerated N 

that exceeds autotrophic uptake (Banse 1995), indicating increased grazer biomass and 

resultant strong grazing control that could account for only moderately high chl-a biomass 

values. 

Along Leg 3 (from South Georgia to Antarctica), the area of greatest chl-a biomass 

(1.5 mg m-3, Figure 2.11b) was in close proximity to the East Scotia Ridge where the South 

Sandwich Islands are located. Here, shallow bathymetry (<1000 m) likely plays an important 

role by contributing dFe to a system primed for production, as at the Crozet Islands (Pollard 

et al. 2009). Local upwelling is signified by a spike in the Si (Figure 2.9) concentration and a 

simultaneous drop in SST (Figure 2.6b). Natural Fe fertilization in shallow plateau areas of 

Subantarctic islands plays an essential role in boosting phytoplankton abundance and 

ultimately enhances the likelihood of biologically mediated CO2 drawdown (Pollard et al. 

2009)  

The Antarctic Continental Shelf Region 

This zone, by far, exhibits the greatest biomass relative to all other zones in this 

study (see Table 2.2 for comparison of mean biomass from each zone).  Legs 1, 3 and 4 show 

the highest chl-a concentrations, where maximal values reach 3.3 mg m-3 at 69°S, 3.0 mg m-3 

at 69°S, and 1.5 mg m-3 at 68°S, respectively (Figures 2.10a, 2.11b, & 2.10b). All 

macronutrients were relatively high throughout the region, thus not considered limiting. 

Here the seasonal melting of ice cover provides a two-fold benefit to enhance 

phytoplankton growth (as in the MIZ). First, melting ice sets up a fresh, buoyant layer that 

prevents vertical mixing and increases mean irradiances in a shallow surface mixed layer 

(Sokolov 2008). Second, recent ice melt provides a significant source of Fe (Sokolov 2008).  

Figures 2.5a & b and 2.6a & b clearly show the dramatic decline in salinity in the ACS region 
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due to seasonal ice-melt. Previously, it was believed that another significant source of dFe in 

this zone was the Antarctic continental shelf and slope, similar to the Crozet, Kerguelen, or 

South Georgia Island’s scenario (Planquette et al. 2007, Blain et al. 2008, Korb et al. 2005).  

However, in a recent study along the prime meridian, it was observed that Antarctica is 

unique, because unlike all other continents in the world, dissolved Fe around the continent 

decreases as you approach its extent (Klunder et al. 2011).  It is understood that at 

continental shelves Fe originates from below by upwelling and upward mixing of deeper 

waters rich in dFe.  Klunder et al. (2011) have found that because the ice sheet over the 

Antarctic continent extends beyond the grounding line and subsequently covers the water 

column over the shelf and slope, biological production is essentially capped. This drastically 

reduces biogeochemical cycling over and within the shelf and slope and equates to a 

minimal lateral supply of Fe from this area to adjacent open waters. This finding therefore 

supports the theory that this highly productive region is largely fuelled by seasonal ice melt 

and Fe release into surface waters. Even still, the chl-a concentrations are much higher in 

the ACS compared to any other region in this study including the MIZ where shelf Fe inputs 

are absent and Fe additions occur through the same mechanisms (i.e. seasonal receding 

ice). So what sets the ACS apart? Until additional investigations like Klunder et al. (2011) can 

advance the argument for little to no influence from the continental shelf, it is evident that 

a combination of environmental conditions and multiple mechanisms for Fe injections set 

this region apart from the rest. Spring and summer ice retreat (Figure 2.7 a-h), glacial and 

ice berg melt, more stratified thus stable water column structure due to less frequent strong 

wind events (evident in shoaling MLD, ~50m on average Figure 2.10a, b), subsequent 

enhanced light conditions, reduced cloud cover that increases the photosynthetically active 

radiation close to the coast, and the shallow continental shelf as a source of dFe (no data, 

but sustained high macro nutrient concentrations suggests upwelling, thus would include 

micro nutrients when in coastal areas Figures 2.8a, b & 2.9) all help to sustain high 

phytoplankton production and great concentrations of biomass (Moore & Abbott 2000, 

Sokolov 2008). 

2.5 Conclusions 

The south Atlantic sector of the Southern Ocean has vast areas of open ocean where 

the macronutrient environment remains replete, but chl-a concentrations are low.  In such a 
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physically dynamic area of the world’s oceans, phytoplankton biomass is highly variable in 

time and space. Deciphering reasons for patterns of high versus low biomass is complicated 

and confounded by its remoteness and relatively infrequent sampling.  Even so, it is a 

relatively productive body of water compared to other sectors of the circumpolar Southern 

Ocean and is becoming better understood through the advent of combined remote sensing, 

multi-scale modelling and remotely controlled, multi-depth sampling strategies. What is 

evident from this chapter is that shallow bathymetric features, close proximity to land 

masses, or in the case of the marginal ice zone (which includes the ACS, WG, and a portion 

of the AAZ), recent melting of sea ice in its various forms all coincide with significant 

increases in phytoplankton biomass.  Although speculative, this suggests the introduction of 

Fe to catalyze phytoplankton growth in combination with a more stratified water column 

and an improved light regime, as well as longer light exposure due to increased day length in 

summer. In regions of low biomass (STZ and AAZ for example) NO3
- limitation and light 

limitation (respectively) prevent phytoplankton production. While frontal positions 

historically have been coincident with the spatial distribution of increased chl-a biomass, 

this study shows a more current scenario of fronts serving as boundaries to distinct zones 

with similar characteristics and elevated or depleted biomass, depending on the region as in 

the case when crossing the STF from the STZ to the N-ACC in terms of temperature salinity 

and biomass or when crossing the APF from the N-ACC to the AAZ in terms of the steep 

increases in the macro nutrient environment, particularly Si, for example.       
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Chapter 3.  The Role of Light on Primary Production, Nitrogen 

Metabolism and Phytoplankton Community Structure in the South 

Atlantic Sector of the Southern Ocean 

3.1 Introduction 

The previous chapters have highlighted the complex role of the physical and 

chemical environment in controlling phytoplankton biomass distribution in the Southern 

Ocean. Discerning how marine phytoplankton production is controlled is essential in 

understanding the global carbon cycle, since algal carbon fixation plays a critical role linking 

ocean-atmosphere carbon fluxes (Van Oijen et al. 2004). In addition, knowledge of the key 

physiological responses of plankton is needed if we are to understand the carbon-climate 

system and its response to environmental and climate change. In order to achieve this, one 

needs to assess not only variability in primary productivity, but also to routinely provide 

information on phytoplankton functional types and physiology, as these can dramatically 

affect carbon export to depth.  

3.1.1 Community Structure 

Phytoplankton taxonomic composition and size structure is integral to upper ocean 

biogeochemistry, export production, and food web architecture and efficiency (Poulton et 

al. 2006 & 2007, Boyd and Trull 2007). Spatial and temporal variability of the factors that 

influence the composition and progress of a phytoplankton community (nutrient and light 

availability, turbulence and predation) lend to greater variance in phytoplankton diversity 

and growth rates (Poulton et al. 2006). Algal groups may be classified according to cell size 

(e. g. Sieburth 1979) and defined as small picoplankton (0.2 – 2 µm in diameter; e.g. 

prochlorophytes, Synechococcus spp., and small eukaryotes), medium-sized nanoplankton (2 

– 20 µm; e.g. prymnesiophytes, pelagophytes, small diatoms and dinoflagellates), and large 

microplankton (>20 - 200 µm; e.g. diatoms and dinoflagellates). At present, oligotrophic 

open ocean ecosystems are dominated by small photosynthetic cyanobacteria and 

heterotrophic bacteria that make-up the microbial loop where organic carbon is recycled 

within the lower trophic groups (hetrotrophic bacteria, nanoflagellates, ciliates, and 

heterotrophic dinoflagellates) such that there is little availability for higher trophic groups or 

for export (Poulton et al. 2006).  It is well known that the majority of primary production 



Univ
ers

ity
 of

 C
ap

e T
ow

n

63 

and phytoplankton biomass in the HNLC Southern Ocean falls in the pico and nano size 

fractions that make up the microbial loop (Smetacek et al. 2004) where small cells are better 

able to scavenge limiting Fe at low ambient concentrations.  

Increases in biomass over the stable background level (~0.2mg chl-a m-3) of this 

pervasive recycling community is caused by blooms of larger phytoplankton in Fe replete 

systems that include the diatom species Corethron, Thalassiothrix and Fragilariopsis, as well 

as Phaeocystis antarctica colonies, whose development is regionally and seasonally 

tempered (Smetacek et al. 1990, 2004, Waters et al. 2000, DiTullio et al. 2003). These 

blooms form the basis of food–webs that support large numbers of higher biomass species 

and ends in considerable export of organic matter to the deep ocean (Blain et al. 2007, 

Pollard et al. 2009). Grazing pressure by microzooplankton on the smaller sized 

phytoplankton community is high since both predator and prey have similar growth rates, 

whereas the faster growing larger phytoplankton are able to temporarily escape their 

slower-growing grazers, allowing them to form blooms. Under a bloom-forming life cycle, 

phytoplankton population size has an annual fluctuation of over three orders of magnitude, 

while in all other species, annual population abundance is restricted to within two or fewer 

orders of magnitude.  Alternatively, large, Fe-limited and slow-growing but highly silicified 

diatoms use silification “armouring” as a defence mechanism to avoid grazing pressure 

(Smetacek et al. 2004). In these conditions, the vertical flux of organic matter and opal into 

the ocean interior is greatly enhanced through the rapid sinking of large ballasted diatoms 

and faecal pellets (Falkowski et al. 1998, Tremblay et al. 2000) and carbon is efficiently 

passed to higher trophic levels with minimal respiratory CO2 losses.  

An improved understanding of how phytoplankton community size structure will 

likely respond to climate change will advance our knowledge of the biological carbon pump 

and the ability of the Southern Ocean to remain a long-term sink for atmospheric carbon-

dioxide (Kohfeld et al. 2005). For example, changes in climate may facilitate a shift in the 

species composition in a manner that can alter the elemental composition of particulate 

matter, cell size and the trajectory of primary production through the food web, influencing 

the proportion of biomass exported to the deep sea (Finkel et al. 2010). We thus need to 

expand our investigations of how phytoplankton community structure, size characteristics 

and biogeography are influenced and how future climate change may alter the biological 
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pump and the ocean’s role in mediating atmospheric carbon dioxide over time (Boyd &Trull 

2007, Arrigo et al. 2010). 

3.1.2 Primary Production  

Discerning how marine phytoplankton production is controlled is essential because 

oceanic algal carbon fixation critically governs ocean-atmosphere CO2 fluxes (Van Oijen et 

al. 2004). Research spanning the past two decades has distinguished iron availability as a 

major factor governing phytoplankton production in the Southern Ocean. Following the 

original iron hypothesis of Martin (1990), several in situ iron-addition experiments such as 

SOIREE (Boyd et al. 2000), EISENEX (Gervais et al. 2002), SOFEX (Coale et al. 2004) and EIFEX 

(Hoffmann et al. 2006) have provided convincing proof of Fe-limited phytoplankton growth 

in most regions of the Southern Ocean. Further studies of naturally iron-fertilized systems 

such as CROZEX (Pollard et al. 2007, 2009) and KEOPS (Blain et al. 2007) provide unequivocal 

evidence that Fe introduced into the euphotic zone not only stimulates phytoplankton 

growth, but leads to CO2 draw-down and enhanced carbon export to the ocean floor.  

Iron additions operate via two distinct but related mechanisms. When iron 

concentrations are low or unavailable, the functioning of the photosynthetic apparatus 

(PhotoSystem II and PhotoSystem I) and many metabolic processes (e.g. nitrate assimilation 

and intracellular reduction to NH4
+) are adversely affected (Geider & La Roche 1994, Van 

Oijen et al. 2004, Lucas et al. 2007, Cochlan 2008). Disparities in iron stocks between 

oceanic regions may explain differences in productivity during austral spring (de Baar et al. 

1995, VanOijen et al.  2004, Cochlan 2008). Additionally, there are signs of further seasonal 

development in the environmental control of phytoplankton. Irradiance is the primary 

trigger for phytoplankton growth in early spring (Venables et al. 2007), where the 

magnitude of the spring bloom is determined by winter Fe accumulation. Next, in situ 

measurements in addition to modelling indicate that production becomes co-limited by iron 

and light in early summer (Lancelot et al. 2000, VanOijen et al. 2004), and in late summer 

declines substantially as Fe concentrations become exhausted (de Baar et al. 1995, Boyd et 

al. 2000, VanOijen et al. 2004, Cochlan 2008). Co-limitation of iron and silicic acid may also 

limit and regulate production, particularly north of the APF where Si concentrations are low 
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(Franck et al. 2000, Hutchins et al. 2001, Nelson et al. 2001, VanOijen et al. 2004, Cochlan, 

2008).  

Deep mixing and its relationship to Sverdrup’s critical depth hypothesis (where water 

column photosynthesis and respiration balance, Sverdrup 1953), emphasises the role of 

light in controlling phytoplankton growth in the often deeply mixed (>50-120 m) surface 

waters of the Southern Ocean. Yet light alone cannot account for low productivity, as 

revealed by elegant light-iron incubation studies performed in the Southern Ocean by 

Moore et al. (2007a, b). These experiments not only provide good evidence for iron-light co-

limitation, but also show that in an Fe-limited environment, the Si:N uptake ratio of 

phytoplankton shifts from ~1:1 (normal) to 2:1 or even 3:1 as diatoms became more heavily 

silicified. 

The inter-play between light, Fe-availability and nitrogen metabolism is complex. The 

rate of photosynthesis is clearly light dependent, as revealed by photosynthesis vs. 

irradiance curves. The photosynthesis-irradiance response (P-E) curve gives an 

advantageous and objective means of discerning between (and parameterizing) light-limited 

and light-saturated photosynthesis (MacIntyre et al. 2002). The P-E curve is the foundation 

for models of phytoplankton productivity; where the shape and magnitude indicates the 

underlying biophysical, biochemical and metabolic processes that govern photosynthesis 

(Platt et al. 1977, Fasham et al. 1990, Falkowski 1992, Falkowski & Raven 1997, MacIntyre et 

al. 2002). Variability in the P-E curve and variability in the ratio of carbon to chl-a (C:chl-a) 

serve as a means to determine photoacclimation. Photoacclimation, as defined by Falkowski 

& La Roche (1991), describes phenotypic adjustments that manifest in response to 

variations in the ambient light experienced (MacIntyre et al. 2002). Different from 

photoadaptation, where changes in the genotype occur either from mutations or from 

changes in the alleles within a gene pool, acclimation does not signify a change in the 

genetic structure of a population. Photoacclimation generally evolves as an ordered 

reduction of photosynthetic pigment content in response to increased irradiance (MacIntyre 

et al. 2002).  

When photosynthetic organisms are contained in an enclosed volume there is a net 

exchange of CO2 and O2 between the organism and the medium. This exchange is light 
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dependent. In darkness there is a net consumption of O2 and evolution of CO2 due to 

respiratory processes.  As organisms are exposed to light, O2 is ultimately evolved and CO2 is 

consumed as a result of photosynthesis (Falkowski & Raven 2007). The rate of 

photosynthesis is controlled by the efficiency of light utilization to drive the ensemble of 

photosynthetic reactions from water splitting to carbon fixation (Falkowski & Raven 2007). 

 Photosynthesis itself requires Fe in the protein form, ferredoxin (Fd). In the 

thylakoid membrane of an algal cell, chlorophyll is organized along with proteins and other 

organic molecules into photosystems. A photosystem is made up of a light-gathering 

“antenna complex” that has an array of a few hundred chl-a, chlorophyll b and carotenoid 

molecules (Campbell & Reece 2002). When the “antenna” absorbs a photon of light, a 

specific chl-a molecule located next to the reaction centre and an electron acceptor within 

the photosystem, loses an electron in an oxidation-reduction reaction. The “capture” of high 

energy electrons and subsequent chl-a florescence is the first part of the light-driven 

chemical reaction, photosynthesis. Each photosystem within a chloroplast is essentially a 

light-harvesting unit that contain and use Fe. The thylakoid membrane has two types of 

photosystems that work together to generate ATP and NADPH and are called Photosystem I 

(PSI) and Photosystem II (PSII). In the second phase of the light-harvesting process where 

the redox reaction occurs and stores high energy electrons in NADPH for later use in the 

Calvin cycle, PSI passes photoexcited electrons via a second electron transport chain, which 

transmits them to ferredoxin (Fd). The enzyme NADP+ reductase then transfers the electrons 

from Fd to NADP+. In this manner, iron is essential to the production of NADPH, which 

serves as reducing power in the Calvin cycle where CO2 is fixed and converted to 

carbohydrate as the three-carbon sugar called glyceraldehyde-3-phosphate (Campbell & 

Reece 2002). Thus, the apparatus of the thylakoid membrane converts light energy to the 

chemical energy stored as NADPH and ATP. Oxygen is a by-product and the Calvin cycle uses 

the light reaction products to synthesize sugar from CO2 (Campbell & Reece 2002). 

3.1.3 Nitrogen Metabolism 

Nitrogen uptake is also light and iron-dependent. Fe requirements for NO3
- 

metabolism and its intracellular reduction to NO2
- and NH4

+ by nitrate (requires one atom of 

Fe) and nitrite reductase (requires five atoms of Fe) respectively, and either ferredoxin or 
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flavodoxin (a non-ferrous e- donor) are substantial (Sunda and Huntsman 1997, Cochlan 

2008). It has been shown in theory and in laboratory cultures of diatoms that Fe utilization 

efficiencies and cellular metabolic Fe demands are greater in phytoplankton growing on 

NO3
- versus those growing on NH4

+ (60% more Fe for NO3
- based growth) (Cochlan 2008). In 

light of observations in HNLC regions of the Southern Ocean, where NH4
+ is preferentially 

utilized over NO3
-, it is assumed to be a more energetically efficient strategy for harvesting N 

in response to Fe-limitation (Cochlan 2008). Phytoplankton’s ability to glean nutrients at low 

ambient concentrations is size dependent (Lucas et al. 2007). Nitrate uptake kinetics are 

also governed by Fe availability (De Baar et al. 2005). When ambient Fe concentrations 

become limiting, smaller cells will most likely dominate new production assuming that 

neither NO3
- nor light becomes limiting due to their higher surface area to volume ratio (De 

Baar et al. 2005, Lucas et al. 2007). Meanwhile, Si concentrations will determine whether 

diatoms or other taxa dominate. However, there is a point at which the benefits of a smaller 

cell size to facilitate Fe assimilation are eclipsed by increased mortality due to micro-

zooplankton grazing (Smetacek et al. 2004, Lucas et al. 2007).  

Alternatively, NH4
+ regeneration regulated by micro-zooplankton grazing may largely 

underpin nano- and pico-plankton N nutrition that may rely on regenerated rather than new 

Fe inputs (Lucas et al. 2007).  This has implications for f-ratios, such that high f-ratios are 

conceivably correlated with large cells and ‘new’ Fe additions, while low f-ratios, associated 

with smaller cells, presumably rely on ‘regenerated’ Fe (Lucas et al. 2007). Additionally, 

there is evidence for NH4
+ inhibition of NO3

- uptake where at high NH4
+ concentrations (for 

example >~0.6 µmol l-1) inhibition can be extreme, while at low concentrations (for example 

<~0.25 µmol l-1) inhibition is often relieved (Lucas et al. 2007). Of course this is compounded 

by depth and light considerations as well as preferential selection of N substrates by 

phytoplankton, which will all play a part in the resultant community succession (Lucas et al. 

2007).   

Lastly, when light and iron controls on nitrate uptake are considered together, some 

sense of often declining f-ratios with depth becomes clear. In their CROZEX study, Lucas et 

al. (2007) showed that in a diatom bloom in surface waters, nitrate uptake exceeded 

regenerated N (ammonium, urea) uptake, leading to high (~0.6) f-ratios. But deeper in the 

water column, f-ratios declined to ~0.2, as nitrate uptake became more light-limited than 
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reduced N uptake. Furthermore, the size-structure of the community was also important, 

with small cells better able to scavenge Fe at low concentrations exhibiting higher f-ratios 

than larger cells, which consequently exhibited lower f-ratios. Further evidence for Fe 

limited nitrate uptake and growth can be garnered when specific nitrate uptake rates 

(VNO3d-1) are employed.  When N uptake rates are expressed in terms of PON and/or chl-a 

specific values, information on turnover times, and the potential for light, macronutrient or 

Fe limited growth is revealed, whereby high values indicate faster growth rates in light and 

nutrient-replete environments (Lucas et al. 2007). Alternatively, VNO3d-1 in Fe limited HNLC 

areas are reduced by ~10 fold when compared to prolific oceanic systems (Dugdale & 

Wilkerson 1991, Lucas et al. 2007). 

Light, iron and nitrogen therefore play a crucial role in controlling not only 

productivity, but also size-based new production, with consequent implications for carbon 

export. Convincing evidence for this requires a better understanding of the relationship 

between light intensity and new and regenerated production, particularly with respect to 

iron availability. One of the best ways to tackle this problem is through the use of P vs. E 

curves, based on the dual-labeling (13C, 15N) approach which gives rates of both new and 

regenerated production rather than the more widely used 14C approach that only gives total 

production.   

 In this chapter, phytoplankton community structure, nitrogen metabolism and the 

potential for region based physical and biogeochemical controls of these processes are 

investigated. Sampling and experiments included diagnostic phytoplankton pigment analysis 

using HPLC to determine community structure, and measurements of duel labelled (13C  and  

15N) new production (nitrate),  regenerated production (ammonium, urea) and total 

production (carbon fixation) versus irradiance (P vs. E). Additionally, the f-ratio is calculated 

and used as a proxy for the proportion of production that is exported to the deep sea. These 

measurements were conducted at 11 biological production stations on the SANAE 48 cruise 

from Cape Town to Antarctica and South Georgia during the austral summer of 2008/9 in 

the south Atlantic sector of the Southern Ocean. 
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3.2 Methods 

3.2.1  Diagnostic Pigment Analysis 

HPLC   

For High Performance Liquid Chromatography (HPLC) analyses, 500 - 2000 ml water 

samples were filtered under positive pressure through 25 mm Whatman GF/F filters and 

stored in liquid nitrogen. The aim was to filter a maximum volume of 2000 ml for each 

sample, but in productive waters this was not always possible and where not, the filtration 

was terminated after 2 hours and the filtered volume recorded. On a few occasions when 

the 25 mm filtration rig was unavailable, ~ 4000 ml was filtered through 47 mm GF/F filters. 

In each case, phaeopigments were measured utilizing the method described by 

Barlow et al. (1997) and more recently updated in Barlow et al. (2010) and summarized 

here. Pigments were extracted in 90% acetone, aided by ultrasonication, clarified by 

centrifugation and analysed using a 5-mm Hypersil HyPURITY C8 column, a Varian ProStar 

ternary high-pressure pump, a Thermo Electron AS3000 autosampler, a Thermo Electron 

UV6000 diode array absorbance detector and ChromQuest chromatography software. 

Pigments were detected at 440 and 665 nm and identified by retention time and by on-line 

diode array spectra. Chlorophyll a standard and trans-b apo-80 carotenal internal standard 

(Fluka) were obtained from Sigma-Aldrich Ltd. and other pigment standards were purchased 

from the DHI Institute for Water and Environment, Denmark. The method separates divinyl 

and monovinyl chlorophyll a, zeaxanthin and lutein, and achieves partial separation of 

divinyl and monovinyl chlorophyll b. Limits of detection were of the order of 0.001 mg m3. 

Diagnostic pigment indices were derived to determine the composition of 

phytoplankton communities and were defined as the sum of seven chosen biomarker 

pigments given in Table 3.1. Total chlorophyll a concentration (TChla) was estimated as the 

sum of monovinyl chlorophyll a, chlorophyllide a and chlorophyll a allomers and epimers. A 

linear regression between DP and TChla showed a strong linear relationship (r2 = 0.83, n = 

112) signifying that DP is also a valid estimate of phytoplankton biomass (Barlow et al. 2010) 

(Figure 3.1). Four major phytoplankton groups were delineated, namely diatoms, peridinin-

containing dinoflagellates, small flagellates and prokaryotes. The indices representing these 

groups were labelled DiatDP, DinoDP, FlagDP and ProkDP and the proportion of each group 
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contributing to the biomass was defined as given in Table 3.1. The justification for the 

derivation of these indices using the appropriate biomarker pigments has been discussed 

extensively by Barlow et al. (2007, 2008). Divinyl chlorophylls a and b, the biomarkers for 

the prokaryote Prochlorococccus sp., were not detected and therefore chlorophyll b was 

considered to indicate chlorophytes (Jeffrey and Vesk 1997) and allocated to the small 

flagellate fraction (Barlow et al. 2010). 

 

Figure 3.1 Regression of chl-a and ΣDPw. (n =112) 

Finally, as described by Barlow et al. (2010), photo-pigment indices were derived to 

determine the changing contribution of chlorophylls and carotenoids to the total pigment 

pool. The chlorophylls were proportioned into TChla and the sum of chlorophyll b plus 

chlorophyll c’s (Chlbc). The carotenoids were distinguished as photosynthetic carotenoids 

and photoprotective carotenoids. The photosynthetic carotenoids (PSC) included 190-

butanoyloxyfucoxanthin, fucoxanthin, 190-hexanoyloxyfucoxanthin and peridinin, while the 

photoprotective carotenoids (PPC) were composed of alloxanthin, bb-+be-carotene, 

diadinoxanthin, diatoxanthin, lutein, violaxanthin and zeaxanthin. Photo-pigment indices 

were defined as given in Table 3.1 and labelled as TChlaTP, ChlbcTP, PSCTP and PPCTP. 

 

Diagnostic Pigments as a determinant of phytoplankton community structure 

HPLC pigment analysis enables the detection of a range of pigments (generally up to 

15). Total Chlorophyll-a, the first group of pigments, is comprised of chlorophyll-a, divinyl 
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chlorophyll-a and chlorophyllide a, whose sum is noted [Chl a]. Other pigments, referred to 

as accessory pigments, can also be identified via HPLC. Several are indicative of specific 

phytoplanktonic groups and can be used as biomarkers. To consolidate the information 

contained within the full range of pigments, and in accordance with previous studies 

(Gieskes et al. 1988, Claustre 1994, Vidussi et al. 2001, Barlow et al. 2007 & 2008), an index 

of pigments is developed to quantify taxonomic composition by using a minimal set of 

representative pigments (Uitz et al. 2006). Seven major pigments were subsequently chosen 

as being indicative of distinct phytoplankton groups (Uitz et al. 2006).  Their taxonomic 

significance is summarized in Table 3.1 (see Vidussi et al. 2001, Table 1, and other 

supporting references therein). The seven pigments are Fucoxanthin, Peridinin, 19'-

hexanoyloxy fucoxanthin, 19'-butanoyloxy fucoxanthin, Alloxanthin, chlorophyll b + divinyl 

chlorophyll b, and Zeaxanthin. It is important to note that in comparison to the flourimetric 

method, which underestimates chlorophyll a, but overestimates phaeopigments when 

chlorophyll b is present, the HPLC method precisely separates chlorophyll a from 

phaeopigments (Gibbs 1979, Mantoura et al. 1997, Uitz et al. 2006).  

To infer phytoplankton size classes, Claustre (1994) established a method to quantify 

the relative proportion of diatoms plus dinoflagellates (conjointly called ‘microplankton’) 

within an algal stock, based on the presence of fucoxanthin and/or peridinin.  Their 

proportion is expressed by the ratio of concentrations: 

([Fuco] + [Perid])/DP, 

Where DP is the sum of all ‘diagnostic pigments’ concentrations: 

 DP = [Fuco] + [Perid] + [Hex-fuco] + [But-fuco] + [Allo] + [TChlb] + [Zea] 

 

In 2001, Vidussi et al. expanded on this method by assigning three independent 

groupings of specific pigments (among the seven significant ones), with the aim of 

identifying three size classes and quantifying their relative proportion (Uitz et al. 2006). 

These classes are the microplankton (quantified by the ratio introduced above, Claustre 

1994), the nanoplankton (2-20 μm), and the picoplankton (<2 μm); these two new classes 

are described by the (mutually independent) ratios: 

 Nanoplankton = ([Hex-fuco] + [But-fuco] + [Allo])/DP,  
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and 

 Picoplankton = ([TChlb] + [Zea])/DP 

As previously mentioned (Vidussi et al. 2001 & Uitz et al. 2006), the pigment 

grouping presented here does not assume rigid classification of true phytoplankton 

community size classes. Of course, some taxonomic pigments could be present in each 

phytoplankton group. For example, small amounts of fucoxanthin, the main carotenoid of 

diatoms, may also be found in some prymnesiophytes and pelagophytes. Some 

phytoplankton groups may be present across a broad size-spectrum, such as diatoms, which 

generally belong to microplankton (20-200+ µm), but which can often also be found in the 

nanoplankton (2-20µm). However, any ambiguities and concerns about the strict definition 

of size classes aside, these terms (and their abbreviations pico-, nano-, and micro-) will be 

employed here (see also Uitz et al. 2006).  

These combined size-classes and pigment groupings make up a phytoplanktonic 

assemblage in terms of diagnostic pigments, DP (Uitz et al. 2006).  To obtain a best estimate 

of the seven ratios {Chla}zeu/{P}zeu (chl-a content and the seven pigment contents), Uitz et 

al. (2006) used a multiple regression approach coupled with the three distinct groupings 

introduced by Vudussi et al. (2001).  The regression was found to be highly significant (r2 = 

0.76, n= 2419, p < 0.001; see Table 3.1), where the slopes are utilized to calculate the 

weighted sum of all the diagnostic pigments concentrations, ΣDPw, expressed as: 

ΣDPw = 1.41[Fuco] + 1.41[Perid] + 1.27[Hex-fuco] + 0.35[But-fuco]  

+ 0.60[Allo] + 1.01[TChlb] + 0.86[Zea]                                                                                              (1)                                            

Unlike DP, ΣDPw equals the chl-a concentration, which can be derived from the 

concentration of the seven other pigments. The fractions of the chl-a concentration 

correlated with each of the three phytoplanktonic classes (fmicro, fnano, and fpico) are thus 

derived according to (Uitz et al. 2006) 

fmicro = (1.41[Fuco] + 1.41[Perid])/ ΣDPw                                            (2a) 

fnano = (1.27[Hex-fuco] + 0.35[But-fuco] + 0.60[Allo])/ ΣDPw                             (2b) 

fpico = (1.01[TChlb] + 0.86[Zea])/ ΣDPw                                                                                                                                          (2c) 
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When summed, the three distinct groups equal 1, which indicates they are not 

mathematically independent.  The categorical chl-a concentration associated with each of 

the three classes is derived according to: 

 micro-[Chla] = fmicro x [Chla]                    (3a) 

 nano-[Chla] = fnano x [Chla]                                (3b) 

 pico-[Chla] = fpico x [Chla]                          (3c) 

A recent HPLC intercomparison exercise of pigment determination on natural 

samples, involving four laboratories, showed that [Chla] can be determined to within an 

uncertainty of approximately 8% (Claustre et al. 2004); the accuracy for accessory pigments 

is generally less (Uitz et al. 2006). It was shown, however, that pigment ratios (as in 

equations (2)) are determined with a better accuracy than individual accessory pigment 

concentrations by virtue of normalization, which cancels some analytical uncertainties (Uitz 

et al. 2006). Subsequently, the use of equations (2) and (3) is considered the most accurate 

approach to date when combining different data sources. 

Table 3.1 Diagnostic pigments used in the present study as biomarkers and their taxonomic significance 
(Vidussi et al. 2001). The associated mean size class, and the corresponding {Chla}Zeu to {P}Zeu ratios ± SD, with 
their significance level are also given. 

Diagnostic 
Pigments 

Abbreviations Taxonomic Significance 
Phytoplankton 

Size Class 
{Chla}Zeu: 

{P}Zeu 
Significance 

Level 

Fucoxanthin Fuco diatoms microplankton 1.41 ± 0.02 p < 0.001 

  Peridinin  Perid dinoflagellates microplankton 1.41 ± 0.10 p < 0.001 

19'-hexanoyloxy 

fucoxanthin 
Hex-fuco 

prymnesiophytes = 

chromophytes 

nanoflagellates 

nanoplankton 1.27 ± 0.02 p < 0.001 

19'-butanoyloxy 

fucoxanthin 
But-fuco 

chyrsophytes = 

chromophytes  

nanoflagellates 

nanoplankton 0.35 ± 0.15 p = 0.02 

Alloxanthin Allo  cryptophytes nanoplankton 0.60 ± 0.16 p < 0.001 

chlorophyll b + 

divinyl 

chlorophyll b 

TChlb 

prasinophytes = green 

flagellates  

prochlorophytes 

picoplankton 1.01 ± 0.10 p < 0.001 

Zeaxanthin   Zea 
cyanobacteria  

prochlorophytes 
picoplankton 0.86 ± 0.09 p < 0.001 
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3.2.2 Dual labelled primary production  

The transects from Antarctica to South Georgia and back to Antarctica (Legs 2 and 3) 

were intended to be the main focus for the biogeochemical observations with both 

underway and water column productivity sampling. However, due to a permanent failure of 

the CTD winch, no CTD casts or water column productivity measurements were possible. 

This limitation inspired the inclusion of size fractionated productivity measurements from 

surface waters in addition to the experimental P vs. E productivity measurements. Due to 

these unexpected circumstances (plus no 2 µm membrane filters), the size fractions utilized 

were microphytoplankton (>20 µm), nanophytoplankton (>1 and < 20 µm) and 

picophytoplankton (< 1 µm).  

Production measurements were made at eleven stations on Legs 2, 3 and 4 (Antarctica to 

South Georgia, South Georgia to Antarctica, and Antarctica to Cape Town respectively) (see 

Table 3.2 and Figure 3.4). Photosynthesis versus irradiance (P vs. E) measurements of dual 

labelled (13C + 15N) nitrate, carbon and ammonium uptake after a 4 hr incubation period 

were made at each station. P vs. E biomass and productivity data will be presented and 

discussed. 

P vs. E incubations 

In this study, the P-E approach was used to examine photoacclimation and to 

establish PE parameters (α, Pb
max, Ek & β; see Table 3.3 for list of P-E parameters) in surface 

water samples after the incorporation and subsequent uptake of 13C by phytoplankton, as 

well as by light controls on nitrogen assimilation using 15N stable isotopes.   

Water samples for dual-labelled (15N, 13C) P vs. E incubations were collected from the 

surface (~5 m) engine room supply clean intake. One litre water samples were collected in 

two sets of 15 x 1L polycarbonate bottles and 2 x 1L dark bottles. One set of 16 bottles (15 

light and one dark bottle) was inoculated with 15N (1 µmol K15NO3 / 100 µl) and 13C (4.2507 g 

sodium bicarbonate / 100 ml Milli-Q water) spikes to achieve 15N-NO3 and 13C enrichments 

of ~10 and 5% respectively. The second set of 16 bottles was spiked with 0.1 µmol 15NH4Cl / 

100 µl at ~10% of ambient NH4 concentration. The two sets of bottles were incubated in two 

identical linear box incubators with an artificial light source at one end and Lee ‘misty blue’ 

filters specifically placed to remove red light and to recreate water-column light attenuation 
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(see Figure 3.1 for example). Two 2000-W tungsten-halogen lamps were used as the light 

sources: photon flux (I) ranged from 0 to 390 µE m-² s-1 and irradiance levels in the 

photosynthetron were measured using a Biospherical Instruments probe (QSP200).  

 

Figure 3.2 Simplified plan view of P vs. E incubation box design created in Google Sketch Up.  

The bottles were placed alongside one another in the incubation boxes to create a 

diminishing light gradient away from the light source (~400 to 0 µE m-² s-1) (Figure 3.2). The 

incubators had a circulating water bath between the bottles and the light source to absorb 

the majority of the heat generated from the lamps, and surface sea water was also 

continuously circulated through the incubator boxes to maintain near ambient 

temperatures in all sample bottles. Samples were incubated for 4 hours, after which the 

samples were filtered onto 25 mm ashed GF/F filters, dried in an oven at 50˚C and stored in 

tin foil wrapped petri dishes for future analysis on a mass spectrometer back at the 

University of Cape Town. 

Table 3.2 PE-curve parameters used in the text. 

P (≡ P
B
) Production or (production per unit chl-a) mgC (mgChla

-1
) h

-1
 

P
B
 max Chl-a specific maximum light-saturated 

photosynthetic rate 
mgC mgChla

-1
 h

-1
 

α Maximum light utilisation coefficient mgC mgChla
-1

 h
-1

(µE m
-
² s

-1
)

-1
) 

β Slope of photoinhibition mgC mgChla
-1

 h
-1

 

Ek Irradiance at saturation  (light adaptation index) µE m-² s
-1
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 Mass spectrometry 

The samples were prepared for mass spectrometry by punching 17-40 mm discs out 

of the filters depending on the amount of material present and whether a 25 or 47 mm filter 

had been used,  and pelleted into Toluene rinsed and dried tin capsules (5 mm X 12 mm 

Santis Ananlytical tin capsules for solids). The isotopic composition of all samples was 

determined on a Flash EA 1112 series elemental analyzer (Thermo Finnigan, Milan, Italy). 

Combustion gases were passed to a Delta PlusXPIRMS (isotope ratio mass spectrometer; 

Thermo electron, Bremen, Germany), via a Conflo III gas control unit (Thermo Finnigan, 

Bremen, Germany). The in-house standard used was DL Valine purchased from Sigma. The 

in-house standard was calibrated against IAEA (International Atomic Energy Agency) 

standards.  Nitrogen is expressed in terms of its value relative to atmospheric nitrogen, 

while carbon is expressed in terms of its value relative to Pee-Dee Belemnite. 

Analytical Principle 

Samples first pass through the Flash EA 1112 series elemental analyzer where 

reduction of particulate organic nitrogen to N2 gas and subsequent elemental analysis is 

achieved via the Dumas combustion method (Preston & Owens 1983, Slawyk et al. 1988). 

Samples are placed into a carousel autosampler that sequentially drops pelletted samples 

into a combustion furnace (850°C for CuO) where flash combustion takes place after 

injection of O2 (~23-175ml min-1 for an average of 8 seconds). Here, the major elements in 

the sample (C, H, N) are oxidised to CO2, H2O, N2O and N2 gases respectively. These gases 

are carried by a helium gas carrier flow (flow rate 100 ml min-1) into the reduction furnace 

(650 °C), where N2O is reduced to N2 in the presence of a copper catalyst and excess O2 is 

removed by copper oxidation. The remaining gases pass through a water trap (anhydrous 

magnesium perchlorate). If C is not being analysed, CO2 is also removed by a trap 

(“Pelisorb”, Santis Ananlytical). However, in this case very little CO2 was generated so the 

‘trap’ was not necessary and CO2 was allowed to pass out of the system. The gases then 

pass through a gas chromatograph (GC) column (at 40 °C), which temporally separates the 

gases. Nitrogen gases elute before CO2 so that two separate peaks occur on the 

chromatogram with a smaller CO2 peak indicating correct system function. The N2 gas is 

then introduced into a triple collector mass spectrometer where it is ionised by an electron 

impact ionisation source (accelerating voltage 3400 V). The resulting ions pass through a 
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flight tube then a fixed magnet separates the ions on the basis of their mass to charge ratio 

(m/z). Ions of mass 28 (14N14N), 29 (14N15N) and 30 (15N15N) are detected by the triple 

collector, composed of Faraday cups, which become charged when hit by ions. The ion flux 

is converted to a proportional electrical current corresponding to masses 28, 29 and 30. A 

reference gas of known isotopic composition is measured once before each sample and 

used to correct for any instrument drift. A constant vacuum is maintained by a 

Turbomolecular pump which clears the instrument of waste gases. Delta values (δ, the 

excess of 15N in the sample relative to the reference gas) are then calculated (by the 

software) from the expression: 

δ = ((Rsam - Rref)/ Rref) * 1000                                                                                    (4)                 

where δ is in ‰ and Rsam and Rref are the sample and reference ratios of minor (mass 29) to 

major beams (mass 28). At low enrichments (<5%), the contribution of mass 30 is 

insignificant and is therefore excluded in the calculation of δ, which is then corrected for the 

enrichment of the reference gas relative to air. Isotopic abundance (At%) is calculated from 

Equation 4, which can also be expressed as: 

δ = (At%sam - At%nat)/ (At%nat) * 1000 

At%sam = δ * At%nat / 1000 - At%nat   

where At%nat is the natural isotopic abundance of 15N (0.3663%).  

 

 Nitrogen Uptake Calculations  

Nitrogen uptake (ρ, μmol N L-1 h-1) was calculated from the equation of Dugdale & 

Wilkerson (1986): 

ρN = r * PON/ (R * t)                                                                                (5) 

where PON is particulate organic nitrogen (μmol N L-1)  

t is incubation length (h) 

r is At% excess of the particulate fraction (=At%sam - At%nat )  

R is At% enrichment of the aqueous medium: 

R = (S * At%nat/ 100 + s * p)/ (S + s) * 100 - At%nat                                                              (6) 
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where S is substrate concentration (μmol N L-1)  

s is the 15N concentration after spike addition (μmol N L-1) and  

p is the 15N spike purity. 

  

 Correction for isotopic dilution 

For ρNH4, ammonium regeneration, R, is likely to change considerably during the 

course of the incubation due to microzooplankton excretion. To take this into account, R 

was calculated at the start (R0) and at the end (Rt) of each incubation. The amount of 15NH4 

present at T0 and Tt can be expressed in two ways: 

 

15NH4 = V * Sx * Rx + At%nat * C                                                                                           (7a) 

or 

15NH4 = rx (V * Sx + C)                                                                                            (7b) 

where V is sample volume (L) 

Sx is substrate concentration at tx (μM) 

C is the amount of NH4 added as “carrier” (μmol) and  

rx is the measured enrichment at tx (At%). 

These can be combined to calculate R0 and Rt: 

 Rx = (rx (V * Sx + C) – rnat * C)/ (V * Sx)  

 

R0 values were calculated from the initial spike addition following equation 6. Using 

these values, the average R over the time course of the incubation was then calculated 

based on the assumption that R decreases exponentially over time, following the equation 

of Glibert et al. (1982): 

RG = R0 / (ln (R0 / Rt)) * (1 – (Rt / R0))                                                                                                                  (8) 

This corrected value of aqueous enrichment (RG) was then substituted for R in the 

calculation of uptake (Equation 5). 
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 Carbon fixation  

Similarly to nitrogen uptake, carbon fixation was calculated from the equation 

ρC = (r * POC) / (R * t)                                                                                                                                         (9) 

where POC is particulate organic carbon (μmol C l-1) and S (from Equation 6) is assumed to 

be 2100 μmol C l-1.  

All PON/POC and r values were blank corrected to remove any signal expressed by the filters 

themselves.  

3.2.3 Photosynthetically Available Radiation (PAR)  

 The ship’s PAR system malfunctioned regularly and was deemed untrustworthy, so in 

addition to daily weather observations recorded from the ship by the South African Weather 

Service, weekly (8 day composite) averaged PAR values were obtained from NASA’s SeaWiFS 

satellite data archive to give an accurate indication of the photosynthetic available 

irradiance at the sea surface. 

 

3.3  Results 

3.3.1 Sampling Stations  

Legs 2 (Antarctica to South Georgia) and 3 (South Georgia to Antarctica) traversed 

through three zones (WG, SAISB and AAZ) and crossed the SBdy and the sACCf (Figure 3.2).  

For a period of time Leg 3’s transect ran along the SBdy.  Leg 2 had 2 stations in the WG 

(BR3 & BR12), one station in the AAZ (BR20) and one in the SAISB (downstream of South 

Georgia, BR26). Leg 3 had one station in the AAZ (along the SBdy, BR38) and two in the WG 

(BR50 & BR62).  Leg 4 (Antarctica to Cape Town) had one station in the ACS (HB1), one 

station in the WG (HB11), one station in the AAZ (HB23) and one in the N-ACC (HB42).  
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Figure 3.3 Map of the cruise track for Legs 2, 3 and 4 with the 11 productivity stations (represented by red 
stars) layered on top of seafloor bathymetry. 

 

Table 3.3 Dates, start time and position of the 11 productivity stations 

Station Date Time (GMT) Lat Lon 

BR3 2009/01/27 06:43 -66.43 -8.45 

BR12 2009/01/29 07:10 -61.59 -22.04 

BR20 2009/01/31 07:07 -57.32 -31.19 

BR26 2009/02/01 05:07 -52.35 -34.38 

BR38 2009/02/03 06:14 -56.18 -25.46 

BR50 2009/02/05 06:08 -60.75 -21.35 

BR62 2009/02/07 07:00 -66.79 -6.83 

HB01 2009/02/21 15:11 -69.76 -2.443 

HB11 2009/02/23 05:39 -62.84 0.010 

HB23 2009/02/25 05:38 -53.16 0.002 

HB42 2009/02/28 05:02 -41.27 11.184 

 

 

 

 

BR3 

BR12 

BR20 

BR26 

BR38 

BR50 

BR62 

HB1 

HB11 

HB23 

HB42 
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3.3.2 HPLC 

Antartica to South Georgia (Leg 2) 

Mean chlorophyll-a concentration was 0.96 mg m-3. On Leg 2 chlorophyll-a 

concentration peaked in the WG region at 68°S and at 61°S (2.25 mg m-3 and 1.7 mg m-3) 

(Figure 2.11a, Chapter 2). Another notable peak (2.25 to 3.09 mg m-3) occurred in the island 

influenced area at ~52°S. 

The accessory pigment Fucoxanthin (diatoms) makes up the greatest proportion of 

total chlorophyll-a followed by 19’-Hexanoyloxyfucoxanthin (prymnesiophytes) and 

Peridinin (dinoflagellates) (Figure 3.4). Diatoms peak in abundance between 62 and 59°S 

and again between 56 and 52°S.  Prymnesiophytes show a slight increase at 63°S and again 

at 60°S.  Dinoflagellates surpass prymnesiophytes, but not diatoms at 55°S. 

 

 

 

Figure 3.4 Community structure along Leg 2 (Antarctica to South Georgia) displayed as group contribution to 

total chl-a.  
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South Georgia to Antarctica (Leg 3) 

Along Leg 3, chl-a again peaked in the WG region (2.4 and 1.5 mg m-3), and in the 

ACS zone (3.0 mg m-3) (Figure 2.11b, Chapter 2).  Unexpectedly, a decline in concentration 

to 0.6 mg m-3 occurred along the SBdy, in the AAZ region. 

Again the accessory pigment Fucoxanthin (diatoms) dominated, making up the 

greatest proportion of TChla followed by 19’-Hexanoyloxyfucoxanthin  (prymnesiophytes) 

(Figure 3.5). The greatest abundance of diatoms occurred between 62 and 60°S followed by 

a smaller peak at 59°S. 

 

 

Figure 3.5 Community structure along Leg 3 (South Georgia to Antarctica) shown as group contribution to total 

chl-a. 

Antarctica to Cape Town (Leg 4) 

Chl-a concentrations were generally low along the length of this transect (mean 0.49 

mg m-3) (Figure 2.10b, Chapter 2). The greatest values were encountered at 68°S in the ACS 

region (1.5 mg m-3), at 60°S in the WG region (0.96 mg m-3), at 52°S in the AAZ (0.66 mg m-3) 

and at the STF, ~40°S (0.62 mg m-3). 

The accessory pigment Fucoxanthin (diatoms) made up the greatest proportion of 

Tchl-a, followed closely by 19’-Hexanoyloxyfucoxanthin (prymnesiophytes), with Peridinin 

(dinoflagellates) and total chl-b (smaller green algae -flagellates) making up the next 

greatest proportion (Figure 3.6). Prymnesiophytes peaked when diatoms were low in 
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abundance at 71°S, 69°S, and 59°S, and from 47°S to 39°S they remained in greater 

proportion to diatoms, with notable peaks at 45°S and 40°S. Green algae (flagellates) 

peaked at 49°S, but still remained lower in proportion to the other dominant groups. North 

of the STF prokaryotes replaced prymnesiophytes as the dominant algal group. 

 

 

Figure 3.6 Community structure along Leg 4 (Antarctica to Cape Town) displayed as group contribution to total 

chl-a. 

3.3.3 Pigment Indices 

Total chl-a made up the greatest proportion (~35 – 55%) of the total pigment pool at 

all stations except BR20 (~25%) (Figure 3.7a).  Chl b + c contributed ~20% to the total 

pigment pool at each station (Figure 3.7a). There was a greater proportion of 

photosynthetic carotenoids (~31%) than photoprotective caratenoids (~8-10%) which 

contributed the smallest proportion of total pigments at all productivity stations (Figure 3.7a 

and b). Photoprotective caratenoids increased from 10 to 40% of the total pigment 

proportion at the end of Leg 4 (Figure 3.7b).  
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Figure 3.7a & b. a.) Pigment type ratios for each productivity station along Legs 2, 3 and 4. Stations BR3, BR12, 
BR20, BR26 are Leg 2, BR38, BR50, BR62 Leg 3 and HB1, HB11, HB23, HB42 Leg 4.  b.) Pigment type ratios for 
all HPLC stations along Leg 4, expanded upon here to show that change occurred in PPC along this leg. For both 
figures Black is Total Chl-a:Total Pigment, dark green is Chlb+c:Total Pigment, grey is Photosynthetic 
Carotenoid:Total Pigment and light green is PhotoprotectiveCarotenoid:TotalPigment. 

 

3.3.4 Size Class Structure 

Microplankton dominated at all productivity stations except HB1, HB11 and HB42 

where nanoplankton were in greatest relative abundance (Figure 3.8).  Picoplankton made 

up a small part of the entire community at HB1 and HB42. The greatest contribution of 

microplankton to TChl-a occurred at BR26 (2.3 mg m-3) followed by BR50 (1.2 mg m-3). 

Nanoplankton contributed the greatest part of TChl-a (0.6 mg m-3) at HB1. 
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Figure 3.8 Size class structure at each productivity station along Legs 2, 3 and 4. Microplankton (>20 µm), 
shown in black, nanoplankton (>1 and < 20 µm)  in dark grey, and picoplankton (< 1 µm)  in light grey. 

 

Table 3.4 Overview of initial parameters of the incubation experiments for the sample locations:N-ACC, AAZ, 
WG, SAISB and ACS (*no data available).   

Station 

Number 
Region 

SST Salinity Chl-a 

[mgm⁻³] 

Si 

[μmolL⁻¹] 

NO3 

[μmolL⁻¹] 

PO4 

[μmolL⁻¹] 

NH4 

[μmolL⁻¹] 

Urea 

[μmolL⁻¹] 

Dominant  Algal Group 

BR 03 WG -0.8 33.7 0.412 35.47 24.35 1.13 0.88 0.43 Diatoms 

BR 12 WG 0.2 33.5 0.268 40.80 26.72 2.05 0.88 0.25 Diatoms 

BR 20 AAZ 2.6 34.1 0.659 21.76 22.15 1.48 0.76 0.47 Diatoms 

BR 26 SAISB 5.4 33.8 2.94 * 13.62 1.12 1.89 0.93 Diatoms 

BR 38 AAZ 3.8 33.9 0.535 7.96 16.62 1.42 0.92 0.36 Diatoms 

BR 50 WG 1.1 33.6 1.142 27.36 19.93 1.52 1.13 0.69 Diatoms 

BR 62 WG -0.3 33.8 0.487 32.66 23.65 1.77 1.09 0.65 Diatoms 

HB 01 ACS -0.8 33.4 0.851 29.94 18.90 1.29 1.05 0.80 Prymnesiophytes 

HB 11 WG 0.7 34 0.213 27.46 22.09 1.67 1.01 0 Prymnesiophytes 

HB 23 AAZ 2.4 33.8 0.573 21.20 22.11 1.68 0.51 0.55 Diatoms 

HB 42 N-ACC 12 * 0.491 1.24 5.42 0.47 0.89 0 Prymnesiophytes 

 

 

3.3.5 Primary Production  

Primary production varied from 0.15 to 3.26 mg C m-3 hr-1 (Table 3.5, values 

calculated from PB max, carbon fixation). Production was highest along Leg 2 (from 

Antarctica to South Georgia) at stations BR20 and BR26 in the AAZ (3.26 mg C m-3 hr-1) and 

in the SAISB (2.18 mg C m-3 hr-1) zones respectively.  Lowest production occurred along Leg 4 
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(Antarctica to Cape Town) at HB11 (0.15 mg C m-3 hr-1) in the WG region, followed by 

stations HB1 (in the ACS region) and HB23 (in the AAZ) (0.28 mg C m-3 hr-1 at both).  Leg 3 

(South Georgia to Antarctica) exhibited relatively low production at all three stations (0.60, 

0.50, and 0.25 mg C m-3 hr-1).  

Table 3.5 Phytoplankton productivity at all productivity stations along Legs 2, 3 and 4. 

Region Stn chl a POC POC:Chl a PP Pchl 

  (mg m-3) (µg l-1)  (mg C m-3 hr-1) (mg C mg chl-a-1hr-1) 

WG BR3 0.412 195.34 474 0.420        1.02 

WG BR12 0.268 95.89 358 0.309 1.15 

AAZ BR20 0.659 410.03 622 3.260 4.31 

SAISB BR26 2.940 163.22 55 2.180 0.74 

AAZ BR38 0.535 73.00 136 0.600 1.12 

WG BR50 1.142 70.33 62 0.497 0.45 

WG BR62 0.487 55.17 113 0.250 0.51 

ACS HB1 0.851 41.23 270 0.280 0.33 

WG HB11 0.213 29.59 48 0.150 0.70 

AAZ HB23 0.573 26.18 46 0.280 0.49 

N-ACC HB42 0.491 78.73 160 0.580 1.18 

 

3.3.6 POC:Chl-a ratios 

POC:chl-a ratios were calculated from fluorometric chl-a (see chapter 2, section 

2.2.5) and from POC concentrations determined from the mass spectrometer results (for PB 

max of C) and are highly variable (range 46 to 622 µg C µg chl-a-1). There was no consistent 

pattern where high biomass coincided with greater carbon biomass.  Normalized production 

also showed no clear trend with POC: Chl-a ratios. 

3.3.7 Photosynthetically Available Radiation 

PAR ranged from 24 to 48 E m-2 d-1 along Leg 2 (Antarctica to South Georgia) with 

greatest amounts occurring as the ship headed northwards (Figure 3.9a). Along Leg 3 (South 

Georgia to Antarctica) PAR values were slightly lower, ranging from 16 to 45 E m-2 d-1, with 

the lowest value occurring at ~60°S, 20°W (Figure 3.9b). Leg 4 (Antarctica to Cape Town) had 
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the greatest range in PAR, which spanned 8 to 52 E m-2 d-1 along the length of the transect 

with the increase from south to north (Figures 3.9c & d).  A seasonal progression in PAR was 

apparent when comparing the three legs, Leg 2 (mid-summer) having the highest overall 

PAR values for the entire region (Figure 3.9a). 

 

 

a. Leg 2 

BR12 

BR3 

BR20 

BR26 

b. Leg 3 

BR38 

BR50 

BR62 



Univ
ers

ity
 of

 C
ap

e T
ow

n

88 

 

 

Figure 3.9a-d. Photosynthetically Available Radiation (PAR) 8 day satellite composites given for the periods 
a.)25 January to 1 February 2009, b.) 2 February to 10 February 2009, c.) 18 February to 26 February 2009, d.) 
27 February to 3 March 2009. Black stars indicate position of the productivity stations. Colour bar represents 
PAR in Einsteins m

-2
 d

-1
, images were compiled from Sea WiFs Level 2 Geophysical data products, 

http://www.class.ngdc.noaa.gov/d  

 

3.3.8 P vs. E Curves  

P-E parameters for nitrate and ammonium uptake and carbon fixation are 

represented in the P-E curves (Figures 3.10a, b, c and 3.11a, b, c, respectively and 

summarised in Table 3.4). General observations from these results were that pNH4
+ curves 

always achieve a higher PB
max than pNO3

- curves. C-fixation curves always achieve a higher 

PB
max than pNH4

+ and pNO3
- curves, except for at BR26 in the Subantarctic and shallow 

bathymetry region (SAISB) where pNH4
+ PB

max was highest (Figures 3.10c, 3.11c and Table 

3.6). The relationship between PB
max and dominant algal groups for each station indicates 

c. Leg 4 

HB1 

HB11 

HB23 

d. Leg 4 

HB42 

http://www.class.ngdc.noaa.gov/d
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diatoms have higher C-fixation PB
max than the second most dominant group, 

prymnesiophytes (Figure 3.12). 

PB
max was greatest along Leg 2 (Antarctica to South Georgia) and specifically at 

station BR20 (4.31 mgC mgChla h-1). BR26 also had relatively high photosynthetic rates for 

all three nutrient substrates (0.741 mgC mgChla h-1 [C-fix], 0.765 [NH4], and 0.096 [NO3] 

mgN mgChla h-1). Both higher values coincided with higher chl-a concentrations (0.659 and 

2.94  mg m-3 respectively). BR3 and BR12 had high PBmax values for C-fixation (1.02 and 1.15 

mgC mgChla h-1 respectively), but low surface chl-a concentrations (0.412 and 0.268 mg m-3 

respectively). Leg 3 (South Georgia to Antarctica) had one high PB
max value at BR38 (1.09 

mgC mgChla h-1) and the remaining stations were low, however BR50 did have a fairly high 

surface chl-a concentration of 1.14 mg m-3.  Leg 4 (Antarctica to Cape Town) had low PB
max 

values with the northern most station, HB42 displaying the greatest value (1.19 mgC mgChla 

h-1).   

Ek values ranged from 88 to 340 µE m-² s-1 along the three transects. There  was not 

a strong relationship between Ek and PAR for each substrate (pNO3
-  r² = 0.016, pNH4

+ r² = 

0.344, C-fix r² = 0.097), contrary to expectations that Ek would decrease with a decrease in 

PAR, or alternately an increase in latitude (Figure 3.13). Photoinhibition (β) was neglible for 

all stations. The light limited region of the P-E curves given as a measure of quantum 

efficiency of photosynthesis (α) followed a similar pattern for all stations whereby the 

slopes were all low, decreasing in the order C > NH4 > NO3.  

Low f-ratios (mean 0.18±0.10) indicate preferential uptake of regenerated N species. 

Furhtermore, while the relationship between total nitrogen uptake and C-fixation was poor 

(r² = 0.032 ) due to two outliers (BR20 and BR26), four out of eleven stations fall very close 

to the expected Redfield ratio slope (~6:1) and an additional four out of eleven stations fall 

just below the Redfield slope as further evidence of  N recycling based communities (Figure 

3.14). 

 

 

 



Univ
ers

ity
 of

 C
ap

e T
ow

n

90 

 

Table 3.6 Production station data showing depth (surface for all stations ~5m) with corresponding replicated 
percent light levels, chlorophyll-a (mgm

-3
), and P. E. Parameters, P

B
max (mgCmgChla

-1
h

-1
), α

 
((mgCmgChla

-1
h

-

1
)(µEm-²s-

1
)

-1
), Ek (µEm-²s-

1
), β ((mgCmgChla

-1
h

-1
)(µEm-²s-

1
)

-1
), PAR (µEm-²s-

1
) as well as the P-E curve fit 

coefficients and level of significance. For nitrate and ammonium uptake, the units are in mg N rather than mg 
C.   

Station  Z (%light) Chl-a PB max α Ek PAR β r p 

Leg 2 Antarctica to South Georgia 

BR3 NO3
- 84 0.412 0.011 5.94x10-5 190 370  0.000061 0.67 0.012 

 NH4
+ 84 0.412 0.026 1.57x10-4 164 370  0.000046 0.55 0.035 

 C 84 0.412 1.021 5.06x10-3 201 370  0.0045 0.74 0.002 

BR12 NO3
- 84 0.268 0.0315 2.10x10-4 150 417 0.000031 0.82 0.000 

 NH4
+ 84 0.268 0.086 3.09x10-4 279 417 0.00023 0.70 0.005 

 C 84 0.268 1.153 6.36x10-3 182 417 0.0023 0.88 0.000 

BR20 NO3
- 34 0.659 0.031 2.49x10-4 126 347 n/a 0.87 0.000 

 NH4
+ n/a 0.659 n/a n/a n/a 347 n/a n/a n/a 

 C 56 0.659 4.313 4.27x10-2 101 347 n/a 0.86 0.000 

BR26 NO3
- 84 2.94 0.096 4.50x10-4 154 324 0.00061 0.85 0.000 

 NH4
+ 22 2.94 0.765 2.47x10-3 309 324 0.0019 0.60 0.018 

 C 34 2.94 0.741 8.13x10-2 136 324 0.0575 0.82 0.000 

Leg 3 South Georgia to Antarctica 

BR38 NO3
- 56 0.535 0.009 4.32x10-5 199 486 n/a 0.98 0.000 

 NH4
+ 56 0.535 0.089 3.89x10-4 228 486 n/a 0.83 0.000 

 C 56 0.535 1.086 6.37x10-3 170 486 0.000031 0.87 0.000 

BR50 NO3
- 22 1.142 0.002 2.16x10-5 88 301 n/a 0.80 0.000 

 NH4
+ 34 1.142 0.081 5.48x10-4 149 301 n/a 0.65 0.008 

 C 22 1.142 0.455 2.83x10-3 161 301 0.00075 0.58 0.025 

BRU62 NO3
- 34 0.487 0.020 1.54x10-4 133 255 n/a 0.84 0.000 

 NH4
+ 22 0.487 0.154 1.32x10-3 116 255 n/a 0.60 0.040 

 C 34 0.487 0.532 3.64x10-3 146 255 n/a 0.83 0.000 

Leg 4 Antarctica to Cape Town 

HB1 NO3
- 16 0.851 0.012 1.26x10-4 92 278 n/a 0.85 0.000 

 NH4
+ 56 0.851 0.048 1.92x10-4 249 278 n/a 0.85 0.000 

 C 22 0.851 0.269 2.58x10-3 104 278 n/a 0.82 0.001 

HB11 NO3
- 56 0.213 0.011 4.04x10-5 275 301 n/a 0.87 0.000 

 NH4
+ 100 0.213 0.129 6.80x10-4 189 301 n/a 0.84 0.000 
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 C 22 0.213 0.699 5.69x10-3 123 301 0.00125 0.74 0.002 

HB23 NO3
- 56 0.573 0.016 9.93x10-5 158 347 n/a 0.87 0.000 

 NH4
+ 84 0.573 0.053 5.60x10-4 94 347 n/a 0.88 0.000 

 C 56 0.573 0.528 1.92x10-3 275 347 n/a 0.89 0.000 

HB42 NO3
- 84 0.491 0.013 4.99x10-5 254 555 n/a 0.97 0.000 

 NH4
+ 56 0.491 0.204 8.94x10-4 228 555 n/a 0.90 0.000 

 C 84 0.491 1.186 3.49x10-3 340 555 0.0023 0.97 0.000 

 

 

Figure 3.10a.  P-E curves for NH4
+
 and NO3

-
 assimilation at all 11 productivity stations. Red diamonds represent 

P
B 

for NH4
+
, green circles represent P

B
 for NO3

-
. Note the different scales on the y-axes where green represents 

P
B
 for NH4

+ 
and red represents P

B
 for NO3

-
. BR = Buoy Run stations on Legs 2 and 3, HB = Homeward Bound 

stations on Leg 4, and zones are indicated in brackets. 

Figure 3.10b.  P-E curves for NH4
+
 and NO3

-
 assimilation at all 11 productivity stations. Red diamonds represent 

P
B 

for NH4
+
, green circles represent P

B
 for NO3

-
. Note the different scales on the y-axes where green represents 

P
B
 for NH4

+ 
and red represents P

B
 for NO3

-
. BR = Buoy Run stations on Legs 2 and 3, HB = Homeward Bound 

stations on Leg 4, and zones are indicated in brackets. 
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Figure 3.10b.  P-E curves for NH4
+
 and NO3

-
 assimilation at all 11 productivity stations. Red diamonds represent 

P
B 

for NH4
+
, green circles represent P

B
 for NO3

-
. Note the different scales on the y-axes where green represents 

P
B
 for NH4

+ 
and red represents P

B
 for NO3

-
. BR = Buoy Run stations on Legs 2 and 3, HB = Homeward Bound 

stations on Leg 4, and zones are indicated in brackets. 
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Figure 3.10c.  P-E curves for NH4
+
 and NO3

-
 assimilation at all 11 productivity stations. Red diamonds represent 

P
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for NH4
+
, green circles represent P

B
 for NO3

-
. Note the different scales on the y-axes where green represents 

P
B
 for NH4

+ 
and red represents P

B
 for NO3

-
. BR = Buoy Run stations on Legs 2 and 3, HB = Homeward Bound 

stations on Leg 4, and zones are indicated in brackets. 
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Figure 3.11a.  P-E curves for all 11 productivity stations. Black triangles represent P
B 

for carbon fixation. BR = 
Buoy Run stations on Legs 2 and 3, HB = Homeward Bound stations on Leg 4, and zones are indicated in 
brackets. 
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Figure 3.11b.  P-E curves for all 11 productivity stations. Black triangles represent P
B 

for carbon fixation. BR = 
Buoy Run stations on Legs 2 and 3, HB = Homeward Bound stations on Leg 4, and zones are indicated in 
brackets. 
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Figure 3.11c.  P-E curves for all 11 productivity stations. Black triangles represent P
B 

for carbon fixation. BR = 
Buoy Run stations on Legs 2 and 3, HB = Homeward Bound stations on Leg 4, and zones are indicated in 
brackets. 
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Figure 3.12 Relationship between dominant algal groups and P
B

max for C, NH4
+
 and NO3

-
. Grey columns 

represent proportion of P
B

max for C-fix, red columns NH4
+
 and green columns NO3

-
. Station numbers are 

indicated above the columns, BR = Buoy Run stations on Legs 2 and 3, HB = HomewardBound stations on Leg 4.  

 

Figure 3.13 Scatter plot of Ek versus PAR for nitrate and ammonium uptake and carbon fixation at all 11 
productivity stations. NO3

-
 is represented by green circles, NH4+ by red diamonds and C-fix by grey triangles.  
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Figure 3.14 Scatter plot of total N uptake versus C-fixation for all 11 productivity stations. Two outliers (BR20 
and BR26) are represented by grey dots and all other stations, black dots.  

 

3.4  Discussion  

This chapter’s discussion is broken down by zones and firstly addresses the dominant 

phytoplankton groups according to how potential physical and chemical controls influence 

their regional distribution and how this pattern relates to observed productivity patterns.  

The latter part for each zone focuses on the role that light plays in phytoplankton nitrogen 

dynamics and explore regional distinctions in the factors influencing primary productivity.  

Although fundamentally controlled by light and nutrient availability, variable 

phytoplankton primary production is often associated with differences in community 

structure. For example, larger cells such as diatoms usually exhibit higher production (Uitz et 

al. 2008, Barlow et al. 2010) while smaller cell sizes are often associated with lower 

productivity (Savidge & Gilpin 1999, Barlow et al. 2010). Diatoms and prymnesiophytes 

(=haptophytes; Phaeocystis antarctica in this case) that are well adapted to low 

temperatures have high nutrient requirements, and high maximal growth rates, and are 

known to dominate sporadic bloom events in the HNLC Southern Ocean provided that 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.0 1.0 2.0 3.0 4.0 5.0 

To
ta

l N
 U

p
ta

ke
 (

m
g 

N
 m

g 
ch

l-
a-1

h
r-1

) 

C-Fixation (mg C mg chl-a-1hr-1)   

Slope of Redfield Ratio (~6:1) 



Univ
ers

ity
 of

 C
ap

e T
ow

n

99 

dissolved iron is available (Arrigo et al. 1999, Poulton et al. 2007, Wright et al. 2010).  

Cryptophytes may also contribute significantly to blooms (Gabriotti et al. 2005, Wright et al. 

2010). Relatively efficient food webs supported by diatom-dominated blooms export 

significant quantities of organic matter to the deep ocean (Blain et al. 2007, Pollard et al. 

2009). Light-nutrient-iron interactions are therefore crucial determinants of phytoplankton 

community structure, as well as regulating overall productivity and C and N export via the 

biological carbon pump. However, unravelling the interplay between light and nitrogen 

metabolism in Southern Ocean phytoplankton communities has rarely been tackled 

(Cochlan 2008).  Central to one part of this story is the ability of phytoplankton to harvest 

light, as determined by their photosynthetic pigments. 

All phytoplankton have pigment-protein complexes within their light-harvesting 

antenna (in PSI & PSII), whose job it is to absorb light for photosynthesis. Absorption is 

influenced by both cellular pigment composition and pigment packaging, and varies with 

changes in phytoplankton community structure and photoacclimation (Barlow et al. 2010). 

Phytoplankton adapt well to changes in both light intensity and quality (Falkowski & La 

Roche 1991) and have evolved specific arrays of pigments to respond to diverse light 

conditions in different ecosystems (Barlow et al. 2010). Photosynthetic carotenoids are 

more pronounced in high-productivity ecosystems where large phytoplankton dominate 

(Barlow et al. 2002), making up ~80% of total carotenoids (Gibb et al. 2000, Barlow et al. 

2010). Alternatively, photoprotective carotenoids prevail at the surface in low-chlorophyll 

waters where small cells are prominent and can contribute >70% to the entire carotenoid 

pool (Gibb et al. 2000, Barlow et al. 2010). These distinctions are correlated with changes in 

community structure and physiological responses to differences in environmental 

conditions (Barlow et al. 2010). On account of phytoplankton’s development of taxon-

specific suites of pigments, this fact can be used to instruct important chemotaxonomic 

information on community composition with certain key pigments being signatures for 

specific phytoplankton groups (Barlow et al. 1999, 2002, 2010). Although pigment 

biomarkers do not give any information to species level, pigment indices provide useful 

interpretation at the class level (Barlow et al. 2010). In the following discussion each zone 

will be addressed according to its community composition followed by a description of 

related productivity, light conditions and nitrogen dynamics. Before discussing the individual 

regional results from this study, some general observations that should be highlighted here 
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are as follows. Firstly, ammonium uptake was higher than nitrate uptake at all productivity 

stations (Figures 3.10a, b, c and 3.11a, b, c) which is expected in HNLC regions of the 

Southern Ocean where NH4
+ utilisation is considered a more metabolically efficient strategy 

for assimilating N in Fe-limited conditions.  Second, diatoms were the most dominant algal 

group followed by prymnesiophytes. When diatoms dominated community structure it was 

in association with higher C-fixation photosynthetic rates (PB
max) and in some cases higher 

NH4
+ assimilation rates (Figure 3.12). Finally, there was not a strong relationship between Ek 

values and PAR (Figure 3.13). One would expect Ek to decrease as PAR decreases 

southwards, however at higher latitudes you have less light over longer periods of time due 

to extended day length in summer, whereas at low latitudes there is higher light over less 

time which could help explain this poor relationship. In general Ek values were low as 

expected. Southern Ocean phytoplankton are known to have low Ek values, particularly 

diatoms (Dower et al. 1996, Saggiomo et al. 2002, Van Hilst and Smith 2002, Arrigo et al. 

2010, Mills et al. 2010) indicating that they are adapted to low light and thus unlikely to be 

light limited. 

 

The Subtropical Zone (STZ) 

Pigments and Community Structure 
 

In this zone, picoplanktonic prokaryotes, Prochlorococcus spp. and Synechococcus 

spp. (Gibb et al. 2001) dominate, as confirmed by the presence of the diagnostic pigments, 

zea and DV, biomarkers representing cyanobacteria and Prochlorococcus spp. (respectively; 

Figure 3.6, Table 3.1) (see also Uitz et al. 2006, Barlow et al. 2010). This community 

coincides with a low chl-a standing stock and low NO3
- and PO4

3- concentrations (Figures 

2.10b & 2.8b, Chapter 2) characteristic of oligotrophic, Agulhas Current waters, which 

originate in the tropics. Low nutrient concentrations favour smaller celled pico-prokaryotes 

due to their ability to scavenge nutrients at low concentrations (Eppley et al. 1969). This 

type of community makes up the ‘microbial loop’, which recycles nitrogen but loses 

significant amounts of carbon to respiration, thus leaving little C for export to the deep sea 

(Poulton et al. 2006, Thomalla et al. 2011).  
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As a result of variable environmental conditions, phytoplankton pigment 

composition changes accordingly (Barlow et al. 2010). The most notable pigment adaptation 

in the STZ was the greater contribution of carotenoids, specifically PPC, as the community 

changed in response to oligotrophic conditions (Figure 3.7b, HB44 to HB48). Photo-

protective carotenoids shifted from contributing ~10% throughout most other regions to 

~20 to 30% in this zone. They play a more important role in oligotrophic waters where year 

round irradiances are generally higher and penetrate the water column to greater depths 

due to reduced biomass, thus necessitating photo-protective adaptations. Similar findings 

have been reported for the tropical Atlantic (Gibb et al. 2000), the Arabian Sea 

(Sathyendranath et al. 1999), and the eastern boundary of the Atlantic (Barlow et al. 2004). 

Unfortunately, there were no productivity stations within this region, so comment 

on primary production, the light environment and nitrogen metabolism cannot be given. 

 

The Northern-ACC Zone (N-ACC) 

Pigments and Community Structure 

Based on the HPLC data, the N-ACC region’s phytoplankton community was 

dominated by prymnesiophytes which made up the greatest contribution (~57%) to chl-a 

standing stock (Figure 3.6). They were in the nano- size class (Figure 3.8) represented by the 

pigment Flag (Figure 3.15, HB42) and were most likely coccolithophores up to the SAF, at 

which point a shift to Phaeocystis antarctica was likely.  One would expect to find 

coccolithophores in the nano- size class in subtropical to subpolar latitudes (McIntyre & Be 

1967, Takahashi & Okada 2000, Alderkamp 2010, Boyd et al. 2010), but south of the APF 

where calcite saturation falls significantly (Holligan et al. 2010), prymnesiophytes would 

most likely be represented by P. antarctica, one of the dominant species in the Southern 

Ocean (Arrigo et al. 1999, DiTullio et al. 2003, Wright et al. 2010, Smith et al. 2010, 

Alderkamp et al. 2010, Boyd et al. 2010). While speculative because there is no microscopy 

data to identify these groups to species level, it is understood that coccoliths have expanded 

their range into subpolar waters due to warming trends, but remain absent in polar waters 

(Boyd et al. 2010).  On the other hand, P. antarctica is only found at cooler high latitudes, 
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with a reported maximum temperature threshold of 10°C for their growth (Buma et al. 

1991, Boyd et al. 2010). A change in temperature from 15°C at the STF to 10°C at the SAF 

(Figure 2.5b, Chapter 2) therefore suggests a temperature controlled shift in community 

structure.  

Coccolithophores fix dissolved inorganic CO2 into both POC and particulate inorganic 

carbon (PIC or calcite) forms, thus playing a critical role in the C cycle.  Like all 

phytoplankton, C fixation sequesters CO2, but coccolith calcification converts 2 mols of 

HCO3
- to 1 mol each of CO2 and CaCO3. Therefore, it is uncertain whether coccolithophore 

blooms are net sinks or net sources of CO2 to the atmosphere (Boyd & Trull 2007, Boyd et al. 

2010). Nevertheless, the marine C cycle may also be indirectly influenced by calcite through 

its contribution to mineral ballasting of marine aggregates, resulting in rapid and efficient C 

export (Boyd et al. 2010). Additionally, like Phaeocycstis, coccoliths are a major source of 

dimethyl sulphide (DMS) to the atmosphere. The Charlson-Lovelock-Andreae-Warren 

hypothesis (Charlson et al. 1987) argues that DMS fluxes from the surface ocean function as 

cloud condensation nuclei, whereby cloud formation helps regulate net incoming solar 

radiation and global temperatures (Boyd et al. 2010).   

Closer to the APF, pymnesiophytes declined and diatoms as well as green flagellates 

(= prasinophytes) increased marginally and made up the greatest proportion of this region’s 

relatively low biomass at this point (Figure 3.6).   

Figure 3.15 Diagnostic pigments for all productivity stations. Fuc (red) represents the diatom proportion of the 
total diagnostic pigment pool (DP) (All+But+Chlb+Fuc+Hex+Per+Zea). Per (yellow) represents the dinoflagellate 
proportion of DP. Flag (grey) represents a grouping of small flagellates including, cryptophytes, chrysophytes, 
prymnesiophytes, and chlorophytes in relation to total DP. Zea (aqua) represents the cyanobacteria proportion 
of DP. DV (green) represents  a grouping of green flagellates and prochlorophytes  in proportion to total chl-a. 
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Productivity and Biomass 

Productivity in the N-ACC region was moderate (0.580 mg C m-3 hr-1), which can be 

attributed to oligotrophic nitrate limited conditions at HB 42 which was at the northern 

extent of this region and in close proximity to the STF. A smaller, NH4
+ recycling based 

community developed within a high surface irradiance environment, (abstracted from 

satellite composites; PAR ~555 µE m-2 s-1, Figure 3.9d) but within a low nitrate environment 

(Table 3.3). Unsurprisingly, therefore, the light-saturated photosynthetic rate revealed far 

greater ammonium uptake relative to nitrate uptake (NH4, PB max = 0.204;  N03 = 0.013 

mgC mgChla-1 h-1, Table 3.6),  yet still a relatively high rate of chl-a normalised carbon 

fixation (1.19 mgC mgChla-1 h-1), indicating efficient photosynthesis per unit chlorophyll. 

Speculatively, one might therefore argue that there was sufficient dissolved iron (dFe) to 

satisfy the demands of PSII and PSI, particularly since dFe is not needed for nitrate 

assimilation. Resultant very low f-ratios for this region (f = 0.06) are indicative of a N 

recycling community where new production and carbon export is minimal.  

P vs. E parameters  
   

The light required to saturate photosynthesis (Ek), for the single experiment (HB42) 

on this leg in the N-ACC region, was relatively high (228 [nitrate], 254 [ammonium], and 340 

[carbon] µE m-² s-1), as expected at lower latitudes (~41°S) in response to higher surface 

irradiances. Because of the higher energy cost in assimilating nitrate (and reducing it to 

ammonium) relative to assimilating ammonium, one might expect the Ek of nitrate to 

exceed that of ammonium. The assumption here is that more light-generated ATP is 

required to do this. But for this experiment, that was not the case. However, it seems more 

than likely that the Ek for ammonium and nitrate in this experiment were in practice 

indistinguishable, although this cannot be tested. For PB
max, the values for nitrate, 

ammonium and carbon were, respectively, 0.013, 0.204 mgN mgChla-1 h-1 and 1.186 mgC 

mgChla-1 h-1. When the PB
max values for nitrate and ammonium are summed, this yields a 

combined value of 0.217 mgN mgChla-1 h-1
,
 which when multiplied by the approximate 

Redfield ratio of 6:1 becomes 1.302 mgC mgChla-1 h-1.  Happily, this is close to the expected 

and experimentally derived carbon-based PB
max value of 1.19 mgC mgChla-1 h-1. This provides 
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confidence in the experimental values, particularly since the PB
max for nitrate is barely 15% 

of that for ammonium. One explanation for this is that the PB
max for nitrate uptake is 

curtailed simply because of nitrate limitation in this N-ACC region, although ammonium 

inhibition and a lack of dFe cannot be excluded (Lucas et al. 2007, Cochlan 2008). For α, the 

maximum light utilisation coefficient, the slopes were all low, decreasing in the order C > 

NH4 > NO3, indicating that the quantum efficiency of nitrate utilisation was the poorest. This 

indicates that increasing light had less effect on nitrate assimilation relative to ammonium 

uptake, in keeping with either and/or nitrate and iron co-limitation of phytoplankton growth 

that was otherwise supported by ammonium.   

In the N-ACC, and in all other regions, the photoinhibition parameters were 

negligible and can probably be considered an artefact when performing on-deck incubation 

experiments at fixed light levels. Not only are light levels constrained, but phytoplankton 

movement between different light levels is also confined within bottles. Furthermore, 

according to the literature, inhibition of light-saturated photosynthesis is not evident in 

nutrient-replete cells except when experimental irradiance exceeds actual growth irradiance 

by a factor of 10 (MacIntyre et al. 2002). Since experimental irradiances in this study never 

exceeded 400 µE m-2 s-1, this should not be a problem. In the field, phytoplankton are often 

well mixed throughout the water column, so will experience varying light levels and for 

different periods of exposure. In the Southern Ocean in particular, it is unlikely that 

phytoplankton will experience consistently saturating (and higher) light intensities, so that 

photoinhibition is unlikely in the field during normal turbulent conditions.    

 

 

The Antarctic Zone (AAZ) 

 Pigments and Community Structure 

This region was crossed on all three legs (2, 3 & 4) and is characterised by the steep 

increase in Si concentrations upon crossing the APF (Figure 2.8b & 2.9, Chapter 2).  

Consequently, diatoms dominate phytoplankton community biomass at most stations south 

of the APF. Diatoms are cosmopolitan by nature and have a great impact on biogeochemical 
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cycles of C, Si, N and Fe in the open ocean (Boyd et al. 2010). Diatoms use Si to form their 

frustules and in the Southern Ocean, the sediments contain large deposits of biogenic silica 

that signify the importance of diatom bloom export (Treguer et al. 1995). In particular, 

chain-forming species produce large fast-sinking assemblages during the declining phase of 

blooms that results in significant POC export and sequestration into the deep ocean where 

DIC can remain for 100s to 10,000s of years (Lampitt 1985, Boyd et al. 2010).  

Along the northbound transect from Antarctica to Cape Town (Leg 4), Fuc was the 

most dominant diagnostic pigment (Figure 3.21) and TChla made up the greatest proportion 

of the pigment pool with PSC the next greatest (Figure 3.7).  Diatoms therefore contributed 

greatest to the low chl-a standing stock, with prymnesiophytes contributing the next 

greatest amount (Figure 3.6). Along Legs 2 (Antarctica to South Georgia) and 3 (South 

Georgia to Antarctica) a similar pigment pattern was observed, and although biomass was 

slightly higher, prymnesiophytes were less important (Figures 3.4 & 3.5). Along Leg 4 

between the sACCf and the SBdy, a deepening mixed layer and seasonal progression likely 

played a part in suppressing biomass, due to light limitation (Figure 2.10b, Chapter 2).  

As microphytoplankton were the dominant size class in terms of biomass (Figure 

3.8), even though this was relatively low throughout the AAZ region along all three 

transects, it is reasonable to suppose that whatever C fixation occurred in this group would 

ultimately settle below the seasonal thermocline because of Si ballasting by the diatom 

based structure of the community.  Furthermore, in an Fe-limited HNLC environment, the 

Si:N ratio of diatom cells shifts from a more normal 1:1 ratio (when Fe replete) to ~3:1 or 

more (Moore et al. 2007), which facilitates rapid sedimentation. 

Productivity and Biomass 

There were three productivity stations within this zone, two of which were 

somewhat similar and the third (BR20) different, potentially due to its relatively close 

proximity to South Georgia and a source of dissolved Fe. This latter station exhibited 

exceptionally high productivity (3.260 mgC m-3 hr-1) although chl-a biomass was only 0.659 

mg m-3 and surface PAR was moderate (~347 µE m-2 d-1). The macro-nutrient environment 

was non-limiting and chl-a normalised carbon fixation was high (PB max 4.31 mgC mgChla-1 



Univ
ers

ity
 of

 C
ap

e T
ow

n

106 

h-1), indicating efficient light harvesting and energy synthesis by the photosystems; perhaps 

made so by available dFe, as was the case during CROZEX (Pollard et al. 2009). 

 Even so, chl-a normalised nitrate uptake (NO3) was relatively low (0.031 

mgNmgChla-1h-1). But due to irreparable errors in the NH4
+ experiment for this station, there 

are no ammonium uptake values. However, based on NO3 / total C-fixation, a low f-ratio (f 

= 0.27) can be derived, suggesting once again that NH4 dominated community N demands 

at this station. The implication here is that either NO3 is Fe-limited, or it is suppressed by 

NH4 inhibition (Lucas et al. 2007). Clearly, the arguments become speculative in the absence 

of dFe data, but arguing for sufficient dFe to efficiently drive C-fixation does not contradict 

any argument for either NH4
+ inhibition of NO3

-
 or Fe-limited NO3

-. If in the latter case, 

whatever Fe is available can be used to support PSII and PSI, while N demands can be met 

by regenerated N uptake.  

Low biomass, but a high rate of production suggests top down control by grazing, 

which keeps phytoplankton abundance in check (Bracher et al. 1991, Smetacek et al. 2004). 

Low nitrate uptake and consequently a low f-ratio indicate that overall productivity is 

sustained by regenerated N, where new production is perhaps Fe-limited. Here, the diatom 

community comprised medium sized species (Fragilariopsis spp., Chaetoceros spp., 

Eucampia spp. and Nitszchia spp. (from unpublished SEM data, Amy Harrington, pers. com.), 

which are more susceptible to grazing pressure than larger diatoms (Smetacek et al. 2004). 

At the other two stations (BR38 and HB23) in this region, results were somewhat 

more typical of HNLC conditions in the open ocean areas of the Southern Ocean where 

macronutrients were readily available, biomass, chl-a normalised productivity and chl-a 

normalised N uptake of both substrates were all low at HB23 or moderate at BR38 (see 

Table 3.7, Laubsher et al. 1993 for a comparative study in the same region). Ammonium 

uptake always surpassed nitrate uptake and f-ratios at both stations were low (f = 0.16 and 

0.31 respectively). Light was not limiting at BR38 (~486 µE m-2 s-1) or at HB23 (~347 µE m-2 s-

1) so it is likely productivity was Fe-limited at these two stations.   
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Table 3.7 Absolute productivity measurements from this study relative to reported rates in the literature. 
Laubsher et al. (1993) were only 12 hour incubations so hourly rate has been multiplied by 12 to get daily rate. 
 

Date Location Productivity Authors 

  (mg C m
-3 

d
-1

)  

Jan/Feb Atlantic sector of SO (41-70°S) 2.25 to 52.16 Kean 2012 

Jan/Feb Atlantic sector of SO (41-70°S) 4.2 to 69.9 Gibberd 2011 

Nov/Jan Crozet Islands (43-49°S) 2.8 to 38 Seeyave et al. 2007 

Fe enrichment exp Subantarctic Pacific (54°S) 3.5 to 82.9 Coale et al. 2004 

Fe enrichment exp Antarctic Pacific (66°S) 3.5 to 55.3 Coale et al. 2004 

Jan/Feb Atlantic Antarctic zone ~3 to 35 (from figure) Laubsher et al. 1993 

December Pacific ACC ~1 to 45 (from figure) Vaillancourt et al. 2003 

Nov/Dec Bellingshausen Sea (open ocean stns) 13.73 to 25.68 Bury et al. 1995 

Jan/Feb Atlantic sector of SO (34-70°S) ~0 to 18 (from figure) Froneman et al. 2001 

 

P vs. E parameters 

Ek values were low at BR 20 (126 [NO3] and 101 [C-fixation] µE m-² s-1), and at HB 

23 (158 [NO3], 94 [NH4] and 275 [C-fixation] µE m-² s-1) which is a response to the lower 

irradiance field encountered in this higher latitude area and a (diatom based) community 

adapted to take full advantage of lower light conditions. Concurrently, the increase in PSCs 

indicates a shift to a community with more effective photosynthetic apparatus, which 

enhances their light harvesting capacity in such conditions. Ek values at station BR38 were 

moderate 199 [NO3], 228 [NH4] and 170 [C-fixation] while PAR was relatively high. Light was 

certainly not limiting here and the photosynthetic saturation point increased accordingly. 

PPCs did not increase which was unexpected within a higher light regime, but could be 

explained by greater productivity here, thus, an increase in PSCs enabled more effective 

utilization of available light (Figure 3.7a). 

PB
max for BR20 and BR38 were both high, BR20 being exceptionally high (4.3 mgC 

mgChla-1 h-1). At BR38 the calculated Redfield ratio far surpasses expected values and 

evokes little confidence in the experimentally derived carbon-based PB
max value. In further 

support of this, particularly in the case of BR20, the results far exceeded similar studies in 

the Southern Ocean (Table 3.8). Laubsher et al.’s (1993) maximum rate for the Atlantic 

Antarctic zone only reached 35 mg C chl-a-1 d-1 and even Seeyave et al.’s Crozet Island study 
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only reached a maximum of 14.76 mg C mg chl-a-1 d-1, whereas daily rates for BR38 and 

BR20 were 17.92 mg C mg chl-a-1 d-1 and an alarming 68.96 mg C mg chl-a-1 d-1, respectively 

(Table 3.8).  For PB
max at HB23, the values for nitrate, ammonium and carbon were, 

respectively, 0.016, 0.053 mgN mgChla-1 h-1 and 0.528 mgC mgChla-1 h-1. When the PB
max 

values for nitrate and ammonium are summed, this yields a combined value of 0.069 mgN 

mgChla-1 h-1
,
 which when multiplied by the approximate Redfield ratio of 6:1 equals 0.414 

mgC mgChla-1 h-1. This is close to the expected and experimentally derived carbon-based 

PB
max value of 0.528 mgCmgChla-1h-1. This elicits confidence in the experimental values, 

particularly since the PB max for nitrate is barely 3% of that for ammonium. One possible 

explanation for this is that the PB
max for nitrate uptake is diminished because of ammonium 

inhibition and/or a lack of dFe in this open ocean region (Lucas et al. 2007, Cochlan 2008). 

For α at all three stations, the slopes were all low, decreasing in the order C > NH4 > NO3, 

(except for BR20 for lack of an NH4 experiment) indicating that the quantum efficiency of 

nitrate utilisation was the poorest, again supporting the idea that N demands were met by 

regenerated N uptake and enough dFe to support C-fixation. 

Table 3.8 Table of production normalised to chl-a comparing this study to other studies in the Southern Ocean. 

Season Region Type of measurement P
B
 Authors 

   (mg C mg chl-a
-1 

d
-1

)  

Late summer Atlantic P
B

max 5.28-19.55 (BR20 68.96) Kean 2012 

Late summer Atlantic P
B
 10.2-34.9 Gibberd 2011 

Late summer Subpolar Pacific P
B

opt 31.2±2.4 Hiscock et al. 2003 

Early summer Crozet Islands P
B

opt 3.6-14.76 Seeyave et al. 2007 

Late summer Atlantic ∫ Water column 2 to 23 Froneman et al. 2001 

Summer 

 

South Pacific 

 

Surface values 

 

2.78±2.28 (hourly- daylight 

incubation) 

DiTullio et al. 2003 

 

Late summer Atlantic AAZ Surface values 1 to 35 Laubsher et al. 1993 

Summer Scotia Sea P
B

opt 22.4±2.8 to 56.7±13.6 Korb et al. 2005 
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The Weddell Gyre (WG) 

 Pigments and Community Structure 

There were no notable differences in community structure in this region compared 

to the AAZ. Diatoms again dominated the group, with prymnesiophytes playing a secondary 

role along Leg 4 (Antarctica to Cape Town). An exception to the general similarities occurred 

at ~61°S on Legs 2 and 3 (Antarctica to South Georgia and South Georgia to Antarctica, 

respectively) where chl-a values increased to 1.7 mg m-3 along Leg 2 and 2.4 mg m-3 along 

Leg 3, roughly a 37% increase on Leg 2 and a 47% increase on Leg 3 (Figure 2.11a & b, Table 

2.2), and are in association with the low salinity feature discussed in Chapter 2. 

Macronutrient concentrations in this region were high (mean NO3 22.4±2.3, 20.5±1.7 and 

mean  Si 37.7 ±4.2, 30.6 ±8.3, Leg 2 and 3 for each, respectively) with a coincident decline in 

Si by ~29% at ~61°S on Leg 2 and 3 due to diatom silicification. Microplankton were the 

dominant size-class, with potential for enhanced C drawdown.  

The TChl pool in this region was dominated by Chla, b and c, making up 50-60% of 

the total pool, while PSCs made up ~30% and PPCs were often < 10% (Figure 3.7). It is 

arguable that the TChlc and PSC indices increased together with an increase in the 

microphytoplankton size class index, indicating that diatoms increased the proportion of Chl 

c and PSCs to optimize their light-harvesting capability (Barlow et al. 2004). This argument 

has previously been substantiated by Stuart et al. (1998) and Barlow et al. (2002) who 

revealed that absorbtion at 440nm in diatom-dominated communities is due to chlorophylls 

a and c, and at 490nm to photosynthetic carotenoids (Barlow et al. 2004).  

Similar to BR20 in the AAZ, the size class data for this station indicates a dominant 

microphytoplankton size class, however, it is more likely that smaller diatoms in the 

nanoplankton size range made up a greater portion than demonstrated. Uitz et al. (2006) 

draw attention to the limitations in assigning size classes based on the proportion of 

taxonomic pigments, which may be represented across a wide size-spectrum. Two parallel 

studies (Amy Harrington, MJ Gibberd, pers. comm.) found that nano- sized diatoms (~5-40 

µm, Fragilariopsis spp., Chaetoceros spp., Eucampia spp. and Nitszchia spp.) were the 

dominant group in the WG region. 
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 Productivity and Biomass 

Five productivity stations were sampled in this region (BR3, BR12, BR50, BR62, and 

HB11) and the prominent pattern was quintessential HNLC conditions. Productivity and 

biomass was very low at four of the five stations (PP < 0.42 mgC m-3 h-1) while BR50 

exhibited relatively high biomass (1.14 mg m-3) as well as a marginal increase in productivity 

(0.5 mgC m-3 h-1) (Table 3.5), albeit still a very moderate value. This station is in the vicinity 

of the low salinity feature (~61°S) described in Chapter 2, where perhaps melt-water flowing 

eastwards from the Antarctic Peninsula as part of the northern branch of the Weddell Gyre 

circulation, is made up of fresher and most likely Fe-enriched water (de Baar et al. 1995) and 

potentially escapes Fe-limiting concentrations for nitrate uptake considered by Cochlan 

(2008) to be 0.03–0.04 nM, thus giving one explanation for the higher biomass, which of 

course can only be realised if productivity exceeds grazing rates. f-ratios were low at all five 

stations, ranging from 0.03 to 0.30, as nitrate uptake became more light-limited than 

reduced N uptake. Furthermore, the size-structure of the community was also important, 

with small cells better able to scavenge Fe at low concentrations exhibiting higher f-ratios 

than larger cells, which consequently exhibited lower f-ratios. This is similar to findings by 

Lucas et al. (2007). 

P vs. E Parameters  

PB
max was relatively high at BR3 and BR12 (1.02 and 1.15 mgC mgChla-1 h-1 [C-

fixation]) and low for nitrate and ammonium assimilation (BR3 0.011 mgN mgChla-1 h-1, 

0.026 mgN mgChla-1 h-1 and BR12 0.0315 and 0.086 mgN mgChla-1 h-1, respectively). Redfield 

stoichiometry is unrealistic for BR3 (27:1), but acceptable for BR12 (10:1), although the 

latter is on the high side. However, the remaining three stations in this region exhibited 

relatively moderate PB
max values (Table 3.6) and corresponding Redfield ratios for BR50 and 

HB11 were close to 6:1 while BR62 was lower than expected at ~3:1. PAR ranged from 255 

to 417 µE m-2 s-1 (Table 3.6, Figure 3.9a-d) and while somewhat low at BR62, it was not 

limiting. Decreases in PAR coincided with increases in latitude as well as a seasonal 

progression to less light and a lower sun angle. Ek mimicked this pattern where the lowest 

photosynthetic saturation rate occurred at BR62 (133, 116, and 146 µE m-2 s-1 for [NO3], NH4 

and [C-fix], respectively). However, Ek variability was generally high and at high latitudes has 

been coupled with variability in PB
max, which was associated with temperature effects in 
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similar, albeit older, studies (Dower et al. 1996). For α, at each station the slopes were all 

low, decreasing in the order C > NH4 > NO3, indicating that the quantum efficiency of nitrate 

utilisation was the weakest. This indicates that increasing light had less effect on nitrate 

assimilation relative to ammonium uptake.  

A comparison between BR3 and BR62 (that share a similar lat. and long.) and BR12 

and BR50 (that share a similar lat. and long.), stations in close proximity to one another 

within the same region, highlights the variability experienced in this region. Over the  

approximately 7 to 11 days time difference between sampling periods, a noticeable shift in 

biomass and P-E parameters from BR3 to BR62 and from BR12 to BR50 occurred.  BR3 and 

BR12 exhibit low biomass (0.41 and 0.27 mg m-3 respectively), low productivity (0.42 and 

0.31 (mgC m-3 hr-1) respectively) and a high photosynthetic rate (1.02 and 1.15 mg C mg chl-

a-1hr-1 respectively) with a moderate to high POC:Chl-a ratio (474 and 358 respectively) 

suggesting Fe is not a limiting factor. One suspects that grazing may be influencing the cap 

on biomass. Move one week forward in time and conditions changed. At BR50 and BR62, 

productivity was still low (0.5 and 0.25 mg C m-3 hr-1), PB
max was low (0.45 and 0.51 mgC mg 

chl-a-1 hr-1), and at BR50, biomass was unusually high (1.14 mg m-3), while biomass at BR62 

remained low (~0.5 mg m-3). The POC:Chl-a ratio decreased at both stations (62 and 113 

respectively).  

The light environment decreased substantially, but was still not limiting, so what was 

happening? Without dFe, grazing or MLD data, it is difficult to speculate with any certainty, 

but it may be that mesozooplankton grazing pressure subsided, allowing biomass 

accumulation to occur in close proximity to the South Sandwich Islands and in the previously 

described salinity feature -  both being potential sources of dFe. Extending this argument, an 

increased biomass depleted any available Fe, so the photosynthetic rate slowed accordingly. 

This was driven by a diatom-based recycling community where available NH4 increased (BR3 

and BR12, both 0.88, BR62, 1.13 and BR50, 1.09 µmol NH4 l-1) concurrently with chl-a 

normalised NH4 uptake (BR3, 0.03; BR12, 0.08; BR62, 0.15 and BR 50, 0.08 mgN mgChla-1 h-

1). This is a feasible scenario where ammonium concentrations increase due to bacterial 

activity and microzooplankton grazing, which in turn increase ammonium uptake that is not 

Fe dependant. The fact that ammonium concentrations increase means that ammonium 

regeneration exceeds ammonium uptake rates. Decreasing C-fixation due to Fe limitation is 

not at odds with the N cycling as outlined.  
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 The variability in P-E parameters experienced throughout this region emphasises the 

highly dynamic Weddell Gyre region, and points to the need for more frequent in situ 

sampling to gain a better understanding of the factors influencing such variability. Indeed, 

previous studies in the region described P vs. E experimental results as, ‘polar waters exhibit 

“bewildering variability”!’ (Dower et al. 1996). 

 

The Subantarctic Islands and Shallow Bathymetry Region (SAISB) 

Pigments and Community Structure 

Diatoms made up an even greater proportion (~85%) of the elevated biomass in this 

region. Although both dinoflagellates and prymnesiophytes made an appearance, they 

made just a small contribution (~15%) to total biomass (Figure 3.4).  This pattern was also 

evident in the diagnostic pigment proportions for BR26, where Fuc (diatoms) was ~80%, Per 

(dinoflagellates) ~5%, and Flag (prymnesiophytes) ~15% (Figure 3.15). Size class structure 

was dominated by microplankton, with nanoplankton playing a secondary role (Figure 3.8). 

Pigment indices differed slightly for BR26 from the previous trend. Tchla increased 

while Chlbc, PSC and PPC all decreased at BR26 (Figure 3.7). These surface pigment 

adaptations were probably associated with the nutrient regime in this area, which was 

characterized by high nitrates and biomass, diatom dominance, a high proportion of 

chlorophylls and a low PPC index. Diatoms are opportunistic organisms able to respond 

rapidly to nitrate enrichment (Fogg 1991) provided that sufficient light and Fe are available, 

and chlorophyll molecules contain nitrogen atoms while carotenoids do not (Porra et al. 

1997, Barlow et al. 2004).  

Productivity and Biomass 

Productivity and biomass for the only productivity station in this region were high 

(2.18 mgC m-3 hr-1 and 2.94 mg Chl-a m-3 respectively). The station was situated downstream 

(northwest) of South Georgia, an area influenced by the island and its shelf, so was likely to 

be Fe replete (Ward et al. 2005). Comparable measurements of integrated water column 

productivity were found in Subantarctic island HNLC regions by Korb and Whitehouse (2004) 

to the northwest (downstream) of South Georgia (2505 mgCm-2 d-1) and by Seeyave et al. 

(2007) north of the Crozet Islands (2998 mgC m-2 d-1), compared to the 3270 mgC m-2 d-1 
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recorded in this study. Additionally, a similar pattern between the three studies around the 

islands was found in the north-south chl-a concentration gradient (Korb et al. 2004, Seeyave 

et al. 2007). The low f-ratio at this station (0.18) was likely due to the high NH4
+ 

concentration (1.9 µmol l-1) that satisfied phytoplankton N requirements.  

P vs. E Parameters 

For station BR26, PB
max for C-fixation was also high (0.74 mg C mg chl-a-1 hr-1), which 

translates to 11.11 mgC mg Chl-a-1 d-1 assuming a 15 hr day. This is towards the high end of 

the PB
opt range (3.6-14.76 mgC mgChl-a-1 d-1) recorded by Seeyave et al. (2007) for the 

Crozet study. In situ PAR at this station derived from an 8-day satellite composite (Fig 3.9a-

d) roughly approximates 324 µE m-2 s-1, while Ek values were 154 [NO3], 309 [NH4], 136 [C-

fix] µE m-2 s-1. Thus the Ek values were close to or about 50% lower than measured PAR. This 

discrepancy should not be surprising on the basis of highly variable regional PAR (see Figure 

3.8a-d) and experimental error, not to mention the previous and immediate light history of 

the phytoplankton. In summary, the approximate correspondence is good. α exhibited the 

same pattern as the previous stations which affirms that the photosynthetic process is more 

efficient in the order C > NH4 > NO3, a testament to the success of  ‘regenerated’ versus 

‘new’ production based communities in an HNLC environment.   

 

The Antarctic Continental Shelf (ACS) 

Pigments and Community Structure 

Community structure was remarkably different and variable in this region. In early 

summer on leg 3 (68-70°S), diatoms were most abundant followed closely by 

prymnesiophytes (Figure 3.5). Later in summer along leg 4, prymnesiophytes peaked when 

diatoms were low in abundance (68-70°S) (Figure 3.6).  Dinoflagellates contributed a small 

proportion to phytoplankton community structure at 68°S, and chrysophytes also made a 

very small contribution (Figure 3.6). Chrysophytes are predominantly a fresh water species, 

but there are well known marine species, and interestingly, some species that occur in snow 

(del Campo et al. 2011). However, it is possible that the Uitz et al. (2006) method 

misclassified this group according to size as they are predominantly pico- sized 
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phytoplankton, but have the same pigment content as prymnesiophytes. The community 

was primarily made up of nano- sized phytoplankton (Figure 3.8). TChla and Chlb&c make up 

58% of the pigment pool, PSC contributes 32% and PPC ~10% (Figure 3.7) indicating that the 

chlorophylls were the key light-harvesting pigments. This pattern is more common in high 

productivity regions compared to oligotrophic regions where PPCs would make up a greater 

proportion of the total pigment pool.  

There appeared to be a pattern of alternating abundance between diatoms and 

prymesiophytes (most likely P. antarctica) (Figures 3.5 & 3.6). It is plausible that in this 

region potentially high dFe concentrations (from ice melt, icebergs, and shelf sediments, 

Klunder et al. 2011, Johnson et al. 1999, Tagliabue et al. 2011) fuel a diatom specific 

response in a nutrient replete environment, but as Si is depleted and dFe concentrations 

decline, prymnesiophytes take over and more readily respond to a lower light regime due to 

(diatom) self-shading and a preference for regenerated N when iron starts to decline.  

P. antarctica are known to outcompete diatoms because of their higher rates of 

photosynthesis and growth at lower light levels (Kropuenske et al. 2009). Ammonium 

uptake was indeed higher than nitrate uptake at HB1 (Table 3.4) which supports a recycling 

community at this station. P. antarctica has a complex life cycle and is found as single cells 

or in gelatinous colonies. Colonies are believed to be grazer resistant (Schoemann et al. 

2005) and can store Fe within the mucilage for use during later Fe-limiting conditions. 

Success of the species is therefore intrinsic with their ability to form colonies when sufficient 

Fe allows them to do so.   

Productivity and Biomass 

While biomass in this region reached highest values of ~3.0 mg chl-a m-3, more than 

in any other region, productivity was only measured at one station (HB1) and was rather low 

(0.28 mgC m-3 hr-1) commensurate with only a moderate biomass (0.85 mg chl-a m-3).  

High variability in primary productivity is not uncommon in continental shelf regions. 

A recent study in the western Antarctic Peninsula reported average primary production 

rates could vary by an order of magnitude, from ~250 to ~1100 mgC m-2 d-1 (Vernet et al. 

2008), with a strong inshore–offshore gradient of higher production inshore. This study’s 
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daily rate (448 mgC m-2 d-1) was within Vernet et al.’s (2008) reported range (see above), but 

comment can only be limited with just one offshore station to report on for the region. 

Once again, a low f-ratio (f = 0.2) confirmed the dominance of reduced N uptake, implying 

very limited new production and carbon export. 

P vs. E Parameters 

PB
max was also low (0.269 mgC mg chl-a-1hr-1) suggesting that primary production was 

limited despite a shallow MLD of ~50m (Figure 2.10b, Ch. 2) that most likely provided a 

favourable nutrient and light environment.  When PB
max values for ammonium and nitrate 

are summed and multiplied by the approximate Redfield ratio (6:1) this becomes 0.36 mgC 

mgChl-a-1hr-1 which is close to, and evokes confidence in the experimental carbon-based 

PB
max value, 0.27 mgC mgChl-a-1hr-1. It is possible that high light attenuation due to glacial till 

outwash which would increase the sediment load at this station (which was in close 

proximity to the ice shelf, bay ice and ice bergs) could explain moderate biomass, low 

production, and a low photosynthetic rate, but there is no data or significant observation to 

support this theory in this case. For this station, Ek was 92 [NO3], 249 [NH4], and 104 [C-fix] 

µE m-2 s-1and declined with PAR (278 µE m-2 s-1) compared to lower latitude stations (HB42 

for example). This was a more typical relationship between Ek and PAR and is indicative of 

the shorter day length (~13 hrs) and lower sun angle late in the summer season. α was low 

for all three substrates and followed the same pattern as all of the previous stations (C > 

NH4 > NO3), illustrating that the quantum efficiency of nitrate utilisation was the weakest, 

again supporting the idea that N requirements were satisfied by regenerated N uptake and 

sufficient dFe to support C-fixation. 

 

3.5  Conclusions   

North of the STF in the Subtropical zone picoplanktonic prokaryotes dominated 

community structure, upon crossing the STF community structure shifted to 

prymnesiophytes as the greatest contributor to chl-a standing stock, presumably 

coccolithophores while still in subtropical to subpolar waters. After crossing the APF any 

presence of prymnesiophytes would most likely be P. antarctica, a prevalent colonial 

species in the Southern Ocean. Diatoms dominated south of the APF, particularly where dFe 
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introduced into the water column is suggested to have stimulated ‘blooms’.  When these 

organisms are in the micro-size class they are well equipped to exploit silification as a 

defence mechanism to grazing pressure and when they are smaller (nano-) are efficient 

scavengers of limiting Fe at low ambient concentrations, as well as effective in utilising 

regenerated N to boost productivity. Two exceptions to prevailing community structure 

occurred at two different locations, one station (HB11) in the Weddell Gyre and one (HB1) in 

the Antarctic Continental Shelf region where prymesiophytes replaced diatoms as the 

dominant group. This shift is unlikely due to photosynthetic responses as both groups are 

well adapted to low irradiance conditions and is more likely from a complex series of 

controls including trace metal effects, vertical mixing, differentiated grazer communities and 

other factors.  

 Southern Ocean phytoplankton are well adapted to low light environments. 

Relatively low irradiances were required to saturate NO3
- and NH4

+ uptake and C fixation at 

all stations. The maximal light saturation photosynthetic rate often occurred at 50% or less 

of surface irradiance. NH4
+ uptake always exceeded NO3

- uptake, but often reached its 

maximal rate at a higher saturation point than NO3
-, unlike results from an older study in the 

Indian sector of the Southern Ocean (Slawyk 1979). Indeed only a few N uptake versus 

irradiance experiments have been run in the Southern Ocean and like this study, variability 

between sampling stations and regions is high. Some of these differences might be 

explained by differences in species composition of the assemblages (diatom versus 

prymnesiophyte blooms), the stage of the bloom development, or the sampling time during 

the season (Cochlan 2008). 

 Production in the open ocean regions of the Southern Ocean has been well defined 

as limited by dFe in the late summer. In this study, production was predominantly low, 

dominated by micro- and nanoplankton that rely on reduced N substrates (NH4
+) to quench 

their N requirements. Recognising due vigilance in the concept of ‘new’ production to infer 

export, community f-ratios from this study (0.03 to 0.31) suggest that very little production 

(3 to 31%) was potentially available for export. These low values are consistent with Fe-

limited nitrate assimilation (ρNO3
-) and are comparable to similar findings in the Southern 

Ocean (e.g. Lucas et al. 2007, Joubert et al. 2011, Thomalla et al. 2011a). However, because 

much of the micro- and nanoplankton were diatoms, sinking rates abetted by their silica 
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ballasting were increased and C was likely to be drawn down to depth. In particular, the 

community sampled downstream of South Georgia demonstrated prime conditions for 

atmospheric CO2 ‘draw-down’. Here, interactions of the ACC with the shallow shelf region 

surrounding the island introduces dFe (as well as Si) to surface waters which is suggested to 

drive increased new production rates and microplankton production. Reoccurring bloom 

conditions around South Georgia are believed to account for the largest carbon sink in the 

Southern Ocean (Schlitzer et al. 2002) and Subantarctic island regions in general, are known 

to contribute significantly to the sequestration of carbon in the Southern Ocean (Arrigo et 

al. 2008). 
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Chapter 4. Concluding Remarks and Thesis Summary 

 The Southern Ocean is comprised of several well defined provinces that differ 

physically and chemically including parameters such as temperature, micro and macro 

nutrient concentrations, light availability, sea ice formation, currents and vertical mixing 

(Jacques 1989, Boyd 2002, Van Oijen et al. 2004). Frontal systems, like the Antarctic Polar 

Front, are generally characterized by high phytoplankton biomass whereas in other regions, 

like the Antarctic Circumpolar Current away from the influence of frontal systems, biomass 

is low (Lutjeharms et al. 1985, Laubscher et al. 1993, Bracher et al. 1999, Van Oijen et al. 

2004). Understanding how marine phytoplankton productivity is controlled is valuable 

because algal carbon fixation in the ocean is a link between the atmospheric and oceanic 

compartment of the global carbon cycle (Falkowski et al. 1998, Van Oijen et al. 2004). 

Specifically, diatom blooms in the Southern Ocean are assumed to be followed by a 

significant export flux of carbon out of the euphotic zone and carbon dioxide (CO2) 

drawdown (De Baar & Boyd 2000, Van Oijen et al. 2004). 

 This study investigated facets of the biological carbon pump in the south Atlantic 

sector of the Southern Ocean. Surface phytoplankton communities were sampled and 

analyses attempted to ascertain the role of light in limiting phytoplankton productivity to 

explain:  

 

I. Spatial variability in phytoplankton biomass,  

II. Nitrogen assimilation rates and what they reveal about light as a limiting 

factor,   

III. Community composition and size based community structure in terms of iron 

stress and ultimately, CO2 sequestration, 

IV. What P vs. E curves reveal about regional differences in the light dependant 

uptake of new versus regenerated production 

in relation to the physical and chemical environments encountered throughout the region.  

 High phytoplankton biomass occurred in the SAISB, sections of the WG, and in the 

ACS, and corresponded with shallow coastal and shelf waters, shallow bathymetric features, 

or in the case of the seasonal ice zone (which includes the ACS, WG, and a portion of the 
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AAZ), recent melting of sea ice in its different forms.  Albeit speculative, this suggests the 

introduction of Fe to stimulate phytoplankton growth in addition to a more stratified water 

column and an improved light regime, as well as longer light exposure due to increased day 

length in summer. In regions of low biomass (STZ, N-ACCZ, AAZ) NO3
- limitation, presumably 

iron and light co-limitation, and light limitation (respectively) prevent phytoplankton 

production. While frontal positions previously have been aligned with the spatial 

distribution of increased chl-a biomass along the fronts, this study’s results exhibit a more 

recent understanding of how fronts define boundaries to distinct zones with similar 

characteristics and elevated or depleted biomass. These regionally dependent boundaries 

were evident when crossing the STF from the STZ to the N-ACC in terms of temperature, 

salinity and biomass or when crossing the APF from the N-ACC to the AAZ in terms of the 

steep increases in the macro nutrient environment, particularly Si, for example.      

 Across all regions P-E parameters were variable, but displayed a few prominent 

trends that were characteristic of the HNLC condition. Regenerated ammonium uptake 

always exceeded nitrate uptake and supports findings that Southern Ocean phytoplankton 

are photo-physiologically well adapted to low light regimes and are able to exploit the more 

energetically efficient NH4
+ uptake when Fe is limiting. Ek values and in situ PAR derived 

from 8 day satellite composites indicate that light was not a limiting factor across all regions. 

Along Legs 1 and 4 where MLD data was available recent deeper vertical mixing was 

implicated in areas of low production (in the AAZ and the N-ACC for example), in which case 

light would play a limiting role. In the Subantarctic island and shallow bathymetry region 

where sufficient light and presumably Fe were available, as well as potentially reduced 

grazing pressure primary productivity and carbon based PB
max increased substantially. 

Productivity was low in all other regions and the maximal photosynthetic rate was variable 

across regions. However, there was a noticeable decline in PB
max towards the end of summer 

when comparing rates measured on Leg 1 (January) to Leg 4 (February). This seasonal signal 

was most apparent in the WG where more stations were sampled over a relatively longer 

period of time.  

 Community composition in the STZ was comprised of picoplanktonic prokaryotes, 

Synechoccoccus spp. and Prochlorococcus spp., south of the STF prymnesiophytes, most 

likely made up of coccolithophores were the dominant group. At the SAF where polar 
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waters replace warmer subpolar and subtropical waters and macronutrients (Si and NO3-) 

increase, presence of prymnesiophytes was presumably P. antarctica. Southwards of the 

APF diatoms dominated community composition, except for in the ACS region where 

prymnesiophytes once again contributed significantly to chl-a standing stock. Diatoms were 

primarily in the micro size range across all regions south of the APF except for in the WG 

where nano sized diatoms were more abundant. Where high productivity and biomass 

coincided with a larger size-classed diatom community C export was potentially 

considerable due to increased sinking rates of heavily silicified diatoms. This was evident in 

the SAISB region (BR26), downstream of South Georgia where significant atmospheric CO2 

‘drawdown’ is known to occur. Another area for potential C export to depth was at BR50 in 

the WG region where a low salinity feature (~61°S) persisted through the sampling period. It 

is hypothesised that this stream originates from the Antarctic Peninsula to the west of the 

study region and forms part of the eastward flowing, northern limb of the Weddell Gyre 

circulation. The reduced salinity stream demonstrates that it came from melt waters, and 

the favourable biological responses exhibited (increased biomass, moderate productivity, 

and large diatoms) suggest elevated dFe concentrations and the potential for C export. All 

other regions exhibited characteristic HNLC conditions in the Southern Ocean where low f-

ratios,  regenerated production, and nano- to micro size phytoplankton communities were 

suggestive of an Fe stressed environment with limited potential for export of C to the deep 

ocean. 
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