Towards an improved understanding of the biomechanical implications and risk of injury of barefoot running

Doctoral Thesis

2014

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
Barefoot running is a subject of significant interest, both in scientific publications and in the lay media as a result of its alleged benefits for runners. These benefits include the potential to reduce injury risk, more economical running and broadly speaking, a better understanding of running biomechanics. Although there are numerous scientific publications describing differences between barefoot and shod running, there is a dearth in understanding whether all runners are able to adapt to the proposed benefits and how this may affect long-term injury risk. Thus, we sought to investigate the biomechanical, neuromuscular and metabolic changes associated with habitually shod runners during the transition to pure barefoot running over an 8- week progressive training programme. This thesis begins with a critical review of the literature, which evaluates the theories and evidence for barefoot running, as well as describing the necessary future research to confirm or refute the barefoot running hypotheses. Our first study aimed to describe acute changes occurring in habitually shod runners when first exposed to barefoot running. We were particularly interested in the variability in response, and whether we could identify factors that predicted potentially favourable changes in kinematic and kinetic outcomes. Fifty-one runners were recruited and assessed using a 3-D motion capture system and integrated force platforms using conventional methods. We found that loading rate was significantly greater in the barefoot condition, but that high individual variability existed, particularly in the barefoot trials. We found that an increase in ankle dorsiflexion is associated with an increase in initial loading rate when in the barefoot condition, supporting previous findings in this regard. We then performed a supervised, pure barefoot running training programme, over 8 weeks, to determine whether the biomechanics of barefoot running would adapt gradually to habituation. Twenty-three runners were recruited for participation, and performed comprehensive biomechanical and neuromuscular assessments before and after the 8-week programme. The first finding was runners do not adapt similarly to barefoot training, and that biomechanics do not change significantly over the 8-week period. High variability in ankle kinematics and loading rate were found, with three sub-groups identified, namely positive responders (reduced loading rate after training), non-responders (no change in loading rate) and negative responders (increase in loading rate after training). We found significant associations between initial loading rate the changes in ankle flexion angle at initial ground contact, presumably as a result of its influence on footstrike. This finding suggests that conscious instruction might be necessary in order to achieve reductions in collision forces during barefoot running. With respect to neuromuscular variables, a persistently higher gastrocnemii muscle preactivation was found in the barefoot condition before and after the training intervention. Increased gastrocnemius pre-activation was associated with lower initial loading rate. An increase in gluteus medius and peroeus longus and a decrease in tibialis anterior pre-activation were also associated with a reduction in initial loading rate after barefoot training. This finding suggests a refined neuromuscular activation strategy prior to ground contact in the barefoot condition to stabilize the hip and centre of mass. Lastly, oxygen cost of transport was found to improve as a result of the barefoot training programme in the male runners and this improvement was found to be associated with a decrease in ground contact time and increase in stride frequency, but no a change in ankle flexion angle at initial ground contact. The outcomes from this thesis elucidate the highly variable response of individuals to barefoot running. This advises individuals choosing to transition to barefoot running to do so with caution. With this in mind, we suggest certain characteristics that may be used as screening mechanisms to indicate individual suitability to barefoot running based on the “collision force theory”. Further, benefits associated with barefoot running other than varied responses in initial loading rate such as improvements in oxygen cost of running are pre-dominantly hypothesised to be a result of musculo-tendinous adaptations, neuromuscular strength and motor control.
Description

Includes bibliographical references.

Reference:

Collections