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Hydro-acoustic surveys have been used to provide
annual estimates of May recruitment and November
spawner biomass of the South African sardine
Sardinops sagax and anchovy Engraulis encrasicolus
resources since 1984. These time-series of abundance
estimates form the backbone of the assessment of
these resources, and consequently the manage-
ment of the South African sardine and anchovy is
critically dependent on them. Upgrades to survey
equipment over time have resulted in recent surveys
providing more accurate estimates of abundance,
yet in order to maintain comparability across the full
time-series, estimates of biomass mimicking the

old equipment were used for a number of years. In
this paper we develop a method to revise the earlier
part of the time-series to correct for receiver satura-
tion in the older generation SIMRAD EK400 and
EKS-38 echosounders and to account for attenuation
in dense sardine schools. This is applied to provide a
revised time-series of biomass estimates for the South
African sardine and anchovy resources with associ-
ated variance-covariance matrices. Furthermore,
the time-series presented here are based on updated
acoustic target strength estimates, making this the
most reliable time-series currently available for both
resources.

Keywords: acoustic survey, anchovy, attenuation, calibration adjustment, regression, sardine, saturation

Introduction

Management of the South African sardine Sardinops sagax
and anchovy Engraulis encrasicolus resources is critically
dependent on estimates of recruitment and spawner biomass
obtained from hydro-acoustic surveys, which commenced in
1984 (Hampton 1992, Geromont et al. 1999, De Oliveira and
Butterworth 2004). The recruit surveys take place in May and
spawner biomass surveys in November; for ease of distinc-
tion, May and November will be used to distinguish these
two surveys hereafter. Figure 1 demonstrates the typical
coverage undertaken during the surveys. The standard
November survey area stretches from Hondeklip Bay on the
South African west coast to Port Alfred on the South Coast,
whereas the standard May survey area stretches from the
Orange River to Cape Infanta on the South Coast to cover
the distribution range of recruits at that time. In former years,
the surveys did not necessarily cover this whole area (coinci-
dent with a lower biomass and more limited distribution of
the resources), whereas in recent years the surveys have
extended farther eastwards with an increase in sampling
effort on the Central and Eastern Agulhus Bank. To enable

the estimation of sampling variance without bias, a strati-
fied random survey design is used. Each survey is divided
into strata chosen with the intent of minimising inter-transect
variance. During the earlier surveys, these strata were
respecified to take account of knowledge gained about the
distribution and density variation of anchovy, the larger of
the two resources over that period. However, during the
latter part of the time-series, strata were kept unchanged
from year to year to facilitate comparisons of abundance in
specific strata over time.

In 1997, new equipment, a SIMRAD EK500 echosounder,
replaced the older SIMRAD EK400 echosounder. This
revealed that receiver saturation had occurred in the
SIMRAD EK400 and probably also in previous generation
echosounders, particularly for sardine (Barange et al. 1999,
Coetzee et al. 2008). Essentially, the EK400 saturated at
approximately —29 dB, thereby setting any signal higher than
—29 dB to —29 dB, i.e. it ‘capped’ signals at this maximum
level (the EK500 uses newer technology which excludes the
possibility of saturation). Saturation in the SIMRAD EKS-38,
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Figure 1: Track chart for a typical (a) November and (b) May
hydro-acoustic survey off the coast of South Africa. Each survey is
divided into strata chosen to minimise inter-transect variance

which was used prior to the SIMRAD EK400, is assumed
to have occurred at the same level as in the EK400. For
simplicity, only the EK400 is mentioned hereafter, but this
signifies reference to previous generation echosounders as
well. Initially, to maintain a comparable time-series, abundance
estimates derived from surveys from 1997 onwards were
artificially adjusted by setting the maximum signal threshold of
the SIMRAD EK500 data to —29 dB at the analysis stage, to
provide comparable ‘capped’ estimates of biomass.

Although this provided a temporary solution to the differ-
ence in estimates between the SIMRAD EK400 and EK500,
for the longer term it was not considered satisfactory to
continue to ignore the improved data provided by the
SIMRAD EK500. It was therefore recommended that the
survey estimates of abundance used for assessment
purposes be based rather on the SIMRAD EK500 technology
(BENEFIT 2001); these are referred to here as ‘uncapped’
estimates. This required that the pre-1997 survey results be
adjusted to allow for the impact of the saturation effect.

This paper details the method developed to revise
the time-series of abundance estimates over the period
1984—-1997. Essentially, a non-linear regression analysis of
the capped densities as they are related to the uncapped
densities is carried out for the period 1997-2006, for
which comparative fish density estimates based on both
the SIMRAD EK500 uncapped and simulated SIMRAD

EK400 capped data are available. The results are used to
adjust the pre-1997 estimates, and to revise the associated
estimates of precision taking account of variability about the
calibration adjustment relationships as well as imprecision
in the estimation of these relationships.

This exercise has been conducted taking two further
factors into account. First, more appropriate acoustic target
strength estimates for sardine and anchovy that were
not available at the start of the time-series have become
available (Hampton 1987, Barange et al. 1996) and have
recently been incorporated into the biomass estimates
(Coetzee et al. 2008). Both the capped and uncapped data
used for these analyses are based on the density estimates
derived from these updated target strength densities.

Second, in dense fish schools, fish at the top of the school
absorb most of the energy from acoustic echo signals so
that fish lower down in the school are insonified with less
energy, resulting in the echo signals no longer being propor-
tional to fish density. The effect of this signal attenuation in
dense sardine schools has been quantified (Coetzee et al.
2008) and a correction factor to account for attenuation has
been routinely applied to sardine school density estimates
since 1998 (Coetzee et al. 2008). The calibration adjustment
for sardine thus accounts for attenuation as well as for the
saturation effect. Because the attenuation adjustments are
possible only from 1998 onwards, the calibration adjustment
relationships for sardine are based on data from 1998 rather
than 1997 onwards, with the capped 1997 estimates thus
also subject to modification by this calibration adjustment.

Material and Methods
Data

The data used to determine the calibration adjustment
relationships required for anchovy are the capped estimates
of density per interval (Elementary Sampling Distance Unit
[ESDU], a short segment of a survey transect line varying
in length but usually shorter than 10 nautical miles) and the
uncapped estimates of these densities for the May recruit
and November spawner biomass surveys from November
1997 to May 2006. For sardine, attenuation was taken into
account in the uncapped, but not the capped estimates, and
surveys from May 1998 to May 2006 were considered when
estimating calibration adjustment relationships. Capped
interval densities, from which uncapped densities are to
be estimated, are available for anchovy from November
1984 to May 1997 and for sardine from November 1984 to
November 1997.

Regression of the capped data on the uncapped data

Both the uncapped and capped survey estimates of
biomass are subject to survey sampling error. However, the
uncapped estimates are free from the further error caused
by the saturation problem associated with the SIMRAD
EK400. In addition, for sardine, the uncapped estimates
are also free from further error due to attenuation at large
densities. Therefore, the uncapped data are the only set
of unbiased observed data. (Note that in the context of
estimating the capped:uncapped calibration adjustment
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factors, the survey sampling error is not of direct relevance
because the comparisons being made are between capped
and uncapped estimates (with attenuation for sardine) for
the same segment of survey transect line.)

A bootstrap procedure was used to estimate the variance
associated with the calibration adjustment, as detailed later.
In generating replicate data, to be realistic the ratios (‘slope’)
of capped to uncapped estimates for each interval must lie
in the [0,1] range. To respect these bounds, the calibration
adjustment regressions were performed on a logit transfor-
mation of slope (capped:uncapped) against uncapped
densities. This transformed value is denoted hereafter as
‘Islope’. These regressions were performed separately for
the May and November surveys, and independently for
sardine and anchovy.

A mixture model was used so that the data for intervals
for which slope is 1, which comprise a substantial propor-
tion of the data, could be treated separately than those for
intervals with slope <1. The mixture model thus consists of
a component that fits a model to estimate the probability
that the observed slope is 1, and a component that fits a
model for Islope, as a function of uncapped density, in cases
where slope <1.

Models, which consisted of various combinations of
constants, straight lines, and negative exponential curves,
were fit to the relation between the probability that the
slope = 1 (propg're='), forinterval i in year y) and the uncapped
density. Transition points for switching between the different
curves were fixed in some instances and estimated in
others. A binomial error distribution was assumed. Thus,
the negative log-likelihood that was minimised to estimate
the model parameters was,

-InL =3’ Z[—éyy, Iog(probf,!‘,?pe:1 ) (1=, Jog(1- probf,";’pe:1 )]
y 1

1if v, =cy,
where Oy =

0 if Uy #Cy;

and u,; denotes the observed uncapped density in interval
i of year y and ¢, the corresponding capped density. Using
Akaike’s Information Criterion (AIC) to compare between
models, and looking also to apply the same model to all four
sets of data, the following model (consisting of three straight
lines followed by a constant) was eventually chosen:

+b ifu . <u

m Uy’i yi S

o

m (uyy,-—u)+mu +b ifu suy; <u

m* (u** —u*) +m*u* +b —p

slope=1 _ x
proby’,. = " (uy’, -u ) +p
u™ —u
if u™ < uy, <u™*
p fu,; zu (1)

where 8 = {m*, m**, b, p, u*, u**, u***} is the vector of
estimable parameters. Although a slightly better model fit in
terms of AIC was obtained when u*** was initially fixed, this
seemed an inappropriate basis for choice in this instance
because the fixed value selected was somewhat arbitrary.

The models considered when regressing the logit
transformed slope against uncapped densities when slope
<1 included:

(i) a linear model:

Islope, ;= m,
(ii) a ‘2-line (gradient)’ model:

m, (uy,,. —u1)+ b, 0< uy, <u,
Islopey, =

mz(uy’,—u1)+b1 u, ;> uy
(iii) a ‘2-line (const large u) model:

" - m1(uyy,.—u1)+b1 0<uyq,su1
slope, ; =

b, u, ;i >u

(iv) a ‘2-line (const small u) model:

{ b, O<u,; <
Islope,, ; = '
Vi

my (“y,i

(v) a ‘Beverton-Holt (BH) type’ model:

—u1)+b1 u,; > U

(24
Islopey’,- =

1+ :B“y,i

(vi) a ‘Beverton-Holt (BH) adjusted type’ model:

a

——— O<u,; <u
Vi 1
1+ﬁuy’,
IsIopeyJ.:
[24
u. >u
1+ pu, 4 1

Model (iv) needed to be considered only for the anchovy
May survey as a means to force a non-positive gradient for
small u. Although a number of different error structures were
initially investigated, those with a variance independent of
uncapped density u (i.e. errors with a distribution N(0,c?)
added to the above equations) were generally found to be
adequate for regressing Islope against u. However, initial
results did indicate that the variance around the fitted
relation could change above a certain value of u. Therefore,
two different error models were considered:

(a) constant variance:

o-y,i(uy,i) =0

(b) changing variance:

o ifu,, <u

v 2
o \u .)=
y,l( y,l) { .
oo if uy; > U,

where 6 = constant.

The parameters estimated were thus a subset of
¢ ={m,, m, b, u,, a, p o, 5} (dependent on the Models
(i)—(vi) and variance formulation (a) or (b) chosen). The
transition point for change in variance u, was fixed using
the best fit from a grid of width 50 g m=2. A normal likelihood
was used to fit the model predicted Islope to the observed
data for which slope <1:
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In ((Uy,i (uys ))2) *

2
-InL=0.5 ZZ [In( Cy.i /uyyf J_ Islope ’_j + const
y i 1fcy,,-/uy,,- Y
L (Uy,i (“y,i ))2 ]
forc, <u, (2)

Calibration adjustment of uncapped data from capped data

The mixture model chosen above gives an expected capped
density c,, from a given uncapped density as:

Cyi = f (Q’?’”y,i)

slope=1

o Islopey'l_
i

slope =1
yii

e

= prob u, i+ (1 - prob ) XUy, ;X iops,,

@)

1+e

This equation can be inverted to solve non-linearly for u, , i.e.:

uy; =9(04c,,) “)

given the capped interval densities in the early years.

To calculate the annual biomass estimate, the mean
biomass and density per strata need to be calculated, which
requires the mean density per transect to be computed (Jolly
and Hampton 1990). Defining u,;,; to denote the uncapped
estimate in interval / of transect t of stratum sin year y, I, to
denote the length of interval i of transect ¢t of stratum s, and
L., # 21, to denote true length of transect ¢ of stratum s,
the mean density per transect t is calculated as:

zuy,s,t,i,s,t,i
_— i

u =
y.s;t
zls,t,i
i

®)

The estimated mean density per stratum s is calculated as:

ZL_Iy,s,th,t
U, =t (6)

7 Z Ls,t

and the associated standard error and CV is:

T,s Llr/— _ 2
[ ; [[(“y,s,t T, ) L] ]
SEsamp (L_’y,s) _ y,S —

" The true transect length is the actual distance of the transect over land,
which may differ from the summed interval length per transect. Interval
length is obtained from the ship’s log which measures distance through
water and which will be a biased estimate of true interval length when
current speed is not zero

and
SE®™ (1, )

cv™ (7, ) = = (7)

y.s

uy,s

where T  denotes the total number of transects in stratum
s in year y, and the superscript ‘samp’ is used to denote
that this arises from the sampling nature of the transects
surveyed in the stratum. Inshore areas, which comprise
5-7% of the total area covered by the surveys in November
and 8-10% in May, are too shallow to be safely surveyed
by the research vessel. The assumption is made that the
average densities in these areas is half that estimated during
the inshore transits between transects in the particular
stratum (Hampton 1987).
The estimated stratum biomass is then

*
By s =uysxAreay (8)
x u,s ifsisoffshore
where u,s = = .
v 05u, if sisinshore

The annual biomass, average density and associated CV

are then calculated as:
S

T *
s uysx Area%S
B =>B y == and

Sy
Z Areay’s
s=1

<

»
n

Sy
Z}Var (By,s)
s=

B,

Cvsamp (By) _ _ Cvsamp (Uy) (9)

where S, denotes the total number of strata in year y.
Accounting for further sources of uncertainty

Equations (7) and (9) account for inter-transect variability and
are applied in cases where the u, ;,; are observed. However,
there are two further sources of uncertainty that need to be
taken into account: error in the calibration adjustment of ¢, ;
to obtain u,,; using Equation (4), and uncertainty in the
estimates of the parameter estimates (€ and ¢) themselves.
These sources of uncertainty must also be incorporated.
Error in the calibration adjustment was estimated by
bootstrapping over r = 1,2...R = 10 000 replicates of u,,,
given estimates for the parameters ¢ and ¢, as follows:

2
(i) Generate Islope;yi ~ N(ISIOPey,,'r(O'y,,' (uy’,- )) )

Islopey, ;
(ii) g oo "

vi = Islopel,;
1+e

(iii) Generate x" ~U [0,1]



Downloaded by [University of Cape Town Libraries] at 01:53 11 March 2016

African Journal of Marine Science 2008, 30(2): 219-232

223

slope=1

Cysti if x" < prob
(iv) u .=4c¢
Siti T St lope=1
y I i x> probSoPe
s

yi

(v) Generate &
(6) and (7).
The average inter-transect CV over all the bootstraps is then:

ay  and Cvsame(gy ) using Equations (5),

yst'

S ove (7, ) (10)

The average bootstrap estimate for the average uncapped
density in stratum s of year y would then be:

igyr‘s (1)

The associated standard error and CV related to calibration
adjustment uncertainty are therefore:

OV (15 ) = M (12)

The combined CV for the estimated average uncapped
density in stratum s of year y, taking inter-transect and
calibration adjustment error into account, is therefore given
by the standard formula for the variance of the product of
two independent quantities:

= 2 _
tot samp samp 2
oV, :\/0vca| (uy,s) +CVar™ (T ys) +CV,, (uy,s) eV (T,,)

(13)

and using the uncapped stratum biomass from Equation (8)
and annual biomass from Equation (9), the annual CV
taking inter-transect and calibration adjustment error into
account is accordingly:

tot
tot( ) %( tot )2 ’ CVtOt(By)= SE B(By)
s=1 y
(14)

Note that CV'. is taken to apply to the original biomass
rather than the average bootstrapped biomass.

The uncertainty in the parameter estimates of 8 and ¢
was taken into account by calculating a jackknife estimate
of variance? of B, according to Efron (1982):

2 A sampling unit of a year was chosen to counter possibilities of non-
independence of data within a given year. The jackknife was preferred to
a bootstrap approach to reduce the computational burden

Var( 3 ) i( _yr )2 (15)

where Ey, denotes the estimate of B, computed by omitting
the data from year yr in the estimation of 8 and ¢, whereas

By, denotes the mean of the B_yrs. The associated CV is then:

ov (éy)=@ (16)
Y

The CV for the annual biomass estimate calculated
in Equation (9) taking into account inter-transect, calibra-

tion adjustment and parameter estimation uncertainty, is
therefore given by:

Cv(By)=\/cv‘°‘(By) cov(8,) +cv™ (8, ) cv (8, )

(17)

y

The fact that this last source of error is common to all years
subject to the calibration adjustment introduces covariance
into the time-series of uncapped estimates of biomass. These
covariances need to be estimated, because they are elements
of the variance-covariance matrix needed in calculating
the likelihood of the survey series of estimates, which is
maximised when fitting population models to these data. Let

Cov|B, B
RV (By,,) = Cor(5,.8,)
B, B

denote the relative variance—covariance matrix taking inter-
transect and calibration adjustment error into account. This
is a diagonal matrix because the estimates each year can
be considered to be independent and the diagonal entries
are (CV©Y(B))). Let

RV (B yr

) Cov (B B, )
Ml BB,
denote the relative jackknife variance—covariance matrix
arising from parameter estimation uncertainty in the capping
calibration adjustment relationships. The diagonal entries
are (CV(B ))?. Taking the sources of the variances of B,
and B to be independent?, the relative varlance—covarlance
matnx for B is then calculated as follows:

RV (B,,,) =RV (B, ) +RV (B, ) +RV (B}, ) <RV (B, )
which can be re-written as
RV (B),) +RV (B, ,) +Rv (B}, ) x
RV(B,,) =1 RV(B,,) if i=
RV(B,,) if j = j

3 Strictly, this is not the case because the data used for the latter con-
tribute to the estimate of variability about the relationship between Islope
and u in the former, but this effect does not seem likely to be large
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Figure 2: The model estimated probability that slope (the ratio
capped:uncapped) is 1, from Equation (1). For comparative purposes,
the observed probability that slope is 1 is also plotted in bins of 50
data points at a time

Results and Discussion

The model fits to the probability that the observed slope is
1 are given in Figure 2, with the estimated model parameter
values given in Table 1.

Table 2 lists the AIC values for combinations of Models
(iy—(vi) and error structures (a) and (b) defined above. In
all cases, the AIC model selection criterion showed the
changing error variance option to perform better than the
constant variance option.

The 2-line (gradient) model had the lowest AIC value
for the sardine November survey, but the fitted model
resulted in capped density decreasing at large uncapped
density, which is unrealistic for the relationship that must
sensibly be monotonic. The BH-adjusted type model (which
by construction avoids this problem) was thus chosen,
manifesting a good fit to the data (Figure 3) and the second
lowest AIC value. For the sardine May survey, the BH type
model resulted in a good fit to the data (Figure 4). The
inclusion of the extra parameter in the BH-adjusted type
model did not result in a substantial improvement in the fit,
so that the AIC model selection criterion favoured the BH
type model.

For anchovy May and November surveys, the 2-line
(gradient) model had the lowest AIC value. However, the
estimated gradient of slope vs u was (marginally) positive
for lower uncapped densities for the May survey and positive
for higher uncapped densities for the November survey.
This positive gradient implies that, for a given increase
in uncapped density, there is an even greater increase in
capped density. Both such dependencies seem unreal-
istic, even though (weakly) supported by the data. For the
anchovy November survey, the BH-adjusted type model
was thus chosen, having the second lowest AIC value and a
good fit to the data (Figure 5). For the anchovy May survey,
although the 2-line (const small u) model was the second-
best model choice in terms of AIC, it was decided to use the
BH type model (which had a similar AIC value) to maintain
consistency with the other three cases (Figure 6).

The model fits to the observed Islope and the consequent
‘regression’ of capped against uncapped densities per
interval are shown in Figures 3—-6. The maximum likelihood
estimates of the parameters are given in Table 3. The
standardised residuals did not suggest any obvious model
misspecification (plots not shown).

Probability density functions (pdfs) of the standardised
residuals resulting from the likelihood in Equation (2) are
given in Figure 7, together with comparisons to the pdfs

Table 1: Parameter estimates for the model that predicts the probability that the observed slope is 1. The uncapped density transition points

are given in g m2

Parameter Sardine November Sardine May  Anchovy November Anchovy May
m*  Slope of straight line when u < u* —4.1 -13.5 -27.3 -26.1
m**  Slope of straight line when u* < u < u** -0.018 -0.247 -0.014 -0.015
b Probability-axis intercept for straight line when u < u* 0.99 0.98 0.99

p Constant probability when u > u*** 0.006 0.020 0.093 0.078
u* st transition point 0.086 0.030 0.016 0.014
u**  2nd transition point 12.3 1.2 12.9 17.5
u***  3rd transition point 109.8 55.2 96.7 208.5




Downloaded by [University of Cape Town Libraries] at 01:53 11 March 2016

African Journal of Marine Science 2008, 30(2): 219-232

225

of the standardised residuals for the same models, but
without using a logit transformation in Equation (2). In all
four cases, it is clear that the logit transformation provides
the additional benefit of securing residuals that are less

skew than would have been obtained had no transfor-
mation been used, and hence more consistent with the
assumption of normality underlying the formulation of the
likelihood in Equation (2).

Table 2: AIC values for a combination of models and error structures for Islope, given that observed slope <1. The values in bold are the

lowest and those in shaded italics correspond to the model chosen

Model
. 2-line 2-line 2-line .
Linear (gradient) (const large u)  (const small u) BH type BH-adjusted type
Constant variance (a)
Sardine November 27817 2413.0 2411.0 24158 24141
Sardine May 2076.3 1965.5 1936.8 1920.5 19225
Anchovy November 3127.5 3125.6 31253 31245 3125.5
Anchovy May 22103 2209.0 22104 22129 22123 22144
Changing variance (b)
Sardine November 23349 2351.8 2 350.9 23429
Sardine May 1930.2 1929.3 1904.9 1906.4
Anchovy November 3112.7 3119.7 3119.0 3117.6
Anchovy May 2204.4 2204.9 2 206.7 2205.9 2207.9
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Figure 3: The model fits to the observed Islope and the consequent
slope and ‘regression’ of capped against uncapped densities per
interval for the sardine November survey, using the BH-adjusted
type model with changing variance

UNCAPPED DENSITY PER INTERVAL (g m=2)

Figure 4: The model fits to the observed Islope and the consequent
slope and ‘regression’ of capped against uncapped densities per
interval for the sardine May survey, using the BH type model with
changing variance
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Figure 5: The model fits to the observed Islope and the consequent
slope and ‘regression’ of capped against uncapped densities per
interval for the anchovy November survey, using the BH-adjusted
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Figure 6: The model fits to the observed Islope and the consequent
slope and ‘regression’ of capped against uncapped densities per
interval for the anchovy May survey, using the BH type model with
changing variance

Table 3: Maximum likelihood parameter estimates for the model for Islope, given that observed slope <1. The values for u, were fixed

Parameter Sardine November Sardine May Anchovy November Anchovy May
a BH type model parameter 0.93 0.93 0.92 0.94

p BH type model parameter 0.0047 0.0046 0.0002 0.0000
u, Transition point for change of gradient (g m=2) 577.9 642.6

o Standard deviation estimate for Islope 1.78 1.84 1.85 1.96

o Multiplicative change in standard deviation 0.53 0.48 0.55 1.21

u, Density at which variance changes (g m) 150 200 450 150

Tables App.1.1-1.4 list the annual capped and uncapped
density and biomass calculated using the calibration
adjustment of Equation (4), together with the CV calculated
from Equation (17). The full series is given for complete-
ness. These results are given for the area used in the
assessments (i.e. west of Port Alfred for the November
survey and west of Cape Infanta for the May survey).
The uncapped biomass and CV for the complete area
covered by the survey is also given for comparison. The

differences between the capped and uncapped biomasses
are evident from Figure 8, with the greatest difference for
sardine on account of not only the capping effect but also
attenuation at high densities, which occurs frequently.
Table App.2 gives the relative variance—covariance matrix
for the revised biomass series for the sardine November
spawner biomass survey covering the area used in the
assessments. Similar matrices have been produced for the
remaining surveys (results not shown).
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Conclusion

This paper has detailed the method used to refine the survey
biomass series for the South African sardine and anchovy
resources. The updated series has been revised to take into
account the effect of receiver saturation from the old SIMRAD
EK400 echosounder as well as the effect of attenuation in
dense sardine schools. Although there have been several
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Figure 8: The capped (no attenuation for sardine) annual biomass
(dotted lines) and uncapped (with attenuation for sardine) annual
biomass series (solid lines) for the complete area covered by
the survey. Uncapped values prior to 1998 are based upon the
calibration adjustment relationships developed in this paper

attempts to estimate attenuation in dense schools (Toresen
1991, Zhao and Ona 2003), to our knowledge, corrections
for this effect have seldom been made routinely. Similarly,
the correction for changes in receiver saturation between
different echosounders has not yet been documented
elsewhere (see Coetzee et al. 2008 for further details).

The task required calculations to be carried out at an
interval level rather than a stratum or even transect level.
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The effect of both the capping and attenuation occurs at a
school level and could not be appropriately averaged over a
transect or stratum. The interval level constituted the smallest
integration unit available over the entire time-series and was
thus that used for analyses. Working at an interval level did,
however, result in a considerable number of data points for
which the observed capped and uncapped densities were
equal. A mixture model was therefore required to be able
to deal with these cases in which the observed slope was
unity. Using a logit transformation on slope when observed
slope was less than unity gave residuals that were quasi-
normal (by comparison to those obtained without transforma-
tion), and also ensured that resampled slopes generated in
the bootstrap variance estimation were realistically bounded
between 0 and 1.

A single model, consisting of three straight lines followed
by a constant, was chosen to model the probability that slope
was 1 for both the November and May surveys, and for both
sardine and anchovy. Two models of Islope in which observed
slope was less than unity were chosen: one resembling a
Beverton-Holt shape for the May surveys, and a separate one
for the November surveys in which the Islope resembled a
Beverton-Holt shape at low densities, while at high densities
was kept constant. Although the whole process followed from
regression to calibration adjustment should ideally be simula-
tion tested, particularly because error structures are not
preserved when inverting the capped vs uncapped relation-
ships to obtain Equation (4), this is beyond the scope of this
paper. Nevertheless, some sensitivity to the choice of model
was tested for the sardine May survey. The BH-adjusted type
model estimating the transition point u, and the BH-adjusted
type model with u, fixed at 700 g m2 and 900 g m=2 were
used. The calibration adjustment exercise resulted in <3%
difference in any one annual total biomass in these sensitivity
tests to those obtained using the BH type model.

The CV reported with the total annual observed biomass
per stratum takes inter-transect variability into account,
while the calibrated CVs also account for error related to the
calibration adjustment exercise and for error in the parameter
estimates.

These refined survey biomass series for the South African
sardine and anchovy will contribute to more accurate assess-
ments of these resources, which ultimately should improve
management of the South African pelagic fisheries.
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