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ABSTRACT

Appropriate Energy-Environment-Economic (E3) modelling provides key information for 

policy makers in the Electricity Supply Industry (ESI) faced with navigating a sustainable 

development path.  Key challenges include engaging with stakeholder values and 

preferences, and exploring trade-offs between competing objectives in the face of 

underlying uncertainty.  As such, a comprehensive framework is needed that integrates 

multiple objectives and uncertainty into a transparent methodology that policy makers 

and planners can use to analyse and plan for investment in the ESI, in a way which 

shapes decision outcomes, and enables confident choices to be made.  This thesis is 

aimed at developing such a framework.  

As a case study the South African ESI was represented using a partial equilibrium 

(Energy-Economic-Environment) E3 modelling approach.  This approach was extended 

to include multiple objectives under selected future uncertainties.  This extension was 

achieved by assigning cost penalties (PGPs – Pareto Generation Parameters) to non-cost 

attributes to force the model’s least-cost objective function to better satisfy non-cost 

criteria.  It was shown that using PGPs is an efficient method for extending the analysis 

to multiple objectives as the solutions generated are non-dominated and are generated 

from ranges of performances in the various criteria rather than from arbitrarily forcing 

the selection of particular technologies.  Extensive sections of the non-dominated solution 

space can be generated and later screened to allow further, more detailed exploration of 

areas of the solution space.   

Aspects of flexibility to demand growth uncertainty were incorporated into each future 

expansion alternative (FEA) by introducing stochastic programming with recourse into 

the model.  Technology lead times were taken into account by the inclusion of a decision 

node along the time horizon where aspects of real options theory were considered within 

the planning process by splitting power station investments into their Owner’s 

Development Cost (ODC) and Equipment and Procurement Cost (EPC) components.  
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Hedging in the recourse programming was automatically translated from being purely 

financial, to include the other attributes that the cost penalties represented.  The hedged 

solutions improved on the naïve solutions under the multiple criteria considered as well 

as better satisfying the non-cost objectives relative to the base case (least cost solution).   

From a retrospective analysis of the cost penalties, the correct market signals could be 

derived to meet policy goal, with due regard to demand uncertainty. 

Next a methodology for the ranking and selection of FEAs given multiple objectives and 

uncertainty was developed and demonstrated using the South African ESI.  This 

methodology used a value function Multiple Criteria Decision Analysis (MCDA) 

approach that was augmented to compare the relative performance and credibility of 

FEAs across discrete futures.  A portfolio of preferred alternatives was then identified 

based on performance and confidence criteria.  This approach was also used to elicit the 

regret associated with each alternative by evaluating the spread of each alternative 

across the rank order.  Finally a more detailed analysis of the reduced solution set 

examined short-term technology investment details alongside attribute performance 

information, so as to gain insight into the decision problem and relate it back to real life 

actions. 

This work demonstrated that focusing only on alternatives that achieve the preferred rank 

may exclude important alternatives from the portfolio set and therefore from detailed 

analysis and final selection.  Using a portfolio approach and focussing on a greater 

range in rank than just the preferred alternative increases the robustness of the selection 

process by reducing the effect of valuation and empirical uncertainties, allowing for a 

less intensive uncertainty analysis to be done prior to the detailed analysis of preferred 

alternatives.    More specifically, the case study in chapter 5  highlighted that decisions 

relating to technology investment may need to be made even within a preferred set of 

alternatives with similar overall value scores and similar rank and credibility 

information.  In a case such as this, the stakeholders would have to re-evaluate their 

preferences in relation to the specific trade-offs at hand such that a preferred alternate 

can be identified.  Conversely, this case study also demonstrated that it is possible for the 
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initial short term investments for different alternatives in a portfolio of preferred 

alternatives to be so similar as to not require any major decision in differentiating the 

alternatives for implementation.  The dominant effect that decision maker (DM) 

preference information has on the alternatives that enter the portfolio set was also 

demonstrated in the case study.

It was then evaluated whether or not there would significant differences in the absolute 

performance of alternatives in terms of their attributes when dealing with technical 

empirical uncertainties in the generation phase as opposed to the selection phase.  The 

relative performance of alternatives was then examined by comparing the rank order and 

frequency information obtained from dealing with technical empirical uncertainties in the 

generation phase with the rank and frequency information obtained from dealing with 

technical empirical uncertainties in the selection phase.   Finally these differences were 

analysed in relation to other uncertainties in the system (such as valuation uncertainty 

around decision maker preferences) to determine whether they are in fact significant or if 

they are “drowned out” by valuation uncertainties.   

It was found that integrating technical empirical uncertainty into the generation phase as 

opposed to the selection phase resulted in minor differences in the overall performance 

results.  After examining the portfolios of preferred alternatives using different 

preference situations, it was determined that the additional effort and complexity of doing 

a robustness analysis on technical empirical uncertainty in the generation phase as 

opposed to the selection phase may not be justified given that similar alternatives make 

up the portfolios of preferred alternatives using both methods and differences would 

mainly seen in the unstable sections of the weighting sensitivity diagram where valuation 

uncertainties would have the greatest effect on results. 

In the process of doing this comparison the normalisation process whereby attribute 

performance values are converted to value function scores was examined with a specific 

focus on weighting bias.  It was found that using pseudo-minima and maxima to 

normalise attribute performance scores with a modified indifference weighting approach 
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to articulate DM preferences reduces effective weighting biases by reducing the artificial 

inflation or deflation of value function scores based on improbable values.  Differences 

were seen in the lower rank order of alternatives when comparing this method with the 

standard method of normalisation. 

Finally a methodology for integrating forced outage uncertainty into the comprehensive 

multi-objective framework was developed and demonstrated.  This was achieved by 

separating the model into a master (investment) and slave (operational) problem and 

using the amount of unserved energy in each year of the slave problem as a feedback 

mechanism for inflating demand in the master problem to account for forced outage.   

Using unserved energy as a convergence criterion between the master and slave 

problems for each year in the time horizon was shown to be an effective method for 

exploring the solution space and identifying the levels of inflated demand required to 

account for forced outage.  This method also highlighted the trade-off between unserved 

energy and total discounted system cost, allowing the decision maker to make an 

informed choice around this trade-off.   

It was demonstrated that the optimal inflated demand level varies little with DM 

preferences as unserved energy is minimised due to the high cost of unserved energy and 

the fact that the existing system is the same for all the alternatives generated.  Therefore 

the master-slave used routine to determine the optimal level of inflated demand needed 

for each year in the time horizon can be carried out on the base case, and then used to 

generate further alternatives satisfying a range of DM preferences using the methodology 

presented in chapter 4.  In this way forced outage uncertainty can be integrated into the 

multi-objective framework presented in this thesis without having to do large numbers of 

model runs for each alternative.  If however the distribution of unserved energy for the 

preferred alternative was found to be unacceptable by the DM, the level of investment for 

that alternative could be increased using the methodology presented in chapter 7.  
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The benefits of comprehensively integrating multiple objectives and uncertainty into the 

planning process are significant.  For example; correctly planning for forced outage 

uncertainty can significantly reduce the probability of blackouts.  Poor environmental 

performance can be reduced by using a transparent methodology where decision makers 

are accountable for their choices and stakeholders outside of the decision making 

process can engage with those choices.   The benefits of presenting decision makers with 

relevant information in a framework that they can engage with and understand would 

influence the decisions being made dramatically.  The closer the gap between energy 

model and policy maker, the greater the chances of a sound plan being implemented.  

The more transparent the decision making methodology, the closer the gap between the 

policy maker and society. 
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CHAPTER 1                                                                                               INTRODUCTION

In both centrally planned national utilities and fully deregulated markets, strategic 

investment planning for the electricity supply industry (ESI) is a complex task.  It is the 

job of policy makers and planners to ensure that demand will be met in an economically 

efficient, environmentally sound and socially responsible manner.   

Investment decisions in the electricity supply industry typically involve multiple 

objectives that are often conflicting and incommensurate.  Examples of such objectives 

include: minimizing cost, minimizing environmental damage, maximizing job potential 

and minimizing resource utilization.  Policy makers and planners have to reach 

acceptable trade-offs between these objectives before recommendations can be made 

about future investments.  Each potential new power station can be evaluated in terms of 

a set of criteria relating to these objectives.  However it is rarely the case where the 

choice of technology is obvious given the multiple conflicting objectives of the 

stakeholders and the typically opposing performance attributes of power stations (i.e. 

stations that perform well in terms of cost usually perform badly in terms of 

environmental criteria and vice versa).   

Uncertainty exists in each part of the investment modelling process.  These uncertainties 

include technical empirical uncertainties relating to model data such as investment costs 

and emission coefficients1, technical model parameter uncertainties such as reserve 

margin, discount rate and time horizon and valuation model parameter uncertainties such 

as inter- and intra- criterion preference information as well as uncertainty relating to the 

choice of model used (i.e. model form uncertainty).     

                                                
1 Emission coefficients are the values relating the quantity of pollutants emitted from a power station per 
unit of electrical output (e.g. ton CO2/MWh). 
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At this point it may be useful to note the significance of the role of the decision maker 

(DM2) and the objective of this thesis.  At one extreme, the DM may be a policy maker 

who explicitly determines all aspects of new investments (as is done in centrally planned 

national utilities like South Africa), on the other, the DM may have to use incentives, 

anti-monopoly rules, emissions caps, a myriad of Renewable Energy promotion policies 

and other instruments to shape future capacity investments.  Preceding the set-up of these 

rules, it is vital that the DM understand what the most appropriate FEA may be in terms 

of their preferences.  A method for evaluating FEAs from a global, or in this case, 

national perspective is presented in this thesis.  This information can then be used by the 

policy maker to guide the rules that govern the market.  This thesis does not focus on how 

to develop the market rules, nor is its focus the reaction of investors to those rules.  It 

focuses on evaluating, to the best of our current knowledge of the uncertainties involved, 

which FEA may be most appropriate given a set of preferences, from the perspective of a 

policy maker.  Although power market restructuring has resulted in investment decisions 

in much of North America, Europe and East Asia being made from the perspective of 

individual firms (based on their own profitability criteria), the methodology developed in 

this thesis is still applicable in those markets from the perspective of a regulator or policy 

maker. 

This thesis aims to develop a comprehensive framework that integrates multiple 

objectives and uncertainty into a transparent methodology that policy makers and 

planners can use to analyse and plan for investment in the ESI.    

This chapter will begin by defining some of the key terms used in ESI modelling and will 

then go on to briefly outline each chapter of thesis. 

                                                
2 A decision maker can be a single person or, when a group of people are involved, it could be a consensual 
position defined by a set of commonly held objectives. 
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1.1. KEY DEFINITIONS

The following definitions relate to technical terms used in this document and their 

specific meaning within analysis and modelling of the ESI: 

OPTIONS AND TECHNOLOGIES

Options for capacity expansion planning or integrated resource planning may include 

supply-side capacity additions or technologies, demand-side load shifting and energy 

efficiency programs or any other measure for meeting or reducing electricity demand. 

Each option has a set of specifications that govern its behaviour in an investment 

planning model (e.g. availability factors3, efficiencies, costs, emission coefficients, 

capacity constraints, ect.)  

FUTURE EXPANSION ALTERNATIVES (FEA) 

A future expansion alternative is an investment strategy comprising of a range of 

different technologies, built over a medium to long term time horizon (typically 10-50 

years), that satisfies the demand for electricity over this time period.  The model time 

horizon is often extended beyond the study period to allow for investment in the final 

years of the model to account for future demand beyond the study period.  The choice of 

which options to build, when to build them and how much capacity of each option to 

build is included in this plan or alternative.  This investment strategy can then be 

optimised for stakeholder defined objectives such as cost, as well as environmental and 

social objectives.  The plans typically optimise for both the investment and operational 

parameters (load factors) of the power stations. 

                                                
3 The availability factor is the maximum percentage of the year that a power station is available to produce 
electricity, given its’ planned and forced outage. 
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UNCERTAINTIES AND FUTURES

Uncertainty can be broken down into uncertainties relating to technical model parameters 

(e.g. discount rates, reserve margins and model time horizon) which are decided by the 

DM, technical empirical uncertainties relating to data (e.g. costs, emission coefficients, 

efficiencies and other technical parameters) which  may be outside the control of the DM 

and valuation model parameter uncertainties (e.g. choice of criteria, choice of multi-

criteria method to be used and inter- and intra-criterion preference articulation) which are 

highly dependant on the preferences of the DM.  A future is an outlook based on a single 

set of values for all uncertain parameters in the model.   

OBJECTIVES, CRITERIA AND ATTRIBUTES

The objectives of the optimisation are defined so as to represent the preferences of the 

DM.  Criteria are then chosen to represent those objectives in the model.   Attributes are 

the outcomes by which the relative performance of a particular alternative is measured.  

These may include financial or economic indicators, technical performance attributes, 

environmental attributes, as well as social attributes.  These attributes are the 

performance indicators for the various criteria deemed important by the DM.  Attribute 

performance is a function of the options and uncertainties and are determined through 

model runs.  If minimising global warming was defined as an objective, global warming 

potential would be the criterion under which the performance of an alternative would be 

evaluated in terms of the attribute of CO2EQ emissions.   
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1.2. CHAPTER OUTLINE

REVIEW OF THE LITERATURE

Chapter 2 discusses some of the relevant methods used for modelling investment in the 

ESI based on the international literature.  Each phase of the modelling process is 

addressed, and discussed in terms of the relevant literature. 

UNCERTAIN PARAMETERS IN ESI INVESTMENT MODELLING

Chapter 3 outlines the problem of modelling investment in the ESI in more detail based 

on the literature review in chapter 2.  This chapter discusses some of the key uncertain 

parameters and how they have typically been addressed in ESI modelling.  It then defines 

the research hypotheses and key questions of this thesis. 

GENERATION FOR MULTIPLE OBJECTIVES UNDER UNCERTAINTY

Chapter 4 then goes develop an approach for generating FEAs for multiple objectives 

under demand growth uncertainty.  It outlines a methodology for doing this and 

demonstrates this methodology using the South African ESI.  It focuses specifically on 

finding the most appropriate method for generating FEAs for multiple objectives within 

the overall framework presented in this thesis.  It also focuses on building flexibility 

towards demand growth uncertainty into the generation of FEAs. 

RANKING AND SELECTION OF POWER EXPANSION ALTERNATIVES FOR MULTIPLE OBJECTIVES 

UNDER UNCERTAINTY 

Chapter 5 is focussed on the ranking and selection of FEAs given multiple objectives and 

uncertainty.  It specifically addresses technical empirical parameter uncertainty such as 

technology costs and emission factors and valuation model parameter uncertainty such as 

DM preference information.  A methodology is developed for evaluating the performance 
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and robustness of alternatives given these uncertainties and for isolating a portfolio of 

preferred alternatives for detailed analysis.  A detailed analysis of the short term 

investment strategies of these preferred alternatives is then done and the insights are 

related back to real life actions (i.e. what choices mean in terms of actual technology 

investment decisions). 

THE EFFECTS OF INTEGRATING TECHNICAL EMPIRICAL UNCERTAINTY INTO THE 

GENERATION PHASE

Chapter 6 compares the results of integrating technical empirical uncertainty into the 

generation phase with integrating it into the selection phase.   It begins by examining the 

weighting bias effect that normalising attribute scores on a conventional 0-1 range can 

have and then outlines a method for overcoming this; both in the normalisation procedure 

and when articulating preference information from the stakeholders.  It then goes on to 

evaluate whether or not there are in fact significant differences in the results obtained 

from dealing with technical empirical uncertainties in the generation phase as opposed to 

the selection phase and  also whether other uncertainties in the system (such as 

uncertainty around DM preferences) would be more significant.  It also evaluates whether 

the additional computational time and data management burden of this approach is 

justified given the results. 

INTEGRATING PLANT AVAILABILITY UNCERTAINTY AND RESERVE MARGIN INTO THE MULTI-

OBJECTIVE FRAMEWORK

Chapter 7 is aimed at integrating plant availability uncertainty into the multi-objective 

framework developed thus far.  A methodology for modelling plant availability in terms 

of planned and forced outage is developed and integrated into a framework that can 

model demand both chronologically and in high resolution such that both the frequency 

and duration of outage can be adequately represented, all within a multi-objective 

framework with a comprehensive analysis of system wide uncertainty. 
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OUTLINE OF OVERALL METHODOLOGY AND CONCLUSIONS

Chapter 8 outlines the overall methodology for comprehensively integrating multiple 

objectives and uncertainty into ESI investment modelling developed in this thesis.  The 

hypotheses presented in chapter 1 are then reiterated and the conclusions drawn from 

each chapter are related back to these hypotheses. 
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CHAPTER 2                                                            REVIEW OF THE LITERATURE

This chapter will discuss some of the relevant methods used for modelling investment 

in the ESI in light of research hypotheses and key questions presented in chapter 1. 

2.1. BACKGROUND

The field of electrical supply industry modelling is diverse and may include the 

expansion of generating capacity, transmission and distribution systems and plant 

scheduling.  The following section will focus mainly on the approaches used to deal 

with investment analysis and planning for the electrical supply industry as well as the 

decision making techniques used to identify preferred expansion alternatives.   

Capacity expansion planning is well known to inherently involve multiple objectives 

that are often conflicting and incommensurate (Hobbs, 1995; Georgopoulou et al., 

1997; Antunes et al., 2004).  The planning process has been reformed to include 

environmental and social objectives as it is no longer sufficient or acceptable to plan 

on cost arguments alone (Georgopoulou et al., 1997; Linares and Romero, 2000; 

Antunes et al., 2004). 

Typical ESI modelling methodology can be split into two phases:  A primary step is 

the generation phase, where solutions are generated in an energy systems modelling 

framework.  A subsequent selection phase identifies preferred alternatives from 

within the set generated, based on policy maker and stakeholder preferences and value 

judgements.  Both of these phases can be explored against a set of policy making 

objectives, and both contain inherent uncertainties which relate to empirical and 

model parameter uncertainty as well as uncertainty relating to valuation arguments.  

The following section will discuss the generation phase while the selection phase will 

be discussed in section 2.2.2. 

2.1.1. BACKGROUND (GENERATION) 

The purpose of the generation phase is to develop detailed strategies to meet future 

electricity demand.  Which technologies (type of power stations) to build, when to 
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build them and how much capacity of each technology to build is decided in this 

phase.  Power expansion alternatives/plans generated in this phase would then be 

investment strategies comprising of a range of different technologies, built over a 

medium to long term time horizon (typically 10-50 years), that satisfy the demand for 

electricity over this time period (taking into account the demand level beyond the 

study period).  These investment strategies are usually optimised for stakeholder 

defined objectives, the most common being cost but also environmental objectives 

such as the minimisation of pollutant emissions (SO2, CO2, NOx), radioactive wastes, 

resource consumption, as well as social objectives such as job creation and quality of 

service (Mavrotas and Diakoulaki, 1999; Soloveitchick et al., 2002; Lahdelma et al., 

2003; Antunes et al., 2004; Martins et al., 2004). 

Capacity expansion models typically have constraints relating to issues such as 

demand satisfaction, investment/capacity limitations, resource limitations, technical or 

political technology restrictions, energy security, availability of technologies and the 

annual build rate for new technologies.  In some cases, constraints are used for 

pollutant emissions rather than treating them as separate objective functions 

(discussed in more detail in section 2.2.1). 

Some models have extended the analysis from only supply side options to include 

demand-side management (DSM) options within the framework of integrated 

resource planning (IRP) (Hobbs and Horn, 1997; Martins et al., 2004; Heinrich et al., 

2007).  DSM is typically modelled as an equivalent generating group with constraints 

on operation.   

Different modelling approaches have been used to answer different types of policy 

and planning questions.  Broadly they can be split into optimisation and simulation 

models although there are many sub-categories of each. 

Simulation models are completely defined by the modeller (in terms of the investment 

and operational parameters of the power stations) and are used to explore the effects 

of different policy decisions or to examine different future scenarios.  They are used 

to answer “What will the effects be if we do this?” type of questions.   
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Optimisation models are used to inform the modeller on the best course of action to 

take given a set of technologies (with cost and performance data), a set of objectives 

and a demand to be met.  The objective function is either minimized or maximized 

within the context of the specifications and constraints of the model.  The results then 

inform the user on how to best achieve their objectives rather than informing the user 

how a given course of action will result, as in simulation models.  This thesis will 

focus on optimisation models rather than simulation models as the aim is to develop a 

framework for the generation and selection of future expansion alternatives (FEAs) 

for multiple objectives under uncertainty rather than answering “What if…?” type of 

questions. 

Optimisation methods can be divided into linear, non-linear, mixed integer and mixed 

integer non-linear methods.  Large linear programming (LP) optimisation models 

have been used extensively over several decades in ESI modelling (Hobbs, 1995; 

Cormio et al., 2003).  This is the most commonly used formulation for energy system 

models since it guarantees that a global optimum can be found, provided that the 

solution space is a closed convex set.  The most common algorithms used to solve 

linear programming problems are based on either the simplex algorithm (see (Dantzig, 

1963)) or an interior point method (see (Karmarkar, 1984)).   

Non-linear programming (NLP) is similar to LP but consists of non-linear equations 

(includes terms such as xy or log x), which usually increases the complexity of the 

solution process.  In NLP, the obtained optimum represents only a local optimum as 

opposed to the global optimum in LP and a global optimum cannot be guaranteed.  It 

is often possible to approximate the non-linear equation into a linear form by 

introducing integer variables.  Model formulations that use both integer programming 

and continuous variables are called mixed integer programming (MIP).   

In reality technology units are sold in specific sizes (e.g. 720MW turbines) and 

therefore the output of a LP model may require post-processing for the discretisation 

of continuous solutions accounting for the actual modular capacities of available 

technology units.  This problem has been addressed through mixed integer linear 

programming (MILP) models for both single and multi-objective cases (e.g. Mavrotas 

and Diakoulaki, 1999; Antunes et al., 2004).     
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Dynamic programming (DP) has been proved to be especially useful for capacity 

expansion planning by converting a multistage optimisation1 problem into a series of 

simple problems.  DP problems can be solved easily because of the recursive 

application of the principle of optimality on the objective.  The DP modelling 

approach has been used in conjunction with many commercially available expansion 

planning tools such as EGEAS2 and WASP3.  A major drawback of DP models is the 

issue of dimensionality due to the fact that all possible solutions are searched for in 

order to find the optimal sequence of decisions that lead to the optimal state. This may 

involve excessive requirements in terms of computing time and data storage space.  It 

is however possible for the modeler to reduce the decision space considerably by 

applying realistic constraints such as reserve margins as well as capacity and resource 

availability constraints.  Further enhancement may be achieved by introducing 

multiple objectives and random parameters into the DP models, resulting in multi-

objective dynamic programming and/or stochastic dynamic programming models 

(Dapkus and Bowe, 1984; Mo et al., 1991; Tanabe et al., 1993; Kanudia and Shukla, 

1998; Loulou and Kanudia, 1998; Heinrich et al., 2007) (discussed in more detail in 

section 2.4.1). 

Modelling with single objective functions has been a powerful tool in optimizing 

power station expansion under specific environmental constraints, as well as for 

examining the economic feasibility of new options in the energy market.  This type of 

analysis, done in partial equilibrium4 frameworks, has provided policy makers with 

the “perfect market”5 response to future scenarios that are valid for both regulated, 

centrally planned power markets, as well as for efficient fully deregulated markets 

(from the perspective of a regulator).  Although this type of modelling has enjoyed 

                                                
1 A multistage problem is a problem with multiple time periods which must be solved to obtain an 
overall solution. 
2 EGEAS (Electric Generation Expansion Analysis System) developed by the Electric Power Research 
Institute (EPRI), http://www.epri.com. 
3 WASP (Wien Automatic System Planning Package) developed for the International Atomic Energy 
Agency (IAEA), www.iaea.org/. 
4 Partial equilibrium frameworks represent part of the overall economy (i.e. the energy sector) and have 
the properties that the prices and quantities of fuels and other commodities will be such that supply will 
meet demand exactly, in each time period, and further that total economic surplus will be maximized 
over the time horizon. 
5 Note however, that for modelling the response of an individual utility  to investment planning 
decisions within a multi player market, other approaches may be more appropriate (e.g. systems 
dynamics, agent based modelling or game theory).   
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some success for integrated resource planning in the past, resource planning today has 

become a far more complex task (Hobbs, 1995).  What such an approach fails to 

deliver is explicit consideration of trade-offs between different objectives and the 

need to address uncertainty comprehensively in the modelling process. 

2.2. CONSIDERING MULTIPLE OBJECTIVES

According to (Brundtland, 1987) the foundation of a sustainable world is one which 

conducts itself appropriately today so that future generations will be able to enjoy the 

same resources and opportunities available to the current generation.  Sustainability is 

often interpreted as: "able to be maintained at a fixed level without exhausting natural 

resources or damaging the environment". In a more topical context this has been 

extended from purely environmental to include social and economic criteria, although 

environmental sustainability is still the primary concern (see for example Haimes, 

1992; Azapagic, 2004; Clift, 2006).  If sustainability considerations are to be 

integrated comprehensively into any ESI modelling approach, they need to be 

considered from the problem definition stage to the final sensitivity analysis and 

selection phase.  Sustainability objectives need to form an integral part of the 

generation phase so as to ensure that solutions are generated that attempt to satisfy all 

the objectives considered, at least to some degree.  Not all of the DM preference 

criteria can or need to be explicitly defined as optimisation criteria; however there 

need to be non-cost objectives that represent sustainability arguments present in the 

generation phase to force the model to balance the cost and non-cost criteria.  Non-

optimisation criteria (e.g. qualitative criteria) as well as the optimisation criteria can 

be used after the generation phase for screening alternatives and for evaluating 

alternatives based on DM preferences.  

The choice of method for integrating multiple objectives into the problem framework 

needs to consider both the generation and selection phase of the problem.  It needs to 

be decided whether stakeholder interaction would be best integrated into the 

generation phase, effectively combining generation and selection, or whether it would 

be preferred to generate a range of solutions in the generation phase from which a 

preferred alternative or set of alternatives could be isolated in a separate, more 

detailed selection phase.  At issue here is the concept of transparency with regard to 
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the planning methodology and the ease with which the consequences of choices can 

be seen.  These issues are discussed in more detail with reference to some of the 

approaches to solving multi-objectives problems in section 2.2.1 below.  

Multi-criteria decision making (MCDM) methods may be broadly classified into two 

categories: the multi-objective decision making (MODM) type of approach and the 

multi-attribute decision making (MADM) type of approach.  Both types of approaches 

are used for problems with often conflicting criteria, incommensurate units, and may 

deal with qualitative and quantitative attributes. The main difference between these 

two types of approaches is the decision space being considered (Huang et al., 1995).  

In the MODM type of approach, the decision space is continuous and the alternatives 

are generated from the objectives within the constraints of the problem (generation 

phase).  In the MADM approach type of approach, the decision space is discrete and 

each alternative has a set of attribute performance values associated with it.  These 

attribute scores can then be used to compare the alternative for given preference 

defined by the DM (selection phase).  Each of these types of approaches is discussed 

in turn in sections 2.2.1 and 2.2.2 respectively. 

2.2.1. MULTI-OBJECTIVE DECISION MAKING (MODM) 

In order to develop FEAs to meet future demand for electricity the DM needs to 

decide on which technologies to include for consideration in the optimisation model, 

the optimisation objectives need to be defined and the demand projections need to be 

decided upon.  Once this has been done all the relevant information for each of the 

technologies (e.g. costs, efficiencies, availabilities) as well as the demand information 

(profile and growth projections) and any constraints can be inputted into the model.  

Given specific objectives, then model can then choose which technologies to build, 

when to build them and how much capacity of each technology to build.  Some of the 

different approaches for locating efficient or non-dominated6 solutions to multiple 

objective linear programming (MOLP) models (see Cohon, 1978; Steuer, 1986; 

Diwekar, 2003) are discussed below:   

                                                

6 An efficient, non-dominated or Pareto optimal solution can be defined as a solution where a single 
attribute cannot be improved upon without sacrifice in another of its attributes.   
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One approach is to analyse the trade-offs through a common objective, usually being 

cost, by assigning cost benefits or penalties to each of the major non-cost criteria.  A 

sensitivity analysis performed on these parameters helps establish their individual 

effects on the overall cost.  This method has been used in particular energy market 

analyses by permuting arbitrary “emission taxes” to generate efficient  solutions for 

MOLP models with the aim of providing decision makers with a trade-off situation 

between cost and CO2 emissions (e.g. Hobbs and Meier, 1994; Koroneos et al., 2004).  

Although much work has been done to quantify the damage to both human health and 

the environment (e.g. Ottinger et al., 1991; Friedrich and Bickel, 2001), when used in 

this form, the “emission taxes” do not imply to represent the actual cost to society 

resulting from the generation of electricity, but are merely used as parameters to force 

a model to generate solutions in relation to multiple objectives.  This said, “taxes” 

used to generate preferred solutions may find value in providing policy makers with 

appropriate market signals to influence market behaviour.  This method can easily be 

applied to many existing electricity expansion tools (e.g. EGEAS, WASP and 

TIMES7) and therefore is readily accessible to a wide range of planners.  A 

disadvantage of this approach is that it is manually intensive as it does not guarantee a 

well-spread representation of the non-dominated solution set.  The burden of adequate 

representation of the solution set lies with the modeller, although new solutions can 

quickly be generated based on a cursory examination of the solution set.  This is 

discussed further in chapter 4. 

Another approach is to re-cast all but one of the objective functions as a set of 

constraints operating on the remaining objective function.  Examples of this are 

common in the process engineering literature – see, e.g. the e-constraint method, 

described, amongst others, by (Diwekar, 2003).  The range of constraints is explored 

systematically to generate a representation of the non-dominated solution space.  In 

energy modelling, environmental objectives are typically recast as a set of emission, 

pollution or temperature (for climate change models) constraints, informed often by 

regulatory regimes (e.g. Manne and Richels, 1997; van der Zwaan et al., 2002; 

Cormio et al., 2003).  This method is also easily applied to electricity planning tools 

                                                
7 TIMES (The Integrated MARKAL-EFOM System) developed by ETSAP. 
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that allow for “emission caps” or upper bounds to be placed on emissions (e.g. 

WASP, TIMES, MESSAGE8).  While this the solution space can be systematically 

explored using this approach, it does not readily yield the market signals necessary to 

influence the market towards a preferred state (i.e. taxes) and it does not allow for 

flexibility towards multiple objectives to be explicitly integrated into the model 

(discussed further in chapter 4).  

A third approach is to evaluate the objective functions separately and to explore the 

solution space using weighted sums of the individual objective functions or by 

measuring the composite distance from an “ideal” or reference point.  This involves 

interactive participation with stakeholders in the definition of the weights or goals 

until a satisfactory solution has been reached for the case of a single solution or a 

permutation of weights or goals to generate a representation of the non-dominated 

solution space.  In the latter case, the weights or goals would effectively be used as 

generating parameters rather than being “true” weights representing preferences.  

Examples of interactive procedures include reference point methods such as goal 

programming (Charnes and Cooper, 1961) and achievement functions (see 

Wierzbicki, 1982; Wierzbicki, 1986), the  STEM method (Benayoun et al., 1971) and 

the interactive weighted Tchebycheff approach (Steuer and Choo, 1983; Sun et al., 

2000).  Applications of interactive methods in energy planning can be found in the 

literature, see (Linares and Romero, 2000) for an example of a reference point 

method, (Antunes et al., 2004) for an example of combining a reference point method 

with the STEM method and (Linares and Romero, 2002) for an example of a goal 

programming approach.  While this approach offers a comprehensive manner in 

which the generation and selection of preferred alternatives can be integrated, it 

requires significant stakeholder participation in the modelling process.  This method 

also has the disadvantage of being unable to reveal Pareto points on the concave 

sections of non-inferior sets resulting from using integer variables (e.g. for lumpy 

investments).  As discussed in the following paragraphs, this is not appropriate for all 

stakeholder situations.  Another limitation of this approach is that a weighted 

aggregation function approach cannot be readily used within existing single objective 

energy planning approaches without significant reformulation of the tools. 

                                                
8 MESSAGE (Model for Energy Supply Strategy Alternatives and their General Environmental 
Impact) developed by the International Institute for Applied Systems Analysis (IIASA).  
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Where explicit consideration has been given to multiple objectives in power 

expansion planning, the techniques for solving deterministic optimisation problems 

can be broken into three general classes requiring prior, progressive or posterior 

articulation of preferences by the DM (Ringuest and Graves, 2000).  The choice of 

where in the modelling process to include DM preferences comes down to practicality 

relating to the problem being addressed in terms of the greater problem definitions 

and problem solving framework, transparency in terms of the choices being made and 

the consequences of those choices and the possible value of the outcomes resulting 

from the methodology chosen.  Each of the general classes of preference articulation 

will be briefly described below, and discussed in terms of their implications: 

With prior articulation methods, the stakeholders make trade-offs among the 

objectives before optimisation. Often stakeholder meetings are held prior to the 

modelling phase in the planning project and the relative importance of criteria are 

decided upon (typically represented by weights).  While this approach works well in 

theory, most stakeholders are not fully aware of the trade-offs that occur between 

FEAs as a consequence of their initial preferences until after the modelling is done. 

As a result, there are few applications of this approach being used in practice 

(Ringuest and Graves, 2000).   

Progressive articulation methods or interactive methods (see Zionts and Wallenius, 

1976) require the interaction of the stakeholders to provide trade-off information 

during the course of the progressive modelling procedure. These techniques shift 

importance away from predefined weights as the stakeholders interact with the trade-

off decisions continuously in the modelling process.  These methods are however, 

time consuming and can be computationally intensive as the size and complexity of 

the problem increases.  This may cause the stakeholders to lose interest in the process 

and may not be suitable for processes where multiple stakeholders exist.  This method 

also results in a situation where the trade-offs between objectives are not obvious to 

outsiders or stakeholders that were not involved in the modelling process and 

therefore are better suited to situations with small numbers of decision makers and 

stakeholders (Novac and Ragsdale, 2003). 
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Posterior articulation methods (or generating methods) first generate a representative 

set of efficient or non-dominated solutions and then allow the stakeholders to identify 

the preferred solution. This approach has the benefit of allowing the stakeholders to 

make a choice knowing the consequences of their decision relative to the other 

alternatives with regard to the predefined objectives.  This method is also more 

transparent and easily understandable to stakeholders outside of the decision process 

and therefore creates a situation where the DM is more accountable for his or her 

choices.  This method can however overwhelm the stakeholders with too much 

information unless a suitable framework to guide them through the selection process 

is in place.   

It is also possible to integrate methods of articulation by for instance using a 

generating method to give the stakeholders an initial sense of the possible range of 

attributes for the problem and then to use an interactive method to refine and generate 

a set of appropriate solutions for the problem, from which a preferred solution can 

ultimately be selected. 

2.2.2. MULTI-ATTRIBUTE DECISION ANALYSIS (MADA)  METHODS IN ENERGY PLANNING

MADA provides a structured framework to support decision making in the presence 

of multiple objectives which are often non-commensurate and conflicting (Keeney 

and Raifa, 1976; Von Winterfeldt and Edwards, 1986).  The problem structuring 

phase is the starting point of any MADA application (Diakoulaki et al., 2005).  In this 

phase stakeholders are identified and agreement is reached on the options to be 

included for consideration as well as the criteria that will be used to judge the 

performance of the alternatives.  The criteria can be both quantitative and qualitative.  

The next stage is the problem analysis phase where the alternatives are evaluated 

based on the criteria selected by the DM for given preferences.  This is typically 

followed by the selection of a preferred alternative or set of alternatives and an 

uncertainty/risk analysis to ensure the robustness of the solution/s.   

The purpose of using a MADA method in the context of this work would be to select 

a preferred FEA or set of FEAs based on the multiple objectives chosen by the 

stakeholders, whilst considering the uncertainties involved.  The usually conflicting 

nature of the cost vs. environmental/social criteria as well as the often opposing 
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stakeholder preferences relating to these criteria would pose challenges for the 

ranking and selection of preferred alternatives.  The inherent uncertainty in attribute 

data would further compound the complexity of the decision problem. 

There are a number of different MADA methods that have been used in ESI 

modelling.  The following sections provide a background on the following list of 

methods, which were seen to be the most applicable within the context of this work: 

o Multi attribute utility theory (MAUT)  

o Multi attribute value theory (MAVT) 

o Analytical hierarchy process (AHP) 

o Outranking methods (including ELECTRE (The Elimination and Choice 

Translating Reality) family of methods and the PROMETHEE (Preference 

Ranking Organization Method for Enrichment Evaluation)  method 

While all the methods listed above will be discussed, the focus will be on one of the 

major schools of thought that have been used in this field and will discuss two of the 

methodologies within this school of thought; namely Multi attribute utility theory 

(MAUT) and Multi attribute value theory (MAVT).  These methods are discussed 

below, as is the distinction between them: 

2.2.2.1 MULTI ATTRIBUTE UTILITY AND MULTI ATTRIBUTE VALUE THEORY IN ENERGY 

PLANNING

MAUT and MAVT are well suited for energy planning and policy analysis where 

problems have large numbers of variables, multiple criteria and uncertainty (Huang et 

al., 1995).  According to (Diakoulaki et al., 2005) MAUT and MAVT have been the 

preferred methods for selection of competing energy projects and action plans as well 

as for selecting a subset of preferred energy projects. 

MAUT and MAVT methods are often mentioned together in the MCDA literature.  

Both methods use aggregated functions to represent the performance of alternatives 

based on DM preference information.  The difference between them is that MAVT is 

formulated such as to assume that the performance of each alternative is known with 
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certainty whereas MAUT is formulated to explicitly consider the uncertainty in 

performance (or the outcome) of each alternative.  Where MAVT uses a value 

function (described below) to represent the performance of deterministic alternatives, 

MAUT uses a utility function (which is based on the expected utility of each 

alternative).  MAUT requires the DM to answer complex questions (called lotteries) 

relating to their preferences between probability distributions and the expected 

utilities of the uncertain performance of the alternatives being considered.  These 

questions are used to determine the risk attitude of the DM.   MAVT only requires the 

DM to answer questions relating to their preferences (discussed in more detail below) 

in terms of deterministic alternatives.  Both value function and utility theory are 

discussed in detail by several authors (see for example (Keeney and Raifa, 1976; 

Beinat, 1997; Belton and Stewart, 2002) for value function theory as well as (Keeney 

and Raifa, 1976), (Von Winterfeldt and Edwards, 1986) and (Wenzel et al., 1997) for 

utility theory). 

In a MAUT approach, stakeholders are involved twice in the decision process; firstly 

to articulate their preferences so that the utility functions can be developed for each 

attribute and then later to assign probabilities to the outcomes of each alternative (De 

Montis et al., 2000).  The utility function for each attribute would then represent the 

expected utility of each alternative for the given attribute and would therefore be 

useful in choosing between alternatives with uncertain outcomes based on their 

expected utility (and the DM’s risk attitude).  Only uncertainties that can be 

represented in probabilistic terms can be considered using MAUT (Morgan and 

Henrion, 1990), and other uncertainties (such as uncertainty in DM preferences which 

are explored in detail in chapters 5 and 6) are often more important in environmental 

decision making (Meier, 1997). 

The work presented in this thesis has a focus on the uncertainty associated with the 

technical empirical parameters that are used to generate the alternatives and in turn, 

the effects that these uncertainties have on the performance of alternatives, as well as 

the valuation parameters relating to DM preferences which affect the selection of a 

preferred alternative.  Although MAVT does not explicitly model uncertainty in 

outcomes, it allows for the propagation of uncertainty in attribute values through the 

value function using sampling techniques (e.g. Monte Carlo and Latin Hypercube).  
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This would yield a performance value for each attribute, in each alternative for each 

uncertain sample and could therefore be readily used for a robustness analysis on 

technical empirical parameter uncertainty (demonstrated in chapter 5).  This would 

allow for the likely range in performance of each alternative to be evaluated as well as 

for alternatives to be compared across each discrete sample of uncertain parameters 

(discussed in more detail and demonstrated in chapter 5).  The same type of analysis 

could be done using a MAUT approach except it would not add value due to the 

absence of risk attitudes towards each of the outcomes considered.  Using a MAVT 

approach in this way would not require the stakeholders to assign probabilities to each 

outcome as the uncertainties in outcomes are propagated from the uncertainties in 

attribute values.  MAVT is also less demanding on the stakeholders as complicated 

questions around the risk of outcomes can be avoided.  The assessment of the 

appropriate utility function is also a complex process which leads to difficult 

questions around the properties of the DM’s preferences (see Vincke, 1992) which 

can be avoided by using MAVT.  Finally it is argued that in most cases MAVT 

coupled with a sensitivity analysis can provide essentially the same results as MAUT 

(Beinat, 1997; Belton and Stewart, 2002).   

In light of the points made above, using MAUT would be unnecessary (given the 

added complexity and increased difficulty of assessment compared to MAVT) and 

inappropriate for this problem (given the focus around uncertainty in DM preferences) 

and therefore the following section will focus on the value function approach and how 

it can be augmented to model uncertainty in the ESI. 

Using the additive aggregation model the value function )( ijxV  is constructed: 

                                                ∑
=

=
n

j
ijii xvwxV

ij

1

)()(                                                (2-1) 

Where iw  is the weight of criterion i , 

and )( iji xv is the partial value function defined over the set of criteria i  for alternative 

j . 
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In practice, partial value functions )(iji xv  are defined for each of the attributes before 

an overall value function can be constructed.  The partial value functions are 

constructed by defining a value scale for the performance of alternatives (based on 

their attribute scores) in specific criteria (intra-criterion preferences).  The partial 

value functions typically map the attribute scores of the alternatives onto a 

commensurate 0-1 scale.  These partial value functions can be defined in a local sense 

(from the performance ranges of the alternatives in a specific criterion) or globally 

(from the conceivable ranges in performance given the decision context).   

Using water consumption as an example, if the partial value function were to be 

defined globally, the range of possible water consumption levels for other power 

systems internationally could be used to scale the water consumption attribute for 

each alternative.  Alternatively, if the partial value function were to be defined locally, 

the performance of alternatives with regard to water consumption would be scaled 

based on the range of attribute scores for the alternatives considered.  It is argued that 

local scales enable a more sensitive and rapid assessment of the alternatives while 

global scales contextualise the alternatives more broadly.   

These value scores can be elicited directly from the stakeholders by asking them to 

assign value scores to each alternative in each attribute (direct rating) or mathematical 

functions can be generated to represent the mapping.  The shape of these functions 

(e.g. linear, sigmoidal, concave, and convex) is a modelling choice for the DM which 

reflects strength of preference informed by the performance scores within a single 

criterion.  The concave function in Figure 2-1 illustrates how preference can be 

modelled using a mathematical function.  Using this function, the value score quickly 

improves as the performance increases from *ijx  to ijx  but improves more slowly 

from ijx  to *
ijx .  This would represent a situation when the DM strongly dislikes poor 

performance in a particular attribute and therefore rewards movement away from*ijx , 

but only weakly prefers high performance and therefore only marginally rewards 

movement from ijx  to *
ijx .  This sort of preference situation could occur when 

emission limits are in place with penalties for emitting over a particular level.  
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Therefore emission values below this level would be strongly preferred but preference 

there would be no incentive to reduce emission levels further. 

Figure 2-1 Example of value functions (Basson, 2004) 

MAVT methods require explicit statements from the stakeholders regarding 

acceptable trade-offs between the attribute performance scores of alternatives in the 

different criteria.  The overall value function then aggregates this performance 

information into a single index for each alternative which represents the degree to 

which each alternative meets the overall decision objective.  Combining each of the 

partial value functions into a single global value function can be done additively or 

multiplicatively depending on the DM preferences,  although additive aggregation is 

prevalent due to its intuitive appeal that makes it accessible to those involved in the 

decision making process (Beinat, 1997; Belton and Stewart, 2002).  Additive 

aggregation models are the most commonly used (Keeney and Raifa, 1976; Belton 

and Stewart, 2002; Basson, 2004) and are likely to be more than adequate in the vast 

majority of settings (Stewart, 2005).  Using the simpler additive aggregation model 

(as opposed to, for instance, a multiplicative or multi linear model) can result in biases 

if DM preferences follow more complicated models, but it requires less demanding 

inputs (in terms of preference statements) from the DM, and is inherently more stable 

jx *
jx*jx
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(the results are less sensitive to minor changes in preference) (Stewart, 2005).  It was 

also found that the errors introduced by using the additive aggregation model instead 

of more complicated models were in fact significantly smaller than the errors 

introduced by the incorrect modelling of the partial value functions (e.g. using a linear 

model when preferences follow a concave function) (Stewart, 2005).   

Additive aggregation has three fundamental requirements which need to be satisfied 

in order to justify its form for the global value function )(
ij

xV .  The first requirement 

relates to the manner in which the criteria are defined while the other two relate to the 

interpretation of the partial value functions and weights respectively.  These 

requirements are discussed below based on the text in (Belton and Stewart, 2002). 

• Criteria must be defined such that mutual preferential independence holds. 

o This implies that preferences in the performance of a criterion must be 

independent of performance in the other criteria, and vice versa.  

• The interval scale property for partial value functions must hold. 

o This implies that strength of preference needs to be modelled as well as 

preference order such that the relative magnitudes of the differences 

between values of )(iji xv  have meaning, due to the fact that a natural 

zero point rarely exists and therefore some minimum value of 

performance is assumed to be the zero reference point.  This implies 

that an increase of performance from an attribute value of 4 to one of 5 

must result in an increase of 25 % in value function score. 

• The trade-off property for weights must be satisfied. 

o The weights should reflect the trade-offs that the DM finds acceptable 

with reference to the attribute ranges over which the value functions 

have been defined. 

A criticism of MAVT approaches has been that compensation can occur between 

criteria due to the fact that the partial value functions are combined into a global value 

score.   This can occur if, for instance, good performance in an economic criterion 

counterbalances poor performance in an environmental criterion.  This problem can 

be overcome in many cases by defining minimum levels of performance for the 
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alternatives in each criterion through stakeholder interaction and discarding 

alternatives that fail to meet these minimum performance criteria.  A thorough 

sensitivity analysis of the results can also be done to explore the extent to which 

compensation occurs.   

Inter-criterion preference information or weighting

When defining the weighting parameter iw  in equation 2.1, it has been shown that no 

single weighting method is preferred by all stakeholder groups (Hobbs and Horn, 

1997) but the most commonly used techniques for weight elicitation are the methods 

based on cross attribute indifference judgements and the swing weighting method 

(Von Winterfeldt and Edwards, 1986; Beinat, 1997; Belton and Stewart, 2002).  This 

said, in the field of energy planning and policy analysis, AHP (discussed in section 

2.2.2.2 below) was found to be the most commonly used (Huang et al., 1995).  

Indifference weighting techniques are based on the concept of equivalent or 

indifferent situations.  The decision maker is presented with a situation and asked to 

find an equivalent situation by trading off performance in one criterion for the 

improvement of performance in another.  Examples of different weighting techniques 

based on indifference can be found in texts such as (Keeney and Raifa, 1976; Belton 

and Stewart, 2002).  An indifference technique is mathematically described below 

where the trade-off between reference criterion i  and criterion j  for alternatives 

X and Y  is represented by equation 2-2: 

( ) ( ) ( ) ( )*

*

* .'... jYjjiXiijYjjiXii xvwxvwxvwxvw +=+     (2-2) 

This equation represents the situation where on the LHS criterion i  is at its best and 

criterion j is at its worst.  The RHS of the equation then represents the situation 

where criterion i  is at an acceptable level if criterion j  were at its best.  This 

equation can be seen to represent the indifference or trade-off question: “What 

sacrifice in terms of the best performance in criterion i  would you be willing to make, 

to achieve an improvement from worst to best performance in criterionj ?”  The 

typical situation where the value score range between 0 and 1 is illustrated in Figure 

2-2 where the attribute performances in criteria  i  and j  are represented by ix  and 
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jx respectively.

Figure 2-2 Indifference situation for typical 0-1 value function range (Basson, 2004) 

In order to determine the weight of each criterion, a reference criterion (α) is chosen. 

The criterion that the decision maker regards as “most important” is typically chosen 

to be the reference criterion.  The ranges in performance of all other criteria are then 

considered in a pairwise manner relative to the range in performance of the reference 

criterion α.  In the first pairwise comparison, the reference criterion α and the next 

criterion β are used to define an indifference equation to obtain the ratio of the weight 

of criterion β and criterion α, which is termed b: 

( ) ( ) ( ) ( )*

*

* .'... YXYX xvwxvwxvwxvw βββαααβββααα +=+ ,   (2-3) 

in the case where the value function range is 0-1, this simplifies to: 

( ) 1.'.01. βαααα wxvww X +=+

( ) bxv
w

w
X =−= '1 αα

α

β

*x*x

*x *x

'x

*
ix*

ix *
jx*jx
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The trade-off questions would be asked for all other criteria in relation to a sacrifice in 

the reference criterion.  The resulting weights could then be calculated from the ratios 

of the trade-offs, and normalised: 

c
w

w
=

α

χ
     d

w

w
=

α

δ         (2-4, 2-5) 

With weights normalised to sum to 1: 

1=+++ δχβα wwww       (2-6) 

Therefore:  

1=+++ δχβα dwcwbww

And 

( )dcb
w

+++
=

1

1
α

In this way the individual weights can be calculated from the ratios of the weights (b, 

c, and d). 

The swing weighting technique (Beinat, 1997; Belton and Stewart, 2002) on the other 

hand articulates the trade-offs the DM is willing to make between criteria by 

quantifying the value improvement associated with a swing from the worst to best 

performance within the defined attribute range.    

This method is illustrated using an example from (Beinat, 1997) in Figure 2-3, for a 

soil remediation study.  The process begins from a worst case profile where all 

performance scores are at their lowest level.  The DM then selects the criteria for 

which a swing from worst to best performance within the specified attribute ranges 

results in the greatest value improvement.  This criterion has the highest weight.  This 

process continues until all the criteria are ranked in order of importance.   
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Figure 2-3 Example of swing weighting technique (Beinat, 1997) 

Based on Figure 2-3 above, with *x  being the best performance score and *x  being 

the worst, it can be stated that: MatterOrgtimetlead wwww .cos 〉〉〉 .   

Once the importance order of the weights has been determined, the next step of the 

swing weighting technique quantifies the relative weights of the criteria by assigning 

a score of 100 to the hypothetical best profile (i.e. where all scores are at their best 

level) and a score of 0 to the hypothetical worst profile (i.e. where all scores are at 

their worst level).  In this way each consecutive swing can be scored in relation to the 

best and worst profiles.  Therefore a score of 25 means that the value of improvement 

resulting from moving a performance score from its worst to its best level is a quarter 

as great as that obtained from moving the performance score in the criterion chosen 

first.  The weights of the criteria are highly dependant on both level of preference 

between criteria and the attribute ranges for the criteria.   

Indifference weighting techniques may appear more complex than the swing 

weighting method and can be result in confusion with stakeholders however it has 

been demonstrated that indifference weighting methods led to more plausible 

preference modelling, when dealing with particular corporate decision situations 

involving the South African electricity utility, Eskom (Basson, 2004).  This was found 

to be particularly true when the reference criterion was expressed in terms of cost or 

profit sacrificed for an increase in performance of another non-cost criterion.  This 

being said, ideally the weighting exercise should be repeated using a different 

criterion as the reference criterion to ensure that the weights obtained are not 

*x            *x   
*x           *x *x          *x *x            *x *x        *x
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influenced by the choice of reference criterion.  This can however be impractical in a 

real decision making environment due to time constraints. 

Simpler weighting techniques such as direct weighting, ratio estimation and ranking 

of criteria are less demanding in terms of preference statements from the stakeholders 

because they do not require attribute ranges to be explicitly considered.   However, it 

is questionable whether these techniques can be regarded as valid methods for weight 

elicitation for additive aggregation functions given the specific meaning of weights in 

the additive aggregation value function (Basson, 2004).     

Using different weighting methods can yield different results with the same group of 

stakeholders and therefore it is advisable to use multiple methods to build confidence 

into the planning exercise (Hobbs and Horn, 1997).  However, this can become 

impractical in corporate decision environments due to time limitations in which case a 

parametric sensitivity analysis could be done to investigate the full effect that 

weighting has on the overall results and the insights related to the stakeholders 

(Basson, 2004; Petrie et al., 2004).  More recently other approaches using Bayesian 

methods have also been used to statistically correct known biases (see for example 

Anderson and Hobbs, 2002).  A detailed sensitivity analysis on weighting is 

demonstrated in chapter 5. 

2.2.2.2. ANALYTICAL HIERARCHY PROCESS (AHP) 

Analytical hierarchy process (AHP) (Saaty, 1977), which is structurally similar to 

MAVT but with difference preference measurement assumptions, has been used 

widely in the energy planning field to elicit partial utility functions and weights 

possibly due to its ability to convert complex problems into simple hierarchies and the 

availability of computer aids to do this (Pohekar and Ramachandran, 2004).  The 

AHP method breaks down a complex problem into a hierarchy with the goal objective 

at the top, criteria and sub-criteria at levels and sub-levels of the hierarchy and 

decision alternatives at the bottom. See Figure 2-4 below: 
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Figure 2-4 – Representation of hierarchy for AHP 

The elements at each level are compared in a pairwise manner to asses their 

preference in terms of each of the elements at the next highest level of the hierarchy.  

The strength of preference between alternatives for each element is articulated using 

Saaty’s fundamental scale of 1-9, with 1 being equal importance and 9 being 

extremely more important.   

A matrix A is created to elicit pair wise comparisons between alternatives at a given 

level.  This is done by putting the result of pair wise comparison of element i with 

element j into the position ija as shown in equation 2-7 below: 

                             











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



=

nnnn

n

n

aaa

aaa
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A

21

22121

11211

                                                 (2-7) 

Once this matrix has been obtained, it is multiplied by the weight coefficient9 of the 

element at the next highest level that was used as a criterion for the pair wise 

comparison.  This procedure is repeated upward for each level until the goal objective 

at the top of the hierarchy is reached.  The final weight coefficient with respect to the 

goal objective for each alternative is then obtained.  The alternative with the highest 

weight coefficient is then the most preferred alternative for the given preferences.   

                                                
9 The weight coefficient is obtained through stakeholder rating of the relative importance of the criteria 
at that level of the hierarchy.  
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AHP has advantages such as inconsistency checks with respect to decision maker 

preferences at different levels of the hierarchy however it does however have some 

documented shortcomings (Millet and Saaty, 2000; Ramanathan, 2001) with the most 

controversial being the issue of rank reversal when new alternatives are introduced.  

Millet and Saaty have addressed some of these shortcomings by introducing a mode 

of calculation for AHP software that preserves rank (Millet and Saaty, 2000).  

Although AHP provided DMs with simple method for eliciting weights for decision 

problems with complex hierarchies of objectives, this work is focused on evaluating 

the trade-offs between multiple objectives under uncertainty in terms of both the DM 

preferences and the technical empirical and model parameters used to generate the 

alternatives.  As AHP does not explicitly engage with the trade-offs between the 

objectives in the preference elicitation process and the uncertainties involved, it was 

decided that AHP would be inappropriate for this problem. 

2.2.2.3. OUTRANKING METHODS

The outranking methods perform pair-wise comparisons across the attributes of 

alternative plans under evaluation.  Alternatives are classed as strongly preferred, 

weakly preferred or indifferent through the use of indifference thresholds.  There are 

different methods within the outranking methodology with the two most prominent 

being the ELECTRE (The Elimination and Choice Translating Reality) family of 

methods and the PROMETHEE (Preference Ranking Organization Method for 

Enrichment Evaluation)  method. 

Outranking methods have been extensively used in the energy field (Pohekar and 

Ramachandran, 2004).  Methods such as the ELECTRE family and PROMETHEE 

provide a scientific basis for choosing between alternatives under multiple criteria by 

making pair wise comparisons between alternatives for each criteria.  Outranking 

methods are aimed at avoiding what are perceived to be overly restrictive assumptions 

of the utility based methods.  They address concepts of real decision making such as 

preference strength and the incomparability of alternatives and can therefore give 

considerable insight into the degree to which one alternative is preferred to another. 
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The ELECTRE III, IV and TRI procedures model partial preferences in a 

sophisticated manner through the use of threshold values.  Weights do not represent 

scaling factors as with the utility based methods but rather some notion of global 

importance or the “voting power” of a criterion.  The aggregation procedures are 

however complex and therefore can be inaccessible to most stakeholders.  It has been 

noted that by adding or removing an alternative,  the existing preferences of the 

remaining alternatives may change due to the dependency of the distillation procedure 

(final ordering of alternatives) on the entire set of alternatives (Belton and Stewart, 

2002).  These discrepancies often make this method inappropriate for direct 

interaction with stakeholders unless detailed analysis could be done on the results 

with support staff, in which case much could be learnt about the alternatives and the 

decision process.  The somewhat arbitrary way in which thresholds are defined is also 

a controversial aspect of the outranking approaches.  Although a thorough sensitivity 

analysis is recommended when using these methods (Belton and Stewart, 2002), the 

task of doing a comprehensive analysis of the threshold values and weights has been 

illustrated to be potentially unmanageable (Roy and Bouyssou, 1986).  Therefore a 

sensitivity analysis would generally be done in an ad hoc manner as suggested by 

(Belton and Stewart, 2002). 

The PROMETHEE method combines some of the simplicity and transparency of the 

early ELECTRE methods with the sophistication of the preference modelling of 

ELECTRE III.  This is done by specifying the intensity of preferences for pair wise 

alternatives for each criterion using functions based on the performance levels of each 

alternative rather than by specifying indifference or preference thresholds as with the 

ELECTRE III method.  The distillation process can however yield counter-intuitive 

results as with the ELECTRE III method (Belton and Stewart, 2002). 

Outranking methods have established a place in the energy and environmental 

planning fields, mainly due to the imprecision associated with measurement and 

evaluation of parameters which in turn require the DM to express their reservations in 

the modelling process (Diakoulaki et al., 2005).  The use of outranking approaches 

has been considered an integral part of the decision making process in situations 

where stakeholder involvement has been considered a priority (Georgopoulou et al., 

1997; Georgopoulou et al., 1998).  However, it is precisely the arbitrary way in which 
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the thresholds are defined that cause doubt about these methods (Diakoulaki et al., 

2005).  Outranking methods may therefore be more appropriate for “backroom” 

analysts than for direct involvement with stakeholders due to the possibility of 

counter-intuitive results and complexities in the modelling process (Belton and 

Stewart, 2002).   

One of the primary goals of this thesis is to develop a transparent methodology for 

evaluating the effects that uncertainties in DM preferences and technical empirical 

and model parameters have on the ranking and selection of preferred alternatives.  As 

a thorough sensitivity analysis on threshold values may not practically be possible for 

large ESI problems as well as the issues around stakeholder interaction mentioned 

above, it was decided that a value function approach would be more appropriate for 

this problem. 

2.2.2.4. INTEGRATED METHODS

The use of integrated methods for decision making using multiple techniques has been 

suggested for a more comprehensive approach to the problem (Huang et al., 1995; 

Hobbs and Horn, 1997; Belton and Stewart, 2002; Basson, 2004) combining detailed 

optimisation type methods, used in the creation of decision alternatives, with 

structured decision making methods, used for choosing between discrete alternatives 

given multiple objectives and uncertainty.  The use of integrated methods is 

demonstrated later in this thesis whereby MODM is used in chapter 4 in the 

generation phase to generate solutions that satisfied multiple objectives to varying 

degrees and an MADM method is used in chapter 5 for the ranking and selection of 

preferred alternatives given multiple objectives and uncertainty.  

2.3. DEALING WITH UNCERTAINTY IN ESI MODELLING

Various types of uncertainty exist within ESI modelling.  Some of these uncertainties 

are specific to the ESI such as those relating to technical model parameters (e.g. 

discount rates and model time horizon) which are decided by the DM and technical 
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empirical uncertainties relating to data (e.g. costs, emission coefficients10, efficiencies 

and other technical parameters) which  may be outside the control of the DM.  Other 

types of uncertainty such as valuation uncertainties (e.g. choice of criteria, MCDA 

method and inter and intra-criterion preference articulation) which are highly 

dependant on the preferences of the DM are common to all MCDA problems.   

Uncertainty in ESI modelling exists at each stage of the process; from generation to 

the selection of a preferred alternative.  Different methods have been used to deal with 

different types of uncertainty, in different phases of the process.  At issue when 

considering uncertainty are the concepts of “robustness” and “flexibility” of the 

solutions generated (Ku, 1995; Loulou and Kanudia, 1998; Fankhauser et al., 1999; 

Galeotti et al., 2006).  In the context of ESI modelling, robustness can be defined as 

the degree to which a solution is affected (in terms of cost or any other attribute) by 

unknown future parameters or changing assumptions (Hobbs et al., 1994; Ku, 1995).  

Flexibility can then be defined as the degree to which a solution can be adapted at a 

future point in time (without substantial loss/change of performance in relation to the 

objectives), and in light of the resolution of, or changing opinions about, unknown 

future parameters (Gorenstin et al., 1993; Hobbs et al., 1994; Ku, 1995).  It can then 

be said that a robust solution will perform well under a range of unknown futures, 

while a flexible solution could easily be adapted to changing future conditions at 

minimal loss of performance in relation to the objectives.  Flexibility must be 

integrated into the generation phase so as to build this characteristic into the 

generation of alternatives.  These alternatives must then be assessed against a range of 

possible future conditions to determine the robustness of each alternative’s 

performance across multiple attributes in light of uncertainty. 

Some of the common methods used for evaluating the influence of uncertainties 

include scenario analysis, sensitivity analysis and probabilistic analysis.  While these 

methods can be applied to a range of fields and problems, they are discussed here 

mainly within the context of ESI modelling. 

                                                
10 Emission coefficients are the values relating the quantity of pollutants emitted from a power station 
per unit of electrical output (e.g. ton CO2/MWh). 
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In ESI modelling, scenario analysis is typically carried out in the generation phase.  

Different representations of the future are constructed (called scenarios), each 

containing the same core data but with different views as to how the future may 

unfold.  Expansion alternatives or plans are then generated for the planning horizon 

with respect to each individual scenario.  This method is best suited for answering 

“What if…?” questions, rather than as a comprehensive analysis of uncertainty in the 

system as this would require a probability weighting for each scenario as well as that 

scenarios are mutually exclusive and exhaustive (Kann and Weyant, 2000). 

The purpose of a parametric sensitivity analysis is to assess the impact of data 

perturbations on the model’s outputs.  In sensitivity analyses, several optimised plans 

are developed according to a set of base assumptions.  The performance of each of 

these plans is then examined in light of the uncertain parameters.  This type of 

analysis typically focuses on uncertainty in technical empirical parameters.  

Parameters of interest are typically varied using their extreme points (5th and 95th

percentile values) while all other parameters are set at mean values (Kann and 

Weyant, 2000).  This method is useful in identifying sensitive parameters by 

analysing the effects that varying inputs have on the model output.  It does not 

determine the robustness of alternatives to uncertain parameters (as new alternatives 

are generated for each set of uncertain parameters) nor does it build flexibility 

towards uncertainty into any alternative.    

A probabilistic analysis of technical uncertainties within ESI modelling may be more 

valuable than scenario analysis and sensitivity analysis (Pan, 1999).  A key limitation 

of both scenario analysis and sensitivity analysis is that flexibility and robustness 

towards uncertainty are not specifically integrated into the solutions explored.  

Probabilistic analysis includes a variety of approaches such as Monte Carlo 

simulation and stochastic programming.  Such an analysis may involve the 

propagation of either discrete or continuous probability distributions of the uncertain 

parameters.  Given probabilistic values for uncertain input parameters, the expected 

values for model output responses can be calculated.  Therefore each point on the 

output distribution represents the outcome of the optimisation of a sample of the 

uncertain input variables.  This is not an accurate representation of reality as it implies 

that decisions are made with uncertainty resolved, whereas in reality policy makers 

need to make decisions before uncertainty is resolved (Kann and Weyant, 2000). 
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This leads on to more sophisticated approaches involving attaching probabilistic 

weights to different scenarios and performing stochastic programming to determine 

the optimal expansion plan including flexibility towards uncertainty.  While this 

approach is theoretically the most comprehensive way of integrating and analysing 

uncertainty, it may not be practical for representing all types of uncertainty in large, 

continuous optimisation models (Kann and Weyant, 2000). This is because the 

complexity of the problem (and the computation time) increases exponentially with 

each uncertain state of the world, for each uncertain parameter and each period of the 

model in the time horizon that has to be optimised.  This said, this methodology has 

been demonstrated for uncertainty in technology costs by introducing a penalty term 

(based on the difference between the cost of each solution and its variance) in the 

least-cost objective function of the MESSAGE III model (Messner et al., 1996).  This 

methodology is however very computationally expensive and may only be practical 

for single objective optimisation, taking only limited uncertain parameters.  Adding 

uncertainty to non-cost parameters and obtaining multiple solutions representing a 

range of policy maker preferences would increase the complexity of the problem to an 

impractical size using this methodology. 

Decision tree or influence diagram models have also be used in probabilistic analysis 

to graphically represent complex multistage decision problems in the energy planning 

field (Huang et al., 1995). 

2.4. CONSIDERING UNCERTAINTY AND MULTIPLE OBJECTIVES

2.4.1. GENERATION

Relatively few studies have undertaken the challenge of solving power expansion 

optimisation problems for a market faced with uncertainty, when there is an explicit 

desire to accommodate multiple objectives within the decision framework.  Studies 

into this area generally propose methodology tailored to specific (and limited) 

applications (Kunsch and Teghem, 1987; Cheng et al., 2003).  It is challenging to 

extend such approaches to much larger, dynamic long-term analyses because of the 

exponential increase in complexity that arises with larger models and the 

computational burden related to this   Another issue arising from including multiple 
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objectives into the problem coupled with uncertainty is the overwhelming amount of 

information generated.  Interpretation of this information could present a substantial 

challenge for decision makers.  

The concepts of flexibility and robustness are key to the methodology developed in 

this thesis, and will be explored in chapter 4 and chapter 5.  Before doing so, however, 

there is merit in describing two of the most relevant methods used to account for 

uncertainty and multiple objectives in the generation phase: the “trade-off/risk 

approach”; and stochastic programming.   These are discussed in turn below. 

The trade-off/risk approach (developed by Merrill and Schweppe, 1984) emphasises 

the trade-offs between objectives and the identification of robust solutions rather than 

finding a single optimal solution for a given system.  Principles of this method were 

used in an electricity sector trade-off analysis whereby multiple objectives were 

addressed under conditions of demand and fuel price uncertainty through the 

generation of future scenarios (Connors et al., 2003).  Through the process of 

stakeholder interaction, a range of possible future technology configurations was 

generated.  Overlaying the range of modelling uncertainties onto this set of options 

allows a large number of permutations to be simulated.  EGEAS11, a single objective, 

linear programming tool (with probabilistic production costing), was used for this 

purpose.  This vast solution set was then reduced by screening out consistently 

inferior solutions based on predefined objectives.  The reduced solution set was 

evaluated against all proposed futures to determine the performance of each solution 

for the given objectives under uncertainty.  In this way solutions that were both robust 

to the uncertainties involved and that performed well under all of the objectives were 

isolated.   

While this analysis is valuable and can provide policy makers with insight into the 

problem and the trade-offs involved, it has the disadvantage of generating a set of 

both dominated and non-dominated solutions from which non-dominated solutions 

need to be chosen, as well as the disadvantage that individual solutions do not have 

inherent flexibility in the face of uncertainty.  When using this method, optimality can 

                                                
11 EGEAS (Electric Generation Expansion Analysis System) developed by the Electric Power Research 
Institute (EPRI), http://www.epri.com. 
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be traded-off against robustness due to the fact that many efficient solutions may not 

form part of the feasible region.  This is because the solution space is generated by 

predefined scenarios based on technology configurations rather than from the 

objectives themselves.  While it is agreed that solutions that are robust to uncertainty 

are often preferable to decision makers than solutions that are efficient and not robust 

(Linares, 2002), it is argued that solutions that are both efficient and robust (especially 

if there are numerous objectives) may be missed by generating the solution space 

based on predefined scenarios with regard to technology configurations rather than 

from the objectives themselves.  It is however acknowledged that a robustness 

analysis is essential to energy modelling and should be integrated into any 

comprehensive ESI modelling methodology (discussed in chapter 5). 

   

Stochastic programming techniques have been used to model uncertainty in the ESI 

since the 1980s (Dapkus and Bowe, 1984; Mo et al., 1991; Gorenstin et al., 1993; 

Tanabe et al., 1993).  This was typically done through use of multiple cost-based 

objective functions (each representing a different future state of the world12) which 

were weighted according to the probabilities of each state of the world.  Minimising 

the overall objective function then resulted in minimising the total expected system 

cost for all futures and building flexibility towards cost into the power station mix in 

light of the uncertainties considered.  Previous work did not focus on building 

flexibility towards non-cost objectives into the solutions. 

Stochastic programming models with recourse (Dantzig, 1963) are used for near term 

modelling in light of long term uncertainties through the development of short term 

strategies with inherent flexibility towards long-term uncertainties, as well as long 

term contingency plans once more information becomes available about the uncertain 

parameters.  The recourse problem is formulated with different future states of the 

world coming into being after designated points in the time horizon (see Figure 2-5 

for an example of the two-stage problem).  This is different to stochastic 

programming without recourse, which outputs a single strategy for the entire time 

horizon which is optimal, on average, for all scenarios.  The recourse solution is then 

optimised such that each stage of the model is best positioned to meet the multiple 

                                                
12 A state of the world is a representation of the future, whereby uncertain parameters are given specific 
values, making up a coherent view of the future, typically with an associated probability of occurrence. 
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future conditions, thus including an aspect of flexibility in the solution.  Two-stage 

stochastic programming is best suited for modelling future uncertainties that have a 

definite date of resolution (such as legislation associated with emission limits) but it 

can also be used to model demand growth and fuel price uncertainties (e.g. Dapkus 

and Bowe, 1984; Kanudia and Shukla, 1998).  Stochastic modelling with recourse has 

also been used to generate flexible least cost solution strategies for global climate 

change (Loulou and Kanudia, 1998).     

Figure 2-5  Example of an event tree with three states of the world and resolution time at 2015 

Note that, with regard to the simultaneous consideration of multiple objectives, all 

three classes of methods for locating efficient solutions to MOLP models described in 

section 2.2.1 are applicable to stochastic models (Heyman and Sobel, 1984).    

2.4.2. SELECTION

MADA methods specifically deal with making decisions in the presence of multiple 

objectives.  MADA methods can be augmented to deal with valuation model 

parameter uncertainties (e.g. sensitivity analyses on weighting and preference 

thresholds values between alternatives) as well as with technical empirical parameter 

uncertainties (as discussed in section 2.2.2.1).  MAUT specifically deals with 
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uncertainties in outcomes that can be represented by probability distribution but as 

mentioned in section 2.3.2, other uncertainties are often more important in energy 

/environment modelling. 

The benefits of combining MADA and scenario analysis were discussed in (Stewart, 

2005) and it was suggested that MADA could enrich the evaluation process in 

scenario planning, while the scenario planning approach could contribute to deeper 

understanding of the effects of uncertainties outside of the control of the DM in 

MADA.   

Preliminary suggestions for the integration of scenario analysis and MADA were 

made in (Belton and Stewart, 2002) and were later extended to suggest two different 

modelling approaches for combining scenario analysis with MADA in (Stewart, 

2005).   The first modelling approach is formulated by constructing a preference 

model across all possible outcomes (combinations of alternatives and scenarios).  

Aggregation is then done across the original criteria and a table can be constructed, 

giving the aggregate performance of each alternative for each scenario. A further 

evaluation is then required to select the most robust alternative (the alternative which 

performs “best” across all scenarios).  The second model treats each of the criterion-

scenario combinations as metacriteria (similarly to the STRANGE method (Teghem 

et al., 1986)).  An appropriate MADA method is then applied to the problem of 

comparing the alternatives in terms of the metacriteria. 

Stochastic multi-criteria acceptability analysis (SMAA) (Lahdelma et al., 1998) has 

also been used to explore the effects of uncertainty in multi-criteria decision making.  

These methods are based on exploring the decision space (in terms of preferences 

represented by weights) in order to articulate the preferences that make each 

alternative the most preferred one.  This method was developed specifically for 

problems where neither the criteria measurements nor the weights are precisely 

known (as with the ESI modelling problem).  The problem is represented by a value 

function where uncertain criteria data is represented by stochastic variables and the 

DM unknown or partially known preferences are represented by a weight distribution 

within the feasible weight space (described in detail in (Lahdelma et al., 1998)). 
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The primary outputs of SMAA are:  

• Rank acceptability indices relating to the variety of preferences resulting in a 

certain rank for an alternative (which are calculated from the share of all 

feasible weights that make the alternative acceptable for a particular rank).  

• Central weight vectors representing the typical preferences favouring each 

alternative. 

• Confidence factors which is the probability for an alternative to obtain the first 

rank when the central weight vector is chosen. 

The SMAA methods do not guarantee a recommendation in situations where criteria 

and weight information are highly uncertain or where alternatives are very similar in 

terms of the selected criteria.  The SMAA methodology was therefore extended to 

include cross confidence factors (Lahdelma and Salminen, 2006) which assist in 

classifying alternatives into preferred or competing sets of preferred alternatives.  The 

cross confidence factor can be interpreted as the probability that an alternative will be 

preferred, for a given set of preference weightings (usually defined by the central 

weighting vectors of the other competing alternatives).  Reference sets can then be 

created by specifying confidence thresholds for the cross confidence factors such that 

only alternatives that have a minimum level of probability for obtaining the first rank 

for a range of weighting vectors (defined by the other competing alternatives) become 

part of the reference set. 

A potential disadvantage of the SMAA methodology is that the confidence factors are 

based on the probability of an alternatives achieving first rank, for the central 

weighting vector.  It may be more valuable to get a broader perspective of the effect 

of DM preferences by doing a sensitivity analysis on the entire range of preferences 

rather than focusing on the central weighting vector for the preferred alternatives 

alone.  It may also be beneficial to report the probabilities or confidence factors of 

alternatives across the full rank order rather than basing confidence factors on Rank 1 

only.   

The cross confidence approach (Lahdelma and Salminen, 2006) improves on basing 

confidence factors on central weighting vectors alone, however only alternatives that 

achieve a rank of 1 (for the given range of weighting vectors) can become part of the 
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reference set.  This may exclude alternatives that perform consistently well, yet not 

best for the range of futures considered.  This is discussed further in section 6.3.4 of 

chapter 6.  

A methodology that examines the full rank order of alternatives is presented in 

chapter 5.  This methodology has parallels with the reference set and cross confidence 

intervals used in the SMAA methodology except that this methodology is based on 

the credibility levels of all alternatives for a given set of DM preferences rather than 

on the central weighting vectors of alternatives that achieve a rank of 1.  This method 

goes on to isolate a preferred set of alternatives set based on minimum performance 

levels (e.g. rank) and credibility whereas SMAA develops reference sets based on the 

confidence of alternatives being preferred (i.e. rank best) only.  Using both rank and 

credibility to isolate alternatives allows new alternatives to enter the preferred set of 

solutions by relaxing performance levels and credibility levels individually.  This 

freedom gives the DM the opportunity to differentiate between performance and 

credibility and to explore the effect that each have on the solution set.  This is 

demonstrated in more detail in chapters 5 and 6.   

The following chapter will outline the ESI investment problem and will discuss some 

of the key uncertain parameters in both the generation and selection phase.  



Univ
ers

ity
 of

 C
ap

e T
ow

n

43

2.5. REFERENCES

Anderson, R. and B. F. Hobbs (2002). "Using a Bayesian approach to quantify scale compatibility 
bias." Management Science 48(12): 1555-1568. 

Antunes, C. H., A. G. Martins, et al. (2004). "A multiple objective mixed integer linear programming 
model for power generation expansion planning." Energy 29: 613-627. 

Azapagic, A. (2004). "Developing a framework for sustainable development indicators for the mining 
and minerals industry." Journal of Cleaner production 12: 639-662. 

Basson, L.,(2004) Context, compensation and uncertainty in environmental decision making. PhD. 
Department of Chemical Engineering. University of Sydney. Sydney 

Beinat, E. (1997), Value functions for environmental management, Dordrecht,  Kluwer academic 
publishers. 

Belton, V. and T. J. Stewart (2002), Multiple criteria decision analysis: An integrated approach,  
Kluwer Academic Publishers, Dordrecht. 

Benayoun, R., J. de Montgolfier, et al. (1971). "Linear programming with multiple objective functions: 
step method (STEM)." Mathematical Programming 1(3): 366–75. 

Brundtland, G. (1987), Our common future, New York,  Oxford University press. 
Charnes, A. and W. Cooper (1961), Management models and industrial application of linear 

programming, 1  New York,  John Wiley. 
Cheng, L., E. Subrahmanian, et al. (2003). "Design and planning under uncertainty: issues on problem 

formulation and solution." Computers and Chemical Engineering 27: 781-801. 
Clift, R. (2006). "Sustainable development and its implications for chemical engineering." Chemical 

Engineering Science 61: 4179 – 4187. 
Cohon, J. (1978), Multi-objective programming and planning, New York,  Academic Press. 
Connors, S. R., W. W. Schenler, et al. (2003). Electric sector simulation: A trade-off analysis of 

Shandong Province's electric service options. Integrated assessment of sustainable energy 
systems in China. B. Eliasson and Y. Lee, Kluwer Academic Press. 4: 781-801. 

Cormio, C., M. Dicorato, et al. (2003). "A regional energy planning methodology including renewable 
energy sources and environmental constraints." Renewable and Sustainable Energy Reviews 
7: 99-130. 

Dantzig, G. B. (1963), Linear programming and extensions, New Jersey,  Princeton University Press, 
Princeton. 

Dapkus, W. and T. R. Bowe (1984). "Planning for new electric generation technologies, a stochastic 
dynamic programming approach." IEEE Transactions on Power Apparatus and Systems 
103(6): 1447-1453. 

De Montis, A., P. De Toro, et al. (2000). MCDA and sustainable development- A comparison of 
methods. Humankind and the City towards a human and sustainable development, Naples. 

Diakoulaki, D., C. H. Antunes, et al. (2005). MCDA and energy planning. Multiple criteria decision 
analysis: State of the art surveys, Springer: 859-891. 

Diwekar, U. (2003), Introduction to applied optimization, 80  Chicago,  Kluwer Academic Publishers. 
Fankhauser, S., J. Smith, et al. (1999). "Weathering climate change: some simple rules to guide 

adaption decisions." Ecological Economics 30(1): 67-78. 
Friedrich, R. and P. Bickel (2001). "Estimation of external costs using the impact-pathway-approach. 

Results from the ExternE project series." TA-Datenbank-Nachrichten 10(3): 74-82. 
Galeotti, M., A. Lanza, et al. (2006). "Reassessing the environmental Kuznets curve for CO2 emissions: 

A robustness exercise." Ecological Economics 57: 152-163. 
Georgopoulou, E., D. Lalas, et al. (1997). "A Multi-criteria decision aid approach for energy planning 

problems: The case of renewable energy options." European Journal of Operational Research 
103(9): 38-54. 

Georgopoulou, E., Y. Saradis, et al. (1998). "Design and implementation of a group DSS for sustaining 
renewable energies exploitation." European Journal of Operational Research 109: 483-500. 

Gorenstin, B., N. Campodonico, et al. (1993). "Power system expansion planning under uncertainty." 
IEEE Transactions on Power Systems 8(1): 129-136. 

Haimes, Y. Y. (1992). " Sustainable development: a holistic approach to natural resource 
management." IEEE Transactions on Systems, Man, and Cybernetics 22(3): 413-417. 

Heinrich, G., M. Howells, et al. (2007). "Electricity supply industry modelling for multiple objectives 
under demand growth uncertainty." Energy 32: 2210–2229. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

44

Heyman, D. P. and M. J. Sobel (1984), Stochastic models in operations research, 2  Mineola, NY,  
Dover Publications. 

Hobbs, B. F. (1995). "Optimization methods for electric utility resource planning." European Journal 
of Operational Research 83: 1-20. 

Hobbs, B. F., J. Honious, et al. (1994). "Estimating the flexibility of utility resource plans: An 
application to natural gas cofiring for SO2 control." IEEE Transactions on Power Systems 
9(1): 167-173. 

Hobbs, B. F. and G. T. F. Horn (1997). "Building public confidence in energy planning: A multi-
method MCDM approach to demand-side planning at BC gas." Energy Policy 25(3): 357-375. 

Hobbs, B. F. and P. M. Meier (1994). "Multicriteria methods for resource planning: An experimental 
comparison." IEEE Transactions on Power Systems 9(4): 1811-1817. 

Huang, J. P., K. L. Pho, et al. (1995). "Decision analysis in energy and environmental modeling." 
Energy (20): 843-855. 

Kann, A. and J. P. Weyant (2000). "Approaches for performing uncertainty analysis in large-scale 
energy/economic policy models." Environmental Modeling and Assessment 5: 29-46. 

Kanudia, A. and P. Shukla (1998). "Modelling of uncertainties and price elastic demands in energy-
environment planning for India." Omega 26(3): 409-423. 

Karmarkar, N. (1984). "A new polynomial time algorithm for linear programming." Combinatorica 
4(4): 373–395. 

Keeney, R. L. and H. Raifa (1976). Decisions with multiple objectives. Preference and value trade-
offs. New York, Wiley. 

Koroneos, C., M. Michailidis, et al. (2004). "Multi-objective optimization in energy systems: The case 
study of Lesvos Island, Greece." Renewable and Sustainable Energy Reviews 8: 91–100. 

Ku, A.,(1995) Modelling uncertainty in electricity capacity planning. PhD. London Business School. 
London 

Kunsch, P. L. and J. Teghem, Jr (1987). "Nuclear fuel cycle optimization using multi-objective 
stochastic linear programming." European Journal of Operational Research 31: 240-249. 

Lahdelma, R., J. Hokkanen, et al. (1998). "SMAA-Stochastic multiobjective acceptability analysis." 
European Journal of Operational Research 1(106): 137-143. 

Lahdelma, R., K. Miettinen, et al. (2003). "Ordinal criteria in stochastic multicriteria acceptability 
analysis." European Journal of Operational Research 147: 117-127. 

Lahdelma, R. and P. Salminen (2006). "Classifying efficient alternatives in SMAA using cross 
confidence factors." European Journal of Operational Research(170): 228-240. 

Linares, P. (2002). "Multiple criteria decision making and risk analysis as risk management tools for 
power systems planning." IEEE Transactions on Power Systems 17(3). 

Linares, P. and C. Romero (2000). "A multiple criteria decision making approach for electricity 
planning in Spain: economic versus environmental objectives." Journal of the Operational 
Research Society 51: 736-743. 

Linares, P. and C. Romero (2002). "Aggregation of preferences in an environmental economics 
context: a goal programming approach." Omega 30: 89-95. 

Loulou, R. and A. Kanudia (1998). "Robust responses to climate change via stochastic MARKAL: The 
case of Quebec." European Journal of Operational Research 106: 15-30. 

Manne, A. S. and R. G. Richels (1997). "On stabilizing CO2 concentrations – Cost-effective emission 
reduction strategies." Environmental Modeling and Assessment 2: 251-265. 

Martins, A. G., D. Coelho, et al. (2004). "A multiple objective linear programming approach to power 
generation planning with demand-side management (DSM)." Computers and Chemical 
Engineering 28: 1715–1723. 

Mavrotas, G. and D. Diakoulaki (1999). "An energy planning approach based on 0-1 multiobjective 
linear programming." International Trans. Operational Research 6: 231-244. 

Meier, M. A. (1997), Eco-efficiency evaluation of waste gas purification systems in the chemical 
industry, Vol. 2 (ed. W. Klöpffer and O. Hutzinger),  pp. 271, Eco-Informa Press. 

Merrill, H. M. and F. C. Schweppe (1984). "Strategic planning for electric utilities: Problems and 
analytic methods." Interfaces 14(1): 72-83. 

Messner, S., A. Golodnikov, et al. (1996). "A stochastic version of the dynamic linear programming 
model MESSAGE III." Energy 21(9): 775-784. 

Millet, I. and T. L. Saaty (2000). "On the relativity of relative measures accommodating both rank 
preservation and rank reversals in the AHP." European Journal of Operational Research 121: 
205-212. 

Mo, B., J. Hegge, et al. (1991). "Stochastic generation expansion planning by means of stochastic 
dynamic programming." IEEE Transactions on Power Systems 6(2): 662-668. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

45

Morgan, M. G. and M. Henrion (1990), A guide to dealing with uncertainty in quantitive risk and 
policy analysis, New York,  Cambridge University Press. 

Novac, D. and C. Ragsdale (2003). "A decision support methodology for stochastic multi-criteria 
linear programming using spreadsheets." Decision Support Systems 36: 99-116. 

Ottinger, R., D. Wooley, et al. (1991), Environmental costs of electricity, New York,  Oceana 
publications. 

Pan, J.,(1999) MADM framework for strategic resource planning of electric utilities. PhD. Department 
of Electrical Engineering. Virginia Polytechnic Institute and State University. Virginia 

Petrie, J., L. Basson, et al. (2004). Multi-criteria decision analysis: The case of power generation in 
South Africa. Sustainable development in practice: Case studies for engineers and scientists. 
A. Azapagic, S. Perdon and R. Clift. New York, John Wiley and Sons. 

Pohekar, S. D. and M. Ramachandran (2004). "Application of multi-criteria decision making to 
sustainable energy planning—A review." Renewable and Sustainable Energy Reviews 8: 365–
381. 

Ramanathan, R. (2001). "A note on the use of the analytic hierarchy process for environmental impact 
assessment." Journal of Environmental Management 63: 27–35. 

Ringuest, J. L. and S. B. Graves (2000). "A sampling-based method for generating nondominated 
solutions in stochastic MOMP problems." European Journal of Operational Research 126: 
651-661. 

Roy, B. and D. Bouyssou (1986). "Comparison of two decision-aid models applied to a nuclear power 
plant siting example." European Journal of Operational Research(25): 200-215. 

Saaty, T. L. (1977). "A scaling method for priorities in hierarchical structures." Journal of 
Mathematical Psychology 15: 59-62. 

Soloveitchick, D., N. Ben Aderet, et al. (2002). "Multiobjective optimization and marginal pollution 
abatement cost in the electricity sector-An Israeli case study." European Journal of 
Operational Research 140: 571-583. 

Steuer, R. E. (1986), Multiple criteria optimization: Theory, computation and application, Malabar, 
Florida,  Krieger publishing company. 

Steuer, R. E. and E.-U. Choo (1983). "An interactive weighted Tchebycheff procedure for multiple 
objective programming." Mathematical Programming 26(1): 326-344. 

Stewart, T. J. (2005). Dealing with uncertainties in MCDA. Multiple criteria decision analysis: State of 
the art surveys, Springer: 445-470. 

Sun, M., A. Stam, et al. (2000). "Interactive multiple objective programming using Tchebycheff 
programs and artificial neural networks." Computers and Operations Research 27: 601- 620. 

Tanabe, R., K. Yasuda, et al. (1993). "Flexible generation mix under multiple objectives and 
uncertainties." IEEE Transactions on Power Systems 8(2): 581-587. 

Teghem, J., Jr, D. Dufrane, et al. (1986). "STRANGE: An interactive method for multi-objective linear 
programming under uncertainty." European Journal of Operational Research 26: 65–82. 

van der Zwaan, B. C. C., R. Gerlagha, et al. (2002). "Endogenous technological change in climate 
change modelling." Energy Economics 24: 1-19. 

Vincke, P. (1992). Multicriteria decision-aid, John Wiley & Sons. 
Von Winterfeldt, D. and W. Edwards (1986), Decision analysis and behavioral research, Cambridge,  

Cambridge University Press. 
Wenzel, H., M. Hauscild, et al. (1997), Environmental assessment of products. Vol.1. Methodology, 

tools and case studies in product development, London,  Chapman and Hall. 
Wierzbicki, A. P. (1982). "A mathematical basis for satisficing decision making." Mathematical 

Modelling 3(25): 391-405. 
Wierzbicki, A. P. (1986). "On the completeness and constructiveness of parametric characterizations 

to vector optimization problems." OR Spektrum 8: 73–87. 
Zionts, S. and J. Wallenius (1976). "An interactive programming method for solving the multiple 

criteria problem." Management Science 22(6): 652-663. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

46



Univ
ers

ity
 of

 C
ap

e T
ow

n

47

CHAPTER 3                          OUTLINE OF PROBLEM , HYPOTHESES AND KEY 

QUESTIONS

This work is focussed on providing and demonstrating a comprehensive approach to 

the planning and analysis of investment in the ESI.  In summary of the previous 

chapter, there are different methods for handling different types of uncertainty and 

multiple objectives in each phase of the ESI modelling process.  The problem at hand 

is combining these methods into a comprehensive framework, integrating the analysis 

of uncertainty and multiple objectives into a methodology that can inform the 

stakeholders and policy makers as to the alternatives available and the trade-offs 

between them and finally providing a framework for the selection of a preferred 

alternative or set of alternatives given the multiple objectives and uncertainties 

involved. 

A general outline of the problem will be presented and some of the key uncertain 

parameters will be discussed.  The hypotheses and key research questions of this 

thesis will then be presented. 

3.1. OUTLINE OF THE PROBLEM

The ESI problem can be broken down into two main phases, each with various inputs 

and outputs.  The generation phase is where optimal solutions are generated in energy 

modelling frameworks to meet a projected electricity demand within a set of technical 

and practical constraints.  A subsequent “alternative or plan selection” phase identifies 

preferred alternatives from within the set generated, based on DM preference 

information.  Both of these phases can be explored against a set of policy making 

objectives, and both contain inherent uncertainties which relate to aspects of model 

definition, empirical quantities as well as valuation arguments.  Figure 3-1 below 

outlines a representation of the ESI modelling problem.   
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Options generator
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Figure 3-1 Flowchart representation of the ESI modelling problem 

3.2. UNCERTAINTY IN THE GENERATION PHASE

Uncertainty exists in most of the parameters relating to the generation phase.  There 

are technical parameters relating to the model such as discount rates, reserve margin 

and model constraints as well as technical empirical parameters such as costs, 

emission factors and demand forecasts.  Each of these parameters has a degree of 

uncertainty related to it and they are typically dealt with in different ways depending 

on the nature of the parameter and of the uncertainty related to it.  Figure 3-2 below 

illustrates a representation of the generation phase and the parameters relating to it.  
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Table 3-1 contains the information relating the uncertain parameters in Figure 3-2.  

The typical methods for dealing with each type of uncertain parameter are listed in 

Table 3-1 and then discussed further below: 

Figure 3-2 Flow diagram for generation phase 
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Table 3-1  Parameter uncertainty information for generation phase 

Parameter Type of uncertainty Generic approach to uncertainty

Non technology specific parameters     

Reserve margin Technical model parameter 
Scenario analysis (within generation phase), or an output of the modelling 
process 

Discount rate Technical model parameter 
Settled by expert agreement although could be explored using scenario 
analysis 

A 

Time horizon Technical model parameter Settled by expert agreement 

B Emission equivalent conversion factors Technical empirical parameter 

Different methods would yield moderately different results for the effects 
depending on the modelling assumptions used for each method.  A 
parametric analysis could be done using different methods to determine their 
effect. 

Demand profile (shape) Technical empirical parameter 
Scenario analysis could be used to explore the effect of different demand 
shapes if this was of interest and relevance to the particular case study 

Demand forecast Technical empirical parameter 

Stochastic programming could be used to hedge for demand growth 
uncertainty.  Alternatively scenario analysis could be used to evaluate 
different demand scenarios. Uncertainty in demand growth could also be 
dealt with using the reserve margin. 

Demand probabilities Technical empirical parameter Scenario analysis (within generation phase) 

C 

Demand uncertainty resolution date Technical empirical parameter Scenario analysis (within generation phase) 
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Standard technology parameters that go into 
plan generator Type of uncertainty Generic approach to uncertainty 

Investment cost Technical empirical parameter 

Parametric sensitivity analysis within generation phase or error 
propagation/robustness analysis outside of generation phase.  Alternatively 
stochastic programming could be used to hedge for uncertainty if it was 
found that it was significant for this parameter 

D 

Generation costs (O&M) Technical empirical parameter 

Parametric sensitivity analysis within generation phase or error 
propagation/robustness analysis outside of generation phase.  Alternatively 
stochastic programming could be used to hedge for uncertainty if it was 
found that it was significant for this parameter 

E Emission coefficients Technical empirical parameter

Parametric sensitivity analysis within generation phase or error 
propagation/robustness analysis outside of generation phase.  Alternatively 
stochastic programming could be used to hedge for uncertainty if it was 
found that it was significant for this parameter 

F Availability Factor  Technical empirical parameter Settled by expert agreement 

G Thermal efficiency Technical empirical parameter 
Settled through expert opinion/literature survey.  Parametric sensitivity 
analysis can be done in the generation phase to explore the effect of 
uncertainty  in this parameter 

H Fuel cost Technical empirical parameter 

Parametric sensitivity analysis within generation phase or error 
propagation/robustness analysis outside of generation phase.  Alternatively 
stochastic programming could be used to hedge for uncertainty if it was 
found that it was significant for this parameter 

I Plant lead times Technical empirical parameter Expert agreement or scenario analysis in the generation phase  

J Plant lifetime Technical empirical parameter Settled by expert agreement 

Pareto generation parameters Technical model parameter 
Extensive range of values used to generate a representation of the Pareto 
surface 

Station type (peaking, mid-merit, base load) Technical model parameter Settled by expert agreement 

Annual investment limit Technical model parameter Settled by expert agreement K 

Total investment limit Technical model parameter Settled by expert agreement 
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3.2.1. TECHNICAL MODEL PARAMETER UNCERTAINTY

Model parameter uncertainties are typically explored if expert agreement cannot be 

reached on the values or if there is consensus that there would be merit in analysing 

the effect of different model parameter values.  This can be done using scenario 

analysis where identical scenarios are created in the options generator using all the 

same “base” data and varying the values of the parameters of interest. 

A particularly interesting model parameter is the reserve margin.  In many modelling 

frameworks (e.g. MARKAL1, TIMES2, MESSAGE3) and methodologies the reserve 

margin is specified by the modeller as an input or constraint on the model.  The 

reserve margin is used to ensure sufficient generating capacity will be in place to 

account for forced or unplanned plant outage, as well as for unforeseen demand 

growth.  While this methodology may be adequate for situations when stakeholders or 

planners have an in depth understanding of the relationship between the required 

reserve margin and unplanned plant outage, this is not usually the case.  This 

relationship is highly dependant on the number of plants in the system and the 

modular size of the units due to the fact the units are usually forced out independently.  

This implies that a lower reserve margin would be required for a 10 GW system with 

smaller modular units than for a 10 GW system with larger modular units.  The trade-

off between this phenomenon and economies of scale would have to be made in the 

planning process.  When plant outages are modelled probabilistically instead of using 

fixed availability factors, the reserve margin can be an output of the modelling 

process (e.g. using EGEAS).  The probabilistic modelling of outage is discussed in 

more detail in chapter 7.  

                                                
1 MARKAL (MARKet AnaLysis) developed by the Energy Technology Systems Analysis Programme 
(ETSAP) of the International Energy Agency, http://www.etsap.org. 
2 TIMES (The Integrated MARKAL-EFOM System) developed by the Energy Technology Systems 
Analysis Programme (ETSAP) of the International Energy Agency, http://www.etsap.org. 
3 MESSAGE (Model for Energy Supply Systems Analysis and their General Environmental impact) 
developed by the International Institute for Applied Systems Analysis (IIASA), 
http://www.iiasa.ac.at/Research/ECS/docs/models.html#MESSAGE. 
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3.2.2. TECHNICAL EMPIRICAL PARAMETER UNCERTAINTY

Technical empirical uncertainties can be explored using numerous methodologies.  

Within these empirical parameters there are distinctly different types of parameters 

which may need to be treated in different ways.  There are data parameters relating to 

the costs of energy generating technologies, emission coefficients and future 

uncertainties relating to fuel prices and demand growth.   

Demand growth uncertainty (like plant availability uncertainty) is different to other 

technical empirical parameters in expansion planning in that the penalty that would be 

paid for not meeting demand requirements would be system failure, rather than poor 

performance in an objective.  It is therefore believed that this uncertainty parameter 

should be handled differently to the other technical empirical parameters.  This is 

discussed further in chapter 4. 

The uncertainties in data parameters have been modelled in various ways including 

scenario analysis (e.g. Meristö, 1989; Connors et al., 2003; Stewart, 2005), parametric 

sensitivity analysis and probabilistic methods (e.g. Messner et al., 1996; Seebregts et 

al., 2001) (discussed in detail previously in section 2.3).  Methods for dealing with 

technical empirical and model parameter uncertainty and discussed further in chapters 

4, 5, 6 and 7. 

3.3. UNCERTAINTY IN THE SELECTION PHASE

The variables that influence this phase are mainly valuation model parameters relating 

to model form.  These include the choice of criteria, the structure of the value tree and 

the choice of attributes although these parameters have been addressed to some degree 

in the generation phase to generate solutions that satisfy multiple objectives to varying 

degrees.  Figure 3-3 below illustrates a representation of the selection phase.  Table 

3-2 contains information relating to the uncertain parameters in Figure 3-3.  The 

typical methods for dealing with each type of uncertain parameter are listed in Table 

3-2 and then discussed further below: 
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Figure 3-3 Flow diagram for selection phase
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Table 3-2  Parameter uncertainty information for plan selection phase 

MADA related parameters Type of uncertainty Generic approach to uncertainty 

Choice of criteria Valuation model form 
Choices settled through expert (or stakeholder) agreement unless specific 
reason for scenario analysis 

Structure of value tree Valuation model form 
Effect considered as part of the weight elicitation phase.  Scenario analysis 
can be done if there is specific interest in effects of the tree structure 

Choice of attributes Valuation model form 
Choices settled through expert (or stakeholder) agreement unless specific 
reason for scenario analysis 

M 

Choice of MADA method Valuation model form 
Choice typically settled through expert (or stakeholder) agreement based on 
case study.   Scenario analysis can be done where insight is required into the 
effect of method, particularly with regard to compensation arguments. 

N Thresholds for preliminary screening 

Valuation model form for 
selection of screening criteria 
and technical empirical 
parameter  for values 

Choices settled through expert agreement unless specific reason for scenario 
analysis.  Parametric sensitivity analysis is typically done on values. 

O Inter-criterion articulation of preferences 

Valuation model parameter for 
scaling values.  Valuation 
model form for weighting 
method 

Parametric sensitivity analysis on values: Weighting diagram can provide 
very useful information as to the effect that DM weighting could have on the 
overall results.  Can also be used to back calculate the trade-offs that would 
be made in order for rank orders to change.  Weighting method resolved by 
expert agreement or scenario analysis if no resolution possible 

P Intra-criterion articulation of preferences 

Valuation model form for 
choice of shape.  Valuation 
model parameter for numerical 
values 

Scenario analysis for different shapes and parametric sensitivity analysis on 
numerical values 
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The choice of MADA method is typically settled through expert (or stakeholder) 

agreement based on case study at hand, but scenario analysis can be done where 

insight is required into the effect of method, particularly with regard to compensation 

arguments (e.g. outranking vs. value function methods) (Basson, 2004).   

Inter-criterion preference choices have valuation parameters relating to model form 

that are typically settled by expert agreement (Belton and Stewart, 2002).  These 

include the structure of the value tree, the method of aggregation and the weighting 

technique.  A scenario analysis can be done on different weighting methods if expert 

agreement cannot be reached (Basson, 2004).   A parametric sensitivity analysis or 

interval programming approach can then be used on the actual weighting values to 

determine their effect on the overall preference results (demonstrated in chapter 5).   

Intra-criterion preference choices also have valuation parameters relating to model 

form that are typically settled by expert agreement (Basson, 2004).  These include 

method of normalisation (discussed in detail in chapter 6) and value function shape.  

A scenario analysis can be done on using different value function shapes followed by 

a parametric sensitivity analysis on the numerical values (Basson, 2004).  



Univ
ers

ity
 of

 C
ap

e T
ow

n

57

3.4. KEY AREAS OF FOCUS FOR THIS WORK

This work is focused on developing a methodology for the analysis and planning of 

investments in the ESI that is comprehensive with respect to multiple objectives, and 

comprehensive with respect to the uncertainties inherent to this problem.  In this light 

the following hypotheses were drawn, and some key questions were defined: 

3.4.1. GENERATION FOR MULTIPLE OBJECTIVES UNDER UNCERTAINTY

Hypothesis 1:  Multiple objectives representing policy maker preferences can be 

integrated into existing single objective energy modelling frameworks. 

Key questions relating to this hypothesis: 

o What is the most appropriate method for extending single objective energy 

modelling to multiple objectives? 

o Can this be done within existing energy modelling frameworks? 

o What valuable new information can be yielded from this type of analysis (e.g. 

relationships between DM preferences and technology choice, emission tax 

values necessary to induce a change in technology choice)? 

Hypothesis 2:  Flexibility towards future uncertainties can be built into each optimal 

solution for multiple objectives. 

Key questions relating to this hypothesis: 

o What is the most appropriate method for accounting for future uncertainties 

within the generation phase to build flexibility into the solution set? 

o How can this method be extended to build in flexibility towards uncertainty 

for multiple objectives? 
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o How should technology lead times be accounted for within this approach so 

that investments do not occur before they are in allowed to in light of the 

additional decision nodes when using a multi-stage, non-deterministic model? 

3.4.2. SELECTION FOR MULTIPLE OBJECTIVES UNDER UNCERTAINTY

Hypothesis 3:  A comprehensive analysis of uncertainty can be integrated into the 

selection phase to find robust solutions that best satisfy the multiple objectives 

chosen. 

Key questions relating to this hypothesis: 

o Which multi-attribute decision analysis (MADA) method would be most 

appropriate for the ranking and selection of a preferred alternative given 

multiple objectives and uncertainty? 

o How would the MADA methodology be extended to compare the performance 

of alternatives for their multiple attributes over a range of discrete futures? 

o What would the most appropriate method for a multi-objective robustness 

analysis be for this problem and how can this be integrated into the problem 

structure? 

o How can a portfolio of preferred alternatives be identified for detailed analysis 

based on both performance and credibility?  
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3.4.3. NORMALISING ATTRIBUTE SCORES 

Hypothesis 4:  Normalising attribute scores using a non-standard value range can 

reduce the  effective weighting bias due to inflated minima or maxima. 

.  

Key questions relating to this hypothesis: 

o What method for data normalisation across the problem attributes would be 

most appropriate for this problem, especially when comparing different output 

data sets? 

o How can the weighting procedure for articulating stakeholder preferences be 

modified to account for the normalisation methodology?  

3.4.4. THE RELATIVE EFFECT OF SPECIFIC UNCERTAINTIES ON THE RANKING AND 

PERFORMANCE OF EXPANSION ALTERNATIVES

Hypothesis 5:  An analysis of the effects of using different approaches to dealing with 

technical empirical uncertainty can give insight into the relative importance of 

different uncertain parameters and the relative value of the approaches in light of the 

importance of the parameters and the time and effort taken for each approach.  

Key questions relating to this hypothesis: 

o What uncertainties dominate the ESI modelling problem and what implication 

does this have on where should the focus of the analysis should be? 

o More specifically, would reoptimising the operational parameters for each 

discrete future add significant value to the methodology? 
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3.4.5. INTEGRATING PLANT AVAILABILITY UNCERTAINTY AND RESERVE MARGIN INTO 

THE MULTI-OBJECTIVE FRAMEWORK

Hypothesis 6: Plant availability uncertainty can be integrated into the multi-objective 

framework by finding the minimum required reserve margin for the system. 

Key questions relating to this hypothesis: 

o Can demand be modelled both chronologically and in high resolution such that 

both the frequency and duration of outage could be adequately represented? 

o What type of analysis of the ESI investment problem can be practically used 

to represent plant availability uncertainty? 

o How can this methodology be integrated into a multi-objective framework 

with a comprehensive analysis of system wide uncertainty? 
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CHAPTER 4                   GENERATION FOR MULTIPLE  OBJECTIVES UNDER 

UNCERTAINTY        

4.1 INTRODUCTION

Electricity supply industry (ESI) modelling is a challenging task due to diversity of 

the supply-side technology options available (influencing model size and complexity), 

the temporal evolution of parameters over medium to long term time horizons, the 

non-linear nature of the systems under consideration, environmental and social 

arguments, as well as aspects of uncertainty in all realms of the modelling process.  

More recently, increasing deregulation of power markets has added to the uncertainty 

and has necessitated new methodologies and models to better understand the systems 

at hand (e.g. Botterud, 2003; Murto, 2003; Madlener et al., 2005). 

ESI modelling methodology can be split into two phases:  A primary step is the 

generation phase, where solutions or Future Expansion Alternatives (FEAs) are 

generated in an energy systems modelling framework.  A subsequent selection phase 

identifies preferred FEAs from within the set generated, based on policy maker and 

stakeholder preferences and value judgements.  Both of these phases can be explored 

against a set of policy making objectives, and both contain inherent uncertainties 

which relate to empirical and model uncertainties, as well as valuation arguments. 

The aim of this chapter is to outline a methodology for the generation of solutions 

within an ESI modelling framework that considers multiple objectives, and includes 

aspects of flexibility to demand growth uncertainty into each solution.  As such, the 

scope of this chapter is limited to the generation of ESI scenarios only, and illustrates 

this approach for the South African ESI.  Alternative selection and robustness analysis 

are not addressed in any detail in this chapter as chapter 5 is dedicated specifically to 

these issues. 

4.2. BACKGROUND

As mentioned in chapter 2; large linear programming models have been used 

extensively over several decades to address ESI modelling (Hobbs, 1995; Hobbs and 

Meier, 2000; Cormio et al., 2003).  Modelling with single objective functions has 
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been a powerful tool in optimizing power station expansion under specific 

environmental constraints, as well as for examining the economic feasibility of new 

options in the energy market.  This type of analysis, done in partial equilibrium 

frameworks, has provided policy makers with the “perfect market” response to future 

scenarios that are valid for both regulated, centrally planned power markets, as well as 

for efficient fully deregulated markets.  Although this type of modelling has enjoyed 

some success for integrated resource planning in the past, resource planning today has 

become a far more complex task (Hobbs, 1995).  What such an approach fails to 

deliver is explicit consideration of trade-offs between different objectives and the 

need to address uncertainty in the modelling process.     

That said, this type of analysis and approach are familiar to many energy market 

analysts, and continues to form the basis of ESI planning in many instances.  It is 

therefore argued that there is merit in exploring to what extent the “single objective 

least-cost” approach in partial equilibrium frameworks can be augmented to include 

other objectives and specific forms of uncertainty analysis to deliver more valuable 

outcomes from an energy modelling exercise.   

4.2.1. RATIONALE FOR METHODOLOGY

As discussed in section 2.2.1, an interactive approach to articulating stakeholder 

preferences requires significant stakeholder participation in the modelling process and 

therefore may not be appropriate for processes where multiple stakeholders exist.  

This work is focussed on developing a transparent methodology for considering 

multiple objectives and uncertainty in the ESI and therefore articulates preferences 

prior to the generation phase such that the trade-offs between objectives are obvious 

to outsiders or stakeholders that were not involved in the modelling process. 

Of the methods for considering multiple objectives described in section 2.2.1, a 

weighted aggregation function approach cannot be readily used within existing single 

objective energy planning approaches without significant reformulation of the tools.  

However, both a constraint-based method and a cost penalty based method could 

easily be applied within these frameworks to explore multiple objectives.   
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As discussed in section 2.4.1, stochastic programming with recourse is a powerful 

technique for addressing future uncertainties (such as demand growth) due to the 

incorporation of flexibility within a dynamic optimisation framework.  It has the 

advantage of generating only non-dominated solutions as the solution space is 

generated from the objectives themselves rather than from predefined technology 

mixes.  While stochastic programming methods have included multiple objective 

functions to represent different future states of the world (e.g. Dapkus and Bowe, 

1984; Mo et al., 1991; Gorenstin et al., 1993; Tanabe et al., 1993), they have not been 

extended to include multiple (environmental or social) objectives into the power 

expansion problem formulation.    

When considering both multiple objectives and uncertainty within a stochastic 

programming with recourse formulation, using a cost penalty based method as 

opposed to a constraint based method (see chapter 2 section 2.2.1 for discussion on 

approaches for locating efficient solutions to multiple objective linear programming 

(MOLP) models) would have the advantage of extending the recourse modelling to 

include flexibility to uncertainty for all objectives, whereas a constraint based method 

would only include flexibility to cost.  This is due to the inclusion of the cost penalties 

into the model’s objective function (discussed in detail in section 4.4.3) and therefore 

into the hedging action taken by the recourse approach.  It also has the advantage of 

providing policy makers with an indication of the market signals necessary to 

influence the market towards a preferred state in the form of emission taxes.  

This method can however be manually intensive as it does not guarantee a well-spread 

representation of the non-dominated solution set.  The burden of ensuring such a 

representation now lies with the modeller. Unlike with constraint-based methods, the 

performance value of each attribute for each solution is obtained as an output of the 

model rather than specified as an input (with cost penalties being the changing input 

parameter causing the objective function to find new solutions).  However, this being 

said, new solutions “to fill the gaps” can quickly be generated based on a cursory 

examination of the attributes scores of the solution set and the taxes used to generate 

the existing solutions.  The additional effort required by the modeller to ensure a well 
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spread representation of the non-dominated solution space is considered a necessary 

trade-off for the benefits of using the cost penalty-based approach stated above.   

With this in mind, the proposed approach to generation in ESI modelling adopted here 

relies on an extension of the two-stage recourse problem for multiple objectives using 

a cost penalty based method.  The full methodology is described below. 

4.3. METHODOLOGY

4.3.1. GENERATING A BASE CASE SCENARIO

The first step in the proposed modelling process is to develop a base case or “business 

as usual” scenario.  This can be done using energy planning models such as 

MARKAL, EGEAS, MESSAGE which typically include a complete supply-side 

representation (including all costs and emissions coefficients) of all existing power 

stations in the system, as well as a range of technology options for future stations.  

The models operate within a series of constraints that must be satisfied in order for a 

solution to be considered feasible.  Such constraints typically include mass and energy 

balances, meeting demand projections, satisfying peak and base-load requirements 

within a given reserve margin, obeying emission constraints as well as any technology 

specific constraints. The base case scenario is then simply a least cost optimised FEA 

for the represented power system. 

MARKAL was chosen as the framework to demonstrate this methodology, due to its 

wide usability, its capacity to include taxes on emissions as well as the two-stage 

stochastic recourse programming module available for this software. 

4.3.2. EXTENSION OF SOLUTION SET TO INCLUDE MULTIPLE OBJECTIVES

The next step in the proposed methodology is to expand the solution set from the base 

case scenario by the inclusion of other objectives, which will likely result in 

technology options not present in the base case scenario. 
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The approach taken here is to expand the solution set to satisfy multiple objectives 

using a dynamic partial equilibrium1 optimisation framework. Here, cost penalties are 

introduced in the model to capture the performance of technology options in those 

attributes which relate to the “non-cost” objectives. The least-cost objective function 

is retained in the optimisation, but due to the cost penalties, the solution space is now 

searched for non-dominated solutions that force the model to better satisfy the non-

cost objectives (consistent with the first approach discussed in section 2.2.1).  This is 

explained in more detail below: 

The MARKAL model objective function, described in (Loulou et al., 2004), can be 

summarized mathematically as follows:  

  

( ) ( ) ( ) ( ) ( )( )NYRS
tNYRSNPERt

t

dddtrANNCOSTdNPV −−−
−=

=

+++++++••+= ∑ 121
)1(*

1

1....111,1   (4.1)                                                   

Where:  

NPV is the net present value of the total cost to be minimized (the objective 

function) 

ANNCOST(r,t) is the annual cost for period t,in region r

d is the general discount rate  

NPER is the number of periods in the planning horizon  

NYRS is the number of years in each period t  

Various decision variables, which represent the choices made by the model to 

minimize total cost, are considered within this MARKAL model, as described in 

(Loulou et al., 2004). Some of these are elaborated on here: 

INV(r,t,k): new capacity addition for technology k, in period t, in region r.  

CAP(r,t,k): installed capacity of technology k, in period t, in region r.  

ACT(r,t,k,s): activity level of technology k, in period t, in region r, during 

time-slice s. 

                                                
1 Demand was assumed to be inelastic. 
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ENV(r,t,p): Emission of pollutant p in period t in region r.  

The total annual cost ANNCOST(r,t) is the sum over all technologies k, and all input 

fuels f, of the various costs incurred, namely: annualized investments, annual 

operating costs (including fixed and variable technology costs, fuel delivery costs, 

costs of extracting and importing energy carriers), minus revenue from exported 

energy carriers and taxes on emissions.  Mathematically, ANNCOST(r,t) is expressed 

as follows:  

 ANNCOST(r,t)  = Σ
k 
{Annualized_Invcost(r,t,k) *INV(r,t,k) 

+Fixom(r,t,k) *CAP(r,t,k) 

+ Varom(r,t,k) *Σ
s,s 

ACT(r,t,k,s) 

+ Σ
c 
(Delivcost(r,t,k,c)*Input(r,t,k,c)* Σ

s 
ACT(r,t,k,s)) }            

+ Σ
c,s 

{ Miningcost(r,t,c,l)*Mining(r,t,c,t) 

+ Importprice(r,t,c,l)*Import(r,t,c,l) 

- Exportprice(r,t,c,l)*Export(r,t,c,l) } 

+ Σ
c 
(Madlener et al., 2005)     (4.2)

Where:  

Annualized_Invcost(r,t,k) is the annual equivalent of the lump sum unit 

investment cost, obtained by replacing this lump sum by a set of equal annual 

payments over the life of the equipment, in such a way that the present value 

of the stream is exactly equal to the lump sum unit investment cost, for 

technology k, in region r and period t; 

Fixom(r,k,t), Varom(r,t,k) , are unit costs of fixed and operational 

maintenance of technology k, in region r and period t; 

Delivcost(r,t,k,c) is the delivery cost per unit of commodity c to technology k 

in region r and period t; 

Input(r,t,k,c)  is the amount of commodity c required to operate one unit of 

technology k, in region r and period t;  

Miningcost(r,t,c,l) is the cost of mining commodity c at price level l in region 

r and period t;  
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Importprice(r,t,c,l)  is the import price of commodity c in region r and period 

t;  

Exportprice(r,t,c,l)  is the export price of commodity c in region r and period 

t;  

Tax(r,t,p)  is the tax on emission p in region r and period t;  

The objective function is then minimised subject to the following constraints: 

Satisfaction of demands 

For each time period t, region r, demand d, the total activity of end-use technologies 

servicing that demand must be at least equal to the specified demand. Hence:  

( ) ( )dtrDktrCAP
kallOver

,,,, ≥∑                   (4.3)

Capacity transfer  

For each technology k, region r, period t, the available capacity in period t is equal to 

the sum of investments made by the model at past and current periods, and whose 

physical life has not ended yet, plus capacity in place prior to the modelling horizon 

and still in place.  

CAP(r,t,k) = ( ) ( )∑ +
t

t

ktrRESIDktrINV
'

,,,',                          (4.4)  

Where RESID(r,t,k) is the capacity of technology k due to 

investments that were made prior to the initial model period and still 

exist in region r at time t.  

Use of capacity 

For each technology k, period t, region r, and time-slice s, the activity of the 

technology may not exceed its available capacity, as specified by a user defined 

availability factor  

ACT (r,t,k,s) ≤ AF(r,t,k,s)* CAPUNIT* CAP(r,t,k)               (4.5)  
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Where CAPUNIT is the unit of acitivy /unit of capacity (e.g. PJ/MW) 

Energy Balance  

For each commodity c, time period t, region r, (and time-slice s in the case of 

electricity, this constraint requires that the disposition of each commodity may not 

exceed its supply. The disposition includes consumption in the region plus exports; 

the supply includes production in the region plus imports.  

( ) ( ) ( ) ( )∑∑∑ •++•
lallOverlallOverkallOver

lctrIMPsFRlctrMiningsktrACTcktrOutput ,,,)(,,,,,,,,,

( ) ( ) ( )scktrACTcktrInputlctrEXPsFr
kallOverlallOver

,,,,,,,,,,)( ∑∑ •+•≥

(4.6)            

Where:  

Input(r,t,k,c) is the amount of commodity c required to operate one 

unit of technology k, in region r and period t; 

Output(r,t,k,c) is the amount of commodity c produced per unit of 

technology k, and  

FR(s) is the fraction of the year covered by time-slice s (equal to 1 for 

non-seasonal commodities).  

Electricity and heat Peak Reserve Constraint  

For each time period t and for region r, there must be enough installed capacity to 

exceed the required capacity in the season with largest electricity (heat) commodity c 

demanded by a safety factor E called the peak reserve factor.  

( )∑ •+•••
kallOver

 c)t,IMPORT(r,FR(s)k)t,CAP(r,FR(s)ck,t,r,Peak  CAPUNIT

( )[ ] ( ) ( ) ( )ctrEXPORTsFRsktrACTsFRcktrInputctrERESERVE
kallOver

,,)(,,,)(,,,,,1 •+•••+≥ ∑

                           (4.7)

Where:  

ERESERVE(r,t,c) is the region-specific reserve coefficient, which 

allows for unexpected down time of equipment, for demand at peak, 

and for uncertain hydroelectric, solar, or wind availability.  
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Peak(r,t,k,c) (never larger than 1) specifies the fraction of technology k’s 

capacity in a region r for a period t and commodity c (electricity or heat 

only) that is allowed to contribute to the peak load.  

As mentioned above, additional objectives are considered through the use of cost 

penalties, hereafter called Pareto Generation Parameters (PGPs), which operate on the 

cost minimisation objective function. These are incorporated in the model as emission 

taxes and act directly on the investment (INV(r,t,k)) and activity (ACT(r,t,k,s)) 

decision variables through the pollutant emission parameter, (ENV(r,t,p)).  Individual 

emission tax parameters are defined using the Tax(t,p) parameters in the model 

(described below).   

As total system cost is minimised through the objective function, the model attempts 

to minimise emissions because of the cost penalty associated with each emission 

defined using the Tax(t,p) parameters.  The degree to which the model will improve 

the attribute performance of each of the non-cost objectives depends on the 

magnitudes of the PGPs, as the costs associated with the emissions (through the 

Tax(t,p) parameter) are traded off against the other system costs in the optimisation.  

Therefore by varying the emission tax values for each PGP, the model will provide a 

range of solutions that satisfies each of the non-cost objectives to varying degrees.  

The challenge is to ensure that a representative range of emission taxes is considered 

for each additional objective, so that the expanded solution set includes adequate 

diversity in technology options within each scenario to address stakeholder interests. 

This approach is outlined below, and demonstrated in the case study of section 4.4.2.  

These PGPs resemble externality costs2 in that monetary values are assigned to by-

products of the electric supply process (in the form of emission taxes).  The difficulty 

in calculating externality costs is widely acknowledged, with different methods 

yielding different values for the same problem (see for example (Schleisner, 2000; 

Sundqvist, 2004)).  The value of using externality costs for guidance in policy 

decisions despite the uncertainties involved is discussed in (Krewitt, 2002).  However, 

in this method the PGPs are merely used as parameters to generate a representation of 

the multi-objective solution space.  No claim is made that the PGPs represent the 

                                                
2 Externality costs can be defined as the “damages” or “unpaid value” of environmental damage caused 
by, in this case, electric power services (Ottinger et al., 1991) but paid for by society as a whole.   
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actual monetary cost for any damages suffered by humanity or the environment3 due 

to the electricity generation process.  These values are determined iteratively based on 

the performance ranges of the non-cost attributes that stakeholders wish to investigate 

(discussed below). 

An algorithm for the procedure to generate a representation of the non-dominated 

solution space is outlined below: 

• Decide on a set of non-cost criteria to include into the optimisation. There is a 

real need to consider the environmental and social aspects of sustainability in 

ESI modelling. Taking this as the starting premise, consideration is limited in 

this current work to selected environmental issues by way of demonstration, 

and here focus is placed on a range of impacts which span global, regional and 

local spatial and temporal scales, and which are believed to be of genuine 

concern to stakeholders.  The non-cost criteria chosen to illustrate the 

methodology in this chapter are: climate change potential, acidification 

potential, and water consumption. 

• Identify attributes within the model that relate to each of these criteria - e.g. all 

contributions to potential climate change are measured in equivalent units of 

CO2 emissions;  acidification potential is defined in terms of  SO2 equivalents;  

and specific water consumption is the total water volume consumed. These are 

consistent with attributes used in environmental impact assessment approaches 

such as Life Cycle Assessment (see ISO 14040 series of standards (ISO, 

1997)). However, in this model, the holistic footprint of these attributes is not 

considered on a full life-cycle basis, but limited to a consistent process 

boundary (being the power generation process) for all technologies which 

make up a given expansion alternative. 

• The range of values for each PGP is defined, such that the solution 

corresponding to the highest PGP value achieves the necessary performance 

levels defined by DM in the corresponding non-cost attribute. In this way, the 
                                                
3 However, it is possible to make inferences from the PGP values that produce the set of power station 
investments that are ultimately selected based on policy maker preferences.  
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effect that each PGP individually has on the final solution (in terms of attribute 

scores and the build plan) is demonstrated unambiguously.  The combined 

effect of using different PGPs simultaneously may generate solutions whose 

performance exceeds the required performance level for each individual 

attribute.  Should this be so, it would be necessary to screen solutions (see 

section 4.3.3), both to reduce the number of solutions, and to focus on a 

section of the solution space of interest to the DM (which is identified by 

stakeholder engagement).  The specific PGP values which give rise to the 

extremities of the performance ranges of each attribute can be identified 

straightforwardly, and serve as a check on stakeholder acceptability. These 

extremes may be modified progressively as stakeholder understanding of the 

problem develops. 

• Once a satisfactory range has been determined for each PGP individually 

(based on the stakeholder defined ranges in attributes), each range must then 

be sampled so that the solution space can be explored.  Enough values should 

be chosen so as to allow for individual attribute performance as well as 

interactions to be seen, bearing in mind that the number of model runs will 

increase exponentially with the number of samples from each PGP range.  

This choice is therefore case study dependant and fully up to the discretion of 

the modeller.   

• The model is then rerun for all permutations of the samples of the PGPs 

determined above.  This maps out a space of non-dominated solutions 

spanning ranges in performance for each of the attributes represented by the 

PGPs.  In this way, the model can be seen to accommodate multiple 

objectives.   

By using a posterior articulation method (where DM preferences are articulated after a 

range of solutions have been generated so that preferred alternatives can be selected) 

for integrating DM preferences into the approach developed here, a range of solutions 

satisfying multiple objectives to varying degrees can be generated.  This approach has 

the benefit of allowing the stakeholders to make a choice knowing the consequences 
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of their decision relative to the other alternatives with regard to the predefined 

objectives.  This method is also more transparent and easily understandable to 

stakeholders outside of the decision process and therefore creates a situation where 

the DM is more accountable for his choices.   

4.3.3. SCREENING OF ALTERNATIVES FOR FURTHER ANALYSIS

At this stage, the solution space contains only non-dominated solutions. However, the 

number of solutions in this set could be unmanageable due to the exponential effect of 

the number of objectives and the number of PGPs values chosen to explore those 

objectives.  Screening for financial viability and other stakeholder defined constraints 

such as technology diversity, technical risk, reserve margin or minimum performance 

parameters in any of the attributes can be done at this stage to reduce the solution set 

before further analysis is conducted.  The intention here is merely to reduce the 

solution set to a manageable number of alternatives for subsequent detailed analysis 

of uncertainty.  The degree to which alternatives are screened is a trade-off between 

representing a large enough portion of the decision space to explore stakeholder 

interests and reducing the number of alternatives and therefore computing time and 

data.  

4.3.4. MODELLING FOR FUTURE UNCERTAINTIES

Up to this stage of the analysis, the effects of uncertainties have not been considered 

explicitly. However, even after screening, the number of solutions that remain would 

still be far in excess of what could realistically be considered in detail; hence 

conducting the preceding analysis steps without explicit consideration of uncertainty 

is not considered to be of adverse consequence.  This assumes that the screening 

process takes into account the fact that due to uncertainty the average performance of 

alternatives may change slightly and therefore the screening range should be wider 

than the area of interest. .  However, the effect of uncertainty needs to be taken into 

account for the remaining (i.e. screened) sub-set of options. For example, the 

solutions need to be robust to different future states of the world (such as different 

fuel prices) and need to have built-in flexibility to meet unknown futures (such as 

differences in demand growth). This can be addressed using hedging, or “least regret” 

strategies.   



Univ
ers

ity
 of

 C
ap

e T
ow

n

75

The following sections will discuss the method used for implementing stochastic 

programming with recourse into the model and will highlight some of the valuable 

analysis that can be done when using this method of dealing with uncertainty.  It will 

also mention the uncertainties not dealt with at this stage of the analysis. 

  

4.3.4.1. Stochastic programming with recourse 

It is proposed that future uncertainties such as demand growth can be integrated into 

the current model using stochastic programming with recourse (described in section 

2.4.1), as has been used previously to increase the flexibility of power expansion 

plans (Dapkus and Bowe, 1984; Loulou and Kanudia, 1998).   

Demand growth was chosen as the future uncertainty parameter to demonstrate this 

methodology. It is different to most other technical empirical parameters in expansion 

planning in that the penalty that would be paid for not meeting demand requirements 

would be system failure, rather than merely poor performance in an objective.  This is 

part of the reason why reserve margins are included into the planning process (The 

other main reason is to account for plant outage uncertainty – discussed in more detail 

in chapter 7). However in some cases these may not provide sufficient protection 

against demand growth uncertainty.  It was therefore decided to integrate demand 

growth uncertainty into the generation phase using stochastic programming with 

recourse to ensure flexibility towards this uncertainty.  Although using stochastic 

programming (with recourse) would be seen as the most comprehensive way of 

integrating uncertainties such as technology costs and emission coefficients into the 

model, it may not be practical for large, continuous optimisation models (Kann and 

Weyant, 2000), especially where the focus is on developing a transparent decision 

methodology for multiple objectives, as in the case presented in this thesis.  As 

discussed in section 2.3, using stochastic programming with recourse is very 

computationally expensive and may only be practical for single objective 

optimisation, taking only limited uncertain parameters.  Adding uncertainty to non-

cost parameters and obtaining multiple solutions representing a range of policy maker 

preferences would increase the complexity of the problem to an impractical size using 

this methodology.   
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4.3.4.2. Accounting for technology lead times 

Central to this recourse problem is the concept of technology lead times (especially 

when addressing demand growth uncertainty).  Because power stations have long lead 

times, decisions to build or get a station to the “ready to build” stage need to be made 

well in advance.  In deterministic models, planners incorporate lead times by setting 

constraints on the investment parameters of technologies, until their lead times have 

passed.  In stochastic programming with recourse the concept of a lead time for each 

new technology has to be accounted for at the beginning of the time horizon and then 

again at the decision node, if hedging for the uncertain future is intended.   It would be 

inconsistent for the model to build a technology immediately after the decision node 

in one future and not another as this would violate the concept of technology lead 

times.  In the work presented here, this problem has been addressed by splitting power 

station investments for each major new technology into two irreversible phases, 

namely the owners’ development cost (ODC), encompassing the conceptual and 

feasibility phases of the project, and the cost of the equipment procurement and 

construction (EPC), encompassing the equipment procurement and construction phase 

of the project, each with their corresponding lead times4.   

Splitting investments into phases introduces aspects of real options theory (Dixit and 

Pindyck, 1994), in which there is a value assigned to delaying an investment.  Initial 

investments (ODC investments) into a technology may be made to “buy” time; to 

“wait and see” what happens with future uncertainties, and whether, under such 

conditions, the technology may be an economically viable option.  This initial 

investment can then either be taken further to the full development and execution of 

the technology (EPC phase) when uncertainty unfolds, or the initial investment can be 

written off as a loss if the uncertainty unfolds in a way which would make it 

uneconomical to build this technology.   

In this way, the model is allowed to build capacity in the second phase of a 

technology (EPC phase) only when that generating capacity has previously been 

                                                
4 The ODC component typically constitutes a minor component of the total investment cost for a power 
station when compared to the EPC cost (NER et al., 2004). 
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brought to the “investment ready” stage in the first (ODC) phase.  The implication of 

this is that ODC investment is limited to before the decision node for the stochastic 

model.  This forces decisions (and primary investments) to be made before the 

resolution of uncertainty, hence hedging for future uncertainty.  This methodology can 

create discrepancies in lead times for technologies built towards the end of the time 

horizon, as it forces all initial decisions (and investments) to be made before the 

decision node, when in reality some of these decisions could be made at a later stage, 

if the time horizon is long enough or the lead times short enough.  This could be 

remedied by allowing technologies at the end of the time horizon to be built as a 

single entity (instead of splitting them up) as long as their lead time requirements are 

not violated.    

4.3.4.3. Expected Cost of Ignoring Uncertainty (ECIU)  

In order to evaluate the benefit of using stochastic programming with recourse (as 

opposed to a deterministic approach) a quantity called the Expected Cost of Ignoring 

Uncertainty (ECIU) (see Morgan and Henrion, 1990) can be constructed.  This is 

achieved by creating an equivalent stochastic scenario for each set of PGPs (called the 

naïve solution), where the probability of the median future occurring is almost 100 % 

(e.g. 99.8 % for the median future and the remainder of 100 % being made up from 

each of non-median futures). This forces the model to ignore the fact that multiple 

futures can occur when hedging for the second stage of the solution (unlike in hedged 

solutions where the probabilities of the non median futures have significant values), 

and creates a new solution that contains multiple futures after the resolution date but 

where no hedging has been done for those futures.  The hedged solution can then be 

compared to the naïve solution to determine the value of explicitly considering 

uncertainty using stochastic programming.  In a single objective optimisation 

exercise, the total discounted system cost of the naïve solution could be compared to 

that of the hedged solution.  In this case, due to the inclusion of PGPs into the model 

runs as a means of extending the analysis to multiple objectives, the performance in 

both cost and the other predefined non-cost attributes can be compared.  This is a 

powerful extension of the approach to date. 

A major difference between the stochastic modelling done in previous work (Dapkus 

and Bowe, 1984; Mo et al., 1991; Gorenstin et al., 1993; Tanabe et al., 1993; Loulou 
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and Kanudia, 1998) and the work presented here is that the previous work generally 

focussed on using several probability weighted cost-based objective functions to 

model different states of the world, while this work extends that formulation to 

include multiple environmental objectives as well.   

The stochastic variant of MARKAL (see appendix A for equations) redefines the 

objective function shown previously (equations 4.1 and 4.2) so that the overall 

objective function becomes the weighted sum of the expected costs for each state of 

the world, weighted by their probability of occurrence.  The hedging that is done in 

the recourse programming is then automatically translated from purely financial to 

include whatever attributes the PGPs represent due to the cost penalties that the PGPs 

impose on the objective functions for each state of the world.  This implies that the 

model will attempt to minimise both cost and non-cost objectives in light of the 

uncertain futures involved.  However, due to the cost penalties that the PGPs impose, 

the model may find it optimal to reduce non-cost attributes over cost, for a particular 

set of PGPs.  This could result in some hedged solutions being more expensive than 

naïve solutions for the same scenario (which cannot happen in a scenario without 

PGPs).  However, the hedged solution would then have better performance in other 

attributes than the naïve solution.  

This type of analysis enhances the multi-objective nature of the proposed 

methodology by including multiple objectives into the hedging process for future 

uncertainty.  Aspects of uncertainty can be addressed in terms of multiple objectives 

rather than a single objective and therefore the entire generation process can be 

explored in a more holistic manner in relation to multiple objectives. 

4.3.4.4. Expected value of perfect information 

Another useful quantity to define is the expected value of perfect information (EVPI).  

This is useful for determining the worth of investing more time and money into 

reducing uncertainty.  EVPI can be calculated by assuming that each of the possible 

futures under consideration occurs with certainty.  Optimal solutions are then 

generated for each of the futures and the total costs (for the case of a single objective) 

are then weighted according to the probability of occurrence of each of the futures.  
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This value is then compared to the hedged solution and the difference is the EVPI.  

The relationship between the EVPI and the ECIU, and between the naïve, hedged and 

perfect information decisions are summarised in Table 4-1 below: 

Table 4-1 Summary of relationships between ECIU, present information and EVPI 

Information available when 
making stage 1 decision 

Naively assuming 
uncertainty 

Present 
information 

Perfect 
information

Information on uncertainties Ignored Considered Considered 

Knowledge about which future 
will occur No No Yes 
Expected value of considering 
uncertainties or new 
information     

Adapted from (Kim et al., 2003) 

4.3.4.5. Uncertainties not directly addressed 

Although fuel price and other data uncertainty (capital costs, O&M costs, emission 

coefficients, ect.) have not been directly addressed within this chapter they are 

addressed in chapter 5, which is dedicated specifically to the ranking and selection of 

preferred alternatives under data, fuel price and decision maker preference 

uncertainties.   

Table 4-10 in Appendix A outlines some of the key parameters in the generation 

phase of this problem, where the data came from and how uncertainty in each of the 

parameters is typically handled.   

The model could be adjusted to deal with uncertainty relating to technology change 

through endogenous technology learning (ETL), already a feature of some existing 

energy models (see for example MESSAGE (Messner, 1997), MARKAL (Seebregts 

et al., 2000), POLES (Kouvaritakis et al., 2000a; Kouvaritakis et al., 2000b), and 

ERIS (Barreto and Kypreos, 2004)). 

While market liberalisation has not been directly addressed in this work, partial 

equilibrium frameworks provide results that are valid for both regulated, centrally 

planned power markets, as well as for efficient fully deregulated markets.  The short 

term effects of market liberalisation may be better modelled using system dynamics, 

agent based modelling or game theory, where the interaction between firms in specific 
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market environments are accounted for (see for example (Dyner and Larsen, 2001; 

Botterud, 2003).  However, the current methodology and results would still be valid 

for centralized planning of a competitive market (e.g. from the perspective of a 

regulator). 

Plant availability was modelled by derating each power station so as to limit the 

availability in all time periods to the availability factor (which is defined as (1-forced 

outage)*(1-planned outage)).  The reserve margin is then used to ensure that sufficient 

capacity exists to meet demand in times of coinciding outages of different plants.  The 

value of this parameter is typically settled exogenously by expert opinion based on the 

existing system and the modular sizes of the plants.  While this is a common approach 

in practice, it is not ideal.  More complex approaches such as the probabilistic 

forecasting of outages may yield a more accurate representation of the problem.  

Another approach based on probabilistic methods is presented in chapter 7.  

4.4. CASE STUDY: THE SOUTH AFRICAN POWER SECTOR

The case study used to illustrate the proposed methodology is the South African 

Electricity Supply Industry (ESI). South Africa currently has a state owned, regulated 

and centralized, mainly coal based generation portfolio (93 % of the 39716 MWe

installed capacity in 2002 (NER et al., 2004)) due to the abundance of “cheap” coal 

available.  The transmission and distribution system is also run by the state utility 

Eskom. The country also has small amounts of nuclear (5 %) and pumped 

storage/hydro power (2 %).  South Africa’s base load coal power stations burn 

pulverized coal.  Electrostatic precipitators are used for particulate removal, although 

bag filters are installed on a few stations. To date, there is no desulphurization 

technology installed on any plant (although, in some cases, some removal of pyritic 

sulphur occurs during coal beneficiation).  Emission of nitrogen oxides is limited only 

through use of low-NOx burners.  Due to the local water shortage problem in many of 

the areas where the power plants are located, advanced water saving technologies, 

which include dry cooling and dry ash disposal, have been developed which result in 

South Africa’s newer coal stations being amongst the most water efficient in the 

world (Dutkiewicz and Gore, 1998).  South Africa is now at a critical stage in its 
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development, where it is necessary to decide on which power stations to build in the 

future to meet increasing demand. The problem is compounded by the age of many 

existing coal-fired stations as well as significant challenges relating to water 

availability and regional air quality. 

4.4.1. THE BASE CASE

The “base case” (hereafter called BASE) was set up to represent the South African 

ESI including the existing generating system and a range of viable future technologies 

to meet the growing demand.  The starting point for the power station and the 

“moderate” demand data used in this chapter was the South African National 

Integrated Resource Plan (NIRP) of the National Electricity Regulator (NER et al., 

2004).   The NIRP data was used as a basis for this study, from which the 

methodology presented in section 4.3 could be demonstrated.  It should be noted 

however that in future studies the baseline data could well be expanded.  For example, 

though nuclear power station costs include estimates for decommissioning, a full life 

cycle representation of the nuclear cycle would be useful (together with an analysis 

and formal treatment of the uncertainties therein).   

Electricity demand was assumed to be inelastic.  In the case of South Africa, due in 

part to the low price of electricity (currently lowest in the world), price elasticities are 

very low (Pouris A. and Dutkiewicz, 1987) and (Dutkiewicz, 1994).  The price of 

electricity in South Africa has historically been so low as to attract energy intensive 

industrial operations such as aluminium smelters.  Evidence to support the low price 

elasticity of demand for electricity in the residential sector for developing countries 

was also found in India (Yoo et al., 2007) and the World Energy Outlook 2006 report 

(IEA, 2006).  This said, this analysis could be extended to include detailed demand 

response if the electricity price were to increase significantly. 

The base case also includes investments that are already committed to, such as the 

recommisioning of out-of-service coal stations and a pumped storage scheme, as well 

as demand side management (DSM) projects.  Detailed technology and economic data 
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as well as the assumptions5 used for the case study were based on the NIRP.  All data, 

assumptions as well as the full report can be downloaded from http://www.ner.org.za.   

A basic description of each new technology considered in the NIRP is given below 

(more detailed descriptions for each technology can be found in NIRP appendix 3 

(NER et al., 2004).  A summary of the costs and performance data for these 

technologies is then listed in Table 4-2. 

  

A Conventional pulverized fuel (PF) coal fired (CF) station 

Taking the low cost of coal into account, producing electricity from a new coal fired 

power stations is relatively inexpensive compared to other technologies.  This 

technology also has the advantage that fuel is mined locally and therefore security of 

supply is not considered a problem.  The major disadvantages of coal fired stations are 

that they release high levels of CO2 related emissions contributing to global warming, 

high levels of local pollutants such as SO2 and NOx, which have environmental and 

health impacts as well as significant amounts of solid waste.  PF coal stations also 

have long lead times (8-12 years (NER et al., 2004)). 

Nuclear stations 

Advanced light water reactors (ALWRs) and the new pebble bed modular reactor 

(PBMR) were new nuclear options considered for South Africa in the NIRP.   Nuclear 

power stations are currently slightly more expensive than coal stations.  Nuclear 

technologies are global warming and local air pollution friendly due to the fact that 

they have zero emissions.  Nuclear fuel is inexpensive to transport (due to the high 

energy density of the fuel) which allows for flexibility in site selection.  This 

flexibility allows for the possibility of the sea water cooling and minimization of 

transmission losses.  The PBMR sites can be upgraded as more capacity is needed.  

The key disadvantage of nuclear technologies is the issue of nuclear waste.  As there 

are no authorized sites for the disposal of nuclear waste, all waste needs to be kept on 

site.  Lead times are expected to be around 10 years. 

                                                
5 A conversion rate of R9/US$ was used as per the NIRP. 
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Gas turbines  

Gas turbines can be separated into two types: Open cycle gas turbines (OCGTs) and 

combined cycle gas turbines (CCGTs).  OCGTs can run on various fuels including 

paraffin, diesel and natural gas.  These plants have relatively short lead times (4-6 

years), low capital costs and high fuels costs and are therefore usually run as peaking 

plants.  CCGTs are have longer lead times (6-8 years), higher capital cost than 

OCGTs but also have higher efficiencies and can therefore be run as baseload plants 

with the capability to follow load if necessary.  Turbines running on natural gas have 

lower CO2 and SO2 related emissions than coal plants and therefore perform better in 

terms of global warming and local air pollution criteria.  They are however more 

expensive than coal plants, and their fuel price is more volatile (based on international 

gas market trends) without definite local gas reserves.  In South Africa the gas would 

either come from fields in Mozambique (Pande gas field – unproven capacity) or from 

imported liquefied natural gas (LNG). 

Pumped storage (PS) 

Pumped storage stations pump work as load shifting technologies by pumping water 

from a lower dam to a higher dam in times of excess electricity production and 

generate electricity during periods of peak demand by allowing water to flow from the 

higher dam back down to the lower one.  Two new pumped storage schemes were 

considered in the NIRP, one that has already been commissioned and was therefore 

forced in the plan and another potential option.  The lead times are expected to be 

around 9 years for a new pumped storage station (NER et al., 2004). 

Fluidised bed combustion (FBC) 

FBC boilers are capable of burning South Africa’s low quality/low cost discard coal.  

As yet there are no FBC plants in South Africa.  Although FBC may compete closely 

with CF stations in terms of cost, depending on the location of the plant, transport 

costs may dictate the economic viability of building an FBC station.  The lead time 

for FBC is expected to be 8 years (NER et al., 2004).   
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Wind turbines 

Wind turbines have the obvious advantage that they run on a renewable resource and 

fuel is free.  The capital cost for wind turbines are still high (making them far more 

expensive than coal or nuclear) although it is believed that costs will continue to drop 

making them competitive in the future.  Other disadvantages of wind technology 

include unpredictable generation due to natural wind variation (cannot be depended 

upon to meet peak demand) and small unit size (insufficient potential to meet large 

electricity demands).  There are also environmental concerns with the construction of 

wind farms in pristine areas.   

Solar thermal 

The solar thermal plant considered in the NIRP was a solar parabolic trough (to be 

potentially built in Upington), which concentrated solar heat onto pipes containing a 

molten salt heat transfer fluid (HTF).  Solar thermal, like wind power has the 

advantage of free fuel, but also has high investment costs.  The station would also 

have zero gaseous pollutant emissions but due to the fact that the station would be 

built in a hot desert region, its water requirement for cooling would be relatively high.   

Imported hydro  

A new option to import hydro power from Mozambique was identified and included 

as a supply side option in the NIRP.   

Demand side management (DSM) 

Large potential still exists for reducing electricity demand through DSM.  DSM 

measures include projects like solar water heating in the residential and commercial 

sector, load shifting, increased efficiency in industry and compact florescent lighting 

initiatives.  These programs often have low or negligible costs when compared to 

building new generation capacity, as well as the obvious environmental benefits of 

reducing the need to produce electricity. 

Other technologies 

Other technologies identified by the Department of Minerals and Energy (2004) such 

as small, medium and large landfill gas technologies, as well as a range of hydro 

refurbishments and modifications were included in addition to the NIRP technologies. 
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Costs (investment and O&M) (see Table 4-2 below) as well as emission coefficients 

and specific water consumption coefficients were included for all technologies 

considered. Using the Inter-Governmental Panel on Climate Change (IPCC) 

characterization factors (IPCC, 2001) for direct global warming potential and the 

(Danish) Environmental Design of Industrial Products (EDIP) effect factors (Wenzel 

et al., 1997) for acidification potential , the emission coefficients were converted to 

CO2 and SO2 equivalents to represent the criteria of global climate change and 

regional acidification potential.  The issue of water consumption was also chosen as a 

criterion due to its local relevance in South Africa.  Note that costs and emissions 

were not accounted for on a life cycle basis (i.e. taking costs and emissions into 

account from “cradle to grave” or in this case from extraction of fuel (e.g. mining) to 

final disposal of spent fuel, including the entire production process and transport of 

fuel).  Given that the goal of this chapter is to present a new methodology, this is not 

considered to be a limitation.  However, where the goal would be to develop 

defensible plans for the South African ESI, the consideration of costs and emissions 

on a full life cycle basis is considered essential.  
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Table 4-2 Summary of cost and performance data for new supply side options (NIRP (NER, 2004))  6

                                                
6 MWSO – sent out capacity (after own use has been taken into account). 

1 US$ = ± 7  ZAR at time of publication. 
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The base case was explored as a least cost optimisation exercise in MARKAL, over a 

time horizon of 20 years (matching the NIRP), and starting in 2002 (so as to include 

some historical data into the model).  This timeline closely resembles that of the NIRP 

except it started a year earlier.  An overall discount rate of 8 % (based on the NIRP) 

was used to discount future cash flow in the case study.  This value was chosen in the 

NIRP to represent a private investor market in South Africa.  However, in the light of 

sustainable development (i.e. not deferring our expenses to future generations); a 

lower discount rate could be used (see (Fisher and Krutilla, 1975; Markandya and 

Pearce, 1991) for discussions on the use of social discount rates for sustainable 

development), thereby favouring technologies with relatively higher capital cost to 

operating and maintenance cost components.  

It must be noted that currently (in 2007); the NIRP assumptions are no longer valid 

due to updated demand projections, delayed investment decision changing 

circumstances.  This being said, the data used in this thesis was deemed satisfactory 

for demonstrating the methodology developed here. 

Figure 4-1 illustrates an investment summary for the base case scenario7 over the time 

horizon: 

                                                
7 This solution set was generated using linear programming assuming all variables to be continuous 
rather than using mixed integer linear programming (MILP).  The work done in chapter 7 extends this 
analysis such that investment would occur in technologically consistent blocks rather than 
continuously.  This was not done at the time due to the inability to use stochastic programming and 
MILP simultaneously in MARKAL.  This was NOT seen as a shortcoming in demonstrating the 
methodology presented here. 
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Figure 4-1 Technology capacity summary for BASE  

It can be seen from Figure 4-1 above that most of the investment in new capacity in 

the base case scenario is in coal fired power stations (PF and FBC).  There is also 

significant investment in open cycle gas turbines (as peak load stations) and a small 

investment into nuclear technologies and combined cycle gas turbines right at the end 

of the time horizon to replace the existing capacity that is assumed to be 

decommissioned in 2021.  See NIRP appendix 3 (NER et al., 2004) for a description 

of each technology option.  

4.4.2. EXTENDING THE SOLUTION SET TO CONSIDER  MULTIPLE OBJECTIVES

Following the methodology outlined in Section 4.3, explicit consideration was given 

to global impacts such as climate change and regional impacts such as local air quality 

(due to this being a key focus in South Africa’s high coal power station density 

region-Mpumalanga) and water consumption (due to national water shortages).  This 
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was done by introducing cost penalties on CO2-eq emissions, SO2-eq emissions and 

water consumption into the least cost model.  

A range of five levels for each PGP was chosen to demonstrate a representation of the 

non-dominated solution space.  Choosing five levels for each PGP would yield five 

solutions for each PGP, demonstrating the effect that each PGP individually has on 

the final solution (in terms of its attribute scores and build plans).  The extreme value 

for each PGP was chosen such that a reduction of above 10 % from BASE was 

achieved in each of the corresponding attributes when the other PGP values were set 

to zero.  When combining the permutations of the five levels for each PGP, 109 

different solutions (including the BASE case) were generated.  These solutions had a 

diverse range of technology configurations which resulted in reductions of up to 30 % 

in CO2 equivalent emissions, up to 33 % in SO2 equivalent emissions, and up to 48 % 

in water consumption.  These increased reductions were due to the combined effect of 

using different PGPs simultaneously.  These solutions spanned a cost range up to an 

increase of almost 100 % over the base case. Given this last figure, the range of 

alternatives generated by this method was deemed to be sufficient for subsequent 

analysis and demonstration of the methodology but would require screening to reduce 

the number of alternatives based on DM defined viability. 

Table 4-3 PGPs used to generate unscreened solution set 

 CO2 equivalent 
emission coefficient 
(ZAR/ton) 

SO2 equivalent 
emissions coefficient 
(ZAR/ton) 

Water consumption 
coefficient (ZAR/ton) 

Initial value 137 23544 83 
Level 1 0 0 0 
Level 2 39 6661 16 
Level 3 193 24424 47 
Level 4 219 36636 73 
Level 5 258 44407 83 

To demonstrate how the non-cost attributes are considered in the model, the 

performance of one particular alternative (Alternative 11), which is considered in 

some detail in section 4.4.3 below, is examined here.   Table 4-4 shows the 

performance of Alternative 11 against the “base case”.   
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Table 4-4 PGP values and attribute performance results the base case and ALT 11 

PGPs values Base case 
Alternative 

11 
Base case 
with tax 

CO2EQ emissions (kZAR/kt) 0 0.00 0.00 

 SO2EQ emissions (kZAR/kt) 0 24424 24424 

 Water consumption (kZAR/kt) 0 16 16 

Performance   
Cost (kZAR) 2.621E+08 2.732E+08 2.621E+08 

CO2EQ emissions (kton) 2.658E+06 2.513E+06 2.658E+06 

 SO2EQ emissions (kton) 1.564E+04 1.478E+04 1.564E+04 
 Water consumption (kton) 4.309E+06 4.073E+06 4.309E+06 

Total cost including tax (ZAR) 2.621E+08 6.978E+08 7.114E+08 

Alternative 11 was generated when a specific value of emission tax was introduced 

for SO2EQ emissions and water consumption.  Here, a tax of ZAR 24423.75/ton was 

defined using the Tax(t,p) parameter, to introduce a cost penalty on all SO2EQ and a 

tax of ZAR 15.62/ton was defined using the Tax(t,p) parameter, to introduce a cost 

penalty on all water consumption in the model.  If the investment and operational 

decision variables (INV(r,t,k)) and ACT(r,t,k,s) respectively) were to remain 

unchanged from their values in the base case, the overall system cost including tax 

would have become 7.114E+08 kZAR.  However, as the objective function attempted 

to minimise overall system cost (including the cost penalties to capture environmental 

performance), investment into, and the operation of high SO2EQ emission producing 

and water consuming technologies was reduced.   This resulted in investment 

Alternative 11 (described in more detail in section 4.4.3), having a higher total 

discounted system cost (excluding taxes), but lower CO2EQ and SO2EQ emissions and 

water consumption values than those of the base case.  This reduction in emissions 

resulted in Alternative 11 having a lower total system cost including taxes 

(6.978E+08) than the base case scenario with taxes included.  This demonstrates how 

using PGPs forces the model’s least-cost objective function to minimise emissions 

and therefore better satisfy non-cost objectives. 

4.4.3. SCREENING OF OPTIONS FOR FURTHER ANALYSIS

The 105 solutions generated in this manner were then screened on financial 

performance assuming a hypothetical threshold of 20 % above base case total 
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discounted system cost8, which amounted to an increase in cost of over 50 billion 

ZAR (in 2004 terms) over the base case.  The hypothetical threshold was chosen to 

demonstrate the proposed methodology for a reduced solution set containing a diverse 

range of attribute performances.  The solutions could also have been screened at this 

stage on other user defined constraints or attribute performances.   

The screening on total discounted system cost resulted in retention of the following 

set of alternatives, where their attribute performance values are shown relative to the 

base case (where minus signs denote a decrease from the base case).  A summary of 

the short terms investment strategies for each of these alternatives can be found in 

Appendix A as well as detailed investment strategies in Appendix E (on CD). 

                                                
8 Note: Total discounted system cost is the true cost and does not include the attribute cost penalties. 
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Table 4-5 Attribute performance ranges for screened solution set 

Alternative Cost CO2-eq SO2-eq

Water 

Consumption 

BASE 
0.00% 0.00% 0.00% 0.00%

ALT 1 
0.19% 0.72% 0.61% -9.13%

ALT 2 
0.35% -0.25% 0.10% -8.71%

ALT 3 
0.35% -3.73% -1.96% 9.75%

ALT 4 
0.36% 0.76% -0.14% -9.18%

ALT 5 
1.05% 0.40% 1.13% -10.71%

ALT 6 
1.07% 0.27% -0.29% -10.24%

ALT 7 
1.41% -0.17% 0.80% -10.99%

ALT 8 
1.52% -4.21% -2.80% -4.60%

ALT 9 
2.29% -1.49% -1.80% -10.49%

ALT 10 
2.99% -6.39% -3.98% 9.62%

ALT 11 
4.21% -5.47% -5.52% -5.48%

ALT 12 
5.37% 0.04% 1.22% -14.82%

ALT 13 
5.83% -1.41% 0.33% -14.83%

ALT 14 
6.17% -7.38% -3.93% -6.66%

ALT 15 
6.43% -7.01% -6.76% -5.88%

ALT 16 
6.98% -8.27% -5.74% 8.83%

ALT 17 
7.60% 0.26% -0.61% -16.32%

ALT 18 
8.87% 0.04% 0.48% -17.54%

ALT 19 
13.03% -9.65% -9.56% -9.62%

ALT 20 
13.77% -10.29% -9.11% -10.10%

ALT 21 
14.84% -10.66% -9.48% -10.66%

ALT 22 
15.07% -10.45% -10.32% -10.72%

ALT 23 
15.63% -10.61% -10.60% -10.16%

ALT 24 
17.00% -11.49% -8.58% -12.46%

The new solution set shown above in Table 4-5 contains the base case and the 

remaining non-dominated alternatives after screening.  It can be seen from Table 4-5 

above that as the cost of each alternative increases, performance in the non-cost 

attributes generally improve.  It must be noted however that not all of the non-cost 

attribute performance values correlate directly with increasing cost.  Due to a degree 

of compensation between performances in the various non-cost criteria, it is not 

necessary that improvements in all the non-cost attributes occur simultaneously with 

increasing cost.  Reductions in emissions and water consumption are mainly due to 
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increased investment in “cleaner” technologies such as nuclear and gas, as illustrated 

for Alternative 11 in Figure 4-2, whereas the base case mainly invested in coal based 

generation (see Figure 4-1). 
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Figure 4-2 Technology capacity summary for Alternative 11 

As can be seen from Figure 4-2, Alternative 11 invests in significant amounts of 

nuclear power9.  There are also small investments in open cycle gas turbines and wind 

power at the end of the time horizon.  This results in the decrease of over 5 % in CO2-

eq and SO2-eq emissions as well as a decrease in water consumption of over 5 %.  

These environmental improvements compared to the base case can be gained at an 

increase in cost of less than 4.5 %. 

                                                
9 The cost of decommissioning nuclear power stations was included into the investment cost of the 
power stations although the environmental effects of spent nuclear fuel were not quantified, nor were 
they listed as specific decision criteria. Where the intent is to generate defensible plans for the South 
African ESI, the consideration of a more comprehensive set of impacts, including those associated with 
waste management for the different kinds of technologies, is considered essential.  
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The solution set thus contains alternatives with varying technology mixes which result 

in a diverse range of attribute performance values.  Each solution represents a 

different trade-off between the various objectives that would have to be evaluated by 

the policy makers.  The selection of a preferred solution will not be elaborated upon in 

this chapter, but forms the second phase of the proposed methodology which is 

described in detail in chapter 5.  

4.4.4. MODELLING FOR FUTURE UNCERTAINTY IN DEMAND GROWTH

Now that a methodology to better satisfy multiple environmental objectives has been 

demonstrated in section 4.4.2 and 4.4.3, the issue of uncertainty needs to be addressed 

within a multi-objective framework.  This will be done using stochastic programming 

with recourse (as described in section 4.3.4) to include flexibility to uncertainty in 

demand growth.  Other uncertain parameters such as technology costs, fuel prices and 

emission coefficients are dealt with using other methodologies (see chapter 5 and 6), 

due to the increased model complexity and computational burden of dealing with 

these parameters using stochastic programming with recourse (refer back to section 

2.3 for discussion).  

The deterministic model was adjusted to a two-stage stochastic model by allowing 

different demand futures to unfold.  The futures were split after the decision node to 

represent the low, medium and high demand forecasts published in the NIRP (NER et 

al., 2004).  The growth rates for these forecasts are presented in Table 4-6.  
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Table 4-6 Demand scenarios for various futures from NIRP (NER et al., 2004) 

% growth per annum Demand Scenario 

L M H 
2002-2008 1.6% 3.2% 4.3%
2008-2013 1.0% 2.3% 3.1%
2013-2021 0.9% 1.8% 2.6%

  

As a demonstration of the methodology, the decision node was positioned early in the 

time horizon (2009) to address the possibility of demand growth uncertainty as soon 

as possible, but to also allow time for the model to hedge for demand growth risk 

given the technology lead times involved.  Investments for major new technologies 

were split into their Owners’ Development Cost (ODC) and Equipment and 

Procurement Cost (EPC) components to account for technology lead times, and to 

include an element of real options theory into the analysis.  The timing of the decision 

node is itself a variable, whose influence could be explored via a parametric 

sensitivity study.  This is not undertaken here. 

Two versions of the stochastic model were run: one to yield the “naïve” solution and 

the other to yield the “hedged” solution.  In the “naïve” model, the medium demand 

scenario was given a 99.8 % probability of occurrence so that no hedging would be 

done for the alternate demand futures (see section 4.4.3).  In the hedged model, each 

demand profile was given an equal probability of occurrence 10 to explore the possible 

hedging that could be done for demand growth uncertainty.  The reduced set of 

scenarios used previously to generate the deterministic solutions (which included 

PGPs to better satisfy multiple objectives) were then rerun in a stochastic version of 

the model to generate the naïve and hedged stochastic solutions.  The alternatives’ 

numbers used for the stochastic model runs correspond to the sets of PGPs used 

previously in the deterministic model runs.  

The hedged solution was then compared to the naïve solution for each alternative to 

calculate the Expected Cost of Ignoring Uncertainty (ECIU) under all attributes. The 

results are shown in Table 4-7 which indicates the difference between the naïve and 

                                                
10 Sensitivity analyses can be done on the probabilities assigned to each state of the world, in order to 
determine the effect that the probabilities have on the solutions. This is not illustrated here, but would 
be important to do to generate defensible plans.  
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hedged solutions.  Positive values indicate that the hedged solution had lower values 

(i.e. costs, CO2-eq emissions, SO2-eq emissions or water consumption) than the naïve 

solution hence indicating a positive penalty for ignoring uncertainty.  

Table 4-7 Expected cost of ignoring uncertainty for each attribute 

Alternative 

Cost 

Difference  

CO2-eq

Difference  

SO2-eq

Difference

Water 

Consumption 

Difference 

Million ZAR Million ton Thousand ton Million ton 

BASE 1400 -4 -15 10 

ALT 1 1400 -4 -15 11 

ALT 2 1400 -4 -4 13 

ALT 3 -900 3 34 37 

ALT 4 -400 2 24 24 

ALT 5 600 1 10 15 

ALT 6 700 0 -16 9 

ALT 7 1800 -3 -16 8 

ALT 8 1500 -5 -21 10 

ALT 9 -100 8 -20 38 

ALT 10 800 3 -104 35 

ALT 11 -200 -6 -3 32 

ALT 12 1400 -4 -41 16 

ALT 13 1900 -5 -14 6 

ALT 14 1500 -5 -15 14 

ALT 15 2600 -9 -30 16 

ALT 16 -900 3 34 28 

ALT 17 2000 -6 -28 7 

ALT 18 -1600 14 23 24 

ALT 19 -500 4 34 31 

ALT 20 2300 -14 19 3 

ALT 21 1900 1 -6 19 

ALT 22 2600 -17 -12 13 

ALT 23 -200 8 -80 46 

ALT 24 -2400 17 -125 89 

It can be seen in Table 4-7 above that the ECIU can be either positive or negative for 

any of the attributes individually; however no naïve solution ever outperforms the 

hedged solution in all attributes simultaneously.  This occurs because the model is 
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attempting to hedge for multiple objectives and there is compensation occurring in the 

hedging process between the performances in the different criteria.  This 

compensation is directly affected by the values of the PGPs as they inform the extent 

to which each attribute is contributing to the overall value of the objective function 

(i.e. overall discounted system cost).  Therefore, for a given set of PGPs, the model 

may find it optimal to reduce one attribute at the expense of another as long as the 

overall objective function is minimized in the process.  It can therefore be said that the 

hedging process is consistent with the overall multi-objective framework as it too is 

informed by the value of the PGPs to the extent to which the non-cost objectives 

should be considered in the optimisation. 

To illustrate what hedging for demand growth uncertainty may imply for technology 

selection, the investments in Pebble bed modular reactor (PBMR) and Combined 

cycle gas turbine (CCGT) technologies for Alternative 11 for the hedged and naïve 

stochastic demand scenarios are compared in Table 4-8 and Table 4-9. 
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Table 4-8 Excerpt from investment summary for hedged stochastic solution for Alternative 11 

  Hedged solution (MW) 

  Pebble bed modular reactor Combined cycle gas turbine (LNG) 

Demand 

scenario 
Low Medium High Low Medium High 

2002 - - - - - - 

2003 - - - - - - 

2004 - - - - - - 

2005 - - - - - - 

2006 - - - - - - 

2007 - - - - - - 

2008 3080 3080 3080 9500 9500 9500

P
h

ase 1
 

O
D

C
 

2009 0 0 0 0 0 767

 2010 0 0 0 0 0 0

2011 0 0 0 0 0 427

2012 0 440 440 0 0 0

2013 0 440 440 0 0 0

2014 0 440 440 0 0 0

2015 0 440 440 0 0 835

2016 0 440 440 0 0 778

2017 0 440 440 0 0 796

2018 0 440 440 0 0 827

2019 0 0 0 0 705 1515

2020 0 0 0 0 1325 1626

2021 440 0 0 0 1935 1935

P
h

ase 2
 

E
P

C
 

Total  440 3080 3080 0 3960 9500
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Table 4-9 Excerpt from investment summary for naive stochastic solution for Alternative 11 

  Naive solution (MW) 

  Pebble bed modular reactor Combined cycle gas turbine (LNG) 

Demand 

scenario 
Low Medium High Low Medium High 

2002 - - - - - - 

2003 - - - - - - 

2004 - - - - - - 

2005 - - - - - - 

2006 - - - - - - 

2007 - - - - - - 

2008 3960 3960 3960 4175 4175 4175

P
h

ase 1
 

O
D

C
 

2009 0 0 0 0 0 738

2010 0 0 0 0 0 261

2011 0 0 0 0 0 427

2012 0 440 440 0 0 203

2013 0 440 440 0 0 220

2014 0 440 440 0 0 803

2015 0 440 440 0 0 745

2016 0 440 440 0 0 752

2017 0 440 440 0 0 26

2018 0 440 440 0 0 0

2019 0 440 440 0 305 0

2020 0 0 440 0 1935 0

2021 440 440 0 0 1935 0

P
h

ase 2
 

E
P

C
 

Total  440 3960 3960 0 4175 4175

It can be seen that the hedged solution invests in more CCGT and less PBMR before 

the decision node in 2009 than the naïve solution.  This is due to the fact that, when 

ignoring uncertainty, and therefore assuming that all ODC investments will lead to 

EPC investments, it is cheaper to invest in PBMR than in CCGT, within the limits of 

information currently available on PBMR.  However, when  demand uncertainty is 

taken into account,  and it is no longer assumed that all ODC investments will be 

followed by EPC investments, it becomes cheaper to invest in more CCGT initially 

(getting it “investment ready”) to hedge against uncertain demand profiles because of 
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the far lower ODC component of the CCGT investment compared to PBMR.  This 

initially increased investment allows for investment in larger amounts of CCGT after 

the decision node in the hedged solution, whereas the naïve solution is limited to 

building less CCGT.  This contributes to the hedged solution being cheaper than the 

naïve solution as well as having lower water consumption levels as can be seen in 

Table 4-7 above.  It does however also contribute to the hedged solution having 

higher CO2-eq and SO2-eq emissions due to the increase use of gas instead of nuclear 

power.  It must be noted however that the hedged solution for Alternative 11 still 

resulted in an increase in total discounted system cost of 4.21 % relative to the base 

case11, and a decrease in CO2-eq emissions of 5.47 %, a decrease in SO2-eq emissions 

of 5.52 % and a decrease in water consumption of 5.48 % all relative to the base case.   

As an example, retrospective analysis of Alternative 11 yields PGP values of 0 

ZAR/ton CO2-eq, 24423.75 ZAR/ton SO2-eq and 15.62 ZAR/ton H2O.  The PGP 

values could simply be translated into equivalent (and appropriate) taxes.  For 

example, a water tax in this case would be 15.62 ZAR/ton water consumed.  Equally 

this could be expressed in terms of a tax per unit of electricity generated by station 

type (e.g. 0.28 c/kWh for a new coal fired station for this system).  With these taxes in 

place, the preferred solution for the market represented by this model would be 

Alternative 11.  Conversely, if Alternative 11 was the preferred solution, then these 

would be the taxes necessary to achieve this solution in an efficient market.

Including PGPs into a stochastic programming model with recourse and splitting 

investments into their ODC and EPC components thus yields solutions that improve 

on the corresponding naïve solutions on the basis of multiple objectives defined by 

the PGPs while still better satisfying the non-cost objectives relative to the base case

scenario.   

4.5. CONCLUSIONS

This chapter has demonstrated that a partial equilibrium12 optimisation framework can 

be extended to include multiple environmental objectives through the addition of 

                                                
11 The base case referred to in this section is the least cost solution (no PGPs) using the hedging model.  
12 Demand was assumed to be inelastic in the case study. 
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Pareto Generation Parameters (PGPs) introduced into the optimisation in the form of 

cost penalties.  This forces the optimisation routine to find solutions that attempt to 

satisfy multiple objectives.  It is an efficient method for extending the analysis to 

multiple objectives as the solutions generated are non-dominated and are generated 

from ranges of performances in the various criteria rather than from arbitrarily forcing 

the selection of particular technologies.  Extensive sections of the non-dominated 

solution space can be generated and later screened to allow further, more detailed 

exploration of areas of the solution space.   

This chapter has also demonstrated that this analysis can be extended to include 

uncertainty in demand growth through stochastic programming with recourse.  By 

splitting new power station investments into owner’s development costs and 

equipment procurement and construction phases, the concept of technology lead times 

can be accounted for in light of a decision node in the time horizon and an element of 

real options theory can be included into the model.  The model can now invest into 

the ODC component of a technology (if it is optimal) and then “wait and see” how 

uncertainty unfolds before deciding whether to invest into the EPC component of that 

technology.  This allows the model more freedom to hedge for demand growth 

uncertainty.  The hedging that is done in the recourse programming is automatically 

translated from purely financial to include whatever attributes the PGPs represent, due 

to the cost penalties that the PGPs impose on the solutions.  The hedged solutions 

improve on the naïve solutions under the multiple objectives considered as well as 

better satisfy the non-cost objectives relative to the base case.   

The methodology provides a framework for modellers to generate a solution set for 

the power expansion problem that represents a range of solutions that each satisfies 

multiple objectives to a varying extent.  The solutions also have built-in flexibility to 

demand growth uncertainty.  The set of solutions generated in this manner can be 

used as part of a transparent decision making process in which policy maker 

preferences can ultimately inform the selection of a preferred solution.  This approach 

has the benefit of allowing the policy makers to make a choice knowing the 

consequences of their decision relative to the other alternatives with regard to the 

predefined objectives.  This method is also more transparent than other preference 

articulation methods and easily understandable to stakeholders outside of the decision 
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process and therefore creates a situation where the DM is more accountable for his 

choices. They also give policy makers an indication of the appropriate market signals 

necessary to influence the market towards a preferred state.  This would be done 

retrospectively from the preferred solutions, through an analysis of the PGP values 

used to generate those solutions. 
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4.5. APPENDIX A

Table 4-10 Parameter Uncertainty information relating to options generation 

Parameter Data representation 

Non technology specific parameters 
  

Reserve margin Decided by NIRP advisory review committee  

Discount rate Decided by NIRP advisory review committee  

Time horizon Decided by NIRP advisory review committee  

Emission equivalent 
conversion factors 

Inter-Governmental Panel on Climate Change (IPCC) 
characterization factors (IPCC, 2001) for the direct global 
warming potential and the (Danish) Environmental Design of 
Industrial Products (EDIP) effect factors (Wenzel et al., 1997) 
for acidification potential 

Demand shape Based on NIRP data 

Demand forecast 
Taken from NIRP data for low, median and high demand 
values 

Demand probabilities Modeller defined values 

Demand uncertainty 
resolution date 

Modeller defined  

Standard technology parameters that go into options generator 
  

Investment cost 
Adjusted mean value taken from NIRP literature survey on 
international values. Values were adjusted to represent South 
African conditions in NIRP  

Generation costs (O&M) 

Adjusted mean value taken from NIRP literature survey on 
international values. Values were adjusted to represent South 
African conditions in NIRP 

Emission coefficients 

Adjusted mean value taken from NIRP literature survey on 
international values. Values were adjusted to represent South 
African conditions in NIRP 

Availability Factor  
Decided by NIRP advisory review committee  (based on 
World Energy Council best quartile results 2003) 

Thermal efficiency 
Adjusted mean value taken from NIRP literature survey on 
international values 

Fuel cost Values taken from NIRP  

Plant lead times Values taken from NIRP  

Plant lifetime Values taken from NIRP  

Pareto generation parameters 
Case study relevant and stakeholder/modeller defined range 
chosen 

Station type (peaking, mid-
merit, base load) 

Taken from NIRP 

Annual investment limit Values taken from NIRP  

Total investment limit Values taken from NIRP  
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MARKAL stochastic programming with recourse formulation:  

Minimize    wtwtwt
TttWw

pXCZ ,,,
)(

••= ∑∑
∈∈

   (3)

subject to:     wtwtwt bXA ,,, ≥• , )(, tWwTt ∈∀∈∀

where:  t = time period 

T = set of time periods 

t* = resolution time  

w = outcome index (state of the world) 

W(t) = set of outcome indices for time period t. For all t prior to resolution 

time t* , W(t) has a single element (stage one). For t ≥ t*, W(t) has multiple 

elements (stage two); 

X
t,w 

= the column vector of decision variables in period t, under scenario w 

C
t,w 

= the cost row vector in time t under scenario w; 

p 
t,w 

= probability of scenario w in period t; p 
t,w 

is equal to 1 for all t prior to 

t* , and  1
)(

, =∑
∈ tWw

wtp for all t.  

A 
t,w 

= the coefficient matrix (single period constraints) in time period t, under 

scenario w 

b 
t,w 

= the right-hand-side column vector in time period t, under scenario w 
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Table 4-11 New short term capacity investment (in MW) in selected technologies for all alternatives13

  
Coal 
(pf) 

Nuclear 
(ALWR) 

Nuclear 
(PBMR) OCGT 

Pumped 
storage FBC 

CCGT 
(pipe) 

CCGT 
(LNG) Wind1 Wind2 Wind3 

Small 
landfill 
gas 

Medium 
landfill 
gas 

Large 
landfill 
gas 

Hydro modifications 
and refurbishments 

BASE 5740 0 440 1728 272 2796 774 5946 450 100 50 18 21 4 1555 
ALT1 5756 0 440 1820 143 2796 774 5909 450 100 50 18 21 4 1513 

ALT2 5532 0 440 1719 0 2796 774 6287 538 100 50 18 21 4 1498 
ALT3 4728 113 440 1561 256 2796 774 6807 596 100 50 18 21 4 1685 
ALT4 4732 108 440 1561 0 2796 774 6945 714 100 50 18 21 4 1603 

ALT5 4967 0 440 1562 107 2796 774 7267 706 100 50 18 21 4 1218 
ALT6 5936 0 440 1721 4 2796 774 6294 572 100 50 18 21 4 1206 

ALT7 4157 20 1190 1576 0 2796 774 7388 612 100 50 18 21 4 1285 
ALT8 2472 171 2640 1471 0 2796 774 7128 619 100 50 18 21 4 1610 
ALT9 2117 664 2640 992 363 2796 774 7690 1150 100 50 18 21 4 1182 

ALT10 0 1398 3520 807 224 2796 774 7340 1235 100 50 18 21 4 1729 
ALT11 1441 1555 3080 1273 0 0 774 9500 565 100 50 18 21 4 1611 
ALT12 7566 0 440 1576 507 2796 774 5591 700 100 50 18 21 4 724 
ALT13 4208 20 2200 665 955 2796 774 7632 700 100 50 18 21 4 739 
ALT14 0 2064 3520 665 583 2796 774 7108 1233 100 50 18 21 4 1442 
ALT15 0 2493 3520 884 0 0 774 9654 987 100 50 18 21 4 1551 
ALT16 0 2086 3520 665 562 2796 774 6593 1446 100 50 18 21 4 1645 
ALT17 7457 0 440 665 998 2796 774 6012 809 100 50 18 21 4 720 
ALT18 7704 0 440 1114 938 2796 774 5535 651 100 50 18 21 4 720 
ALT19 0 3496 3520 0 998 0 774 9932 1140 100 50 18 21 4 938 
ALT20 0 5244 3520 0 483 1359 774 6038 1500 100 50 18 21 4 1180 
ALT21 0 6118 3520 0 998 1359 774 5919 1156 100 50 18 21 4 894 
ALT22 0 5244 3520 0 998 0 774 8365 1050 100 50 18 21 4 845 
ALT23 0 5456 3520 0 998 0 774 8503 700 100 50 18 21 4 782
ALT24 0 6992 3960 0 998 1825 774 4352 1050 100 50 18 21 4 710 

                                                
13 This solution set was generated using linear programming assuming all variables to be continuous rather than using mixed integer linear programming.  Chapter 7 extends 
this analysis such that investment would occur in technologically consistent blocks rather than continuously. 
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CHAPTER 5                  RANKING AND SELECTION OF POWER EXPANSION 

ALTERNATIVES FOR MULTIPLE OBJECTIVES UNDER UNCERTAINTY              

5.1. INTRODUCTION

Investment decisions in the electricity supply industry (ESI) are influenced by a 

number of factors including cost, environmental performance and social acceptability.  

Global environmental issues such as climate change as well as local issues like 

acidification and water shortages have forced planners and policy makers to revaluate 

the role of conventional coal fired power stations, and to examine the possibilities of 

transition fuels such as natural gas as well as nuclear and renewable options.  With 

cost no longer being the only criterion for evaluating the performance of Future 

Expansion Alternatives (FEAs), the modelling of ESI alternatives has become 

increasingly complex and the selection of FEAs has become more challenging in light 

of multiple decision criteria and uncertainty in both valuation arguments and 

empirical data.  

Once a set of FEAs have been generated that satisfy multiple objectives to varying 

degrees and have built in flexibility towards demand growth uncertainty (as described 

in chapter 4), the next phase in the process is the selection phase where one or more 

FEAs are isolated from the solution set created in the generation phase based on DM 

preferences.  This process needs to account for the multiple objectives of the DM as 

well as the robustness of the alternatives selected to the uncertainties involved.  A 

structured framework needs to be developed to integrate the multi-attribute 

information from the generation phase for each of the alternatives, such that a set of 

preferred alternatives can be isolated based on DM preferences.  These alternatives 

can then go to a final detailed analysis so that a single preferred solution can be 

identified.  See Figure 5-1 below for a graphical representation of this approach.    
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Figure 5-1 Flow diagram for generation and selection of FEAs 

The objective of this chapter is to outline and demonstrate a methodology, using the 

South African ESI, for ranking FEAs based on multiple objectives representing 

stakeholder or policy maker preferences as well as to address aspects of uncertainty in 

data, fuel price and preference arguments.  It then goes on to isolate a portfolio of 

preferred alternatives based on performance and confidence criteria.  The scope of this 

chapter is limited to the selection process, although it will build on the work which 

considered the generation phase under demand uncertainty in chapter 4.   

5.2. BACKGROUND

5.2.1. ESI MODELLING FOR MULTIPLE OBJECTIVES UNDER UNCERTAINTY

Few methodologies have been developed for the generation of power expansion 

alternatives that consider multiple objectives and uncertainty simultaneously.  There 

has however been work done on extending the generation of power expansion 
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alternatives to include multiple objectives through methods such as compromise 

programming (e.g. Linares and Romero, 2000; Antunes et al., 2004; Martins et al., 

2004), scenario analysis (Connors et al., 2003), constraint methods in the form of 

emission caps (Manne and Richels, 1997; van der Zwaan et al., 2002; Cormio et al., 

2003) and cost penalty based approaches (Hobbs et al., 1994; Koroneos et al., 2004; 

Heinrich et al., 2007).   

Chapter 4 described a methodology for generating a representation of the Pareto 

optimal surface for energy planning problems, using energy modelling software such 

as MARKAL1, EGEAS2 and MESSAGE3.  Demand growth uncertainty was 

integrated into the generation of alternative expansion alternatives through the use of 

two-stage stochastic programming with recourse (Dantzig, 1963).  This resulted in a 

solution set representing alternatives that were flexible to demand growth uncertainty 

and better satisfied multiple objectives representing stakeholder or policy maker 

preferences compared to the optimal least cost solution.  The logical extension of this 

work was to develop a methodology for identifying an alternative from the non-

dominated solution set and to demonstrate an approach for dealing with some of the 

key uncertainties inherent in this process. 

The set of alternatives generated in chapter 4 ranged from the least cost solution (the 

“BASE” case) to solutions that performed significantly better (generally greater than 

10 % improvement over the BASE case) in selected non-cost criteria (being CO2EQ

emissions, SO2EQ emissions and water consumption).  These criteria were chosen in 

chapter 4 to give explicit consideration to global impacts such as climate change and 

regional impacts such as local air quality (due to South Africa’s high coal plant 

density region (Mpumalanga)) and water consumption (due to national water 

shortages).  See Table 4-11 in chapter 4 appendix A and Table 5-8 in the appendix B 

                                                
1 MARKAL (MARKet AnaLysis) developed by the Energy Technology Systems Analysis Programme 
(ETSAP) of the International Energy Agency, http://www.etsap.org. 
2 EGEAS (Electric Generation Expansion Analysis System) developed by the Electric Power Research 
Institute (EPRI), http://www.epri.com. 
3 MESSAGE (Model for Energy Supply Systems Analysis and their General Environmental impact) 
developed by the International Institute for Applied Systems Analysis (IIASA), 
http://www.iiasa.ac.at/Research/ECS/docs/models.html#MESSAGE. 
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for detailed short term investment strategies and mean partial value score 4  results 

respectively. 

5.3. APPROACH  AND DEMONSTRATION

The approach taken here couples a sensitivity/robustness analysis to assess the effects 

of technical and model parameter uncertainties on the performance of FEAs, with an 

MCDA approach to rank the alternatives and select preferred alternatives from the 

ESI option set, given multiple objectives and uncertainty in valuation model 

parameters (such as inter-criterion preferences).    

The existing South African electricity supply system was modelled taking into 

account the actual technologies currently being used and their technical constraints 

(availabilities, resource limitations etc.).  The new technologies considered (including 

renewable resources and intermediate technologies such as gas turbines ) were based 

on the NIRP (NER et al., 2004) (see Table 4-2 in chapter 4).  The methodology used 

to generate the FEAs as well as the South African ESI was discussed in more detail in 

chapter 4. 

The starting point for this chapter is the consideration of some of the key technical 

empirical uncertainties which impact on the attribute performance scores of the 

technology investment alternatives from the generation phase in chapter 4. These 

investment alternatives differed in the technologies used (see Table 4-11 in chapter 4 

appendix A for the short term investment strategies for each alternative).  Non-cost 

objectives were satisfied to varying degrees in the solution set, which gave technology 

mixes ranging from the least-cost solution which invested mainly in coal based 

technologies to the alternatives which invested in mainly nuclear and gas options.  

Empirical uncertainties are propagated through the ESI model by sampling their 

representative probability distributions.  The input parameters that were sampled were 

investment costs, operating and maintenance (O&M) costs, fuel costs and emission 

values for each technology which contributes to a given investment alternative. At this 

point it is possible to build model “scenarios” for each alternative from the sampled 

sets of uncertain parameters. In effect, this generates a range of performances for each 

                                                
4 Partial value scores are attribute performance scores that have been normalised onto a commensurate 
scale (typically 0-1) – refer back to section 2.2.2.1for discussion on partial value scores. 
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of the non-dominated alternatives in the original list.  Using an appropriate MADA 

technique, it is then possible to construct a preference model across all possible 

outcomes (generated from the sampled distributions of input parameters) and thus 

compare the performance of each alternative in whatever number of decision 

objectives were identified during the problem structuring phase of the decision 

analysis.  

This methodology differs from scenario planning in that a comprehensive range of 

values is explored for each of the uncertain parameters (similar to a classic sensitivity 

analysis) whereas in scenario planning a limited number (usually less than four 

(Stewart, 2005)) scenarios are constructed to analyse likely or relevant projections of 

the future.  This method also differs from a standard sensitivity analysis in that the 

build plans of the alternatives are fixed in the options generator so as to effectively 

test the robustness of each alternative rather than allowing the model to generate new 

alternatives for the changing conditions.  This methodology is therefore focused on 

assessing the robustness of each alternative rather than identifying the sensitivity of 

outputs to input variable uncertainty (as discussed in section 2.5).  It must be noted 

though that this methodology does not build in flexibility towards these uncertainties 

into each FEA (as using a method such as stochastic programming would).  The focus 

of this methodology is to provide policy makers with a set of FEAs that span a range 

of performances in the multiple objectives they are interested in and then to guide 

them through the selection process, given their uncertain preferences and the technical 

empirical parameter uncertainties inherent in the process.    Therefore, although using 

stochastic programming to build flexibility towards uncertainty would be the most 

comprehensive approach available, it is not practical for the current situation where 

the focus is on developing a transparent decision methodology for multiple objectives 

given uncertainty in all of the technical empirical uncertainties considered here. 

Were this approach to use fixed build plans but still allow the model to reoptimise 

each alternative in terms of operational parameters (power station load factors), a 

large number of model runs would be required to cover the full data space of 

uncertain parameters.  Each sampled set of the uncertain parameters would need to be 

run in the options generator for the fixed build plans representing each of the 

alternatives.  Large amounts of data would be generated which would pose additional 
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challenges to data management in further analysis.   It is proposed that instead, 

technical empirical uncertainties can be propagated through a static model, yielding 

the likely attribute performance ranges for each of the previously optimised FEAs.  

Caveats 

One of the potential limitations of this approach is that the operational characteristics 

of the system are not reoptimised for each discrete future scenario (defined by a 

sample of the uncertainties involved) as would be the case in an actual ESI situation.  

If the operational characteristics of the system were optimised for each discrete future 

scenario, the load factors for individual power stations would be reoptimised (within 

technical and contractual constraints) so as to best meet the overall system objectives 

given each discrete future scenario even though the investment strategy would be 

fixed.  However, as the power expansion alternatives were originally generated within 

a least-cost optimisation framework, this caveat would only result in a slightly 

pessimistic view of the future.  In other words, the higher end of the uncertainty range 

for each attribute in each alternative could be slightly higher than in reality (i.e. 

performance would be worse), as each alternative system would have been 

reoptimised (in terms of the load factors of individual power stations) to meet the 

realised future, even though investment plans were fixed.  Of course some alternatives 

would be better positioned to adjust to those uncertainties and therefore it would be 

possible that changes would occur in the rank order and only an indication of that 

would be captured in this analysis.  This issue is addressed in more detail in Chapter 

6. 

   

5.3.1. CHOOSING A ROBUST SOLUTION FROM THE NON-DOMINATED SET WITH 

TECHNICAL EMPIRICAL AND DM PREFERENCE UNCERTANTIES 

A value function MCDA approach was chosen for the problem of isolating preferred 

solutions defined by multiple stakeholder objectives under uncertainty.  This approach 

was then modified to associate a confidence measure with the ranking of alternatives 

(see section 5.3.2.3).  The effects of valuation model parameter uncertainty in 

preference information on the rank order of alternatives was also explored within this 

approach and demonstrated in section 5.3.3.2.  
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The proposed methodology is outlined in Figure 5-2 and discussed below. 

Figure 5-2 Flowchart of proposed methodology   

Create data tables (section 5.3.1.1) 

Assign uncertainty distributions to 
empirical parameters (section 5.3.1.2) 

Normalize attributes into partial value 
functions (section 5.3.1.3) 

Aggregate partial value functions 
(section 5.3.1.3) and perform sensitivity 

analysis on weights (section 5.3_2.2) 

j 
Define preference infom1ation by 

analyzing trade·offs (section 5,3.1.3) 

Generate frequency tables for 
relevant weightings (section 5.3,2.3) 

Isolate JXlrtfolio of preferred alternatives by 
defining acceptable performance and 

credibility levels (section 5,3.2.3) 

Perform detailed analysis on 
preferred atternatives (section 

5.3.2.4) 
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5.3.1.1. Data representation 

Data tables were formed to capture the performance of all FEAs in the measured 

attributes, such that the values were specified by technology for each expansion 

alternative (Table 5-1).  This allowed uncertainty associated with each technology 

(which is part of any particular alternative), to be identified firstly, and then 

propagated through the model.  

Table 5-1. Example of a data table for a single attribute (e.g. investment cost) 

 Tech 1 Tech 2 Tech n

Alternative 1 - - - 

Alternative 2 - - - 

Alternative n - - - 

The data tables were populated from the detailed results obtained in the generation 

phase of the problem.  As total system cost was made up of investment cost, O&M 

cost and fuel cost, separate tables were defined for each of these performance 

attributes.  Tables were also defined for each of the other non-cost attributes in a 

similar manner.  These tables can be found in appendix B.  The next step in this 

analysis was to include uncertainty into the model.

5.3.1.2. Representation of uncertainty 

Uncertainty in technology cost data (investment, O&M) was incorporated into the 

model using data from the NIRP (NER et al., 2004), which formed the core data set 

for the work done in chapter 4.  Estimated values based on available data for fuel 

price and emission factor uncertainty for each technology were included in order to 

demonstrate the capability of the model ((Notten, 2001) and (Eskom, 2001)).   

An uncertainty distribution was defined for each technology, for each of the 

uncertainty parameters (investment cost, O&M cost, fuel cost and emission factors).  

Triangular distributions are best used when only the bounds and the mode are known, 

therefore they were used to represent uncertainty in parameters where data was 

available but limited (e.g. cost data from (NER et al., 2004)).  Uniform distributions  
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are best used when only the bounds are known and were therefore used where only a 

minimum and maximum for a range was available (e.g. CO2 emission factor ranges 

for pulverised coal fired stations from (Notten, 2001) and (Eskom, 2001)).  Tables 

containing the probability distribution data for each of the parameters can be found in 

appendix B.  The uncertainty in each of these parameters was then propagated through 

each of the individual data tables defined by technology type, for each attribute, using 

a median Latin hypercube sampling technique.  In this way, it becomes possible to 

determine the effect that technology specific uncertainty has on the performance of 

each alternative. 

5.3.1.3. Value function model 

Using an additive aggregation model (see section 2.2.2.1 for rational for choosing 

additive aggregation), the value function )(iaV  is constructed: 

                                                   ∑
=

=
n

j
ijji avwaV

1

)()(                                                (5.1) 

Where jw  is the weight of criterion j , 

and )( ij av is the partial value function defined over the set of criteria j  for 

alternative i . 

Intra-criterion preference information

The partial value functions   )(ij av  were defined for each of the criteria chosen in 

chapter 4 (total discounted system cost, total CO2EQ emissions (representing global 

climate change), total SO2EQ emissions (representing acidification potential) and total 

water consumption) to evaluate the expansion alternatives.  Total cost was broken 

down further into investment cost, operating and maintenance (O&M) cost and fuel 

cost. 

Linear value functions based on locally defined attribute ranges were used to 

represent intra-criterion preference relationships.  Other value function shapes such as 

the concave function discussed in section 2.2.2.1 could have been used to represent 

more complex situations such as that when emission limits legislation is in place.  
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Locally defined partial value functions enable a more sensitive and rapid assessment 

of the alternatives, as well as being considered more appropriate than global scales for 

this problem due to the ranges in attributes being defined by the unique ESI system 

being considered.  This approach was taken to represent intra-criterion preferences 

instead of direct rating techniques, in order to avoid preconceived notions and 

prejudices (e.g. around technology choice), as well as being a simple and intuitively 

understandable mathematical representation for the problem (Basson, 2004).  

Depending on the degree of acceptance amongst stakeholders of value function shapes 

and local/global scales, there may be merit in undertaking a thorough sensitivity 

analysis of intra-criterion preference information to further explore and articulate 

stakeholder preferences. This was not pursued in this thesis.  

The values for each attribute were normalised such that the “worst” and “best” 

outcomes in each criterion are assigned values of 0 and 1 respectively.  As the 

attribute ranges now included uncertainty, the range bounded by highest of the high 

attribute values and lowest of the low were used to normalize each set of attributes.   

Inter-criterion preference information 

In order to determine the preferences of the DM, questions regarding the acceptable 

trade-offs between criteria need to be asked.  It has been shown that no single 

weighting method is preferred by all stakeholder groups (Hobbs and Horn, 1997) but 

the most commonly used techniques for weight elicitation are the swing weighting 

method and methods based on cross attribute indifference judgements (Belton and 

Stewart, 2002).  Indifference weighting techniques may appear more complex than the 

swing weighting method. However, previous work has shown that indifference 

weighting methods were found to be more readily understandable to stakeholders and  

led to more plausible preference modelling, when dealing with particular corporate 

decision situations involving the South Africa utility, ESKOM (Basson, 2004).  This 

was found to be particularly true when the reference criterion was expressed in terms 

of cost or profit sacrificed for an increase in performance of another non-cost 

criterion.  This being said, ideally the weighting exercise should be repeated using a 

different criterion as the reference criterion to ensure that the weights obtained are not 

influenced by the choice of reference criterion.  This can however be impractical in a 

real decision making environment due to time constraints. Given the role of ESKOM 
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in the case studies of both chapter 4 and this chapter, the indifference weighting 

approach was adopted here. 

The indifference trade-off questions are asked in the form of: “What sacrifice in terms 

of the best performance in reference criterion i  would you be willing to make, to 

achieve a gain from worst to best performance in criterionj ?”  The trade-off 

questions are asked for all other criteria in relation to a sacrifice in the reference 

criterion.  The resulting weights are then calculated from the ratios of the trade-offs, 

and normalised (see section 2.2.2.1 for equations).

   

Once these weights were established, additive aggregation was used to combine the 

partial value functions into a single, overall or global value score representing the 

preferences of the DM (see equation 5.1 above).  This value function included 

uncertainty in attribute values and therefore the results in section 5.3.2 appear as 

probability distributions rather than discrete values. 

A sensitivity analysis was done on the weights to provide stakeholders with a visual 

representation of the effect that their preferences have on the rank order across the full 

range of preferences (see section 5.3.2.2 for results and more detailed discussion).  

This was done by stepping through the weighting values in the reference criterion, 

while keeping the ratios of the other weights equal to each other5.  This was repeated 

using each of the criteria in turn as the reference criterion, in order to evaluate the 

sensitivity of the results to the weighting of each of the individual criteria.   

The choice of criteria and attributes were decided upon in chapter 4 using a flat 

hierarchy of preferences, therefore no value tree structure was defined.  Had there 

been a hierarchy of preferences, uncertainty in these choices would typically be 

resolved through expert agreement unless a sensitivity analysis was specifically 

required.    

                                                
5 In practice it may be more appropriate to define the ratios between the weights in a stakeholder 
exercise before doing a sensitivity analysis; however it was assumed that keeping the ratios of the non-
reference criteria equal would demonstrate the methodology sufficiently.  
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5.3.2. MODEL OUTPUTS

5.3.2.1. Attribute performance results 

Overall value function results may be viewed either as cumulative probability 

distributions or probability density functions.  In this way the response of each 

expansion alternative to the uncertainties specified previously could be viewed 

relative to the other alternatives.  This approach is equivalent to a robustness analysis, 

illustrating how each alternative performs under a range of possible futures (defined 

by the technical empirical uncertainties in this case study).  This is illustrated below 

for a subset of alternatives generated in the generation phase in chapter 4. 

The performance of each alternative in each attribute can now be examined so as to 

investigate the effect that uncertainty has on the attribute values for each alternative.  

This is illustrated for investment cost using cumulative probability functions: 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.00E+04 2.50E+04 3.00E+04 3.50E+04 4.00E+04 4.50E+04 5.00E+04 5.50E+04 6.00E+04 6.50E+04

Investment cost (Million ZAR)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

BASE ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 ALT8 ALT9 ALT10 ALT11 ALT12

ALT13 ALT14 ALT15 ALT16 ALT17 ALT18 ALT19 ALT20 ALT21 ALT22 ALT23 ALT24

Figure 5-3 Performance results for investment cost 

Figure 5-3 illustrates the possible ranges for investment cost in each alternative power 

expansion plan given the uncertainty distributions for each technology (see Table 4-11 

in chapter 4 appendix A for the short term investment summary of each alternative).  

It can be observed that some alternatives have more uncertainty in their investment 

cost than others (illustrated by a wider spread in the cumulative distribution function).  

This information is available for all attributes defined in the model before they 
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become aggregated into an overall value function representing the DM preferences.  

In this way the likely ranges of all attributes in each FEA can be examined, 

individually or in an aggregated form, in terms of robustness to the uncertainties 

involved.  Comparing the performance ranges of alternatives to one another is 

equivalent to a continuous evaluation of uncertainty (where performance ranges are 

compared rather than discrete points).  This type of analysis is useful when evaluating 

the robustness of alternatives as the sensitivity of each alternative to uncertainty can 

be seen.  This may be particularly useful for illustrating the effects that particular 

uncertainties of interest may have on the performance of preferred alternatives (see 

section (5.3.2.2 and 5.3.2.3).  

The partial value functions were then combined into an overall value score as 

described in section 5.3.1.3.  The overall value score could also be viewed in the same 

way as Figure 5-3.  This is demonstrated in Figure 5-4 below. 
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Figure 5-4 Overall value function results at a relative cost weighting of 0.28 

Stochastic dominance (Hadar and Russell, 1969; Whitmore, 1970) is a tool that is 

used to evaluate the dominance of one alternative over another over a range of 

samples.  First order stochastic dominance occurs when one alternative outperforms 

another alternative at every level of probability (in terms of Figure 5-4 above, ALT 15 
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outperforms BASE at every level of probability, i.e. the lines do not cross).  In 

graphical terms second order stochastic dominance occurs when one alternative 

outperforms another alternative over a specific range of probability values but the 

graphs intersect and then performance in reversed.  The degree of dominance is then 

determined by the ratio of the areas under each graph.  This would be the more 

common case of stochastic dominance for closely competing alternatives as their 

graphs would overlap.   For a more detailed explanation of first and second order 

stochastic dominance see Hadar and Russell, 1969 as well as Whitmore, 1970 for an 

explanation on third order stochastic dominance.   While Figure 5-4 and the concept 

of stochastic dominance may be useful to determine to what extent alternatives 

overlap and therefore obtain an indication of their distinguishability, it would be more 

appropriate to examine each future discretely as opposed to viewing the overall results 

in a continuous manner (see section 5.3.2.3 below for full explanation).  

It is interesting at this point to illustrate the significant effect that the inter-criteria 

preference information (weighting) has on the overall value score. 

5.3.2.2. Inter-criterion preference results 
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Figure 5-5 Excerpt of weighting sensitivity diagram to cost weighting  
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The effect that inter-criteria preference information has on the rank order of 

alternatives is illustrated in Figure 5-5 as a function of relative cost weighting.  The 

ratio of the weighting of the other criteria relative to each other is kept equal, while 

the cost weighting is varied through its full range.  The lower the ranking (Rank 1 is 

best), the higher the overall value score and therefore the more preferred an 

alternative is according to the preference information.   Figure 5-5 demonstrates how 

the rank order changes significantly as the relative weight of cost changes in the 

overall value score.  The effect of each of the other criterion weights can be generated 

in a similar manner (see appendix B for weighting sensitivity diagrams for non-cost 

criteria).  This view differs from the SMAA methodology (Lahdelma et al., 1998; 

Lahdelma and Salminen, 2006) (see section 2.4.2 of chapter 2 for a more detailed 

description of the SMAA methodology) in that the full range of weights is examined 

for all the alternatives rather that focusing on only the alternatives that achieve the 

first rank.   

This diagram can be useful in eliciting the sensitivity of the rank order to DM 

preference information.  It can be seen that for certain ranges in relative cost weighing 

(e.g. 0.0-0.24) the lower rank order is relatively stable for the preferred alternatives 

while in other ranges (e.g. 0.25-0.33) the lower rank order is very sensitive to DM 

preference information.  The unstable sections of the sensitivity diagram can be 

interpreted as the weight ranges for which alternatives have similar performance 

scores for that particular attribute and therefore small changes in weighting result in 

changes in the rank order.  As the relative DM preferences change, so do the ranks of 

the alternatives. This is due to the fact that performance values across the attributes 

differ due to the technology mix of each of expansion alternative.   

Once an initial set of preference information has been obtained from stakeholders by 

guiding them through a weighting procedure (such as described in section 5.3.1.3) it 

can be established where on the weighting sensitivity diagram their preferences lie 

and therefore how sensitive the overall results will be to the uncertainty in their 

preference choices.  It can then be asked: “By how much would preference have to 

change in order to change the rank order?”  Moving along the bottom of the 

sensitivity diagram (Rank 1), starting at a relative cost weighting of 0.07, ALT 22 is 
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the preferred solution.  ALT 19 becomes the preferred solution at a relative cost 

weighting of about 0.25, ALT 15 becomes the preferred solution at approximately 

0.27, followed by ALT 11 at approximately 0.29.  Of course it could be argued that 

such small changes in relative weightings are virtually impossible to discern from 

stakeholder interaction. The point to be made here is only that such small changes can 

have significant effects in overall ranking, and that demonstrating this to stakeholders 

can result in a more sharpened focus on the complexity of the decision situation – 

which is valuable in itself.  If operating at a point on the sensitivity diagram that is 

close to a transition between different alternatives occupying the preferred rank (e.g. 

0.26), then it can be said that the choice of the preferred alternative is highly sensitive 

to DM preference information and more attention needs to be paid to the differences 

between the competing alternatives at that point on the diagram and the preference 

information given by the DM.   This information should be combined with detailed 

technology data for each of the preferred alternatives (along the “interesting” sections 

of the weighting diagram) to evaluate the degree to which the technology investment 

strategies change as the preferred alternatives change with preference information 

(discussed in more detail in section 5.3.2.4).  The weighting sensitivity diagrams for 

each of the other criteria should be examined to determine the stability or sensitivity 

to DM preferences for each of the decision criterion.    

While this approach helps to integrate the valuation model parameter uncertainty in 

preference information into the decision making process and build confidence in the 

results in relation to that information, it does not explicitly take technical uncertainty 

in the attribute data into account.  This is considered in section 5.3.2.3. 

5.3.2.3. Analysis of uncertainty for discrete futures 

While a continuous evaluation of uncertainty can provide useful information as to the 

likely ranges in attribute performance for each alternative, a discrete evaluation of 

uncertainty, where different future scenarios are specified, and the performance of 

each alternative is evaluated for each future scenario (as discussed in section 2.5 of 

chapter 2) can yield insight into the distinguishability of alternatives for particular and 

specific futures.  This approach is synonymous with typical scenario analysis in 
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energy planning, The value of this type of analysis is that alternatives are compared 

for the same discrete futures, whereas, with a continuous evaluation, alternatives are 

compared over performance ranges, without reference to the individual scenarios that 

constitute those performance ranges.  As an example, using a continuous analysis of 

uncertainty, it is observed that Alternative 3 and BASE overlap in performance for 

certain DM preferences.  This is, however, not observed to nearly the same extent 

when using a discrete analysis of uncertainty as it is shown that the points where 

BASE and Alternative 3 overlap represent different futures (e.g. BASE performs 

badly due to a high gas price, and Alternative 3 performs well due to a low gas price).  

If these alternatives were compared on equivalent futures (e.g. a consistent gas price) 

it would be found that BASE almost always outperforms Alternative 3 (as can be seen 

in Table 5-3). 

Such an exercise was conducted by accessing the overall value scores based on each 

discrete set of input parameters (from the sample of uncertain parameters) and then 

ranking the alternatives for each of those discrete sets of input data individually.   

Each discrete set of input parameters was considered a scenario, with the scenario set 

being made up of all the discrete scenarios representing individual samples of the 

uncertain parameters.  From this data, the frequency at which alternatives obtain a 

given rank considering all the scenarios was calculated.  The credibility6 values 

(probability values based on the sample set) were calculated by determining the 

frequency at which each alternative occupied a given rank.  The frequency at which 

particular alternatives occupy ranks can be used as an indication of the credibility 

associated with the rank order.  This is illustrated in Table 5-2 and Table 5-3 for a 

sample size of 1000 at a relative cost weighting of 0.28 and 0.52 respectively.  These 

relative cost weighting values were chosen to explore the credibility information for 

both a stable and unstable section of the weighting sensitivity diagram, with respect to 

the lower rank order (see Figure 5-5 above). This probabilistic information is 

displayed for all alternatives through the full rank order, based on the specific DM 

preference information considered (as reflected by the weights).  This allows a 

comprehensive view of the performance information (in terms of rank and credibility) 

                                                
6 The concept of credibility has been used within the context of MCDA to describe the confidence that 
can be assigned to a rank order (Roy, 1986).  In the context of this work “credibility values” 
specifically relate to the probability of an alternative achieving a given rank based on the sample set 
used. 
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of alternatives.  A rank of 1 represents the most preferred alternative while a rank of 

25 represents the least preferred alternative for a given set of DM preference 

weightings.   

This methodology has parallels with the reference set and cross confidence intervals 

used in the SMAA methodology except that this methodology is based on the 

credibility levels of all alternatives rather than restricting the analysis to alternatives 

that achieve a rank of 1 alone.  The benefits of doing this become clear when isolating 

a portfolio of preferred alternatives, as focusing only on alternatives that achieve a 

rank of 1 may exclude important alternatives from the portfolio set.  This is 

demonstrated in section 6.3.4 of chapter 6.  It must also be noted that the rank and 

credibility information of each alternative is based on a given set of DM preferences 

rather than on the central weighting vectors as in the SMAA methodology.   

Table 5-2 illustrates that, for a relative cost weighting of 0.28, ALT 15 is the preferred 

alternative with a credibility level of 45 % for obtaining Rank 1, while ALT 11 ranks 

second best with a credibility level of more than 80 % for obtaining a rank of 2 or 

better (373/1000 for Rank 1 + 428/1000 for Rank 2). These ranks are followed by 

ALT 19 with a credibility level of 52.5 % for obtaining a rank of 3 or better (0/1000 

for Rank 1 + 6/1000 for Rank 2 + 519/1000 for Rank 3).  No single alternative 

emerges as the dominant solution with a high level of credibility (e.g. greater than 80 

%) using this set of DM preferences and therefore a portfolio of alternatives may need 

to be isolated for further analysis (see section 3.2.4), such that a final decision can be 

made.  The minimum credibility level that the preferred alternative would need to 

achieve would need to be defined by the DM.  This value would be influenced by the 

DM’s risk perception.  However this being said, it is recommended that a portfolio of 

preferred alternatives be isolated such that a detailed analysis can be done to gain 

more insight into the preferred alternatives (this is done below).   

  

Table 5-3 illustrates that, for a relative cost weighting of 0.52, ALT 4 is the preferred 

alternative with a credibility level of almost 70 % for obtaining Rank 1 while ALT 2 

ranks second best with a credibility level of almost 50 % for obtaining a rank of 2 or 

better (195/1000 for Rank 1 + 303/1000 for Rank 2). These are followed by ALT 1, 

with a credibility level of 69 % for obtaining a rank of 3 or better (0/1000 for Rank 1 

+ 357/1000 for Rank 2 + 333/1000 for Rank 3).  Although ALT 4 is the preferred 
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alternative for almost 70 % of the discrete samples, this credibility level may not be 

high enough for the DM to confidently make a decision with this information alone.  

Therefore even in this situation it is suggested that a portfolio of alternatives be 

selected that satisfy minimum levels of performance and credibility levels, such that a 

small set of preferred alternatives may be compared on a more detailed technology 

investment based level, and a final decision can be made (discussed in more detail in 

section 5.3.2.4).  

Table 5-2 and Table 5-3 can also be used to elicit the regret associated with each 

alternative.  If for instance an alternative were to rank well for most of the samples but 

very poorly for some, it would indicate that that alternative was potentially risky for 

some futures although it performed well for most others (e.g. ALT 14 in Table 5-2 

which achieved a rank of 1 for over 14 % of the samples but also ranked 10th for more 

than 30 % of the samples).  The DM’s attitude towards regret would be integrated into 

the process of isolating a portfolio of preferred alternatives by defining minimum 

levels of performance (in terms of rank or overall value score) within a specified level 

of credibility (this is discussed and demonstrated after Tables 5-2 and 5-3). 

. 
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Table 5-2 Frequency table for overall rank at a relative cost weighting of 0.28 using a sample size of 1000 

BASE ALT 
1 

ALT 
2 

ALT 
3 

ALT 
4 

ALT 
5 

ALT 
6 

ALT 
7 

ALT 
8 

ALT 
9 

ALT 
10 

ALT 
11 

ALT 
12 

ALT 
13 

ALT 
14 

ALT 
15 

ALT 
16 

ALT 
17 

ALT 
18 

ALT 
19 

ALT 
20 

ALT 
21 

ALT 
22 

ALT 
23 

ALT 
24 

1 0 0 0 0 0 0 0 0 15 14 0 373 0 0 145 450 0 0 0 0 3 0 0 0 0 
2 0 0 0 0 0 0 0 0 60 41 0 428 0 0 43 414 0 0 0 6 6 1 0 0 1 
3 0 0 0 0 0 0 0 1 160 110 0 82 0 0 48 48 0 0 0 519 29 3 0 0 0 
4 0 0 0 0 0 0 0 3 208 115 0 66 0 0 55 39 0 0 0 63 83 6 360 0 2 
5 0 0 0 0 0 0 0 4 153 157 0 31 0 1 81 41 0 0 0 102 236 23 75 96 0 
6 0 0 0 0 2 6 1 32 94 98 0 14 0 0 63 4 0 0 0 126 282 138 92 47 1 
7 0 0 0 0 26 14 0 10 95 88 0 3 0 3 32 2 0 0 0 82 255 205 93 92 0 
8 0 0 0 0 16 19 1 20 177 96 0 3 0 5 63 0 0 0 0 50 74 282 117 69 8 
9 0 0 3 0 32 25 5 18 36 250 0 0 0 10 88 0 0 0 0 17 6 245 132 108 25 
10 0 0 22 0 69 111 8 33 2 30 0 0 0 9 314 1 0 0 0 10 10 26 26 259 70 
11 0 2 37 0 124 333 12 55 0 1 0 0 0 8 22 1 0 0 0 8 5 25 22 75 270 
12 0 1 122 0 356 251 11 72 0 0 0 0 0 8 31 0 0 0 0 4 5 17 31 29 62 
13 0 7 207 0 298 151 24 91 0 0 0 0 0 19 15 0 0 0 0 4 2 10 10 34 128 
14 0 90 247 0 77 79 49 191 0 0 0 0 1 25 0 0 0 0 0 6 4 4 11 48 168 
15 0 297 194 0 0 9 104 211 0 0 0 0 0 48 0 0 0 0 0 3 0 10 15 10 99 
16 0 336 59 0 0 2 194 259 0 0 0 0 3 48 0 0 0 0 0 0 0 5 7 37 50 
17 0 177 67 0 0 0 591 0 0 0 0 0 4 45 0 0 0 0 0 0 0 0 7 27 82 
18 0 90 42 0 0 0 0 0 0 0 0 0 14 744 0 0 0 27 0 0 0 0 2 48 33 
19 1 0 0 0 0 0 0 0 0 0 0 0 624 27 0 0 0 328 0 0 0 0 0 19 1 
20 13 0 0 0 0 0 0 0 0 0 0 0 340 0 0 0 0 645 0 0 0 0 0 2 0 
21 244 0 0 0 0 0 0 0 0 0 1 0 13 0 0 0 0 0 742 0 0 0 0 0 0 
22 742 0 0 0 0 0 0 0 0 0 72 0 1 0 0 0 0 0 185 0 0 0 0 0 0 
23 0 0 0 4 0 0 0 0 0 0 927 0 0 0 0 0 10 0 59 0 0 0 0 0 0 
24 0 0 0 711 0 0 0 0 0 0 0 0 0 0 0 0 282 0 7 0 0 0 0 0 0 
25 0 0 0 285 0 0 0 0 0 0 0 0 0 0 0 0 708 0 7 0 0 0 0 0 0 
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Table 5-3 Frequency table for overall rank at a relative cost weighting of 0.52 using a sample size of 1000 

BASE ALT 
1 

ALT 
2 

ALT 
3 

ALT 
4 

ALT 
5 

ALT 
6 

ALT 
7 

ALT 
8 

ALT 
9 

ALT 
10 

ALT 
11 

ALT 
12 

ALT 
13 

ALT 
14 

ALT 
15 

ALT 
16 

ALT 
17 

ALT 
18 

ALT 
19 

ALT 
20 

ALT 
21 

ALT 
22 

ALT 
23 

ALT 
24 

1 0 0 195 0 699 0 0 0 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 357 303 0 200 0 0 0 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 333 398 0 101 0 0 0 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 310 104 0 0 59 10 0 517 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 896 31 5 51 16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 37 415 28 13 507 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 8 434 385 5 88 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 102 495 0 389 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0
9 556 0 0 0 0 0 8 87 0 0 0 349 0 0 0 0 0 0 0 0 0 0 0 0 0
10 441 0 0 7 0 0 0 0 0 0 0 549 0 0 0 3 0 0 0 0 0 0 0 0 0
11 3 0 0 841 0 0 0 0 0 0 0 7 0 0 0 149 0 0 0 0 0 0 0 0 0
12 0 0 0 152 0 0 0 0 0 0 0 0 3 9 308 528 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 22 59 683 236 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 569 0 78 318 9 26 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 144 0 226 575 0 55 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 287 0 671 39 0 3 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 984 0 12 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 493 12 414 81 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 499 4 281 216 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 211 691 94 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 0 906 5 25 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 678 309 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 317 666 6 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 994 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 



Univ
ers

ity
 of

 C
ap

e T
ow

n

130

Creating a portfolio of preferred alternatives 

The above approach allows a portfolio of preferred alternatives to be isolated from the 

larger set.  This set should satisfy a minimum level of performance (in terms of rank 

and/or overall value score) within a specified level of credibility.  The approach 

proposed here allows the DM to define acceptable levels of risk or regret by being 

able to specify the performance and credibility values that alternatives must achieve to 

become part of the portfolio.  If for example, it was said that the portfolio must 

contain only alternatives that are expected to obtain a rank of 3rd or better within a 90 

% credibility interval, only ALT 15 would satisfy this criterion (with a credibility 

level of 91.2 %) using a relative cost weighting of 0.28 and only ALT 4 would satisfy 

this criterion (with a credibility level of 100 %) using a relative cost weighting of 

0.52.  If however the confidence interval was dropped to 85 %, then the portfolio 

would include ALT 15 and ALT 11 for a relative cost weighting of 0.28 and ALT 4 

and ALT 2 for a relative cost weighting of 0.52.   

The performance and credibility criteria used to isolate preferred alternatives from the 

larger set need to be defined such that a sufficient number of alternatives are included 

in the set to allow for comparison, but not to confound the decision making process 

and overwhelm the DM. This choice depends on the number of alternatives that are 

competing for the top rank positions.  In some cases, as demonstrated above, only one 

or two alternatives compete for the top rank positions with relatively high credibility 

levels; however there may be situations where many more alternatives compete, and 

therefore the values of the isolation criteria need to be more stringent to reduce the 

number of alternatives entering the portfolio set. 

  

New alternatives can enter the preferred set of solutions by relaxing performance 

levels (in terms of rank or overall value score) and credibility levels individually.  The 

SMAA methodology develops reference sets based on the confidence of alternatives 

being preferred (i.e. rank best) only.  The additional freedoms of allowing alternatives 

that achieve ranks of below 1 give the DM the opportunity to differentiate between 

performance and credibility and to explore the effect that each have on the solution set 

individually.   In this way a preferred set of solutions can be isolated from a larger set 

that would satisfy minimum performance characteristics within desired credibility 

intervals, thereby integrating technical empirical uncertainty into the multi-objective 
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decision problem for a given set of DM preferences (once the sensitivity of the DM 

preferences has been evaluated using the weighting sensitivity diagrams).  The 

frequency values (Table 5-2 and Table 5-3) should be re-examined at this point to 

elicit the potential regret (in terms of overall rank) associated with each of the 

preferred alternatives as outlined above.  It may also be valuable to refer back to the 

performance results of the preferred alternatives at this point (as illustrated in Figure 

5-3).  This would enable the analyst to determine the likely ranges of individual 

attributes in each of the alternatives under consideration.   

One of the advantages of this approach is that the portfolio set can be updated in real 

time once the frequency information has been generated.  This allows for significant 

stakeholder interaction in the process of isolating alternatives as well as the 

opportunity for stakeholders to test different performance and credibility criteria, 

thereby increasing stakeholder confidence in the preferred alternatives. 

5.3.2.4. Detailed analysis of investment plans 

For this case study, each alternative represents an investment strategy spanning a time 

horizon of twenty years.  DMs may be most interested in the initial steps that need to 

be taken in the short term to ensure that demand will be met, given their objectives, 

their current preferences and view of the uncertainties involved.  This implies that 

once a set of preferred alternatives has been identified (based on the attribute 

performance scores of the alternatives over the entire time horizon), it is important to 

establish the similarities and differences between the alternatives such that the DM 

can understand the implications of choices in terms of the real actions that need to be 

initiated (in this case, investment into new technologies).  This can be done by 

examining the short term investment strategies in terms of their specified technologies 

types and capacities for the preferred alternatives.  This will be demonstrated for two 

values of relative cost weighting, representing different DM preferences and different 

sections of the weighting diagram (Figure 5-5 above).  The short term investment 

strategies of all alternatives can be found in Table 4-11 in chapter 4 appendix 3. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

132

Table 5-4 New short term capacity investment7 (in MW) in selected technologies for preferred 
expansion alternatives 

  

Coal 

(pf) 

Nuclear 

(ALWR) 

Nuclear 

(PBMR) OCGT 

Pumped 

storage FBC 

CCGT 

(pipe) 

CCGT 

(LNG) Wind1 Wind2 Wind3

ALT 15 0 2493 3520 884 0 0 774 9654 987 100 50 

ALT 11 1441 1555 3080 1273 0 0 774 9506 565 100 50 

It can be seen from Table 5-4 that at a relative cost weighting of 0.28 both the 

preferred alternatives ALT 15 and ALT 11 both invest mainly in gas plants (combined 

cycle gas turbines (CCGT) using liquefied natural gas (LNG) and some pipeline gas) 

as well as nuclear plants (both advanced light water reactors (ALWR) and pebble bed 

modular reactors (PBMR)).  The main differences between the alternatives are that 

ALT 15 invests in more ALWR, CCGT, PBMR and wind than ALT 11, while ALT 

11 invests in a coal fired pulverised fuel (pf) station as well as investing in slightly 

more open cycle gas turbines (OCGTs).  It also invests in slightly more capacity 

(about 120 MW) and therefore has a slightly higher reserve margin.  The resulting 

attribute performance information (in terms of partial value scores) can be seen in 

Table 5-5 below: 

Table 5-5 Mean partial value score results for preferred alternatives  

Alternative Cost CO2-eq SO2-eq 

Water 

consumption Overall value 

Credibility level of 

attaining preferred 

rank 

Weighting 0.28 0.24 0.24 0.24 1.000  

ALT 15 0.60 0.60 0.71 0.57 0.62 45.0 % 

ALT 11 0.70 0.52 0.68 0.56 0.62 37.3 % 

ALT 15 and ALT 11 performed similarly in terms of their partial value scores (where 

a score of “1” is best and “0” is worst) for SO2-eq emissions and water consumption.  

                                                
7 It must be noted that the model used in chapter 4 to generate the alternatives used linear 
programming, assuming all variables to be continuous rather than using mixed integer linear 
programming.  The work done in chapter 7 extends this analysis such that investment would occur in 
technologically consistent blocks rather than continuously.  This was not done at the time due to the 
inability to use stochastic programming and MILP simultaneously in MARKAL.  This was NOT seen 
as a shortcoming in demonstrating the methodology presented here. 
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ALT 15 performed worse in terms of cost and better in terms of CO2-eq  emissions 

than ALT 11 resulting in the overall value function scores being the same (to 2 

significant figures).   These performance differences can be attributed to the levels of 

investment into the previously specified technologies.  Ultimately the choice of a 

preferred alternative, given DM preferences, comes down to a trade-off between 

investing in more nuclear, gas and wind (ALT 15) at a slightly higher price resulting 

in better performance in terms of CO2 EQ emissions or investing in a coal fired station 

and some more OCGTs and less nuclear, CCGT and wind, at a slightly lower price 

but with higher CO2EQ emissions.    

This example demonstrates that decisions relating to technology investment may need 

to be made even within a preferred set of alternatives with similar overall value scores 

and similar rank and credibility information.  In a case such as this, the stakeholders 

would have to re-evaluate their preferences in relation to the specific trade-offs 

between the technologies at hand such that a preferred alternative can be identified. 

Table 5-6 New short term capacity investment (in MW) in selected technologies for preferred 
expansion alternatives (Wcost=0.52) 

  

Coal 

(pf) 

Nuclear 

(ALWR) 

Nuclear 

(PBMR) OCGT 

Pumped 

storage FBC 

CCGT 

(pipe) 

CCGT 

(LNG) Wind1 Wind2 Wind3

ALT 4 4840 0 440 1561 0 2796 774 6945 714 100 50 

ALT 2 5532 0 440 1719 0 2796 774 6287 538 100 50 

At a relative cost weighting of 0.52 both the preferred alternatives (ALT 4 and ALT 

2) invest in significant amounts of coal stations (both pf stations and fluidised bed 

combustion (FBC) stations) as well as CCGT, OCGT, wind and small amounts of 

nuclear (PBMR).  ALT 4 invests in slightly less coal (pf), OCGT and slightly more 

CCGT (LNG) and wind than ALT 2. 

Table 5-7 Mean partial value score results for preferred alternatives (Wcost = 0.52) 

Alternative Cost CO2-eq SO2-eq 

Water 

consumption Overall value 

Credibility level of 

attaining preferred 

rank 

Weighting 0.52 0.16 0.16 0.16 1.000  

ALT 4 0.88 0.26 0.51 0.66 0.69 69.9 % 

ALT 2 0.88 0.22 0.52 0.68 0.69 19.5 % 
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The partial value scores are very similar for the preferred alternatives, both 

performing well in terms of cost (this would be expected with a relative cost 

weighting of 0.52), quite poorly in terms of CO2EQ emissions (due mainly to the 

increased investment into coal fired power stations) and average performance in SO2-

eq emissions and water consumption.  This results in ALT 4 obtaining the same 

overall value score (to 2 significant figures) as ALT 2 using this set of DM preference 

information.   

Using a different set of DM preferences it can be seen that it is possible that the initial 

short term technology investment strategies can be so similar for different alternatives 

in a portfolio of preferred alternatives that the DM can proceed with the alternative 

that obtained the highest performance and credibility scores without revisiting their 

initial preference statements. 

In this case, any hesitancy from the DM in choosing one preferred alternative over 

another based on insufficient credibility information (69.9 % credibility level of ALT 

4 being the preferred alternative) can be easily countered. The short term technology 

investment data illustrates how both preferred alternatives invest in the same 

technologies, with only small differences in the capacities of those investments.  The 

partial value scores also highlight the differences between the attribute performance 

values for the considered alternatives.  This stresses the importance of evaluating 

preferred alternatives on the basis of technology investment, even after rank order and 

credibility levels have been established, in order to obtain a deeper understanding of 

the real investment decisions involved. 

This case study has also highlighted how DM preference information can result in 

different alternatives becoming part of the preferred set or portfolio (ALT 15 and ALT 

11 for a Wcost of 0.28 and ALT 4 and ALT 2 for a Wcost of 0.52) and how different 

the technology investment strategies and decisions can be for those portfolios and 

alternatives at the different preference values. 
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5.4. CONCLUSIONS

A MAVT approach was coupled with a sensitivity/robustness approach to address 

some of the uncertainties inherent in power expansion modelling.  This methodology 

can be used to explore the robustness and sensitivity of each power expansion 

alternative to different types of uncertainty at various levels of aggregation, from 

partial value functions representing individual attributes, to the overall value function 

which represents the DM preferences to the criteria chosen, through a continuous 

analysis of uncertainty.   

The weighting sensitivity diagrams representing inter-criterion preferences display 

valuable information regarding the stability of the rank order, given a range of 

preference weightings for each of the decision criteria.  This continuous analysis of 

uncertainty can be used to increase stakeholder confidence in the results and to 

determine the sensitivity of the rank order to DM preference information. 

Frequency tables based on the comparison of each alternative across a sample of 

discrete futures yield information regarding the credibility of alternatives in the rank 

with respect to the technical empirical uncertainties considered.  While a continuous 

evaluation of uncertainty can provide useful information as to the likely ranges in 

attribute performance for each alternative, a discrete evaluation of uncertainty can 

yield insight into the distinguishability of alternatives for particular and specific 

futures.   

This approach can also be used to elicit the regret associated with each alternative by 

evaluating the spread of each alternative across the rank order.  It can then be used to 

isolate portfolios of alternatives with specified minimum levels of performance in 

terms of rank or attribute performance and credibility levels such that the DM can 

differentiate between performance and credibility and to explore the effect that each 

have on the solution set. 

A more detailed analysis of the reduced solution set examined short term technology 

investment details and the attribute performance information.  This analysis provided 

additional insight into the decision problem in terms of the actual technology choices 
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being made, which could then be related back to real life actions.  More specifically, 

the case study highlighted that decisions relating to technology investment may need 

to be made even within a preferred set of alternatives with similar overall value scores 

and similar rank and credibility information.  In a case such as this, the stakeholders 

would have to re-evaluate their preferences in relation to the specific trade-offs at 

hand such that a preferred alternate can be identified.  Conversely, it was also 

demonstrated that it is possible for initial short term investment strategies (for 

different alternatives in a portfolio of preferred alternatives) to be so similar as to not 

require any major decision in differentiating the technologies for implementation.  

The effect that DM preference information has on the alternatives that enter the 

preferred portfolio set was also highlighted in the case study. 
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5.5. APPENDIX B 
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Figure 5-6 Excerpt of sensitivity diagram to CO2EQ weighting 
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Figure 5-7 Excerpt of sensitivity diagram to SO2EQ weighting 
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Figure 5-8 Excerpt of sensitivity diagram to H2O weighting 
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Table 5-8 Mean partial value score results for all alternatives 

Total cost Total CO2-eq Total SO2-eq 
Water 

consumption 
BASE 0.90 0.25 0.51 0.38 
ALT1 0.89 0.22 0.49 0.68 
ALT2 0.88 0.22 0.52 0.68 
ALT3 0.88 0.43 0.56 0.06 
ALT4 0.88 0.26 0.51 0.66 
ALT5 0.85 0.24 0.52 0.71 
ALT6 0.85 0.23 0.47 0.73 
ALT7 0.83 0.26 0.48 0.74 
ALT8 0.83 0.46 0.59 0.53 
ALT9 0.79 0.33 0.56 0.72 
ALT10 0.76 0.56 0.61 0.07 
ALT11 0.70 0.52 0.68 0.56 
ALT12 0.65 0.25 0.45 0.86 
ALT13 0.63 0.32 0.47 0.86 
ALT14 0.62 0.61 0.60 0.60 
ALT15 0.60 0.60 0.71 0.57 
ALT16 0.58 0.66 0.65 0.09 
ALT17 0.55 0.24 0.51 0.91 
ALT18 0.49 0.25 0.47 0.95 
ALT19 0.30 0.73 0.78 0.69 
ALT20 0.27 0.76 0.76 0.71 
ALT21 0.22 0.77 0.77 0.73 
ALT22 0.21 0.77 0.80 0.73 
ALT23 0.18 0.77 0.81 0.71 
ALT24 0.12 0.81 0.72 0.79 
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Table 5-9 Summary table for investment cost data for technologies and alternatives (kZAR) 

  Coal (pf) 
Nuclear 
(ALWR) 

Nuclear 
(PBMR) OCGT 

Pumped 
storage FBC 

CCGT 
(pipe) 

CCGT 
(LNG) Wind1 Wind2 Wind3 

Small 
landfill gas 

Medium 
landfill gas 

Large 
landfill gas 

Hydro 
modifications and 
refurbishments 

BASE 1.032E+07 0 1.112E+06 2.046E+06 3.504E+05 7.947E+06 8.658E+05 1.197E+06 1.775E+05 6.984E+04 6.894E+04 3.206E+04 3.420E+04 6.114E+03 2.065E+06 

ALT1 1.036E+07 0 1.112E+06 2.090E+06 1.838E+05 7.990E+06 8.658E+05 1.194E+06 1.773E+05 1.287E+05 6.894E+04 3.206E+04 3.420E+04 6.114E+03 2.043E+06 

ALT2 1.191E+07 0 1.194E+06 2.071E+06 0 5.823E+06 8.658E+05 1.391E+06 1.940E+05 1.315E+05 7.047E+04 3.393E+04 4.068E+04 7.273E+03 2.314E+06 

ALT3 9.010E+06 3.208E+05 1.112E+06 1.913E+06 3.298E+05 7.947E+06 8.658E+05 1.402E+06 1.942E+05 1.322E+05 7.647E+04 3.206E+04 3.420E+04 6.114E+03 2.426E+06 

ALT4 8.856E+06 3.081E+05 1.112E+06 1.817E+06 0 8.083E+06 8.658E+05 1.580E+06 2.361E+05 1.322E+05 7.647E+04 3.206E+04 4.068E+04 7.273E+03 2.470E+06 

ALT5 1.110E+07 0 1.879E+06 1.242E+06 6.397E+03 6.942E+06 1.062E+06 1.688E+06 2.488E+05 1.260E+05 6.894E+04 7.886E+04 8.413E+04 1.504E+04 2.291E+06 

ALT6 1.164E+07 0 1.112E+06 1.324E+06 2.434E+02 1.103E+07 8.581E+05 1.125E+06 1.073E+05 9.935E+04 6.620E+04 3.206E+04 3.420E+04 8.078E+03 1.951E+06 

ALT7 8.927E+06 5.740E+04 2.634E+06 1.200E+06 0 1.128E+07 8.648E+05 1.494E+06 1.089E+05 1.176E+05 6.575E+04 7.886E+04 8.413E+04 1.504E+04 2.258E+06 

ALT8 4.652E+06 4.864E+05 8.140E+06 1.735E+06 0 5.673E+06 1.378E+06 1.641E+06 2.232E+05 1.282E+05 7.047E+04 3.814E+04 4.068E+04 7.273E+03 2.523E+06 

ALT9 4.355E+06 3.066E+06 8.314E+06 7.931E+05 2.874E+04 5.902E+06 1.482E+06 1.725E+06 3.699E+05 1.294E+05 7.200E+04 7.886E+04 8.413E+04 1.504E+04 2.346E+06 

ALT10 0 5.826E+06 9.885E+06 6.586E+05 1.344E+04 8.134E+06 8.658E+05 1.765E+06 4.987E+05 1.407E+05 7.244E+04 7.886E+04 8.413E+04 1.504E+04 2.763E+06 

ALT11 2.483E+06 6.400E+06 8.982E+06 1.153E+06 0 0 1.508E+06 3.209E+06 2.258E+05 1.438E+05 9.100E+04 7.886E+04 8.413E+04 1.504E+04 2.603E+06 

ALT12 1.997E+07 0 1.112E+06 1.147E+06 3.038E+04 1.471E+07 8.658E+05 9.106E+05 9.382E+04 1.154E+05 6.302E+04 7.886E+04 8.413E+04 1.504E+04 1.756E+06 

ALT13 1.180E+07 5.783E+04 7.171E+06 5.463E+05 5.719E+04 1.471E+07 8.666E+05 1.944E+06 9.382E+04 1.352E+05 6.927E+04 7.886E+04 8.413E+04 1.504E+04 1.809E+06 

ALT14 0 8.707E+06 1.337E+07 5.463E+05 3.494E+04 1.018E+07 8.798E+05 1.507E+06 5.212E+05 1.407E+05 7.200E+04 7.886E+04 8.413E+04 1.504E+04 2.860E+06 

ALT15 0 9.463E+06 1.337E+07 7.310E+05 0 0 1.385E+06 3.429E+06 4.365E+05 1.471E+05 8.045E+04 7.886E+04 8.413E+04 1.504E+04 2.750E+06 

ALT16 0 1.204E+07 1.337E+07 5.463E+05 3.363E+04 8.327E+06 8.808E+05 1.410E+06 5.412E+05 1.407E+05 7.200E+04 7.886E+04 8.413E+04 1.504E+04 3.015E+06 

ALT17 2.688E+07 0 1.879E+06 5.463E+05 5.975E+04 1.032E+07 8.658E+05 1.513E+06 9.401E+04 1.352E+05 6.927E+04 7.886E+04 8.413E+04 1.504E+04 1.777E+06 

ALT18 2.786E+07 0 1.124E+06 8.482E+05 5.614E+04 1.471E+07 8.658E+05 1.155E+06 6.408E+04 1.194E+05 6.927E+04 7.886E+04 8.413E+04 1.504E+04 1.754E+06 

ALT19 0 1.851E+07 1.337E+07 0 1.195E+05 0 2.967E+06 4.001E+06 1.951E+05 1.407E+05 7.200E+04 7.886E+04 8.413E+04 1.504E+04 2.393E+06 

ALT20 0 2.473E+07 1.337E+07 0 2.891E+04 2.925E+06 2.967E+06 1.821E+06 5.283E+05 1.352E+05 7.200E+04 7.886E+04 8.413E+04 1.504E+04 2.525E+06 

ALT21 0 2.721E+07 1.337E+07 0 5.975E+04 2.925E+06 2.967E+06 1.890E+06 1.769E+05 1.352E+05 7.200E+04 7.886E+04 8.413E+04 1.504E+04 2.334E+06 

ALT22 0 2.473E+07 1.337E+07 0 5.975E+04 0 2.967E+06 3.499E+06 1.685E+05 1.335E+04 7.200E+04 7.886E+04 8.413E+04 1.504E+04 2.206E+06 

ALT23 0 2.533E+07 1.337E+07 0 5.975E+04 0 2.967E+06 3.797E+06 7.082E+04 1.335E+04 7.200E+04 7.886E+04 8.413E+04 1.504E+04 1.705E+06 

ALT24 0 2.932E+07 1.395E+07 0 5.975E+04 8.411E+06 2.967E+06 1.238E+06 1.455E+05 9.407E+03 1.860E+05 7.886E+04 8.413E+04 1.504E+04 2.298E+06 
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Table 5-10 Summary table for O&M cost data for technologies and alternatives (kZAR) 

  Coal (pf) 
Nuclear 
(ALWR) 

Nuclear 
(PBMR) OCGT 

Pumped 
storage FBC 

CCGT 
(pipe) 

CCGT 
(LNG) Wind1 Wind2 Wind3 

Small 
landfill gas

Medium 
landfill gas

Large 
landfill gas

Hydro 
modifications 
and 
refurbishments

Existing 
system 

BASE 1.284E+06 0 1.356E+05 4.552E+05 4.931E+04 2.161E+06 3.522E+05 3.402E+05 1.012E+05 3.981E+04 3.930E+04 2.126E+04 2.342E+04 4.212E+03 8.602E+05 1.041E+08

ALT1 1.291E+06 0 1.356E+05 4.644E+05 2.586E+04 2.175E+06 3.522E+05 3.404E+05 1.011E+05 7.338E+04 3.930E+04 2.383E+04 2.642E+04 4.784E+03 8.518E+05 1.041E+08

ALT2 1.594E+06 0 1.482E+05 4.522E+05 0 1.513E+06 3.522E+05 4.169E+05 1.106E+05 7.496E+04 4.017E+04 5.717E+04 7.332E+04 1.367E+04 9.682E+05 1.041E+08

ALT3 1.153E+06 9.448E+04 1.356E+05 4.279E+05 4.641E+04 2.162E+06 3.522E+05 4.041E+05 1.107E+05 7.535E+04 4.359E+04 5.401E+04 6.163E+04 1.149E+04 1.017E+06 1.041E+08

ALT4 1.130E+06 9.075E+04 1.356E+05 3.941E+05 0 2.203E+06 3.522E+05 4.804E+05 1.346E+05 7.535E+04 4.359E+04 5.401E+04 7.332E+04 1.367E+04 1.053E+06 1.041E+08

ALT5 1.510E+06 0 2.537E+05 2.560E+05 9.002E+02 1.855E+06 4.386E+05 5.184E+05 1.418E+05 7.184E+04 3.930E+04 1.329E+05 1.516E+05 2.826E+04 1.074E+06 1.040E+08

ALT6 1.503E+06 0 1.356E+05 2.714E+05 3.425E+01 3.102E+06 3.488E+05 2.954E+05 6.116E+04 5.663E+04 3.774E+04 5.401E+04 6.163E+04 1.518E+04 7.895E+05 1.039E+08

ALT7 1.205E+06 1.691E+04 3.094E+05 2.457E+05 0 3.178E+06 3.517E+05 4.260E+05 6.207E+04 6.702E+04 3.748E+04 1.329E+05 1.516E+05 2.826E+04 1.021E+06 1.038E+08

ALT8 6.005E+05 1.433E+05 1.040E+06 3.771E+05 0 1.468E+06 5.783E+05 5.021E+05 1.272E+05 7.306E+04 4.017E+04 6.425E+04 7.332E+04 1.367E+04 1.108E+06 1.041E+08

ALT9 5.812E+05 1.082E+06 1.066E+06 1.637E+05 4.044E+03 1.538E+06 6.241E+05 5.208E+05 2.109E+05 7.377E+04 4.104E+04 1.329E+05 1.516E+05 2.826E+04 1.102E+06 1.039E+08

ALT10 0 1.998E+06 1.237E+06 1.364E+05 1.892E+03 2.218E+06 3.522E+05 5.510E+05 2.843E+05 8.020E+04 4.129E+04 1.329E+05 1.516E+05 2.826E+04 1.252E+06 1.039E+08

ALT11 3.088E+05 2.186E+06 1.134E+06 2.424E+05 0 0 6.353E+05 1.134E+06 1.287E+05 8.194E+04 5.187E+04 1.329E+05 1.516E+05 2.826E+04 1.168E+06 1.040E+08

ALT12 2.829E+06 0 1.356E+05 2.330E+05 4.275E+03 4.225E+06 3.522E+05 2.221E+05 5.348E+04 6.576E+04 3.592E+04 1.329E+05 1.516E+05 2.826E+04 8.668E+05 1.032E+08

ALT13 1.718E+06 1.738E+04 9.261E+05 1.121E+05 8.048E+03 4.225E+06 3.526E+05 6.228E+05 5.348E+04 7.708E+04 3.948E+04 1.329E+05 1.516E+05 2.826E+04 8.867E+05 1.033E+08

ALT14 0 2.997E+06 1.773E+06 1.132E+05 4.917E+03 2.843E+06 3.584E+05 4.415E+05 2.971E+05 8.020E+04 4.104E+04 1.329E+05 1.516E+05 2.826E+04 1.277E+06 1.035E+08

ALT15 0 3.149E+06 1.773E+06 1.517E+05 0 0 5.814E+05 1.230E+06 2.488E+05 8.383E+04 4.586E+04 1.329E+05 1.516E+05 2.826E+04 1.198E+06 1.038E+08

ALT16 0 4.478E+06 1.773E+06 1.132E+05 4.732E+03 2.277E+06 3.588E+05 4.150E+05 3.085E+05 8.020E+04 4.104E+04 1.329E+05 1.516E+05 2.826E+04 1.340E+06 1.035E+08

ALT17 4.086E+06 0 2.537E+05 1.121E+05 8.408E+03 2.884E+06 3.522E+05 4.820E+05 5.358E+04 7.708E+04 3.948E+04 1.329E+05 1.516E+05 2.826E+04 8.721E+05 1.030E+08

ALT18 4.236E+06 0 1.375E+05 1.736E+05 7.900E+03 4.225E+06 3.522E+05 3.354E+05 3.653E+04 6.807E+04 3.948E+04 1.329E+05 1.516E+05 2.826E+04 8.642E+05 1.028E+08

ALT19 0 6.756E+06 1.773E+06 0 1.682E+04 0 1.275E+06 1.481E+06 1.112E+05 8.020E+04 4.104E+04 1.329E+05 1.516E+05 2.826E+04 1.113E+06 1.031E+08

ALT20 0 8.780E+06 1.773E+06 0 4.068E+03 7.646E+05 1.275E+06 6.216E+05 3.011E+05 7.708E+04 4.104E+04 1.329E+05 1.516E+05 2.826E+04 1.202E+06 1.030E+08

ALT21 0 9.511E+06 1.773E+06 0 8.408E+03 7.646E+05 1.275E+06 6.572E+05 1.008E+05 7.708E+04 4.104E+04 1.329E+05 1.516E+05 2.826E+04 1.294E+06 1.029E+08

ALT22 0 8.780E+06 1.773E+06 0 8.408E+03 0 1.275E+06 1.306E+06 9.602E+04 7.610E+03 4.104E+04 1.329E+05 1.516E+05 2.826E+04 1.104E+06 1.030E+08

ALT23 0 8.957E+06 1.773E+06 0 8.408E+03 0 1.275E+06 1.437E+06 4.037E+04 7.610E+03 4.104E+04 1.329E+05 1.516E+05 2.826E+04 1.054E+06 1.029E+08

ALT24 0 1.007E+07 1.828E+06 0 8.408E+03 2.394E+06 1.275E+06 4.142E+05 8.291E+04 5.362E+03 1.060E+05 1.329E+05 1.516E+05 2.826E+04 1.281E+06 1.026E+08
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Table 5-11 Summary table for fuel cost data for alternatives (kZAR) 

  Coal Uranium Uranium PBMR Diesel Duff coal Kudu gas LNG 

BASE 1.107E+08 7.097E+06 1.358E+05 2.767E+05 6.555E+05 1.748E+06 3.004E+06 

ALT1 1.112E+08 7.097E+06 1.358E+05 2.939E+05 6.595E+05 1.748E+06 3.006E+06 

ALT2 1.116E+08 7.097E+06 1.484E+05 1.266E+05 4.590E+05 1.748E+06 3.681E+06 

ALT3 1.112E+08 7.155E+06 1.358E+05 2.781E+05 6.556E+05 1.748E+06 3.568E+06 

ALT4 1.108E+08 7.152E+06 1.358E+05 7.192E+04 6.681E+05 1.748E+06 4.242E+06 

ALT5 1.108E+08 7.097E+06 2.541E+05 6.768E+04 5.626E+05 2.176E+06 4.577E+06 

ALT6 1.103E+08 7.097E+06 1.358E+05 7.551E+04 9.409E+05 1.731E+06 2.608E+06 

ALT7 1.096E+08 7.107E+06 3.099E+05 4.973E+04 9.638E+05 1.745E+06 3.762E+06 

ALT8 1.109E+08 7.185E+06 1.041E+06 6.606E+04 4.452E+05 2.870E+06 4.433E+06 

ALT9 1.091E+08 7.762E+06 1.068E+06 3.660E+04 4.663E+05 3.097E+06 4.598E+06 

ALT10 1.081E+08 8.324E+06 1.239E+06 3.244E+04 6.729E+05 1.748E+06 4.865E+06 

ALT11 1.099E+08 8.440E+06 1.135E+06 4.292E+04 0 3.152E+06 1.002E+07 

ALT12 1.093E+08 7.097E+06 1.358E+05 4.973E+04 1.282E+06 1.748E+06 1.961E+06 

ALT13 1.075E+08 7.107E+06 9.274E+05 8.326E+03 1.282E+06 1.749E+06 5.499E+06 

ALT14 1.067E+08 8.938E+06 1.775E+06 2.926E+04 8.624E+05 1.778E+06 3.898E+06 

ALT15 1.081E+08 9.031E+06 1.775E+06 3.418E+04 0 2.885E+06 1.086E+07 

ALT16 1.059E+08 9.848E+06 1.775E+06 2.926E+04 6.907E+05 1.781E+06 3.664E+06 

ALT17 1.101E+08 7.097E+06 2.541E+05 0 8.746E+05 1.748E+06 4.256E+06 

ALT18 1.092E+08 7.097E+06 1.376E+05 3.923E+04 1.282E+06 1.748E+06 2.961E+06 

ALT19 1.048E+08 1.125E+07 1.775E+06 0 0 6.329E+06 1.308E+07 

ALT20 1.040E+08 1.249E+07 1.775E+06 0 2.319E+05 6.329E+06 5.488E+06 

ALT21 1.035E+08 1.294E+07 1.775E+06 0 2.319E+05 6.329E+06 5.803E+06 

ALT22 1.039E+08 1.249E+07 1.775E+06 0 0 6.329E+06 1.153E+07 

ALT23 1.037E+08 1.260E+07 1.775E+06 0 0 6.329E+06 1.269E+07 

ALT24 1.019E+08 1.329E+07 1.830E+06 0 7.261E+05 6.329E+06 3.657E+06 
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Table 5-12 Summary table for CO2EQ emission data for technologies and alternatives (kton) 

  OCGT FBC CCGT (pipe) 
CCGT 
(LNG) 

Existing 
system Coal (pf) 

BASE 5.332E+01 2.354E+04 2.511E+03 2.697E+03 2.579E+06 5.023E+04 

ALT1 5.774E+01 2.369E+04 2.511E+03 2.699E+03 2.598E+06 5.066E+04 

ALT2 1.728E+01 1.649E+04 2.511E+03 3.305E+03 2.594E+06 6.258E+04 

ALT3 5.234E+01 2.354E+04 2.511E+03 3.204E+03 2.485E+06 4.479E+04 

ALT4 1.059E+01 2.399E+04 2.511E+03 3.809E+03 2.577E+06 4.436E+04 

ALT5 1.060E+01 2.020E+04 3.126E+03 4.110E+03 2.579E+06 5.925E+04 

ALT6 1.167E+01 3.379E+04 2.486E+03 2.342E+03 2.571E+06 5.899E+04 

ALT7 1.069E+01 3.461E+04 2.507E+03 3.377E+03 2.566E+06 4.730E+04 

ALT8 1.130E+01 1.599E+04 4.122E+03 3.980E+03 2.499E+06 2.357E+04 

ALT9 6.727E+00 1.675E+04 4.449E+03 4.128E+03 2.570E+06 2.281E+04 

ALT10 5.472E+00 2.416E+04 2.511E+03 4.368E+03 2.457E+06 0

ALT11 8.633E+00 0 4.528E+03 8.993E+03 2.487E+06 1.212E+04

ALT12 1.069E+01 4.602E+04 2.511E+03 1.761E+03 2.498E+06 1.110E+05 

ALT13 0 4.602E+04 2.513E+03 4.937E+03 2.500E+06 6.742E+04

ALT14 4.512E+00 3.097E+04 2.555E+03 3.500E+03 2.425E+06 0

ALT15 5.996E+00 0 4.144E+03 9.748E+03 2.458E+06 0 

ALT16 4.512E+00 2.480E+04 2.558E+03 3.290E+03 2.408E+06 0

ALT17 0 3.141E+04 2.511E+03 3.821E+03 2.467E+06 1.604E+05

ALT18 7.520E+00 4.602E+04 2.511E+03 2.659E+03 2.442E+06 1.663E+05 

ALT19 0 0 9.092E+03 1.174E+04 2.381E+06 0 

ALT20 0 8.328E+03 9.092E+03 4.927E+03 2.362E+06 0 

ALT21 0 8.328E+03 9.092E+03 5.210E+03 2.352E+06 0 

ALT22 0 0 9.092E+03 1.036E+04 2.361E+06 0 

ALT23 0 0 9.092E+03 1.139E+04 2.356E+06 0 

ALT24 0 2.608E+04 9.092E+03 3.284E+03 2.315E+06 0 
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Table 5-13 Summary table for SO2EQ emission data for technologies and alternatives (kton) 

  OCGT FBC CCGT (pipe) 
CCGT 
(LNG) 

Existing 
system Coal (pf) 

BASE 1.541E-01 4.831E+02 5.943E+00 6.382E+00 1.496E+04 1.873E+02 

ALT1 1.674E-01 4.861E+02 5.943E+00 6.387E+00 1.505E+04 1.889E+02 

ALT2 5.008E-02 3.383E+02 5.943E+00 7.823E+00 1.503E+04 2.333E+02 

ALT3 1.514E-01 4.832E+02 5.943E+00 7.582E+00 1.467E+04 1.670E+02 

ALT4 3.061E-02 4.924E+02 5.943E+00 9.014E+00 1.498E+04 1.654E+02 

ALT5 3.071E-02 4.146E+02 7.399E+00 9.727E+00 1.494E+04 2.209E+02 

ALT6 3.379E-02 6.934E+02 5.885E+00 5.543E+00 1.489E+04 2.199E+02 

ALT7 3.089E-02 7.103E+02 5.935E+00 7.993E+00 1.486E+04 1.764E+02 

ALT8 3.267E-02 3.281E+02 9.758E+00 9.421E+00 1.477E+04 8.787E+01 

ALT9 1.947E-02 3.437E+02 1.053E+01 9.772E+00 1.491E+04 8.505E+01 

ALT10 1.582E-02 4.959E+02 5.943E+00 1.034E+01 1.451E+04 0

ALT11 2.500E-02 0 1.072E+01 2.129E+01 1.470E+04 4.519E+01

ALT12 3.089E-02 9.445E+02 5.943E+00 4.167E+00 1.446E+04 4.139E+02 

ALT13 0 9.445E+02 5.949E+00 1.169E+01 1.448E+04 2.513E+02

ALT14 1.311E-02 6.355E+02 6.047E+00 8.284E+00 1.438E+04 0

ALT15 1.732E-02 0 9.810E+00 2.307E+01 1.455E+04 0 

ALT16 1.311E-02 5.090E+02 6.055E+00 7.786E+00 1.422E+04 0

ALT17 0 6.446E+02 5.943E+00 9.044E+00 1.429E+04 5.980E+02

ALT18 2.181E-02 9.445E+02 5.943E+00 6.293E+00 1.414E+04 6.199E+02 

ALT19 0 0 2.152E+01 2.779E+01 1.409E+04 0 

ALT20 0 1.709E+02 2.152E+01 1.166E+01 1.401E+04 0 

ALT21 0 1.709E+02 2.152E+01 1.233E+01 1.395E+04 0 

ALT22 0 0 2.152E+01 2.451E+01 1.398E+04 0 

ALT23 0 0 2.152E+01 2.696E+01 1.393E+04 0 

ALT24 0 5.351E+02 2.152E+01 7.772E+00 1.373E+04 0 
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Table 5-14 Summary table for water consumption data for technologies and alternatives (kton) 

  OCGT FBC CCGT (pipe) 
Existing 
system Coal (pf) 

BASE 2.511E+02 9.833E+03 2.185E+03 4.287E+06 9.689E+03 

ALT1 2.719E+02 9.893E+03 2.185E+03 3.893E+06 9.772E+03 

ALT2 8.137E+01 6.885E+03 2.185E+03 3.892E+06 1.207E+04 

ALT3 2.465E+02 9.834E+03 2.185E+03 4.708E+06 8.641E+03 

ALT4 4.986E+01 1.002E+04 2.185E+03 3.913E+06 8.557E+03 

ALT5 4.991E+01 8.439E+03 2.720E+03 3.845E+06 1.143E+04 

ALT6 5.497E+01 1.411E+04 2.163E+03 3.820E+06 1.138E+04 

ALT7 5.033E+01 1.446E+04 2.182E+03 3.810E+06 9.124E+03 

ALT8 5.320E+01 6.678E+03 3.587E+03 4.096E+06 4.546E+03 

ALT9 3.168E+01 6.995E+03 3.871E+03 3.842E+06 4.400E+03 

ALT10 2.577E+01 1.009E+04 2.185E+03 4.711E+06 0 

ALT11 4.065E+01 0 3.940E+03 4.067E+06 2.338E+03 

ALT12 5.033E+01 1.922E+04 2.185E+03 3.628E+06 2.142E+04 

ALT13 0 1.922E+04 2.187E+03 3.636E+06 1.300E+04 

ALT14 2.125E+01 1.294E+04 2.223E+03 4.007E+06 0 

ALT15 2.824E+01 0 3.606E+03 4.052E+06 0 

ALT16 2.125E+01 1.036E+04 2.226E+03 4.677E+06 0 

ALT17 0 1.312E+04 2.185E+03 3.559E+06 3.094E+04 

ALT18 3.541E+01 1.922E+04 2.185E+03 3.500E+06 3.207E+04 

ALT19 0 0 7.911E+03 3.887E+06 0 

ALT20 0 3.479E+03 7.911E+03 3.862E+06 0 

ALT21 0 3.479E+03 7.911E+03 3.838E+06 0 

ALT22 0 0 7.911E+03 3.839E+06 0 

ALT23 0 0 7.911E+03 3.864E+06 0 

ALT24 0 1.089E+04 7.911E+03 3.753E+06 0 
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Table 5-15 Probability distribution data 8

Investment cost 

Coal (pf) triangular(0.956,1,1.044) 

Nuclear (ALWR) triangular(0.9126,1,1.0874) 

Nuclear (PBMR) triangular(0.9091,1,1.0909) 

OCGT triangular(0.9436,1,1.0564) 

Pumped storage triangular(1,1,1) 

FBC triangular(0.9546,1,1.0454) 

CCGT (pipe) triangular(0.9696,1,1.0304) 

CCGT (LNG) triangular(0.9659,1,1.0341) 

Wind1 triangular(0.9297,1,1.0703) 

Wind2 triangular(0.9297,1,1.0703) 

Wind3 triangular(0.9297,1,1.0703) 

Small landfill gas triangular(1,1,1) 

Medium landfill gas triangular(1,1,1) 

Large landfill gas triangular(1,1,1) 

Hydro modifications and refurbishments triangular(1,1,1) 

O&M cost 

Coal (pf) triangular(0.7612,1,1.2388) 

Nuclear (ALWR) triangular(0.8666,1,1.1334) 

Nuclear (PBMR) triangular(0.9091,1,1.0909) 

OCGT triangular(0.7606,1,1.2394) 

Pumped storage triangular(1,1,1) 

FBC triangular(0.6072,1,1.3928) 

CCGT (pipe) triangular(0.9166,1,1.0834) 

CCGT (LNG) triangular(0.9181,1,1.0819) 

Wind1 triangular(0.9091,1,1.0909) 

Wind2 triangular(0.9091,1,1.0909) 

Wind3 triangular(0.9091,1,1.0909) 

Small landfill gas triangular(1,1,1) 

Medium landfill gas triangular(1,1,1) 

Large landfill gas triangular(1,1,1) 

Hydro modifications and refurbishments triangular(1,1,1) 

Existing system triangular(1,1,1) 

Fuel cost 

Coal triangular(0.95,1,1.05) 

Uranium triangular(0.95,1,1.05) 

Uranium PBMR triangular(0.95,1,1.05) 

Diesel triangular(0.9,1,1.1) 

Duff coal triangular(0.95,1,1.05) 

Kudu gas triangular(0.95,1,1.05) 

LNG triangular(0.9,1,1.1) 

                                                
8 Triangular distribution (lower, mode, upper)   Uniform distribution (lower, upper) 
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Table 5-15 Probability distribution data cond. 

CO2_eq emissions 

OCGT triangular(0.9,1,1.1) 

FBC triangular(0.643,1,1.643) 

CCGT (pipe) triangular(0.95,1,1.05) 

CCGT (LNG) triangular(0.95,1,1.05) 

Existing system uniform(0.951,1.034) 

Coal (pf) uniform(0.872,1.128) 

SO2_eq emissions 

OCGT triangular(0.9,1,1.1) 

FBC triangular(0.2,1,3.2) 

CCGT (pipe) triangular(0.95,1,1.05) 

CCGT (LNG) triangular(0.95,1,1.05) 

Existing system uniform(0.849,1.122) 

Coal (pf) uniform(0.346,1.654) 

Water consumption 

OCGT triangular(0.9,1,1.1) 

FBC triangular(0.828,1,1.172) 

CCGT (pipe) triangular(0.95,1,1.05) 

Existing system uniform(0.964,1.029) 

Coal (pf) uniform(0.828,1.172) 
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CHAPTER 6      BIASES IN WEIGHT ASSESSMENT AND THE EFFECTS OF 

INTEGRATING TECHNICAL EMPIRICAL UNCERTAINTY INTO THE 

GENERATION PHASE                                                                               

6.1. INTRODUCTION

Chapter 5 focussed on addressing technical empirical uncertainties in the selection 

phase due to the computational, time and data management burden of addressing these 

uncertainties in the generation phase.   

One of the potential limitations of addressing uncertainty in the selection phase is that 

the operational characteristics of the system are not reoptimised for each discrete 

future (which is defined by a sample of the uncertainties involved) as would be the 

case in the actual ESI.  If the operational characteristics of the system were optimised 

for each discrete future, the load factors for individual power stations would be 

reoptimised (within technical and contractual constraints) so as to best meet the 

overall system objectives given each discrete future even though the investment 

strategy would be fixed.   

It was postulated in chapter 5 that as the power expansion alternatives were originally 

generated in an optimisation framework, this caveat would only result a slightly 

pessimistic view of the future.  In other words, the higher end of the uncertainty range 

for each attribute in each alternative could be slightly higher than in reality, as in 

realty each alternative would have been reoptimised to meet the realised future.  As 

some alternatives would be better positioned to adjust to those uncertainties than 

others, it would be possible that changes would occur in the rank order and only an 

indication of that would be captured by doing an analysis of uncertainty in the 

selection phase.   

This chapter will evaluate whether or not there are significant differences in the 

absolute performance of alternatives in terms of their attributes when dealing with 

technical empirical uncertainties in the generation phase as opposed to the selection 

phase.  It will then examine the rank order and frequency information obtained from 
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dealing with technical empirical uncertainties in the generation phase and compares 

that to the rank and frequency information obtained from dealing with technical 

empirical uncertainties in the selection phase.   Finally these differences will be 

analysed in relation to other uncertainties in the system (valuation model parameter 

uncertainty around DM preferences) to determine whether they are in fact significant 

or if they are “drowned out” by uncertainty in DM preferences. 

This chapter will also focus on the normalisation process whereby attribute 

performance values are converted to value function scores in light of comparing the 

two data sets generated by dealing with uncertainty in the generation phase as 

opposed to dealing with uncertainty in the selection phase.  The specific issue of 

weighting bias will be addressed. 

6.2. APPROACH

The aim of this analysis was to evaluate the robustness of the “base case” or least cost 

solution and the 24 other non-dominated solutions that better satisfied the non-cost 

objectives generated in chapter 4.    

As the purpose of this work was to compare the results obtained from doing the 

robustness analysis in the selection phase (hereafter referred to as approach A) as 

opposed to the generation phase (hereafter referred to as approach B), the same inputs 

or samples of the uncertain parameters were used.  A description of the way in which 

the uncertainty sample sets were generated is described below: 

6.2.1. REPRESENTING UNCERTAINTY 

Uncertainty in technology cost data (investment, O&M) was incorporated into the 

model using data from the NIRP (NER et al., 2004), which formed the core data for 

the work done in chapter 4 and chapter 5.  Estimated values based on available data 

for fuel price and emission coefficient uncertainty for each technology were included 

in order to demonstrate the capability of the model.   
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Triangular distributions were used to represent uncertainty in parameters where data 

was available (e.g. cost data from (NER et al., 2004)) while uniform distributions 

were used where only a minimum and maximum for a range were available (e.g. CO2

emission factor ranges for pulverised coal fired stations (Notten, 2001) and (Eskom, 

2001)).   

An uncertainty distribution was then defined for each technology, for each of the 

uncertainty parameters (investment cost, O&M cost, fuel cost and emission factors).  

Sample sets of the uncertain parameters were generated using a median Latin 

hypercube sampling technique.  The equivalent 1000 sets of input data were run in the 

model to match the analysis of uncertainty done previously in the selection phase.   

Integrating uncertainty into the generation phase    

In order to test the robustness of each of the 25 alternatives previously generated in 

chapter 4, the technology investment strategies were fixed in the options generator 

(MARKAL).  Although the investment strategies were fixed, the operational 

parameters (power station load factors and related variables) were not and could 

therefore be reoptimised with the changing inputs (sets of uncertain parameters).  

The model was then run for each of the 1000 sample sets of the uncertain parameters 

for each of the alternatives (totalling 25000 model runs).  This was done by linking 

MARKAL to a framework developed by the United States Environmental Protection 

Agency (USEPA) called MIMS.  MIMS provided a practical automated framework 

for running large numbers of MARKAL runs, with changing inputs.   

The performance of each of the alternatives in each of the attributes (including 

uncertainty) could then be integrated into a preference model so as to evaluate the 

performance of the alternatives for the multiple criteria chosen. 
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6.2.2. PREFERENCE MODEL

The same methodology as used in chapter 5 was used to construct a value function 

model to evaluate the performance of the alternatives.  However special attention had 

to be paid to the intra-criterion preference information.  Although it has been shown 

that the weights obtained from different methods have been know to vary (as was 

shown in (Borcherding et al., 1991); cited in (Pöyhönen and Hämäläinen, 2000) and 

(Pöyhönen and Hämäläinen, 2001) in which the weights obtained using a range of 

weighting methods were compared), these studies and others have indicated that 

behavioral aspects are also responsible for differences in the weights (see (Weber and 

Borcherding, 1993) for a summary of these effects).  Behavioral effects on weight 

elicitation are known as “weighting biases” with the two main types identified in 

(Pöyhönen and Hämäläinen, 2000) being discussed, namely the splitting bias and the 

range effect. 

The splitting bias refers to a phenomenon that an attribute receives more weight if it is 

split into sub-attributes (i.e. weights may be influenced by the structure of value trees) 

(see (Stillwell et al., 1987; Borcherding and von Winterfeldt, 1988; Weber et al., 

1988).   

The range effect presented by (von Nitzsch and Weber, 1993; Fischer, 1995) occurs 

when the DM fails to adjust the weights as the ranges of attributes change.  This 

problem is more pronounced with direct weighting methods than with indifference 

weighting or swing weighting methods but can occur if the attribute ranges are 

insufficiently considered in the weight elicitation process.   

In the normalisation process whereby attribute performance values (for each sample 

of uncertain parameters) are converted to value function scores, the attribute values 

are typically normalised based on the highest and lowest values in each attribute such 

that the “worst” and “best” outcomes in each criterion are assigned values of 0 and 1 

respectively.  Equation 6.1 below demonstrates this normalisation procedure: 
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( )

( )ii

ii
ii MinMax

xMax
xv

−
−

=)(                              (6.1)

Where:   )( ii xv  is the value score of the attribute performance result X in attribute i 

and Maxi and Mini are the maximum and minimum performance values for       

attribute i

While this approach works well in theory (especially in cases where only average 

values are used), the ranges can be easily skewed by highly improbable values at 

either extreme of the range when uncertainty is included.    This would result in the 

entire range of values for a specific attribute being either artificially inflated or 

deflated depending on which extreme the outliers or improbable values lay.  These 

artificially inflated or deflated value scores would result in an effective weighting bias 

whereby one criterion would be weighted more or less important relative to the other 

criteria.  This effect is related to the range effect discussed above as it occurs when the 

weight range does not appropriately change with the attribute range at these extreme 

points. In order to eliminate this bias the true willingness to trade-off the attributes at 

these extreme points must be captured in the weight elicitation process and the shape 

of the value functions must be correct.  Practically this means that the DM must be 

asked specific weighting questions for each part of each attribute range in order to 

correctly construct the value functions otherwise extreme values could “bunch” the 

remaining attribute values.  (Stewart, 1993) demonstrated the use of piecewise linear 

value functions for capturing preferences across the full range of the attributes.  This 

bias effect could become more pronounced when comparing data sets generated using 

different methods and therefore having different structural characteristics (as in the 

case of this work).  This is demonstrated in section 6.3.1. 

Assuming that the shape of the value function is not accurately represented and there 

are extreme values in an attribute range (i.e. the true willingness to trade-off the 

attributes at the extreme points is not accurately captured) then the weighting bias 

discussed above will occur.  The obvious approach would be to discard outliers or 

improbable values and proceed to normalise the range based on the new minimum and 

maximum values.  The problem with this approach is that decision makers may be 
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interested in improbable values as they give an indication of the regret associated with 

each of the alternatives. If for instance an alternative performed well for most of the 

sample sets of uncertain parameters but performed very poorly for some, then the 

alternative would potentially be a risky choice (as discussed in section 5.3.2.3 of 

chapter 5).   Therefore ideally all samples should form part of the data set for later 

analysis yet a methodology for normalising the attribute ranges that is not based on 

inflated minima and maxima is needed.   

The approach proposed here is to normalise the attributes based on pseudo-minimum 

and pseudo-maximum values found by defining thresholds for the sample set.  This 

can be done by stipulating the percentage of the data that the normalisation should be 

based on thereby ignoring outliers or improbable values when defining minimum or 

maximum values.  For example, using 95 % of the data points, the upper and lower 

2.5 % of the values would be neglected when defining the pseudo-minimum and 

pseudo-maximum values (but not discarded) and therefore the entire attribute range 

would be based on more “realistic” or probable values decided upon by the decision 

maker.  This would however result in value scores that are greater than 1 and less than 

0 for the values outside of the thresholds.  While this may be counter-intuitive due to 

the convention of normalising data such that the lowest and highest values in each 

attribute are assigned scores of 0 and 1 respectively, it is not mathematically incorrect, 

and only the highly improbable values (for this case, 5 % of the data set) would have 

scores greater than 1 or less than zero instead of the entire range being skewed by 

inflated minima or maxima.  The effects of using this methodology are demonstrated 

below using an example with 20 samples where 10 % of the samples are neglected 

when defining pseudo-minimum and maximum values (i.e. 1 data point at each end).  

This is contrasted against a standard normalisation using the actual maximum and 

minimum values to normalise the range.   
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Table 6-1 Example demonstrating pseudo-minima and maxima normalisation methodology 

Partial value function 
score Sample 

number 
Attribute A 

value Standard Non-standard 
1 97 0.029 0.005 
2 100 0 -0.035 
3 54 0.492 0.646 
4 30 0.747 1 
5 71 0.302 0.384 
6 64 0.385 0.499 
7 86 0.145 0.166 
8 6 1 1.351 
9 76 0.253 0.315 
10 89 0.115 0.124 
11 65 0.369 0.477 
12 47 0.563 0.745 
13 34 0.705 0.943 
14 34 0.707 0.946 
15 76 0.254 0.317 
16 60 0.421 0.549 
17 59 0.440 0.575 
18 96 0.038 0.017 
19 53 0.504 0.664 

20 97 0.025 0 
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Figure 6-1 Graph of partial value function score for different normalisation methods 

It can be seen in Figure 6-1 above that significant differences occur between the 

samples corresponding to higher partial value function scores when comparing the 
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non-standard normalisation procedure to the standard normalisation procedure.  This 

is due to the extreme value (sample no. 8, value 6) being left out when defining a 

pseudo-minimum value and the next lowest value of 30 being used as the pseudo-

minimum value used to normalise the data range.  Due to the fact that there is such a 

large difference between the actual minimum value (being 6) and the pseudo-

minimum value (being 30) the samples that have high attribute performance values 

achieve higher partial value function scores than when using the standard 

normalisation procedure.  In contrast, sample no. 2 (value 100) is left out when 

defining the pseudo-maximum value to normalise the data range and sample no. 1 

(value 97) was used as the pseudo-maximum value.  As there is very little difference 

between these two values, there is not much difference between the non-standard 

normalisation procedure and the standard normalisation procedure at the lower end of 

the partial value function range (as can be seen in Figure 6-1).  Had sample no 8 (and 

sample no. 2) been dismissed as an outlier and the attribute performance scores been 

normalised based on the remaining range, the partial values scores would have been 

as reported by the non-standard normalisation procedure.  The only difference is that 

now, the sample has not been discarded, it just achieves a very high partial value 

function score (see red circle on Figure 6-1) without skewing the partial value 

function scores of the entire range of data.  In this way the partial value function 

scores are not skewed by improbable values and no data points are discarded (and can 

therefore be used later to determine regret). 

In order to be consistent with this methodology, the weighting procedure for 

articulating stakeholder preferences has to be modified accordingly.  This 

methodology is demonstrated using the indifference weighting method chosen 

previously in chapter 5.    A technique based on indifference is described below: 

In the case where a non-standard value function range is used so as to normalise the 

attributes based on pseudo-minimum and pseudo-maximum values, the original 

equation from section 2.4.2, equation 2-2 (repeated below) is still valid but Figure 6-2 

is modified such that the actual extreme value scores are used (shown in Figure 6-3) 

instead of the typical 0 and 1 values: 
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           ( ) ( ) ( ) ( )*
*

* .'... xvwxvwxvwxvw jjiijjii +=+     (6.2) 

This equation represents the situation where on the LHS criterion i  is at its best and 

criterion j is at its worst.  The RHS of the equation then represents the situation 

where criterion i  is at an acceptable level if criterion j  were at its best.  This 

equation can be seen to represent the indifference or trade-off question: “What 

sacrifice in terms of the best performance in criterion i  would you be willing to make, 

to achieve an improvement from worst to best performance in criterionj ?”  The 

typical situation where the value score range between 0 and 1 is illustrated in Figure 

6-2 and the non-standard situation where the value score range between less than 0 

and greater than 1 is illustrated in Figure 6-3.  The attribute performances in criteria  i

and j  are represented by ix  and jx  respectively. 

Figure 6-2 Indifference situation for typical 0-1 value function range (Basson, 2004) 

*x*x

*x *x

'x

*
ix*

ix *
jx*jx
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Figure 6-3 Indifference situation for non-standard value function range 

Therefore the indifference equation in terms of the reference criterion α and the next 

criterion β is still: 

( ) ( ) ( ) ( )*
*

* .'... xvwxvwxvwxvw ββααββαα +=+ ,    (6-3) 

However this equation does not simplify to: 

( ) 1.'.01. βααα wxvww +=+

( ) bxv
w

w
=−= '1 α

α

β       as in section 2.4.2, equation 2-4, instead it becomes: 

( ) ββααββαα MaxwxvwMinwMaxw .'... +=+     (6-4) 

( )( ) ( )βββααα MinMaxwxvMaxw −=− .'.  

( )( )
( ) α
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The ratios relating the pairwise comparisons of the other criteria (b, c and d) can be 

calculated in a similar way.  The individual weights can then be calculated in the same 

manner as in equation 6-3 above, with the weights being normalised to sum to 1. 

In this way the indifference questions can be asked using the full range of each 

attribute, the entire data set can be used for further analysis and each attribute can be 

normalised on a more realistic or probable pseudo-maximum or pseudo-minimum 

thereby avoiding an effective weighting bias due to an artificially inflated or deflated 

value score range. 

For the purpose of this analysis the two data sets were normalised using the same 

pseudo-minimum and pseudo-maximum values, defined using 95 % of the data in 

each attribute, with the upper and lower 2.5 % of the values lying outside the 0-1 

value score range.  The following results were then generated to compare the effect of 

normalising attribute performance values based on pseudo-minima and maxima as 

opposed to normalising them on their actual maximum and minimum values in terms 

of the rank order: 

6.3. RESULTS

6.3.1. THE EFFECT OF NORMALISATION AND WEIGHTING APPROACH ON RESULTS

The results of normalising the attribute performance values based on pseudo-minima 

and maxima (with the appropriate indifference weighting procedure modifications) 

are compared to the results of normalising the attribute performance values based on 

the standard 0-1 value function range below.   

The indifference situation was demonstrated using a representation of equal 

preference between criteria, where a situation in which an improvement of x % in a 

non-cost attribute at a sacrifice of the same percentage in cost was assumed to be 

indifferent to the situation in which cost was at its’ best level of performance and the 

non-cost attribute was at its’ worst.  This is demonstrated below: 
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The weighting values change slightly when using the modified indifference weighting 

procedure even though the full range of each attribute is used in both cases.  This is 

due to the xMax  and xMin  values being different for each attribute (instead of being 0 

and 1 for all attributes) resulting in equation 6.4 above instead of equation 2.4 (also 

shown above).   

Table 6-2 Value scores for minimum and maximum values in each attribute range 

  xMax xMin

Cost 1.044 -0.067
CO2EQ emissions 1.101 -0.069
SO2EQ emissions 1.119 -0.434
Water consumption 1.021 -0.049

Table 6-2 shows that the xMax  and xMin  values for cost and water consumption do 

not deviate much from the standard 0-1 range, however the values for SO2EQ

emissions, and to a lesser extent the values for CO2EQ emissions, differ significantly 

from the standard 0-1 range.  Using SO2EQ emissions as an example, from Table 6-2 

above it can be said that the maximum performance value for SO2EQ emissions is 

almost 12 % above the pseudo maximum value, and the minimum value is more than 

43 % lower than the pseudo minimum value. The sample data for this attribute can be 

seen in Figure 6-4: 
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Figure 6-4 Value scores for all samples of SO2EQ emissions 
   

This data demonstrates that there are highly improbable values at each extreme of the 

performance range of this attribute that lie well away from the majority of the data 

points and that had these performance values been used to normalise the attribute 

performance range of SO2EQ emissions, the entire range of value scores for this 

attribute would have been significantly skewed by these improbable performance 

values.  Using pseudo minimum and maximum values defined using 95 % of the data 

to normalise the attribute performance range of SO2EQ emissions reduces this effect 

significantly. 

The pseudo minimum and maximum values from Table 6-2 above result in the 

weights derived from the modified indifference weighting procedure differing most 

for SO2EQ emissions compared to the standard indifference procedure although the 

weighting value for CO2EQ emissions also differs.  The weighting value for cost 

therefore also differs substantially as it is calculated from the ratios of the other 

weights (see section 2.4.2, equation 2.6).  
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Table 6-3 Weights based on indifference procedure for equal preference between criteria 

  
Standard indifference 
procedure 

Modified indifference 
procedure 

Cost 0.306 0.344 

CO2EQ emissions 0.178 0.165 

SO2EQ emissions 0.325 0.219 

Water consumption 0.276 0.272 

Capturing these differences in the indifference weighting procedure calculations is an 

essential component of a consistent methodology that reduces the weighting bias 

caused by inflated minima and maxima as discussed above.  As can be seen in Table 

6-3 above, the modified weighting procedure does result in significant differences in 

weights, and therefore it is essential that the weighting procedure is modified to be 

consistent with the overall methodology.  The effect of using pseudo-minima and 

maxima and the modified weighting procedure is shown below in terms of the overall 

value function scores and the lower rank order.  

Table 6-4  Average overall value function scores and rank for top 5 alternatives using standard and 
non-standard normalisation methods for equal preference between criteria 

Standard normalisation ALT 5 ALT 8 ALT 9 ALT 11 ALT 15 
Overall value function score 0.667 0.672 0.682 0.684 0.680 

Rank 5 4 2 1 3
Non-standard normalisation           
Overall value function score 0.611 0.615 0.623 0.621 0.611 

Rank 4 3 1 2 5

Table 6-4 demonstrates that for equal preferences between criteria, the lower rank 

order changes when using the non-standard normalisation and modified indifference 

weighting technique.  This demonstrates that the effective weighting bias caused by 

inflated minima and maxima has significant effects on the lower rank order.   

In light of the significant effects of demonstrated above, the modified normalisation 

and weighting procedure was used when comparing the performance results of 

Approach A with the performance results of Approach B in the rest of this chapter. 
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6.3.2. ABSOLUTE PERFORMANCE OF ALTERNATIVES

The performance results of Approach A were compared with the performance results 

of Approach B in order to test the postulation that not reoptimising the alternatives for 

each discrete future and dealing with uncertainties in the selection phase would result 

in a slightly pessimistic view of the future (see section 5.3).    

Table 6-5 Excerpt comparing performance results of Approach A and Approach B 

  BASE ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 
Cost (kZAR)           
Approach B 2.605E+08 2.610E+08 2.623E+08 2.610E+08 2.609E+08 2.639E+08 
Approach A 2.621E+08 2.626E+08 2.630E+08 2.631E+08 2.631E+08 2.649E+08 

Difference (A-B) 1.627E+06 1.571E+06 6.908E+05 2.133E+06 2.186E+06 9.518E+05 
Relative 
difference 0.62% 0.60% 0.26% 0.81% 0.83% 0.36%
CO2EQ emissions (kton)        
Approach B 2.650E+06 2.668E+06 2.664E+06 2.551E+06 2.644E+06 2.659E+06 
Approach A 2.641E+06 2.660E+06 2.661E+06 2.543E+06 2.635E+06 2.648E+06 

Difference (A-B) -8.770E+03 -7.896E+03 -3.292E+03 -8.499E+03 -8.950E+03 -1.120E+04 
Relative 
difference -0.33% -0.30% -0.12% -0.33% -0.34% -0.42%
SO2EQ emissions (kton)        
Approach B 1.569E+04 1.577E+04 1.528E+04 1.541E+04 1.572E+04 1.530E+04 
Approach A 1.565E+04 1.574E+04 1.556E+04 1.535E+04 1.567E+04 1.557E+04 

Difference (A-B) -4.323E+01 -3.486E+01 2.785E+02 -6.028E+01 -5.270E+01 2.674E+02 
Relative 
difference -0.28% -0.22% 1.79% -0.39% -0.34% 1.72%
Water consumption (kton)         
Approach B 4.300E+06 3.899E+06 3.914E+06 4.744E+06 3.922E+06 3.856E+06 
Approach A 4.294E+06 3.902E+06 3.900E+06 4.713E+06 3.920E+06 3.855E+06 

Difference (A-B) -6.151E+03 3.327E+03 -1.421E+04 -3.081E+04 -2.466E+03 -1.127E+03 
Relative 
difference -0.14% 0.09% -0.36% -0.65% -0.06% -0.03%

PGPs (kZAR/kt) BASE ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 
CO2EQ emissions 0 0 0 39 39 0

SO2EQ emissions 0 0 6661 0 0 6661 
Water 
consumption 0 16 16 0 16 47 

Overall cost including PGPs (ZAR) 
Approach B 2.605E+11 3.219E+11 4.252E+11 3.597E+11 4.245E+11 5.466E+11
Approach A 2.621E+11 3.235E+11 4.276E+11 3.615E+11 4.263E+11 5.492E+11
          

Difference (A-B) 1.627E+09 1.622E+09 2.324E+09 1.804E+09 1.801E+09 2.680E+09
Relative 
difference 0.62% 0.50% 0.54% 0.50% 0.42% 0.49%



Univ
ers

ity
 of

 C
ap

e T
ow

n

164

When the average performance results of each attribute, for each alternative of 

Approach A were compared with those of Approach B (see Table 6-5 above), it was 

found that for individual attributes (for some of the alternatives), Approach A did 

perform better than Approach B.  The reason why alternatives in Approach A (which 

was not reoptimised) could outperform their counterparts in Approach B for 

individual attributes is that the reoptimisation was done for multiple objectives (as 

described in chapter 4).  This enables the model to sacrifice performance in one or 

more of the objectives to better satisfy overall performance as defined by the overall 

objective function.  In this case, as PGPs were used to force the model to better satisfy 

non-cost objectives, the overall performance could only be evaluated by taking the 

PGPs into account.  Once this was done it could be seen that the Approach B 

outperformed Approach A for every alternative (including the alternatives not show in 

Table 6-5 but shown in Appendix C).  It must be noted though that the relative 

differences were not large (all less than 1 %). 

Therefore the postulation that not reoptimising the operational variables of the 

alternatives for technical empirical uncertainties would result in a slightly pessimistic 

view of the future was correct.  The question of whether integrating technical 

empirical uncertainties into the generation phase as opposed to the selection phase 

significantly affects the rank order and credibility information of the alternatives 

remains unanswered.  The next section will address that question. 

6.3.3. RELATIVE PERFORMANCE OF ALTERNATIVES

The effect that inter-criteria preference information has on the rank order of 

alternatives is illustrated in Figure 6-5 and Figure 6-6 as a function of relative cost 

weighting.  The ratio of the weighting of the non-cost criteria relative to one another 

other is kept constant, while the cost weighting is varied through its full range.  The 

lower the ranking (Rank 1 is best), the higher the overall value score and therefore the 

more preferred an alternative is according to the preference information.   Figure 6-5 

and Figure 6-6 demonstrate how the rank order changes significantly as the relative 

weight of cost changes in the overall value score. 
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For the purpose of this work it is interesting to compare the weighting diagrams for 

two approaches. 
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Figure 6-5 Excerpt of sensitivity diagram to cost weighting (Approach A) 
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Figure 6-6 Excerpt of sensitivity diagram to cost weighting (Approach B) 

While the weighting diagrams were similar for the two approaches, there were 

differences in the lower rank order at certain values of relative cost weighting.     

Table 6-6 Summary of preferred alternatives in weight diagrams 

Approximate 
weight range Approach A Approach B 

0.01-0.19 ALT 22 ALT 24 
0.20-0.26 ALT 22 ALT 21 

0.27 ALT 19 ALT 15 
0.28 ALT 15 ALT 9 

0.29-0.33 ALT 11 ALT 9 
0.34-0.39 ALT 9 ALT 9 
0.40-0.42 ALT 9 ALT 8 
0.43-0.44 ALT 2 ALT 8 
0.45-0.52 ALT 2 ALT 2 
0.52-0.64 ALT 2 ALT 4 
0.65-0.91 ALT 1 ALT 4 
0.92-0.93 BASE ALT 4 

0.94-1 BASE BASE 

Table 6-6 illustrates that the different approaches to dealing with uncertainty do in 

fact affect the sensitivity diagram and result in different alternatives occupying the 
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preferred position (Rank 1) when moving along the relative cost weighting axis.  

There are however small sections of the sensitivity diagram where the same 

alternatives occupy the preferred rank in both methods for (e.g. ALT 2 in the Wcost

range of 0.45-0.50). 

While the weighting diagrams illustrate the differences between the results using the 

two approaches, they are primarily useful in integrating valuation model parameter 

uncertainty in preference information into the decision making process and building 

confidence in the validity of the results in relation to that information (see section 

5.3.2.2).   In order to compare the results of the two approaches in more detail, it is 

useful at this point to focus the analysis on specific parts of the sensitivity diagram 

and to examine the frequency information. 

Relative cost weighting values of 0.34 (representing equal preference between 

criteria) and 0.61 (representing a stronger preference towards cost) were used to 

illustrate the results for an unstable and a stable section of the sensitivity diagrams in 

terms of the lower rank order.   

Table 6-7, Table 6-8, Table 6-9 and Table 6-10 display the frequency at which each 

alternative obtained a particular rank for the set of discrete future scenarios at a 

relative cost weighting of 0.34 and 0.61 (representing equal preference between 

criteria and a stronger preference towards cost respectively), for each of the 

approaches to dealing with technical empirical uncertainty.  The frequency at which 

particular alternatives occupy ranks can be used as an indication of the credibility 

associated with the ranking order.  A rank of 1 represents the most preferred 

alternative while a rank of 25 represents the least preferred alternative for a given set 

of DM preference weightings. 
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Table 6-7 Frequency table for overall rank at a relative cost weighting of 0.34 (Approach A) 

BASE ALT 
1 

ALT 
2 

ALT 
3 

ALT 
4 

ALT 
5 

ALT 
6 

ALT 
7 

ALT 
8 

ALT 
9 

ALT 
10 

ALT 
11 

ALT 
12 

ALT 
13 

ALT 
14 

ALT 
15 

ALT 
16 

ALT 
17 

ALT 
18 

ALT 
19 

ALT 
20 

ALT 
21 

ALT 
22 

ALT 
23 

ALT 
24 

1 0 0 0 0 0 0 0 4 2 591 0 403 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 27 124 1 56 189 201 0 197 0 0 0 204 0 0 0 0 0 0 0 0 0
3 0 0 44 0 134 107 2 34 253 203 0 81 0 0 0 142 0 0 0 0 0 0 0 0 0
4 0 0 76 0 152 188 8 32 387 5 0 37 0 0 0 110 0 0 0 5 0 0 0 0 0
5 0 3 340 0 108 272 31 55 93 0 0 39 0 0 2 24 0 0 0 33 0 0 0 0 0
6 0 13 303 0 134 256 52 65 46 0 0 52 0 0 3 54 0 0 0 15 0 0 7 0 0
7 0 151 161 0 356 39 41 77 7 0 0 25 0 0 10 89 0 0 0 37 0 0 7 0 0
8 0 592 51 0 58 14 51 91 22 0 0 10 0 2 7 32 0 0 0 53 1 0 16 0 0
9 0 169 17 0 21 0 116 324 1 0 0 104 0 25 31 44 0 0 0 114 2 0 25 7 0
10 0 42 7 0 6 0 367 106 0 0 0 32 3 37 73 173 0 0 0 36 10 0 94 14 0
11 0 17 0 0 4 0 121 54 0 0 0 17 10 56 453 52 0 0 0 113 41 1 25 36 0
12 0 6 0 0 0 0 73 15 0 0 0 3 22 302 177 50 0 2 0 170 64 11 74 31 0
13 0 7 0 0 0 0 28 29 0 0 0 0 208 82 58 20 0 16 0 163 187 45 132 25 0
14 0 0 0 0 0 0 34 39 0 0 0 0 90 30 57 6 0 150 0 92 324 35 112 31 0
15 0 0 0 0 0 0 30 19 0 0 0 0 59 59 58 0 0 55 49 102 176 213 93 87 0
16 2 0 0 0 0 0 45 0 0 0 0 0 46 40 71 0 0 63 22 46 126 278 106 155 0
17 12 0 0 0 0 0 0 0 0 0 0 0 58 241 0 0 0 161 32 20 60 153 134 105 24 
18 32 0 0 0 0 0 0 0 0 0 0 0 146 105 0 0 0 242 30 1 9 199 85 80 71 
19 88 0 0 0 0 0 0 0 0 0 0 0 204 14 0 0 0 199 60 0 0 60 65 203 107 
20 294 0 0 0 0 0 0 0 0 0 0 0 88 7 0 0 0 90 137 0 0 5 22 101 256 
21 383 0 0 0 0 0 0 0 0 0 0 0 66 0 0 0 0 22 152 0 0 0 3 84 290 
22 189 0 0 13 0 0 0 0 0 0 21 0 0 0 0 0 0 0 484 0 0 0 0 41 252 
23 0 0 0 721 0 0 0 0 0 0 270 0 0 0 0 0 0 0 9 0 0 0 0 0 0
24 0 0 0 266 0 0 0 0 0 0 709 0 0 0 0 0 0 0 25 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 0 0



Univ
ers

ity
 of

 C
ap

e T
ow

n

169

Table 6-8 Frequency table for overall rank at a relative cost weighting of 0.34 (Approach B) 

BASE ALT 
1 

ALT 
2 

ALT 
3 

ALT 
4 

ALT 
5 

ALT 
6 

ALT 
7 

ALT 
8 

ALT 
9 

ALT 
10 

ALT 
11 

ALT 
12 

ALT 
13 

ALT 
14 

ALT 
15 

ALT 
16 

ALT 
17 

ALT 
18 

ALT 
19 

ALT 
20 

ALT 
21 

ALT 
22 

ALT 
23 

ALT 
24 

1 0 0 4 0 0 0 2 3 9 889 0 39 0 0 25 4 0 0 0 3 10 7 1 1 3
2 0 0 3 0 23 142 1 45 467 95 0 200 0 0 2 13 0 1 0 0 3 2 0 0 3
3 0 0 48 0 97 243 0 58 302 12 0 156 0 0 4 75 0 0 0 0 3 0 0 0 2
4 0 0 194 0 123 201 1 57 145 1 0 99 0 0 3 170 0 0 0 0 2 3 0 1 1
5 0 0 193 0 128 282 4 51 56 1 0 128 0 0 6 147 0 0 0 0 3 2 0 0 1
6 0 22 360 0 109 86 19 75 16 0 0 110 0 0 8 187 0 0 0 2 1 0 0 1 2
7 0 133 134 0 329 35 31 60 2 0 0 55 0 0 64 90 0 7 0 41 14 3 0 2 0
8 0 368 60 0 130 9 89 103 2 0 0 43 0 0 65 58 0 9 0 25 29 5 0 0 5
9 0 310 6 0 48 0 81 208 0 2 0 78 0 10 103 68 0 8 0 32 32 5 1 3 4
10 0 112 0 0 12 0 282 148 0 0 0 48 1 13 135 120 0 27 0 29 60 7 0 1 5
11 1 36 0 0 1 1 230 78 1 0 0 29 2 87 259 48 0 48 0 81 76 11 1 4 5
12 1 15 0 0 0 0 92 49 0 0 0 9 26 233 109 16 0 86 2 121 202 20 6 3 9
13 0 1 0 0 0 0 64 19 0 0 2 3 135 121 52 3 0 157 1 116 222 65 19 5 16 
14 3 2 0 0 0 1 40 19 0 0 0 1 119 97 30 0 0 181 12 116 171 121 43 9 35 
15 3 0 0 0 0 0 17 16 0 0 1 1 105 77 28 0 0 188 11 100 92 225 68 13 53 
16 35 0 0 0 0 0 17 7 0 0 0 0 102 76 19 0 1 144 20 79 48 185 105 37 123 
17 95 0 0 0 0 0 17 4 0 0 1 1 80 68 27 0 0 76 37 52 12 175 136 57 161 
18 175 0 0 0 0 0 11 1 0 0 5 1 78 84 28 0 0 44 48 42 2 78 140 82 181 
19 217 0 0 4 0 0 1 0 0 0 12 0 102 95 8 0 0 19 93 34 3 50 131 91 139 
20 250 0 0 33 0 0 0 0 0 0 66 0 123 32 9 1 3 4 104 30 3 16 114 93 117 
21 194 0 0 58 0 0 0 0 0 0 116 0 107 5 6 0 19 0 183 11 6 8 85 123 79 
22 18 0 0 140 0 0 0 0 0 0 304 0 17 1 4 0 69 0 262 24 2 4 24 89 41 
23 3 0 0 313 0 0 0 0 0 0 337 0 2 0 1 0 145 0 88 45 0 3 32 25 5
24 1 0 0 351 0 0 0 0 0 0 138 0 0 0 1 0 281 0 65 17 3 1 86 52 5
25 3 0 0 101 0 0 0 0 0 0 18 0 0 0 1 0 482 0 72 0 0 3 7 307 5
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Table 6-9 Frequency table for overall rank at a relative cost weighting of 0.61 (Approach A) 

BASE ALT 
1 

ALT 
2 

ALT 
3 

ALT 
4 

ALT 
5 

ALT 
6 

ALT 
7 

ALT 
8 

ALT 
9 

ALT 
10 

ALT 
11 

ALT 
12 

ALT 
13 

ALT 
14 

ALT 
15 

ALT 
16 

ALT 
17 

ALT 
18 

ALT 
19 

ALT 
20 

ALT 
21 

ALT 
22 

ALT 
23 

ALT 
24 

1 0 193 529 0 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 488 97 0 415 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 319 374 0 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 880 36 0 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 118 318 2 562 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 2 445 180 172 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 3 0 0 0 0 0 196 454 182 162 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
8 115 0 0 0 0 0 5 320 0 557 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
9 875 0 0 0 0 0 0 40 0 80 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
10 7 0 0 448 0 0 0 4 0 0 0 541 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 552 0 0 0 0 0 0 0 448 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 61 0 207 41 77 614 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 514 0 93 203 124 66 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 230 0 85 80 550 55 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 148 0 253 399 149 51 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 47 0 362 277 100 214 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 408 0 592 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 592 0 372 36 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 964 3 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 997 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 647 353 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 353 647 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 
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 Table 6-10 Frequency table for overall rank at a relative cost weighting of 0.61 (Approach B) 

BASE ALT 
1 

ALT 
2 

ALT 
3 

ALT 
4 

ALT 
5 

ALT 
6 

ALT 
7 

ALT 
8 

ALT 
9 

ALT 
10 

ALT 
11 

ALT 
12 

ALT 
13 

ALT 
14 

ALT 
15 

ALT 
16 

ALT 
17 

ALT 
18 

ALT 
19 

ALT 
20 

ALT 
21 

ALT 
22 

ALT 
23 

ALT 
24 

1 0 4 53 0 935 0 2 1 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 558 377 0 62 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 420 555 0 3 10 0 0 7 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 14 13 0 0 633 1 0 337 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 3 3 0 0 0 278 40 85 589 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 0 1 0 0 53 255 591 35 61 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
7 18 0 0 0 0 24 616 256 25 57 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
8 352 0 0 0 0 0 76 44 3 522 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
9 594 0 1 5 0 0 6 19 1 341 0 31 0 0 0 0 0 0 0 1 0 0 0 0 0
10 24 0 0 455 0 1 4 3 0 12 1 496 0 0 3 0 0 0 0 0 0 0 0 0 0
11 4 0 0 514 0 0 0 1 0 0 3 444 0 0 8 25 0 1 0 0 0 0 0 0 0
12 1 0 0 26 0 0 0 0 0 0 74 14 11 40 90 740 0 4 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 335 2 116 136 235 130 0 46 0 1 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 326 0 185 217 135 54 1 79 0 3 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 160 0 272 316 97 31 13 103 0 7 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 78 0 306 203 219 18 30 134 1 10 1 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 18 0 92 77 179 2 298 267 15 46 5 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 3 0 17 9 21 0 418 234 136 128 33 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 1 0 1 3 6 0 150 95 335 198 204 6 0 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 52 35 290 151 452 12 2 1 1
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 31 1 208 252 291 194 4 4 14 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 13 80 10 629 134 13 116 
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 103 4 91 453 68 278 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 60 382 236 302 
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 25 678 289 
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Table 6-7 illustrates that for a relative cost weighting of 0.34 using Approach A, ALT 

9 is the preferred plan with a credibility level of 59.1 % for obtaining Rank 1 while 

ALT 11 ranks second best with a credibility level of 60 % for obtaining a rank of 2 or 

better (403/1000 for Rank 1 + 197/1000 for Rank 2) followed by ALT 8 with a 

credibility level of 44.4 % for obtaining a rank of 3 or better (2/1000 for Rank 1 + 

189/1000 for Rank 2 + 253/1000 for Rank 3).    As no single alternative emerges as 

the preferred alternative with a high level of credibility (e.g. greater than 85 %) a 

portfolio of alternatives should be selected that satisfy minimum levels of stakeholder 

defined performance and credibility levels, such that a small set of preferred 

alternatives may be compared on a more detailed technology investment based level, 

and a final decision can be made (as was demonstrated in chapter 5 section 5.3.2.4). 

Table 6-8 illustrates that for a relative cost weighting of 0.34 using Approach B, ALT 

9 is also the preferred alternative with a credibility level of 88.9 % for obtaining Rank 

1 but instead of ALT 11 ranking second best, ALT 8 does, with a credibility level of 

47.6 % for obtaining a rank of 2 or better (9/1000 for Rank 1 + 467/1000 for Rank 2) 

followed by ALT 11 with a credibility level of 39.4 % for obtaining a rank of 3 or 

better (39/1000 for Rank 1 + 200/1000 for Rank 2 + 156/1000 for Rank 3).  As ALT 9 

emerges as the preferred alternative with a high level of credibility (88.9 %) it may 

not be necessary to isolate a small set of preferred alternatives, although there would 

be value in doing a more detailed analysis on technology investment based level, 

before a final decision is made. 

At a relative cost weighting of 0.34, differences can be seen in both the rank and 

credibility of alternatives in the lower rank order.  Although rank 1 is occupied by 

ALT 9 in both approaches, rank 2 and 3 are occupied by different alternatives in both 

cases.  No single alternative emerges as the dominant solution with a high level of 

credibility at this value of relative cost weighting for Approach A although ALT 9 

achieves a high level of credibility using Approach B.  It would be valuable to 

compare Approach A and Approach B in terms of a portfolio approach using 

minimum levels of stakeholder defined performance and credibility levels.  This is 

demonstrated in section 6.3.4 below: 
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Table 6-9 illustrates that for a relative cost weighting of 0.61 using Approach A, ALT 

2 is the preferred plan with a credibility level of almost 52.9 % for obtaining Rank 1 

while ALT 4 ranks second best with a credibility level of 69.3 % for obtaining a rank 

of 2 or better (278/1000 for Rank 1 + 415/1000 for Rank 2) followed by ALT 1 with a 

credibility level of 100  % for obtaining a rank of 3 or better (193/1000 for Rank 1 + 

488/1000 for Rank 2 + 319/1000 for Rank 3).  As ALT 2 is the preferred alternative 

for only 52.9 % of the discrete samples, the DM may not be able to confidently make 

a decision with this information alone.  Therefore a portfolio of alternatives should be 

selected such that a small set of preferred alternatives may be compared on a more 

detailed technology investment based level, and a final decision can be made (as was 

demonstrated in chapter 5 section 5.3.2.4). 

Table 6-10 illustrates that for a relative cost weighting of 0.61 using Approach B,  

ALT 4 is the preferred alternative with a credibility level of over 85 % for obtaining 

Rank 1 while ALT 2 ranks second best again with a credibility level of 63.9 % for 

obtaining a rank of 2 or better (53/1000 for Rank 1 + 377/1000 for Rank 2) followed 

again by ALT 1 with a credibility level of 78.0  % for obtaining a rank of 3 or better 

(4/1000 for Rank 1 + 558/1000 for Rank 2 + 420/1000 for Rank 3).  Although ALT 4 

achieves the preferred alternative with a level of credibility of over 85 % and it may 

therefore not be necessary to isolate a small set of preferred alternatives, there would 

be value in doing a more detailed analysis on technology investment based level, 

before a final decision is made. 

At a relative cost weighting of 0.61, differences can be seen in the ranking and 

credibility values of the preferred alternatives although the top 3 ranking alternatives 

are the same using both approaches.  At this point it would be interesting to isolate a 

portfolio of preferred alternatives from the larger set for more detailed analysis in 

order to compare Approach A and Approach B.  These alternatives would be isolated 

based on satisfying minimum levels of performance within specified levels of 

credibility (see section 5.3.2.3).    
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6.3.4. ISOLATING PORTFOLIOS OF PREFERRED ALTERNATIVES BASED ON PERFORMANCE 

AND CREDIBILITY

For demonstrative purposes portfolio sets of preferred alternatives were isolated based 

on achieving a rank of 3 or better with minimum credibility levels of 85 %.  

At a relative cost weighting of 0.34, only ALT 9 matches these criteria for Approach 

A, and only ALT 9 matches these criteria for Approach B.  If the selection criteria 

were relaxed to include alternatives with a credibility level of 80 %, ALT 8 would 

enter the portfolio for Approach B but not for Approach A.   

At a relative cost weighting of 0.61 ALT 2, ALT 4 and ALT 1 match these criteria for 

Approach A, and ALT 2 and ALT 4 match these criteria for Approach B.  The 

selection criteria would have to be relaxed to include alternatives with a credibility 

level of greater than 78 % in order for ALT 1 to enter the portfolio set using Approach 

B at this value of relative cost weighting. 

This demonstrates that the different approaches to handling technical empirical 

uncertainty result in similar alternatives entering the portfolio of alternatives for 

detailed analysis for the values of relative cost weighting demonstrated above 

(representing equal preference between criteria and a strong preference towards cost).      

What this also highlights is the impact that uncertainty in DM preferences can have on 

the decision making process.  If preferences lie in an unstable section of the 

sensitivity diagram then small changes in preferences (less that 5 %) can result in 

switching between preferred alternatives in the rank order (as can be seen in Figure 

6-5 and Figure 6-6) which can result in different alternatives entering the portfolio set.  

For similar reasons, the effects of using different approaches to dealing with other 

uncertainties (e.g. technical empirical uncertainties - as demonstrated in this chapter) 

are also more pronounced in this region.  Therefore the computational, time and data 

management burden of doing a robustness analysis on technical empirical uncertainty 

in the generation phase as opposed to the selection phase may not be justified given 

that similar alternatives enter the portfolio set of preferred alternatives using both 
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approaches and that any differences would likely be seen in unstable sections of the 

sensitivity diagram1. Considering that the effects of uncertainty in DM preferences are 

highest in this section of the diagram it is likely that they would have a greater effect 

on the results than technical empirical uncertainties would.    

It must be noted that if this portfolio approach focused only on solutions that achieved 

a rank of 1 (the most preferred alternative) as when using the cross confidence factors

and reference sets of the SMAA methodology (Lahdelma et al., 1998; Lahdelma and 

Salminen, 2006), the resulting portfolio set would be more sensitive to fluctuations in 

uncertain input parameters as the focus would be on a reduced portion of the 

performance space and therefore small changes would seem to have greater effects.  

For example if at a relative cost weighting of 0.62, the analysis was focussed only on 

solutions that achieved a rank of 1, with a minimum credibility level of 75 %, no 

alternatives would match these criteria using Approach A and only ALT 4 would 

match these criteria using Approach B.  In fact, in order to obtain just two alternatives 

in the final portfolio of alternatives to be analysed further before final selection, the 

minimum credibility level would have to be relaxed to 27.8 % using Approach A and 

13.1 % using Approach B.  While focusing only on alternatives that achieve a rank of 

1 has that advantage that fewer alternatives enter the portfolio set, and therefore final 

selection may be simpler, this approach may be less robust than focussing on a wider 

portion of the rank order.  This is due to the fact that it is possible for an alternative to 

have the highest credibility level of all alternatives when looking only at rank 1, but 

when considering a minimum ranking of 2 or 3, other alternatives may have higher 

levels of credibility for obtaining those ranks.  This is demonstrated below: 

Table 6-11 Credibility values for preferred alternatives using approach A at a relative cost weighting of 
0.61 

Minimum 
rank 

ALT 1 ALT 2 ALT 4 

1 19.3% 52.9% 27.8% 
2 68.1% 62.6% 69.3% 
3 100.0% 100.0% 100.0% 

                                                
1 Greater differences in performance may have been seen by representing demand in higher resolution 
as this would allow for more sensitive optimisation of the power station load factors due to a greater 
number of time slices. 
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As can be seen of Table 6-11 above, ALT 2 has the highest credibility level of 

achieving a rank of 1, followed by ALT 4 and then ALT 1.  However, when 

considering alternatives that achieve a rank of 2 or better, ALT 4 has the highest 

credibility level, followed by ALT 1 and then ALT 2.  This means that ALT 4 is more 

likely to obtain a rank of 2 or better than ALT 2 (for the sample of uncertain 

parameters considered) and is therefore more robust than ALT 2 if the DM is willing 

to accept a minimum ranking of 2.  This demonstrates that focusing only on 

alternatives that achieve a rank of 1 may in fact exclude important alternatives from 

the portfolio set.  While it is not suggested that ALT 4 is a preferred alternative to 

ALT 2 at this value of relative cost weighting, it is argued that ALT 4 is worth 

comparing to ALT 2 in more detailed analysis (as demonstrated in chapter 5 section 

5.3.2.4) and that ALT 4 would not be considered if only alternatives that achieve a 

rank of 1 were to be considered.   
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6.4. CONCLUSIONS

Using pseudo-minima and maxima to normalise attribute performance scores with a 

modified indifference weighting approach to articulate DM preferences reduces 

effective weighting biases by reducing the artificial inflation or deflation of value 

function scores based on improbable values without discarding those values for 

further analysis.  Differences can be seen in the lower rank order of alternatives when 

comparing this method with the standard method of normalisation. 

The assumption postulated in chapter 5 that integrating technical empirical 

uncertainty into the selection phase as opposed to the generation phase would only 

result a slightly pessimistic view of the future was proved correct based the overall 

performance results using the two different approaches. 

  

The weighting diagrams illustrate that the different approaches to dealing with 

uncertainty result in different alternatives occupying the preferred position (Rank 1) at 

different values of relative cost weighting.   

The additional effort and complexity of doing a robustness analysis on technical 

empirical uncertainty in the generation phase as opposed to the selection phase may 

not be justified given that similar alternatives make up the portfolios of preferred 

alternatives using both methods and differences would mainly seen in the unstable 

sections of the weighting sensitivity diagram where uncertainty in DM preferences 

would have the greatest effect on results.    

Focusing only on alternatives that achieve the preferred rank may exclude important 

alternatives from the portfolio set and therefore from detailed analysis and final 

selection.  Using a portfolio approach and focussing on a greater range in rank than 

just the preferred alternative increases the robustness of the selection process by 

reducing the effect of uncertainty in DM preferences and empirical uncertainties, 

allowing for a less intensive uncertainty analysis to be done (Approach A) prior to the 

detailed analysis of preferred alternatives.   



Univ
ers

ity
 of

 C
ap

e T
ow

n

178

APPENDIX C 

Table 6-12 Attribute and overall value performance results of Approach A and Approach B 

  BASE ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 ALT8 ALT9 ALT10 ALT11 

Cost (kZAR)                         

Approach B 2.605E+08 2.610E+08 2.623E+08 2.610E+08 2.609E+08 2.639E+08 2.637E+08 2.643E+08 2.648E+08 2.683E+08 2.708E+08 2.716E+08 

Approach A 2.621E+08 2.626E+08 2.630E+08 2.631E+08 2.631E+08 2.649E+08 2.649E+08 2.659E+08 2.661E+08 2.682E+08 2.700E+08 2.732E+08 

Difference (A-B) 1.627E+06 1.571E+06 6.908E+05 2.133E+06 2.186E+06 9.518E+05 1.166E+06 1.640E+06 1.301E+06 -7.026E+04 -7.979E+05 1.636E+06 

Relative difference 0.62% 0.60% 0.26% 0.81% 0.83% 0.36% 0.44% 0.62% 0.49% -0.03% -0.30% 0.60%

CO2EQ emissions (kton)                         

Approach B 2.650E+06 2.668E+06 2.664E+06 2.551E+06 2.644E+06 2.659E+06 2.663E+06 2.645E+06 2.541E+06 2.603E+06 2.457E+06 2.508E+06 

Approach A 2.641E+06 2.660E+06 2.661E+06 2.543E+06 2.635E+06 2.648E+06 2.653E+06 2.638E+06 2.529E+06 2.601E+06 2.472E+06 2.494E+06 

Difference (A-B) -8.770E+03 -7.896E+03 -3.292E+03 -8.499E+03 -8.950E+03 -1.120E+04 -9.733E+03 -6.616E+03 -1.180E+04 -1.997E+03 1.491E+04 -1.393E+04 

Relative difference -0.33% -0.30% -0.12% -0.33% -0.34% -0.42% -0.37% -0.25% -0.47% -0.08% 0.60% -0.56%

SO2EQ emissions (kton)                         

Approach B 1.569E+04 1.577E+04 1.528E+04 1.541E+04 1.572E+04 1.530E+04 1.596E+04 1.591E+04 1.488E+04 1.505E+04 1.491E+04 1.445E+04 

Approach A 1.565E+04 1.574E+04 1.556E+04 1.535E+04 1.567E+04 1.557E+04 1.593E+04 1.588E+04 1.514E+04 1.531E+04 1.504E+04 1.456E+04 

Difference (A-B) -4.323E+01 -3.486E+01 2.785E+02 -6.028E+01 -5.270E+01 2.674E+02 -3.031E+01 -3.225E+01 2.641E+02 2.627E+02 1.289E+02 1.138E+02 

Relative difference -0.28% -0.22% 1.79% -0.39% -0.34% 1.72% -0.19% -0.20% 1.74% 1.72% 0.86% 0.78%

Water consumption (kton)                         

Approach B 4.300E+06 3.899E+06 3.914E+06 4.744E+06 3.922E+06 3.856E+06 3.823E+06 3.813E+06 4.106E+06 3.825E+06 4.693E+06 4.093E+06 

Approach A 4.294E+06 3.902E+06 3.900E+06 4.713E+06 3.920E+06 3.855E+06 3.835E+06 3.822E+06 4.097E+06 3.844E+06 4.707E+06 4.059E+06 

Difference (A-B) -6.151E+03 3.327E+03 -1.421E+04 -3.081E+04 -2.466E+03 -1.127E+03 1.180E+04 8.668E+03 -9.066E+03 1.918E+04 1.416E+04 -3.352E+04 

Relative difference -0.14% 0.09% -0.36% -0.65% -0.06% -0.03% 0.31% 0.23% -0.22% 0.50% 0.30% -0.83%

             

PGPs (kZAR/kt)             

CO2EQ emissions 0 0 0 39 39 0 0 39 39 39 193 0 

SO2EQ emissions 0 0 6661 0 0 6661 0 0 6661 6661 0 24424 

Water consumption 0 16 16 0 16 47 47 47 16 47 0 16 
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Overall cost including PGPs (ZAR) BASE ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 ALT8 ALT9 ALT10 ALT11 

Approach B 2.605E+11 3.219E+11 4.252E+11 3.597E+11 4.245E+11 5.466E+11 4.429E+11 5.453E+11 5.263E+11 6.484E+11 7.461E+11 6.883E+11 

Approach A 2.621E+11 3.235E+11 4.276E+11 3.615E+11 4.263E+11 5.492E+11 4.446E+11 5.470E+11 5.288E+11 6.509E+11 7.482E+11 6.922E+11 

                          

Difference (A-B) 1.627E+09 1.622E+09 2.324E+09 1.804E+09 1.801E+09 2.680E+09 1.718E+09 1.790E+09 2.461E+09 2.501E+09 2.085E+09 3.892E+09 

Relative difference 0.62% 0.50% 0.54% 0.50% 0.42% 0.49% 0.39% 0.33% 0.47% 0.38% 0.28% 0.56%

Table 6-12 Attribute and overall value performance results of Approach A and Approach B cond. 

  ALT12 ALT13 ALT14 ALT15 ALT16 ALT17 ALT18 ALT19 ALT20 ALT21 ALT22 ALT23 ALT24 

Cost (kZAR)                           

Approach B 2.772E+08 2.781E+08 2.809E+08 2.771E+08 2.799E+08 2.843E+08 2.901E+08 2.989E+08 2.976E+08 3.048E+08 3.099E+08 3.173E+08 3.086E+08

Approach A 2.762E+08 2.774E+08 2.783E+08 2.790E+08 2.805E+08 2.821E+08 2.854E+08 2.963E+08 2.982E+08 3.010E+08 3.017E+08 3.031E+08 3.067E+08

Difference (A-B) -1.015E+06 -7.005E+05 -2.603E+06 1.919E+06 6.393E+05 -2.208E+06 -4.724E+06 -2.554E+06 6.114E+05 -3.847E+06 -8.249E+06 -1.421E+07 -1.932E+06

Relative difference -0.37% -0.25% -0.94% 0.69% 0.23% -0.78% -1.66% -0.86% 0.21% -1.28% -2.73% -4.69% -0.63%

CO2EQ emissions (kton)                           

Approach B 2.651E+06 2.615E+06 2.425E+06 2.459E+06 2.415E+06 2.652E+06 2.652E+06 2.398E+06 2.366E+06 2.342E+06 2.350E+06 2.353E+06 2.334E+06

Approach A 2.645E+06 2.606E+06 2.447E+06 2.453E+06 2.423E+06 2.650E+06 2.645E+06 2.384E+06 2.368E+06 2.358E+06 2.363E+06 2.359E+06 2.338E+06

Difference (A-B) -5.946E+03 -9.293E+03 2.219E+04 -5.886E+03 8.281E+03 -2.355E+03 -6.832E+03 -1.392E+04 2.336E+03 1.552E+04 1.252E+04 6.059E+03 4.306E+03

Relative difference -0.22% -0.36% 0.91% -0.24% 0.34% -0.09% -0.26% -0.58% 0.10% 0.66% 0.53% 0.26% 0.18%

SO2EQ emissions (kton)                           

Approach B 1.605E+04 1.593E+04 1.491E+04 1.428E+04 1.468E+04 1.508E+04 1.591E+04 1.371E+04 1.396E+04 1.383E+04 1.348E+04 1.329E+04 1.379E+04

Approach A 1.606E+04 1.592E+04 1.511E+04 1.437E+04 1.477E+04 1.564E+04 1.595E+04 1.394E+04 1.409E+04 1.403E+04 1.382E+04 1.378E+04 1.435E+04

Difference (A-B) 6.778E+00 -1.206E+01 2.046E+02 8.734E+01 9.178E+01 5.633E+02 4.404E+01 2.286E+02 1.284E+02 2.016E+02 3.412E+02 4.850E+02 5.610E+02

Relative difference 0.04% -0.08% 1.35% 0.61% 0.62% 3.60% 0.28% 1.64% 0.91% 1.44% 2.47% 3.52% 3.91%

Water consumption (kton)                           

Approach B 3.625E+06 3.617E+06 3.973E+06 4.064E+06 4.654E+06 3.570E+06 3.460E+06 3.916E+06 3.864E+06 3.801E+06 3.850E+06 3.860E+06 3.772E+06

Approach A 3.658E+06 3.658E+06 4.008E+06 4.042E+06 4.674E+06 3.593E+06 3.541E+06 3.881E+06 3.860E+06 3.836E+06 3.834E+06 3.858E+06 3.759E+06

Difference (A-B) 3.340E+04 4.121E+04 3.520E+04 -2.198E+04 2.038E+04 2.259E+04 8.138E+04 -3.482E+04 -3.610E+03 3.543E+04 -1.586E+04 -1.792E+03 -1.325E+04

Relative difference 0.91% 1.13% 0.88% -0.54% 0.44% 0.63% 2.30% -0.90% -0.09% 0.92% -0.41% -0.05% -0.35%
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PGPs (kZAR/kt) ALT12 ALT13 ALT14 ALT15 ALT16 ALT17 ALT18 ALT19 ALT20 ALT21 ALT22 ALT23 ALT24 

CO2EQ emissions 0 39 193 39 219 0 0 0 193 219 39 0 258

SO2EQ emissions 0 0 0 24424 0 6661 0 36636 6661 6661 36636 44407 6661

Water consumption 73 73 16 16 0 73 83 16 16 16 16 16 16

              

Overall cost including PGPs (ZAR)                         

Approach B 5.422E+11 6.437E+11 8.120E+11 7.845E+11 8.092E+11 6.457E+11 5.776E+11 8.623E+11 9.085E+11 9.698E+11 9.548E+11 9.680E+11 1.061E+12

Approach A 5.436E+11 6.456E+11 8.142E+11 7.880E+11 8.117E+11 6.489E+11 5.796E+11 8.676E+11 9.104E+11 9.713E+11 9.593E+11 9.753E+11 1.064E+12

                            

Difference (A-B) 1.427E+09 1.953E+09 2.238E+09 3.481E+09 2.455E+09 3.195E+09 2.038E+09 5.279E+09 1.862E+09 1.452E+09 4.488E+09 7.296E+09 2.708E+09

Relative difference 0.26% 0.30% 0.27% 0.44% 0.30% 0.49% 0.35% 0.61% 0.20% 0.15% 0.47% 0.75% 0.25%
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CHAPTER 7                INTEGRATING PLANT AVAILABILITY UNCERTAINTY 

AND RESERVE MARGIN INTO THE MULTI -OBJECTIVE FRAMEWORK

7.1. INTRODUCTION

In chapter 4 a partial equilibrium optimisation framework was extended to include 

multiple environmental objectives through the addition of PGPs introduced into the 

optimisation in the form of cost penalties.  It was demonstrated that this was an 

efficient method for extending the analysis to multiple objectives as the solutions 

generated are non-dominated and are generated from ranges of performances in the 

various criteria rather than from arbitrarily forcing the selection of particular 

technologies.  It was also demonstrated that this analysis could be extended to include 

uncertainty in demand growth through stochastic programming with recourse by 

splitting new power station investments into owner’s development costs and 

equipment procurement and construction phases, thereby accounting for the concept 

of technology lead times in light of a decision node in the time horizon.  The solutions 

generated then had built in flexibility towards demand growth uncertainty in light of 

the multiple objectives chosen. 

In chapter 5 a methodology was developed for the ranking and selection of 

alternatives given multiple objectives and uncertainty in empirical and valuation 

model parameters.  It was demonstrated how a continuous analysis of uncertainty 

using both the rank and credibility of alternatives could be used to isolate a portfolio 

of preferred alternatives.  A more detailed analysis of the preferred alternatives, 

examining short term technology investment details and attribute performance 

information could then be used to provide additional insight into the decision 

problem, and related back to real life actions. 

Chapter 6 examined the caveats identified in chapter 5 by exploring the analysis of 

technical empirical parameters in the generation phase instead of the selection phase.  

The findings of chapter 6 reinforced the value of the approach taken to model 

empirical uncertainty in chapter 5, as well as the importance of generating a portfolio 

of preferred alternatives based on minimum performance and credibility criteria.   
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The approach so far has been aimed at developing a transparent framework for the 

generation and selection of power expansion alternatives that comprehensively 

account for multiple objectives and have built in flexibility for and are robust to 

various types of uncertainty.  One of the key uncertainties identified in chapter 3 that 

has not yet been integrated into framework developed thus far is plant availability 

uncertainty. It is imperative that preferred alternatives are robust to uncertainty in 

plant availability to prevent situations such as recent local blackouts in the Western 

Cape and South Africa as a whole due to unforeseen unit outage.  This chapter will 

focus on integrating plant availability uncertainty into the multi-objective framework 

developed thus far such that the probability of events such as blackouts are minimised 

and their economic, social and environmental impacts are avoided. 

7.2. BACKGROUND

Plant outage can be split into planned outage (planned, routine maintenance) and 

forced outage (unplanned maintenance).  Plant outage is typically modelled using the 

derating method for planned outage and the derating method and/or reserve margin 

for forced outage.  The derating method assumes that a station will be offline for a 

given period of time annually.  This period is determined by the planned outage rate 

(POR) and the forced outage rate (FOR) by the following equation: 

( ) ( )FORPORtyAvailabili −×−= 11                       (7-1) 

This method effectively “derates” each station by their outage rate such that they 

cannot operate above this rate annually.  This is enforced in the model using an annual 

constraint on the availability of each station which limits its operation to never exceed 

the annual outage rate, in any time slice1. While this approach may work for a very 

large system with many units, it is inadequate to represent outage in smaller systems.  

This is demonstrated below assuming a plant outage rate of 1/12: 

                                                
1 The year is broken down into various time slices to represent day/night, weekly and seasonal load 
characteristics.  
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Figure 7-1 A system with 2 power plants each with an annual outage of 1/12 

For the extreme case of a 2 plant system, if both plants had to go out at the same time 

no matter what reserve margin or demand was, demand would not be met. 
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Figure 7-2 A system with 10 power plants each with an annual outage of 1/12 

Examine the case of a 10 plant system, with each plant having a 1 GW capacity.  If 2 

of the plants had to go out at the same time there would be 8 GW of generating 

capacity left in the system and therefore a maximum demand of 8 GW could be met.  
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1−=
DemandPeak

capacityTotal
MarginReserve                (7-2)

Assuming demand was 8 GW, the reserve margin would be 20 % (i.e. 

%2018
10 =− ).  This would be the minimum reserve margin needed to supply the 

required demand to this system if two plants went out simultaneously.  A lower 

reserve margin would result in unserved energy as the generating power in the system 

would be less than the demand level if 2 plants went out at the same time. 

This demonstrates how derating can only work in a system with a large number of 

plants and a high enough reserve margin.   

While this methodology may be adequate for situations when stakeholders or planners 

have an in depth understanding of the relationship between the required reserve 

margin and plant outage, this is not usually the case.  This relationship is highly 

dependant on the number of plants in the system and the modular size of the units due 

to the fact the units are usually forced out independently.  This implies that a lower 

reserve margin would be required for a 10 GW system comprising 100 x 0.1 GW 

modular units than for a 10 GW system with 20 x 0.5 GW units due to the fact that 

less capacity would be forced out if a singe unit went offline.  It also implies that a 

lower reserve margin would be required for a system of 10 GW with 10 x 1 GW units 

than for a system of 2 GW with 2 x 1 GW units (as demonstrated in the example 

above).  Furthermore it can be shown using Jensen’s inequality2 that deterministic 

methods based on derating underestimate expected production costs relative to fully 

probabilistic methods (see for example Hobbs and Ji, 1995). 

                                                
2 Jensen’s inequality relates the value of a convex function of an integral to the integral of that function. 
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7.2.1. MORE COMPLEX APPROACHES TO DEALING WITH PLANT AVAILBILITY 

UNCERTAINTY IN ESI MODELLING

Forced outage 

While the derating method in combination with a specified reserve margin has been 

widely used to model forced outage in ESI modelling, it does not specifically take unit 

size into account (as mentioned above), nor does it account for the fact that forced 

outage occurs in discrete blocks (i.e. a unit will go out for a period of 2 weeks 

straight, rather than two weeks over the period of a year).  These caveats have led to 

more sophisticated approaches for accounting for forced outage whereby the reserve 

margin is an output of the modelling process rather than an input. 

Production costing models deal with the optimisation of power station load factors 

based on the characteristics of each power station (capacity, planned and forced 

outage rates and operating constraints).  The production model is either bundled with 

the investment model whereby all costs are annualized and the investment and 

production problems are solved simultaneously (as in the case of MARKAL and 

TIMES) or it is dealt with separately, typically after the investment problem has been 

solved (e.g. using the Benders decomposition method proposed by (Bloom, 1983)). 

Using Benders decomposition, the master-problem is solved to generate an initial 

solution, and then the sub-problem is solved for the investment plan generated in the 

master-problem.  The dual multipliers3 of the sub-problem are then used to generate 

the next cut4 for the master-problem. This procedure is repeated until convergence 

within a specified tolerance is achieved. This is an efficient and rigorous method for 

production costing and was implemented as part of the EGEAS framework.  The 

benefit of this method is that the Benders cuts correctly represent the marginal effect 

of capacity additions upon the costs and therefore efficiently direct the master 

problem towards the optimal solution.  A limitation of this is that the master problem 

                                                
3 Dual multipliers are equal to the marginal change of the primal objective function per unit increase of 
the corresponding constraint’s right hand side.  For a commodity balance constraint this value will thus 
represent the market price that should be attributed to this commodity.  See for example (F.S. Hillier 
and Lieberman, 1990) for explanation on dual variables in linear programming. 
4 A cut is a constraint on the value of the solution of the master problem forcing it to reject the previous 
solution. This assumes that there is no primal degeneracy (no multiple dual solutions). 
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must be linear (no lumpy investments as is used in the proposed methodology in 

section 7.3) as the marginal costs are used as cuts.  There are also limits in EGEAS for 

forcing stations to run when using this solution method and therefore take or pay 

contracts or minimum utilisation rates cannot be represented.  

The most frequently used model of production costing is the load duration curve 

(LDC) method by (Baleriaux et al., 1967) and (Booth, 1972). The LDC is obtained by 

rearranging the chronological loads from the largest value to the smallest (shown 

below in Figure 7-3).  It also gives the proportion of time during the year that the 

hourly load exceeds each level.  The LDC method calculates the expected production 

costs by using the LDC rather than a chronological sequence of loads (see Figure 7-4 

in section 7.3.2) and the deterministic outage of the generating units.  First the 

generating units are ranked in terms of increasing cost, then the effective LDC facing 

each generating unit is calculated by convolving5 the probability distribution of 

demand with the distribution of outages of less expensive generators, and finally the 

effective LDC is integrated over the appropriate domain to calculate the expected 

energy generated by the unit (see (Bloom, 1983) for a brief review of the LDC 

approach).  

                                                
5 Convolution is a mathematical operator which takes two functions and produces a third function that 
represents the amount of overlap between the first function and a reversed and translated version of the 
second. 
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Figure 7-3 LDC representation of demand 

The chronological information is lost in the LDC because loads are arranged in terms 

of their magnitude and duration, rather than when they occur and it therefore cannot 

simulate those aspects of production cost which are time dependent or chronological 

in nature. This shortfall is most prominent in multi-region models where different 

demands exist for each region with peaks occurring at different times (due to different 

customer demand profiles) and in single region models where detailed demand 

profiles exist for each sector (i.e. commercial, industrial, residential, etc.).  There are 

distinct differences in peak load periods between each sector (i.e. the peak load period 

for industry electricity demand as opposed to that of the commercial sector).  It is 

these peak and valley period deviations that provide a model that accounts for 

chronology in demand with the potential for reducing the system production cost, 

improving spinning and operating reserve as well as system stability enhancements.  

As this need has been widely acknowledged, different methodologies have been 

developed to represent the chronological aspect of demand while simultaneously 

modelling the effect of random forced outage on system generating capacity.   

The advantages and basic methodology of using Monte Carlo simulation in a power 

system reliability/cost worth analysis can be found in texts such as (Billinton and Li, 
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1994).   Monte Carlo simulation has also been used within a production costing model 

to simulate the frequency and duration of forced outage while using a chronological 

simulation of demand (Mazumdar and Chrzan, 1995).  The mean and standard 

deviation of production cost are reported for the Monte Carlo samples illustrating the 

difference between using an LDC approach and a chronological approach to 

representing demand as well as the differences between representing the frequency 

and duration of outage correctly rather than using aggregated forced outage rates. 

Monte Carlo sampling has been used in combination with Benders decomposition to 

solve large-scale stochastic models (e.g. Dantzig and Infanger, 1992).  This approach 

decomposes the original problem into a deterministic part and a stochastic part.  The 

deterministic part is called the master-problem and in ESI modelling, this is the 

investment problem.  The stochastic sub-problem is then the operational problem 

where elements such as plant availability and uncertainty in demand can be modelled 

probabilistically.   

Danzig and Infanger (Dantzig and Infanger, 1992) demonstrated how this approach 

could be used to efficiently solve a large-scale stochastic linear program for a capacity 

expansion planning application.  In this model 8 different stochastic availabilities for 

generators and transmission lines were used as well as 5 stochastic levels of demand.  

This model did not have a detailed representation of demand (only 1 demand value 

per period, with only 1,2 or 3 periods in the model) and therefore could not be used to 

accurately represent the frequency and duration of plant outages.  This said, the idea 

of using sampling methods to represent uncertainty in plant operation within an 

operational sub-problem is an efficient method for feedback into the investment 

master-problem.  It is from this point that an approach to model forced outage was 

developed and integrated into a framework that could model demand both 

chronologically and in high resolution such that both the frequency and duration of 

outage could be adequately represented, all within a multi-objective framework with a 

comprehensive analysis of system wide uncertainty.  This approach is discussed in 

section 7.3 below: 
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7.3. APPROACH AND DEMONSTRATION

Using the methodology developed in previous chapters, a portfolio of preferred 

alternatives was isolated based on performance in terms of rank and credibility levels 

for a set of DM preferences.  These alternatives have built-in flexibility towards 

uncertainty in demand growth and are robust to technical empirical uncertainty and 

uncertainty around DM preferences.  The robustness of these alternatives towards 

uncertainty in plant availability needs to be ensured such that decision makers can be 

confident that their choices will be robust in terms of serving energy, as well as in 

terms of costs, emissions and valuation model parameter uncertainty.   A 

methodology for doing this is outlined below: 

7.3.1. MODEL REFINEMENTS

In chapter 4 MARKAL was used to demonstrate how a single objective partial 

equilibrium framework could be extended to satisfy multiple objectives with built in 

flexibility toward demand growth uncertainty.  Although MARKAL was suitable for 

this purpose, one of the disadvantages of using MARKAL was that demand could not 

be represented at a high enough resolution to accurately represent the duration and 

frequency of plant outage.  For this reason another more recent model of the 

MARKAL family of models, The integrated MARKAL- EFOM system (TIMES), was 

used.  With TIMES, energy systems can be represented, analysed and optimised on a 

flexible time and regional scale.  In this way an equivalent model could be built to the 

one used previously in chapter 4, with higher resolution of demand, such that plant 

outage could be better represented6.  A description of the way in which planned and 

forced outage was modelled follows below:

7.3.2. MODEL STRUCTURE

The model was set up in TIMES to mimic the MARKAL model in chapter 4 except 

that demand was defined at a higher resolution and a “dummy” generation plant for 

unserved energy was included (discussed in more detail below).  Using more time 
                                                
6 TIMES was not used initially (when the work for chapter 4 was being done) because the stochastic 
programming module and other aspects of the model were still being developed. 
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slices increases the accuracy of the demand representation but increases computing 

time significantly. Therefore a trade-off was made such that the key aspects of 

demand shape were captured while attempting to reduce the number of time slices.  

Seasonal variation in demand was defined by breaking the year into 3 seasons 

(summer, winter and an intermediate season).  This was done to represent the 

characteristic differences in the demand profiles of these times of year in the South 

African environment.  The week was split into weekdays and weekends and the day 

was divided into 7 parts such as to capture the morning and evening peaks.    Using 3 

seasons (s01, s02 and s03), 2 weekparts (w1 and w2) and 7 dayparts (h1-h7) resulted 

in the demand profile illustrated in Figure 7-4 .  
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Figure 7-4 Chronological representation of demand 

Figure 7-4 illustrates a chronological representation of demand whereby demand 

levels within each season and their weekday and weekend components are represented 

and each day is broken up into 7 parts to represent the morning and evening peak. 

The unserved energy plant was included so that the model could decide, given the cost 

of not serving energy, whether it would be optimal to build new capacity or not serve 

energy.  The cost of unserved energy is typically stakeholder defined and specific to 

the case study (see section 6.12 of (Wilson and Adams, 2006) for a discussion of the 

cost of unserved energy in South Africa).  The trade-off between investment cost and 

the cost of unserved energy is particularly pertinent when demand is only marginally 

            s01w1       s01w2       s02w1      s02w2       s03w1       s03w2 
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higher than supply capacity.  This is because only a small amount of energy would not 

be served if new generation capacity was not built and therefore the cost of not 

serving this small amount of energy would be traded-off against the cost of building a 

new power station or unit. 

The model was then separated into a master (investment) and slave (operational) 

problem so as to model uncertainty in plant outage. See Figure 7-5 below: 

Deterministic investment (master)

problem

Stochastic operational (slave)

problem

Investment strategy

Technologies Objectives Demand

Monte Carlo sample outages

New electricity demand (reserve margin)

Figure 7-5 Representation of master-slave feedback for minimum reserve margin calculation 

The master-problem is essentially a complete model in itself as TIMES is setup to 

solve both the investment and operation of the power plants for a specified demand 

simultaneously (similarly to MARKAL-described in chapter 4).  However, in order to 

model uncertainty in plant availability an operational slave sub-model was created 

that uses the fixed investment “skeleton” from the master-problem.     

The master-problem is solved to generate an initial solution (i.e. investment strategy) 

using a low reserve margin (i.e. 5 %), and then the sub-problem is solved for the 
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investment strategy generated in the master-problem for each random sample of plant 

outages (described in section 7.3.4).    

Unlike in the Benders decomposition method, the dual multipliers of the slave

problem are not used as the new cuts for the master-problem.  Instead, for each 

random set of outages generated using Monte Carlo sampling, the unserved energy of 

the system given the demand and the investment strategy from the master-problem is 

recorded.  After the slave problem has been rerun for each of the Monte Carlo 

samples, the distribution of unserved energy over the sample set is calculated for each 

year in the time horizon and compared to the amount of unserved energy calculated in 

the master-problem for that year.  If the amount of unserved energy in the slave

problem is greater than the unserved energy in the master-problem (for a specified 

tolerance e.g. 95 %), then the demand level (see discussion below for comparison of 

using inflated demand rather than reserve margin) for that year in the master-problem

is increased incrementally.  This forces the master-problem to invest in more capacity 

in that year (if possible given the constraints of the model) which will in turn result in 

less energy going unserved in the slave problem.  If the amount of unserved energy in 

the slave problem is less than the unserved energy in the master-problem then the 

demand level for that year remains unchanged7.  This methodology is carried out 

iteratively until convergence is achieved in every year8.  Total convergence in this 

case is not convergence on an optimal solution; it is merely a stopping point or upper 

bound on number of iterations of the master-problem to be carried out such that the 

solution space can be examined and the preferred solution selected (see Figure 7-8 

and the surrounding discussion in section 7.4.2).  The feedback mechanism of 

increasing the demand level only in years when the amount of unserved energy in the 

slave problem is greater than the unserved energy in the master-problem (for a 

specified tolerance) is the intelligent mechanism by which the solution space is 

explored.  This is discussed further in section 7.4.2.  Variance reduction methods 

could be used to make these methods more efficient by reducing the number of 

samples required (see for example Breipohl et al., 1990; Huang and Chen, 1993). 

                                                
7 This method only works if a low enough initial reserve margin is used.
8 The master-slave problem would have to be set up separately for each alternative in the case where a 
portfolio of preferred alternatives exists.  The initial investment strategy sent to the slave problem 
would then be the investment strategy of each of the preferred alternatives selected previously. 
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In contrast to the Benders decomposition method, the proposed methodology moves 

through the solution space directly exploring the relationship between unserved 

energy and total system cost (as it is the feedback between the master and slave

problems).  This allows a conscious trade-off to be made between cost and unserved 

energy (see section 7.4.3) thereby increasing the transparency in the decision process.  

The proposed methodology is also more accessible as it uses an existing and highly 

flexible energy planning model.  The proposed approach also allows multiple 

objectives to be introduced into the problem formulation as demonstrated in Chapter 

4. 

A simpler way of exploring the relationship between levels of inflated demand and 

total system cost would be to increase the levels of inflated demand every year by an 

incremental amount.  This method would however not be as efficient as demand 

would be increased in every year, without considering whether in fact it is necessary 

for capacity to be increased in that year.  Using unserved energy as a feedback 

mechanism allows for demand (and therefore capacity) to be increased in years where 

it is needed.   

Reserve margin or inflated demand? 

The question of whether to use a minimum reserve margin or an inflated demand to 

increase capacity investment in the master-problem was considered.  As mentioned in 

section 7.2.1, derating combined with a reserve margin is a common method used in 

ESI modelling.  The problem with this method is in the way the model interprets a 

reserve margin.  To the model, the minimum reserve margin represents a minimum 

capacity constraint that must be met.  Therefore the model invests in plants that have 

lower investment costs than other plants; irrespective of their operating costs.  This is 

due to the fact that these plants were built to meet capacity constraints, and will not 

actually be run in the model.  In reality the excess capacity built to account for 

unforeseen unit outage will be run as other plants fail and therefore their running costs 

must be considered.  One way of incorporating this into a model is to set minimum 

utilisation constraints forcing stations that are built to be run at a minimum utilisation 

rate (e.g. 5 % for OCGTs, 30 % for CCGTs) although this type of constraint is more 
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often used to represent fixed take or pay fuel contracts especially for mid-merit 

stations like CCGTs.   

Another way of doing this would be to use an inflated demand, thereby forcing the 

model to build stations for a hypothetical demand that must be met (instead of a 

capacity constraint).  This method more closely resembles reality as running costs (as 

well as investment costs) are considered.  A complication of this approach is that the 

operating or running costs calculated in the master-problem are inflated. However, 

using the approach presented here, the correct operating costs (taking plant outage 

into account) can be calculated from the slave problem. 

A numerical experiment was performed to compare the results of using minimum 

reserve margins to those when using inflated demand by specifying minimum reserve 

margins in each year in the master problem and comparing the results to the 

equivalent run using inflated demand (the reserve margins generated from Plan 14 

discussed in section 7.4.4 were used for this experiment).  As expected the plan 

generated using minimum reserve margins built more OCGTs and less pumped 

storage and CCGTs than the equivalent run using inflated demand due to the lower 

capital cost components of the OCGTs relative to the CCGT and pumped storage 

units.  The plan generated using minimum reserve margins with minimum utilisation 

rates on the OCGTs was almost identical to the plan generated using minimum 

reserve margins without minimum utilisation rates on the OCGTs except that it 

replaced slightly less CCGT with OCGT (due to the fact that it was forced to run them 

if they were built).  The build plans generated in the master problem were then run in 

the slave problem and the costs and unserved energy results were compared.   

Table 7-1. Costs and unserved energy for minimum reserve margin and inflated demand scenarios 
 Fixed costs 

(Investement 
plus fixed 

O&M) 

Activity costs 
(variable O&M plus 
fuel and unserved 

energy costs) 

Total 
discounted 
system cost 

Average total 
discounted 
unserved 
energy 

 bZAR bZAR bZAR GWh 
Minimum reserve margin 101.4 117.1 218.5 8.9 
Minimum reserve margin 
and minimum utilisation 
rates on OCGTs  101.8 116.7 218.5 8.7 
Inflated demand 103.7 113.7 217.4 16.1 
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It was found that the plans generated using minimum reserve margins had lower fixed 

costs due to the lower capital cost of OCGTs relative to pumped storage and CCGTs 

but higher activity costs due to the much higher operating costs of the OCGTs.  Using 

minimum utilisation rates on the OCGTs similarly resulted in lower fixed costs and 

higher activity costs relative to the inflated demand plan.  The average total 

discounted unserved energy values were low for all three methods (but lower for the 

reserve margin methods due to more OCGTs being available to meet peak load) as 

both the reserve margin and the inflated demand levels used were at sufficiently high 

levels to ensure enough capacity to account for forced outage and minimise unserved 

energy (see section 7.4.3 for a discussion on the cost vs. unserved energy trade-off).  

The total discounted system cost using inflated demand was slightly lower than that 

when using the equivalent minimum reserve margin due to the fact that the model 

accounts better for operating costs in the master problem using this method.  In light 

of the inflated demand method better accounting for operating costs in the master

problem it was decided to use inflated demand as the feedback between the master

and slave problems.  It can be noted that the differences between the results using the 

different methods are minor when compared to other uncertainties in the system (e.g. 

uncertainty in DM preferences – see Chapter 5). 

7.3.3. PLANNED OUTAGE

As mentioned in section 7.2, planned outage is typically modelled using the derating 

method, whereby an annual constraint on the availability of each station limits its 

operation to never exceed the annual outage rate, in any time slice.  While this is a fair 

approximation that has been widely used in energy modelling (e.g. Loulou and 

Kanudia, 1998; Seebregts et al., 2001; NER et al., 2004), in reality planned outage is 

optimised such that maintenance occurs outside of the peak demand time periods.  

This can be modelled using constraints that specify an annual bound on activity for 

each station without a bound on the activity of each station in each time slice.  In this 

way a station can run to its’ full capacity when it is online, but can only be online for 

a specified amount portion of the year.   One of the potential limitations of this 

approach is that outage will not necessarily occur in discrete blocks (i.e. a unit may go 

offline for two weeks over the period of a year rather than for a period of 2 weeks at a 

time).  The model may therefore schedule planned maintenance at night, as it can 
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break up the 2 weeks over the whole year.  This would result in slightly too much 

capacity being available during the peak time slice and therefore the unserved energy 

in this period would be underestimated.   

Another more computationally expensive alternative to modelling planned outage is 

to model planned maintenance such that the capacity of each station is derated for one 

season of the year, thereby forcing maintenance to occur within a fixed portion of the 

year rather than allowing it to be split over the whole year.  This is an improvement 

over the annual derating approach as stations are only derated for 1 season rather than 

the whole year and in the other seasons their can run to full capacity.  Within a model 

such as TIMES this would have to be done by using a number of dummy technologies 

for each station, representing generation on a seasonal basis, with constraints placed 

on these technologies such that the model could only run one of them at a time.  This 

would increase the number of variables in the model significantly as well as the 

processing time.  Therefore for the model presented in this chapter, planned outage 

was modelled by derating stations on an annual basis and allowing them to run to full 

capacity in any one time slice.  While planned maintenance should be modelled using 

the more complicated and computationally expensive approach described above to 

generate defensible investment strategies, the simpler approach allows for the 

methodology presented in this chapter to be sufficiently demonstrated. 

7.3.4. FORCED OUTAGE

Forced outage is more complicated to model than planned outage as it is random, and 

cannot be optimised in relation to the rest of the system (it can even occur in a time 

slice allocated to planned maintenance).  The methodology adopted here was to 

simulate random forced outage using Monte Carlo sampling, such that a station/unit 

would either be available or out, for any given time slice, and that the total time that a 

station would be forced out in any year would be equal to its forced outage rate.   

The starting point for the Monte Carlo sampling was to examine the probabilities of 

units going out.  Table 7-2 below illustrates the probability of 0, 1, 2 or 3 units of a 

station going out (using a FOR of 0.05) as a function of the number of units in that 

station.  Firstly, the number of combinations for which 0, 1, 2 or 3 units could go out 
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given the number of units making up a station was calculated.  Next the probability of 

the event of 0, 1, 2 or 3 going out was calculated.  Finally by multiplying the number 

of combinations for each event by the probability of each event, the actual probability 

of 0, 1, 2, 3 or more units going out for each station could be calculated.   

Using an example of a 10 unit station, the probability of 2 units going out 

simultaneously can be calculated by first calculating the number of ways in which 2 

units can be chosen from 10 (45 combinations).  Next the probability of the event of 2 

units going out at the same time must be calculated.  This is done by calculating the 

probability of 2 units going out ( )205.0 and multiplying this by the probability of 8 

units (10-2) not going out( )895.0 .  Finally this number is multiplied by the number of 

combinations in which 2 out of 10 units can go out, which yields the probability of the 

7.46 %.    
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Table 7-2  Probability of unit outage as a function of number of units per station 

Unit per 
station   No of combinations Probability of event Probability of combination 
No. units out 0 1 2 3 0 1 2 3 P0 P1 P2 P3

Probability of 
more than 3 units 

out 
1 1 1 0 0 95.00% 5.00% 0% 0% 95.00% 5.00% 0% 0% 0% 
2 1 2 1 0 90.25% 4.75% 0.25% 0% 90.25% 9.50% 0.25% 0% 0% 
3 1 3 3 1 85.74% 4.51% 0.24% 0.01% 85.74% 13.54% 0.71% 0.01% 0% 
4 1 4 6 4 81.45% 4.29% 0.23% 0.01% 81.45% 17.15% 1.35% 0.05% 0% 
5 1 5 10 10 77.38% 4.07% 0.21% 0.01% 77.38% 20.36% 2.14% 0.11% 0% 
6 1 6 15 20 73.51% 3.87% 0.20% 0.01% 73.51% 23.21% 3.05% 0.21% 0.01% 
7 1 7 21 35 69.83% 3.68% 0.19% 0.01% 69.83% 25.73% 4.06% 0.36% 0.02% 
8 1 8 28 56 66.34% 3.49% 0.18% 0.01% 66.34% 27.93% 5.15% 0.54% 0.04% 
9 1 9 36 84 63.02% 3.32% 0.17% 0.01% 63.02% 29.85% 6.29% 0.77% 0.06% 

10 1 10 45 120 59.87% 3.15% 0.17% 0.01% 59.87% 31.51% 7.46% 1.05% 0.10% 
15 1 15 105 455 46.33% 2.44% 0.13% 0.01% 46.33% 36.58% 13.48% 3.07% 0.55% 
20 1 20 190 1140 35.85% 1.89% 0.10% 0.01% 35.85% 37.74% 18.87% 5.96% 1.59% 
30 1 30 435 4060 21.46% 1.13% 0.06% 0% 21.46% 33.89% 25.86% 12.70% 6.08% 
50 1 50 1225 19600 7.69% 0.40% 0.02% 0% 7.69% 20.25% 26.11% 21.99% 23.96% 
60 1 60 1770 34220 4.61% 0.24% 0.01% 0% 4.61% 14.55% 22.59% 22.98% 35.27% 
70 1 70 2415 54740 2.76% 0.15% 0.01% 0% 2.76% 10.16% 18.45% 22.01% 46.61% 
80 1 80 3160 82160 1.65% 0.09% 0% 0% 1.65% 6.95% 14.46% 19.78% 57.16% 
90 1 90 4005 117480 0.99% 0.05% 0% 0% 0.99% 4.68% 10.97% 16.94% 66.42% 

100 1 100 4950 161700 0.59% 0.03% 0% 0% 0.59% 3.12% 8.12% 13.96% 74.22% 
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It can be seen from Table 7-2 above that the probabilities of more than 3 units of a 

station going out simultaneously only become significant (i.e. greater than 1 %) for 

stations with more than 15 units.  Therefore it could be said that provided the stations 

in the model have less than 15 units, only the probabilities of 0, 1, 2 and 3 units going 

out need to be taken into account when calculating forced outage.  This enables some 

saving of computing time when doing thousands of model runs. 

With this in mind a logical procedure was developed to decide the availability of each 

station in every time slice.  By representing stations rather than units in the model, the 

number of technologies and therefore computational time could be significantly 

reduced.  Therefore the procedure outlined below was used to set the availability of 

each station in the model based on a random draw, where P0, P1, P2 and P3 are the 

probabilities that 0, 1, 2 or 3 units of a particular station will be offline given the 

number of units in that station and the outage rates of those units. 

• Draw a random number between 0 and 1 

• If the number is less than P0 then 0 units of that station are offline and 

availability =1 , else: 

• if the number is greater than (1- P3) then availability of the station = 1-

3/(number of units), else:  

• if the number is greater than (1- (P3 + P2)) then availability of the station = 1-

2/(number of units), else: 

• the number is greater than (1- (P3 + P2 + P1)) then availability of the station = 

1-1/(number of units), 

In this way the availability of each station for each time slice could be decided for a 

single model run.  This is illustrated in Table 7-3 below for an example station with 6 

units using a demand resolution containing 2 seasons (s01 and s02), 2 weekparts (w1 

and w2) and 7 dayparts (h1-h7): 
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Table 7-3 Table of forced outages for an example of a 6 unit station 

Time 
slice 2005 2006 2007 2008 2009 
s01w1h1 1 1 1 1 1 
s01w1h2 1 0.5 1 0.83 0.83 
s01w1h3 1 0.67 1 1 1 
s01w1h4 1 1 1 0.83 1 
s01w1h5 1 1 1 1 1 
s01w1h6 1 1 1 1 0.83 
s01w1h7 0.83 1 0.83 1 0.83 
s01w2h1 1 1 1 1 0.83 
s01w2h2 1 0.83 1 1 1 
s01w2h3 1 1 1 1 1 
s01w2h4 1 0.83 1 1 0.83 
s01w2h5 1 0.83 1 0.83 0.83 
s01w2h6 1 1 1 0.83 1 
s01w2h7 1 0.67 1 1 1 
s02w1h1 1 1 0.83 1 1 
s02w1h2 1 1 1 1 1 
s02w1h3 1 1 1 1 1 
s02w1h4 1 1 1 1 1 
s02w1h5 1 1 0.83 1 1 
s02w1h6 0.83 0.83 0.83 1 0.67 
s02w1h7 1 1 1 1 1 
s02w2h1 1 1 1 1 1 
s02w2h2 0.83 1 1 1 1 
s02w2h3 1 1 1 1 1 
s02w2h4 1 0.83 1 1 1 
s02w2h5 1 0.67 1 1 1 
s02w2h6 1 1 0.83 0.67 1 
s02w2h7 1 1 1 1 1 

In Table 7-3 above, “1”s represent when the station is available to run and values less 

than 1 represent the degree to which the station is forced out or how many of the units 

of that station are forced out.  This information is generated for each station given 

their forced outage rates using the procedure described above.  This outage 

information is then fed into the operational slave problem and solved for the 

investment strategy generated in the master-problem.  The solution represents the 

optimal operational strategy for the objectives defined.  This process is repeated for 

the specified number of sample sets used to represent forced outage (varies depending 

on the size of the system and the number of samples necessary to adequately represent 

the outage for that system).  The operational variables of each of the power stations as 

well as the amount of unserved energy for each sample set are recorded.  The 

distribution of unserved energy over all the sample sets is then calculated and used as 
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feedback to the master-problem as described previously in section 7.3.2. This 

methodology is demonstrated in section 7.4 below: 

7.4. RESULTS

7.4.1. SAMPLE SIZE

Initially the sample size or number of runs needed for the slave problem needed to be 

determined.  This number should be large enough to adequately represent plant outage 

and therefore unserved energy but should also be minimised to reduce computation 

time. 

Figure 7-6 and Figure 7-7 below illustrate the average amount of unserved energy in 

each year as a function of sample size: 
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Figure 7-6 Graph of average unserved energy for selected years as a function of no. of runs of slave 
problem for a demand inflated by 5 %  
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Figure 7-7  Graph of average unserved energy as a function of no. of runs of slave problem for a 
demand inflated by 10 % 

It can be seen from the figures above that the amount of unserved energy decreases 

significantly from when a demand inflated by 5 % was used compared to that when a 

demand inflated by 10 % is used.    

Using 2009 as an example, it can be seen from Figure 7-6 that the average unserved 

energy values stabilize (with minor fluctuations) from about 120 runs of the slave

problem. The same can be said for other years where the average value of unserved 

energy is high, relative to other years (e.g. 2012, 2020, 2021). 

It was therefore decided that running the slave problem 150 times for each iteration of 

the master-problem would be sufficient to represent plant outage and therefore 

unserved energy for this electricity supply system.
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7.4.2. EXPLORING THE SOLUTION SPACE

The problem was then set up such that the initial demand level in the master-problem

was 4 % above the actual projected demand.  This number was used to reduce the 

number of master iterations necessary to explore the solution space.  It was assumed 

that this level of inflated demand would be less than what would be required to 

account for the forced outage of the system (which proved correct given the results in 

Table 7-4).  Another method that could have been used for obtaining a starting point 

for the model that is closer to the optimal investment strategy (correctly taking forced 

outage into account) would be to derate all stations by their FOR in every time slice 

and then run the master-problem using the actual level of demand.  The minimum 

reserve margin of an ESI system approaches the average FOR of the stations in that 

system as the number of stations tends to infinity.  Therefore derating each station by 

it’s FOR would yield a good starting point for a system with a finite number of units 

as forced outage would be slightly underestimated, and the minimum reserve margin 

could then be found by increasing inflated demand.  This said, derating all station by 

their FOR in combination with using inflated demand to model forced outage 

increases the number of parameters that are being adjusted to find the minimum 

reserve margin needed to account for forced outage.  It was therefore decided to adjust 

inflated demand in the master-problem without derating all stations by their FOR. 

The master-problem would then be run to obtain the investment strategy for that level 

of demand.  This investment strategy would then be used in the slave problem where 

plant outage would be modelled as described in section 7.3.4 above using 150 model 

runs.  The distribution of unserved energy for that investment strategy could then be 

calculated and compared to the unserved energy value reported in the master-problem.   

To demonstrate this methodology the following convergence criterion was used: 

The slave problem had to achieve unserved energy values equal to the master-problem

within a 99 % confidence interval for each year; else the demand was increased by 0.5 

%   in the year/s where this criterion was not met.  This process was repeated until this 

criterion was met in every year. 
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This is demonstrated for the base case scenario (BASE) as well as for ALT 11, which 

was generated using Pareto Generation Parameters (PGPs) so as to better satisfy non-

cost objectives (see chapter 4 section 4.3 for methodology).  These alternatives were 

chosen to demonstrate the methodology proposed in section 7.3 as they resulted in 

significantly different investment strategies and would therefore represent the 

preferred solutions for vastly different sets of DM preferences (discussed in more 

detail below).  Figure 7-8 and Figure 7-9 demonstrate the results of using the master-

slave approach on the total discounted system cost9 (solutions circled in red are shown 

in more detail below).  See Appendix D for detailed inflated demand, unserved energy 

and cost results of master-slave procedure for BASE and ALT 11. 
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Figure 7-8 Graph of total discounted system cost as a function of master-problem iteration number 
(BASE) 

                                                
9 The total discounted system cost includes the investment and fixed costs from the master-problem as 
well as the average variable costs (e.g. variable O&M, unserved energy, variable fuel costs, emission 
taxes) from the slave problem.  
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Figure 7-9 Graph of total discounted system cost as a function of master-problem iteration number 
(ALT 11) 

Figure 7-8 and Figure 7-9 both show that total discounted system cost decreases as the 

demand is incrementally increased in years where the convergence criterion is not met.  

In both cases a minimum is reached before the stopping criterion is reached.   

The shapes of Figure 7-8 and Figure 7-9 above are due to the trade-off between the 

avoided costs of unserved energy by building more capacity to account for plant 

outage and the investment cost and fixed O&M cost of that extra capacity.  Up to the 

point where the minimum is reached, the avoided cost of unserved energy exceeds the 

extra investment and fixed O&M cost of the new capacity.  Beyond that point it is 

more expensive to build the extra capacity than it is to not serve small amounts of 

electricity.  This can be simplified to an example where in a particular year; the 

demand for electricity would be very slightly above the capacity to supply (e.g. 0.01 

PJ or 2.78 GWh).  In this case it would probably be cheaper to pay the high cost per 

unit of unserved energy and not supply that small demand than it would be to build a 

120 MW gas turbine and run it for less than 1 % of the year.  There is however a range 

of solutions in both Figure 7-8 and Figure 7-9 above that result in a similar average 

total discounted system cost after the minimum value has been reached in each case.  

This implies that the DM may have a choice between solutions that vary slightly in 



Univ
ers

ity
 of

 C
ap

e T
ow

n

208

cost, but have different values of unserved energy.  This is demonstrated using BASE 

in Figure 7-10 and Figure 7-11 below: 
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Figure 7-10 Relationship between total discounted system cost and total discounted unserved energy for 
BASE 
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Figure 7-11 Closer view of solutions near optimum in Figure 7-10 
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Figure 7-10 demonstrates that total discounted system cost can be decreased 

significantly by reducing the amount of unserved energy in the system up to a point.  

From that point decreasing unserved energy becomes more expensive as the 

investment and fixed O&M cost outweigh the avoided cost of unserved energy.  This 

said there may be a number of solutions near the optimum that have similar values of 

total discounted system cost, but with differences in the amount of total discounted 

unserved energy (as can be seen in Figure 7-11 for BASE).  This trade-off between 

total discounted system cost and the amount of unserved energy is discussed further in 

section 7.4.3. 

The reason for the differences in the values of Figure 7-8 and Figure 7-9 is that ALT 

11 has emission taxes on SO2 EQ emission and water consumption (PGPs).  Therefore 

in each iteration of the master and slave problems the taxes are considered in the 

optimisation.  This forced ALT 11 to invest in different technologies to BASE (as 

demonstrated in chapter 4 section 4.4.2).  As each new technology has a particular unit 

size and forced outage rate, if two plans have invested in different technologies they 

will require different levels of inflated demand to account for forced outage.  The 

magnitude of the difference between the levels of inflated demand required for each 

alternative is dependant on the extent to which the new and existing stations of those 

alternatives differ.  As the existing system is the same in both cases, the levels of 

inflated demand would be similar, even for alternatives that have significantly 

different investment strategies (such as BASE and ALT 11).  This is demonstrated in 

section 7.4.4 below.  Obviously for new systems where there is not a significant 

amount of existing capacity, the levels of inflated demand required to account for 

forced outage would be almost entirely dependant on the new technologies built.  

Therefore in that case, the levels of inflated demand would have to be calculated 

separately for each alternative. 

The “bumps” (slight oscillations) in Figure 7-9 and to a lesser degree in Figure 7-8 are 

due to the fact that the methodology used here increases the demand in each year 

where the criterion is not met, however, by increasing the demand in year n, year n+1 

is also affected as the capacity added in year n would still be in the system in year n+1

and therefore increasing the demand in year n+1 may not be necessary.  This could be 

avoided by only increasing demand in the first year where the convergence criterion is 



Univ
ers

ity
 of

 C
ap

e T
ow

n

210

not met, however this would result in many more iterations being needed to find the 

optimal inflated demand for the system and therefore far greater computing time.    

The modeller should be aware of this possibility and the results should be checked for 

the characteristic “bumps”10. 

7.4.3. COST VS. UNSERVED ENERGY TRADE-OFF

As mentioned above in section 7.4.2, there may be a number of solutions near the 

optimum that have similar values of total discounted system cost, but with differences 

in the amount of total discounted unserved energy.  A range of solutions were selected 

from Figure 7-8 and Figure 7-11 (shown using red circles) to demonstrate the 

relationship between unserved energy and total discounted system cost and the trade-

off that the DM is faced with. The probability density functions for total discounted 

system cost of these solutions are shown below:  
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Figure 7-12 Probability density functions for total discounted system cost (BASE) 

From Figure 7-8 above it could be seen that Plan 9 has the lowest average total 

discounted system cost (216.4 bZAR), however from Figure 7-12 it can be seen that 

                                                
10 “Bumps” can also be caused by the size of the modular constraints imposed on the model by using 
mixed integer programming relative to the magnitude of the demand and size of the model (in terms of 
the total capacity required to meet the demand). 
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this plan has a wide spread or relatively low probability of achieving its average value.  

This occurs because Plan 9 has a relatively low investment cost component and a 

relatively high unserved energy cost component compared Plan 10 and Plan 14 (see 

Table 7-8 in Appendix D for detailed unserved energy results).  This causes Plan 9 to 

be extremely sensitive to the amount of unserved energy in the system and therefore it 

has very high costs for the slave runs when there is a large amount of unserved energy 

and very low costs when there is little unserved energy. 

In contrast to Plan 9, Plan 14 has a higher average cost (217.4 bZAR, 0.45 % higher 

than Plan 9), but also has a much higher probability of achieving this cost due to a 

significantly lower unserved energy component.  This means that this plan is less risky 

in terms of unserved energy than Plan 9 but will on average have a higher cost due to 

increased investment into generating technologies.  Plan 10 has the highest average 

cost (217.8 bZAR) of the three plans as well as a wide spread, and would therefore be 

an inferior choice. 

      

These results demonstrate the trade-off between unserved energy and total discounted 

system cost.  Presenting this information to the DM allows for an informed choice to 

be made as to the inflated demand level required to ensure acceptable levels of risk 

towards unserved energy.  Once an acceptable solution has been identified taking the 

trade-off between total discount system cost and unserved energy into account, the 

inflated demand level used to generate those solutions can be identified.  This is 

demonstrated using Plan 14. 
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7.4.4. ANALYSIS OF SELECTED SOLUTIONS

The inflated demand level corresponding to Plan 14 from BASE is shown in Table 7-4 

below.  This demand level was then run in the model with the PGPs used to generate 

ALT 11 to determine the effect of using the inflated demand level obtained from the 

base case in an alternative generated to better satisfy non-cost objectives.  Using the 

same inflated demand levels does not necessarily imply that the reserve margin would 

be the same for the two alternatives in every year, as reserve margin is calculated by 

equation 7.2 (shown in section 7.1).   

As the availability of the power stations is not explicitly taken into account in the 

reserve margin calculation, two alternatives generated using the same inflated demand 

levels with different power stations would have different reserve margins due to the 

differences in the availabilities of the power stations.  The minimum reserve margin 

corresponding to the inflated demand in Table 7-4 is shown for the base case and ALT 

11 in Table 7-4: 
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Table 7-4 Table of demand level for master iteration corresponding to Plan 14 (BASE) 

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 
Inflated demand level (PJ) 

BASE 692 714 743 770 841 872 872 906 927 944 967 988 1003 1027 1050 1063 1077 1085 1093 1160 
Inflated demand level (% above actual demand level)

BASE 4.00% 4.00% 4.00% 4.00% 8.77% 10.41% 8.23% 9.87% 9.87% 9.32% 9.32% 9.32% 8.77% 9.32% 9.87% 9.32% 8.77% 7.70% 6.63% 9.87% 

Table 7-5 Table of reserve margin for master iteration corresponding to inflated demand levels from Plan 14 (BASE) 

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

BASE 29.47% 25.92% 22.56% 19.89% 17.46% 18.54% 17.05% 16.77% 16.40% 15.68% 14.54% 13.58% 14.87% 12.75% 14.43% 13.93% 13.02% 13.90% 15.33% 11.32% 

ALT 11 29.47% 25.92% 22.56% 19.89% 16.81% 18.63% 17.13% 17.11% 16.63% 14.14% 13.80% 13.56% 13.47% 13.53% 14.17% 14.04% 12.81% 13.38% 16.05% 12.22% 

Table 7-6 Table of average unserved energy for master iteration corresponding to inflated demand levels from Plan 14 (BASE) 

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Total 
discounted 
unserved 
energy 

Unserved energy (GWh) 

BASE 0 0 0 0.1 1.7 2.1 3.2 4.0 2.4 2.2 1.6 2.1 1.5 0.7 3.0 0.8 6.2 1.1 0 3.6 16.1 

ALT 11 0 0 0 0.1 4.5 1.5 3.2 2.8 2.4 2.3 2.7 2.2 1.5 0.9 2.7 0.3 6.8 2.0 0 4.2 18.1 
Unserved energy (% of actual demand)

BASE 0 % 0 % 0 % 0.000% 0.001% 0.001% 0.001% 0.002% 0.001% 0.001% 0.001% 0.001% 0.001% 0.000% 0.001% 0.000% 0.002% 0.000% 0 % 0.001% 

ALT 11 0 % 0 % 0 % 0.000% 0.002% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 0.000% 0.001% 0.000% 0.002% 0.001% 0 % 0.001% 
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It can be seen from Table 7-4 above that the % above actual demand level is not the 

same for each year in the time horizon.  It starts off at 4 % (being the starting value of 

the procedure) and only begins to increase in 2006 when additional capacity is needed 

to account for increasing demand and plant outage.  In years prior to 2006 there is 

enough excess capacity in the system to account for plant outage.  It can also be seen 

that the highest values for the % above actual demand level is 10.41 % in 2007. 

Table 7-5 demonstrates that the reserve margin starts off very high in 2002 for both 

alternatives (29.47 %).  This is due to the excess capacity in the system.   The reserve 

margin drops gradually for both alternatives across the time horizon as demand 

increases.  Theoretically, the more plants there are in the system, the lower the 

required reserve margin, as the smaller the effect of individual units going out.  

Another important factor is the difference between supply and demand in a particular 

year, as excess supply will offset the effect of plant outage.  The reserve margin is 

very similar for both alternatives in almost every year in the time horizon.  The 

marginal differences are due to ALT 11 having emission taxes on SO2 EQ emission and 

water consumption and therefore investing in different technologies to BASE.   

Reserve margin reaches a minimum in year 2021 for both alternatives.  It must be 

noted that when using the inflated demand corresponding to Plan 14 for the base case, 

the reserve margin is above 11.32 % in every year in the time horizon.  Therefore 

using a minimum reserve margin of 10 % (as was done in the NIRP (NER et al., 

2004)) would not be sufficient to account for forced outage uncertainty for this 

system.   

The levels of inflated demand necessary to account for forced outage would not be the 

same across all DM preference situations, however due to the fact that the cost of 

unserved energy is very high, the situation where there would be large amounts of 

unserved energy would be avoided across most DM preference situations (see Table 7-

5).  Due to high cost of unserved energy combined with the fact that the existing 

system is the same for all the alternatives considered it is proposed that the levels of 

inflated demand obtained using the base case could be used to account for forced 

outage when generating solutions that better satisfy multiple objectives instead of 

repeating the master-slave procedure for each alternative.   
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In order to test this hypothesis the inflated demand levels for three solutions generated 

in BASE (Plan 9, Plan 10 and Plan 14) were run in the model with the PGPs used to 

generate ALT 11 (noting that these alternatives resulted in significantly different 

investment strategies – see chapter 4 section 4.4.2).  The results are demonstrated in 

Figure 7-13 below: 
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Figure 7-13 Probability density functions for total discounted system cost (ALT 11) 

It can be seen in Figure 7-13 that using the inflated demand levels from Plan 9 of the 

base case yields the lowest average cost of 444.9 bZAR, which is almost identical to 

the cost of the solution in Figure 7-9 that achieves the lowest total discounted system 

cost.  As in the base case (shown in Figure 7-12 above) this solution has a wide spread 

of costs or relatively low probability of achieving its average value due to the 

relatively low investment cost component and a relatively high unserved energy cost 

component of this solution.   

Using the inflated demand levels from Plan 14 of the base case resulted in a slightly 

higher average cost (445.8 bZAR, 0.21 % higher than Plan 9) but also had a narrower 

spread and higher probability of achieving its average value due to the higher 

investment cost component.  This solution is therefore is less risky in terms of 
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unserved energy than Plan 9 but will on average have a higher cost due to increased 

investment into generating technologies.  From Table 7-6 it can be seen that the 

amount of unserved energy when using this level of inflated demand for ALT 11 

closely resembled that of the base case.  Plan 10 once again has the highest average 

cost (451.8 bZAR) of the three plans as well as a wide spread, and would therefore be 

an inferior choice. 

It must be noted that this approach does not guarantee that there will not be any 

unserved energy in system.  It only attempts to model forced outage in such a way so 

that it may be integrated correctly into the planning process. This methodology is 

sensitive to the cost of unserved energy.  However, the cost of unserved energy should 

be sufficiently high to avoid investment into power stations that are run at 

unreasonably low load factors.   That said the results in Table 7-8 and Table 7-10 in 

Appendix D confirm that unserved energy decreases as inflated demand increases and 

more generating capacity is invested in.   

Comparing the cost and unserved energy distributions of ALT 11 and the base case for 

the inflated demand levels corresponding to the plans shown above demonstrate that 

the levels of inflated demand obtained using the master-slave approach in base case 

can be used to account for forced outage when generating solutions that better satisfy 

multiple objectives instead of repeating the master-slave procedure for each 

alternative.  If however the distribution of unserved energy was found to be 

unacceptable for a preferred alternative, the demand level could be inflated (thereby 

increasing the amount of investment for that alternative) until an acceptable solution 

was obtained using the methodology presented in this chapter. 
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7.5. CONCLUSIONS

Demand can be modelled both chronologically and in high resolution such that both 

the frequency and duration of forced outage can be adequately represented, all within 

a multi-objective framework with a comprehensive analysis of system wide 

uncertainty. 

Using sampling methods to represent uncertainty in plant operation within an 

operational slave-problem is an efficient method for feedback into the investment 

master-problem.  Plant outage and unserved energy can be adequately represented for 

a national system such as the South African ESI using 150 (or less) model runs in the 

slave-problem, and the level of inflated demand corresponding to the minimum total 

discounted system cost can be found in less than 10 iterations of the master-problem. 

Given the size of the South African ESI, and the number of technologies considered in 

this study, the number of iterations needed to find the minimum reserve margin 

corresponding to the minimum total discounted system cost for other national systems 

should be similar (unless many more technologies options were included in the 

model).  The number of iteration of the master-problem could be reduced by probing 

the solution space using larger steps and/or using a starting point closer to the 

minimum reserve margin corresponding to the minimum total discounted system cost. 

Using unserved energy as a convergence criterion between the master and slave

problems for each year in the time horizon is an effective method for exploring the 

solution space and identifying the levels of inflated demand required to account for 

forced outage.  This method also highlights the trade-off between unserved energy and 

total discounted system cost, allowing the decision maker to make an informed choice 

around this trade-off.   

The optimal inflated demand level varies little with DM preferences as unserved 

energy is minimised due to the high cost of unserved energy and the fact that the 

existing system is the same for all the alternatives generated.  Therefore the master-

slave routine used to determine the optimal level of inflated demand needed for each 
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year in the time horizon can be carried out on the base case, and then used to generate 

further alternatives satisfying a range of DM preferences using the methodology 

presented in chapter 4.  In this way forced outage uncertainty can be integrated into 

the multi-objective framework presented in this thesis without having to do large 

numbers of model runs for each alternative.  If however the distribution of unserved 

energy for the preferred alternative was found to be unacceptable by the DM, the level 

of investment for that alternative could be increased using the methodology presented 

in this chapter.  
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7.6. APPENDIX D 
Table 7-7 Inflated demand levels and cost for master-slave procedure (BASE) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Actual demand (PJ) 666 687 715 740 773 789 806 825 844 863 885 904 922 939 956 972 990 1008 1025 1055  

Inflated demand level (PJ) 
 - iteration no.                                         

Average 
total 

discounted 
system 

cost 

1 692 714 743 770 804 821 838 858 878 898 920 940 959 977 994 1011 1030 1048 1066 1098 242.0 

2 692 714 743 770 808 825 842 862 882 902 925 944 964 982 999 1016 1035 1053 1072 1103 239.0 

3 692 714 743 770 812 829 847 866 887 907 929 949 968 986 1004 1021 1040 1059 1077 1109 232.1 

4 692 714 743 770 816 833 851 871 891 911 934 954 973 991 1009 1026 1045 1064 1082 1114 226.3 

5 692 714 743 770 820 838 855 875 896 916 939 959 978 996 1014 1032 1051 1069 1088 1120 219.5 

6 692 714 743 770 824 842 859 879 900 921 943 963 983 1001 1019 1037 1056 1075 1088 1125 218.9 

7 692 714 743 770 828 846 864 884 905 925 948 968 988 1006 1024 1042 1061 1080 1093 1131 218.6 

8 692 714 743 770 833 850 868 888 909 930 953 973 993 1011 1029 1047 1061 1080 1093 1137 216.6 

9 692 714 743 770 837 854 872 893 914 934 958 978 993 1011 1034 1047 1066 1080 1093 1142 216.4 

10 692 714 743 770 841 859 872 897 918 934 962 983 998 1016 1039 1052 1072 1085 1093 1148 217.8 

11 692 714 743 770 841 863 872 902 918 939 962 983 998 1016 1045 1058 1077 1085 1093 1148 217.6 

12 692 714 743 770 841 867 872 902 923 944 967 988 1003 1016 1050 1058 1077 1085 1093 1148 217.5 

13 692 714 743 770 841 872 872 906 927 944 967 988 1003 1021 1050 1063 1077 1085 1093 1154 217.5 

14 692 714 743 770 841 872 872 906 927 944 967 988 1003 1027 1050 1063 1077 1085 1093 1160 217.2 

15 692 714 743 770 841 872 872 906 927 944 967 988 1003 1027 1050 1063 1083 1085 1093 1160 217.8 

16 692 714 743 770 849 880 881 915 937 953 977 998 1008 1032 1060 1068 1093 1091 1093 1171 220.2 

17 692 714 743 770 854 885 886 920 941 953 977 998 1008 1032 1060 1068 1099 1091 1093 1171 220.7 

18 692 714 743 770 858 885 890 920 941 953 977 1003 1013 1032 1060 1068 1104 1096 1093 1177 222.1 

19 692 714 743 770 862 885 894 920 941 953 977 1003 1013 1032 1060 1068 1104 1096 1093 1177 221.9 

20 692 714 743 770 862 885 899 920 941 953 977 1003 1013 1032 1060 1068 1104 1096 1093 1183 222.4 

21 692 714 743 770 862 885 903 920 941 953 977 1003 1013 1032 1066 1068 1104 1096 1093 1183 222.7 

22 692 714 743 770 862 885 908 920 941 953 977 1003 1013 1032 1071 1074 1110 1096 1093 1183 224.1 

23 692 714 743 770 862 885 908 920 946 953 977 1003 1013 1032 1071 1074 1110 1096 1093 1183 225.2 

24 692 714 743 770 862 885 912 920 946 953 982 1003 1013 1037 1071 1074 1110 1096 1093 1183 223.7 

25 692 714 743 770 862 885 912 920 946 953 982 1003 1018 1037 1071 1079 1110 1096 1093 1183 231.6 
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Table 7-8 Unserved energy data for master-slave procedure (BASE) 
Average unserved energy 

(GWh)                                           

Iteration 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Average 
total 

discounted 
unserved 
energy 

1 0 0 0 0.1 7.0 16.8 32.6 94.9 99.0 73.5 92.1 96.2 81.6 105.5 125.3 97.6 107.4 96.5 21.4 118.2 501.5 

2 0 0 0 0.1 7.0 16.8 32.6 92.5 93.8 85.1 92.0 95.9 66.4 88.2 85.8 72.7 84.1 73.8 26.3 116.5 457.2 

3 0 0 0 0.1 7.0 16.8 32.6 78.7 65.5 58.2 62.3 73.7 51.9 61.3 77.3 49.4 61.1 49.6 10.5 34.4 335.0 

4 0 0 0 0.1 7.0 16.8 32.6 71.3 48.4 44.8 47.8 51.1 44.8 38.7 55.8 26.1 45.9 33.5 6.7 58.3 268.3 

5 0 0 0 0.1 7.0 16.3 31.5 41.5 31.3 22.0 31.6 21.9 20.9 16.5 20.2 9.1 15.1 19.1 3.2 28.0 153.2 

6 0 0 0 0.1 7.0 15.9 21.3 37.7 25.7 17.2 26.2 13.0 12.8 19.5 26.3 14.9 26.2 18.3 3.3 25.1 136.8 

7 0 0 0 0.1 7.0 13.6 17.0 23.5 17.9 10.4 18.0 16.4 12.7 13.7 20.5 2.6 2.7 3.7 0 7.7 90.6 

8 0 0 0 0.1 6.7 10.9 8.9 11.4 11.2 8.4 6.4 6.5 1.0 1.4 7.7 1.0 9.2 2.9 0 6.3 49.5 

9 0 0 0 0.1 6.7 6.7 3.5 4.2 5.3 2.4 4.4 6.0 5.5 6.6 6.6 7.3 13.3 15.3 2.2 9.1 42.7 

10 0 0 0 0.1 2.3 4.3 4.5 5.6 3.3 3.7 2.9 1.9 1.4 2.2 5.1 3.4 6.1 2.3 0 2.2 23.6 

11 0 0 0 0.1 2.3 3.4 3.8 4.5 4.3 4.2 3.1 4.1 3.4 1.5 3.4 1.2 1.2 1.1 0 2.6 21.4 

12 0 0 0 0.1 3.2 3.7 5.2 5.0 4.2 0.8 0.7 2.2 1.0 5.1 3.2 2.5 4.6 2.8 0 7.3 23.0 

13 0 0 0 0.1 2.4 2.0 3.2 3.8 2.8 0 0.7 2.2 0.4 2.8 1.7 0 5.7 1.0 0 6.2 15.2 

14 0 0 0 0.1 1.7 2.1 3.2 4.0 2.4 2.2 1.6 2.1 1.5 0.7 3.0 0.8 6.2 1.1 0 3.6 16.1 

15 0 0 0 0.1 1.7 1.4 2.1 2.5 1.4 0.7 0.6 0.9 0.3 0.9 1.6 1.0 2.3 1.0 0 1.3 9.4 

16 0 0 0 0.1 1.0 0.8 1.7 1.7 1.0 0 0.3 0.5 0 0 0.7 0 0.8 0 0 0.1 4.8 

17 0 0 0 0.1 1.1 0.7 2.0 1.1 0.4 0 0 0.9 0.2 0 0.3 0 0.6 0.7 0 1.6 4.8 

18 0 0 0 0.1 0.5 0.7 1.5 1.3 0.7 0 0.2 0.2 0 0 0.6 0 0.1 0 0 0.2 3.4 

19 0 0 0 0.1 0.5 0.7 1.2 1.0 0.4 0 0.3 0.7 0.2 0 0.7 0 0 0.1 0 0.7 3.3 

20 0 0 0 0.1 0.5 0.7 1.1 1.2 0.6 0 0.2 0.1 0 0 1.4 0.1 0 0 0 0 3.2 

21 0 0 0 0.1 0.5 0.7 1.0 1.3 0.7 0 0.2 0.3 0 0 0.7 0.8 0.5 0 0 0 3.4 

22 0 0 0 0.1 0.5 0.7 0.6 1.2 0.7 0 0 0.7 0 0.1 0.1 0 0 0 0 0 2.7 

23 0 0 0 0.1 0.5 0.7 0.6 1.2 0.4 0 0.4 0.7 0.2 0.3 0.2 0 0.3 0.2 0 0.4 3.1 

24 0 0 0 0.1 0.5 0.3 0.3 1.1 0.7 0 0 0.7 0.4 0.1 0.4 0.4 0.2 0.1 0 0.1 2.6 

25 0 0 0 0.1 0.5 0.7 0.5 1.0 0.4 0.1 0.1 0.7 0 0 0.3 0 0 0 0 0 2.5 
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Table 7-9 Inflated demand levels and cost for master-slave procedure (ALT 11) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021   

Actual demand (PJ) 666 687 715 740 773 789 806 825 844 863 885 904 922 939 956 972 990 1008 1025 1055   

Inflated demand level (PJ)  
- iteration no.                                         

Average 
total 

discounted 
system 

cost 

1 692 714 743 770 808 825 842 862 882 902 925 944 964 982 999 1016 1035 1053 1072 1103 465.4 

2 692 714 743 770 812 829 847 866 887 907 929 949 968 986 1004 1021 1040 1059 1077 1109 462.2 

3 692 714 743 770 816 833 851 871 891 911 934 954 973 991 1009 1026 1045 1064 1082 1114 455.7 

4 692 714 743 770 820 838 855 875 896 916 939 959 978 996 1014 1032 1051 1069 1088 1120 453.1 

5 692 714 743 770 824 842 859 879 900 921 943 963 983 1001 1019 1037 1056 1075 1093 1125 448.9 

6 692 714 743 770 828 846 864 884 905 925 948 968 988 1006 1024 1042 1061 1080 1099 1131 451.4 

7 692 714 743 770 833 850 868 888 909 930 953 973 993 1011 1029 1047 1066 1085 1104 1131 446.3 

8 692 714 743 770 837 854 872 893 914 934 958 978 998 1016 1034 1052 1072 1091 1110 1137 445.8 

9 692 714 743 770 841 859 877 897 918 939 962 983 1003 1021 1039 1058 1077 1096 1110 1142 444.9 

10 692 714 743 770 845 863 877 897 918 944 967 988 1008 1021 1045 1058 1083 1102 1110 1148 445.6 

11 692 714 743 770 849 867 881 897 918 949 972 988 1008 1021 1050 1058 1083 1102 1110 1148 448.2 

12 692 714 743 770 849 867 881 897 918 949 972 988 1008 1021 1050 1058 1083 1102 1110 1154 448.0 

13 692 714 743 770 849 872 886 902 918 949 972 988 1008 1021 1050 1058 1083 1102 1110 1160 444.9 

14 692 714 743 770 849 872 886 906 923 949 972 988 1008 1021 1050 1058 1083 1102 1110 1160 448.3 

15 692 714 743 770 854 876 890 911 927 953 977 993 1013 1021 1055 1063 1088 1107 1110 1165 448.9 

16 692 714 743 770 858 876 894 915 932 953 977 998 1018 1027 1060 1063 1093 1113 1110 1171 450.7 

17 692 714 743 770 862 876 899 915 937 953 977 998 1018 1027 1060 1063 1093 1113 1110 1177 449.0 

18 692 714 743 770 862 876 903 915 941 953 977 1003 1023 1032 1060 1068 1099 1113 1110 1177 450.2 

19 692 714 743 770 862 876 908 915 946 953 982 1003 1023 1032 1060 1068 1099 1113 1110 1183 451.9 

20 692 714 743 770 862 876 908 915 946 953 982 1008 1023 1032 1060 1068 1104 1113 1110 1183 454.7 

21 692 714 743 770 862 876 908 915 946 953 982 1008 1023 1032 1060 1068 1104 1113 1110 1189 450.8 

22 692 714 743 770 862 876 908 915 946 953 982 1008 1023 1032 1066 1074 1110 1113 1110 1189 452.7 

23 692 714 743 770 862 876 908 915 946 953 982 1008 1023 1032 1071 1074 1110 1113 1110 1195 453.0 

24 692 714 743 770 862 880 908 915 946 953 987 1008 1023 1032 1076 1074 1110 1113 1110 1195 452.5 

25 692 714 743 770 862 880 912 915 946 953 987 1008 1023 1032 1076 1074 1110 1113 1110 1195 454.5 
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Table 7-10 Unserved energy data for master-slave procedure (ALT 11) 
Average unserved energy 

 (GWh)                                           

Iteration 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Average 
total 

discounted 
unserved 
energy 

1 0 0 0 0.1 7.0 14.6 27.6 61.8 59.9 101.2 90.4 84.2 61.3 56.0 77.8 75.5 87.3 75.7 17.0 96.7 397.4 

2 0 0 0 0.1 6.9 14.6 22.2 71.7 58.5 39.7 42.1 63.3 58.5 81.7 84.7 52.7 64.7 69.5 16.1 86.0 329.3 

3 0 0 0 0.1 6.9 12.2 20.3 50.9 39.8 60.6 52.0 49.4 44.9 30.9 48.2 31.3 50.8 54.9 12.3 66.8 256.7 

4 0 0 0 0.1 6.6 12.2 19.9 56.2 30 17.3 22.1 33.0 31.0 30 37.9 33.2 42.9 36.8 8.6 44.6 189.6 

5 0 0 0 0.1 5.9 11.3 6.9 25.9 24.4 21.0 30.2 21.9 20.7 5.4 25.1 12.6 19.2 21.4 4.1 31.4 121.0 

6 0 0 0 0.1 5.2 10.6 17.7 29.0 17.9 7.1 13.0 15.2 13.6 17.2 22.4 12.2 18.7 14.0 7.5 6.2 100.7 

7 0 0 0 0.1 4.1 10.5 8.5 17.9 12.3 5.9 8.8 12.7 9.8 10.9 19.2 7.8 12.6 10.4 4.6 25.3 75.5 

8 0 0 0 0.1 4.5 6.2 8.0 15.5 7.0 2.8 4.9 8.7 8.7 2.0 13.5 5.1 9.7 7.8 2.8 20.3 53.6 

9 0 0 0 0.1 4.2 3.2 1.7 2.5 4.2 4.1 4.9 4.1 3.6 0 8.9 2.2 7.1 3.6 0 9.2 26.6 

10 0 0 0 0.1 3.6 2.7 4.7 3.1 3.6 3.2 3.3 2.4 0.2 0 3.7 0.7 3.4 1.1 0 4.3 19.2 

11 0 0 0 0.1 1.8 1.4 1.1 2.7 4.3 0.5 0.2 0.3 0 0 0.6 0 3.2 3.5 0 5.5 10.8 

12 0 0 0 0.1 1.4 3.1 4.7 5.3 3.4 0.7 0.2 1.6 2.3 0.9 3.4 1.2 3.3 1.6 0 9.2 18.5 

13 0 0 0 0.1 2.4 1.8 2.5 7.9 6.5 0 1.4 2.2 0.2 0.8 3.0 0.2 5.7 2.0 0 5.3 19.2 

14 0 0 0 0.1 2.4 1.8 2.5 2.5 3.9 0.4 2.0 1.6 1.2 0.2 3.0 0.5 5.8 1.5 0 2.5 14.4 

15 0 0 0 0.1 0.7 0.4 1.7 2.4 3.5 0.5 0.2 1.1 2.4 1.1 2.9 0.4 2.1 0.6 0 4.2 10.2 

16 0 0 0 0.1 0.5 0.3 0.9 1.0 0.9 0 0 0 0 0 0.2 0 0.2 0.2 0 1.0 2.7 

17 0 0 0 0.1 0.5 0.3 0.2 0.8 1.4 0.3 0 1.1 1.2 0.7 1.2 2.1 0.6 0.2 0 0.3 4.7 

18 0 0 0 0.1 0.5 0.3 0.8 1.3 1.1 0 1.1 0 0.1 0 0.1 0 0 0.2 0 1.7 3.5 

19 0 0 0 0.1 0.5 0.4 0 0.4 0.6 0 0.1 0.2 0.4 0 0.4 0 2.0 0 0 0.4 2.3 

20 0 0 0 0.1 0.5 0.4 0 0.4 0 0 0 0 0 0 0.1 0 0.2 0.1 0 1.8 1.4 

21 0 0 0 0.1 0.5 0.4 0 0.7 0.6 0 0.3 0.1 0.1 0.3 2.2 0.3 1.3 0 0 0.1 3.0 

22 0 0 0 0.1 0.5 0.3 0 0.8 0.6 0 0 0 0 0 0.4 0 0.7 0 0 1.0 2.0 

23 0 0 0 0.1 0.5 0.7 0 0.5 0 0 0.5 0 0 0.3 0.8 0 0.8 0 0 0 2.1 

24 0 0 0 0.1 0.5 0.3 0.4 0.7 0.7 0 0 0 0 0 0 0 0.6 0 0 0 1.8 

25 0 0 0 0.1 0.5 0.3 0 0.4 0.6 0 0 0 0 0 0 0 0.4 0 0 0.4 0 
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CHAPTER 8       OUTLINE OF OVERALL METHODOLOGY AND CONCLUSIONS

8.1. INTRODUCTION

This chapter outlines the overall methodology for comprehensively integrating multiple 

objectives and uncertainty into ESI investment planning which has been developed in this 

thesis.   

It will then reiterate the hypotheses presented in chapter 1 and relate the conclusions 

drawn from each chapter of this thesis in light of the hypotheses.  The aim of this chapter 

is thus to provide a clear overview of this methodology as a whole.  Finally, some 

recommendations for further work will be made. 

  

8.2. OVERVIEW OF METHODOLOGY AND CONCLUSIONS

Appropriate Energy-Environment-Economic (E3) modelling provides key information 

for policy makers in the Electricity Supply Industry (ESI) faced with navigating a 

sustainable development path in both centrally planned, regulated markets as well as fully 

deregulated markets.  Key challenges include engaging with stakeholder values and 

preferences, and exploring trade-offs between competing objectives in the face of 

underlying uncertainty as well as preserving the transparency of the decision process. 

With this in mind the ESI problem can be broken down into two main phases, each with 

various inputs and outputs.  The generation phase is where optimal solutions are 

generated in energy modelling frameworks to meet a projected electricity demand within 

a set of technical and practical constraints.  A subsequent “alternative or selection” phase 

identifies preferred alternatives from within the set generated, based on DM preference 

information.  Both of these phases can be explored against a set of policy making 

objectives, and both contain inherent uncertainties which relate to aspects of model 

definition, empirical quantities as well as valuation arguments. Figure 8-1 below outlines 

a representation of the ESI modelling problem.   
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Options generator
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Alternatives
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robustness analysis

Detailed analysis

Preferred options
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Figure 8-1 Flowchart representation of the ESI modelling problem 
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8.2.1. GENERATION FOR MULTIPLE OBJECTIVES UNDER UNCERTAINTY

Hypothesis 1:  Multiple objectives representing policy maker preferences can be 

integrated into existing single objective energy modelling frameworks. 

The initial research of this thesis aimed at developing a transparent methodology for the 

generation of solutions within an ESI modelling framework that considers multiple 

objectives, and includes aspects of flexibility to demand growth uncertainty into each 

solution.   

The first step in the proposed modelling process was to develop a base case or “business 

as usual” scenario.  A complete supply-side representation (including all costs and 

emissions coefficients) of all existing power stations in the system, as well as a range of 

technology options for future stations was compiled based mainly on the NIRP (NER et 

al., 2004).  The base case scenario was then simply a least cost optimised solution for the 

represented power system attempting to meet the projected demand within the constraints 

defined by the modeller. 

Once the optimal inflated demand level (corresponding to the minimum reserve margin 

required in the system to account for forced outage) had been calculated using the base 

case (see chapter 7), a range of alternatives could be generated to satisfy multiple 

objectives to varying degrees.  This was done using a partial equilibrium framework 

which was extended to include multiple environmental objectives through the addition of 

Pareto Generation Parameters (PGPs) introduced into the optimisation in the form of cost 

penalties.  This forces the optimisation routine to find solutions that attempt to satisfy 

multiple objectives.  It is an efficient method for extending the analysis to multiple 

objectives as the solutions generated are non-dominated and are generated from ranges of 

performances in the various criteria rather than from arbitrarily forcing the selection of 

particular technologies.  Extensive sections of the non-dominated solution space can be 

generated and later screened to allow further, more detailed exploration of areas of the 
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solution space.  MARKAL was chosen at the time this work was done as the framework 

to demonstrate this methodology, due to its wide usability, its capacity to include taxes on 

emissions as well as the two-stage stochastic recourse programming module available for 

this software. 

Hypothesis 2:  Flexibility towards future uncertainties can be built into each optimal 

solution for multiple objectives. 

This work has also demonstrated that this analysis can be extended to include uncertainty 

in demand growth through stochastic programming with recourse.  By splitting new 

power station investments into owner’s development costs and equipment procurement 

and construction phases, the concept of technology lead times can be accounted for in 

light of a decision node in the time horizon.  The hedging that is done in the recourse 

programming is automatically translated from purely financial to include whatever 

attributes the PGPs represent, due to the cost penalties that the PGPs impose on the 

solutions.  The hedged solutions improve on the naïve solutions under the multiple 

criteria considered as well as better satisfy the non-cost objectives relative to the base 

case. 

This methodology provides a framework for policy makers to generate a solution set for 

the power expansion problem that represents a range of solutions that each satisfies 

multiple objectives to a varying extent. The solutions also have built-in flexibility to 

demand growth uncertainty.  The set of solutions generated in this manner can be used as 

part of a transparent decision making process in which policy maker preferences can 

ultimately inform the selection of a preferred solution.  They also give policy makers an 

indication of the appropriate market signals necessary to influence the market towards a 

preferred state.  This would be done retrospectively from the preferred solutions, through 

an analysis of the PGP values used to generate those solutions. 
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8.2.2. SELECTION FOR MULTIPLE OBJECTIVES UNDER UNCERTAINTY

Hypothesis 3:  A comprehensive analysis of uncertainty can be integrated into the multi-

objective selection phase to find robust solutions that best satisfy the multiple objectives 

chosen. 

A Multi attribute value theory (MAVT) coupled with a sensitivity/robustness approach 

was developed in chapter 4 to address some of the uncertainties inherent in power 

expansion modelling.  This methodology was used to explore the robustness and 

sensitivity of each power expansion alternative to different types of uncertainty at various 

levels of aggregation, from partial value functions representing individual attributes, to 

the overall value function which represents the decision maker preferences to the criteria 

chosen, through a continuous analysis of uncertainty.   

The Weighting sensitivity diagrams representing inter-criterion preferences display 

valuable information regarding the stability of the rank order, given a range of preference 

weightings for each of the decision criteria.  This continuous analysis of uncertainty 

could be used to increase stakeholder confidence in the results and to determine the 

sensitivity of the rank order to DM preference information.  It can thus be used to identify 

where further information may be required to improve confidence in the results. 

Frequency tables generated based on the comparison of each alternative across a sample 

of discrete futures yield information regarding the credibility of alternatives in the rank 

with respect to the technical empirical uncertainties considered.  While a continuous 

evaluation of uncertainty can provide useful information as to the likely ranges in 

attribute performance for each alternative, a discrete evaluation of uncertainty can yield 

insight into the distinguishability of alternatives for particular and specific futures. 

This approach was also used to elicit the regret associated with each alternative by 

evaluating the spread of each alternative across the rank order.  It was then used to isolate 
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portfolios of alternatives with specified minimum levels of performance in terms of rank 

or attribute performance and credibility levels.  

Focusing only on alternatives that achieve the preferred rank may exclude important 

alternatives from the portfolio set and therefore from detailed analysis and final selection.  

Using a portfolio approach and focussing on a greater range in rank than just the 

preferred alternative increases the robustness of the selection process by reducing the 

effect of uncertainty around DM preferences and technical empirical parameters allowing 

for a less intensive uncertainty analysis to be done prior to the detailed analysis of 

preferred alternatives. 

A more detailed analysis of the reduced solution set was done, examining short term 

technology investment details and the attribute performance information.  This analysis 

provided additional insight into the decision problem in terms of the actual technology 

choices being made, which could then be related back to real life actions.  More 

specifically, the case study in chapter 5 highlighted that decisions relating to technology 

investment may need to be made even within a preferred set of alternatives with similar 

overall value scores and similar rank and credibility information.  In a case such as this, 

the stakeholders would have to re-evaluate their preferences in relation to the specific 

trade-offs at hand such that a preferred alternate can be identified.  Conversely, this case 

study also demonstrated that it is possible for the initial short term investments for 

different alternatives in a portfolio of preferred alternatives to be so similar as to not 

require any major decision in differentiating the alternatives for implementation.  The 

dominant effect that DM preference information has on the alternatives that enter the 

portfolio set was also demonstrated in the case study. 
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8.2.3. NORMALISING ATTRIBUTE SCORES 

Hypothesis 4:  Normalising attribute scores using a standard 0-1 value range can lead to 

an effective weighting bias due to inflated minima or maxima. 

Using pseudo-minima and maxima to normalise attribute performance scores with a 

modified indifference weighting approach to articulate DM preferences reduces effective 

weighting biases by reducing the artificial inflation or deflation of value function scores 

based on improbable values.  Differences can be seen in the lower rank order of 

alternatives when comparing this method with the standard method of normalisation. 

8.2.4. THE RELATIVE EFFECT OF SPECIFIC UNCERTAINTIES ON THE RANKING AND 

PERFORMANCE OF EXPANSION ALTERNATIVES

Hypothesis 5:  An analysis of the effects of using different approaches to dealing with 

technical empirical uncertainty can give insight into the relative importance of different 

uncertain parameters and the relative value of the approaches in light of this.  

Integrating technical empirical uncertainty into the generation phase as opposed to the 

selection phase resulted in minor differences in the overall performance results. 

The additional effort and complexity of doing a robustness analysis on technical 

empirical uncertainty in the generation phase as opposed to the selection phase may not 

be justified given that similar alternatives make up the portfolios of preferred alternatives 

using both methods and differences would mainly seen in the unstable sections of the 

weighting sensitivity diagram where uncertainty around DM preferences would have the 

greatest effect on results.    
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8.2.5. INTEGRATING PLANT AVAILABILITY UNCERTAINTY AND RESERVE MARGIN INTO THE 

MULTI -OBJECTIVE FRAMEWORK

Hypothesis 6: Plant availability uncertainty can be integrated into the multi-objective 

framework by finding the minimum required reserve margin for the system. 

It was shown in chapter 7 that demand could be modelled both chronologically and in 

high resolution such that both the frequency and duration of outage could be adequately 

represented, all within a multi-objective framework with a comprehensive analysis of 

system wide uncertainty. 

It was also shown that using sampling methods to represent uncertainty in plant operation 

within an operational sub-problem or slave-problem is an efficient method for feedback 

into the investment master problem.  Plant outage and unserved energy can be adequately 

represented for a national system such as the South African ESI using 150 (or less) model 

runs in the sub-problem, and the minimum reserve margin corresponding to the minimum 

total discounted system cost can be found in less than 10 iterations of the master problem.   

Given the size of the South African ESI, and the number of technologies considered in 

this study, the number of iterations needed to find the minimum reserve margin 

corresponding to the minimum total discounted system cost for other national systems 

should be similar (unless many more technologies options were included in the model).  

The number of iteration of the master-problem could be reduced by probing the solution 

space using larger steps and/or using a starting point closer to the minimum reserve 

margin corresponding to the minimum total discounted system cost.     

Using unserved energy as a convergence criterion between the master and slave problems 

for each year in the time horizon is an effective method for exploring the solution space 

and identifying the levels of inflated demand required to account for forced outage.  This 

method also highlights the trade-off between unserved energy and total discounted 



Univ
ers

ity
 of

 C
ap

e T
ow

n

233

system cost, allowing the decision maker to make an informed choice around this trade-

off.   

It was shown in chapter 7 that the optimal inflated demand level varies little with DM 

preferences as unserved energy is minimised due to the high cost of unserved energy and 

the fact that the existing system is the same for all the alternatives generated.  Therefore 

the master-slave routine used to determine the optimal level of inflated demand needed 

for each year in the time horizon can be carried out on the base case, and then used to 

generate further alternatives satisfying a range of DM preferences using the methodology 

presented in chapter 4.  In this way forced outage uncertainty can be integrated into the 

multi-objective framework presented in this thesis without having to do large numbers of 

model runs for each alternative.  If however the distribution of unserved energy for the 

preferred alternative was found to be unacceptable by the DM, the level of investment for 

that alternative could be increased using the methodology presented in chapter 7.   

8.3. CONCLUDING REMARKS

In summary, the research hypotheses have been met; a comprehensive framework that 

integrates multiple objectives and uncertainty into a transparent methodology that policy 

makers and planners can use to analyse and plan for investment in the ESI has been 

developed and demonstrated. 

This work has been focused on developing a methodology that can be practically used in 

the ESI in both centrally planned regulated markets and in fully deregulated markets from 

the perspective of a regulator or policy maker.  It has demonstrated how existing models 

and frameworks can be extended to account for multiple objectives and uncertainty and 

therefore the gap from research to practical application should not be overwhelming.  

That said modellers and planners have their own preferences and familiarities which may 

inhibit the adoption of new methodologies.   
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The benefits of comprehensively integrating multiple objectives and uncertainty into the 

planning process are significant.  For example; correctly planning for forced outage 

uncertainty can significantly reduce the probability of blackouts.  Poor environmental 

performance can be reduced by using a transparent methodology where decision makers 

are accountable for their choices and stakeholders outside of the decision making process 

can engage with those choices.   The benefits of presenting decision makers with relevant 

information in a framework that they can engage with and understand would influence 

the decisions being made dramatically.   

The gap between ESI modelling and policy making can lead to modellers focusing on 

issues that are not crucial to policy makers and policy makers making uninformed 

decisions due to lack of understanding of the technical issues.  This thesis is an attempt to 

bridge that gap, such that key information can be transferred between the modeller and 

the policy maker and multiple objectives and uncertainty can be accounted for in the 

decision making process in a transparent and comprehensive manner.  

This said the work done in this thesis could be extended in various directions.  Some of 

these possibilities are discussed briefly below: 

Chapter 4 presented and demonstrated a methodology for generating future expansion 

alternatives that satisfy multiple objectives to varying degrees and that have built in 

flexibility to demand growth uncertainty.  This type of analysis, done in partial 

equilibrium frameworks, has provided policy makers with the “perfect market” response 

to future scenarios that are valid for both regulated, centrally planned power markets, as 

well as for efficient fully deregulated markets (when planning from the perspective of a 

regulator).  Extending the methodology developed in this thesis to the perspective of an 

individual firm or investor in the market rather than from a global or regulatory 

perspective could be explored.  This extension would add value to individual firms as 

although they may have different objectives and decision criteria to regulators and policy 

makers; they face similar investment decisions as well as a range of uncertainties which 

affect those decisions.    



Univ
ers

ity
 of

 C
ap

e T
ow

n

235

The ranking and selection framework presented in chapter 5 provided DMs with a 

structured methodology with which they could identify preferred future expansion 

alternatives, given their preferences and uncertainty in both the technical empirical 

parameters and valuation model parameters in terms of their preferences.   This 

methodology was shown to be highly dependant on DM preferences and could therefore 

benefit through further research around the stakeholder preference elicitation process and 

the way in which stakeholders interact with the information they are given.  This would 

further increase stakeholder confidence in the results and add value to the overall 

methodology.  

Chapter 6 evaluated the value of integrating technical empirical uncertainty in the 

generation phase as opposed to the selection phase, given the computational, time and 

data burden of this approach.  It would be interesting to repeat the analysis in both the 

generation and selection phase using a model such as TIMES, where demand could be 

represented in higher resolution (as was done in chapter 7).  This would allow for more 

sensitive optimisation of the power station load factors due to a greater number of time 

slices and therefore it is possible that greater differences would be seen between the two 

approaches.  

Chapter 7 developed a methodology for integrating forced outage uncertainty into the 

multi-objective framework of this thesis.  This was demonstrated using a single node, 

national model.  Further research could be done looking at multi-nodal ESI systems and 

how transmission affects forced outage uncertainty.  In reality unserved energy does not 

occur simultaneously across an entire national network (rather occurring in parts of the 

network at one time).  Therefore extending the work done in chapter 7 to model 

electricity transmission between nodes that each has their own demand would increase 

the value of the analysis.  

As the electricity sector evolves and faces new problems, new methodologies will be 

developed.  As personal computing power continuously increases the models used will be 

become ever more complex.  Ultimately though, decisions are made by human beings 

with changing preferences, different ideals and opposing visions of where the future 
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should go.  The closer the gap between energy model and policy maker, the greater the 

chances of a sound plan being implemented.  The more transparent the decision making 

methodology, the closer the gap between the policy maker and society. 
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