
Univ
ers

ity
 of

 C
ap

e T
ow

n

INCREMENTAL VOLUME RENDERING USING HIERARCHICAL
COMPRESSION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE,

FACULTY OF SCIENCE

AT THE UNIVERSITY OF CAPE TOWN

IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Michael B. Haley

1 May 1996

Supervised by
Prof. Edwin H. Blake

lh{ Urolvor:;lty of Cnpo Town has been given
thfJ ri{Jtlt to rCilpruduca this thesl11 In whole
or In pd , Copyright k~ held by the author.

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Copyright © 1996

by

Michael B. Haley

Abstract

The research has been based on the thesis that efficient volume rendering of datasets, contained on the

Internet, can be achieved on average personal workstations. We present a new algorithm here for

efficient incremental rendering of volumetric datasets. The primary goal of this algorithm is to give

average workstations the ability to efficiently render volume data received over relatively low

bandwidth network links in such a way that rapid user feedback is maintained. Common limitations of

workstation rendering of volume data include: large memory overheads, the requirement of expensive

rendering hardware, and high speed processing ability. The rendering algorithm presented here

overcomes these problems by making use of the efficient Shear-Warp Factorisation method which does

not require specialised graphics hardware. However the original Shear-Warp algorithm suffers from a

high memory overhead and does not provide for incremental rendering which is required should rapid

user feedback be maintained. Our algorithm represents the volumetric data using a hierarchical data

structure which provides for the incremental classification and rendering of volume data. This exploits

the multiscale nature of the octree data structure. The algorithm reduces the memory footprint of the

original Shear-Warp Factorisation algorithm by a factor of more than two, while maintaining good

rendering perfonnance. These factors make our octree algorithm more suitable for implementation on

average desktop workstations for the purposes of interactive exploration of volume models over a

network. This dissertation covers the theory and practice of developing the octree based Shear-Warp

algorithms, and then presents the results of extensive empirical testing. The results, using typical

volume datasets, demonstrate the ability of the algorithm to achieve high rendering rates for both

incremental rendering and standard rendering while reducing the runtime memory requirements.

Acknowledgements

I would like to extend my gratitude to my supervisor Prof. Edwin Blake for his guidance and advice

throughout my research. Thanks must also go to my fellow students and friends whose support was

invaluable.

I would like to acknowledge the University of North Carolina (Chapel Hill) for making some of the

volumetric test data freely available. Recognition should also be extended to Stanford University for

making the Shear-Warp algorithm and test data available.

I also acknowledge the support of the Foundation for Research Development (FRD) for funding the

first year of this researc .

Contents

1. INTRODUCTION

1.1 AIMS AND CONTRIBUTIONS

1.2 VOLUME VISUALISATION

1.3 HYPERMEDIA AND THE WORLD-WIDE-WEB

1.4 DISTRIBUTED AND COLLABORATIVE VISUALISATION

1.5 OVERVIEW

2. BACKGROUND

2.1 INTRODUCTION

2.2 DISTRIBUTED VISUALISATION

2.3 VOLUME REPRESENTATIONS AND COMPRESSION T ECHNIQUES

2.3. 1 Nature of the data
2.3.2 Pyramid Representation
2.3.3 Frequency Domain Representation
2.3.4 Multiresolution Representation

2.4 COMPRESSION T ECHNIQUES

2.4. 1 Loss less compression
2.4.2 Lossy compression
2.4.3 Consequences

2.5 VOLUME RENDERING

2.5.1 Background
2.5.2 Pre-processing & Classification
2.5.3 Multimodality data
2.5.4 1sosurface methods
2.5.5 Frequency domain techniques
2.5.6 Direct volume rendering

2.5.6.1 Ray Tracing
2.5.6.2 Projection
2.5.6.3 Texture Mapping

2.6 SHEAR-WARP ALGORITHM

2. 6.1 Min-Max Octrees for Classification
2.6.2 Parallel and Perspective Rendering

2.7 ALGORITHM OVERVIEW

2.8 CONCLUSION

3. OCTREE COMPRESSION AND DATA CLASSIFICATION

3.1 INTRODUCTION

3.1 .1 Octreesfor Representing Volumes
3.1 .2 Classification

3.2 D ATA STRUCTURE

3.3 0 CTREE CONSTRUCTION AND INCREMENTAL TRANSM ISSION

3.3. 1 Filtering Phase
3.3.2 Construction Phase
3.3.3 Reordering Phase
3.3.4 Node Compression
3.3.5 Transmission

I
3
4
5

7

7
8
9
9

10
11
11
12
12
13
13
14
14
15
16
16
17
17
18
19
19
20
20
20
21
23

24

24
24
25
26
30
30
31
32
33
33

3.4 INCREMENTAL CLASS! FICA TION

3.4.1 Caching Mechanism
3.4.2 Algorithm
3.4.3 Summed Area Tables

3.5 CONCLUSION

4. RENDERING HIERARCHICAL VOLUMES

4.1 INTRODUCTION

4.2 CONVERTING SHE R-WARP FROM RLE TO 0CTREE DATA STRUCTURES

4.2.1 Traversal Order Problem
4.2.2 Filtering
4.2.3 Partial Rendering

4.3 PARALLEL PROJECTION RENDERING

4.3.1 Mathematics of the Factorisation
4.3.2 Traversal
4.3.3 Trilinear Interpolation
4.3.4 Algorithm

4.4 PERSPECTIVE PROJECTION RENDERING

4.4.1 Mathematics of the Factorisation
4.4.2 Traversal
4.4.3 Scaling of Slices
4.4.4 Algorithm

4.5 CONCLUSION

5. EXPERIMENTAL RESULTS

5.1 INTRODUCTION

5.2 HYPOTHESES

5.3 TEST DATA

5.4 METHODOLOGY

5.5 PERFORMANCE OF INITIAL COMPRESSION

5.5.1 Construction without Node Compression
5.5.1.1 Performance
5.5.1.2 Compressi n

5.5.2 Construction with Node Compression
5.5.2 .1 Performance
5.5.2.2 Compressi n

5.5.3 Comparison with RLE Compression
5.6 CLASSIFICATION PERFORMANCE

5.6.1 Determination of Optimal Cache Size
5.6.2 Performance Comparison

5.7 RENDERING PERFORMANCE

5. 7. 1 Parallel Projection
5.7.1.1 Full Rendering
5.7.1.2 Comparis n ofFull and Partial Rendering
5.7.1.3 Comparison ofOctree and RLE methods

5. 7.2 Perspective Projection
5.7.2.1 Full Rendering
5.7.2.2 Comparison of Full and Partial Rendering

5.8 IMAGES AND ANIMATIONS

5.9 CONCLUSION

6. CONCLUSION

6.1 OVERVIEW

6.2 RESULTS

6.3 FUTURE WORK

A. GLOSSARY

B. THE VOX++ CLASS LIBRARY

B.l INTRODUCTION

34
34
35
40
41

43

43
44
45
45
46
47
48
50
52
53
57

57
60
61
62
66

68

68
68
69
70
74
75
75
76
76
77
78
78
80
81
81
84
85
85
86
89
94
94
95
98
99

101

101
103
104

106

109

109

8.2 CLASS AND OBJECT HIERARCHIES 109
B.3 CLASS REFERENCE lll

B.3.1 DATAOBJECT ill
B.3.2JMAGE 113
B.3.3 JMAGE_COMPPARALLEL ll3
B.3.41MAGE_COMPPERSPECT ll4
B.3.5 IMAGE_RGBA 115
B.3.6 MATRJJ(J and MATRJX4 ll6
B. 3. 7 MA TRJX_MODELLING 11 7
B.3.8 MATRJX_PROJECTION 118
B.3.9 MATRIX_VIEWING 118
B.3.10 PARAM_IMAGE 119
B.3.JJ PARAM_OPACITIES ll9
B.J. /2 PARAM_LJGHTS 120
B.3.13 PARAM_MA TERIALS 120
B.3. 14 PARAM_ORIENTATION 121
B.J. /5 VECTOR3 and VECTOR4 121
B.J./6 VOLUME 122
B.3.17 VOLUME_RAW 123
B.3.18 VOLUME_RLE 124
B.J./9 VOLUME_OCTREE 126

C. GRAPHS 130

D. IMAGES 157

0 .1 STANDARD PARALLEL RENDERINGS 157
0 .2 PERSPECTIVE R ENDERINGS 161
0 .3 USING TRANSLUCENCY 163
0.4 PARTIAL PARALLEL RENDERINGS 164

E. BIBLIOGRAPHY 168

Chapter 1

Introduction

1. 1 Aims and Contributions

The primary aim of this research was to develop a more effective method for rendering volume data on

average desktop workstations as well as providing an efficient means for distributing volume data over

a conventional network.

We found that through a unique combination of compression techniques and rendering algorithms,

these aims would be realised. The final package of algorithms presented in this dissertation provides

for the rapid transmission of volume data (in a compressed form) over a network to an average desktop

workstation which can then render this data incrementally (i.e. as it arrives) in its compressed form.

Once the data is completely transmitted, any further manipulations of the volume model (e.g. rotations,

scales, translations) can be performed in (typically) under 2 seconds and once again only using the

compressed data structures.

1.2 Volume Visualisation

Volume Visualisation is the science of rendering images of three dimensional datasets. Generally these

datasets consist of three dimensional arrays of either scalar values or vectors. We will only be

considering the scalar volumes. These datasets are generated (and require visualisation) by numerous

diverse disciplines.

With the advent of superior medical imaging techniques such as Magnetic Resonance (MR) and

Computed Tomography (CT) scanning, highly detailed images of "slices" through the human body

may be captured. Hist rically these images were treated, purely, in their two dimensional form for the

purposes of diagnosis. This limitation was primarily due to the memory required for storing the images

and the processing required for manipulating them. According to Moore's law [I], processing

performance doubles every 18 months and a similar (but slower) effect is seen with primary and

secondary storage. With growth like this it has rapidly become feasib le to generate three dimensional

models of areas of the human body directly from the images obtained using the methods mentioned

above. These three dimensional models are however extremely memory intensive and, historically,

require large amounts of processing power to generate images of the models.

The advantages of these models are great. With a comprehensive model of a region of a patient's body

a surgeon may practise or plan certain operations [2] without touching the patient. Also once the

model is captured and constructed multiple different views of areas of the body may be generated

unlike previous two dimensional imaging where the images had to be directly captured. This increases

the chances of a valid diagnosis and a successful operation.

Volume visualisation has not however been confined to the medical arena. Another impact of

powerful computing has been the implementation of complex numerical simulations such as fluid flow

dynamics or finite element models . These simulations generate very complex three dimensional (or

sometimes higher) data which is too complex to understand in its numerical form. This data thus has to

visualised in order for it to be understood.

In the late 1970's and 1980' s the only methods of visualising volume data consisted of very time

consuming polygon mesh construction. This process generated a polygonal approximation of an

isosurface within the volume, where the isosurface value was specified by the user. The polygonal

model was then rendered using classical rendering methods such as scan-conversion or ray-tracing.

These methods were fairly slow and were found to be very inflexible as a new polygon approximation

of the volume needed to be computed every time a new region of the volume was to be visualised.

In the late 1980's and early 1990' s new methods of directly rendering the volume data began to appear.

These methods traditionally used ray-tracing to cast rays through the volume, which was treated as a

region of very small cubes each with its own opacity and shading. Although this method generated

very realistic images the rendering times were still too long for meaningful use. Another approach to

directly rendering volumes was the compositing approach, where the image plane was incrementally

passed through the volume and the effects of each small shaded cube on the image plane was taken into

account. This dramatically accelerated the volume rendering process.

In recent years the compositing approach has been improved to the point that images, of a standard

sized volume, may be rendered in under I second on an average high-end workstation. As with most

algorithms there is a trade-off between memory size requirements and processor speed requirements.

The memory requirements of these volume rendering algorithms are still very high making them

unsuitable for average desktop workstations. According to Moore's law (as mentioned above)

processor speed is increasing at an exponential rate, while memory capacity is also increasing but at a

slower rate. This indicates that to achieve rapid rendering of volume data on a desktop workstation the

algorithms should be adapted to put higher requirements on processor speed but lower requirements on

memory capacity.

This dissertation will present a new modification to the method of data storage used during composite

volume rendering which involves a compressed data structure and caching techniques. This

modification will greatly reduce the primary memory required to render volumes without impacting the

2

performance of the renderer. By reducing the primary memory usage the rapidly increasing speed of

microprocessors will make the rendering of standard volumes on any average desktop workstation a

reality.

Another massive impact that rapidly growing technology (and acceptance of it) has resulted in is the

inter-networking of computers. The inter-networking of workstations opens up many new possibilities

in the various fields of visualisation, such as distributed computing, collaboration during visualisation,

and remote diagnosis.

1.3 Hypermedia and the World-Wide-Web

In recent years the world wide Internet network of computers has gained mainstream acceptance. (A

January 1996 survey of the Internet reported over 9 million hosts on the Internet.) With this

mainstream acceptance has come increased band-width connections and a wide range of facilities and

information. The economics of this acceptance has resulted in very cheap network connection options

resulting in even more people connecting to the Internet.

Hypermedia allows use rs to naturally follow references in data and thus obtain necessary information

in a comfortable (by thi s I mean representing the data in the most natural form possible, such as video,

audio, etc.) and efficie t manner. The most widely accepted form of hypermedia in the world is now

the World-Wide-Web (WWW). A recent report demonstrated that one out of every 270 computers on

the Internet was a WWW server, providing hypermedia documents . (This represented a 50% growth

in 6 months!) As mentioned above, a hypermedia system should provide for a wide range of media

forms in the hypermedia documents. The WWW primarily uses text and two-dimensional images.

Usage of sound and video clips is also common.

Recently a proposal of a virtual reality extension to the WWW was made and accepted. This extension

is called the Virtual Reality Modelling Language (VRML) and it stems primarily from Silicon

Graphic's Openlnventor scripting language for describing polyhedral models. VRML (see [3] for the

specification) allows three dimensional polygonal models to be transmitted over the Internet to a

WWW browser application. This browser application (when recognising VRML data) will render the

three dimensional mod I for the user. The user may then interact with the model by moving a camera

(the user's view point) around the small three-space environment. Various polygonal models in the

VRML environment may be associated with other WWW documents (perhaps other VRML data) so

that references may even be followed in this virtual space. Extensions to VRML now include object

behaviour description (using the Java language) and Universal Resource Names (URNs) for

identifying certain common objects.

Unfortunately the VRML specification does not cater for volume data (as mentioned m § 1.1) but

restricts itself to polygonal models for the sake of performance. This decision is understandable

considering that mostly average desktop workstations will be receiving and rendering these models and

rapid user feedback is necessary in any visualisation system.

3

This dissertation propo es a method for transmitting compressed volume data over the Internet such

that rapid user feedback is maintained. The algorithms developed will also be able to execute

efficiently on average desktop workstations, thus opening up the possibi lity of making three

dimensional volumetric data available on the WWW.

Making this data available on the WWW opens up many interesting visualisation opportunities ranging

from collaboration to remote diagnosis.

1.4 Distributed and Collaborative Visualisation

Due to the complexitie of certain forms of data it becomes necessary to distribute the computation

over numerous computers on a network, and in some cases to allow multiple people to access and

visualise the data simultaneously. In the case of medical volume data captured from MR or CT

scanning (mentioned above) the possibility of remote diagnosis arises. Should a patient' s body be

scanned at a certain location in the world, where a specialist diagnosis of a particular problem is not

available, numerous sp cialists with access to a computer anywhere in the world could access the data

and perform diagnoses.

The visualisation of any fonn of data generally implies a number of stages during which the data is

filtered and eventually rendered into an image which is meaningful to the user. Depending on the

complexities of the data these stages might vary greatly in the length of time required to execute. (e.g.

It may be very easy to filter some data forms but the rendering might be very time consuming, while a

different type of data may be difficult to filter but may render rapidly.) Also the amount of data

generated between stages might vary from a few bytes of information to gigabytes of infonnation. It

can therefore become ecessary to distribute these visualisation stages over a network of computers

where different computers handle certain operations best suited to them (perhaps in parallel with other

operations being perfonned on other computers).

With volume visualisation it is necessary to perform numerous processing operations on extremely

large datasets for the final rendered image. Depending on the method of user interaction with the

volume model some of this processing may need to be repeated. Considering that the volume data is

very large it is desirable to, firstly, transmit data between distributed computers only when the data is

in its smallest state. Secondly, the distribution should be such that a small (and fairly common)

operation by the user will not result in re-transmission of data constantly between the distributed

computers. In summary the primary idea here is to attain rapid user feedback by intelligently

distributing the stages of the visualisation process between a number of computers.

Many of the network links which support the Internet are not high bandwidth links, thus the

transmission of large volume datasets could become time consuming. Should procedures such as

remote diagnosis become useful then the volume visualisation stages will have to split in such a way

that the data transmitt d to the client is as small as possible and that constant transmission is not

required during user manipulations. This implies the use of rapid compression/decompression

techniques for the transmission of the volume data.

4

The algorithms presented in this dissertation address these challenges and provide a method of pre­

processing the volume data on a server and then incrementally transmitting this data to a client (in a

compressed form) . The client may then render images of an approximation of the volume directly

from the compressed data thus not incurring a large decompression overhead. This gives the user an

initial impression of the volume model and allows the setting of various viewing parameters. As the

volume data is transmitted this approximation improves until , eventually, the volume itself is rendered

exactly. The split of visualisation stages is such that manipulation of the volume does not require any

retransmission of data.

Users should respond fa vourably to having rapid overviews of the volume and the ability to adjust the

parameters during volume transmission. Generally a user will find such a network based visualisation

system acceptable if user-feedback is maintained throughout the visualisation process irrespective of

network band-width. Our algorithm achieves both these goals.

1.5 Overview

The remainder of this dissertation is presented in the following fashion:

• Chapter.2- Background: Presents detailed background information on the development of volume

rendering techniques and the associated theory. The chapter leads up to the latest developments in

direct volume rendering and ends by outlining how the algorithms presented here relate to previous

work.

• Chapter.3 - Octree Compression and Data Classification: Presents the octree compression

technique used to represent the volume data in all the algorithms. The methods and theory of the

compression algorithm are presented and incremental transmission is discussed. The reception of

the incremental volume data is then presented and algorithms for incremental data classification are

described.

• Chapter.4 - Rendering Hierarchical Volumes: Details the algorithm for rendering the octree

compressed volume data as well as the underlying mathematical theory for the Shear-Warp

algorithm. The methods for approximating the volume for incremental rendering are also

discussed.

• Chapter.5 - Experimental Results: The basic hypotheses of the thesis are presented and methods

for testing them ar discussed. The testing methodology is detailed and then results for all the

volume processing algorithms are presented.

• Conclusion: An overview of the dissertation indicating areas where significant solutions are

proposed and areas where problems still exist. Future directions in this research are also outlined.

• Appendix.A - Glossary: A glossary of common technical terms used throughout the dissertation.

5

• Appendix.B- The VOX++ class library: A description of the C++ class library which implements

all the algorithms presented here. The library also provides an extensible framework for testing

volume rendering algorithms. A full reference of every object is also provided.

• Appendix.C- Graphs: Most of the detailed results of the tests discussed in Chapter.5 are presented

in graph form.

• Appendix.D - Images: Visual results from the rendering algorithms Comparisons are made

between the traditional Shear-Warp algorithm and the octree algorithm, using a variety of rendering

parameters.

6

Chapter 2

Backgro nd

2. 1 Introduction

In the field of data visualisation the data may be in various fonnats , the most common of which are:

V[t} Vectors oflength t containing scalars. (e.g. Simple statistical tables.)

S[t/ Two dimensional arrays of scalar data. (e.g. Monochromatic Images.)

V[tf Two dimensional arrays of vector data. (e.g. Colour Images, or surface flux data.)

S[t/ Three dimensional arrays of scalar data. (e.g. Medical volumes scanned by CT or MR)

V[t/ Three dimensional arrays of vector data. (e.g. Multimodality volumes, fluid-flow data.)

S[t}N N-dimensional arrays of scalar data. (e.g. Abstract simulation data or time varying volumes)

V[t}N N-dimensional arrays of vector data. (e.g. Abstract simulation data.)

The field of standard volume visualisation which we will concern ourselves with in this thesis falls into

the S[t/ category (i .e. A three-dimensional array of scalars).

The field of volume visualisation came about from the merging of medical image processing and solid

modelling and has been an active field of research for the last I 0 years. Historically, traditional

medical imaging concerned itself with two dimensional images while solid modelling dealt solely with

polyhedral solids using methods such as scan conversion, ray-tracing, or radiosity. With emergence of

higher resolution medical scanners, larger primary and secondary storage, and better graphics and

processing technology, the concept of three dimensionally rendering solid volumes of image data

emerged. Of course this field is not at all limited to medical uses anymore, and a lot of work is being

performed in areas such as fluid-dynamics simulations and finite-element models .

This chapter will outline the exact nature of the problem, and will present some of the previous work

performed in this field.

7

2.2 Distributed Visualisation

Over recent years network bandwidths have increased sufficiently for many distributed network

approaches to visualisation to be realised.

Anupam et al. [4] have developed the SHASTRA environment for collaborative multimedia scientific

manipulation. The authors have implemented a volume rendering system which distributes the

rendering calculations between rendering servers based on the complexity of rendering areas of the

final image. Their environment also supports collaborative viewing so that a number of users may

explore the same dataset from different viewpoints and interact with one another. The users can

collaborate in the setting of viewing parameters and can inspect the results independently.

Recently Law & Yagel [5] presented a highly efficient distributed volume rendering system which

makes use of an advancing ray-front (a block of simultaneously advancing rays) to achieve greater

coherency in the data access during rendering. This greater coherency then better exploits their local

caches.

Simon et al. [6] present the Multimedia MedNet used by a number of hospitals and research

laboratories. Their system does not provide for volume rendering but merely the efficient distribution

of multimedia data over a wide-area-network (WAN). The system allows for data being captured

during surgery (video, audio, neurophysiological , and autonomic data) to be simultaneously

distributed over the network to numerous collaborative users. This allows experts to examine and

comment during the actual surgical operations.

One of the primary advantages of this trend towards distribution and collaboration as far as medical

data goes, is that expe s in various fields may be consulted with ease. Also due to the inception of

high-bandwidth network links there is no real limitation on the location of the expert either.

With the explosion in popularity of the Internet and the World-Wide-Web hyper-media browsing

system a lot of necessary data is being made widely available. Unfortunately many of the network

links over which the In ternet is propagated are relatively low bandwidth, and the transferral of large

amounts of data (e.g. real-time video) is still not possible. However on the other hand most people in

professional organisations and research institutions now have easy (and cheap) access to the Internet,

so it makes sense to move the collaborative systems mentioned above to the Internet.

Ang, Martin, and Doyl [7] have presented a mechanism for controlling volume visualisation over the

World-Wide-Web (WWW). Their system adds controls to a user 's WWW browser which send

messages back to a volume rendering server. This server then renders images of the volume with the

requested parameters and transmits these images back to the user. This technique, while being

operative, is naive in that: (a) simultaneous usage by many users will result in very poor performance,

and, (b) transmitted images will not arrive at the user in a reasonable amount of time.

In order to distribute volume models over the Internet it is necessary to properly distribute the load of

the volume rendering process. With the advent of rapid new volume rendering techniques (which no

longer require high-end workstation performance) the rendering may be perfonned on the user's own

8

workstation. In this case efficient means of compressing the volume for transmission is required. Also

due to the low-bandwidth of many Internet links it could take in the order of 20 minutes to transfer an

average sized volume to a user. It would thus be advisable to render the data (rendering times are in

the order of seconds) incrementally during its arrival. This would maintain a reasonable user-feedback.

The algorithms presented in this dissertation achieve this goal.

2.3 Volume Representations and Compression Techniques

The question of how to represent and store a volume of data, depends very much on the nature of the

original data and on the methods which will be used to visualise this data.

2.3.1 Nature of the data

Volumetric data is usually represented as a three-dimensional lattice where either the vertices of the

lattice or the areas bounded by connecting planar vertices are voxels. (A voxel is a three dimensional

data element, much like the three dimensional equivalent of a pixel.) This lattice may then take one of

two forms:

• Regular- The spacing of vertices is constant on any one axis.

• Irregular - The spacing of vertices is not constant.

Most medical datasets and other datasets resulting from direct scanning by CT or MR methods are

regular lattices of data . Data produced from numerical simulations or models produced for finite

element modelling are generally irregular lattices of data [8 ,9]. In this thesis we will only be

considering regular data. It is normally possible to convert irregular data to regular data by performing

a resampling operation on the data using some form of reconstruction filter. However the

reconstructed regular dataset may be very large and have undesirable aliasing artifacts in it.

Computed Tomography (CT) and Magnetic Resonance (MR) scanning both use a process of

tomography to construct two dimensional slices through the object being scanned. Then by moving

the object in a direction orthogonal to the slices, numerous aligned slices can be scanned at set points

through the object. Once these slices (which essentially form a number of two dimensional images) are

captured they may then be "stacked" together to form a three dimensional volume of data. The

distance between neighbouring voxels (or lattice vertices) may not be the same in every direction and

this information should be stored with the volume to allow for accurate reconstruction. The resulting

data, in its raw form, takes the form of a three dimensional array of integers. References to this data

format can be found in (10].

The size of these datasets, however cause many problems ranging from simple storage space to long

rendering times. Considering an average medical dataset could be of the size 256x256x I 00 with every

voxel represented by 2-byte integer, this results in 13 I 07 200 bytes of data, and during the

visualisation of the data more information may need to be calculated on a per-voxel basis further

increasing this size.

9

Performance problems are invariably encountered when loading the data from secondary storage or

transmitting the data over a network link. Also in most virtual memory based operating systems,

allocations of very large data structures which are constantly accessed in varying orders can cause the

operating system to "thrash" (constantly swap memory between primary and secondary storage),

thereby dropping the performance of the entire workstation. To address these problems researchers

have developed a range of volume compression schemes to reduce the size of the data and to filter out

unnecessary data. These schemes will be covered in §2.3.2, §2.3.3, §2.3.4, and §2.4.

The rendering of large volumes also presents a major problem due to the amount of data which has to

be referenced during the rendering process. This problem arises for most rendering methods ranging

from isosurface rendering to volume ray-tracing. (These rendering methods are covered further in

§2.5 .) Other rendering problems include: generating alias-free images, locating different materials in

the volume more accurately, and partial rendering of the volume (i.e. As a overview or during rapid

animation). These problems have led to the development of a variety of volume representation

schemes, each one implying a different approach to the rendering.

2.3.2 Pyramid Representation

Pyramid representation consists of recursively subdividing the volume into a full tree (or pyramid) of

hierarchically organised voxels. Figure 2.1 depicts the pyramid structure for a 4x4x4 volume. Often

this pyramid of nodes is trimmed so that certain branches are discarded. The resultant data structure is

referred to as an octree.

Figure 2.1 - Pyramid reduction of a 4x4x4 volume dataset.

ul
...

1f)~

'~
Wilhelms and Van Gelder [11] discuss the use ofoctrees for the rapid calculation ofisosurfaces. They

use a specific type of octree called a branch-on-need octree in conjunction with a node cache to

efficiently determine the isosurface of a volume.

A novel use of the pyramid representation was presented by Laur and Hanrahan [12] . They use the

generalising ability of non-leaf octree nodes to generate approximations of areas of the volumes.

10

These approximations are then rendered as textured splats (the compositing of an area of pixels into

the final image) using hardware Gourard shading facilities. This technique allows the authors to

rapidly render the volume when detail is unnecessary, for example, during rapid animation.

Levoy [13] proposed the use of an octree data representation to rapidly omit transparent areas of the

volume during the rendering process. This served to decrease the amount of per-ray calculations

during the ray-tracing process which he used.

2.3.3 Frequency Domain Representation

The Fourier Projection-Slice Theorem allows 2 dimensional projections to be generated from a three

dimensional dataset in frequency space. In order to achieve this, the original volume is transfonned

into a three dimensional frequency space representation. Unfortunately the usage of frequency space

entails an increase in the overall size of the volume as well as incurring the overhead of Inverse­

Fourier Transforming the slice for every rendering. For more information see the section on frequency

domain rendering below. (§2.5.5)

2.3.4 Multiresolution Representation

Multiresolution techniques strive to represent the volume in such a way that there is a hierarchical

decomposition of the volume into a number of geometric approximations. These approximations

should optimally tend towards an exact replica of the original volume, as the resolution increases.

Using this approach: run-time memory usage during rendering may be reduced, overall approximation

volumes may be rendered rapidly, and by exploiting the nature of the human eye certain features of the

volume may be filtered out to reduce the overall volume size.

Muraki [14] originally proposed the use of Blinn's blobby model representation of surface, to achieve a

multiresolution representation of a volume's isosurface. While being successful this method required

high amount of approximation volumes (or blobs) to achieve a visually recognisable picture. The

method was also extremely slow, requiring days to render a single image.

With the advent of Wavelet Theory [15], a whole new approach to multiresolution representation

became possible. Westermann [16] gives a good theoretical overview of the wavelet decomposition

method with respect to the volume rendering integral. He compared the use of three different basis

functions for the three dimensional wavelet decomposition, and found that the Daubechies wavelet

basis produces better approximations, but the Haar basis allows for faster rendering. The method

reduces the overall memory requirements drastically. However the images obtained were of a fairly

low quality and the rendering times were in the order of I 0 minutes.

Muraki [17] also presented the use of a three dimensional wavelet transform for producing a

multiresolution volume. He made use of the Battle-Lemarie wavelet basis which gives results similar

to his earlier blobby model work. While the transformation time was in the order of minutes, the

rendering times were fl und to be in excess of I 0 hours.

II

A much better wavelet basis was later proposed by Muraki [18]. He used the three dimensional

difference of Gaussians (DoG wavelet) functions as the wavelet basis. This gave results close to that

produced by the meta-ball surface approximation method used extensively in solid modelling and ray

tracing. The rendering times were now reduced to under 20 minutes.

Further work in the fie ld of wavelet decomposition of volumes primarily consists of trying to find a

better set of basis fu nctions, which may be rendered efficiently while representing the volume

accurately. Guo [19] has recently proposed the use of wavelet maxima and alpha shapes for the

reproduction of volume surfaces, however the method cannot represent standard medical datasets well.

A different approach to the multiresolution representation was presented by Ranjan and Fournier [20] .

They propose the use f unions of spheres for the representation of isosurfaces. Their method while

achieving reasonable r ndering rates (30 seconds) cannot represent the whole discrete volume and is

limited to isosurfaces only.

On reflection, the Pyramid Representation section presented a number of octree methods which could

also be considered to be multiresolution representations. Due to the efficient nature of constructing

and maintaining octr es, this method hints at a very efficient rendering scheme for octree

representations [21].

2.4 Compression Techniques

Compression of the volume data is a fairly common approach and ranges from lossless techniques,

which preserve all the information content of the volume, to lossy techniques which approximately

reconstruct the original volume on decompression.

2.4.1 Lossless compression

A lossless compression function is a function which accepts an input data stream and generates a

smaller data stream which, when operated on by the decompression function , regenerates the original

data stream exactly. Thus the redundancy in the original data stream is exploited.

One of the oldest but sometimes most effective methods (normally in terms of processing speed and

ease of implementation) is the run length encoding method where runs of similar values are coded into

a representative of that value as well as a count of the recurring values. Montani and Scopigno [22]

developed a volume representation and rendering scheme called STICKS, where the volumes of data

were compressed using run length encoding on the z-axis runs (or sticks) of data. Their algorithm also

made use of a lookup table to quickly locate the start of encoded sticks, as well as to allow secondary

storage of some of the data in a scheme similar to virtual memory.

A promising extension to the STICKS method was proposed by Shareef and Yagel [23] using a data

structure called a segment wall. Their data structure contains segments of voxels which contain either

empty runs or runs of equivalently valued voxels. They also develop an efficient beam-tracer which is

used to render this data and they demonstrate its use by applying it to a CSG (constructive solid

geometry) modelling system. More recent algorithms such as the Shear-Warp algorithm by Lacroute

12

and Levoy [24,25] exploit the nature of the run length encoded data to achieve very high rendering

speeds.

Another approach presented by Fowler and Yagel [26] is the combination of a differential pulse-code

modulation and Huffman coding. In this method a combination of a predictor and a Huffman coder are

used to achieve a near-optimal lossless compression of the volume. However the compression and

decompression times are in the order of minutes and the data structures do not allow random accessing

of the compressed data. This therefore excludes the possibility of directly rendering the data in its

compressed format.

2.4.2 Lossy compression

A lossy compression function is a function which accepts an input data stream and generates a smaller

data stream which, when operated on by the decompression function, regenerates the original data

stream to within a specified degree of accuracy. This degree of accuracy is specified during the

compression phase and is referred to as a quality factor. This indicates how much of the original data

is to be maintained. These compression algorithms generally achieve very high compression ratios.

Many of the compression techniques used in volume compression are merely extensions of two

dimensional techniques used for image compression. This is certainly true for many of the lossy

volume compression algorithms.

Ning and Hesselink [27] present a technique based on vector quantization . Here the original volume is

converted into a set of indices which reference a code-book of data vectors . The quality factor effects

the size of the code-book. Their technique also allows for the rendering of the data in its compressed

form. This is very advantageous as a separate decompression overhead is not incurred.

Yeo and Liu [28] propose the use of a three dimensional discrete cosine transform (DCT) similar to

that used in the JPEG image compression scheme. Their method (like JPEG) breaks the volume up

into 8x8x8 blocks each of which is transformed using the DCT, quantised (using a pre-set table), and

Huffman coded. Edge of block artifacts are reduced using overlapping macro blocks of size

32x32x32. Their method achieves compression ratios of between 20 and 30 percent without

generating noticeable artifacts. They also proposed that the decompression is performed during the

rendering process which results in fairly long rendering times.

It is interesting to note that this DCT compression scheme could fit elegantly into the octree (or

pyramid) representation scheme discussed in the previous section. This is due to the power of 2 size of

the blocks and macro-b locks and the equivalent size of octree nodes.

2.4.3 Consequences

The use of lossy compression is often not acceptable, especially in the fields of medical diagnosis.

This is due to the generation of compression artifacts brought about due to the inexact representation.

These artifacts could be perceived as false objects in the final rendered image, thus allowing the

possibility of incorrect diagnosis.

13

The rendering algorithm which is presented in this dissertation, while allowing for the incorporation of

lossy compression, chooses to use only lossless compression. This choice is motivated by the above

artifacts problem, as well as the potential time delay incurred by the more complex decompression

process implied by many of the lossy compression algorithms.

2.5 Volume Rendering

2.5.1 Background

The discrete volume of voxels described in the previous sections can be rendered in any orientation

with particular seatings and translations. Numerous coordinate systems are used during the rendering

process. The most nota le are:

• Object Coordinates - The coordinates ofvoxels in the discrete three dimensional array.

• World Coordinates - The coordinates of the volume in 3-space as perceived by the v1ewers

"camera". This inc! des all transfonnations produced on the volume.

• Image Coordinates- The coordinates of the pixels in the final rendered image. (These coordinates

also have analogies in world coordinates.)

For some rendering methods an isosurface or cuberilles is used. With these methods a particular

density level (or closed range of levels) in the volume is selected for rendering. All of the voxels at

this particular density level will define some form of three dimensional shape.

Using the cuberilles method all voxels which are not at the specified density level are removed and

only the voxels remaining are rendered as a collection of small cubes in space. This rendering may be

performed by any multi-purpose solid modelling method such as Z-buffered scan conversion or ray­

tracing.

The isosurface method consists of locating all voxels within the specified density range and

interpolating them together to form a number of continuous surfaces. These surfaces are generally

approximated by large numbers of polygons using algorithms such as the Marching Cubes algorithm

[29]. These polygons are then also rendered using the same methods as for cuberilles.

Another prominent method of volume rendering is direct volume rendering where the volume is taken

be a varying semi-tra sparent medium[30,3 1]. When rendering, light rays are traced through the

volume and projected onto an image plane in the same way that ray-tracing is performed. As the light

ray passes through the volume it is attenuated and reflected. The basic equation for the intensity of the

resulting ray is given by:

11 -r a(s)ds
l(t0 ,t1)= Jq(t)e •='o dt

f;t0

14

where a(s) defines the attenuation function of the material in the volume, q(t) is the volume intensity at

position t along the ray, and to and t1 are the entry and exit points of the ray. Most direct volume

rendering methods can be considered to be approximations of this integral.

Normally before the volume is rendered a number of filtering operations have to be performed. Also a

large amount the calculations required during rendering can be pre-computed and stored with each

voxel. This process is known as classification.

2.5.2 Pre-processing & Classification

The pre-processing of a volume can consist of the following stages:

• The construction of the discrete three dimensional array from a particular medical data format such

as DJCOM or ACR-NEMA.

• The range correction of density values as the volume may not have optimal contrast.

• Re-sizing ofthe volume using signal resampling [10]. Here the original three dimensional signal of

the volume is recon tructed (using Fourier analysis, say). Once this signal is established it is then

re-sampled to create a different size volume. Of course the Nyquist limit has to be adhered to

otherwise severe aliasing artifacts will appear.

• Some scanning methods are very susceptible to noise at certain locations in the volume. The three

dimensional analogy of many image processing noise filters can be applied to remove the noise

provided that the statistical characteristics of the noise is understood [30].

The classification stage generally consists of the following operations:

• Assignment of a shading and opacity to each voxel.

• Calculation of a surface normal and gradient magnitude at each voxel.

• Removal of transparent voxels.

The assignment of shading and opacity is generally performed by a collection of material definitions as

well as an opacity tr nsfer function . The material definitions, define the colour and shading

characteristics (ambient, diffuse, and specular shading). The mapping of density values to material

definitions can be many-to-one or many-to-many by allowing fractional material contributions to

certain voxel densities . The opacity transfer function, which generates an opacity, is normally a

function ofvoxel value and gradient magnitude.

The surface normal and gradient magnitude is calculated using a finite differences method operating on

the neighbours of a voxel. The approximation of the normal may be more accurate by using a larger

number of neighbours but this is often not desirable as more data has to be stored on a per-voxel basis.

To optimise the rendering process of the volume the voxels which will be completely transparent, as a

result of the transfer function, can be eliminated. Generally this comprises a fairly large percentage

15

(70% or more) of the olume and provided an efficient data structure is used (such as an octree) the

rendering will be vastly accelerated.

Sobierajski et al. [32) propose a data structure which contains only the outer most voxels visible voxels

(called a trimmed voxellist) thus reducing the number of voxels sent through to their geometry engine.

This method is very similar (but more efficient) to Udupa and Odhner's [33] semi-boundary data

structure. Both of these methods do however require some display time computations of a modified

data structure. A more recent approach by Yagel et al. [34] uses a data structure called a fuzzy voxel set

which consists of voxels which contribute significantly to the final image. (This contribution is

computed by measuring the effect of splatting a single voxel has in relation to the entire image.)

2.5.3 Multimodality data

A recent advance in volume visualisation is the use of multimodal data . This means that data captured

through a number of di fferent methods is combined together to achieve very infonnative renderings of

the volume. In the medical field CT scanning produces very good bone definition, while MR scanning

produces good tissue definition. Also scanning such as SPECT can produce maps of the electrical

activity in the brain.

Zuiderveld [35] developed an object oriented rendering system which incorporates multimodal data by

using many of the implicit advantages of ray tracing. A large section of his method deals with the

mapping of the various data types together. Also the process of registration (or alignment with each

other) of the datasets is till a field of active research.

Recently the National Library of Medicine's Visible Human Project was completed, where numerous

scans of a male and a female cadaver were collated. The scans consisted of

• An MR scan of the entire cadaver.

• A CT scan of the entire cadaver.

• A physical slicing f the frozen cadaver into millimetre thick slices, followed by the imaging of

these slices.

These various modalities were registered together and are now being made available to the scientific

community. Tiede, Schiemann, and Hohne [36] present some of the first renderings of this data set,

taking full advantage of the multimodality nature of the data. Due to the fact that actual RGB colour

data is available for the voxels, highly realistic images can be rendered.

2.5.4 lsosurface methods

As mentioned in the Background subsection above, isosurfaces are a common method of visualising

volumetric datasets . T e most popular algorithm for the construction of the isosurface polygons is

Lorensen and Clines [29] marching cubes algorithm. This algorithm uses a hierarchical tree of boxes

which intersect the specified density fields in the volume with increasing accuracy. Once a high

16

degree of intersection accuracy has been maintained each box is converted into one or more surface

polygons.

Numerous improvements have been made to this initial algorithm [II ,37]. Wilhelms and Van Gelder's

method [I l] is notable for its use of octrees. Much of the theory and advantages of their method carry

over to our new algorithm presented in this dissertation.

There are however numerous problems with isosurface methods (a comparison can be found in [38]):

• Often the data size fthe polygons exceeds the size of the entire volume.

• Only discrete density levels may be visualised and interior and amorphous phenomena cannot be

visualised.

• Slicing of the volume is generally not naturally supported and CSG-type operations with the

volume data are computationally complex.

Thus, although this method has historically enjoyed a lot of support it is now being replaced by more

flexible (and recently, faster) methods.

2.5.5 Frequency domain techniques

The section on volume representation methods mentioned the use of frequency domain storage of the

volume. This is made possible by exploiting the Fourier Projection Slice theorem.

This states that a projection of a volume may be obtained by first converting that volume to a three

dimensional frequency pace representation, and then extracting a slice from it (the orientation depends

on the desired viewing parameters). Once this two dimensional slice is inverse-transfonned back to the

spatial domain an image is generated which is a projection of the volume. This image does not

however contain shading or conventional occlusion characteristics.

The main impetus behind using this method is to achieve faster rendering times as the extraction of a

slice of data is a lot faster than a full spatial domain rendering. This is even more true if the volume is

continually maintained in its frequency space representation.

Totsuka and Levoy [39] presented a method for achieving better rendering results by performing

shading calculations within the frequency space volume.

This method has not enjoyed much success due to the poor quality of the images generated and the

large computation times involved.

2.5.6 Direct volume rendering

In recent years a lot of attention has been given to direct volume rendering. As mentioned in the

Background subsection, this consists of directly rendering the discrete volume array onto the image

plane.

The direct volume rendering methods generally fall into one of the following categories:

17

• image-order algorithms - the image pixels are traversed and the corresponding voxels are located

and projected normally in a front-to-hack order. An example of this is ray tracing.

• object-order algorithms - the volume object is traversed and voxels are transferred onto the image

plane, often in a back-to-front order. An example of this is the projection method.

2.5.6. 1 Ray Tracing

A reduced fonn of ray tracing called ray casting is used for the rendering of volumes. Using this

method no secondary reflection or refraction rays are calculated, only the primary ray is used [31].

As with conventional ray tracing, a ray is cast from the image plane into the scene (world coordinates).

These rays are generally transformed into object coordinates and some form of differential analyser is

used to scan convert the ray through the volume.

The STICKS algorithm proposed by Montani and Scopigno [22] , compresses the volume into run­

length encoded sticks along the z-axis of the volume. The encoded volume was then ray-traced.

However due to the single axis compression technique, scan conversion of a ray resulted in a very high

number of accesses to their data structure. Reported rendering times were in the order of 250 seconds.

More recent approaches to run-length encoding [24] have suggested maintaining three copies of the

volume, each compressed along a different axis. This however obviates the advantages of the superior

compression achieved through run-length encoding.

Yagel and Kaufman [40], presented their template based volume ray tracing algorithm, which achieved

a large reduction in rendering times (rendering a standard medical volume took around 30 seconds).

However their algorithm did not use a compressed data structure, so the full volume array had to be

maintained in memory.

Sobierajski and Kaufman [41] also presented a very photo-realistic ray tracing algorithm which makes

intelligent use of bounding boxes and distance sorting. Rendering times in the order of 6 minutes were

reported.

A very effective volume compression and ray tracing algorithm was presented by Ning and Hesselink

[27]. As mentioned in the subsection on lossy compression, above, their algorithm used vector

quantization to produce very high compression ratios. They reported rendering times of 54 seconds for

a standard medical data et. Unfortunately their algorithm did result in very noticeable artifacts in the

rendered image, brought about by the compression.

Other methods for accelerating ray tracing of volumes include: Levoy's [13] octree encoding scheme,

Zuiderveld's [35] Ray Acceleration by Distance Coding, Avila's [42] near and far ray boundaries

(computed by orthogonal z-buffers), and Yagel 's [43] coordinate buffer for accelerating ray casting

during animation of a volume.

Normally the ray tracing operations mentioned above are performed using parallel rays (resulting in an

orthographic projection). The main reason for this is the performance improvements gained by each

ray being cast in exactly the same direction. Other reasons include the lack of object scaling with

18

distance allowing direct measurements to be made of the model. However Novins, Sillion, and

Greenberg [44] motivate for the use of perspective projection ray tracing. They presented an adaptive

ray-splitting process which accelerates the perspective ray casting process and makes it more accurate.

Rendering times of 356 seconds for a fairly small medical data set were reported.

2.5.6.2 Projection

A more recent approach to direct volume rendering is the projection or splatting approaches. With

these methods areas of the volume are directly projected (or splatted) onto the image plane, in such a

way that occlusion is maintained.

Wilhelms and Van Gelder [45] presented one of the earlier approaches to projection, with their

coherent cell projection method. Each cell (a region bounded by eight neighbouring voxels) is treated

as a small cube which is parallel projected onto the image plane. The polygons of pixels representing

the projection of the cube are approximated using various interpolation techniques ranging from

Gourard shading to exponential linear interpolation. These approximated polygons later became

known as splats. The polygons were projected onto the image plane using either a back-to-front

compositing operator or a front-to-back compositing operator. Details of the over compositing

operator can be found in Porter and Duffs paper [46]. Rendering times of 830 seconds were presented

when using hardware Gourard shading and a fairly small volume.

Laur and Hanrahan [1 2] used the splatting approach to develop a progressive refinement rendering

algorithm. This algorithm represented the volume using an octree structure. Hierarchical renderings of

the object were obtained by splatting entire regions of the volume as single interpolated polygons.

Their octree data structure stored the errors resulting from approximating certain regions by single

polygons, so given an overall acceptable error the algorithm will traverse the octree to a set depth and

splat the corresponding polygons. The techniques presented in their paper were a major motivation for

the incremental rendering algorithm presented in this dissertation. Moderate quality images were

achieved in only 5 seconds using Gourard shading hardware.

Recently the Shear-Warp projection algorithm was presented by Lacroute and Levoy [24,25]. This

algorithm performs a run-length encoding compression of the volume, but uses a simultaneous object­

order and image-order traversal to rapidly splat entire slices of the volume onto the image plane.

Rendering times of I second were reported for a standard medical volume. Unfortunately the

algorithm suffers from the same memory problems that the original STICKS ray tracing method

suffered from, due to the difficulty in choosing a suitable axis along which to perform the compression.

The basic technique of their algorithm is used in the efficient octree algorithm presented in this

dissertation, however the memory limitations are removed through the use of octrees. Also due to the

use of octrees other possibilities such as incremental rendering become possible.

2.5.6.3 Texture Mapping

Through the use of very high-end graphics workstations which support real-time texture mapping, a

very efficient direct volume rendering system can be developed.

19

Cabral, Cam, and Foran [47] presented an algorithm using inverse Radon transforms to dynamically

construct texture maps . Using a Si licon Graphics Onyx Graphics Supercomputer rendering times of

0.1 seconds were achieved. The main problem with their method is of course the reliance on very

high-end rendering hardware. Their work derives from some original work by Cullip and Neumann

[48] in using the Silicon Graphics Reality Engine for a texture mapped approach to volume rendering.

Lippert and Gross [49] also use a texture mapping approach for a wavelet based volume rendering

algorithm. Their alg rithm unifies the use of the frequency space approach and the wavelet

decomposition approac . Unfortunately the images produced are still fairly low quality.

2.6 Shear-Warp Algorithm

The Shear-Warp Factorisation algorithm was presented by Lacroute and Levoy [24,25] as a highly

efficient volume rendering solution. Their algorithm achieves rendering rates of I second per frame

for a standard sized medical dataset. Volume representation is through a run-length encoding method

which achieves reasonably high compression ratios without losing any necessary information. (i .e. The

run-length encoding compresses runs of unused voxels.)

Their algorithm actually consists of a number of other improvements to the whole process of preparing

and rendering the data.

2.6.1 Min-Max Octrees for Classification

Often during the manipulation of a volume, the data needs to be re-classified (because isosurface levels

have changed, say) and this can be a time consuming exercise. The authors presented a partial solution

to this problem in the use of Min-Max octrees to accelerate the classification process.

Essentially their algorit m constructs an octree which covers the entire volume. Each node of the

octree contains the bounds of the parameters to the opacity transfer function . Thus, during traversal of

this octree, entire regions of the volume which will be transparent can be skipped from classification

by integrating the resultant opacity between the bounds of the parameters for the region. They perform

this integration efficiently using pre-computed summed-area tables.

2.6.2 Parallel and Perspective Rendering

Both parallel and perspective rendering of the volume is supported by the Shear-Warp Factorisation

algorithm. The focal point of the algorithm is the factorisation of the viewing transformation matrix

into two much simpler matrices depending on whether the projection is parallel or perspective. The

factorisation is as follows:

• Parallel transformati ns may be factorised into a three dimensional shear matrix which shears the

slices of the volume in the X and Y directions only; and an affine two dimensional warp matrix.

• Perspective transformations may be factorised into a three dimensional shear and scale matrix

which shears and scales the slices of the volume in the X and Y directions; and a perspective two

20

dimensional warp matrix. (The scaling of the slices are such that they get smaller as their Z­

coordinate increases.)

The result of this factorisation is that the rendering of a volume can be done in the following stages:

1. The view transformation matrix is factorised and the scaling and shearing coefficients are

calculated as well as the warp matrix.

2. An intermediate compositing image is created, where the slices are composited in Z-order. Each

slice is scaled and sheared accordingly before it is composited.

3. Once all slices are composited, this intermediate image is warped into the final image.

Thus the rendering of the volume has been split up into two highly efficient operations: (I) a simple

parallel splatting of slices onto the intermediate image, and (2) a rapid two dimensional image warp.

Another advantage of this approach is that the scan lines of the volume are constantly aligned with the

scanlines of the intermediate image. This allows for simultaneous image-order and object-order

traversing, thus gaining the advantage of both. The image order traversal allows the algorithm to skip

rendering voxels when corresponding image pixels are already opaque (front-to-back compositing is

used) . The object order traversal allows the algorithm to skip image pixels when the corresponding

voxels are transparent.

The run-length encodi g storage of the volume was chosen specifically to exploit this simultaneous

image-object scanline rendering. Unfortunately due to the non-symmetric nature of the run-length

encoding (it is a one dimensional encoding along a single axis), the algorithm breaks down when the

volume is rotated and the scanlines of voxels are no longer compressed in a direction parallel to the

intermediate image. To alleviate this problem the authors suggested maintaining three transposed

copies of the volume, with each one being run-length encoded. This makes the runtime memory usage

of the algorithm very high.

The authors also presented methods for depth cueing and simple shadow generation during the

rendering process. References to the methods of affine and perspective image warping, used during

the warping stage, can be found in [50,51 ,52).

The rendering algorithms presented in this dissertation are based on the Shear-Warp algorithm, but

make use of hierarchical data structures instead of the run-length encoding scheme previously used. In

doing so, more than a two fold memory decrease in memory usage is achieved without compromising

the efficiency of the rendering process.

2. 7 Algorithm Overview

Before we proceed with an in-depth technical discussion of the techniques used in our algorithm an

overview of the entire algorithm is presented which is intended to serve as a map to guide the reader

through the following chapters. The algorithm can be broadly divided into five stages:

21

The raw data set is parsed, filtered, and then §3.2 and §3.3

compressed using an octree based compression scheme

il 11!1 eliminating the storage of unnecessary voxels. The
I

octree is designed to contain information in its non-leaf

nodes to permit approximation of regions of data

easily. In a networked environment this process would

occur on a server.

The compressed data may now be streamed over a §3 .3.5

network link such that the data may be incrementally

read and used at the client side. The following stages

all work with incremental volume data arriving at a

client workstation.

The compressed data is prepared for rendering (i .e. §3.4

classified) using a hierarchical classification algorithm

which incrementally classifies the data as it arrives.

(This process involves computing voxel opacity,

colour, spatial gradients, and gradient magnitudes for

each visible voxel in the volume.) The same octree

data structure is used to contain the classified data. A

specialised cache is used to accelerate the classification

process.

The classified data (or what there currently is of it) is §4.2 and §4.3

rendered using a parallel projection version of the

Shear-Warp algorithm which uses octree data as

opposed to the original RLE data. Missing data (data

which has not yet arrived from the server) is

approximated using a trilinear interpolation process.

The projected parallel image is then warped using an

affine image warp.

The classified data (or what there currently is of it) is §4.2 and §4.4

rendered using a perspective projection version of the

Shear-Warp algorithm which uses octree data as

opposed to the original RLE data. Missing data is

approximated using a trilinear interpolation process.

The projected perspective image is then warped using

an perspective (non-linear) image warp.

22

2.8 Conclusion

We have seen that ther is a tendency to move visualisation operations onto wide area networks such

as the Internet. This is primarily due to the possibilities of collaborative diagnosis by remotely located

experts, and also the academic advantages of making multimedia resources available to students and

research staff. With the acceptance of the Internet this is most likely to occur through the WWW

interface.

A lot of improvement on rendering times of medical volume data has been made over the last 20 years,

up to the point that volumes may be rendered in almost real-time on average workstations. This makes

the publishing of medical volumetric datasets on the WWW a viable proposition. However a number

of problems still remain to be solved.

When a user is dynamically manipulating a volume updates should occur at a consistent rate. This

would not be guaranteed if a central server were to perform all the computations and then transmit an

image over the Internet as the load on the server is not predictable nor is the transmission delays in

sending the images. Thus the rendering of volume images at a central server is not a viable proposition

due to possible break down under load and also the delays of image transmission over the Internet.

(Thus the rendering should be perfonned on a user ' s workstation. However factors such as volume

transmission times and runtime memory usage have to be reduced.

Volume transmission time and runtime memory overhead may be reduced using various compression

techniques but these techniques impact the rendering performance and quality of the images produced.

If rendering of medical datasets is to occur on general workstations, then an efficient rendering method

for compressed volume has to be used, which generates good quality images.

The algorithms which will be presented in the following chapters address these problems by providing

a highly efficient hierarchical volume compression scheme which allows the volumes to the

transmitted efficiently and to be rendered incrementally as they arrive. The incremental rendering

guarantees a shorter user-feedback time which is a desirable feature in any visualisation system.

23

Chapter3

Octree Compression and Data
Classification

3. 1 Introduction

The primary goal of this dissertation is to produce an efficient volume rendering system for a client­

server model where the bandwidth of the connection may be quite low. The efficiency of data storage

and processing time on the side of the server is not an issue as the initial data construction process

simply has to be performed once and the results stored. However it is essential that the data structures

are as compact as possible and allow for the most efficient rendering once they arrive at the client. The

main problem of the construction process is thus the development of this data structure. Our research

led us to consider the ctree data structure for compressing the volume data, which we found gave

significant improvements over some other data structures (such as run-length encoding) due to its

symmetric nature.

This chapter covers the theory and algorithms for initially constructing the octree data structure,

transmitting it to a workstation incrementally, and then classifying the data either incrementally or at a

later stage. We introd ce the octree data structure(§ 3.1.1) and develop it for our own purposes in §

3.2. The octree data structure is transmitted incrementally to a workstation (§ 3.3), where the data is

classified(§ 3.4). This data structure will carry through to the next chapter where it is used to render

or approximate the volume data in an efficient manner.

3.1.1 Octrees for Representing Volumes

One of the main conjectures of this thesis is that the use of an octree data structure for representing the

volume is an efficient lossless scheme, in terms of both memory usage and complexity. The octree is a

hierarchical data structure which can be viewed as the recursive sectioning of a cubical region of three

space into eight smaller cubes. This sectioning is achieved by sectioning the original cube through the

centre along each of the three axes. The octree can however also be viewed as a standard tree, where

there are eight children to each node in the tree. Both the representations are depicted in Figure 3.1.

24

Each node thus represents a sub-volume. (The terms node and sub-volume will be used

interchangeably throughout this text, for referencing both the data-structure as well as the 3-

dimensional sub-volume, or cube.) It is useful to keep both these perceptions in mind as the algorithm

develops.

~ / /
~ / / /

i V'v
/

/

v v
Figure 3.1- Two dep ictions of the octree data structure.

An extensive and useful reference for understanding octrees and other spatial data structures is Samet's

book [53]. In his terminology the octree which our algorithm constructs is a bucket PR octree or more

concisely a region octree. He makes use of CSG examples to illustrate the use of octrees for

representation of both s rface based or voxel based data.

The nature of the octree is such that it closely (depending on the depth of the octree) represents

structure in the volum . The octree algorithm presented here builds an octree which covers the

"useful" areas of the volume and then only stores the data for those regions.

The nodes of the octree also contain information about the nature of the nodes below it or the data

inside the node. This allows for approximate rendering of missing nodes later on in the algorithm.

Another advantage of this octree data structure is that the actual octree data structure can be maintained

separately from the raw data (unlike RLE compressed volumes) . This allows duplicate octree

structures to be used (with different node information) during the various stages of volume

visualisation.

3.1 .2 Classification

Before the raw data is rendered it needs to go through a stage where the spatial gradients and normal

vectors at each voxel need to be calculated. This stage is known as classification and can also involve

further reduction of the data when the resultant opacity of voxels becomes very small.

As mentioned in the previous section, the data is transmitted to the workstation incrementally. In order

to render this data as it arrives it also has to be classified incrementally. This poses some problems as

25

the calculation of spatial gradients and normal vector requires the referencing of voxel neighbours.

Due to the fact that the volume is arriving incrementally it is possible that a particular voxels neighbour

is not present and thus only an approximation of its spatial gradient can be made. Then later on, when

the neighbour of that voxel arrives, a more accurate spatial gradient can be calculated.

In general it was found that the classification of volume data represented by an octree is a lot slower

than classification of data compressed using an RLE scheme. This is primarily due to the difficulty of

locating neighbours of voxels under certain circumstances. However due to the incremental nature of

the classification algorithm the duration of initial classification may be amortised into the duration of

transmission.

3.2 Data Structure

The data structure which contains the information for transmitting and rendering the volume data is

split into the three main sections depicted in Figure 3.2. The order of these sections is such that the

most fundamental data is at the front of the structure. This facilitates incremental transmission.

Octree Raw voxel data Data
\

Header

Figure 3.2 - Full data structure of an hierarchical
volume.

This data structure needs to contain all information concerning the rendering of the volume and

traversal of the octree data structure. Due to the fact that it is incrementally transmitted, the header

section (which contains essential start-up information for both octree traversal and rendering) is first,

followed by the octree data structure (used for approximating the volume in the absence of raw data

and also for making normal rendering more efficient). The last data in the structure is the raw volume

data corresponding to the leaf nodes of the octree. This data can only be rendered once the

corresponding octree node has arrived (hence it comes after the octree structure), and the data for each

node is placed in the same order as the octree nodes themselves.

The first section (a header structure) contains the following information :

Stage The format of the raw volume data, which should be either RAW or

CLASSIFIED. When the data is transmitted to the workstation it should be

in RAW.

26

LowCutoff The low range cut-off value. (See section 3.3.2)

HighCutoff The high range cut-off value. (See section 3.3.2)

Maximum Value The maximum value found in the entire volume. This allows the rendering

algorithm to rapidly decide not render a volume if it is going to be

completely transparent.

Minimum Value The minimum value found in the entire volume.

MaximumGradient The maximum gradient in the entire volume. This is also used for checking

for complete transparency.

MinimumGradient The minimum gradient found in the entire volume.

OctreeDepth The depth of the octree.

XDimension The X dimension of the original volume in number ofvoxels.

Ydimension TheY dimension of the original volume in number ofvoxels.

ZDimension The Z dimension of the original volume in number of voxels.

OctreeDimension The dimension of the sub-volume represented by the root node of the

octree. This sub-volume wi ll always be cubic, and the dimension will

always be greater-than or equal-to the any of the other dimensions as well

as being a power of 2. (This allows for efficient computation of co-

ordinates inside the octree.)

OctreeSize The number of nodes in the octree.

RawSize The number of bytes of raw data following the octree.

OpaqueVoxels The number of opaque voxels in the entire volume.

RootNodeReference A reference to the root node of the octree. This should always be node I ,

but this is used as a sanity check.

NodeCompression A flag indicating that leaf-node compression has been used on the raw data.

The second section contains the hierarchical octree data structure through which the volumetric data is

accessed. In building data structure for representing an octree, there are two common approaches

which are possible:

I . Represent each node in the tree by a data structure which has eight references to child

nodes inside it. (This is the classic representation of any data structure which is an

instance of a directed acyclic graph.)

2. Represent a node by a data structure which consists of eight nodes information. Each

node 's information then references another instance of this data structure.

27

The octree algorithm presented here chooses to use the second representation for the fo llowing

reasons:

• The depth of the tree is at least one (it is pointless to not perform any subdivision of the

volume at all), so there is no need for the explicit storage of a root node.

• For three directions, it is very simple to calculate the neighbouring node of another node.

(It will always be within the same node-structure in these cases.)

• The process of locating a node in the tree will require one less de-reference of node child

references.

This data structure is depicted in Figure 3.3.

Figure 3.3 - Octree node layout.

The elements of each node structure are as follows:

Child Reference to a data structure of this format which represents the

chi ld nodes of this node. This reference can be:

• an actual reference to a node structure,

• the value VFULL which represents a leaf-node containing raw

data, or

• the value VEMPTY which represents a leaf-node containing no

data.

Data Ref A reference to the beginning to the raw data for this particular

node. This member is only valid if the Child member has the value

VFULL.

Maximum Value The maximum value which occurs in any of the nodes below this

one, or the maximum value in the raw data of a leaf-node.

Minimum Value The minimum value which occurs in any of the nodes below this

one, or the minimum value in the raw data of a leaf-node.

28

MaximumGradient

MinimumGradient

GradientCalculated[6]

GradientApproximated[6]

Average Value

AverageGradient

AverageNormal

lsCompressed

CornerValues[8]

The maximum gradient which occurs in any of the nodes below this

one, or the maximum gradient in the raw data of a leaf-node.

The minimum gradient which occurs in any of the nodes below this

one, or the minimum gradient in the raw data of a leaf-node.

Flags for each of the slabs of voxels which cover each of the faces

of this sub-volume. The flag can be:

• TRUE - If all the voxels on this particular face have been

correctly classified.

• FALSE - If some or all of the voxels on this face have not been

correctly classified.

Flags for each of the slabs of voxels which cover each of the faces

of this sub-volume. The flag can be:

• TRUE - If all the voxels on this particular face have been

classified approximately.

• FALSE - If some or all of the voxels on this face have not been

classified at all.

The average value of all voxels in all nodes below this one.

The average gradient of all non-transparent voxels in all nodes

below this one. (This is only calculated during classification as it

may alter due to different opacity settings.)

The average normal vector for all non-transparent voxels m all

nodes below this one. (This is only calculated classification as it

may alter due to different opacity settings.)

If this node is a leaf-node then this flag signifies whether the raw

data contained in this sub-volume is compressed further or not.

(This is useful as sometimes run-length compression can result in

the compressed volume being larger than the original , and so in this

case it is simply stored as-is.)

The values of the voxels at each comer of this sub-volume. These

values are used during rendering to perform trilinear interpolation

over a sub-volume, when the raw data is not available. The

calculation and storage of these values only occurs during the

classification stage as this data is not required before.

29

The final full set of data structures which represent the octree, simply fonn an array of these node

structures. Each of the child references in the nodes are simply indices into this array. This approach

is used (rather than direct pointers) as it allows easy duplication of the octree structures for other

purposes. In the next chapter, a duplicate octree structure is used to represent the modified structure

due to classification, as well as to store infonnation pertaining only to the rendering stage.

Lastly, the third section of the data structure contains the raw data which is referenced by the octree.

Some of the data may be run-length compressed.

3.3 Octree Construction and Incremental Transmission

3.3.1 Filtering Phase

The first stage of building the compressed volume data structure, involves the filtering of the original

raw volumetric data. Generally, most data generated by medical scanners, has 16-bit voxels. In other

words each voxel may have an integer value in the range -32767 to 32768. However this entire range

of values is seldom used, and the "sub-range" varies from scanner to scanner and the scanning methods

used.

For the sake of memory efficiency the entire algorithm presented here operates on 8-bit voxels, where

the density value ranges from 0 to 255 . It is thus necessary to convert this original data into an 8-bit

fonn and also to optimise the range of values to better cover the "interesting" data. This has a slight

drawback in that if the original data used a very wide range of values then some infonnation might be

obscured in renderings of the 8-bit volume. However the efficiency advantages from using 8-bit

values are great, and the dynamic range of the rendered images was found to be sufficient to display

most phenomena occurring in standard medical volume datasets we tested. All the algorithms in this

dissertation could however be easi ly extended to more than 8-bit representations.

The method by which this is achieved in simi lar to a process which is often used in image processing,

called a contrast-stretch. ln image processing an image with low contrast, has a lot of its infonnation

content gathered together in a very small band of values. Once the range of this band of values is

known a contrast stretch algorithm can be used to spread the values over the entire range which the

image supports, thus giving the image better contrast.

The filtering algorithm for volumes takes as input the following parameters:

• The size of an individual voxel in bits.

• A flag den ting signed voxels .

• The lower limit of the useful values in the volume. (Called LowerLimit below.)

• The upper limit of the useful values in the volume. (Called UpperLimit below.)

• A voxel mask, which is applied before the comparisons with the limits are made.

30

The choice of the LowerLimit and Upper Limit values are made through analysis of a histogram of the

data inside the volume. Most of the histogram should appear flat , and only in a small range should

there be peaks. These values are optimally placed on either side of these peaks. This is depicted in

Figure 3.4.

Nurrber
of Voxels

\.Wlf :
Urrit !

Nurrber
ofVoxels

Figure 3.4 - Comparison of histograms before and after contrast stretching.

The contrast stretch algorithm is then applied throughout the volume to generate a volume whose

values lie in the range 0 to 255, and which covers exactly the range of useful values.

To perform this operation rapidly, the following algorithm is used:

I . Create an a ay with an index that covers the full range of values in the original volume.

2. Fill the array with the value 0 for all indices less than LowerLimit.

3. Fill the array with the value 255 for all indices greater than UpperLimit.

4. Fill the array with the value V for all indices between LowerLimit and UpperLimit. The

255- (Currentlndex- LowerLimit)
value of Vis given by the formula, V = .

UpperLimit - LowerLimit

5. For every value in the original array replace its value by the value in the array given by

using it as an index.

It should be noted that the lower and upper limits used here are not the same as the ones used for

determining the isosurface. The isosurface values serve to further refine the range specified by these

values and are thus in the [0, 255] range.

3.3.2 Construction Phase

The next stage of building the compressed volume is to construct the octree around the filtered data

from the previous step. This stage requires three parameters:

• A maximum octree depth. (See chapter 5 for determination of the optimum depth .) It is

worth noting that considering this is an octree the size of the tree increases with 0(8 N).

• A minimum threshold value which specifies the lower limit of the range of values which

we wish to extract from the volume and render.

31

• A maximum threshold value which specifies the upper limit of this range of values.

The algorithm then proceeds recursively to build the octree as follows:

I. Recursively subdivide the volume into eight sub-volumes (see Figure 3.1).

2. Once the recursion is equal to maximum tree depth, stop recursing.

3. Check if any of the values in the sub-volume are in between the two threshold limits. If

they are then return the value VFULL and a reference to the data, back to the previous

level of rec rsion.

4. If there are no values in the range then return the value VEMPTY.

5. After the result of each recursive call to the level below check the results of each call.

(There should be eight in total).

6. If each one returned VFULL then simply return VFULL.

7. If each one returned VEMPTY then simply return VEMPTY.

8. If some calls returned VEMPTY and others not, then create an octree node, where each of

the node items contains the value VEMPTY ofVFULL (depending on whether the call for

that region returned VEMPTY of VFULL) as well as the reference to the data that was

returned. Then return the reference.

Once this recursive process is completed an entire octree structure will exist, which encompasses the

volume according to the threshold limits specified. However this octree data structure is such that the

nodes are stored in "reverse order". (i.e. The nodes at the beginning of the node array represent sub­

volumes at the bottom of the tree, and the root node lies at the end of the array.) This will not work for

incremental transmission, as the most general nodes need to be transmitted first. Thus a reordering of

the octree nodes is required.

Not included in the above algorithm, are the determinations of maximum and minimum values for each

octree node. These values are simply passed back up the recursive tree in a similar fashion to the data

references.

3.3.3 Reordering Phase

This phase consists of a breadth-first traversal of the octree, where the nodes traversed are placed into a

new array in order of traversal. This order is necessary as this allows the algorithm on the workstation

to incrementally refine a rendering of the volume as it arrives.

Initially only the top sub-volume will exist forcing an approximation of the entire volume by a single

interpolated cube. Then when another level arrives that cube may be broken into eight smaller cubes

which will better approximate the volume. Then again, each of these eight cubes will be broken down

further into eight cubes each, and so on.

32

I

I

3.3.4 Node Compression

At this stage the first two main sections of the entire data structure (see Figure 3.2) have been created.

It is now necessary to create the raw data section, by selecting only the data referenced by the octree,

from the original volume. It was found experimentally that, especially for lower octree depths, the data

compression brought about by the octree is far from optimal (See the Experimental Results chapter for

an analysis of this). Further compression (in the form of run length coding) is performed on this raw

data before it is placed into the main data structure.

The algorithm at this stage proceeds as follows :

I. Recurse down the octree until nodes with child pointers of value VFULL are located.

2. By calculation of the position of the sub-volume represented by this node, locate the

corresponding data position in the original three dimensional array of raw volume data.

3. Compress t e raw data only in the region identified by the size of this sub-volume, using a

run length ncoding of each X-axis aligned stick of voxels.

4. If this compression results in a data set larger than the original then stop compressing and

simply store the data directly into the main data structure at the next available position.

5. If the compression is successful then store the compressed data at the next available

position in the m~in data structure.

6. Store a reference to this data into the child node structure, and continue the recursion.

Once completed, the main data structure will now have all three sections complete and the data is ready

for transmission.

It should be noted that th is node compression only exists while the volume is being transmitted, and as

soon as the data arrives at the workstation the data for each leaf node is decompressed. The reason for

this, is that the advantage of using the octree data structure over a full RLE compression of the volume

data is the symmetry of the data. However if some nodes are stored using an RLE compression in the

X-axis then this symmetry is broken and the advantages of this algorithm are lost.

3.3.5 Transmission

The server may now transmit the main data structure byte-for-byte to the workstation. The incremental

renderer on the workstation may then start rendering the data as soon as the header and the root node

of the octree arrive. (This constitutes about 204 bytes of data.) The workstation should then render

repeatedly, as often as possible, the data as it arrives.

The classification and rendering algorithms presented in the following sections, check whenever they

reference an octree node or the data referenced by a leaf, to see if that data actually exists. If it doesn't

then they take steps to a proximate that data.

33

3.4 Incremental Classification

The introduction mentioned the problem that is experienced during classification, caused by the

difficulty in locating neighbouring voxels in an efficient way. Generally this classification process

should only be performed once, as the data arrives at the workstation, however a user of the system is

free to change the classification settings at any stage, which would require a reclassification. The

original Shear-Warp algorithm using the RLE compressed volume, did not have this neighbour

locating problem, how ver due to the asymmetry of the compression, three transposed copies of the

classified volume have to be generated every time the volume is classified. This process combined

with the original classification process could end up taking as long as the octree classification

algorithm presented below.

Another advantage of the octree data structure which has not yet been mentioned is that with the RLE

compressed volume, the original volume (pre-classification) has to be maintained separately if the

classification process is to further compress the volume, allowing for rapid skipping of empty runs.

However with the octree algorithm, a duplicate octree structure can be used, after classification, which

has been modified to r ndering of large transparent areas. This is yet another reason why the octree

representation is more s ace-efficient than the RLE representation.

3.4.1 Caching Mechanism

The problem with octree classification arises when a voxel on the edge of a particular sub-volume

needs to be classified. In order to classify the voxel its spatial gradient needs to be calculated. A

simple first order spatial gradient is used, given by,

[

V(x + 1)- V(x -1)J
V(x,y,z) = V(y + 1)- V(y -1)

V(z + 1)- V(z- 1)

where V is a discrete function returning the value of a voxel at the (x,y,z) location in the volume.

Thus in order for this formula to be evaluated the six neighbours of the voxel have to be located. If the

voxel at (x,y,z) lies at the edge of a particular sub-volume then up to three neighbouring sub-volumes

have to be referenced to locate neighbours.

One approach to making this more efficient would be to directionally thread the octree. This involves

each node containing six references (one for each face of the sub-volume), to each of the neighbouring

nodes. The problem with this method is that some nodes may have many smaller nodes as neighbours

at certain faces. The only solution in this case is to store a reference to one of the parent nodes of these

smaller nodes, which is at the same level of the octree as the node in consideration. Thus octree

traversal is still necessary, and at the expense of adding six additional references to each node.

The solution which is proposed in the octree algorithm is to maintain a cache of recently referenced

nodes, and to provide an efficient method of locating these cached nodes depending on the co-ordinate

of a voxel. The main argument behind using this method, is that during classification the voxels on

34

each face of the sub-volume are classified separately and in order of face. Thus only a few nodes are

neighbouring a particular face they will be constantly accessed until that entire face is classified. It is

thus advisable to have these nodes in a cache. Another potential solution is proposed in § 6.3.

The cache is implemented as an LRU (least recently used) cache, with a hashing function H(x,y,z)

which codes a co-ordinate for each node in the cache allowing for efficient searching, given only a

voxel location. The problem with this hashing function is that it has to maintain order in three-space.

The function H(x,y,z) is implemented in the following way:

I. Shift each x,y,z value so only the lowest I 0 bits are used. (This is generally not necessary

as most volumes considered are under 1024xl024xl024 in size.)

2. Create a new 30-bit value given by, alternately placing the bits of x, y, and z at each

successive bit position. The resulting value will thus appear as in Figure 3.5.

3. Return this value as the hash value.

Figure 3.5 - Construction of hash value, shown as a sequence of bits.

This bit encoding of the co-ordinates actually represents sets of eight possible choices (given by each

successive set of 3 bits) which can be made at each level of the octree when traversing it. See [54] for

a full explanation of this algorithm and for its other applications.

Whenever a node is added to the cache, a hash value in generated using the co-ordinate of its (x­

minimum, y-minimum, z-minimum) comer. Then when a search for a particular voxel has to be

performed, a hash value for the voxels location is generated, and a binary search is performed on the

elements to the cache to locate the closest value (but lower) to the voxels hash value. Once this node is

found a check is made using the stored dimension of that node, to see if the voxel lies within it. If it

doesn 't then the node which contains that voxel does not lie in the cache, and it has to be searched for

using an octree traversal.

The Experimental Results chapter (Chapter 5) has a section on the determination of the optimum cache

size for our algorithm, as there is obviously a trade-off between cache searching time and the

traversing of the octree.

3.4.2 Algorithm

In order to classify the volume the user has to supply an opacity transfer function. This is simply a

function which specifies the opacity of any voxel in the volume given its value and its gradient. In

more advanced volume rendering systems (say using multimodality information) other parameters can

also be used. In the algorithm presented here this transfer function is calculated by,

Opacity(value, gradient) = Value Table[value] x GradientTable[gradient]

35

where the ValueTable and GradientTable are simply arrays with indices in the range of all possible

value and gradient value , and which contain opacities from 0 to I . The user then only specifies these

two tables.

The algorithm for classifying the volume is presented below. It uses the following primary functions:

• ClassifY- Main function called to classify a volume dataset represented by an octree.

• PerformClassification - Performs classifications operation for a particular node in the octree.

• SpatialGradientCached- Returns the spatial gradient at a particular voxel , using the node cache for

efficiency.

• LocatelnCache- Locates the node containing a particular voxel using the node cache. If it is not in

the cache then it is located in the octree and then inserted into the cache.

Details of the algorithm follow ...

PROC Classify(root_node, value_table , gradient_table)

InitializeCac he() ;

END

new_roo t = Dupli c ateOctree(root_node);

PerformClassifica tion(root_node , new_root);

The Class!fY function accepts the root of the octree (to classify) as a parameter, as well as the opacity

transfer function tables: ValueTable and GradientTable. (These would normally be passed through to

the actual classification function below, but we will omit this for simplicity.)

Firstly the node cache is initialised. The InitializeCache function simply clears the node cache and sets

all the LRU (least recently used) values to a null value.

Next, the entire octree data structure which was passed to Classify is duplicated. This allows the

classification process to store different information into this octree, specifically for the rendering

process. (Note that this has not duplicated the actual raw data referenced by the octree.)

Lastly the recursive classification of the volume is begun by calling the Perform Classification function

with the root nodes of the two octrees. This function will then proceed to classify the entire volume by

performing a depth-first traversal of the octree.

PROC PerformClassific ation(old_node , new_node, flag_unclassified)

IF (NOT flag_unc l assified) RETURN;

flag_opaque = FALSE;

The PerformClassification function takes two node references as parameters, one from the original

octree and one from the duplicated octree. A reference to an unclassified flag is also passed. This is to

return to the parent node (processed by the calling function) information about whether or not the node

and all of it's children have been successfully classified or not. The initial value of this flag (once

dereferenced) should be equal to the current setting for this node.

36

The first step in this fu ction is to check the unclassified flag. If it is set (TRUE) then that indicates

that this entire branch of the octree has already been classified and no further processing is required. In

this case the function returns immediately to the caller.

Next, an opaque flag i cleared. This flag indicates whether the entire node and all of its children

represent voxels will be completely transparent using the current opacity transfer function. The flag is

initially cleared and then if any opaque voxel is encountered it is set.

IF (old_node.value = VFULL)
new_node.corners = ExtractCornerVoxels(old_node.data);

If the node which was passed to this function represents a leaf-node of the octree which contains raw

voxel data, then this data is now classified. The first step is however to extract the values of the corner

voxels from the original raw data referenced by this node. The function ExtractCornerVoxels

references each of the eight corner voxels of the sub-volume of the node. For each corner voxel

(called v0) it locates the three voxels at each of the neighbouring sub-volume's corners (v, v,. v,). The

value of the corner voxel (vc) is then calculated by,

3v0 +vx +vy +vz
vc =

6

This process ts repeated for each of the eight corner voxels, such that a list of eight vc values is

returned.

IF (NOT GetClas(old_node, (1,1,1))

END

FOR ((x,y,z) = (1 , 1,1) TO (old_node. (dim_x-1, dim_y-1, dim_z-1))

END

(xdiff,ydiff , zdiff) = SpatialGradientNoCache(old_node, (x,y ,z));

olq_node.data [x,y,z) .normal = (xdiff,ydiff,zdiff);
old_node .data [x,y,z) .gradient = sqrt(xdiff 2 + ydiff 2 + zdiff 2

);

IF (IsOpaque(old_node.data[x,y,z) _value, old_node-data[x,y,z) .gradient))
flag_opaque = TRUE;

END

The first stage of classification now begins by classifying the inner voxels of the sub-volume

represented by node old_1wde. Firstly a check is made to see if the first voxel has its unclassified flag

set. (It is safe to check only the (/,1,1) voxel as this flag will always be the same for all inner voxels of

the sub-volume.) If the flag is set then the process of classification is begun. This process takes place

inside a third order loop which runs through all the inner voxels of the sub-volume.

For each voxel a spatial gradient is calculated (using the finite difference method mentioned earlier).

Their is no need to use the cache at this stage as all the neighbouring voxels are guaranteed to exist

within this same sub-volume. The normal vector for this voxel is then set-up according to the spatial

gradient and then the gradient value is set to the magnitude of the spatial gradient. If the resultant

opacity of this voxel (calculated by using the JsOpaque function) is non-transparent then the opaque

flag is set.

37

FOR (Each of sub-volume's six faces)

EMD

FOR ((x,y,z) = (All coordinates on current face))

END

IF (NOT GetClas(old_node, (x,y,z))

END

(xdiff,ydiff,zdiff) = SpatialGradientCached(old_node, (x,y,z));

old_node.data[x,y,z) .normal = (xdiff,ydiff,zdiff);
old_node.data[x,y ,z) .gradient = sqrt(xdiff 2 + ydiff 2 + zdiff 2

) ;

IF (IsOpaque(old_node .data[x ,y ,z) .value, old_node .data[x,y,z) .gradient))
flag_opaque = TRUE;

END

flag_unclassified = flag_unclassified OR (NOT GetClas(old_node, (x,y,z)));

The next stage of the classification process then proceeds by classifying the voxels that lie on each of

the sub-volumes six faces . These are treated separately as the neighbouring voxels lie in neighbouring

nodes. A third order loop is used, where the outer loop runs over the six faces of the sub-volume and

the inner two loops run over the coordinates of all the voxels lying on the current face.

For each voxel the current classification state (using GetC/as) is checked. If the voxel has not got its

unclassified flag set then it is ignored, as it has already been correctly classified. Otherwise the spatial

gradient is calculated (as before) except that now the node cache is used. (The function

Spatia!GradientCached will be covered in more detail below.) The opaque flag is also set if the voxel

is non-transparent. Finally the unclassified flag is set if this voxel has not been correctly classified.

!RETURN (flag_opaque, flag_unclassified); I
At this stage the classification of this leaf-node is complete and the data may be returned to the calling

function . The opaque and unclassified flags are passed back. We now continue the details of this

function as though the " IF (old_node. value = VFULL)" check was unsuccessful.

IF (NOT old_node.value = VEMPTY)

FOR (index = 0 TO 7)

END

flag_opaque = flag_opaque OR
PerformClassification(old_node.child[index],

new_node.child[index),
old_node.child[index] .flag_unclassified);

If the node which was passed to this function is an internal octree node (i.e. a parent node) then the

PerformClassification function is called recursively to classify the child nodes of this node.

This is perfonned by looping through each of the child node references and calling the

PerformC/assification function with both the old and new octrees child nodes (corresponding to the

current child node index). The value of the child node's unclass!fied flag is also set. (This flag is

nonnally passed as a reference as it is modified and passed back.)

38

new_ node.corners[O]
new_node.corners[l]
new_node.corners[2]
new_node.corners[3]
new_node.corners[4]
new_node.corners[S]
new_node.corners[6]
new_node.corners[7]

old_ node.child[O] .corners[O] ;
old_node.child[l].corners[l];
old_node.child[2] . corners[2];
old_node.child[3] .corners[3];
old_node.child[4] .corners[4];
old_node.child[5] .corners[S];
old_node.child[6] .corners[6];
old_node.child[7] .corners[?];

Next, the comer voxels for this node have to be calculated. The actual values for the comer voxels will

have already been calculated by the leaf-node classifications, so it is simply a matter of copying the

correct comers from each of the child nodes.

flag_unclassified = old_node.child[O] .flag_unclassified OR
old_node.child[l] .flag_unclassified OR
old_node.child[2] .flag_unclassified OR
old_node.child[3] .flag_unclassified OR
old_node.child[4] .flag_unclassified OR
old_node.child[5] .flag_unclassified OR
old_node.child[6] .flag_unclassified OR
old_node.child[7] .flag_unclassified;

END

RETURN (flag_opaque,flag_unclassified);

Finally the unclassified flag is set to the logical OR of the unclassified flags of each of the child nodes.

Thus the flag will be set if any of the child nodes have unclassified voxels in them. The opaque and

unclassified flags are passed back. We now continue the details of this function as through the "IF

(NOT old_node . value = VEMPTY)" check was unsuccessful.

IF (old_node . value = VEMPTY)
RETURN (FALSE, FALSE) ;

END

If the node passed to this function represents an empty area of the volume then the opaque flag and the

unclassified flags are both cleared and returned to the calling function immediately.

This now completes the details of the Per.formC/assification function. We now look at some of the

more minor functions in detail.

PROC SpatialGradientCached(node, (x,y,z))

END

xdiff = LocateinCache(node.data[x,y,x] .value, x+l, y, z) ·
LocateinCache(node.data[x,y,x] .value, x-1, y, z);

ydiff LocateinCache(node.data[x,y,x] .value , X, y+l, z)
LocateinCache(node.data[x,y,x] .value , X, y-1, z);

zdiff LocateinCache(node.data[x,y,x] .value, X, y, z+l)
LocateinCache(node.data[x,y,x] . value, X, y, z -1);

RETURN (xdiff, ydiff , zdiff);

The Spatia/GradientCached function calculates the spatial gradient at voxel (x,y,z) m the specified

node. This is performed by querying the node cache for the values of each of the voxel's neighbours,

and then applying a fi rst order finite difference method. The final 3-vector containing the spatial

gradient is returned.

39

PROC LocateinCache(centre_data, (x,y,z))

END

node= SearchCache(x,y,z);

IF (node = NULL)

END

node= SearchOctree(x,y , z);

IF (node = NULL)
centre_data.flag_NOT_classified TRUE;

RETURN centre_data;
END

AddNodeToCache(node);

RETURN node.data[x,y,z];

The LocatelnCache function retrieves the value of a particular voxel (given its absolute coordinate in

the volume) using the node cache for efficiency. The function accepts a reference to the centre voxel

in the preceding spatial gradient calculation, as well as the coordinate of the neighbouring voxel which

is required.

Firstly, the node cache is searched (SearchCache) to find a node which contains this voxel. If the

returned node is valid then its raw data is referenced and the value of the required voxel is calculated.

This value is then returned and the function tenninates.

Otherwise if the node returned from the node cache search is not valid then a depth first search

(SearchOctree) is perfonned on the octree to locate the node containing the required voxel. If the node

is located then it is added into the cache (AddNodeToCache) and the voxel value is returned.

Otherwise if no valid node is located (because the volume has not been fully transmitted yet, or the

voxel lies in an empty node) then the unclassified flag for the centre voxel is set, and the function

returns the value of the centre voxel as an approximation of it's neighbour.

The functions SearchCache and AddNodeToCache use the methodology described in §3.4.1.

3.4.3 Summed Area Tables

An optimisation which can be used during the classification process is the use of summed-area tables

to omit regions of the volume from classification very quickly. This optimisation can be perfonned

when the classification algorithm knows the maximum and minimum values and gradients in a region

of the volume. Knowing these values allows the algorithm to integrate the resulting opacity over that

range, and if it the result is totally transparent then that region may be omitted from classification.

In the original Shear-Warp algorithm a min-max octree was constructed for the volume just prior to

classification for the purposes of using summed-area tables. However the octree data structure already

contains these min-max values and thus no extra octree construction is necessary.

A summed-area table is a two dimensional discrete array of values S(u, v) such that,

tl v

S(u, v) = LLS(i,j)
i=O j=O

40

Using this table the integral over any region of Scan be calculated by the following formula :

11ma:o.: Vmax

L LS(u, v) = S(umax> vmaJ- S(umax > vmin -1)-

Thus if the values u represent values given by ValueTable[value] and the v values represent values

given by GradientTable[gradient], then the integral of the opacities of a sub-volume may be calculated

very efficiently using only the minimum and maximum values and gradients for that sub-volume. If

the integral lies below the minimum opacity level (before transparency is assumed), then that sub­

volume may be safely skipped during rendering and does not need to be classified.

3.5 Conclusion

Research led us to consider the octree data structure for compressing volume data during its

transmission phase and during its rendering phase. This structure was chosen for its three dimensional

and symmetric nature which we conjecture will give us faster access and better compression ratios.

The entire volume data structure contains three sections: a header, the octree, and the raw data. The

first two sections generally only comprise about I% of the entire data structure however they contain

most of the structural information for the volume. We will see in the next chapter that this will

facilitate approximate rendering of the data when only part of the entire data structure is available.

Construction and transmission of this data structure is fairly simple and involves a number of stages

which filter the data (according to user specified parameters), construct the octree from the filtered

data, and then correlate the raw data to the octree structure. A technique called node compression can

also be used to further increase the compression ratio. Considering that this process would generally

be performed on a server and then the data structure would be stored in a file for rapid future access, its

performance (in terms of memory and processor speed) is not critical. However the results in (§ 5.5)

will show that it could feasibly be performed "on-the-fly" as well .

The classification stage for volume data is often a very costly stage in terms of the memory required

for the generated data tructures. In the case of the Shear-Warp algorithm' s RLE data structure the

classification process builds a data structure (typically) 4 times larger than the original, and then this

the classification has to be repeated twice more (once for each axis), ultimately generating a data

structure 12 times larger than the original! The octree classification builds a structure which is only 4

times larger than the original as (due to its symmetry) it does not need to perform classification for

each axis.

Unfortunately, the octree classification process is a lot slower than the RLE based process, so a number

of techniques such as caching during processing and incremental classification (so the classification is

done during the transmission of the volume thus not impacting final rendering times at all) are used.

Future research should try to address this problem more efficiently, perhaps through the use of

directional threading in the octree. (See §6.3)

41

Other classification process enhancements such as min-max octrees and summed area tables (common

to the RLE method) fit elegantly into the octree framework.

The next chapters pre ents the theory and algorithms for rendering the volume data which was

generated using the algorithms in this chapter.

42

Chapter 4

Rendering Hierarchical Volumes

4. 1 Introduction

Incremental rendering i performed through the use of some form of hierarchical representation of the

volume, where different levels of geometry may be rendered which approximate the volume to an

increasingly higher degree. The rendering algorithm presented here makes use of the hierarchical

octree data structure to achieve this. This however requires the development of an efficient rendering

algorithm for octree based volume data. Given that one of the main objectives of the incremental

rendering algorithm is for it to run on average workstations a highly efficient algorithm has to be

chosen. Recently the Shear-Warp Factorisation [24,25] algorithm was developed which originally

used RLE data structures to achieve rendering rates of approximately I second per frame. (A lot of the

basic theory of the r ndering methods used here is also covered in the Shear-Warp algorithm

description [24,25].)

This chapter concentrates on the development of an octree based Shear-Warp Factorisation algorithm.

It will be shown that this offers many improvements ranging from incremental rendering ability

through to vastly reduced runtime memory usage. The original algorithm stored three transposed

copies of the RLE data in memory and constantly had to choose between one (due to the asymmetry of

the compression) when the volume was rotated. The octree compression is symmetrical so this is not

required.

We begin by looking at the unique problems experienced with converting to an octree data structure

such as the problem of octree traversal order as well as the problem of spatial filtering. New abilities

which the octree provides will be presented such as partial rendering when the octree is not complete.

These problems and features are common to both parallel and perspective volume rendering, however

some of the basic rendering theory is different making the parallel and perspective algorithms quite

different.

For each of parallel and perspective rendering methods, the detailed mathematical theory of the

methods will be given as well as the theory of the octree traversal (particular to either parallel or

43

perspective rendering). The incremental rendering aspects of the algorithm will also be discussed for

each method, following which a pseudo-code algorithm will be presented in detail.

4.2 Converting Shear-Warp from RLE to Octree Data Structures

The method of Shear-Warp Factorisation rendering is based around the fact that a 3-dimensional

projection matrix may be factorised in the following ways:

• If the projection matrix is a parallel projection matrix then it may be factored into: (I) a 3-

dimensional hearing matrix which shears in two directions only; and (2) a 2-dimensional

affine warp matrix.

• If the projection matrix is a perspective projection matrix then it may be factored into: (I) a

3-dimensional shearing and scaling matrix which shears in two directions and also scales

orthogonally to the shearing direction; and (2) a 2-dimensional perspective warp matrix.

This process is depicted in Figure 4.1. The mathematics of this factorisation will be presented in the

following sections.

This "separation" of the projection matrix allows for the efficient rendering of the volume in both

image-order and object-order simultaneously onto an intennediate image, followed by a warp of the

intennediate image to btain the final image. This means that during the rendering process both the

image and the volume may be traversed in a complimentary order such that regions of the image and

volume may be skipped when either a region of the image is opaque or a region of the volume in

transparent.

The conversion of this process from using scan-line order data to octree data implies a number of

problems such as:

• How is the octree traversed and the data rendered?

• What happens with the filtering processes used in the original algorithm?

• How is the volume rendered when not all the octree data is present?

Most of these problems are due to the fact that the volume data is no longer stored in scan-line order,

so it is not possible to scan the volume and the image in exactly the same order.

44

Parallel Projection

(r-~·

\~\
- I

--.j

r'

I Perspective Projection

r-r -l --- (;;
\v~/
L

Figure 4.1 - Shear Warp Factorization process for parallel perspective projection.

4.2.1 Traversal Order Problem

On examination of the ctree data structure it is apparent that the data contained in each leaf-node of

the octree is stored in scan-line order and represents a small cubical region of the volume, so the

problem of rendering the entire volume could be perceived as rendering lots of smaller sub-volumes

placed in different locations. The solution is not this simple however as certain sub-volumes

(represented by leaf-nodes) will be obscuring others, and thus need to be rendered before the ones

which they obscure. Also, one of the main advantages of the original Shear-Warp algorithm was the

use of a front-to-back compositing buffer, so that voxels near the back of the volume need not be

rendered if their contribution to the final image is very low. It is critical to maintain this advantage in

our octree algorithm to achieve comparable performance.

In the following sections on parallel and perspective rendering, methods of traversing the octree will be

presented which ensure that the sub-volumes are rendered in such an order that occlusion is

maintained, and the advantages of the front-to-back compositing buffer are still present.

4.2.2 Filtering

In the original Shear-Warp algorithm bilinear filtering is performed on neighbouring voxels in the

volume to achieve an image with reduced aliasing artifacts. Due to the separation of the volume into

discrete sub-volumes by the octree, this filtering of neighbours breaks down at the borders of the sub-

45

volumes. This difficulty comes about due to the need for an octree traversal each time a neighbouring

voxel (that lies in a neighbouring sub-volume) is to be located.

There are however both advantages and disadvantages to this filtering process.

As mentioned above, the filtering is bilinear and thus only operates on the current slice of the volume

being rendered. The object of this filtering process is to reconstruct the volume integral more

accurately however, in order to do this, the filtering has to be performed on all neighbours of a voxel

(i.e. trilinear filtering needs to be used). Thus the bilinear filtering is only a partial solution to the

problem of achieving an aliasing free image.

The octree algorithm presented here omits this filtering step completely for the sake of efficiency. It

was found (see Experimental Results chapter) that the omission of this filtering step did not impair the

quality of the image by an amount significant enough to justify the extra processing time required for

filtering. Future research will attempt to introduce filtering to this octree rendering technique, without

impacting the performance dramatically.

4.2.3 Partial Rendering

The primary implication of incremental rendering is that regions of the volume need to be rendered

when there is either no voxel information available or only partial voxel information. Due to the

hierarchical nature of the octree, it essentially contains multiscale representations of the original

volume in order of increasing scale. In other words each level of the octree contains nodes which

approximate that region of the volume, and this approximation improves as the depth of the octree

increases.

As presented in section 3.2, the octree structure contains information such as the average gradients and

values for each of the nodes which can be used for approximating the sub-volumes. However in order

to achieve acceptable images it is necessary to store other information as well which allows the sub­

volume to be approximated more accurately.

Fortunately, due to the nature of the octree data structure it is completely separated from the volume

data (unlike the RLE compressed data) . This enables the algorithm to create a duplicate octree

structure which is used during the rendering process, and which stores the extra information required.

In practice the algorithm uses this second octree to completely remove sub-volumes which will be

transparent (due to the current classification settings), without affecting the original data structure in

any way, and without making (expensive) duplicates of the entire volume. This process is depicted in

Figure 4.2.

46

Figure 4.2- Duplicate octree construction with nodes removed during classification.

In particular this secon octree contains the following information:

• The v lues of voxels in each comer of the volume. Trilinear interpolation may then

be performed over the entire sub-volume to more accurately determine the other

voxel values.

• The average normal vector of the visible voxels in the sub-volume.

• The average spatial gradient of the visible voxels in the sub-volume.

In the original octree data structure, each node contains an offset into the voxel-data area for the raw

data of that node as well as offsets into the octree-data area for the child nodes. During the

incremental rendering process, a node is processed in the following way:

I . Using maximum values and gradients check that this node is visible. If not then

recurse back up the octree. (This step is actually carried out in a pre-processing

stage, when the classification parameters are modified.)

2. Check that the child node offsets do not reference data which has not yet arrived. If

they do then render this node using the partial information contained inside it and its

equivalent node in the second octree.

3. Check that voxel-data offset references data which has completely arrived for this

node. If all the raw data is not available then render the node incrementally.

4. Render the node completely using the raw voxel data.

4.3 Parallel Projection Rendering

The simpler case of the two possible projection matrices is the parallel projection matrix , so we will

cover this first. Much of the theory and functionality of the algorithm presented here will carry over to

the perspective projection case.

47

4.3.1 Mathematics of the Factorisation

Shearing

Warping

Figure 4.3 - Parallel factorization in two dimensions.

Figure 4.3 , depicts a two dimensional equivalent of the Shear-Warp Factorisation of the parallel

viewing matrix. This factorisation may be expressed as

M par = M warp M shear p

where M par is a parallel projection matrix, M wmp is a two-dimensional affine warp matrix, M,,hear is a

three-dimensional shear matrix which shears in two directions only, and P is a permutation matrix

which ensures that the Z axis is always the primary viewing axis.

A parallel viewing matrix is of the form :

all a1 2 a1 3 bl

Mpar

a21 a 22 a23 b 2

a 31 a32 a33 b 3

0 0 0 1

Where the a values are combinations of shears, scales, and rotations, while the b values are

translations. Without loss of generality it is assumed that these transformations are such that the image

is projected onto a plane which sits on the Z=O plane, and is centred around the origin. (If this were not

the case, then a multiplication by a combination of scales, translations, and rotations this will be

achieved.)

With this assumption it is clear that the Z co-ordinate of any projected point is going to be 0 (in order

to lie on the image plan). Thus,

48

X x'

y
Mpar =

y'

z 0

1 1

for any values x, y, and z . The only way this could then be true was if the values a31 , a32. a33 , and b 3 are

all 0. Thus (right-hand multiplication is assumed),

all a1 2 aJ J bl

Mpar =
a 21 a 22 a 2J b 2

0 0 0 0

0 0 0

It is also known that the M,,11ear matrix must be of the form,

1 0 sx 0

0 1 sY 0
M shear = 0 0 1 0

0 0 0 1

where Sx and S v are the shear coefficients for the x and y directions respectively. The M11·arp matrix (a

two-dimensional affine warp matrix operating on an image centred at the origin and lying on the Z=O

plane) is also known to be of the form (assuming an affine matrix),

wll w1 2 0 P1

w 21 w 22 0 P2
Mwmp = 0 0 0 0

0 0 0 1

where the w values are combinations of scales, shears, and rotations, and the p values are translations.

Without any loss of generality the permutation matrix P may be assumed to be the identity matrix ,

therefore,

M wmp M shear = M par

Expanding this out give ,

w l l w1 2 0 P1 1 0 sx 0 all a1 2 aJ J bl

w 21 w 22 0 P2 0 1 sY 0 a 21 a 22 a 2J b 2

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1

49

w" w1 2 (sxwll +syw1 2) P1 all

w2 1 Wn (sxw21 +sywn) P2 a21

0 0 0 0 0

0 0 0 0

which gives the followi ng solutions immediately:

Solving for the s values then gives:

4.3.2 Traversal

(a 12a 23 -an a1 3)

Ca21a1 2 - alla22)

a1 2 a 13 bl

a22 an b2

0 0 0

0 0

The introduction to this chapter(§ 4.1) outlined the problem of traversing the octree in such a way that

the occlusion of the sub-volumes (represented by nodes in the octree) is maintained, and also so front­

to-hack compositing can be used. This problem is similar to that experienced during occlusion

compatible traversal of height fields. Anderson [55] presented methods for hidden line and surface

removal during rendering of height fields .

Figure 4.4 depicts a tw -dimensional version of this problem using a quadtree in place of an octree.

The numbers in each case represent the most desirable order in which to visit the nodes such that the

above conditions are satisfied. The direction of shear is therefore completely what determines the

order of traversal. For the case when the shear is zero (middle quadtree) either traversal may be used.

Figure 4.4 - Quadtree traversal orders for parallel projections.

On examination of the rders at each level of the octree, it is apparent that the order at each level is the

same as that above it. Therefore it is sufficient to calculate the order of traversal once before rendering

based on the shearing factors for the entire volume, and then to use that order recursively at each level

of the octree.

50

In the two-dimensional case above, there are two possible traversal orders based on whether the shear

is negative or positive. In the three-dimensional case there are two shears which are independent to

one another, so there are then four possible combinations of shears (positive-positive, positive­

negative, negative-positive, negative-negative) which results in the choice of four possible traversal

orders.

As mentioned above a permutation matrix P is used to ensure that the Z axis is the primary viewing

axis. Depending on the axis chosen the order of traversal will obviously be different. So considering

that there a three possible viewing axes and there may be four different shearing combinations for each

one, there is a total of 12 possible octree traversal orders. In all cases the primary axis and shearing

directions are known -priori, so the traversal order can simply be chosen once and then used

throughout the octree.

~ ~-­

~~~- -----

2 

0 1 

X+ 

Figure 4.5 - Octree sub-node numbering 

The traversal orders are given in the table below where the nodes of the octree are numbered as in 

Figure 4.5 . 

51 



X Axis Sx<O , S.,<O 0 2 4 6 I 3 5 7 

S., >0 , Sy<O 2 0 6 4 3 I 7 5 

Sx<O, Sy>O 4 6 0 2 5 7 I 3 

Sx>O , Sy>O 6 4 2 0 7 5 3 I 

Y Axis Sx<O , Sy<O 4 0 I 5 2 6 3 7 

Sx >0 , S,<O 0 4 5 I 6 2 7 3 

S.,<O, S.,>O I 5 4 0 3 7 2 6 

S.,>O, Sy>O 5 I 0 4 7 3 6 2 

ZAxis Sx<O , Sy<O 0 I 2 3 4 5 6 7 

S, >0, Sv<O I 0 3 2 5 4 7 6 

Sx<O , Sv>O 2 3 0 I 6 7 4 5 

Sx>O , Sy>O 3 2 I 0 7 6 5 4 

One of the main advantages of the octree algorithm over the original Shear-Warp algorithm which used 

RLE coding, is the Jack of the need to store three transposed copies of the volume each corresponding 

to one of the primary viewing directions. This is true for the octree algorithm as a different traversal 

order is all that is really necessary to cater for a different viewing axis. It is worth noting however that 

the raw voxel data contained at each leaf-node is still stored in Z-Y-X order, and so needs to be 

stepped through in a different order depending on the viewing direction. The algorithm presented 

below chooses to overcome this problem by pre-calculating (at the same time as the traversal order 

above is calculated) fixed moduli for stepping through the data at each octree level. (The maintenance 

of a different modulus for each level of the octree is due to the different size of the sub-volumes at 

each level.) 

4.3.3 Trilinear Interpolation 

The introduction to this chapter mentioned one of the main problems as being how to render the 

volume when not all t e volume data is present. Due to the hierarchical nature of an octree this 

problem reduces to rendering specific sub-volumes of the octree using approximate parameters which 

are stored in the corresponding node. 

As mentioned before, the octree node data structure contains the values of the voxels in each comer of 

the sub-volume, in order to allow trilinear interpolation ofvoxel values throughout the sub-volume. 

It is also necessary to achieve this interpolation in as short a time as possible. A fast incremental 

version of the algorithm is thus used. 

The standard formula fi r trilinear interpolation is, 

52 



where (XJI,Z) is the relative position within the sub-volume and vn (where 11=[0,7]) are the values of the 

voxels at each corner of the sub-volume. By expanding this equation and then collecting together the 

Vn values one gets, 

[
s\ +ix(vi -vo)+i.Y(v2 -vo)+iz(v3 -vo)+sxy{vo -vi -v2 +v4)+ ] 

.m(v0 -vi -v3 +v5)+.sJ-Z(V0 -v2 -v3 +v6)+xyz(v7 -v6 -v5 -v4 +v3 +v2 +vi -v0) 
V(x,y,z)= ; 

Then by identifying constants, 

where the C values are constants. 

Inside the algorithm thi function is evaluated inside a 3'd order loop , each level of which corresponds 

to an unknown in the above equation. So by using a process of loop-unrolling, this function can be 

evaluated at every point (incrementally) by just using additions and a small amount of initial 

calculations. 

4.3.4 Algorithm 

The pseudo-code for the algorithm is presented below with descriptions of the algorithm. 

PROC RenderParall e lVolume(root_node,projection_matrix) 

END 

(viewing_axis, shear_x, shear_y, warp_matrix) = 
CalculateViewingParameters(projection_matrix); 

(traversal_order) = CalculateTraversalOrders(viewing_axis, 
shear_x, 
shear_y); 

RenderParallelNode(root_node, traversal_order); 

Warpimage(warp_matrix); 

RenderParalle!Volume calculates all v1ewmg parameters, then builds an array of node numbers 

according to the traversal order. CalculateViewingParameters performs a factorization of the 

projection matrix, and computes the primary viewing and shearing directions. The warp matrix is also 

computed. The RenderParalle/Volume function then begins a recursive rendering of the octree to an 

intermediate compositing image. Finally this compositing image is warped into the final image. 

PROC CalculateTrav ersalOrders(viewing_axis, shear_x, shear_y) 

53 



CASE (viewing_axis) 
X I F ( shear_x<O) 

IF (shear_y<O) 
RETURN TraversalOrderTable[O) 

ELSE 
RETURN TraversalOrderTable[2) 

END 
ELSE 

IF ( shear_y<O) 
RETURN TraversalOrderTable[l) 

ELSE 
RETURN TraversalOrderTable[3) 

END 
END 

Y I F ( shear_x<O) 
IF (shear_y<O) 

RETURN TraversalOrderTable[4) 
ELSE 

RETURN TraversalOrderTable[6) 
END 

ELSE 
IF (shear_y<O) 

RETURN TraversalOrderTable[5) 
ELSE 

RETURN TraversalOrderTable[7) 
END 

END 

Z I F (shear_x<O) 
IF (shear_y<O) 

RETURN TraversalOrderTable[BJ 
ELSE 

RETURN TraversalOrderTable[lO) 
END 

ELSE 
IF (shear_y<O) 

RETURN TraversalOrderTable[9) 
ELSE 

RETURN TraversalOrderTable[ll) 
END 

END 
END 

END 

The CalculateTraversa/Order function uses the primary viewing direction and the shearing factors to 

calculate an ordered list of nodes used for the traversal order of the octree. 

PROC RenderParalle lNode(root_node, traversal_order) 

FOR ( i = 1 TO 8 ) 

END 

child_info = root_node.child[traversal_order[i)); 

IF (IsVis i ble(child_info)) 

END 

IF (Da taPresent(child_info)) 

ELSE 

END 

I F (IsLeafNode(child_info)) 
PerformRendering(child_info); 

ELSE 

END 

RenderParallelNode(child_info.node, 
traversal_order) ; 

Pe rformPartialRendering(child_info); 

54 



END 

RenderParalle/Node is recursive function which attempts to render the volume represented by the 

octree by traversing the octree to a maximum depth. The function accepts a node in the octree, and it 

loops through all of its children. For each of the child nodes: 

If it is visible and the node is a leaf node with its data present, then it is rendered normally. 

If it is visible and the node is a leaf node but its data is not present then it is rendered using the partial 

rendering function . 

If it is visible and the node is not a leaf node and the data for the child nodes are present then the 

RenderParalle/Node function is called with this child node. 

If it is visible and the node is not a leaf node but the data for the child nodes is not present, then the 

node is rendered using t e partial rendering function . 

PROC PerforrnRendering(node_info) 

FOR(z 0 TO node_info.s ize) 

u = node_info.x + (node_info.z + z) * shear_x; 
v = node_info.y + (node_info.z + z) * shear_y; 

FOR(y = 0 TO node_info.size) 

FOR(x = 0 TO node_info.size) 

IF (IsOpaque(u + x, v + y)) 
x = x + SkipOpaquePixels(u + x, u + y) - 1; 

ELSE 
(colour, alpha) = CalculatePixel(node_info.data[x,y,z]); 

CompositePixel(u + x, v + y, (colour,alpha)); 
END 

END 
END 

END 
END 

PerformRendering renders the specified octree node using the raw data referenced in that node. The 

function loops through the node and composites the slices onto the intermediate image. During an 

individual scan-line runs of pixels (voxels) may be skipped if they are already opaque in the 

intermediate image. For non-opaque pixels the corresponding voxel is retrieved from the raw data. (It 

should be noted here that a variable modulus has to be used to reference this data as a 3 dimensional 

array, and this modulus would be calculated at the same stage as the traversal order.) Then using the 

CalculatePixel functio (which uses shade tables) the shading of that voxel is calculated. The resulting 

shaded pixel is then composited into the intermediate image. 

PROC PerformParti a lRendering(node_info) 

FOR(z 0 TO node_info.size) 

u = node_i nfo.x + (node_info.z + z) * shear_x; 
v node_i nfo.y + (node_info.z + z) * shear_y; 

55 



END 
END 

FOR(y = 0 TO node_info.size) 

END 

FOR(x = 0 TO node_info.size) 

END 

IF (IsOpaque(u + x, v + y)) 

ELSE 

END 

x = x + SkipOpaquePixels(u + x, u + y) - 1; 

voxe1 
Trilinearinterpolate(node_info.corner_values, 

node_info.average_normal, 
node_info.average_gradient, 
node_info.size, 
x, y, z); 

(colour, alpha) = CalculatePixel(voxel); 

CompositePixel(u + x, v + y, colour, alpha); 

PerformPartia/Rendering renders a partial octree node by using trilinear interpolation of the values 

throughout the sub-volume. The compositing is performed in exactly the same fashion as the 

PerformRendering function but the calculation of the voxel relies on the Trilinear Interpolate function . 

This function uses the voxel values at each comer of the sub-volume, the average nonnal of opaque 

voxels in the volume, and the average gradient of opaque voxels in the volume to determine a 

particular voxel value. ~ote: In the actual implementation, and as mentioned in a previous section, a 

incremental version of the trilinear interpolation function is used to rapidly calculate the voxel values.) 

PROC CompositePixe 1(comp_x, comp_y, colour, alpha) 

END 

IF (alpha > TRANSPARENT_VALUE) 

END 

comp_image [comp_x,comp_y] = comp_image[comp_x,comp_y] OVER 
{colour,alpha); 

IF (comp_i mage[comp_x,comp_y) .alpha >= OPAQUE_VALUE) 
comp_f 1ags[comp_x,comp_y] =TRUE; 

END 

This function composites a pixel into the compositing image (intermediate image) using the OVER 

operator. If the resultant pixel becomes completely opaque then that pixel is flagged as being opaque 

and will then be skipped in future passes. 

PROC SkipOpaquePix e1s(comp_x, comp_y) 

i = 0; 

WHILE (EndOfSc anline(comp_x + i, comp_y)) 

IF (comp_f lags[comp_x + i, comp_y]) 
i = i + 1; 

ELSE 
RETURN i; 

END 

56 



END 

I~ RETURN i; 

SkipOpaquePixels calc lates the length of a run of opaque pixels in the compositing image. In the 

original Shear-Warp a algorithm used forests of trees (implemented as offsets in each pixel) to allow 

this skipping to be efficient). In this implementation bit flags are used for each pixel and rapid bit 

manipulation functions are used to scan runs. (For long runs, on a 32-bit processor, 32 pixels may be 

skipped in one machine instruction .) We found that thi s approach allowed for simpler and more 

flexible coding as well s slightly improving the efficiency. 

PROC IsOpaque{comp_x , comp_y) 

RETURN comp_f l ags[comp_ x, comp_y]; 
END 

This returns whether the specified pixel in the intermediate image is opaque or not. 

4.4 Perspective Projection Rendering 

The perspective projection case is a lot more difficult to handle as the viewing rays are no longer 

parallel , which implies scaling of the data with distance, and also that the octree traversal may be 

different in different areas of the volume. A new approach has been developed to handle the scaling 

problem as efficiently s possible and this is presented in the section Scaling of Slices below. The 

partial node rendering technique using trilinear interpolation remains exactly the same as that used in 

the parallel case. 

4.4.1 Mathematics of the Factorisation 

Shearing 
& 

Scaling 

Warping 

Figure 4.6- Perspective factorization in two dimensions. 

57 



Figure 4.6, depicts a two dimensional equivalent of the Shear-Warp Factorisation of the perspective 

viewing matrix. This factorisation may be expressed as 

M prsp = M wmp M scale-shear p 

where Mprsp is a perspective projection matrix, M warp is a two-dimensional perspective warp matrix, 

M.,cate-sltear is a three-dimensional scale and shear matrix which shears in two directions only and scales 

in the other direction, a d P is a permutation matrix which ensures that the Z axis is always the primary 

viewing axis. 

The parallel projection matrix, when transformed by three dimensional affine transformation matrices, 

remains a parallel projection matrix. i.e. The 41
h row of the matrix remains ( 0 0 0 l) . However 

when a perspective projection matrix is transfonned by three dimensional affine transformation 

matrices, then it becomes a perspective transformation matrix, of the form : 

all al 2 al3 al4 

Mprsp = 
a 21 a22 a23 a 24 

a 31 a32 a33 a34 

a 41 a42 a43 

This matrix is thus o r perspective viewing matrix, which has to be factorised. Without loss of 

generality it is assume that this transformation is such that the image is projected onto a plane which 

sits on the Z=O plane, and is centred around the origin. (If this were not the case, then a multiplication 

by a combination of scales, translations, and rotations this will be achieved.) 

With this assumption it is clear that the Z co-ordinate of any projected point is going to be 0 (in order 

to lie on the image plane). Thus, 

X x' 

y 
Mpar 

y' 

z 0 

l 

for any values x, y, and z. The only way this could then be true was if the values a31 , a32, a33, and b3 are 

all 0. Thus (right-hand multiplication is assumed), 

all al2 al3 al4 

Mprsp = 
a 21 a 22 an a24 

0 0 0 0 

a41 a 42 a43 l 

It is also known that the M..cate-.<hear matrix must be of the form, 

58 



0 sx 0 

0 1 sY 0 
M scale-shear = 0 0 1 0 

0 0 q 1 

where sx and sy are the shear coefficients for the x and y directions respectively, and q is a scaling 

factor. 

Unlike the parallel projection case (where the warp matrix was affine) the resulting warp matrix for the 

perspective projection case is a perspective warp matrix of the form, 

wll W1 2 0 wl3 

w 21 Wn 0 w 23 
M = Wai]J 0 0 0 0 

w J I w32 0 1 

which is a non-linear image warping matrix . The values in the third row and third column can actually 

be any value at all a they are dropped when this matrix is converted to a two dimensional 

transformation matrix. We assume these values are 0 in order to make the calculations simpler. 

Without any loss of generality the permutation matrix P may be assumed to be the identity matrix (see 

note below), therefore, 

M wmp M scale-shear = M prsp 

Expanding this out gives, 

wll w l 2 0 wl3 1 0 s , 0 

w 21 w22 0 w23 0 1 sY 0 

0 0 0 0 0 0 1 0 

w 31 w 32 0 1 0 0 q 1 

wll w l 2 (s,wll +syw1 2 +qwl3) 

w 21 w 22 (sxw21 +sy w22 +qw23 ) 

0 0 

w 31 W 32 (sxw31 +syw32 +q) 

which gives the following solutions immediately: 

wll =a11 

w 21 = a21 

w 31 = a41 
wl3 = al4 

Then by solving the equations, 

wl 2 = al 2 

Wn = a22 

w 32 = a42 

w23 = a 24 

all 

a21 

0 

a41 

wl 3 

W n 

0 

al 2 ai J al4 

a22 a 23 a24 

0 0 0 

a42 a43 

all a l2 al 3 a l4 

a21 a22 a23 a 24 

0 0 0 

a41 a42 a43 

59 



for the shearing coefficients sr and sy , and the scaling coefficient q, the following solutions appear: 

al3a22- a,2a23 + a,4a23a42- a,Ja24a42- a,4a22a43 + a,2a 24a43 

a,,an - a, 2a2, - a,4a22a4, + a,2a24a4, + a,4a2,a42 - a,,a24a42 

a,, a 23 - a,Ja2, - a,4a23a4, + al3a24a4, + a,4a2,a43 - a,,a24a43 

a,,an - a,2a2, - a,4a22a4, + a,2a24a4, + a,4a2,a42 - a,,a24a42 

The perspective warp matrix may then be calculated by using the formula: 

Mwmp = M prsp Ms~~/e-shear 

as the shearing and scaling matrix is always invertible. 

NOTE: 
The algorithm and theory for the perspective Shear-Warp Factorisation presented here 

does not work in every possible case. When the eye either approaches the volume very 

closely, lies inside the volume, or lies exactly on the sides of the volume, these 

equations will break down. The reason for this is that there is now more than one 

primary viewing direction, and in order to handle this, the volume will need to be 

broken up into sections each with its own viewing direction. Each of these sections 

would then be rendered separately, and the intermediate images would need to be 

composited together to get the final image. The algorithm presented here chooses 

rather t disallow these conditions for the sake of simpler implementation and speed of 

rendering. 

4.4.2 Traversal 

As with the parallel rendering algorithm, the traversal of the octree has to calculated in such a way to 

ensure correct occlusion. However in the perspective case this becomes much more difficult to solve 

as the traversal can be different in different areas of the volume due to the diverging viewing rays. 

Figure 4. 7 depicts three cases of the perspective traversal problem for a quad tree where each of the 

traversal orders are different but the shearing factors have the same signs. 

60 



Figure 4.7- Quadtree traversal orders for perspective projection. 

On examination of Figure 4. 7 it becomes apparent that in order to predict a particular nodes order, the 

slope of its centre line must be calculated. Then depending on whether this slope is negative or 

positive (in the X direction) a different traversal is chosen. 

As in the parallel case this extends to an octree where a choice must be made between two traversals 

for each shearing direction. (i .e. Four traversal orders can be chosen from.) 

Given any node in the octree with position (x,y,z) in object space, shearing factors sx and sy, sub­

volume size v, and a scaling factor q, 

Slop x = zsx (1 + qz)(x + v)- (z + v)sx[l + q(z + v)](x + v) 

= (x + v)s_Jz + qz 2
- z- v- zq(z + v)- vq(z + v)] 

= -(x + v)s_Jv + zv + vqz + v 2q] 

We know that the x and v values will always be positive, and we only need to preserve the sign of this 

equation so, 

Similarly for the Y axis, 

!Sloper = -sy(l + z + qz + vq) I 
The choice of traversal orders still remains the same as those presented in the table in the parallel 

section above. 

4.4.3 Scaling of Slices 

In the original Shear-Warp algorithm, the volume is scaled such that the slice closest to the viewer is 

scaled by a factor of I and the slices behind it are scaled by a factor <I . Then during the compositing 

of slices which are behind the first slice, the voxels are averaged together and then composited. This 

averaging would of course cover more voxels as the slices progress towards the rear of the volume. 

However in our octree algorithm (as mentioned before) there is a difficulty in filtering neighbouring 

voxels, due to the structure of the octree. Before, the filtering was omitted and the results were found 

to be acceptable, howe er in this case that solution would lead to very noticeable aliasing artifacts. 

61 



The algorithm presented here chooses to overcome this problem by instead scaling the volume such 

that the slice furthest from the viewer is scaled by a factor of 1, and all slices closer to the viewing are 

scaled by a factor >I. This of course puts some limitations on the range of the scaling factor, as the 

intermediate image co ld become exponentially large for very large scaling factors, but this was not 

found to be a problem. For any acceptable perspective image the scaling factors do not result in a very 

large intermediate image. 

Due to the fact that the slices are only ever scaled up, omitting the filtering step becomes a lot more 

acceptable as the aliasing artifacts are vastly reduced and no information is lost. Once all the slices 

have been composited into the intermediate image, the entire image then simply needs to be scaled 

down. However there already exists an perspective warp matrix which will operate on this image, so 

this matrix is then just multiplied by a another 2 dimensional scaling matrix before the rendering. The 

other advantage of having the warp matrix perform this scaling is that it will perform filtering on the 

image, thus further reducing the aliasing artifacts produced by the earlier omission of filtering. 

4.4.4 Algorithm 

The pseudo-code for the algorithm is presented below along with descriptions of each of the functions . 

PROC RenderPerspec tiveVolume(root_node,projection_matrix) 

END 

(viewing_axis , shear_x, shear_y, scale, warp~atrix) = 
CalculateViewingParameters(projection~atrix); 

(traversal_orders) = PrepareTraversalOrders(viewing_axis); 

RenderPerspec t iveNode(root_node, traversal_orders); 

Warpimage(warp_matrix); 

The function RenderPerspectiveVolume calculates all viewing parameters, then builds a list of arrays 

of node numbers according to the primary viewing direction. CalculateViewingParameters performs a 

factorisation of the projection matrix to obtain the primary viewing direction, the shearing directions, 

and the scaling factor. The warp matrix is also computed. The RenderPerspectiveVolume function 

then begins a recursive rendering of the octree to an intermediate compositing image. Finally this 

compositing image is warped into the final image. 

PROC PrepareTraver salOrders(viewing_axis) 

CASE (viewing_ axis) 
X RETURN TraversalOrderTable[O]; 

Y RETURN TraversalOrderTable[4]; 

z RETURN TraversalOrderTable[8]; 
END 

END 

62 



By using the primary viewing direction PrepareTraversa/Orders selects an ordered list of node arrays 

for the choices of traversal order during rendering. Once the initial viewing direction is known then 

there is a choice of 4 possible traversal orders depending on the position in the volume. 

PROC RenderPerspec tiveNode(root_node, traversal_orders) 

END 

(dir_x,dir_y) = CalculateSlopes(root_node); 

IF (dir_x<O) 

ELSE 

END 

IF (dir_y<O) 
traver sal_order 

ELSE 
traver sal_order 

END 

IF (dir_y<O) 
traver sal_order 

ELSE 
traver sal_order 

END 

traversal_orders[O); 

traversal_orders[2); 

traversal_ orders[l); 

traversal_orders[3); 

FOR ( i = 1 TO 8 ) 

END 

child_info = root_node.child[traversal_order[i]J; 

IF (IsVis i ble(child_info)) 

END 

(IF Da taPresent(child_info)) 

ELSE 

END 

I F (IsLeafNode(child_info)) 
PerformRendering(child_info) 

ELSE 
RenderPerspectiveNode(child_info.node) 

END 

Pe rformPartialRendering(child_info); 

RenderPerspectiveNode is a recursive function which attempts to render the volume represented by the 

octree by traversing the octree to a maximum depth. The function accepts a node in the octree, and 

calculates the necessary traversal order using the formula presented in the previous section . It then 

loops through all of its children and for each of the child nodes: 

If it is visible and the node is a leaf node with its data present, then it is rendered normally. 

If it is visible and the node is a leaf node but its data is not present then it is rendered using the partial 

rendering function . 

If it is visible and the node is not a leaf node and the data for the child nodes are present then the 

RenderPerspectiveNode function is called with this child node. 

If it is visible and the node is not a leaf node but the data for the child nodes is not present, then the 

node is rendered using the partial rendering function . 

IPROC PerformRender ing(node_info) 

63 



END 

FOR(z 0 TO n ode_info.size) 

END 

u = node_i nfo.x + (node_info.z + z) * shear_x; 
v node_i nfo.y + (node_info.z + z) * shear_y; 

FOR(y = 0 TO node_info.size) 

END 

FOR(x = 0 TO node_info.size) 

END 

I F (IsOpaque(u + x, v + y, z)) 
x = x + SkipOpaquePixels(u + x, u + y, z) - 1; 

ELSE 

END 

(colour, alpha) = CalculatePixel(node_info.data[x,y,z]); 

CompositePixel(u + x, 
v + y, 
z, 
(colour,a l pha)); 

PerformRendering renders the specified octree node using the raw data referenced in that node. The 

function loops through the node and composites the slices onto the intermediate image. During an 

individual scan-line runs of pixels (voxels) may be skipped if they are already opaque in the 

intermediate image. F r non-opaque pixels the corresponding voxel is retrieved from the raw data. (It 

should be noted here that a variable modulus has to be used to reference this data as a 3 dimensional 

array, and this modulus would be calculated at the same stage as the traversal order.) Then using the 

CalculatePixel functio (which uses shade tables) the shading of that voxel is calculated. The resulting 

shaded pixel is then composited into the intermediate image. 

PROC Perfo rmPartia lRendering(node_info) 

END 

FOR(z 0 TO n ode_info.size) 

END 

u = node_i nfo.x + (node_info.z + z) * shear_x; 
v node_i nfo.y + (node_info.z + z) * shear_y; 

FOR(y = 0 TO node_info.size) 

END 

FOR(x = 0 TO node_info.size) 

END 

I F (IsOpaque(u + x, v + y)) 
x = x + SkipOpaquePixels(u + x, u + y, z) - 1; 

ELSE 

END 

voxel 
Trilinearinterpolate(node_info.corner_values, 

node_info.av erage_normal, 
node_info.av erage_gradient, 
node_info.size, 
x, y, z); 

(colour, alpha) = CalculatePixel(v oxel); 

CompositePixel(u + x, v + y, z, colour, alpha); 

64 



i' 

I 

PerformPartia/Rendering renders a partial octree node by using trilinear interpolation of the values 

throughout the sub-volume. The compositing is performed in exactly the same fashion as the 

PerformRendering function but the calculation of the voxel relies on the Trilinear interpolate function . 

This function uses the voxel values at each comer of tbe sub-volume, the average normal of opaque 

voxels in the volume, and the average gradient of opaque voxels in the volume to determine a 

particular voxel value. (Note: In the actual implementation, and as mentioned in a previous section, a 

incremental version of the trilinear interpolation function is used to rapidly calculate the voxel values.) 

PROC CompositePixel(comp_x, comp_y, comp_z, colour, alpha) 

END 

IF (alpha > TRANSPARENT_VALUE) 

END 

x_loc comp_x * (scale * comp_z); 
y_loc comp_y * (scale* comp_z); 

FOR (i = 0 TO (scale*comp_z - 1)) 

END 

FOR (j = 0 TO (scale*comp_z - 1)) 

END 

comp_image[x_loc + i, y_loc + j] 
comp_image[x_loc + i, y_loc + j] OVER (colour,alpha); 

IF (comp_image[x_loc + i, y_loc + j] .alpha >= OPAQUE_VALUE) 
comp_flags[x_loc + i, y_loc + j] =TRUE; 

END 

The CompositePixel function composites a pixel into the a block of pixels in the compositing image 

(intermediate image) using the OVER operator. The size of the block depends on the slice number 

which is being processed. If any of the resultant pixels becomes completely opaque then they are 

flagged as being opaque and will then be skipped in future passes. 

PROC SkipOpaquePixels(comp_x, comp_y, comp_z) 

END 

x_loc 
y_loc 

i = 0; 

comp_x * (scale * comp_z); 
comp_y * (scale * comp_z); 

WHILE (EndOfScanline(comp_x + i, comp_y)) 

END 

IF (CheckAllFlags(x_loc + i*scale, y_loc, comp_z *scale)) 
i = i + 1; 

ELSE 
RETURN i; 

END 

RETURN i; 

SkipOpaquePixels calculates the length of a run of opaque pixels in the compositing image. The size 

of this run does however have to be a multiple of the block size which is determined by the slice 

number being rendered. This is to prevent the pixels from overlapping. 

65 



PROC IsOpaque(comp_x, comp_y, comp_z) 

END 

x_loc = comp_x * (scale * comp_z); 
y_loc = comp_y * (scale * comp_z); 

RETURN CheckAl lFlags(x_loc + i*scale, y_ loc, comp_z * scale); 

This function returns w ether any of the specified pixels in the current block in the intermediate image 

is opaque or not. Once again the size of this block depends on the slice number being rendered. 

PROC CheckAllFlags (x, y, size) 

FOR (i = 0 TO (size · 1)) 
FOR (j = 0 TO (size· 1)) 

IF (NOT comp_flags[x + i, y + j]) RETURN FALSE; 
END 

END 

RETURN TRUE; 
END 

CheckAllF/ags checks to see if a block of flags in the intermediate image are all set, which indicates 

that the entire region is paque. 

4.5 Conclusion 

This chapter presented a method of rendering a volumetric dataset which is represented by an octree 

(i .e. hierarchical) data structure. The method makes use of the basic Shear-Warp algorithm but extends 

it to make use of octrees instead of the classical RLE data structures. Two separate algorithms were 

developed, one for the parallel projection of the volume and the other for the perspective projection of 

the volume. 

The octree data structure introduced new capabilities into the algorithm such as the ability to render the 

volume when only part of the data structure is present. This is achieved through approximation of the 

missing octree nodes (using trilinear interpolation). This "partial rendering" feature makes the 

algorithm most suitable for incremental rendering of volume data as it arrives over a slow medium (e.g. 

network link). 

In the parallel rendering case the problem of traversing the octree to ensure correct occlusion was 

solved using a fairly simple method. The result of rendering the volume during traversal of the octree 

is that large areas of the volume are omitted rapidly when they are completely empty. The final 

parallel rendering algorithm offers the same features as the traditional shear-warp except it now does 

not require three transposed copies of the volume (thus using less memory). 

Perspective rendering is achieved through a more advanced algorithm as the problems of octree 

traversal and slice scaling become a lot more complex. The perspective algorithm solves the traversal 

order problem by re-computing orders at each tree level, while the slice scaling problem is solved by a 

unique method which moves the scaling stage to the compositing buffer (rather than doing it in the 

66 



volume). Limitations were imposed on the position of the eye point (it may not be on or inside the 

volume) in the perspective case in order to simplify the algorithm. 

The only problem experienced with extending the Shear-Warp algorithm to use octrees is that a slight 

drop in image quality ccurs due to the necessary omission of the bilinear filtering stage during data 

traversal. This occurs due to the complexity of locating neighbouring voxels at the edge of an octree 

node. A potential solution to this would be for all the octree nodes to overlap by one voxel, thus 

allowing rapid referencing of neighbours at the expense of some memory. (See §6.3) 

The next chapter will present the approach to the validation of the algorithms and theory presented in 

this and prior chapters. It will then move on to providing detailed test results and explanations. 

67 



Chapter 5 

Experimental Results 

5. 1 Introduction 

The acceptance of an algorithm for an efficient incremental volume renderer, which will perform 

satisfactorily on a wide range of workstations, requires the evaluation of many aspects of the 

algorithms. Of primary importance are memory usage and rendering performance. 

In this chapter, numerous hypotheses will be made about the performance of certain key aspects of the 

algorithm. After presentation of these hypotheses empirical tests will be presented which support the 

hypotheses. 

Due to the complexiti s of volume visualisation there are many parameters which may be altered 

which cause the algorithms to perform in different ways. The empirical tests are thus designed in such 

a way as to extensively test every possible combination of parameters which will have an effect on: the 

compression ratio, the rendering performance, and the final image quality. 

The results of the tests are presented in graph form in Appendix C. 

5.2 Hypotheses 

The two major hypotheses of this thesis are: that the compression ratios of the octree compressed 

volumes allow for a major memory reduction during rendering (about 50% is expected); and that this 

octree structure will facilitate incremental rendering at a reasonably fast rate (under 5 seconds per 

rendering). 

We postulate that the c mpression ratios obtained with octree compression are roughly equivalent to 

those achieved throug RLE compression. Also by using the octree compressed volume during 

rendering a run-time m mory improvement in excess of 50% can be obtained when compared to using 

the RLE compressed v lume. This enables the algorithms to perform reasonably well on low-end 

workstations which do not have large primary memories. 

68 



Due to the hierarchical nature of the octree, information is coded into the nodes of the octree such that 

the sub-volumes represented by those nodes may be approximated when the raw-data for the sub­

volumes is not available. We postulate that a minimally (only the very basic morphology) recognisable 

volume will be obtainable with a very small dataset, and that this approximation will improve as more 

data arrives. 

In order for incremental rendering to be effective, the rendering times have to be many orders of 

magnitude faster than the rate of transmission. (The entire approximated volume has to be continually 

re-rendered during transmission in order to perceive improvements to the approximations.) Thus 

assuming an average size compressed volume of 2 Mb, then a network link with a bandwidth of 32K­

bits/sec will need 9 minutes to transfer the entire volume. During the 9 minutes of transmission it 

would be desirable for the volume to be rendered say every 5 to I 0 seconds to give an impression of 

the progress. The algorithms presented in previous chapters will achieve this required rendering 

performance. 

Other more minor hypotheses are: 

• Using node compre sion on leaf-nodes of the octree should be preferable (in terms of performance 

and compression ratio) to not using node compression. 

• Improvements in the performance of octree classification can be gained through the use of a node­

cache and that there must be an optimal cache size which should be similar for all standard 

volumes. 

• The parallel rendering performance when using octrees is comparable to the performance when 

using RLE data structures. 

• Perspective rendering of the volume data is supported as well. 

A testing methodology will be presented which allows for the testing of these hypotheses using a set of 

standard volume datasets. 

5.3 Test Data 

The volumetric datasets which were used to test the algorithms are as follows: 

• MR Head - A magnetic resonance study of a human head, with the skull partially 

removed to reveal the brain. The volume contains I 09 slices each of 256 by 256 points. 

Each point is a 16-bit integer. The data was captured using a Siemens Magnetom. This 

data set represents a standard case, with fairly high tissue definition and easily 

recognisab le features . This volume is used extensively in the testing of volume 

visualisation systems, so by presenting results using this volume, direct comparisons may 

be made with other systems. 

• MR Knee - A magnetic resonance study of a human knee, from just above the knee joint to 

just below the joint. The volume contains 127 slices each of 256 by 256 points. Each 

69 



point is a 16-bit integer. The data was captured using a Siemens Magnetom. This data set 

is the largest of all, and also contains a large amount of noise, so the response of the 

algorithms to noise is tested. 

• Engine - An engine part. The volume contains II 0 slices each of 256 by 256 points. 

Each point is an unsigned 8-bit integer. This volume is very regular in shape, and the 

surfaces are very clearly defined with barely any noise at all. This volume thus allows us 

to validate that the algorithms maintain the structural integrity of the volumes, and also to 

test the correctness of the surface shading. Also the response of the octree representation 

to regular (Euclidean) surfaces is tested. 

• CT Head- A computed tomography study of a cadaver's head. The volume contains 113 

slices each of 256 by 256 points. Each point is a I 6-bit integer. The data was captured 

using a General Electric CT Scanner. This is a fairly noise-free volume, with very good 

bone surface definition, and is thus a good candidate to test the effectiveness of the 

compressi n, as well as the smoothness of the shading on a non-Euclidean surface. Due to 

the fact that only the bone is of interest, a lot of the head data may be removed, so the 

compressi n algorithm's response to this opportunity is tested. 

The two magnetic resonance volumes, as well as the computed tomography volume were obtained 

from the University of North Carolina (Chapel Hill), and were captured at the North Carolina 

Memorial Hospital. The engine dataset was made available by the Stanford Computer Graphics Group 

at Stanford University in order for users of the original Shear-Warp algorithm to validate the 

effectiveness of their algorithm. 

Before presenting the results it is worth noting that each of the test volumes were first "optimised" 

such that the resulting raw dataset contained 8-bit unsigned integers, and the range of values 0-255 

accurately represented the information content of the volume. 

5.4 Methodology 

In order to prove the effectiveness of the algorithms presented in this thesis, a volume rendering class 

library was constructed which implements the various algorithms. 

Many of the parameters in the system are completely orthogonal to one another (for example isosurface 

level, and object rotation), so ranges of test values were devised for them such that every aspect of the 

algorithms were exercised. 

To facilitate methodical and organised statistics, a simple scripting language was developed which 

allowed pre-set test sequences to be established in test scripts. These test scripts were then executed on 

different data sets (in order to ensure independence) on a number of workstations. The script language 

allowed for the followi ng operations: 

70 



OCT 

-OCT 

RAW 

-RAW 

RLE 

-RLE 

OCTLOAD 

OCTSAVE 

OCTCONSTRUCT 

OCTCLASSIFY 

OCTRENDERPARA 

RAWLOAD 

RAWSAVE 

RA WOPTIMIZE 

RAWPARSE 

RLELOAD 

RLESAVE 

RLECONSTRUCT 

RLECLASSIFY 

RLERENDER 

CLEARLOG 

SA VEOCTIMAGE 

SA VERLEIMAGE 

LOG 

-LOG 

MESSAGE 

OCTRENDERPRSP 

OCTRENDERPARAI 

Create an instance of an octree compressed volume. 

Destroy an instance of an octree compressed volume. 

Create an instance of a raw data volume. 

Destroy an instance of a raw data volume. 

Create an instance of a RLE compressed volume. 

Destroy an instance of a RLE compressed volume. 

Load in data from a file into an octree volume object. 

Save data to a file from an octree volume object. 

Construct the data inside an octree volume object from a raw volume 

object. 

Perform classification on the data inside an octree volume object. 

Perform a parallel projection rendering of an octree volume object. 

Load in data from a file into an raw volume object. 

Save data to a file from an raw volume object. 

Optimise the data contained in a raw volume object. 

Parse a file of raw data into a raw volume object. 

Load in data from a file into an RLE volume object. 

Save data to a file from an RLE volume object. 

Construct the data inside an RLE volume object from a raw volume 

object. 

Perfonn classification on the data inside an RLE volume object. 

Perform a parallel projection rendering of an RLE volume object. 

Clear the current log file . 

Save the rendered image obtained from an octree volume object. 

Save the rendered image obtained from an RLE volume object. 

Create a new log file. 

Close the current log file . 

Write a message into the current log file . 

Render a perspective image using an octree volume object. 

Incrementally render a parallel projection image of an octree volume 

71 



OCTRENDERPRSPI 

SA VEOCTIMAGEI 

object. 

Incrementally render a perspective projection image of an octree 

volume object. 

Incrementally save images. (Used for creation of frames for 

animations.) 

Due to the number of parameters and the ranges through which they vary, the duration of the tests 

increased geometrically as new parameters were added. Thus the testing was executed on a pair of 

work-stations running in parallel. Due to the fact that the workstations were not identical a 

performance drop is to be expected for the algorithm running on the slower workstation. This, of 

course, prohibits the comparison of performance data between algorithms running on different 

workstations. It was thus necessary to confine the testing of certain volumes to an individual 

workstation and then only perform comparisons between the various operations on these volumes. 

This does not restrict ur testing in any way as it is meaningless to compare operations on different 

volumes. 

The workstations used for testing were as follows: 

• Silicon Graphics Indy R4600 (64Mb Main Memory; 16 Kb Data Cache; 16Kb Instruction Cache; 

and 512Kb Secondary Cache) running tests on the "MR Head" and "MR Knee" datasets. 

• Silicon Graphics Indy R4000 (48Mb Main Memory; 8Kb Data Cache; 8Kb Instruction Cache; 1Mb 

Secondary Cache) running tests on the "CT Head" and "Engine" datasets. 

In order to reduce the error introduced by other workstation overhead, each of the tests were repeated 

numerous times and the results were averaged. We begin by testing the initial compression stages of 

the data volumes, and then move on to testing the classification stages and the rendering stages. Most 

of the results are presented in graph form in Appendix C. 

The table below contains a reference to all the tests which were performed: 

Initial Compression tage §5.5 

Octree construction without node compression. §5.5.1 Measurement of the three stages of 

octree construction 111 terms of 

execution time and resulting 

compressiOn ratios. Individual octree 

leaf nodes were not compressed further. 

Octree construction with node compression §5.5.2 Individual octree leaf nodes were 

compressed usmg the leaf node 

compression algorithm. The results are 

72 



compared with those without node 

compression. 

RLE Compression §5.5.3 The execution time and compression 

ability of a pure run-length encoding 

compression algorithm is compared to 

the results for octree compression. 

Classification §5.6 

Detennination of optimal cache size §5.6.1 A set of tests which vary the size of the 

cache used during octree data 

classification on a variety of datasets. 

From this an optimal cache SIZe is 

selected. 

Comparison with RLE §5.6.2 Measurements of octree classification 

performance and a companson with 

RLE classification. 

Rendering (Parallel) §5.7.1 

Full octree rendering §5.7.1.1 Measurement of standard preparation 

stages for both RLE rendering and 

octree rendering. Actual rendering 

times of volumes using the octree 

method are given. 

Comparison with partial octree rendering §5.7.1.2 Measurement of rendering times for 

rendering a "worst-case" approximated 

volume. The times are compared to full 

octree rendering of the original data. 

Comparison of octree and RLE rendering §5.7.1.3 Comparison of full octree rendering 

times and normal RLE rendering times 

using equivalent datasets . 

Rendering (Perspective) §5.7.2 

Full octree rendering §5.7.2.1 Measurement of initial preparation 

stages for octree rendering. Actual 

rendering times of volumes using the 

octree method are given. 

Comparison with partial octree rendering §5 .7.2.2 Measurement of rendering times for 

rendering a "worst-case" approximated 

73 



Images and Animations §5.8 

5.5 Performance of Initial Compression 

volume. The times are compared to full 

octree rendering of the original data. 

Sets of images obtained from rendering 

the various test volumes under set 

conditions using the various algorithms. 

The actual images are in Appendix D, 

however this section gtves the 

necessary background for interpreting 

the images as well as a discussion of the 

results. 

These tests analysed the time taken and memory required for the generation of the initial compressed 

volumes. This operation would generally be performed once off for a few isosurface levels and then 

never again, so the performance is not critical, however the effectiveness of the compression is a 

concern. 

Each of the four test volumes were tested and results for both standard octree compression as well as 

octree compression with leaf node compression are presented. A comparison is made between 

compression with or without the leaf-node compression, taking into account the necessary partial­

decompression of the volume in the latter case. The compression ratios are then compared with those 

obtained using the RLE compression method. 

For the compression of a volume using any form of algorithm the identification of a meaningful range 

of values is required. The raw data in this case has already been optimised to the range 0 to 255, where 

255 represents maximum density. However many of the lower range values may represent empty 

space or less dense substances which we do not wish to render. Our tests thus vary the lower limit, in 

each of the cases from l up to 200 thus removing more and more data values from the volume at each 

level. It is worth noting however that this could also have been performed using the upper limit value 

as well but this would have had the same effect. Generally it is always necessary to set the lower-limit 

to some non-zero value in order to simply avoid the storage of empty-space. 

Both the RLE compressed volumes and the octree volumes were then compressed at the various levels. 

For the octree volumes however there is an additional parameter in the desired depth of the octree. As 

the depth of the octree increases the hierarchical representation of the volume becomes progressively 

more accurate. However for large depths the size of the octree data structure explodes (increases 

according to (8N+I - I) where N is the depth), so it is necessary to carefully choose the maximum 

practical depth. It was found that a depth of 6 was as large as the octree could grow without becoming 

unmanageable and impractical. At this level each node would represent a 4 by 4 by 4 block of voxels 

74 



in each of the test volumes, resulting in a maximum of 2097151 nodes. Thus the depth parameter is 

varied between I and 6 for each of the levels, for the creation of the octree compressed volumes. 

5.5.1 Construction without Node Compression 

5.5. 1. 1 Performance 

The performance tests covered the three distinct stages of the construction process: 

I. Initial construction of octree data structure from the raw data. 

2. Reordering of then des into breadth-first order. 

3. Gathering of raw data pertaining to leaf nodes ofthe octree. 

The graphs in figures C.l to C.4 depict the performance of the octree compression algorithm (without 

using node compression) over each of the four test volumes. Each vertical section of the graph 

represents an increasing octree depth (the left most section represents a depth of I, while the right most 

section represents a depth of 6). Inside each section the lower limit is varied through the range 

mentioned above. 

We expect that the execution time of all stages of the compression should increase steadily as the depth 

of the octree increases and as the lower level is increased (i.e. More data is excluded) the execution 

time should drop. 

By analysing the graphs one can pick up the following trends: 

• The initial octree construction process is the most expensive of the three stages. 

• The initial construction process becomes progressively more expensive as the octree depth 

increases, but not dr matically. An advantage of no more than a second is gained by using a depth 

of 3 or 4 over a dept of 6. 

• The reordering process has a negligible impact on the performance. 

• For very small lower limits the performance is noticeably slower, but as the lower limit increases 

the algorithm performs better, initially at a logarithmically decreasing rate, then at an almost linear 

rate. 

• If one examines the total times on the graphs one can see that a worst case time of around 6 seconds 

can be expected, which considering that this process only has to be executed once initially, is very 

acceptable. 

The most surprising aspect of these results is that the total time taken to compress the volume using 

deeper octrees is not necessarily slower than using a shallower octree. This is good as it means that a 

deep octree can be used (which can represent the volume closer) without incurring a large overhead. 

75 



5.5. 1.2 Compression 

The results of the volume compression at each of the six octrees depths mentioned above, are presented 

in figures C.5 to C.S. 

In the results of each test case both the compressed volume size is presented as well as the optimal 

compressed size (calculated by counting the number of opaque voxels in the volume). 

The compression of the volumes is expected to increase at an almost linear rate as the depth of the 

octree increases due to the closer representation of the actual volume. The compression ratios for 

lower threshold levels are expected to be much lower than higher levels due to the amount of low 

density material common in volume data. In the case of a very deep octree the compression should 

approach the optimal limit. (i.e. Only voxels which are above the threshold are stored at all.) 

From the graphs it can seen that: 

• For greater octree depths the compression rapidly approaches the optimal levels. 

• As the lower limit increases from very small values (<40), the improvement in compression is 

dramatic . This is probably due to the removal of low density values such as those for air. From 

this level onwards the improvements in compression ratio depend on the nature of the volume. 

• The octree compression closely approaches optimal compression for a depth of 6 and a fairly high 

lower limit. 

• From these results ne can thus conclude that using a depth of 6 is definitely the most advisable as 

the compression ratios achieved are vastly superior to those at lower depths, while the time taken 

for the algorithm to execute is negligibly slower than for other depths. 

The results were very much as we expected except that the compression ratio did not come as close to 

the optimal level (for greater octree depths) as we expected. This indicates that the octree is not closely 

representing the natural structure of the volume as accurately as we intended, and thus leads us on to 

considering adding furt er nodes to the octree method. 

5.5.2 Construction with Node Compression 

When using node compression each node is simply compressed according to the specified lower-level 

threshold. The node-compression algorithm makes use of the run-length-encoding scheme, but does 

however check to see if the resultant node would be larger if compressed (this can happen if a region is 

very noisy), and then does not compress it. Thus the choice of test volume and threshold level could 

drastically effect the results. 

Once again levels I through 200 are calculated, each at octree depths of I to 6. 

76 



5.5.2.1 Performance 

As with the previous section figures C.9 to C.l2 depict the performance of the octree construction 

phase, except that the data gathering phase is now replaced with a data compression phase, which 

further compresses the data in each of the leaf nodes. 

We expect similar results to the method of not using node compression. The execution of the first two 

stages should be identical (as they do not change at all) however the third gathering stage is now 

replaced with a compression stage which should take noticeably longer. As the node compression is 

being performed using RLE compression (which has almost linear complexity) the performance of the 

compression stage should become better for deeper octrees and higher threshold levels as less data is 

being compressed. Due to the nature of run-length encoding it is possible for the "compressed" data to 

be larger than the original. The leaf-node compression algorithm however detects this problem, and 

will then simply store a particular node as-is, if compression would result in a size increase. This is 

then more likely to happen as the leaf-nodes cover more complex data better, which is what happens at 

greater octree depths. 

The trends seen in the results are similar to those in the previous section. 

• The duration of the algorithm tends to increase with depth, however the increase is not dramatic at 

all . 

• The data compression stage can actually take longer than the octree construction phase for depths 

less than 3, however once the depth becomes greater the octree construction phase takes longer 

while the compression is faster. 

• The performance of compressing the engine data set increases dramatically at level 140. This is 

due to the almost discrete nature of the density levels in the engine dataset and the fact that one 

entire density range is now suddenly being omitted. 

These results are exactly as we predicted. The only unexpected feature of the results was that for 

deeper octree depths the node compression time can be less than a third of the total compression time. 

This is much faster than was initially expected. 

Once this compressed v lume has been transmitted to a workstation it is necessary to decompress each 

of the nodes for the rendering algorithm to function. Figures C.13 to C.16 depict the decompression 

time for each of the test volumes. 

As with the compression stage we expected the execution time of the decompression to decrease with 

increasing octree depth and higher threshold levels. 

From the graphs one ca see that this is exactly what happens. The worst case decompression time in 

all the results was still under a second which (considering it only has to performed once) is a very 

acceptable result. It therefore becomes clear that the use of node compression adds barely a few 

seconds of total performance drop to the whole compress-transmit-decompress cycle. If this method 

can then improve the compression noticeably then it is very worthwhile. 

77 



5.5.2.2 Compression 

The compression ratios achieved by using node compression are presented in the figures C. 17 to C.20 

in the same format as the results for non-compression of the nodes. 

We now expect the compression of the volume to be a lot closer to the optimal level when the octree is 

deeper. 

From the results it is noticeable that: 

• The achieved compression ratios are almost constant across the various depths now, due to the leaf­

node compression. 

• Similar features as with pure octree compression are seen for higher depths, such as near-optimal 

compression for high lower-levels. 

As expected the compr ssion ratios are now on average closer to optimal compression, except they are 

not as close as we wo ld have hoped. The most surprising aspect of the results is that the average 

compression ratios no longer increase as the octree depth increases. This indicates that any octree 

depth could then be used and a simi lar compression ratio obtained. However in a volume rendering 

system (as mentioned above) it is necessary to decompress these nodes once they arrive at the 

workstation in which case the data would be compressed according to the compression graphs 

presented in the previous section. Thus, considering that the node-compression provides an overall 

improvement in compression, it is still advisable to use a maximum depth with node compression. The 

performance penalties for selecting these parameters are still negligible considering a worst case 

compression time of7.5 seconds and a worst case decompression time of0.9 seconds. 

5.5.3 Comparison with RLE Compression 

To compare these previous results with those obtained using RLE compression, the same four volumes 

were compressed at each of the lower-threshold levels. A comparison is drawn below (Figure 5.8 to 

Figure 5.11) with the o tree method using node-compression and a tree depth of 6. 

The compression ratios of RLE compression are generally fairly good and so we expected them to be 

very near the compression ratios achieved using octree compression. However when large areas of the 

volume are below the threshold the octree algorithm (due to the fact that it works in three dimensions) 

should represent the "empty space" more efficiently. Thus we expect octree compression to outstrip 

RLE compression for higher threshold levels. 

78 



Comparleon of RLE and Octree Compre•on on CT Heed Data•t 

1--0ctree RE i 

N e ~ ~ ~ ~ ~ ~ $ ~ ~ ~ ! ~ ~ ~ ~ ~ ! I ~ ~ E ! I 
Lave I 

Figure 5.8 - Octree vs. RLE compression levels for the CT Head dataset. 

Oomparleon of RLE and OclrH CompraSIIon on Engine Data•t 

[- _ Octree ••••••• REJ 

Figure 5.9 - Octree vs. RLE compression levels for the Engine dataset. 

OompariiOn of RLE and 0c1ree Cclmpralllon on 1M Knae Da1a_. 

1-0ctree .. · · · · · R.E I 
ooanoo ~~~------~--~~--------~~~~~------------~~~~~~~ 
ooanoo 
7IXXXXXl 

1: 
J 400IXXlO 

I:!OOOOX) 
2!XXXlOO 

1~~~~~==============~~~~~~J N a> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ! ~ ! ~ ~ ~ R ~ ~ ~ 1 ~ 
Level 

Figure 5.10- Octree vs. RLE compression levels for the MR Knee dataset. 

79 



t 
I 
I 

Comperlul of !I.E and Oclrae Comprelllon on MR Head Dltaet 

f--Oclree · :' .... R.El L ____ ....=.J 

"' ., ~ ~ ~ ~ ~ : ~ m ~ ~ ~ i i ~ i ~ e ~ ~ ~ ~ ~ ! ~ ! ~ ~ ~ ~ ! ! ~ 
Law I 

Figure 5.11 - Octree vs. RLE compression levels for the MR Head dataset. 

In order to compare these two compression methods more accurately the following table presents the 

average differences in fi nal volume size over each level , for the four datasets. The differences are 

made such that a negative value indicates better octree compression. 

Dataset CT Head Engine MR Head MR Knee 

Average Difference -II 887 bytes 42 996.2 bytes 144.3 bytes 46 855.94 bytes 

Considering that the original dataset size is in the order of 8Mb, these values indicate that the 

difference between the two methods (in terms of compression ratio) is negligible. 

Unfortunately the octree compression did not improve noticeably over the RLE compression as 

expected. However it is clear that, even though the octree data structure contains a large amount of 

information for renderi g the volume incrementally (i.e. Minimum and Maximum values of each sub­

node, average values, etc.), the total data size compares very closely with a pure RLE compressed 

volume. This therefore makes the octree method more suitable for volume compression as it is giving 

more information about the volume and it is more flexible as a data structure. 

5.6 Classification Performance 

The tests presented in this section tested the performance of the classification process, where each of 

the voxels in the compr ssed data volumes are assigned surface gradients and normals. 

We first present the results for the determination of the optimal cache size for use during the 

classification phase of a octree, and then move on to the results for the actual classification of the 

volumes. 

Once again the classification process is performed both on the octree compressed volume as well as the 

RLE compressed volume, using the same parameters for comparison. 

80 



5.6.1 Determination of Optimal Cache Size 

Due to the nature of octree compression, it is sometimes difficult to determine the value of a 

neighbouring voxel, and so the node caching algorithm was developed. However the size of the cache 

has to be accurately determined, as a very small cache won't be able to store the commonly accessed 

nodes for a particular octree branch, and a very large cache will require a lot of searching time to locate 

the necessary node. 

Assuming that there is a fair degree of structural commonality between octree representations of 

different volumes (e.g. small nodes clustering next to larger nodes), it stands to reason that there is an 

optimal cache size range which should provide reasonable performance over most standard volume 

datasets. 

The test thus performs the classification over a range of different octree levels, as well as different 

cache sizes. An octree depth of 6 is used in all cases as this was found to be the optimal depth for 

compression of the data, and would thus be the logical choice should the volume be transmitted to a 

workstation. Graphs of these results are presented in figures C.21 to C.24 for each of the test volumes. 

In order to construct these graphs, numerous classifications were performed at each cache size, each on 

classifying to a different level. The average classification times were then calculated as representing 

the classification time for each cache size. 

As expected the trends in the results are similar and it is apparent that the optimal cache size is 

approximately 7 in all cases. This value is a lot smaller than we expected which hints at two 

interesting factors : 

• The problem of caching a neighbouring node is obviously a non-trivial problem as the nodes in the 

octree are not accessed in a neat sequential order and an LRU cache therefore struggles to maintain 

a genuine list on "commonly used" voxels. 

• Better cache addition and searching algorithms need to be developed. 

5.6.2 Performance Comparison 

The classification times for the octree and RLE compressed volumes are presented below. For the 

classification of the octree volumes, the optimal cache size (as found above) is used. The 

classifications are performed at each lower-threshold level by both the RLE classification algorithm 

and the octree classification algorithm. 

The summed-area table algorithm which the Min-Max octree method, in the original Shear-Warp 

Factorisation algorithm, makes use of is not used in either the RLE compressed volume or the octree 

compressed volume. 

The expected performa ce of the octree classification stage was around 3 times slower than that of 

RLE classification, based on the complexity of locating neighbours in the voxel cache. 

81 



Classification Times for CT Head Dataset 

1---0crree _____ - - ALE Classification I 

30000 _________________________________________________________ _j 
25000 

20000 

15000 

10000 
Time 

5000 
• • • 4 ,. • o • • "• o • •, • • , , • , , a, , _a - , •,,, • , , , , •,,. , , , • , • • 

0
,.-

0 
• • 

0 0 
• • 

0 0
., ., 

0
,.., 

0 0 0 
,. ,. o o • • o o 

0+---~---+--~---~--+---~---+--~----4 
10 30 50 70 90 110 130 150 

Level 

Figure 5.12- Octree vs_ RLE classification times for the CT Head dataset 

-.;-
i 

j 
s. 
I 
I= 

70000 

60000 

50000 

40000 

30000 

20000 

10000 

Classification Times for Engine Dataset 

[:--Oc~ee Clas~ication - - -_:__--- ALE Classificatk;;' 

170 190 

--.-- .. . ---- ... - .. ------------ ... ------.-------.---.----------------------.-

0 ~-------r---+--~---+---~---r--~--~ 
10 30 50 70 90 110 130 150 170 190 

Level 

Figure 5.13- Octree vs. RLE classification times for the Engine dataset. 

82 



ClaiSiflcatlon Times for MR Knee Dataset 
........ ------.------

1
---0ctree Classification - ·-···- RLE Classification_ 

35000 

30000 

I 25000 

20000 I 
g 15000 

I 10000 
I= 

~ • w - • - .... --------.- ...... ----- .. -------------- ... ---- -- --------- .. - .. - .. 

5000 

0 
10 30 50 70 90 110 130 150 170 190 

Level 

Figure 5.14- Octree vs. RLE classification times for the MR Knee dataset. 

Clasalflcatlon Times for MR Head Dataset 

---Octree Classification .. ·---- ALE Class if teat~ 

30000 --~----------~----------------------------~ 

25000 

-=

1 20000 

I 1sooo 
§. 

10000 

~ 
5000 

---- ... - .. ------ .. --- .. .. ....... ---------- .. --.- .... ----- .. - ... - .. ------ .. -----

0 +------~--~--+---+---------4---~~--4 
10 30 50 70 90 110 130 150 170 190 

Level 

Figure 5.15- Octree vs. RLE classification times for the MR Head dataset. 

From these graphs one can see that the performance of the RLE based classification algorithm is 
I 

normally between 3 and 4 times faster than the octree algorithm. This large performance loss when 

using the octree method i primarily due to the difficulty in classifying voxels when their neighbouring 

voxels lie in different octree nodes. When a neighbouring voxel is in another node the octree cache 

has to be used and an octree traversal can occur if it is not in the cache. 

Due to the fact that the octree scheme allows for incremental classification, the data may be classified 

as it is received by a workstation. Thus if the total transmission time is in the order of 60 seconds or 

83 



greater (approximately the worst-case classification time from above), then the classification time will 

be completely amortised into the transmission time. 

This advantage will, however, not be gained when the volume is re-classified later. A scheme for 

improving this could be to directionally thread the octree such that each node has a reference to its 

neighbouring node. A octree traversal will then never be necessary. This will be followed up in 

future research. 

5. 7 Rendering Performance 

In testing the rendering performance of the rendering algorithms, there are a number of parameters 

which may be varied such as: 

1. lsosurface level 

2. Orientation 

3. Whether a node is being rendered incrementally or not. 

4. The projection matrix is perspective or parallel. 

Test sequences which vary sets of these parameters were set up for both the parallel and perspective 

rendering algorithms, and the parameters were varied as follows : 

• In each case 10 pre-classified volumes were generated at isosurface levels: I 0 and 20 through to 

180 in steps of 20. This parameter has possibly the most impact on the algorithms as it predicts 

how much of the vo lume may be omitted from rendering. 

• The volume was rotated incrementally by: (0, 15 , 15), (90,0,0), (90,0,0), (90,0,0) , (90,0,0), (0,90,0), 

(90,0,0), (90,0,0), (90,0,0), (90,0,0), (0, 0, 45), (0, 0, 45), (0, 0, 45), (0, 0, 45). (Where each set of 

co-ordinates represents a rotation on each axis.) These rotations ensured that all shearing 

sequences and front-to-hack reversals were performed. 

• For the octree volumes the volumes were rendered with all the data available, and then with only 

the tree available and no raw data. (This represents the worst possible case of the incremental 

rendering as every node in the volume is being approximated.) 

• The octree volumes were rendered with both parallel and perspective projections matrices, however 

the RLE volumes were rendered only with parallel projections. (This was due to the unavailability 

of source code fo r the implementation of the traditional RLE Shear-Warp algorithm using 

perspective.) 

The results presented in the following sections will be split between parallel and perspective rendering, 

and then in each section comparisons will be made between full octree rendering and partial octree 

rendering, as well as between full octree rendering and full RLE rendering. 

84 



5.7.1 Parallel Projection 

5. 7. 1. 1 Full Rendering 

During each parallel rendering the following measurable operations are being performed: 

I. Preparation of the volume, factorisation of the viewing matrix, and computation of the 

shading tab les. 

2. Rendering of the data. 

3. Warping of the image. 

For octree rendering, the duration of the first and third operations above was found to be constant and 

were as follows: (all times are in milliseconds) 

Full Render Full Render Partial Render Partial Render 

Preparation Warping Preparation Warping 

CTHead 1437 97 1437 97 

Engine 1436 98 1441 100 

MRKnee 950 87 949 88 

MR Head 950 78 949 79 

The duration of the same operations was also constant for RLE rendering and were: (all times are in 

milliseconds) 

Full Render Full Render 

Preparation Warping 

CT Head 1387 90 

Engine 1410 91 

MRKnee 1026 66 

MRHead 940 61 

The first test sequence, for which the results are presented below, is for the rendering times of 

performing a full rendering of the volume. The octree algorithms performance was expected to be, on 

the average, equivalent to RLE rendering. For lower threshold values there is less "empty space" 

regions of the volume and thus the octree won't represent these regions very efficiently. Therefore it 

85 



was expected that the ctree algorithm should be slower at lower thresholds and then speed up as it 

uses higher thresholds. 

Figures C.23 to C.26 depict the rendering times of the parallel octree algorithm. Each graph shows the 

average, maximum, and minimum rendering times for each of the isosurface levels configured. The 

average rendering time for each level comes from averaging the rendering times for each of the 

orientations at a particular level. The maximum and minimum values are then the best and worst 

rendering times resulting from particular orientations. 

As expected it is clear that the octree algorithm responds well to increasing the isosurface level , as the 

rendering times drop steadily as the isosurface level increases. This is to be expected as the octree is 

causing increasingly larger areas of the original volume to be skipped out completely during rendering. 

Also apparent is the fact that the minimum and maximum rendering times only vary by at most I !h 

seconds. When testing the RLE based algorithm a similar best-worst case difference was found, 

however this is only if the translated copies of the volume are calculated before any manipulation of 

the volume occurs. If the translation was not performed at the outset then the difference would be in 

the order of 8 seconds (the time taken to perfonn the translation in one direction plus the existing 

difference) . The worst case rendering times were however slower than expected (for lower thresholds) 

which indicates that perhaps a mixture of RLE and octree compression should be used to maximise 

overall efficiency. 

5. 7. 1.2 Comparison of Full and Partial Rendering 

The next test script me sured the performance of the octree renderer when the volume is represented 

only by the octree. A comparison is shown, (in Figure 5.16 to Figure 5.19), between the octree 

rendering times of a volume using all the data (i.e. full render) and the octree rendering times of a 

volume using only approximate data (i.e. partial render.) The objective here is to demonstrate that the 

incremental rendering times are not noticeably different from the normal rendering times. 

As mentioned above the partial rendering is achieved by approximating all the leaf-nodes in the octree, 

which represents the worst possible case (in terms of performance) as the highest number of nodes are 

being approximated. 

86 



Comparison for rendering of CT Head Dataset 

[ Full - -=-=-- Partial-] 

3000 

2500 .. , 
2000 g 

J 1500 

e 1000 -
~ 
t= 500 

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure 5.16 - Comparison of full vs. partial octree rendering (parallel) using the CT Head 
dataset. 

7000 

6000 

i 5000 

5 
4000 J = 3000 ! 

! 2000 
I= 

1000 

0 
10 

Comparison for rendering of Engine Dataset 

-- /#' 
.._ ______ _ 

20 40 60 80 100 120 

Levels 

// \ 
\ 
\ 

140 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
1---

160 180 

Figure 5.17 - Comparison of full vs. partial octree rendering (parallel) using the Engine 
dataset. 

87 



• 

Comparison for rendering of MR Knee Dataset 

t:-=- ~=~-.:=-- .-::. Partial
1 

8000 

7000 

., 6000 

l 5000 

J 4000 

! 3000 ~ 

I 2000 I= 

1000 

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure 5.18 - Comparison of full vs. partial octree rendering (parallel) using the MR Knee 
dataset. 

Comparison for rendering of MR Head Dataset 

4000 

3500 \ 

... 3000 
l 2500 0 

J 2000 

e 1500 - -------------
I 1000 
I= 

500 --- ----
0 

10 20 40 60 80 100 120 140 160 180 

Levels 

Figure 5.19 - Comparison of full vs. partial octree rendering (parallel) using the MR Head 
dataset. 

88 



These results are very promising and actually exceed all expectations of the renderer's performance 

with partial data. With the exception of the Engine dataset the partial rendering time is very close to 

the full rendering time. In some cases (normally at lower isosurface levels) the partial rendering time 

actually becomes less than the full rendering time. These results are very promising as they show that 

the rendering of a partial volume during the transmission of volume data is not going to take noticeably 

longer than normal rendering of the full dataset. 

The peak at isosurface level 140 in the Engine volume ' s partial rendering time was not predicted 

however. It is probably due to the sudden generation of a large number of small leaf-nodes in the 

octree brought about by the isosurface level (there are small high-density components within the 

engine which are normally not visible). New approximation calculations thus have to be started for 

lots of small voxels causing a longer overall rendering time. Fortunately the rendering time is only 

longer by approximately 2 Y2 seconds. 

With these partial rendering times being (on average) about 3 seconds, and considering that the 

transferral of a volume dataset over an average Internet connection could take about 9 minutes, a more 

advanced approximati n algorithm (tricubic interpolation, say) could be used without adversely 

affecting the response times of the system. 

5. 7. 1.3 Comparison of Octree and RLE methods 

The final parallel rendering test script measured the performance of the RLE rendering algorithm at the 

same orientations and isosurface levels as those used for the octree rendering. Figure 5.20 to Figure 

5.23 depict the results of these tests and compare the results with those obtained using the octree 

method. These results should support the hypothesis that the octree rendering times are very close to 

those of RLE rendering times. The performance of the octree method was expected to be lower than 

that of the RLE method due to the problem with representing data at low thresholds (see §5 .7.1.1), 

while the RLE method was predicted to be slower at higher thresholds as it is not very good at 

representing volumes with large areas of"empty space". 

89 



RLE vs Octree rendering of CT Head Dataset 

--Octree ---- ALE J 

3000 

2500 .., 
"0 2000 c 
0 

j 1500 ------ - .... 
i - 1000 
~ 
i= 500 

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure 5.20 - RLE vs. Octree parallel rendering performance for the CT Head dataset. 

90 



RLE vs Octree rendering of Engine Dataset 

-, 

---Octree -- - - RLE 

6000 

5000 

• ~ 4000 
0 

! 3000 

! 
2000 ., 

E 
------ _____________ , 

.... 
t= 

1000 

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure 5.21 - RLE vs. Octree parallel rendering performance for the Engine dataset. 

RLE vs Octree rendering of MR Knee Dataset 

E _ Octree - - - - RLE 1 

8000 

7000 

• 6000 

'2 5000 0 

J 4000 '\ 
"\ 

i '\ 

3000 
e ' E 2000 j:: 

1000 

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure 5.22 - RLE vs. Octree parallel rendering performance for the MR Knee dataset. 

91 



RLE vs Octree rendering of MR Head Dataset 

4000 

3500 

- 3000 
t 2500 j 2000 

! 1500 
I ----
I= 1000 

500 

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure 5.23 - RLE vs. Octree parallel rendering performance for the MR Head dataset. 

The following trends can be seen in the above graphs: 

• Octree rendering is generally better than RLE rendering for higher isosurface levels . This was 

expected as larger regions of the volume are being completely omitted from the rendering process, 

while the RLE algori thm is still stepping through them albeit slightly quicker than for lower levels. 

• RLE rendering is generally better than octree rendering for lower isosurface levels. This is 

probably due to the greater complexity of the octree and the large number of leaf-nodes containing 

data which results in a lot of tree traversal. This then implies a large function-call overhead due to 

the increased amo nt of recursion. The RLE rendering method does not generate any more 

function calls at a low isosurface level than at a higher level , so it is more efficient in the low 

ranges. 

The best and worst case speed improvements are given below: 

Octree faster than RLE Octree slower than RLE 

CT Head 64% 72% 

Engine 59% 147% 

MR Knee 51 % 68% 

MRHead 71 % 121 % 

92 



The octree rendering speeds were slightly disappointing as the speed of octree rendering was predicted 

to be almost identical to RLE rendering on the average. As mentioned above, there is a fairly large 

function call overhead with the octree method, so new octree traversal methods should be investigated 

which do not require recursion. 

It should be noted however that in using the RLE rendering algorithm, it is necessary to build two 

transposed versions of the volume. This transposing process is fairly time consuming, and the times 

for this transposing process are given in the table below, for each of the isosurface levels. (The times 

are given in milliseconds.) 

CT Head Engine MRKnee MRHead 

10 
5512 6111 7328 4369 

20 
5346 5922 5894 4148 

40 
5033 5471 5178 4227 

60 
5438 5422 4829 3907 

8 
5242 5539 4483 3386 

1 0 
5104 5692 4382 3526 

120 
4882 5511 4142 3254 

140 
4803 4979 4309 3239 

160 
4941 4936 3893 3218 

180 
4797 4917 3974 3239 

Thus it is necessary to delay between 3 and 7 seconds before rendering the RLE volume at a different 

isosurface level. 

Also implied by this volume transposing process is the fact that there are now three copies of the same 

volume being kept in primary storage, while with the octree method there is only one copy. A 

comparison of run-time memory usage is presented in the tables below for each of the volumes at an 

isosurface level of 20a d then at an isosurface value of 160. (All values are given in bytes.) The 

octree method was expected to be about 50% more memory efficient than the RLE method. 

93 



(Level= 20) RLE algorithm memory usage Octree algorithm memory usage 

CT Head 7461252 3563576 

Engine 18711708 7189112 

MRKnee 33570648 15966684 

MR Head 20458320 7576452 

(Level= 160) RLE algorithm memory usage Octree algorithm memory usage 

CT Head 2110356 1058644 

Engine 2436144 805352 

MR Knee 2797740 1788604 

MR Head 2031540 713980 

These results are extremely promising as the results above show that the parallel octree rendering 

algorithm is in excess of 50% more memory efficient than its RLE counterpart. This supports our 

earlier wishes to implement an algorithm which is ideal for implementation on average workstations 

for the purposes of incremental volume rendering. 

5. 7.2 Perspective Projection 

The parallel projection algorithms have now been empirically proven to be successful in terms of their 

performance and memory usage. This was one of the primary goals of this dissertation. It was also 

intended that the octree algorithm provides for perspective rendering of the volume using the same data 

structure. The perspective octree algorithm has not been developed to the same level as the parallel 

algorithm as we merely wish to prove that the perspective algorithm is feasible. No explicit 

comparisons between parallel and perspective rendering times will be presented here for this reason. 

Comparisons of image quality and performance should also not be exactly compared to published 

results for perspective rendering. Due to memory inefficiencies in our (non-optimised) perspective 

rendering algorithm the size of the MRKnee test volume prohibited it from use as a test case. 

5. 7.2. 1 Full Rendering 

As with parallel projection rendering the following measurable operations are being performed: 

I. Preparation of the volume, factorisation of the viewing matrix, and computation of the 

shading tables. 

2. Rendering of the data. 

94 



3. Warping of the image. 

For perspective octree rendering, the duration of the first and third operations above was found to be 

constant and were as follows: (all times are in milliseconds) 

Full Render Full Render Partial Render Partial Render 

Preparation Warping Preparation Warping 

CT Head 771 191 769 190 

Engine 769 191 770 190 

MRHead 643 149 642 148 

Unfortunately no source code has been made available for perspective rendering of RLE volumes 

using the Shear-Warp Factorisation method. Therefore no direct comparisons with RLE rendering can 

be made. However Lacroute and Levoy [24] reported perspective rendering times in the order of 2.5 

seconds for a 256x256x 167 size medical volume. 

The first test sequence (for which the results are presented in Figures C.27 to C.30) is measuring the 

rendering times of performing a full perspective rendering of the volume. 

These graphs show the average, maximum, and minimum rendering times for each of the isosurface 

levels configured. The average rendering time for each level comes from averaging the rendering 

times for each of the orientations at a particular level. The maximum and minimum values are then the 

best and worst rendering times resulting from particular orientations. 

The perfonnance of the perspective algorithm was not expected to be markedly different from the 

parallel algorithm in terms of its relative performance improvements as the isosurface threshold 

increases. 

As with the parallel projection the octree algorithm responds well to increasing the isosurface level. 

The reason for this (as mentioned before) is that the octree is causing increasingly larger areas of the 

original volume to be skipped out completely during rendering. 

The peaks which occur at a higher isosurface levels in the rendering of the Engine and MR Head 

datasets came as a complete surprise. They must be due to the greater complexity of the compositing 

buffer brought about by the nature of the small internal high-density regions which become visible at 

these higher levels. Due to the scaling of the voxel slices the compositing operations can be a lot more 

complex, and depending on the opacity settings in the volume more compositing operations might be 

required. Thus sudden peaks could occur at certain levels. When an efficient perspective octree 

rendering algorithm is developed this aspect should definitely be considered. 

5. 7.2.2 Comparison of Full and Partial Rendering 

The next test script measured the performance of the octree renderer when the volume is represented 

only by the octree. A comparison is shown, (in Figure 5.24 to Figure 5.26), between the octree 

95 



rendering times of a volume using all the data (i .e. full render) and the octree rendering times of a 

volume using only approximate data (i.e. partial render.) The objective here is to demonstrate that the 

incremental rendering times are not noticeably different from the normal rendering times. 

As mentioned before the partial rendering is achieved by approximating all the leaf-nodes in the octree, 

which represents the worst possible case (in terms of performance) as the highest number of nodes are 

being approximated. The results were expected to be very similar to those obtained for parallel 

rendering, in that the performance differences between the two are negligible. 

Comparison for rendering of CT Head Dataset 

E~ 

16000 

14000 -- ........ ... - ' - .... ., 
12000 ' 

., 
l 

., \ 
~ ., 

\ 
0 10000 _ t' 

\ 

! 8000 
\ 

E 6000 __. 

~ 4000 
I= 2000 

0 
0 ~ 0 0 0 8 0 0 g 0 

"it CD CX) C\1 "it CX) ..- ,.... 
Levels 

Figure 5.24- Comparison of full and partial rendering (perspective) of the CT Head dataset. 

96 



Comparison for rendering of Engine Dataset 

35000 

30000 
..... • 25000 '2 
0 

j 20000 ---
l 15000 

~ 10000 
~ 

5000 

0 
0 ~ 0 ~ ~ 0 0 0 0 0 

'<t 0 C\1 '<t (D CIO 

Levels 

Figure 5.25- Comparison of full and partial rendering (perspective) ofthe Engine dataset. 

Comparison for rendering of MR Head Dataset 

35000 

30000 

I 25000 

J 20000 " ~ 
! 15000 

I 10000 
~ 

5000 ----
0 

0 0 ~ g ~ g 0 0 ~ 0 
C\1 C\1 '<t CIO 

Levels 

Figure 5.26- Comparison of full and partial rendering (perspective) ofthe MR Head dataset. 

With the exception of the CT Head dataset the partial rendering time is very close to the full rendering 

time. These results are very promising as they show that the rendering of a partial volume during the 

97 



transmission of volume data is not going to take noticeably longer than normal rendering of the full 

dataset. 

The peak at isosurface level 140 in the CT Head volume's partial rendering time was a disappointing 

results but is probably due to the sudden generation of a large number of small leaf-nodes in the octree 

brought about by the isosurface level. New approximation calculations thus have to be started for lots 

of small voxels causing a longer overall rendering time. This combined with the greater complexity of 

the compositing proces can cause the rendering times to suddenly peak at a particular isosurface level. 

Our implementation of the compositing buffer is not very efficient and a better implementation would 

probably increase overall performance dramatically. 

The perspective rendering times presented here are between 10 and 15 times slower than their parallel 

counter parts. This massive drop in performance is primarily due to the insufficiency of the 

compositing buffer in handling scaled slices. All the slices in the perspective octree rendering 

algorithm are scaled by an amount greater or equal to I. Therefore more pixels are composited into the 

buffer, requiring a very efficient compositing method. Future research in this area will consist of 

implementing the compositing buffer using quad-trees instead of run-length encoding. This will more 

accurately match the object order traversal and should therefore offer a speed improvement. 

The same results concerning the translation of the volume in the RLE case apply here. As mentioned 

earlier in this section, no direct comparisons are available with perspective RLE rendering. 

Considering the average rendering times of perspective volumes was reported to be roughly 2.5 

seconds, these results s ow a performance drop of between 5 and 8 times. However, we have shown 

that perspective rendering is also covered by the octree algorithm. 

We now move on to visually comparing the rendering results of the various methods mentioned above. 

5.8 Images and Animations 

For each of the test volumes, two standard view points were chosen which best reflect the contents of 

those volumes. A variety of renderings of these volumes using both the octree method and the RLE 

method are presented in Appendix D .. The renderings are presented in four sections: 

• Standard Parallel Renderings - A comparison of normal opaque surface renderings of the full data 

set using both the parallel octree algorithm and the parallel RLE algorithm. 

• Standard Perspective Renderings - Presents renderings of three volumes from a primary view point 

using the perspective octree algorithm. 

• Using Translucency - A comparison of semi-opaque and opaque renderings of the engine dataset 

using both the octree algorithm and the RLE algorithm. 

• Partial Renderings - Partial octree renderings of the volume data using a variety of approximation 

levels as well as parallel and perspective rendering. 

98 



These images show that the image quality of the octree rendered volumes suffers slightly in that the 

aliasing is a lot more noticeable than for the RLE rendered images. This is due to the zero-order 

interpolation being perfonned in all directions as opposed to the bilinear interpolation performed by the 

RLE algorithm. Howe er for semi-opaque objects and regular geometry objects the aliasing effects are 

barely noticeable. Future research should therefore go into introducing filtering to the octree 

algorithm. Fortunately due to the three-dimensional symmetry of the octree data structure any filtering 

process which is perfonned can be perfonned with equal ease in all directions. Thus should linear 

filtering be introduced to the octree algorithm (say through the use of overlapping octree nodes) then 

trilinear interpolation may be perfonned through the vo lume, making it superior to the RLE algorithm. 

Another noticable effect which occurs in images of the CTHead data set, when it is approximated, is 

holes in the surfaces. This is a side-effect of the trilinear interpolation method for approximating 

missing regions using mainly the data in the 8 corners of a voxel region. In the case of the CTHead 

dataset the skull area is very dense but very thin so it often arises that the eight corner values end up 

lying on either side of the skull thus averaging out to a very low density sub-volume. Hence the holes. 

Numerous animations were developed to further validate the effectiveness of the octree volume 

renderer. Many of the aliasing artifacts are more noticeable under animation. These animations are 

available over the World-Wide-Web at http://www.cs.uct.ac.zal-mikeh. 

5.9 Conclusion 

Numerous hypotheses were presented in this chapter concerning the perfonnance of the hierarchical 

volume representation nd rendering algorithms. A set of tests were then devised which supported 

these hypotheses. 

Primarily the ability of the octree algorithm to effectively compress the volume data (to a level 

comparable to RLE compression) as well as the ability to perfonn approximate renderings at no extra 

cost, was demonstrate . Another very important result was that the runtime memory usage during 

rendering is reduced by more than 50% when using the octree algorithm instead of the RLE algorithm. 

Other results showed that leaf-node compression is advisable during the transmission of the volume, 

and that the decompression overhead at the client end is negligible. The parallel rendering 

perfonnance using the octree algorithm was found to be close (although on the average slightly slower 

due to function call overhead) to that obtained using the RLE algorithm (in some cases slower and in 

other cases faster) . Als perspective rendering using octrees was shown to be possible. 

Results concerning the classification times of the volumes (when using octree representations) were 

not very promising. The classification times of the volume were found to be in the order of 3 to 6 

times slower than the RLE algorithm, despite the use of an octree node cache. Fortunately on initial 

transmission the volume may be incrementally classified as it arrives, thus amortising the classification 

time over the transmission time. This is not possible with the RLE representation method, however on 

later re-classifications fthe volume the RLE method is faster than the octree method. 

99 



In conclusion the result presented in this chapter completely validate the octree algorithm' s ability to 

perform efficient and incremental volume rendering on a wide range of lower-end workstations. This 

is achieved through a highly efficient rendering algorithm, low runtime memory usage, and 

incremental rendering. 

100 



Chapter 6 

Conclusion 

6. 1 Overview 

The research presented in this dissertation was primarily aimed at exploring new methods for volume 

rendering which would work efficiently on average desktop workstations. Another aspect of the 

research was to ensure that this method could be distributed over a conventional network (such as the 

Internet) in such a way that network transmissions are minimised and rapid user feedback is 

maintained. The algorit ms presented in this dissertation are also presented in [57] . 

The central theme of the dissertation was the use of the octree data structure for representing the 

original volume dataset in a compressed form. This data structure was selected for its hierarchical 

nature as well as its t ree dimensional nature. By selecting an isosurface threshold level for the 

volume much of the data in the original volume may be filtered away. However the resulting "shape" 

still has to be represented as efficiently as possible for rapid transmission over a network or for storage 

in primary memory. ur octree data structure represents the filtered data exponentially better as the 

depth of the octree increases. However with an increased depth in the octree comes an increase in the 

size of ancillary data structures. A compromise was found in using an octree of moderate depth while 

the data at leaf nodes is further compressed using a run-length-encoding scheme. Unfortunately this 

leaf compression makes the data too complex to reference during rendering so this leaf compression is 

only used during network transmission. 

By inserting extra information into the nodes of the octree the hierarchical nature of the octree allows 

regions of the volume to be approximated at varying levels of accuracy. A novel result of this ability is 

that incremental transmission and incremental rendering of the data is supported. In other words, as 

the octree volume data arrives over the network an approximated volume is rendered. Then as more 

data arrives over the network the volume is constantly re-rendered, each time improving in its 

approximation of the original volume. If data were being transmitted over a relatively slow network 

link then user-feedback is still being maintained at the expense of a more approximated volume. 

101 



As the rendering of the octree had to occur sufficiently fast for numerous renderings to occur during 

the transmission time of a volume as well as perform efficiently on average workstations, a highly 

efficient rendering algo rithm was required. The Shear-Warp Factorisation method was used for this 

purpose. However the initial Shear-Warp algorithm made use of Run-Length-Encoding (RLE) data 

structures for representing volumes. Our algorithm modifies the basic Shear-Warp algorithm to work 

with octree data structures instead. Many aspects of the original algorithm are centred around the 

unidirectional and linear nature of the RLE data structures so the modifications were quite extensive 

and numerous advantages over the original data structures were found. 

One of the primary problems with the use of the original RLE data structure was the necessity of 

maintaining three transposed copies of the volume. This was due to the unidirectional nature of the 

data structure. Our octree method is however symmetrical in three dimensions and thus removes this 

limitation completely. 

Another feature which the octree data structure has is its separability from the raw volume data. In the 

case of run length encoded data, the data comprises one large array of raw data with encoded runs 

inside it. However our octree data structure is a completely separate entity with references into an 

array of raw data. This property allows the maintenance of numerous other octree structures which 

contain other information or which filter the data differently, which can accelerate rendering and 

certain other processes. 

As mentioned above one of the main advantages of our octree data structure is that it can contain 

approximation information and can therefore provide for approximate renderings when not all of the 

data is present. The algorithms which we developed make use of trilinear interpolation during the 

rendering process to approximate entire three dimensional regions of the volume for which there is no 

raw data available. 

The main problem experienced with moving to the octree data structure was the performance of the 

volume classification phase which has to occur just before rendering. This phase requires the 

computation of values based on neighbouring sets of voxels. When attempting to compute these 

values for voxels lying on the edge of an octree node it becomes very complex to determine the values 

of neighbouring voxels due to constant octree traversals. To alleviate this problem an octree node 

caching algorithm was developed. 

Algorithms for rendering the octree represented volume using both parallel and perspective Shear­

Warp rendering were developed. The parallel rendering algorithm was fairly similar to the original 

RLE based algorithm except that the order of rendering voxels becomes more complex. This is due to 

the fact that the data in the volume is no longer stored in a convenient scan-line order, but rather it a 

number of hierarchically placed nodes. An octree traversal algorithm was developed which rendered 

nodes in the octree in such a way that occlusion of voxels in the compositing buffer were still correct. 

The only problem experienced during the development of the parallel rendering algorithm was the need 

to omit the bilinear filtering which was performed in the original RLE based algorithm. This is also 

102 



due to the same reason that classification is slow. (i.e. difficulty tn determining the values of 

neighbouring voxels.) 

The perspective rendering algorithm which we developed was a lot more complex than the original 

Shear-Warp algorithm due to the need to average sets of voxels together as the distance from the 

viewing plane increases. Once again the scan-line ordering of the original RLE data made this a 

reasonably simple task. However the averaging of regions of voxels together in the octree model 

becomes very complex due to the difficulty of locating neighbouring voxels at the edge of an octree 

node. Also the octree traversal algorithm used for parallel rendering was shown to break down under 

perspective projection. New algorithms were thus developed for perspective rendering which: (a) 

moved the region averaging process into the final warping of the compositing buffer, and (b) traversed 

the octree in an adaptable fashion which still insured correct occlusion. 

6.2 Results 

An extensive set of tests were devised to verify the use of the algorithms (see Chapter.5) mentioned 

above and to show that noticeable improvements are possible through use of the octree data structure. 

The ability of the octree to compress the data was extensively tested. The performance of the 

compression process was found to be under I 0 seconds and considering that this process generally 

only has to occur once when viewing a volume it is very acceptable. It was also shown that the leaf 

node compression tech ique is very successful and that if it is used during transmission then the overall 

sacrifice in performance is no longer than a few seconds. The compression ability of our octree 

algorithm when compared with the RLE algorithm was found to result in data structures of roughly the 

same size. This result was initially thought to be disappointing but when considering that the octree 

data structure contains a lot more information about the structure of the volume as well as the 

approximation information this result is excellent. 

Tests were performed on the octree classification algorithm to determine the size of the cache to be 

used, and an optimal cache size of 7 was selected. This value was a lot lower than expected and 

indicates that the cachi g algorithm is not making a sufficient improvement to the performance. When 

measuring the classification times of octree data volumes against RLE data volumes it was found that 

the RLE algorithms performed three to four times faster than their octree counterparts. This was a very 

disappointing result (see section §6.3), however when using these algorithms over a network and 

performing incremental rendering the classification process is also incremental and is thus amortised 

over the duration of the data transmission. While this is certainly an advantage, later re-classifications 

on the client workstatio will incur the full performance penalty of octree classification. 

After classification the tests moved on to measure the performance of the parallel and perspective 

rendering algorithms. For each algorithm the performance when rendering a full data structure was 

compared with the performance when rendering a volume which is being maximally approximated. 

The tests found (for both parallel and perspective rendering) that the performance of the approximation 

rendering was equivalent (and in some cases faster!) to the normal full rendering. This was an 

103 



extremely promising re ult and indicates that more advanced approximation algorithms can now be 

used without adversely affecting the overall performance. 

The memory efficiency of both the parallel and perspective rendering algorithms were measured and 

compared with the RLE method. It was found that our octree method used less than half of the 

memory required by the RLE method. This serves to strengthen our argument that the octree algorithm 

makes rendering more suitable to average workstations with low primary memory capacities. 

For parallel rendering the octree rendering performance was compared with RLE rendering 

performance over a variety of datasets and settings. It was found that for lower isosurface threshold 

levels the RLE algorithm performed better and for higher isosurface levels the octree algorithm 

performed better. This confirmed our expectations that the octree data structure would cause the 

rendering to be a lot more efficient when large areas of the volume are filtered out. On average the 

octree and RLE rendering algorithms were found to be almost equivalent in execution time. When 

considering that the octree algorithm also provides for incremental rendering and uses less than half the 

memory of the original algorithm this result is very acceptable. Thus the goal of developing an 

algorithm which is capable of rapidly re-rendering a volume repeatedly during its transmission has 

been attained. 

The perspective rendering performance was disappointing, however no effort was made in the research 

to optimise the perspective algorithm due to its complexity. The tests of the perspective algorithm 

were designed merely to prove that perspective rendering was feasible with the octree method. The 

execution times of the erspective renderings were found to be in the order of I 0 to 15 times slower 

than their parallel equivalents, and 5 to 8 times slower than figures published for the original Shear­

Warp perspective algorithm which used RLE data structures. An unexpected drop in the performance 

of the perspective octree rendering algorithm was also found for certain isosurface levels, which 

indicated that the function call overhead of the recursive octree traversal is probably adversely 

affecting the result. 

Sets of renderings were then executed on numerous test datasets at various orientations and isosurface 

levels to compare the quality of renderings between the octree and RLE methods. The omission of the 

bilinear filtering step in the octree algorithm was found to introduce noticeable aliasing artifacts into 

the images. 

6.3 Future Work 

The only really disappointing result in this dissertation was the inability of the octree data structure to 

handle situations where neighbouring voxels had to be rapidly located. This adversely affected the 

classification time of the volume as well as the quality of the rendered images. Future work thus needs 

to concentrate on solving this problem. There are two possible solutions to this problem which could 

be attempted. Firstly the octree could be directionally threaded, meaning that spatially neighbouring 

octree nodes have references to each other. This however incurs a fairly large overhead on the size of 

the octree and still requires a degree of computation to determine which voxel neighbours another. 

104 



The second approach and the most likely to succeed would be to overlap each octree node by one 

voxel. This then implies the storage of redundant data however it makes the location of neighbouring 

voxels extremely rapid. By using this approach, the classification stage could be accelerated to be at 

least as efficient as the RLE method. The only problem experienced which this method will not solve 

is the rapid averaging of regions of voxels during the perspective splatting process (although this could 

still be overcome by our more data intensive process of expanding the image towards the front instead 

of reducing it toward the back). However a novel result of this approach would be that trilinear 

filtering could then be sed during the rendering process which should (theoretically) produce better 

images than those produced with a bilinear filter. Design of this algorithm should be fairly straight 

forward and it could be designed and validated within a month. 

The transmjtted volume size is still extremely large and more efficient leaf-node compression 

techniques are probably required. An advantage of having the octree breaking the volume up into 

numerous different sized nodes is that different leaf-node compression algorithms could be used for 

different sized nodes. Then algorithms such as OCT based compression or vector quantization could 

be used to compress the leaf nodes resulting in a much smaller overall data structure. During 

transmission, even the octree data structure could be compressed using a stream based compression 

technique such as Lempei-Zif compression. Development of algorithms to perform this compression 

would not be difficult and would only impact a very small part of the overall architecture proposed in 

this dissertation. Based on the published results of these other compression techniques reductions of a 

further 50% to 80% could be expected. 

Another improvement which will serve to decrease rendering times (especially m the perspective 

rendering case) is the use of quad trees in the compositing buffer. Due to the RLE-type structure of the 

compositing buffer it is not ideally suited to the traversal order of the octree during rendering. By 

modifying the compositing buffer to use a hierarchical quadtree, entire regions of the octree may be 

efficiently skipped from rendering when their impact on the compositing buffer is not noticeable. The 

complexity of developing an algorithm to do this is largely unknown but is assumed to be non-trivial 

and thus could take quite some time to develop. 

105 



Appendix A 

Glossary 

affine 

aliasing 

bilinear filtering 

child node 

com positing 

DCT 

image warping 

leaf node 

lossless compression 

lossy compression 

A combination of scales, rotations, shears, and translations. An affine 

transformation is one which preserves the parallelism of lines. 

Low frequencies in a signal which are actually high frequencies . This 

occurs if a signal is reconstructed using a sampling rate above the 

Nyquist limit (equal to double the frequency of the highest frequency 

component in the spectrum). 

Linear filtering (or neighbour averaging ) in two directions. 

A node of the tree which forms part of a larger node. In an octree a 

child node represents a sub-volume of the parent node 's volume. 

A process by which an image is added or merged with another image. 

Discrete Cosine Transform. A reduction of the Fourier Transform to 

one real component. Often used in image compression. 

The mapping of one image to another using some form of two 

dimensional transformation. This transformation may be either linear 

or non-linear. 

A node in a tree which has no child nodes. Leaf nodes in an octree 

are the only nodes which directly reference volume data. 

Compression of data such that on decompression the original data is 

exactly restored. 

Compression of data such that on decompression an approximation of 

106 



node 

normal vector 

occlusion compatible 

octree 

opacity level 

opacity transfer function 

over operator 

parent node 

permutation matrix 

projection matrix 

pyramid representation 

quadtree 

the original data is generated. 

A point in the octree which represents a small cube of data in the 

volume. The size of this cube of data depends on the depth of the 

node within the octree. 

A vector perpendicular to a surface and with a magnitude based on the 

curvature of the surface. In vector calculus this is equivalent to the 

grad vector of a surface. 

Making sure that objects which should appear behind others still 

appear behind, and objects which should appear in front still appear in 

front. 

An abstract tree data structure where every node has at most eight 

children. This may also be visualised as the recursive subdivision of a 

cube along each of the three axes to generate eight smaller cubes. 

The level of non-transparency of an object. A high value indicates a 

solid surface which cannot transmit light, and a low value indicates a 

transparent surface which can transmit light. 

A function by which the opacity of a single voxel is determined. This 

is normally a function of the voxel's value and its gradient magnitude. 

A method of compositing. 

A tree node which has child nodes associated with it. In an octree 

parent nodes never directly reference raw volume data. 

A matrix which permutes the X, Y, and Z factors in a transformation 

matrix. 

A matrix which projects points onto an image plane to create an image 

of the object represented by the points. 

The hierarchical decomposition of an image or volume into a fully 

branched tree. 

An abstract tree data structure where every node has at most four 

children. This may also be visualised as the recursive subdivision of a 

square along each of the two axes to generate four smaller squares. 

107 



RLE 

Shear-Warp Factorisation 

spatial gradient 

splat 

sub-volume 

trilinear interpolation 

voxel 

Run-Length-Encoding. The compression of data by encoding runs of 

equivalent values into a single datum. 

The factorisation of a transformation matrix (which orientates and 

projects a solid on an image plane) into a three dimensional shearing 

and scaling matrix and a two dimensional image warping matrix. 

A 3-vector representing the rate of change of values in a volume at 

any given point for each orthogonal direction. This is usually 

calculated using finite differences. 

The process of compositing a region of pixels onto the image plane. 

An axis aligned cubical region of the original full volume dataset. 

Interpolation between eight points in a three dimensional space using 

linear combinations of the eight points. 

A three dimensional sub-volume in a volume which cannot be further 

subdivided and which contains one single value. (The three­

dimensional analogy of a pixel.) 

108 



AppendixB 

The VOX++ class library 

B. 1 Introduction 

During the development of the octree compression and rendering algorithms presented in this 

dissertation it was necessary to implement and validate the various algorithms. Due to the fact that the 

octree algorithms take effect at various stages in the volume visualisation pipeline, a comprehensive 

framework was required for these algorithms to be implemented. This framework should ideally cater 

for all stages in the processing of volume data in an easily extensible fashion. 

On examining the various forms of data which were processed or produced during the visualisation 

operations, it became clear that there was a very strong relationship between operations and certain 

types of data. This indicated that some form of object encapsulation was required to elegantly 

represent both the data and the operations. Generalisations of certain sets of data types were also 

identified indicating that some form of inheritance and perhaps polymorphism were required. It was 

thus decided to implement a class hierarchy of objects which implement and assist the various stages of 

volume visualisation. 

This class library (referred to as VOX++) was implemented in C++ and provides a reasonably flexible 

and extensible direct-volume rendering framework. The class and object hierarchies are presented 

below, and thereafter a class reference is provided for the various objects in the class library. 

8 .2 Class and Object Hierarchies 

The class hierarchy fl r the class library is depicted m Figure B. I . The mam hierarchy is the 

OAT A OBJECT derived hierarchy. The DATA OBJECT class has two derived objects, VOLUME and 

IMAGE. VOLUME derived objects contain all of the compression and rendering methods and the 

volumetric data itself, while IMAGE derived objects contain all of the two-dimensional image 

manipulation routines. A number of numeric linear algebra classes are provided: 3 and 4 vector 

objects as well as 3x3 and 4x4 matrix objects. The 4x4 matrix object (MA TRIX4) has three inherited 

objects which are special cases of a homogenous 3x3 transformation matrix. These three matrix 

objects allow the manipulation of the orientation of a volume. The PARAMETER hierarchy provides 

109 



a number of very simple objects which encapsulate the various forms of parameters that can be 

supplied during the visualisation process. Parameter objects for: opacity table definition, object 

orientation, light definition, material definition, and image format are provided. 

IMAGE_COMPPARALEL 

MATRIX_MODELUNG 

l,.:aE -~ 
1'- . 

I IMAGE_~PERSPECTI I IMAGE_RGBA I 

I MA~X4 I 

1 MATRIX_ VIEWING l i MATRIX_P~EcnON j 

- J --1 

PARAM_OPACllES I 

Figure B.l- Class hierarchy for the VOX++ cl~ss library. 

I VOLUME 
~ 

VOLUME_RAW I VOLUME_ ALE I I VOLUME_OCTREE I 

MATRIX3 I VECTOR3 r VECTOR4 1 

PARAMETER 

) 
[ PARAM_MATERIALS [PMAM_ORIENTAnON; 

The object hierarchy f the class library is depicted m Figure B.2. This shows the relationships 

between the various objects as either: 

• Input/Output Relationships - The source object is either passed as a parameter to the destination 

object, or the destination object is produced by the source object. 

• Association Relationships - The source object is contained inside, or used temporarily within, the 

destination object. 

110 



MATRIX4 1 
\ 

T 

I IMAGE_RGBA 

,. INPUT/OUTPUT I 
,. ASSOCIATION 

J~M~GE_RGBA I 

... 
PARAM_MATERIALS 

IPARAM_IMAGE 

.\ ¥ 
't PARAM_ORIENTATION ~ 

MATRIX_MODELLING I 

,-MATRIX_ VIEWING 1 

< MATRIX_PROJECTION I 

Figure 8.2- Object hierarchy for the VOX++ class library. 

The standard flow of co trol is as follows: 

I. Create a VOLUME_RA W object to contain the original raw data. This filters and optimises the 

original data. 

2. Create either a VOLUME_OCTREE object or a VOLUME_RLE object from this 

VOLUME_RA W object. This creates the compressed data structure. 

3. Pass a PARAM_OPACITIES object to the VOLUME_RLE or VOLUME_OCTREE object to 

classify the volume and produce another VOLUME_RLE or VOLUME_OCTREE object. 

4. Pass instances of all PARAMETER derived objects to the new VOLUME_RLE or 

VOLUME_OCTREE objects to render an image. An IMAGE_RGBA object is produced which 

contains the two-dimensional image. 

5. Save the IMAGE_RGBA object to an image file . 

8.3 Class Reference 

8.3.1 DATAOBJECT 

Description: Abstraction of all main data objects in the system. It forms the basis of encapsulation 

for all objects which contain actual visualisation data and which operate on that data. 

Objects of this type are never directly instantiated. 

Ill 



Members: 

Methods: 

Data Type 

RefCount 

Flag_ Success 

Flag_ locked 

Flag_AIIocated 

DATAOBJECT 

OK 

Can Read 

Can Write 

Ref 

De Ref 

Lock 

Unlock 

An enumerated type containing the exact type of data (e.g. 

classified octree volume data, or RGB image data) . This allows for 

a degree of runtime type checking. 

A reference count for how many times this object is being 

referenced. This is useful in an event driven GUI where a single 

object may be used in a number of different windows. When the 

object is no longer required in one window it should not 

necessarily be destroyed as it might still be required in another 

window. 

A flag which indicates that the previous operation on the data 

object was successful. 

A flag which indicates that the data object is locked from 

modification. Once again this is useful in a windowed 

environment where one data object may be altered through many 

windows. 

A flag which indicates that the data associated with this object (e.g. 

the actual volume or image data) is currently allocated in primary 

memory. 

Constructor. Accepts the object type as a parameter. 

Returns the value of the Flag_Success member indicating the result 

of the previous operation. 

Returns whether the object may be used in a read capacity. 

Returns whether the object may be used in a write capacity. 

References the object. (Increases the reference count.) 

De-references the object. (Decreases the reference count.) 

Locks the object from write modification. 

Unlocks the object from write modification. 

112 



8.3.2 IMAGE 

Description: Abstraction of all two dimensional image objects in the system. This object provides 

the common memory functions and access functions for images. Objects of this type 

are never directly created. 

Members: 

Methods: 

X len 

Ylen 

IMAGE 

Allocate 

Access 

SetSize 

GetXSize 

GetYSize 

The X size of the image in pixels. 

TheY size of the image in pixels. 

Constructor. Accepts the image type as a parameter. 

A virtual method which allocates the necessary memory for the 

image data based on the X and Y size of the image. 

A virtual function which returns a memory pointer to the allocated 

image data. 

Sets the X and Y size of the image. 

Returns the X size of the image. 

Returns the Y size of the image. 

8.3.3 IMAGE_COMPPARALLEL 

Description: A 32-bit per pixel image with an alpha channel for opacity. This object is used during 

the sl ice compositing process in the parallel Shear-Warp Factorisation algorithm. The 

imag has a secondary data structure which encodes runs of opaque or semi-transparent 

pixel for accelerating the compositing process. 

Members: Pixel Data 

Accellist 

Total Pixels 

A pointer to a memory block containing the pixel data for the 

Image. 

A pointer to a memory block containing the opaque/transparent run 

information. This consists of an array per scan line. 

The total number of pixels in the image. 

113 



Methods: 

TotaiCells The maximum number of run encodings in the image. 

IMAGE_COMPPARALLEL Constructor. 

Clear 

NewScanline 

AddOpaqueCell 

lsOpaque 

Run 

Clears the image to all black pixels with 0 opacity. 

Starts a new scanline for compositing and returns a 

reference to a position in the list of runs . 

Adds a new completely opaque pixel into the list of 

runs. 

Validates whether the specified pixel is completely 

opaque or not. 

Returns the number of pixels to skip or process from 

the specified position. (If the returned value is <0 then 

that number of pixels can be skipped, otherwise it is the 

amount that has to be processed.) 

8.3.4 IMAGE_COMPPERSPECT 

Description: A 32-bit per pixel image with an alpha channel for opacity. This object is used during 

the slice compositing process in the perspective Shear-Warp Factorisation algorithm. 

The image has a secondary data structure which encodes runs of opaque or semi­

transparent pixels for accelerating the compositing process. This object also allows for 

a re-sizing factor for each of the slices. 

Members: Pixel Data 

AcceiData 

Total Pixels 

TotaiCells 

XMapping 

A pointer to a memory block containing the pixel data for the 

image. 

A pointer to a memory block containing the opaque/transparent run 

information. This consists of an array per scanline. 

The total number of pixels in the image. 

The maximum number of run encodings in the image. 

The mapping of X pixels in the compositing slice to X pixels in the 

114 



YMapping 

CurDepth 

image based on depth . This takes the form of a two dimensional 

array with each element containing a position and a count. The 

first dimension of the array corresponds to the depth of the slice 

and the second dimension corresponds to the X-position in the 

slice. This array is calculated using Grey-Codes and provides for 

the efficient scaling of slices with zero-order interpolation. 

Same as XMapping except for Y pixels. 

The current slice depth which is being composited. 

Methods: IMAGE_COMPPERSPECT Constructor. 

Clear 

GetlmagePtr 

Initialize 

SetDepth 

Add Pixel 

Run 

8.3.5 IMAGE_RGBA 

Clears the image to all black pixels with 0 opacity. 

Returns a pointer to the image pixel information at a 

specified position. 

Initialises the mapping tables based on a scaling 

factor for the slices (based on depth) and a slice­

inversion flag. 

Sets the current slice depth. 

Composites a new pixel into the image. The pixel is 

automatically resized before compositing based on the 

current slice depth and the position of the pixel. Also, 

the run encodings are automatically updated when 

some of the composited pixels are completely opaque. 

Returns the number of pixels to skip or process from 

the specified position. (If the returned value is <0 

then that number of pixels can be skipped, otherwise 

it is the amount that has to be processed.) 

Description: A 32-bit per pixel image with an alpha channel for opacity. This image is used as the 

output of all the rendering methods. 

I 15 



Members: 

Methods: 

Data 

Total Pixels 

IMAGE_RGBA 

Clear 

GetlmagePtr 

SaveBMP 

SaveTGA 

A pointer to a memory block containing the pixel data for the 

Image. 

The total number of pixels in the image. 

Constructor. 

Clears the image to all black pixels with 0 opacity. 

Returns a pointer to the image pixel information at a specified 

position. 

Saves the Image in a file using the Microsoft Windows BMP 

format. 

Saves the Image m a file using the Truevision TARGA Image 

format. 

8.3.6 MATRIX3 and MATRIX4 

Description: These objects implement a C++ data-type encapsulation for a 3x3 and a 4x4 matrix. 

Members: 

Methods: 

The objects actually contain arrays of the VECTOR3 and VECTOR4 objects to contain 

the 1 atrix data. Numerous matrix, matrix-vector, and matrix-matrix operations are 

supported. 

vlist 

MATRIX3 

MATRIX4 

operator* 

operator+= 

A list of vectors (VECTOR3 or VECTOR4) which comprise the 

rows of the matrix . 

Constuctor. Default and copy constructors are provided. 

Performs a matrix-vector (right-handed) dot product and returns a 

vector. 

Adds a matrix to this one. 

116 



operator-= 

operator*= 

operator*= 

operator/= 

operator[] 

operator!= 

operator== 

Invert 

Transpose 

Det 

Adjoint 

Clear 

Identity 

Subtracts a matrix from this one. 

Multiplies this matrix with another. (right-handed) 

Multiplies this matrix with a scalar. 

Divides this matrix by a scalar. 

References a particular row vector. 

Tests the inequality of two matrices. 

Tests the equality of two matrices. 

Inverts the matrix. (Returns TRUE if successful.) 

Transposes the matrix . 

Returns the determinant of the matrix. 

Returns the adjoint matrix for this matrix . 

Clears the matrix by setting all values to one value. 

Sets the matrix to the identity matrix. 

8.3. 7 MATRIX_MODELLING 

Description: A 4x4 matrix derived from MATRJX4 which implements the modelling transformation 

matrix used during rendering. This matrix specifies the orientation of the volume in 

world-coordinates. 

Members: 

Methods: 

{none} 

MATRIX_MODELLING Constructor. 

Translate 

Scale 

RotateX 

RotateY 

Translates the volume along each axis. 

Scales the volume by a proportion along each of its axes. 

Rotates the volume around the world X-axis. 

Rotates the volume around the world Y -axis. 

117 



RotateZ Rotates the volume around the world Z-axis. 

8.3.8 MATRIX_PROJECTION 

Description: A 4x4 matrix derived from MA TRIX4 which implements the projection transformation 

matrix used during rendering. This matrix specifies the nature of the projection of the 

volume in world coordinates onto the image plane (in world coordinates). The eye is 

always assumed to be at (0,0,-1) and the volume is centred around the origin with a unit 

size. 

Members: {none} 

Methods: MATRIX_PROJECTION Constructor. 

Parallel 

Perspective 

8.3.9 MATRIX_VIEWING 

Builds a parallel transformation matrix using the viewing 

frustum parameters. (In the same fashion as the g/Ortho 

function in OpenGL.) 

Builds a perspective transformation matrix using the 

viewing frustum parameters. (In the same fashion as the 

g/Frustum function in OpenGL.) 

Description: A 4x4 matrix derived from MATRIX4 which implements the viewing transformation 

matrix used during rendering. This matrix specifies the position of the eye (or camera) 

in the environment as a transformation from the position of the eye to (0,0,- I). 

Members: {none} 

I 18 



Methods: MATRIX_ VIEWING Constructor. 

Position Specifies the x-y-z position of the eye in world coordinates. 

8.3.1 0 PARAM_IMAGE 

Description: Contains the dimensions of the output image. 

Members: 

Methods: 

Width 

Height 

{none} 

Width in pixels of the image. 

Height in pixels of the image. 

8.3.11 PARAM_OPACITIES 

Description: Contains the definitions for the opacity transfer function used during classification and 

rendering. 

Members: 

Methods: 

Value Table 

GradientT able 

A table of opacities (0-255) corresponding to different voxel 

values. 

A table of opacities (0-255) corresponding to different spatial 

gradient magnitudes. 

MinimumOpacity The minimum opacity value before complete transparency 1s 

SetValueOpacity 

assumed. 

Sets up the table of value-opacities my linear-interpolating 

between specified points in the table given their opacities. 

119 



SetGradientOpacity Sets up the table of gradient-opacities my linear-interpolating 

between specified points in the table given their opacities. 

8.3.12 PARAM_LIGHTS 

Description: Contains the definitions for all the lights defined in the world which illuminate the 

volume. All lights are assumed to be purely directional lights. 

Members: Numlights 

Directions 

Intensities 

Methods: {none} 

The number of lights defined. 

An array of direction vectors for each light. 

An array of intensity values (0 to I) for each light. (pure white light 

is assumed) 

8.3.13 PARAM_MATERIALS 

Description: Contains the definitions of the materials corresponding to certain voxel values. (The 

Phong shading model is assumed.) 

Members: NumMaterials 

Ambientlist 

Diffuse list 

Specularlist 

Cone list 

Mapping 

The number of different material definitions. 

The ambient light emitted/reflected by each material. 

The diffuse light reflected by each material. 

The specular light reflected by each material. 

The shininess of each material. 

The mapping ofvoxel values to material index. 

120 



Methods: {none} 

8.3.14 PARAM_ORIENTATION 

Description: Contains the matrices specifying the orientation and viewing parameters for the volume 

in world coordinates. 

Members: Model Matrix 

ViewMatrix 

ProjectMatrix 

Methods: {none} 

The modelling matrix. (MATRlX_MODELLING) 

The viewing matrix. (MATRIX_ VIEWING) 

The projection matrix. (MA TRIX_PROJECTION) 

8.3.15 VECTOR3 and VECTOR4 

Description: These objects implement a C++ data-type encapsulation for a 3-vector and a 4-vector. 

Members: 

Methods: 

The objects actually contain the values for each element of the vectors. Numerous 

vector arithmetic operations are supported. 

X 

y 

z 

w (VECTOR4 only) 

VECTOR3 

X element. (First) 

Y element. (Second) 

Z element. (Third) 

W element. (Fourth) 

Constructor. Default and copy constructors are provided. 

121 



VECTOR4 

operator* 

operator+= 

operator-= 

operator*= 

operator*= 

operator*= 

(VECTOR4 only) 

operator/= 

operator[] 

operator!= 

operator== 

Set 

Normalize 

Normalize3 

(VECTOR4 only) 

Performs the dot product of two vectors. 

Adds a vector to this one. 

Subtracts a vector from this one. 

Multiplies this vector with a scalar. 

Performs the cross product of this vector with another. 

Performs left-hand multiplication with a 4x4 matrix. 

Divides this vector by a scalar. 

Returns the specified element of the vector. 

Tests the inequality of two vectors. 

Tests the equality of two vectors. 

Sets the values in each element of the vector. 

Normalises the vector. (i.e. Makes it length 1.) 

Normalises the vector using homogenous coordinates. 

Scale Scales the vector to be a specified length. 

Clear Clears the vector by setting all the elements to a particular value. 

Homogenize Generates a 4-vector from a 3-vector by adding a homogenous 

(VECTOR4 only) coordinate. 

DeHomogenize Generates a 3-vector from a 4-vector by dividing out the 

(VECTOR3 only) homogenous coordinate. 

8.3.16 VOLUME 

Description: An abstraction of all three dimensional volumes in the system. This object provides the 

common memory functions and access functions for volumes. Objects of this type are 

122 



never directly created. 

Members: 

Methods: 

Stage 

X len 

Ylen 

Zlen 

VOLUME 

Access 

operator= 

Set Size 

GetXSize 

GetYSize 

GetZSize 

8.3.17 VOLUME_RAW 

The stage at which the volume data is. (raw or classified) 

The X dimension of the volume in voxels. 

TheY dimension of the volume in voxels. 

The Z dimension of the volume in voxels. 

Constructor. 

A virtual function which returns a memory pointer to the allocated 

volume data. 

A copy constructor for the data in the VOLUME object only. 

Sets the dimensions of the volume. 

Returns the X dimension of the volume. 

Returns the Y dimension of the volume. 

Returns the Z dimension of the volume. 

Description: An encapsulation of a raw three dimensional array of volume data. The data may be in 

one of two states: (I) Original raw form; and (2) an optimised and filtered form. 

Various operations are available for parsing volume data files and for optimising these 

datasets once they are parsed. 

Members: Raw Data 

RawHeader 

A pointer to a memory block containing the volume data. 

A structure describing the nature of the volume: 

• dimensions, 

• physical size, and 

• size of voxel elements. 

123 



Methods: VOLUME_RAW 

Parse 

Load 

Save 

Configure 

Optimize 

BuildHistogram 

Constructor. 

Parses a file of raw volume information using the information 

provided to the Configure method (below). 

Loads a previously saved VOLUME_RA W object. 

Saves a VOLUME_RA W object to a file. 

Configures the volume data parser given: 

• dimensions of the volume, and 

• bytes per voxel. 

Optimises the range of values in the volume and converts each 

voxel to a byte. Accepts: 

• Minimum and maximum values in original data . 

• Little-endian, Big-endian flag. 

• Signed integer flag. 

• Bit mask (used before optimising). 

Builds a histogram of the raw data by generating an array (each 

element represents one possible voxel value) where each 

element contains the number of voxels with that particular value. 

GetBytesPerVoxel Returns the bytes per voxel in the volume. 

8.3.18 VOLUME_RLE 

Description: An encapsulation of an RLE compressed data volume. The volume may be in either a 

unclassified or a classified state. Various methods are provided to compress, classify, 

and render the data. This object contains the classic implementation of the Shear-Warp 

Factorisation algorithm. 

Members: RleHeader A structure describing the nature of the volume data: 

124 



RawData 

Sticks 

RawY 

SticksY 

RawZ 

SticksZ 

Shade Table 

• dimensions of the volume, 

• bytes per voxel, 

• raw size of the volume, 

• raw size of the stick list (described below), 

• number of opaque voxels, 

• low and high cutoff thresholds . 

A pointer to a memory block containing the volume data in X-Y -Z 

order. 

A two dimensional array containing pointers into the volume data 

where each new X-stick begins. This array references the beginning 

of each one dimensional list of voxels beginning on the X-minimum 

side of the volume. (This allows for efficient leaping to certain 

positions as each scanline is not necessarily compressed by the same 

amount.) 

A transposed copy of the volume in RawData using ZXY order. 

The stick list for RawY. 

A transposed copy of the volume in RawData using YZX order. 

The stick list for RawZ. 

A multi-dimensional array with dimensions for material number, light 

number, and normal value, and each element contains an RGB triple. 

This table allows for very efficient rendering by performing all the 

expensive Phong shading computations once before-hand. 

{Parameters} A copy of all the parameter objects currently being used. 

FinaiMatrix The result of merging the modelling, viewing, and projection matrices 

with the permutation matrix . 

TraversaiDir 

Shear! 

ShearJ 

Trans I 

TransJ 

WarpMatrix 

The direction of slice traversal through the volume. 

The shearing factor in the transformed X direction. 

The shearing factor in the transformed Y direction. 

The translation factor in the transformed X direction. 

The translation factor in the transformed Y direction. 

The image warping matrix which converts the intermediate 

compositing image to the final image. 

125 



Methods: 

Complmage 

Finallmage 

VOLUME_RLE 

Load 

Save 

Construct 

Classify 

Render 

GetHeader 

Getlmage 

Memory Used 

The intermediate compositing image. (IMAGE_COMPPARALLEL) 

The final image. (IMAGE_RGBA) 

Constructor. 

Loads a saved VOLUME_RLE object from a file. 

Saves a VOLUME_ RLE object to a file. 

Constructs the data in the VOLUME_RLE object from a 

specified VOLUME_RA W object. The low and high 

threshold values must be supplied as well. This will then 

perform the initial RLE compression on the volume. 

Classifies the compressed RLE voxel data g1ven a 

PARAM_OPACITIES object. 

Renders a parallel projection of the RLE data using the Shear­

Warp algorithm. All parameter objects must be passed for the 

rendering to occur. If certain parameters change between 

renderings then the affected internal tables will be re­

computed. 

Returns the RleHeader data structure. 

Returns a reference to the Finallmage object where the 

rendered object will be. 

Reports the amount of runtime memory currently being used 

by this object. 

8.3.19 VOLUME_OCTREE 

Description: An encapsulation of an octree compressed data volume. The volume may be in either a 

unclassified or a classified state. Various methods are provided to compress, classify, 

and render the data. This object contains most of the algorithms presented in this 

dissertation. 

126 



Members: OctHeader 

RawData 

BaseOctree 

RenderOctree 

Traversal list 

PrspTraversallist 

LimitData 

Shade Table 

A structure describing the nature of the volume data: 

• dimensions of the volume, 

• bytes per voxel, 

• raw size of the volume, 

• number of nodes in the octree, 

• number of opaque voxels, 

• low and high cutoff thresholds, 

• minimum and maximum values and gradients in the octree, 

• the type of leaf-node compression used, and 

• average value, gradient, and nonnal in the entire volume. 

A pointer to a memory block containing the raw volume data 

which is referenced by the octree data structure. 

The basic octree data structure which is constructed and used for 

transmission and classification. 

The secondary octree data structure (structurally the same as 

BaseOctree) constructed during classification and used for 

rendering. 

Parallel rendering node traversal order. This is set up prior to 

rendering as it depends on traversal direction and shearing 

factors . 

Possible perspective rendering node traversal orders. This list is 

calculated before rendering based on viewing direction , however 

further reduction is performed during rendering based on node 

shearing and scaling. 

A data limit representing the amount of valid data in the 

BaseOctree structure and then the RawData memory. This 

value will increase as new data is transmitted until it is equal to 

the total size of the octree and all the raw data. All classification 

and rendering algorithms check this value to know when to 

approximate missing data. 

A multi-dimensional array with dimensions for material number, 

light number, and normal value, and each element contains an 

RGB triple. This table allows for very efficient rendering by 

127 



Methods: 

{Parameters} 

Final Matrix 

TraversaiDir 

Shearl 

ShearJ 

Trans I 

TransJ 

WarpMatrix 

Complmage 

Finallmage 

OctCache 

performing all the expensive Phong shading computations once 

before-hand. 

A copy of all the parameter objects currently being used. 

The result of merging the modelling, viewing, and projection 

matrices with the permutation matrix. 

The direction of slice traversal through the volume. 

The shearing factor in the transformed X direction. 

The shearing factor in the transformed Y direction. 

The translation factor in the transformed X direction. 

The translation factor in the transformed Y direction. 

The image warping matrix which converts the intermediate 

compositing image to the final image. 

The intermediate compositing image. 

(IMAGE_COMPPARALLEL or IMAGE_COMPPERSPECT) 

The final image. (IMAGE_RGBA) 

The octree node cache array used during classification. 

VOLUME_ OCTREE Constructor. 

Load 

Save 

Construct 

Classify 

Render 

GetHeader 

Loads a saved VOLUME_OCTREE object from a file. 

Saves a VOLUME_OCTREE object to a file. 

Constructs the data in the VOLUME_OCTREE object from a 

specified VOLUME_RA W object. The low and high 

threshold values must be supplied as well as the maximum 

octree depth . This will then perform the initial octree 

compression on the volume. 

Classifies the compressed octree voxel data g1ven a 

PARAM_OPACITIES object. 

Renders a parallel or perspective projection of the octree data 

using the Shear-Warp algorithm. All parameter objects must 

be passed for the rendering to occur. If certain parameters 

change between renderings then the affected internal tables 

will be re-computed. 

Returns the OctHeader data structure. 

128 



Getlmage 

Memory Used 

Returns a reference to the Final/mage object where the 

rendered object will be. 

Reports the amount of runtime memory currently being used 

by this object. 

129 



Appendix C 

Graphs 

130 



: :: : 
t-""'l 'i = :: ""'(.,....,-

I 
I 
I 
i 
' 

-=--~~, 
I 
~ 
I 
I 

f 
I 
> 
1 
I 

' I 
~-~::::- s-- ,~-I 

I , 
1 
I 
1 
I 
! 

' 
j 12 

::: :· .. -·--

-·' 
r.:..: ••••• .._. ,. --

.> SSl 

t>Sl 

OC:l 
99 

c:s 
!H 

VSl 
OSl 

9ll t 
c:a c! 
av l 

:l J 
9tl 11 

.ll 
C:H t 
SL ,3 

---- ·------ """"'---=::;-~----- j_ i ------ -;.-. :::-<·.~-
» 

_ _ _ _ _ _ Ol 

9Ll 

C:tl 

SOl 
tL 

-' 
' 

I ()11 
1 

) ---------- 9 ---------- ·- , - ~.--- "'Ll 

I '· v 

1
1 

SE:l 
~ ~l 
I 

4 ~ 

: 9E 
: ~----~~--~--~--~~~r---~--~--~ c: 

~ ~ § 0 

(spuo:»e~uuw) aw11 



I 
I 
' 1 

1 
I 
I 
I 
I 

, 
' I 
I 
I -. 
I 

J 

--:::..-.., 

' I 
I • i 

' I 
I 
I 

j _ ....c..:. __ 

~ . 
' 1 

I 
I 
I 
) 

I 
I 
I 

J ....., 

~ ~ 
(Spll0:)8tlf11!W) 8WJ.1 

- .... - .- .: ----: : ·_ ------- .. ! 
' 1>6~ 

• <>"- ·- ·.·: -· .·:.--- • ·- • r 

_.: : -.-. ·- ·: _- :: --.- ---

< .----·· . - . - - - ---- 1 

' 
•' 

;· 
·' ' 

' 
·' 

C:9~ 

oc~ 

96 

99 

1>& 

c; 

OH 

9£~ 

90~ i vl 
ev !!' 
0~ 1 9H 
9t~ • 

.II 
... ~~ ~ 
C:9 

OS 

9~ 

99~ 

vs~ 

ee~ 

06 

as 
ge 

1>6~ 

C:9~ 

OCl 
B6 

99 

1>& 

e 
0 



' 
~
~
 .
..

 K
ne

e 
D

at
aa

rt
 

r:
:=

-_
-~
 _-

::-:
-F

tio
ui

lri
-,g

: .
::-

::-
: ~
 _

_:
__

:_
 rc

iSJ
·i 

c
=

: 
_

_
_

 -
-

-
-

--
-

40
C0
r
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
,
 

35
00

 

3(
XX

J 

'\ \ I
,
 

1: =
 

! 
~ ..

. 
, 

....
. 
•
-

...
...

..
..

 1
. 

..
. ,

_
..

..
,.

_
_

 

I 
I 

l 
"-

-I
 

~
 i

\ 
~
 

I 
~~~

 ... '"-
''"

1=

 1
50

0
1\

\
! \

'--.

1
"-

....
..

'-
J

--
-•

-.
..

-
\

II
I

·~
I

-'
"-

--
-~

--
-'

.";

1
'~

~
I

"'
-"

"
'-

"-
.,

""
'-

-"
"-

.. '·
d

,
,_

.'.
··

·
1<

XX
H

.-~~
 . .,..

.~--
.::

:-.
..:

::.
.-:

;:.
::.

:. 1
•·

-.
'"
-
-
-
-
-

,
...

 _
_

 _.
 ..

. "
':

.
:·~

~
.
.

. -
-·-

-.
-.

. '

50
0

~._
 l ·',

-..
...

 ··
··

~....

\.'
•-

.... _
_

.....
.....

'•

 .. ,

.,
-·

H-
~

"·
j

0
c.

;
II

.
-
-

•
..

..
.

-.
, •

.

N

~

~

Sl
~

~

~

N

IN

N

'If
"

..
..

~

~

~

Sl
~

~

-..
....

....
.
-

N

IN

IN

C\
1

co

.....
.

...

,....

--
-N

N

C\

1
N

('

)
"
'

0>

L
e¥

B
is

at
 ln

c:
re

es
ln

g
D

ap
th

s

~

~

~

N

IN

N

-
'If

"
..

..

e ~

 ~
 IN

N

N

N

C\

1
0

)

C\
1

II
)

a
)

-
~

~

F
ig

ur
e

C
.3

-
P

er
fo

rm
an

ce
 o

f t
he

 o
ct

re
e

co
m

pr
es

si
on

 a
lg

or
it

lu
n

(w
it

ho
ut

 n
od

e
co

m
pr

es
si

on
)

on
 t

he
 M

R
 K

ne
e

da
ta

se
t a

t
si

x
di

ff
er

en
t

de
pt

hs
 a

nd
 f

or

nu
m

er
ou

s
le

ve
ls

.

13
3

T
]FJ r

; I
I I';
~ ~ ~ ~
I
!i
'8

I

<
>
1
)
1

(

/ ;

--- -.. .:.:. -=~ --- ----- - --- :...

·'

, .
--====::::::::......=o~~, • .:::::::~·-:~--- ··:

I
I
I

l

J . •
)

-======--,s:::.:.-r-~ :_ -·- -·---- -·- :-·

1
1

' l
1
1

i

,.

' ·'

' .. ,--
}

'

0

i:6l

ll!il

t(!l

06
9S

(!(!

88l

t>Sl

O<:l

99

as
8l

tel

OSl

9H

(!8

8t

tl

08l

9tl
(!ll

9L
l't

Ol

9Ll

C:tl

SOl

tL

Ot

9

aLl

eta
~l

OL

9£

a

I
r
I •
1

---.
s::
0 ·v;
"' ~
0..
E
0
(.)

<U -o
0
s::
'5
0

..c
·~
'-'

~-------------==-~--~~~~-~~--=-~-------n ~6~

8~H

~><H

06

9S

~
-===~...:=.::=--.,-l 88l

'
' I
' <

' >

'

' i

tSl

Wl

98
~g

Ill

Hll

I O!H

9H ~

~~~ " 
lit> l 

---- --------·----·---- --·~---==~==-~--::.-::.:: __ ~>l I 
08~ .2 

(teiAq) HIS IU~~t~nsey 

l 91>~ • . ) j 
_; ~H 

} SL ~ 
j 

1 

' ' ' ---=-----..:::::.. -

' < 
1 
< 
l 

J 

' I 
' 1 

I 

' 



I 
I 

' J 
I 

< 
1 

" 1 
' 

----

- - ======;;;;;;;;;:...;;;:.;;;;..._._o,.;;;_;:;...:;;;_, __ --- ""'\ 
I 

·' 1 

' 
' i ·, 

' J 

,-
} 

' ' ·; 
; 

1 

·' 

I --

~l 

I!Sl 

·~l 

06 

9S 

u 
81H 
VSl 
OGl 

98 

~s 

8l 
V!ll 

OSl 

VL 

ov 
- - ---- - - - -- - --- ----- --~==..-.:.::.::.::.~-- --, 9 

i 

I 
< 
J 

I Ul 
,I 

.r··-- 8&1 
VOl 
OL 
9& 

- -- --
1-----L+---t---+----~ --+-~ ______,.~~~ -....--~ ---to G 



I 
I 
i 
l5 

1 

I 
I 
I 
I 
I 

I 
I 

9!H 

vs~ 

~~~ 

06

ss
9~

l'S~

~9~

()f;~ ,.
86

99

---------:-:_:::-... ----- -- - -- - -- - - -
M:

~

OH

BE~

90~ t
~L a
~~ z
0~ I
8H B
~~ 11

Jll

w~
~9

OS

--- 9~

99~

vs~

~u

06

ss
/ -- ____ ..,-

-----~.:...-=--:;_-_;;=_;;::-_-_-::..:::.::::::.::: -------- =- ~ -- =-~ -

9~

l'S~

l9~

()f;~

86

99

M:

~--L-~----~~~-~-~-=-~-~--=+-~-~-~-~-~----·----~----------~----------~·- ~
0

,.-..
c::
0 ·v;
"' ~
0..
8
0
u
<l)

'"0
0
c::
'5
0

-B
"§:
'-'

-
~
-

~

_
_
_
_
_
,
.
.
,
.
-
-
-
~
_
.
-
;
-
-

~
~

80
00

00
0

70
00

00
0

80
00

00
0

~
~

i 4
00

00
00

J :I
 i

30
(X

X
)()

()

20
00

00
0

\ I

10
00

00
0 0

C\
1

''.
, '\

 ' \ ' \
' \.

, ~
~
-

l II II 1: II
 I• ! \

1
\

I
',

I

.
\

I
\

I
'

I
'\

 ~-
_

, C
om

pr
eS

!II
on

 L
ew

is
 o

f M
R

H
ea

d
D

at
a•

t

[-
-
~

-
-·

--
_:
~
 v

;;
;J

I 1
\ I\
 \

I
~,

I
'\

I

\
I

\
I

\
..

I
'\~

·--~
I

\
\
' \.

 \ ' I \ ..
 \ .

.

~

~

~

~

~

~

~

g
~

~

~

~

R
 ~

~

~

~

g
<D

C\

1
(1

0
(\

1

18
0';

~

.....
.

..-
,_

..-

~

$
~

~

r!
~

~

~

~

~

~

--
-

-
-

F
ig

ur
e

C
.8

-
C

om
pr

es
si

on
 r

es
ul

ts
 f

or
 t

he
 o

ct
re

e
co

m
pr

es
si

on
 a

lg
or

it
hm

 (
w

it
ho

ut
 n

od
e

co
m

pr
es

si
on

)
fo

r
th

e
M

R
 H

ea
d

da
ta

se
t.

13
8

~
s
i
a
n
 o

f c
r H

ea
d

D
at

as
et

-
-
-
-
-
-
-
-
-
-
-
~
-
,
-
.
.
.
-
~

-
-
-

-
ai

ld
rO

 -
·-

· -
A

eo
rd

er
i'g

 ·
· ·

 ·
· ·

 ·
O

ln
y:

te
ss

io
n
--

T
o

ta
l

00
00
.
-
-
-
-
-
-
-
-
-
-
-
,
-
-
-
~
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
~
~
-
-
-
-
-
-
-
-
-
-
-
~

45
00

4(
X

X
)

36
00

• ill

-
•\
.-

_
._

-
_,

_
_

,_
_

 ..

it
 :l

X
X

)

l 125
00

i la
m

I=

 15
00

ta
x>

50
0

..
..

 "
-

··
-

'-
··
-
-·
~"
--
·-
-

.
..

.
.
-
,I

 i ~·· -
~ ...

r

~
'-

-·~

r~
-

•
.'
--

~-
-•

•
_,

,·
~_

 .. _
_

 .,
 ..

--
~~

-··

~
-"-

··~
~ .. -

..
,.

_
_

 j
-

--
--~

-·

--
-·

l
_

_
_

_
 ,

t ':[:
 •. .,
'. ,

....
 , ··~

 ·.
•.· ..

.. -
-

' !: r··

. .
 . ~

" ..
·' ..

. '
•.

; ., :, ·;
... ··.

 ·;

•
... _

·-
"'~

 '•
..

·:

'•

'•

.,
,,

... ,

 ...

0
···

-·

N

~

~

~

~

~

~

~

~

e

~

~

~

~

~
~

!

~

~

~

~

~

§

~

~

~

~

~

~

~

~

~

~

Le
ve

ls
 a

t l
n

a'
ea

ln
g

D
lp

th
s

~

:8
~

--
-

F
ig

ur
e

C
.9

-
P

er
fo

rm
an

ce
 o

f t
he

 o
ct

re
e

co
m

pr
es

si
on

 a
lg

or
it

hm
 (

w
it

h
no

de
 c

om
pr

es
si

on
)

on
 th

e
C

T
 H

ea
d

da
ta

se
t a

t s
ix

 d
if

fe
re

nt

de
pt

hs
 a

nd
 f

or
 n

um
er

ou
s

le
ve

ls
.

!3
9

'
~· -----~====--~~..;.; H '·-·.:· ;:: - ·. ----,

I
I .. . J
l .

>

·--====::::::::.... _ __,.-. =-. ; -..::.r~ ·..., : ·_-- '"':
I
1 . , .-· '
~
~ ,

;" j:
:- I
' t

I

' • • -:.::_j .
l ,

~
(lpUO:MISJJIIW) 8W1.1

I
~

~
I

')

'

~~

'· 8~H -·
via
06

9!i

c:c:
88~

~~

oc:~

88

c:s
8~

VB~

o~a

9H

C:8

8V

v~

08~

9V~

«m
8L

»
0~

9H
C:Vl

80~

VL
ov
9

C:H
8&l

tO~

OL
9£

c:
0

i
I

J
11

I

,.-.,
c
0 ·v;
"' ~
0..
E
0
u
<!)

"0
0 c

-B
- ~
'-'

J
J

!

I

I
i

~ f
J I

I

f

-I
I

f
1
1 , _,

______ _ :: -::

<
I
I
'
' 1
f
-, . -

.·

-;:: ... ~- --- -- --=========~~~~~~ I

I
<
1 -
I .- ·
I ; .,
I o

} i
I ­-,),

. . I

'"""'=======::::i:·:...:·"'·.:.·.:..,· .. ·. ·. ·. ·. ·.·:: ;.;~-~'
o I

I
I

_;
I

-:

:·

-·

99l

IISl

~l

06
gg

9Z

l'Sl
~lH

O£l
86
99

M.:

~

OH
8£l

90l
,_L

~· Ol
8Ll

9t>l
,_H

~9

og

8l

98l
tSl
~~

06

gg

9Z

l'Sl

~lH

O&l

86
99

.....
Q
0
~ :a
>(

·v;
(<j

0
"' «l
(<j
"d
0
0

::2
~
~
0

-5
Q
0 ,...._
Q
0 ·v;
"' 0
0..
E

i
0
(.)

0
"d
0

l c::

J
-5
· ~
'-'

11 ~
I ·c:

0
00
c;

Q
0 ·v;
"' 0
0..
E
0
(.)

0
0
u
0
0

-5 00
'+-< d) 0 > 0 0
u-
Q

"' «l ::l

E 0
<2 0

.... § 0
0.. Q

li
I .

~~----~---=~----~--~~.~~~~--~~~ 00~

<
1
I .. • .•

· '

1
1 t~H

J

9~~

<:8
9t J r

----========:::::.....~__,...,;....1 ..._.. ·~";.;,·~·' '::_::. ,_ ,, ••• , r ,,, , 0~
I
I

I
~
'I

:

: tll
I

8&~

<:0~

99

,• oc

; /
I

1
1

f

; f

r
' l ,
' <

_I

·'

,>

,'

-~====-~...:.·o..;.;--•j2'-'- '::.:.=-:_.- - --- - -_-,
t . ~
I -·

~ ,:"'
,. ,i.·J

' ' ~ 1
• I ... ,·., ---· ·.: =~-=---,

i 1
\ I

'

I
I

,I

l
1
<
1

-:

te:
96~

<:9~

9<:~

06

tS

8~

<:9~

9t~

ou
tL

8C
'

~----~--~----~----~~~-+----~~~~-~·----~----_; <:
0

(lpUO:MIStllfW) 8WI.L

De
co

m
p8

81
11

on
 o

1
cr

 H
ea

d
D

at
a•

t

,--
~
e
s
s
i
O
n

~
--
-
-
~
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-

45
0

40
0

.

35
0

I:
~

=
 ! l:m

I=

15
0

10
0

,_

50
 O
L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
~

N

~

0
•

~

N

W

0
•

®

N

W

0
•

~

N

~

0
•

~

N

~

0
•

~

N

~

0
•

®

N

~

0
•

~

~

0
M

~

~

~

0
~

~

-
•

~

=

 ~
~

~

~

~

=

 ~
~

-

~

~

~

~

~

~

~

~

N

~
~
-
~
~
~
~

~

~

~

~

F
ig

ur
e

C
.1

3-
D

ec
om

pr
es

si
on

 p
er

fo
rm

an
ce

 o
f t

he
 o

ct
re

e
al

go
ri

th
m

 (
w

it
h

no
de

 c
om

pr
es

si
on

)
on

 t
he

 C
T

 H
ea

d
d

at
as

et

14
3

2:6~

89~

trC:~ a)
Vl

06 "" (<j
9S "0

<I)

c:c: c:
"So

IHH c:
W-l

trS~ <I)

-B
oc:~ c:

0
99 -c:
c:s 0

"<ii
Vl

!H <I)

triH
0..
E

OS~
0

J
u
<I)

:~I
"0
0 c:

I! r £

r atr I · ~

·~ I
...._,

'! oo~ I ~ s 9tr~ 11
·c
0

I I mi Oil
"@

8L ,3
<I)

e u
0
<I)

0~ £
9L~

......
0

C:tr ~
<I)
u
c:

80~ "" E trL
~

Otr <I)

0..
9 c:

0
C:L~ ";jj

Vl

8&~ e
0..

trO~ E
0

OL
u
<I)

0
9£

c:
...,
.....

~ ~ ~ ~ ~ ~ e ~ ~ ~ 0 u
Q,j

(apuooesuuw> ew1.1 ""' = Oil

ii:

98~

~!.a
0

(Z~ </)

«:1

06 "l -o
as d)

d)

9<: ~
176~ ~

1:9~
~
d)

()£~ £
c

86 0
,.-.,

99 c
.Q

tt: </)
</)
d)

<:
0..

OH E

J
0

at~ u
d)

90~1 -o
0 c

I
T

~L c!!J .s
<:t> I - ~

I I I 0~ I '-'
I I - - - -- ----- - - --~--- .§ '8 8L~ ~

& 91>~ 'I ·E

lL 0

l
.!t bO

t>H ~ c;;
d) c:a d)

b
OS u

0
a~ d)

- - - - - - .s
98~ '+-<

0

""'~ d)
u

(Z~ c
«:1

06 §
as .g
9<:

d)

0..

176~
c

.Q
1:9~

</)
</)
d)

()£~
....
0..

86 E
0
u

99 d)

a
tt:
<:

1/) -~ ~ ~ ~ ~ ~ e ~ ~ ~ 0 u
d)

(spuooesuuw) ew1.1
= t)j)

fi:

t
rJ)

"' 06~
"' "' .. ~H
"' "' 8H II)

::r:
1:8 ~

9to ~
II)

0~ £
"LI

s::
0

8£~
,......_
s::
0

1:0~
·;;;

rJ)

99 ~
0..

0& E
0

MH
(.)

II)

I 8Sl "' 0 s::

~ :li £
- ~

I I
'-'

~I
E ...c: i .. l ·E

lS 8Ll
0
00

6 :: i "@

I II)

l
II)

b
(.)

OL 0
II)

to& £
86l 0

II)

1:9l (.)

s::
"' Si:l §

06 c.E
to!;

II)

0..

8l s::
0

1:8~
·;;;

rJ)
II)

9tol 0..

OH
E
0
(.)

.. L II)

0
8£

\C)

z -
~ e ~ ~ 0 cj

Q.l

(apu~IIIIW) 8WIJ. J.

= 1:)1)

~

~6l 0
J "' I BSl ~

·' 00
, < V~l

-o
'
~ -o

' 06
00

/ <!)

,' 99
::r:

A f-.;

' ' ~ u -- __ .. -
<!)

SSl ..c:
....

VSl r.8
OGl .-...

c::
0

99 ·;;;
"' ~
<!) - 0..

' 8l E
0

VSl ()

<!)

I OSl -o ,, 0
c::

~ ~ 9H .! -5

I 1sl ~a I · ~
'--'

av f ~ u I I
Vl : I ·c l5 oa~ B 0 ., t bl) I .,

c;j l

l';
' ' 9V~ • -

u~ l c::
~ / 0

s /
8L ~

·;;;
"'

I
<!)

l_j
' » 0.. , . E _, 0 Ol ()

9Ll
<!)

; <!)
>

.:'
~trl u

/ ' 0 -- <!) - SOl -5 1 -' vL
~ 1 r.8

'
/ ov

~'"'
!!) ----- 9 "3
"' ·' Ul ~ / Q

'
,• atl 0

'
~- ·;;;

' t>Ol "' ,- <!)r OL 0.. -- E -•' 9t: 0 -' u
~

~ ~ ~ ~ ~ ~ m ~ ij ~
0 t--....

u
Q,)

(HIAq) 8Z1S 1U8W1HH ...
= ell
~

J 11
,> '

! IJ'
:
I

I ~

I I ,. --lS I : .,
1 I

if '

I II I
'

::.(

I
~

:..,...."#:

i'-t --
; ~ ~ ~

(sea.(q) •ZJS lU8'1Jntl81:1

<:6~

gg~

vz~

06

9S

GG

81H

t!H

oca
98

ZS
~~~ 

VII~ 

OS~ 

9H I 
<:8 

8V r .. ~ I 
OlH 

91>~ • 
Jl 

G~~ t 
BL s 
vv 
()~ 

9L~ 

Zv~ 

80~ 

vL 
01> 

9 

GLl 
8&~ 

vo~ 

OL 
9£ 

G 
0 

v 
Cll s 
"' "0 
Q) 

I:: 
"So 
I:: w 
Q) 

-B 
.... 

<B 
,......_ 
c:: 
0 ·v; 
Cll 
Q) .... 
0.. a 
0 
(.) 

Q) 

"0 
0 
I:: 

-B 
- ~ 
-......-

] 
·E 
0 
Ol) 
-; 
I:: 
0 ·v; 
Cll 
Q) .... 
0.. a 
0 
(.) 

Q) 
Q) 

!::: 
(.) 

0 
Q) 

-B .... 
<B 
Vl ..... 
:; 

Cll 
Q) .... 
I:: 
0 ·v; 
Vl 

I':! 
0.. a 
0 
u 
QC ,..., 
u 

<1.1 
l.o = 0.0 

1Z 

00 
"<t 



Z6t a:j 
cJl 

8!H .;9 

"" tooC:t "'d 
C1.l 

06 C1.l 

:2 
~ 

~ 

---·-- ---~ -------- ~ 
zz ::E -----
88l C1.l 

-5 
t>Sl ..... 

<8 
O<:l ,.-... 

s:: 
98 0 

·c;; 
cJl c:s C1.l ..... 

8l 
0.. 

-----------· E 
1:>8l 

0 
u 

J 
C1.l 

09l "'d 

J 
0 

9U .! s:: 
-5 

I i 
c:a ! ·~ 

81:> r '-' 
/" 

~ i I -- --- tool I 
l5 

I 

! ·c 
I 08t 0 ., 
I 01) 

] i 91:>t 11 -; 
.!1 s:: 

c:u ~ 0 

1 
·;;; 

I 8L cJl 
C1.l ..... 

-- » s 
--- - -" Ol 0 

u 
9H C1.l 

C1.l ..... 
C:tool u 

0 
BOt C1.l 

..0 .... 
tooL ..... 

01:> 
<8 
!!] 

9 "5 
cJl 

C:Ll C1.l ..... 
s:: 

OCt .!:2 
~' cJl 

tOt "' ' C1.l -1 ..... 
OL 0.. 

E 
9£ 0 u ---·---- · c: 

~ ~ ~ ~ ~ ~ ~ ~ ~ 
0 0\ ..... 

cJ 
Q.l 

(18}1\q) 8ZJS lU811nl8y ... = ef) 

~ 



.....
....-

-
-
~
-
-
-
-
-
-
-
-
~
-
-
-

--
-

,..
...

.-
--

-~
 

70
00

00
0 

• 

60
00

00
0 

50
00

00
0 

I40
0X

m 
I 'E

 !!
 3

00
00

00
 

J 20
00

00
0 

10
00

00
0 

C
o

m
p

re
•o

n
 L

ev
el

s 
of

 M
R

 H
ea

d
 D

at
a•

t 

[---
---

---
---

---
---

---
----

---
---

--]
 

-
-

M
m

lr
y
 -
-
-
-

Q
la

qu
e 

V
ox

el
s 

-
--

i I \ 
•, \ 

\ 

0 
I 

•
-
-

· 
=

l 
-
-
~
 

-
-
~
~
 

--
-
~
 

-
. 
~
 

"-
?:

:r
--

.1
 

N
 
~
 

R
 !

 
~
 
~
 

<D
 
~
 

;'!
 
~
 
~
 
~
 
~
 

; 
--

-
--

-
0

0
 

N
 

<D
 

,... 
-~

 

--
~
 
~
 
~
 

-
N

 
<D

 
0

0
-

L
ev

el
s 

at
 In

cr
ea

si
n

g
 D

lp
th

a
 

5il 
~
 

--
0

0
 

N
 

-
It

)
 

:8 
~
 
~
 
~
 
~
 

:8 
&1 

ct 
:8

 
Sl 

--
-

F
ig

u
re

 C
.2

0 
-C

om
pr

es
si

on
 r

es
ul

ts
 f

or
 t

he
 o

ct
re

e 
co

m
pr

es
si

on
 a

lg
or

it
hm

 (
w

it
h 

no
de

 c
om

pr
es

si
on

) 
fo

r 
th

e 
M

R
 H

ea
d 

d
at

as
et

 

15
0 



C
ac

he
 P

e
rf

o
rm

a
n

ce
 t

o
r 

C
T 

H
ea

d 
D

at
as

et
 

L 
_aa

ss
w~

at
io

n T
lll1

8J
 

~
O
O
O
r
-
-
-
~
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
~
~
~
-
-
-
-
,
 

40
00

0 

35
00

0 

30
00

0 

.. 1
2

5
0

0
0

 

=- ! 
20

00
0 

I I=
 

15
00

0 

10
00

0 

50
00

 

O
L
-
~
~
~
-
-
-
-
~
-
-
-
-
-
-
~
-
-
-
-
-
r
~
-
-
~
-
-
~
~
 

._
 

("
) 

~
 

,...
.. 

CD
 
~
 
~
 
~
 
~
 
~
 
~
 
~
 

g 
~
 
~
 
~
 

._
 

-
-

C\
1 

(
\f

 
C

ac
he

 S
IZ

e 

F
ig

ur
e 

C
.2

1 
-C

la
ss

if
ic

at
io

n 
pe

rf
or

m
an

ce
 o

n 
th

e 
C

T
 H

ea
d 

da
ta

se
t 

fo
r 

va
ry

in
g 

ca
ch

e 
si

ze
s.

 

C
a

ch
e

 P
e

rf
o

rm
a

n
ce

 f
o

r 
E

n
g

in
e

 D
a

ta
se

t 

--
C

la
s
s
if

ic
a

ti
o

n
 T

im
e 

9
0
0
0
0
r
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
~
-
-
-
-
-
-
-
-
-
-
~
 

80
00

0 

70
00

0 

60
00

0 

I j 
50

00
0 

! I I=
 

40
00

0 

30
00

0 

20
00

0 

10
00

0 0
~
-
r
~
-
r
~
4
-
~
~
-
-
~
~
-
-
-
-
+
-
~
~
-
-
~
-
-
~
 

~
 

c-
')

 
ln

 
,..

.. 
g

)
 
~
 
~
 
~
 
~
 
~
 
~
 
~
 

g 
~
 

C
a

ch
e

 S
iz

e 
-

..,. 
~
 

~
 

(\
1

 

F
ig

ur
e 

C
.2

2 
-

C
la

ss
if

ic
at

io
n 

pe
rf

or
m

an
ce

 
on

 
th

e 
E

ng
in

e 
da

ta
se

t 
fo

r 
va

ry
in

g 
ca

ch
e 

si
ze

s.
 

15
1 



C
ac

h
e 

P
er

fo
rm

an
ce

 f
or

 M
R

 K
ne

e 
D

at
as

et
 

FC
&U

&i
ik:

at
iO

O
rm

& 
1 

3
5
0
0
0

..
.-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
~
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
,
 

30
00

0 

25
00

0 

120
000

 
=

 
e -

15
00

0 

~ 
10

00
0 

50
00

 0 
~
-
-
-
-
-
-
~
~
-
-
-
-
-
-
*
-
-
+
-
-
-
-
~
-
-
~
~
-
-
-
-
~
 

._
 

C'
? 

U"
J 

,...
_ 

CD
 

;:
 
~
 
~
 
~
 
~
 
~
 

C
ac

h
e 

S
iz

e 
r
e
~
s
:
·
~
 

._ 
..... 

8:t
 

C\
1 

F
ig

ur
e 

C
.2

3 
-

C
la

ss
if

ic
at

io
n 

pe
rf

or
m

an
ce

 o
n 

th
e 

M
R

 K
ne

e 
da

ta
se

t 
fo

r 
va

ry
in

g 
ca

ch
e 

si
ze

s.
 

C
ac

h
e 

P
e

rf
o

rm
a

n
c

e
 t

o
r 

M
R

 H
e

a
d

 D
at

aa
et

 

E
 -~

55
ii

iC
&i

io
rl

rm
e·

·· 

35
00

0 
.
.
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
 

:!
 _

_
 

.. I 
20

00
0 

! ! ' 15
00

0 

10
00

0 

50
00

 0
+
-
-
-
-
-
~
-
~
-
-
~
~
~
~
-
-
~
-
-
-
-
~
-
-
~
~
 

_
. 

M
 

I(
) 

,..
._

 
CD

 
;:

 
~
 
~
 
~
 
~
 

C
ac

h
e 

S
iz

e 
t4

l 
re 

~
 
~
 
~
 
~
 

._
 

...
.. 

C
\f 

C\
1 

F
ig

u
re

 C
.2

4 
-

C
la

ss
if

ic
at

io
n 

pe
rf

or
m

an
ce

 o
n 

th
e 

M
R

 H
ea

d 
da

ta
se

t 
fo

r 
va

ry
in

g 
ca

ch
e 

si
ze

s.
 

15
2 



Rendering of CT Head Dataset 

Average -- - - IVexirrum ....... Mnirrum 

4000 

3500 .... - 3000 '--! ......... .... c 2500 --0 

j -..... 
2000 

e ' .. - 1500 .. • ... R ...... 
~ e 1000 
I= 

... .... .... .... .... ...... 
...... ... ... _ -....... .. 

500 

0 ~----------------------------------------~ 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure C.25- Minimum, maximum, and average parallel octree rendering times of the CT Head 
dataset. 

Rendering of Engine Dataset 

---Average - - -- Maxirrum · ... - - · Mnirrum l 
~ ------------------~----~--~--~----~~ 
7000 

-- ------
---, 

. -----. -." 
~ 

" 1000 

0 ~--------------------------------------------J 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure C.26 - Minimum, maximum, and average paralle l octree rendering times of the Engine 
dataset. 

153 



Rendering of MR Knee Dataset 

l--.::...--Averag~ --:--:- ~ Maxi~m ------- Mnirrum J 
10000 

9000 \ 

8000 
\.. 

\ 

i 7000 
s 6000 ' 

J 5000 

e 4000 ...... 
~ 3000 
I= 2000 

1000 

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure C.27- Minimum, maximum, and average parallel octree rendering times of the MR Knee 
dataset. 

Rendering of MR Head Dataset 

---Average ---- Maxirrum ------- Mnirrum 

4500 

4000 ' \ 
3500 

• 3000 ) 2500 

= 2000 g -------
~ 1500 
I= 1000 

.................. .. .. -

500 

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure C.28- Minimum, maximum, and average parallel octree rendering times of the MR Head 
dataset. 

154 



Perspective Rendering of CT Head Data•t 

[=--Average ----_Mnirrum · · · · · · · Mlxirru~ l 

20000 

f j 15000 

~·-~ · . ······ .. · .. 
c --
1= --- --- ~ 5000 --- --- -------- -------

0 
10 20 40 60 80 100 120 140 160 180 

Levels 

Figure C.29 - Minimum, maximum, and average perspective octree rendering times of the CT 
Head dataset. 

Perspective Rendering of Engine Data•t 

~--~~--~~~~--~~~~~~--~~--~~ 

30000 

125000 
120000 
5 15000 
.! 
I 10000 
I= 

10 

--- ~ ---- ~ ------ / ------.;-"' 

20 40 60 80 100 120 140 160 180 

Levels 

Figure C.30- Minimum, maximum, and average perspective octree rendering times of the 
Engine dataset. 

!55 



Perspective Rendering of MR Head Data•t 

[---Average ----Mnirrum . ... .. . ~irrum l 
&000 r---~--------~------~--~----------~~ 
45000 

40000 

f35000 

J: 
!20000 
~ 15000 
I= 10000 
~ ··· ·· · . ....... ····. 

' 5000 ---- -- --- · · · ··· ·- --
o L---------------~-~-~-~~~~~ 

10 20 40 60 80 100 120 140 160 180 

Levels 

Figure C.31- Minimum, maximum, and average perspective octree rendering times of the MR 
Head dataset. 

!56 



AppendixD 

Images 

D. 1 Standard Parallel Renderings 

Figure D.t - RLE rend ring of the CT Head 
dataset using viewpoint I. 

Figure D.2 - Octree rendering of the CT Head 
dataset using viewpoint I. Aliasing bands can be 
noticed along the top of the skull. 

157 



Figure 0.3 - RLE rendering of the CT Head 
dataset using viewpoint 2. 

Figure 0.5 - RLE rendering of the Engine 
dataset using viewpoint l. Interesting aliasing 
artifacts can be seen on the "rough" side of the 
volume. 

Figure 0.4 - Octree rendering of the CT Head 
dataset using viewpoint 2. 

Figure 0.6 - Octree rendering of the Engine 
dataset using viewpoint I. Very few aliasing 
artifacts can be noticed on this volume. Octree 
rendering responds well to Euclidean shapes. 

158 



Figure D. 7 - RLE rendering of the Engine 
dataset using viewpoint 2. 

Figure 0.9 - RLE rendering of the MR Head 
dataset using viewpoint l . 

Figure 0.8 - Octree rendering of the Engine 
dataset using viewpoint 2. 

Figure 0.10 - Octree rendering of the MR Head 
dataset using viewpoint l . 

159 



Figure 0.11 - RLE rendering of the MR Head 
dataset using viewpoint 2. 

Figure 0.13 - RLE rendering of the MR Knee 
dataset using viewpoint I. 

Figure 0.12- Octree rendering of the MR Head 
dataset using viewpoint 2. 

Figure 0.14 - Octree rendering of the MR Knee 
dataset using viewpoint I. 

160 



Figure D. IS- RLE rendering of the MR Knee 
dataset using viewpoint 2. 

D.2 Perspective Renderings 

Figure D.17 - Perspective octree rendering of 
the MR Head dataset. 

Figure D.16 - Octree rendering of the MR Knee 
dataset using viewpoint 2. 

Figure D.18 - Partial perspective octree 
rendering of the MR Head dataset. All leaf­
nodes are approximated. 

161 



Figure 0.19 - Perspective octree rendering of 
the Engine dataset. 

Figure 0.21 - Perspective octree rendering of 
the CT Head dataset. The severe aliasing bands 
are a result of low quality image warping. 

Figure 0.20 - Partial perspective octree 
rendering of the Engine dataset. All leaf-nodes 
are approximated. 

Figure 0.22 - Partial perspective octree 
rendering of the CT Head dataset. All leaf-nodes 
are approximated. 

162 



D.3 Using Translucency 

Figure D.23 - Parallel RLE rendering of the 
Engine dataset using viewpoint 1. The outer 
shell of the engine is set to translucent blue. 

Figure D.25 - Parallel RLE rendering of the 
Engine dataset using viewpoint 2. The outer 
shell of the engine is set to translucent blue. 

Figure D.24 - Parallel octree rendering of the 
Engine dataset using viewpoint I. The outer 
shell of the engine is set to translucent blue. 

Figure D.26 - Parallel octree rendering of the 
Engine dataset using viewpoint 2. The outer 
shell of the engine is set to translucent blue. 

163 



0.4 Partial Parallel Renderings 

Figure 0.27 - Partial parallel rendering of the 
CT Head dataset using viewpoint l . All leaf­
nodes of the octree are approximated. 

Figure 0.29 - Partial parallel rendering of the 
Engine dataset using viewpoint I. All leaf­
nodes of the octree are approximated. 

Figure 0.28 - Partial parallel rendering of the 
CT Head dataset using viewpoint 2. All leaf­
nodes of the octree are approximated. 

Figure 0.30 - Partial parallel rendering of the 
Engine dataset using viewpoint 2. All leaf­
nodes of the octree are approximated. 

164 



Figure D.31 - Partial parallel rendering of the 
MR Head dataset using viewpoint 1. All leaf­
nodes of the octree are approximated. 

Figure D.33 - Partial parallel rendering of the 
MR Knee dataset using viewpoint 1. All leaf­
nodes of the octree are approximated 

Figure D.32 - Partial parallel rendering of the 
MR Head dataset using viewpoint 2. All leaf­
nodes of the octree are approximated. 

Figure D.34 - Partial parallel rendering of the 
MR Knee dataset using viewpoint I. All leaf­
nodes of the octree are approximated 

165 



Figure D.35 - Partial parallel rendering of the 
MR Head dataset using viewpoint I. Data size 
used is 65536 bytes. 

Figure D.37 - Partial parallel rendering of the 
MR Head dataset using viewpoint I. Data size 
used is 131072 bytes. 

Figure D.36 - Partial parallel rendering of the 
Engine dataset using viewpoint I. Data size 
used is 65536 bytes. 

Figure D.38 - Partial parallel rendering of the 
Engine dataset using viewpoint I. Data size 
used is 13 I 072 bytes. 

166 



Figure D.39 - Partial parallel rendering of the 
MR Head dataset using viewpoint I. Data size 
used is 262144 bytes. 

Figure D.41 - Partial parallel rendering of the 
MR Head dataset using viewpoint I . Data size 
used is 786432 bytes. The top half of the head 
is no longer being approximated. 

Figure 0.40 - Partial parallel rendering of the 
Engine dataset using viewpoint I. Data size 
used is 262144 bytes. 

Figure 0.42 - Partial parallel rendering of the 
Engine dataset using viewpoint I. Data size 
used is 786432 bytes. Some areas in the front of 
the engine are no longer being approximated. 

167 



Bibliography 

[I] T. Lewis. The Next 10,0002 Years: Part I. IEEE Computer, 29(4):64-70, 1996. 

[2] R. Robb, D. Hanson, J. Camp. Computer-Aided Surgery Planning and Rehearsal at Mayo Clinic. 
IEEE Computer, 29(1):39-47, 1996. 

[3] G. Bell, A. Parisi, and M. Pesce. VRML 1.0 Spec(fication. Available at "http://www.wired.com/ 
vrml.techlvrmll 0-3.html". 

[4] V. Anupam, C. Bajaj, D. Schikore, M. Schikore. Distributed and Collaborative Visualisation. 
IEEE Computer, 27(7):37-43, 1994. 

[5] A. Law and R. Yagel. Multi-Frame Thrashless Ray Casting with Advancing Ray-Front. 
Proceedings Grap ics Interface '96, Toronto, Canada, 70-70, May 1996. 

[6] R. Simon, D. Krieger, T. Znati, R. Loflink, R. Sclabassi. Multimedia Mednet. IEEE Computer, 
28(5):65-73, 1995. 

[7] S.A. Cheong, D.C. Martin, and M.D. Doyle. Integrated Control of Distributed Volume 
Visualisation Through the World-Wide-Web. IEEE Visualisation '94 Proceedings, 13-20, 1994. 

[8] C. Giertsen. Volume Visualisation of Sparse Irregular Meshes. IEEE Computer Graphics and 
Applications, 12(2):40-48, 1992. 

[9] M. Garrity. Raytracing Irregular Volume Data. ACM Siggraph, San Diego Workshop on 
Volume Visualization, 24(5):35-40, 1990. 

[I 0] Jane Wilhelms. Visualizing sampled volume data. In "Scientific Visualization and Graphics 
Simulation", chapter 6, Wiley, 1990. 

[II] J. Wilhelms and A. Van Gelder. Octrees .for .faster isosw:face generation, extended abstract. 
ACM Siggraph, San Diego Workshop on Volume Visualization, 24(5):57-62, 1990. 

[12] D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Refinement Algorithm .for 
Volume Rendering. ACM Siggraph Computer Graphics Proceedings, 25(4):285-288, 1991. 

[ 13] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245-261, 
1990. 

168 



[14] S. Muraki . Volumetric Shape Description of Range Data using "Blobby Model". ACM 
Siggraph Computer Graphics Proceedings, 25(4):227-235, 1991. 

[15] E. Stollnitz, T. DeRose, D. Salesin. Wavelets for Computer Graphics (Part./). IEEE Computer 
Graphics and Applications, 15(3):76-84, 1995. 

[16] R. Westermann. Multiresolution Frameworkfor Volume Rendering. ACM Siggraph Symposium 
on Volume Visual ization, 51-57, 1994. 

[ 17] S. Muraki . Volume Data and Wavelet Transforms. IEEE Computer Graphics and Applications, 
13(4):50-56, 1993. 

[18] S. Muraki. Multiscale Volume Representation by a DoG Wavelet. IEEE Transactions on 
Visualisation and Computer Graphics, I (2): I 09-116, 1995. 

[19] B. Guo. A Multiscale Model for Structure-Based Volume Rendering. IEEE Transactions on 
Visualisation and Computer Graphics, I ( 4):291-30 I, 1995. 

[20] V. Ranjan and A Fournier. Volume Models for Volumetric Data. IEEE Computer, 27(7):28-36, 
1994. 

[21] J. Wilhelms and A. Van Gelder. Multi-Dimensional Treesfor Controlled Volume Rendering and 
Compression. ACM Siggraph Symposium on Volume Visualization, 27-34, 1994. 

[22] C. Montani and R. Scopigno. Rendering volumetric data using the sticks representation scheme. 
ACM Siggraph, S n Diego Workshop on Volume Visualization, 24(5):87-93, 1990. 

[23] N. Shareef, and R. Yagel. Rapid Previewing via Volume-based Solid Modeling. The Third 
Symposium on Solid Modeling and Applications, SOLID MODELING '95, Utah, 281-292, May 
1995 

[24] P. Lacroute and M. Levay. Fast Volume Rendering Using a Shear-Warp Factorization of the 
Viewing Transformation. ACM Siggraph Computer Graphics Proceedings, (Annual Conference 
Series ):451-458, 1994. 

[25] P. Lacroute. Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing 
Transformation . PhD. Thesis, Stanford University, Computer Graphics Laboratory, 1995. 

[26] J. Fowler and R. Yagel. Lossless Compression of Volume Data. ACM Siggraph Symposium on 
Volume Visualization, 43-50, 1994. 

[27] P. Ning and L. Hesselink. Fast Volume Rendering of Compressed Data. IEEE Visualisation 
Proceedings '93, 11-18,1993. 

[28] Y. Boon-Lock and L. Bede. Volume Rendering of DCT-Based Compressed 3D Scalar Data. 
IEEE Transactions on Visualization and Computer Graphics, I (I ):29-43, 1995. 

[29] W.E. Lorenson and H.E. Cline. Marching cubes: A High Resolution 3-D Surface Construction 
Algorithm. ACM Siggraph Computer Graphics Proceedings, 24(5): 163-169, 1987. 

[30] W. Kruger. Volume Rendering and Data Feature Enhancement. ACM Computer Graphics, San 
Diego Workshop on Volume Visualization, 24(5):21-26, 1990. 

[31] N. Max. Optical Models for Direct Volume Rendering. IEEE Transactions on Visualisation and 
Computer Graphics, I (2):99-1 08, 1995. 

[32] L. Sobierajski, D. Cohen, A. Kaufman, R. Yagel, and D. Acker. A Fast Display Method for 
Volumetric Data . The Visual Computer, I 0(2): 116-124, 1993. 

169 



[33] J.K. Udupa and D. Odhner. Fast visualisation, manipulation, and analysis of binary volumetric 
objects. IEEE Computer Graphics and Applications, II (6):53-62, 1991. 

[34] R. Yagel, D Stred ey, G.J. Wiet, P. Schmalbrock, L. Rosenberg, D.J. Sessanna, Y. Kurzion, and 
S. King. Multisensory Platform for Surgical Simulation. IEEE Virtual Reality Annual 
International Symposium 1996, Santa Clara, California, 72-78, March 1996. 

[35] K. Zuiderveld. Visualisation of Multimodality Medical Volume Data using Object-Oriented 
Methods. PhD. Thesis, University of Utrecht, Faculty of Science, 1995. 

[36] K.L. Novins, F.X. Sillion, and D.P. Greenberg. An Efficient method for Volume Rendering using 
Perspective Projection. ACM Computer Graphics, San Diego Workshop on Volume 
Visualization, 24(5):95-100, 1990. 

[37] C.T. Howie and E.H. Blake. The Mesh Propagation Algorithm for lsosurface Construction. 
Computer Graphics Forum, Eurographics, 13(3):64-74, 1994. 

[38] A. Kaufman, D. Cohen, and R. Yagel. Volumetic Graphics. IEEE Computer, 26(7):51-64, July 
1993. 

[39] T. Totsuka and M. Levoy. Frequency Domain Volume Rendering. ACM Siggraph Computer 
Graphics Proceedings, (Annual Conference Series):271-278, 1993 

[40] R.Yagel and A. aufman. Template-Based Volume Viewing. Computer Graphics Forum, 
Eurographics, 11(3):153-167, 1992. 

[41] L.M. Sobierajski and A.E. Kaufman. Volumetric Ray Tracing. ACM Siggraph Symposium on 
Volume Visualization, 11-18, 1994. 

[42] R. Avila, L Sobi rajski, and A. Kaufman. Towards a Comprehensive Volume Visualization 
System. Proceedings Visualisation '92, Boston, 13-20, October 1992. 

[43) R. Yagel and Z.Shi . Accelerating Volume Animation by Space Leaping. Proceedings of 
Visualisation '93, San Jose, California, 62-69, October 1993. 

[44] K.L. Novins, F.X. Sillion, and D.P. Greenberg. An Efficient method for Volume Rendering using 
Perspective Projection. ACM Computer Graphics, San Diego Workshop on Volume 
Visualization, 24(5):95-1 00, 1990. 

[45] J. Wilhelms and A. Van Gelder. A Coherent Projection Approach for Direct Volume Rendering. 
ACM Siggraph Computer Graphics Proceedings, 25(4):275-284, 1991. 

[46] T. Porter and T. Duff. Compositing Digital/mages. ACM Computer Graphics, 18(3), 1984. 

[47] B. Cabral, N. Cam, J. Foran. Accelerated Volume Rendering and Tomographic Reconstruction 
Using Texture Mapping Hardware. ACM Siggraph Symposium on Volume Visualization, 91-97, 
1994. 

[48] T.J. Cullip, and U. Neumann. Accelerating Volume Reconstruction With 3D Texture Hardware. 
Technical Report TR93-027, Department of Computer Science, University of North Carolina, 
Chapel Hill , 1993. 

[49] L. Lippert and M. Gross. Fast Wavelet Based Volume Rendering by Accumulation of 
Transparent Texture Maps. Computer Graphics Forum, Eurographics, 14(3):431-443, 1995. 

[50] P. Heckbert. Fundamentals of Texture Mapping and Image Warping. MSc. Thesis, University of 
California (Berkeley), Department of Electrical Engineering and Computer Science, 1989. 

[51] G. Wolberg. Digital/mage Warping. IEEE Computer Society Press, 1994, Third Edition. 

170 



[52] P. Hanrahan. Three-Pass Affine Transforms for Volume Rendering. ACM Siggraph, San Diego 
Workshop on Vol me Visualization, 24(5):71-77, 1990. 

[53] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990. 

[54] C.A. Shaffer. Bit Interleaving for Quad- or Octrees. In "Graphics Gems!", 443-447, Academic 
Press 1990. 

[55] D.P. Anderson. Hidden Line Elimination in Projected Grid Sw:faces. ACM Transactions on 
Graphics, I (4): 274-288, 1982. 

[56] J. Foley, A. van Dam, S. Feiner, J. Hughes. Computer Graphics - Principles and Practice. 
Addison-Wesley Publishing Company, 1991 , Second Edition. 

[57] M. Haley and E. Blake. Incremental Volume Rendering Using Hierarchical Compression. 
Computer Graphics Forum, Eurographics. ( 1996) . . . Accepted for publication. 

171 




