Wind-stress variability over the Benguela upwelling system

Master Thesis

2002

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
Regional wind-stress variability over the Benguela Upwelling System is described using 16 months (01 August 1999 29 November 2000) of satellite derived QuikSCA T wind data. The QuikSCA T data are compared to the climatologies presented by Kamstra (1985) and Bakun and Nelson (1991), as well as the long-term climatology (1968-1996) of the surface vector wind speed field off the coast of southern Africa, as derived from the 2.5° resolution NCEPINCAR reanalysis dataset. Broad scale similaritie"s are found between the QuikSCA T and the long-term NCEPINCAR climatology (1968-1996) data sets. This allows one to have confidence in using this scatterometer data to investigate details of spatial and temporal variability over the Benguela System. During summer, wind-stress maxima are found at approximately 17, 29 and 34°S. These maxima strengthen in late summer. The seasonal northward migration of the South Atlantic Anticyclone becomes apparent in late autumn, when the strongest wind-stress occurs north of 28°S. A significant wind-stress minimum is observed to develop slightly north of Cape Columbine (33°S) during autumn. To the north (10-23.5°S) the Benguela is characterised by relatively strong south-easterly wind-stress during winter. To the south (24-35°S) the Benguela is characterised by relatively weak westerly to south-westerly wind-stress during winter. A southward migration of southeasterly wind-stress is observed during early spring. By November the entire Benguela Upwelling System is once again characterised by southerly to south-easterly wind stress. Wind-stress variability is investigated using both a type of artificial neural network, known as the Kohonen Self Organising Map (SOM), as well as a wavelet analysis. Two independent SOM studies are conducted. The first study produced a 6x4 SOM output array, which is used to examine seasonal variability as well as the temporal evolution of two synoptic-scale wind events. For the second study both a SOM and a wavelet analysis are applied to an extracted data set to find that the system can be divided into six discrete wind regimes, 10-15°S; 15.5-18.5°S; 19-23.5°S; 24-28.5°S; 29-32.5°S; and 33-35°S. The wavelet power spectra for these wind cells span a range of frequencies from 4 to 64 days, with each region appearing to contain distinct periodicities. To the north, 10-23.5°S, the majority of the power occurs during winter, with a 6-16 day periodicity. Further south, 24-35°S, the majority of the power occurs in the summer. Here a bi-modal distribution occurs, with peaks of 6-16 and 35-40 days. Lastly a case study sequence of the spatial distribution of wind-stress, windstress curl and SST, at a location off the west coast of southern Africa (25-300S and 12-17°E), is discussed in relation to an intense, upwelling favourable, wind event that occurred from 11-20 February 2000.
Description

Bibliography: leaves 119-133.

Keywords

Reference:

Collections