Multiplicity dependence of jet-like two-particle correlation structures in p–Pb collisions at √sNN = 5.02 TeV

Series
Abstract
Two-particle angular correlations between unidentified charged trigger and associated par- ticles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre- of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 < pT, assoc < pT, trig < 5.0 GeV/c is examined, to include correlations induced by jets originating from low momen- tum-transfer scatterings (minijets). The correlations expressed as associated yield per trig- ger particle are obtained in the pseudorapidity range </td><td>η </td><td> < 0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p–Pb collisions are subtracted from both near- side short-range and away-side correlations in order to remove the non- jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consis- tent with the particles being produced via the incoherent fragmentation of multiple parton– parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to in- crease linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p–Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon–nucleon collisions estimated with a Glauber Monte-Carlo simulation.
Description

Reference:

Collections