A fundamental approach to predicting mass transfer coefficients in bubble column reactors

Master Thesis

2014

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
A bubble column reactor is a vertical cylindrical vessel used for gas-liquid reactions. Bubble Columns have several applications in industry due to certain obvious advantages such as high gas-liquid interfacial area, high heat and mass transfer rates, low maintenance requirements and operating costs. On the other hand, attempts at modelling and simulation are complicated by lack of understanding of hydrodynamics and mass transfer characteristics. This complicates design scale-up and industrial usage. Many studies and models have attempted to evolve understanding of the hydrodynamic complexity in Bubble Columns reactors. A closer look at these studies and models reveals a variety of solution methods for different systems (Frössling, 1938; Clift et al., 1978; Hughmark, 1967; Dutta, 2007; Ranz and Marshall, 1952; Benitez, 2009; Buwa et al., 2006; Suzzia et al., 2009; Wylock et al., 2011). Numerous correlations (Frössling, 1938; Clift et al., 1978; Hughmark, 1967; Dutta, 2007; Ranz and Marshall, 1952; Benitez, 2009; Buwa et al., 2006) exist but to date in literature, there is no general approach to determining accurate estimates of average mass transfer coefficient values. Good estimates of the average mass transfer coefficient will improve the predictive capacity of the associated models. Recent attempts at modelling micro-scale bubble-fluid interaction resulted in the Bubble Cell Model, BCM, (Coetzee et al., 2009) which simulates the velocity vector field around a single gas bubble in a flowing fluid stream using a Semi-Analytical model. The aim of the present study is to extend the BCM applications by integrating the mass balance into the framework to predict the average mass transfer coefficient in bubble columns. A nitrogen-water steady state system was simulated in an axisymmetric grid where mass transfer occurs between the gas and liquid.
Description

Includes bibliographical references.

Reference:

Collections