Encapsulation of iron(III) protoporphyrin IX and tetraphenylporphyrin in metal-organic frameworks for application as heterogeneous oxidation catalysts

Doctoral Thesis

2018

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
Two MOFs, [H2N(CH3)2][Zn3(TATB2(HCOO)]·HN(CH3)2·DMF·6H2O (1) and ZnHKUST-1 (2) (TATB = 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoate) were investigated as potential hosts to encapsulate Fe(III) protoporphyrin IX (ferrihaem = Fe(III)PPIX) and Fe(III) tetraphenylporphyrin (Fe(III)TPP). Methyl orange (MO) adsorption was used as an initial model for substrate uptake in MOFs 1 and 2. MOF 1 showed good adsorption of MO (10.3 ± 0.8 mg.g-1 ) which could undergo in situ protonation upon exposure to aqueous HCl vapour. By contrast MO uptake by 2 was much lower (2 ± 1 mg.g-1 ) and PXRD indicated structural instability on exposure to water was the likely cause. Two methods for Fe(III)PPIX incorporation into 1 were investigated: soaking and encapsulation. Encapsulation was verified by SEM-EDS and showed comparable concentrations of Fe(III)PPIX on exposed interior surfaces and on the original surface of fractured crystals. SEM EDS results were consistent with ICP-OES data on bulk material (1.2 ± 0.1 mass % Fe). PXRD data showed that the framework in 1 was unchanged after encapsulation of Fe(III)PPIX. MO adsorption (6 ± 1 mg.g1 ) by Fe(III)PPIX-1 confirmed there is space for substrate diffusion into the framework, while the UV-visible spectrum of solubilized crystals confirmed that Fe(III)PPIX retained its integrity. A solid-state UV-visible spectrum of Fe(III)PPIX-1 indicated that Fe(III)PPIX was not in a µ-oxo dimeric form. Although single-crystal XRD data did not allow for full refinement of the encapsulated Fe(III)PPIX molecule owing to disorder of the metalloporphyrin, the Fe atom and pyrrole N atoms were located, enabling rigid-body modelling of the porphine core. For comparison, Fe(III)PPIX was further encapsulated in 2, forming Fe(III)PPIX-2. Reaction ABSTRACT of 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) with H2O2, catalysed by Fe(III)PPIX-1 and -2 showed that Fe(III)PPIX-1 is significantly more efficient than Fe(III)PPIX-2 and is superior to solid Fe(III)PPIX-Cl due to the faster initial rate of reaction as well as the greater conversion of ABTS to ABTS●+ . Both frameworks 1 and 2 were also investigated as potential hosts to encapsulate Fe(III) tetraphenylporphyrin (Fe(III)TPP). Attempts to encapsulate Fe(III)TPP into 1 were unsuccessful, but Fe(III)TPP was successfully encapsulated into 2, forming Fe(III)TPP-2. The framework was characterised by PXRD and SEM-EDS confirmed uniform distribution of Fe(III)TPP through the framework. The loading of Fe(III)TPP determined using ICP-OES (0.604 ± 0.008 Fe mass %) agreed well with SEM-EDS data. Single crystals of Fe(III)TPP-2 were obtained and structure determination showed that the Fe(III) porphyrin was positionally disordered over three positions. The instability of Fe(III)TPP-2 in the presence of H2O resulted in it being an inappropriate choice as an oxidation catalyst. The kinetics of ABTS oxidation by H2O2 catalysed by Fe(III)PPIX-1 were further investigated. The peroxidatic activity of this heterogeneous system conforms to a rate law identical to that observed in solution with no discernible influence of particle size, suggesting that the MOF system closely mimics the solution state. The proposed rate law indicates a reaction mechanism with two possible pathways, as suggested for the same reaction in solution. The major pathway describes the coordination of H2O2 to the Fe(III) centre and subsequent formation of a high valent intermediate, while the minor pathway describes the same process preceded by ABTS coordination to the Fe(III) centre forming a six-coordinate complex. The further application of Fe(III)PPIX-1 as an oxidation catalyst was probed by investigating the catalytic oxidation of hydroquinone, thymol, benzyl alcohol and phenyl ethanol by tert-butyl-hydroperoxide ( tBuOOH). Reactions were successful and showed t1/2 values that increase with increasing substrate molecular volume.
Description
Keywords

Reference:

Collections