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Abstract 
It is hypothesised that supervised machine learning on the estimated parameters output by a model 

for visually evoked potentials (VEPs), created by Kremlácek et al. (2002), could be used to classify 

steady-state visually evoked potentials (SSVEP) by frequency of stimulation. Classification of SSVEPs by 

stimulus frequency has application in SSVEP-based brain computer interfaces (BCI), where users are 

presented with flashing stimuli and user intent is decoded by identifying which stimulus the subject is 

attending to. We investigate the ability of the model of VEPs to fit the initial portions of SSVEPs, which 

are not yet in a steady state and contain characteristic features of VEPs superimposed with those of a 

steady-state response. In this process the estimated parameters, as a function of the model for a given 

SSVEP response, were found. These estimated parameters were used to train several support vector 

machines (SVM) to classify the SSVEPs. Three initialisation conditions for the model are examined for 

their contribution to the goodness of fit and the subsequent classification accuracy, of the SVMs. It was 

found that the model was able to fit SSVEPs with a normalised root mean square error (NRMSE) of 27%, 

this performance did not match the expected NRMSE values of 13% reported by Kremlácek et al. (2002) 

for fits on VEPs. The fit data was assessed by the machine learning scheme and generated parameters 

which were classifiable by SVM above a random chance of 14% (Range 9% to 28%). It was also shown 

that the selection of initial parameters had no distinct effect on the classification accuracy. Traditional 

classification approaches using spectral techniques such as Power Spectral Density Analysis (PSDA) and 

canonical correlation analysis (CCA) require a window period of data above 1 s to perform accurately 

enough for use in BCIs. The larger the window period of SSVEP data used the more the Information 

transfer rate (ITR) decreases. Undertaking a successful classification on only the initial 250 ms portions 

of SSVEP data would lead to an improved ITR and a BCI which is faster to use. Classification of each 

method was assessed at three SSVEP window periods (0.25, 0.5 and 1 s). Comparison of the three 

methods revealed that, on a whole CCA outperformed both the PSDA and SVM methods. While PSDA 

performance was in-line with that of the SVM method. All methods performed poorly at the window 

period of 0.25 s with an average accuracy converging on random chance - 14%. At the window period 

of 0.5 s the CCA only marginally outperformed the SVM method and at a time of 1 s the CCA method 

significantly (p<0.05) outperformed the SVM method. While the SVMs tended to improve with window 

period the results were not generally significant. It was found that certain SVMs (Representing a unique 

combination of subject, initial conditions and window period) achieved an accuracy as high as 30%. For 

a few instances the accuracy was comparable to the CCA method with a significance of 5%.  While we 

were unable to predict which SVM would perform well for a given subject, it was demonstrated that 

with further refinement this novel method may produce results similar to or better than that of CCA.  
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GLOSSARY 
Stimulus – Stimulus in the context of this research refers to a flashing light source, which is alternating 
at a known frequency. Specifically Checkerboard pattern SSVEP stimuli are used. 
 
Frequency of stimulation – This refers directly the frequency at which the presented stimulus is flashing 
 
Window-Period – Window period refers to the period from the initial stimulus presentation (0 s) to the 
specified window period. It is always considered to be from the 0 s point unless explicitly indicated.  
 
Model Parameters – These constitute a set of values of various parameters defined by the model in 
questions.  Such that the any signal generated by a set of given parameters can be linked directly to 
those parameters as a function of the model.   
 
Model Fit – The process of creating a synthetic signal, in this study an SSVEP response; which matches 
closely to a recorded signal.  
 
Parameter Estimation – The process whereby the model parameters are varied by some function to 
create a model fit.  
 
Goodness of fit – This is a metric which describes the error associated with a given model fit.  
 
Initial Parameters – Refer to the parameters which are used to initialise the model before a model fit by 
parameter estimation is conducted.  
 
Estimated Parameters – Refer to the parameter set generated when a model fit has been successfully 
completed by a parameter estimation process. These relate, along with some error, to the measured 
signal as a function of the model  
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Introduction 
 

This study aims to examine the use of a classification scheme for a time-domain model for use with brain 

computer interfaces (BCIs). Its purpose is to reduce the window period of data required to accurately 

classify a steady-state visually evoked potential (SSVEP) response, to increase the information transfer 

rate (ITR) of the BCI. Ideally one would like to classify an SSVEP from the first instance when the visually 

evoked potential (VEP) occurs under conditions that are practical for everyday use.  

Instead of using the normal pathways between the brain and the muscles to actuate a command on a 

computer, keyboard or similar electronic device, BCIs translate measurements of brain activity into 

commands (Figure 1-1). BCIs are valuable to people with severe motor disabilities that prevent them from 

communicating through other physical means. Examples include amyotrophic lateral sclerosis (ALS), 

brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular dystrophies, multiple sclerosis and 

various other diseases which either impair the neural pathways that control muscles or the muscles 

themselves (Wolpaw et al., 2008). 

 

Figure 1-1: The major components of a BCI system. User intent is determined by interpreting EEG activity induced 
by the subject’s attending a known stimulus. The EEG activity is then processed, classified and used as an input 
to control an external device (Hong et al., n.d.) 
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BCIs can use different types of brain activity measurement. These can include electroencephalography 

(EEG), functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), 

magnetoencephalography (MEG) or invasive EEG methods such as electrodes inserted directly into the 

brain (Allison et al., 2010). Of these, EEG recordings are most commonly used owing to their low cost, 

ease of portability and non-invasive nature (Allison et al., 2008).  

The EEG electrical activity that is chosen to drive a given BCI needs to be robust and repeatable in order 

to be classified. A person’s EEG signal offers many possibilities for encoding intent. Primarily, EEG activity 

can be correlated with actual or imagined movements or the stimulation of a person’s auditory or visual 

senses. The resulting event-related potentials (ERP) can be uniquely classified and used as input to a BCI 

(Wolpaw et al., 2002).  

Visually evoked potentials (VEP) – the electrical response to a visual stimulus – is one way of encoding 

user intent. Neurons in the visual cortex are highly sensitive to patterns and high-contrast images, which 

generate clear and distinct EEG waveforms when presented to subjects (Yoshimura & Itakura, 2011). VEPs 

can be modulated by varying the stimulus pattern, contrast or rate of display; they are present in all 

members of the population who have a functional visual nervous system. By presenting a specific visual 

stimulus to a user, intent can be encoded in the EEG waveform, which, once decoded, can be used to 

control a device. Figure 1-2 shows examples of stimuli that can be used to elicit VEP and SSVEP responses. 

 

 

Figure 1-2: Examples of stimuli used to elicit VEPs and SSVEPs. A similar effect to that of a flashing light source 
such as an LED can be achieved by displaying various types of images that alternate in light intensity, colour and 
contrast (C0). The most basic of these is a flashing stimulus (C1), which consists of a single colour that reverses. C2 
is an alternating checkerboard in which the colour within each square alternate. This principle can be extended 
to the presentation of complex images (C3) (Wolpaw et al., 2002).  
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VEPs are broadly categorised into transient and steady-state. Transient VEPs occur as an initial 

perturbation in the EEG waveform from 0 to 250 ms after the initial presentation of a light stimulus (Odom 

et al., 2010). When a flashing stimulus – that is, one that alternates between two distinct stimuli at a 

constant frequency – is presented, the response is characterised by an initial VEP, followed by an SSVEP 

at the stimulus frequency (Figure 1-3; Manyakov et al., 2010). Owing to the frequency information 

encoded in the SSVEP signal, SSVEPs are easily identified in both the time and the frequency domains (F2 

in Figure 1-3), whereas the transient VEP is not distinctive in the frequency domain owing to the absence 

of major repetitive components (F1 in Figure 1-3).  

 

 

Figure 1-3: Generalised transient VEP (top) and SSVEP responses (bottom) are shown here. The corresponding 
signal is viewed in the frequency domains in F1 and F2. The stimulus that evoked the response is shown below 
each plot – adapted from Vialatte et al. (2010) 
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More than 80% of publications about BCIs describe the use of EEG to measure brain activity (Mason et 

al., 2007). Owing to its high temporal resolution, of the order of 512 Hz and above, EEG is well suited to 

measuring SSVEPs (Allison et al., 2010). Furthermore, the signal can be simply classified by extracting the 

frequency of the specific flashing visual stimulus directly from the SSVEP (Nicolas-Alonso & Gomez-Gil, 

2012), thereby enabling the BCI to initiate specific commands (Zhu et al., 2010). Unlike other EEG signals, 

SSVEPs do not require the averaging of multiple recordings to be classified accurately. Instead, they can 

be measured in a single recording from stimulus onset (Wolpaw et al., 2002). Owing to the size and 

repetitive nature of SSVEP responses they are also more robust to signal noise inherent to the real world 

settings in which BCIs are used (Volosyak et al., 2009). 

BCIs can present multiple stimuli to a subject simultaneously, which enable a variety of user intents to be 

captured (Figure 1-4). The goal of BCI research is to improve the number of stimuli that can be presented, 

the accuracy and speed of classification and the ease of use. Improvements in these areas allow for a 

faster, more seamless experience for the user.  

 

 

Figure 1-4: Generalised SSVEP BCI. A subject is presented with multiple stimuli (A and B), each with a pre-existing 
mapping to an action. The subject chooses an action to perform and attends the required stimulus. A VEP is then 
generated, which is recorded by electrodes on the scalp. A classification scheme decodes this electrical signal and 
classifies it in terms of the presented stimulus. The BCI executes a command based on the subject’s intent and 
button A is pressed. 
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The two popular frequency domain classification methods used as a benchmark in this study are (i) power 

spectral density analysis (PSDA) as described by Marple Jr (1987), and (ii) canonical correlation analysis 

(CCA), first implemented in SSVEP classification by Lin et al. (2007). Both of these methods achieve 

classification accuracy rates of around 90% when given a sufficiently long 5 s window period of measured 

SSVEP data (Kompatsiaris et al., 2016). Figure 1-5 shows, for each method, how the classification accuracy 

decreases as the window period of recorded EEG data (T) is reduced. For all window periods, the 

classification accuracy of CCA is about 10% greater than that achieved using the PSDA method (Hakvoort 

et al., 2011).  

 

 

Figure 1-5: A comparison of classification accuracies achieved using CCA and PSDA for five different window 
periods T (Bin et al., 2009). Nh denotes the number harmonics of a given reference signal used. 

When assessing the performance of BCIs, the accuracy of a command classification (i.e. how often a 

command or user intent is correctly interpreted) is not the only metric to consider, however. BCI 

performance is expressed as an ITR, which is measured in bits/min (Schreiber, 2000). ITR is a function of 

the accuracy of command classification, the speed of classification and the number of available command 

options that can simultaneously be presented to a user (Wolpaw et al., 2002). As shown in Figure 1-6, the 

speed of classification, and therefore the ITR, is heavily dependent on the window period of EEG data 

required for accurate classification, regardless of classification method used. Since the classifier needs to 

wait for the physiological response of the subject to present sufficient features for classification, the 

maximum ITR achievable is limited by the window period of SSVEP data that needs to be acquired after 

the onset of a stimulus. In this work we assume that zero computational time is required for the classifier 

to output a result.  
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Figure 1-6: Comparison of information transfer rates (ITRs) for various SSVEP classification methods for different 
data window periods. Note that the ITR improves as the window period decreases, even though the classification 
accuracy may be reduced (Zhang et al., 2014). 

 

In practice, however, reducing the sampling window below 1 s causes classification accuracies for both 

PSDA and CCA methods to decrease rapidly, with a window period of 200 ms yielding accuracies of only 

30% or less (Figure 1-7) (Hakvoort et al., 2011; Lin et al., 2007; Vialatte et al., 2010; Zhang et al., 2014) – 

thus limiting achievable ITRs.  

       

Figure 1-7: Plot showing how classification accuracies of CCA, PSDA and variants of these methods decrease 
rapidly when the window period is reduced below one second (Zhang et al., 2012). 

An alternative approach is to model SSVEPs directly in the time domain as the superposition of continued 

transient VEP responses to repeated stimuli onsets, with each reversal of the stimulus eliciting a distinct 
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VEP (Capilla et al., 2011). Time domain classification is more robust to spectral interference from multiple 

stimuli and underlying EEG dynamics, and has been shown to provide higher accuracies for smaller 

window periods of SSVEP data when compared to spectral approaches (Abbasi, 2015). One such method 

– stimulus-locked inter-trace correlation (SLIC) – achieves similar accuracies to those of spectral methods 

for a window period of 1 s. SLIC requires that multiple VEPs are extracted from the 1 s window period by 

extracting a VEP for each instance of stimulus reversal. This set of VEPs is then averaged before being 

processed by linear discriminant analysis (LDA) classifiers (Luo & Sullivan, 2010a). The idea of using time-

domain information from the repeated VEPs contained in an SSVEP and classifying the result using LDA 

inspired the classification approach used in this research.  

In this work we used a time-domain VEP model designed by Kremlácek et al. (2002) that has been shown 

previously to successfully create synthetic VEPs. Figure 1-8 shows a comparison of a synthetic VEP output 

by the model and a recorded VEP. 

 

Figure 1-8: Pattern-reversal VEP fit using Kremlácek’s model. The contributions of the various components to the 
model (OSC1, OSC2 and OSC3) are shown by dashed and dotted lines, while the solid thick line represents the 
final summed model output – a synthetic VEP. The thin solid line represents an actual recorded VEP (Kremlácek 
et al., 2002). OSC = oscillator. 

It is hypothesised that this model could be used to extract unique features from the initial portions of the 

SSVEP response through a process of model fitting and parameter estimation. The parameters could then 

be classified by a supervised machine-learning model to identify the corresponding stimulus frequency. 

By determining which of the presented stimuli the user is attending to, user intent can be decoded from 

less than 250 ms of recorded data, outperforming traditional PSDA and CCA methods. 
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 Research Rationale and Hypotheses  
Since the SSVEP response contains an initial VEP followed by a chain of repeated VEPs at the stimulus 

frequency, and Kremlácek’s model (1999) can be adapted to various frequency responses through the 

use of chained oscillators, it follows that it should be possible to fit the model to the initial portion of an 

SSVEP.  

The initial VEP component of the SSVEP that is to be fit by the model occurs within the first 0.25 s, directly 

after stimulus presentation. This initial VEP contains frequency-encoded information as the stimulus is 

alternating, even though the visual pathways have not yet settled into a steady state. If the model fit 

could generate features that uniquely classify this portion of the recorded SSVEP, it would be possible to 

determine intent after recording only 250 ms of data. This would reduce the time required by a BCI to 

generate commands, as compared to traditional spectral techniques that require 1–5 s of recorded EEG 

data to make a decision with 80% accuracy.  

The first question that must be asked is whether it is possible to fit the model with sufficient accuracy to 

the initial portion of a recorded SSVEP response. The first hypothesis, considered in this thesis, can 

therefore be stated as: 

Hypothesis 1: Kremlácek’s VEP model can be fit onto the initial VEP portion of an SSVEP response. 

A successful model fit to the initial portion of the SSVEP, which is generated as the stimulus is presented, 

could provide a set of unique features. If the features identified by the model fit process were unique to 

the frequency of the presented stimulus, the feature sets could be used to train a multiclass support 

vector machine (SVM) to classify “unseen” or untrained SSVEPs for a given subject. The subject’s SSVEPs 

could then be classified by the frequency of the presented stimulus. This would in turn allow the predictive 

classification method for the model to generate user commands on a BCI for different stimuli, which 

would link the frequency of the stimulus that the user is looking at to a command input. The second 

hypothesis comprises two parts:  

Hypothesis 2a: The model fit onto the initial portions of SSVEP signals can generate unique feature 

descriptive parameters that relate to the frequency of the stimulus presented. 

Hypothesis 2b: These unique features enable the SSVEP signal to be classified relative to the stimulus 

frequency using a multiclass SVM approach.  

The ITR of a BCI is a measure of the number of commands that can be successfully executed in a given 

time. To achieve an accurate classification, this measure is dependent on the time taken to process the 

data and the duration of EEG data that must be gathered before processing. We were interested in 

comparing the performance of our model-based approach to widely used spectral methods when the 

window period of input data is reduced to such an extent that spectral techniques have sub-50% 

accuracies. This is typically true for window periods of 1 s or less (Bin et al., 2009). 

Hypothesis 3: The classification approach based on the time-domain model proposed here outperforms 

traditional spectral classification methods (PSDA and CCA) when the input to the classifiers comprises a 1 

s or less window period of EEG data as recorded from stimulus onset; the shorter the window period, the 

more pronounced the effect. 
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 Objectives 
The overall objective of this research is to develop a classification system that can more rapidly identify 

the control input that a subject is attending to on a BCI. Flashing stimuli are used to induce SSVEP 

waveforms which are then analysed, and a classification is made that attempts to use recorded EEG data 

to predict the frequency at which they flash. 

We aim to classify the SSVEP response in a single occurrence, for a short window period (0.25 s) of data, 

by examining the initial portions of the SSVEP when it has not yet reached steady state. This is done 

through a process of parameter estimation using an established mathematical model which creates 

synthetic VEP responses. The parameter estimation is repeated until the error between the measured 

SSVEP and synthetic SSVEP is reduced, yielding a set of parameter estimates that describe the SSVEP as a 

function of the model. This process is repeated for a range of subjects, frequencies and initial model 

conditions. We then attempt to train a supervised machine learning scheme, in the form of SVMs, to 

classify the frequency of stimulation from a set of parameter estimates.  

The performance of the SVMs is compared against two other commonly used methods of SSVEP 

classification (PSDA and CCA). 

The specific objectives of this study are to: 

1. Replicate the synthetic VEP model created by Kremlácek et al. (2002). 

2. Assess if the VEP model can fit the initial VEP portions of SSVEP waveforms. 

3. Examine if there is a significant difference in the goodness of fit when using the VEP model on 

SSVEP waveforms. 

4. Fit the model to a data set of SSVEPs and generate sets of estimated parameters which describe 

the data. These estimated parameters will then be used to: 

a. Explore the effect of different window periods (0.25, 0.5, and 1s), from stimulus onset 

of SSVEPs, on the goodness of fit. 

b. Investigate the effect of different initial model conditions on the goodness of fit.  

5. Use the sets of estimated parameters to train support vector machines, such that they will be 

able to classify any new estimated parameters by stimulus frequency. 

6. Compare the accuracy of classification of the model based SVM approach to the PSDA and CCA 

methods so as to examine the effect of: 

a. Window period on classification accuracy. 

b. Initial model parameters on classification accuracy.  

7. Use ITR to compare the performance of the three methods over the window periods used. 

  



  
  

10 
 
 

 Thesis Outline 
This chapter has introduced the scope and objectives of the study. Along with a description of Kremlácek’s 

model for transient VEPs, a brief background to BCIs and VEPs plus feature extraction and classification 

methods are presented in the next chapter. This sets the foundation for the experimental methodology 

outlined in chapter 3. That chapter comprises three sections, each of which addresses one of the three 

hypotheses introduced earlier. The first section investigates whether the model can be used to model a 

VEP response successfully, as described by Kremlácek (2002). In the second section we examine whether 

the method can extract unique features from recorded SSVEP responses which can be used to train SVMs 

to identify the frequency of stimulation. The accuracy of the model-based method proposed here is 

compared to that of traditional SSVEP classification methods (PSDA and CCA) in the third section of the 

chapter.  

Testing involved the construction and fit of the model to SSVEP data by estimating parameters. This was 

done using initial portions of recorded SSVEP responses induced by stimuli flashing at different 

frequencies. The aim was to extract from the recorded SSVEP unique features based on a time-domain 

model related to the stimulus frequency. Model fitting yields a set of estimated model parameters that 

were used together with the model to generate a synthetic SSVEP response that could be compared to 

the recorded SSVEP.  

The SSVEP features described by the model parameters and the frequency of stimulation were then used 

to train a series of multiclass SVM classifiers. The SVM classifiers, once trained, assesses the parameter 

set found by the model fit process and makes a classification decision about what the frequency of 

stimulation viewed by the subject was.  

Because this has been an exploratory study examining the feasibility of using the proposed model-based 

classification method, the effects of several variables on classification accuracy were examined, namely, 

the initial starting conditions of the model, inter-subject variability, changing the window period of SSVEP 

data used in the fit, and classifying as well as altering the sets of data used to train the SVMs. 

The classification accuracy of the model-based method was finally compared to that of traditional CCA 

and PSDA methods for various window periods of measured SSVEP data. Each method is assessed by the 

metrics of accuracy, precision and recall. Potential BCI performance was expressed as relative theoretical 

ITRs. 

The results are presented in chapter 4 and a final discussion and conclusion are to be found in chapters 5 

and 6 respectively.  
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Background  
 

As outlined in the introductory chapter, the objective of this study is to investigate the feasibility of an 

alternative signal classification method that could potentially improve the performance of BCIs. This 

chapter contextualises and conceptualises the research question while providing a literature review of 

the applicable BCI and SSVEP classification research.  

This chapter briefly introduces VEPs and the classification methods used. The classification methods are 

generally divided according to feature extraction and feature classification. The CCA and the PSDA 

methods are introduced along with a time-domain method called stimulus-locked intertrace correlation 

(SLIC). SLIC is introduced as it gives a context to exploring the classification of SSVEPs, using window 

periods, in the time-domain.  

The idea of model-based feature extraction is outlined and the chosen method of SVM classification is 

explained in the context of classifying sets of features. The features in this study are made up of various 

model parameters that are output from the model of VEPs used. The model and its parameters are then 

introduced. More in-depth background information can be found in the various appendices. A brief 

introduction to the metrics of accuracy, precision and recall are covered as they form the basis for the 

comparative assessment.   

Following this background chapter, chapter 3: Experimental Methodology describes implementations of 

the concepts covered, and details about how the hypotheses were tested.   
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 Visually evoked potentials 
 

 VEP and SSVEP responses 

VEPs are classified by the stimulus that elicits them. This study uses reversing checkerboard stimuli which, 

if presented for a single reversal, generate a pattern-reversal VEP. This response is clinically 

distinguishable by its negative N75 and N135 peaks, with a prominent P100 peak (Figure 2-1). Since the 

specific locations of these peaks vary in time and amplitude from subject to subject, these notations 

merely serve as a guide for identification. In single trials the peaks may not be very clear and an average 

of multiple VEPs is recommended to clearly view these features (Odom et al., 2010).   

 

 

Figure 2-1: A pattern-reversal VEP elicited by a single reversal of a checkerboard stimulus. The main 
characteristics of the response are two negative peaks at 75 ms (N75) and 135 ms (N135) and a positive peak at 
100 ms (P100) (Odom et al., 2010). 

 

The SSVEP response is characterised by an initial VEP, followed by the signal reaching a steady state and 

oscillating at a fixed frequency. It is therefore best viewed in the frequency domain or in the time-

frequency domain, owing to the repetitive nature of the signal. In addition, other brain signals can appear 

as noise in the measured signal as a result of the additive effect at the electrode sites, noise that can be 

hard to distinguish from the signal of interest as EEG noise contains multiple frequency components 

(Vialatte et al., 2010). 

The SSVEP response is modulated by the stimulus frequency and luminosity. A change in stimulus 

frequency will elicit a change in the SSVEP to the frequency of stimulation, while an increase in contrast 

or luminosity will increase the amplitude of the SSVEP. A stimulus reversing with a higher contrast will 

be easier to identify because the steady state will be more distinct from background EGG activity 

(Nishifuji et al., 2009). Increasing the amplitude will result in the peaks of the steady state portion 

becoming more obvious to spectral classification approaches. It is because of this that SSVEP based BCIs 

often use high contrast imagery – presented at very bright levels. Presentation in this way is not always 
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possible in real world situations, were the light levels vary and the presentation of bright-high contrast 

images can cause user discomfort (Bieger & Molina, 2010).  

The initial VEP of an SSVEP is not a traditional VEP: during the period in which the initial VEP appears, the 

stimulus is still flashing, so it appears as a noticeably large VEP, but it contains information about the 

frequency of the stimulus as each stimulus reversal induces a new VEP additional to the initial VEP (Zhu 

et al., 2010). Figure 2-2 shows a typical EEG recording of an SSVEP response, as well as its associated 

frequency domain signal.  

 

 

Figure 2-2: The SSVEP response to a 15 Hz stimulus seen in the time-domain (a). Note the initial VEP from 0 to 
0,25 s before the signal becomes steady and repeated. The major peaks, P100 and N135, can be seen, although 
they are slightly delayed In addition, the steady state of the 15 Hz stimulus become evident just after 0.2 s, adding 
to the response. (b) S shows the same SSVEP response in the frequency domain. Note the characteristic spike at 
frequency 15 Hz and its harmonics at 30 and 45 Hz (Zhu et al., 2010)  
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 SSVEPs as repeated VEPs 

SSVEPs can be explained by the super-position of continued transient VEP responses to stimuli onsets. At 

every repeat of a flashing stimulus a new VEP is generated. This was explored by Capilla et al. (2011), who 

constructed a model of SSVEPs using repeated VEPs. The repeated VEPs were attenuated to account for 

various non-linearity and adaptation phenomena associated with continued steady-state response 

generation. 

Capilla et al. (2011) derived a base VEP response for their subjects from the N75 and P100 peaks presented 

during a single flash, which was averaged from multiple trials. Following this, the measured VEP was 

chained together and a synthetic SSVEP response was created (Figure 2-3). They found that the synthetic 

response mirrored the recorded SSVEPs in both the time and the frequency domains (Figure 2-3): 

“… as we have shown in this study, synthetic steady state responses generated from the linear 

superposition of transient responses occurring periodically show the same waveform and 

spectral pattern that characterize the driving phenomenon.” (Capilla et al., 2011: page 11) 

Their model operates on time–domain data, as does the model-based approach that is the focus of the 

present study.  

 

 

Figure 2-3: (A1) Recorded SSVEP waveforms and (A2) synthetic SSVEPS at various frequencies of stimulation. The 
characteristic peaks at N75, P100 and N135 are indicated. The black triangle indicates stimulus onset. (B1) and 
(B2) indicate the corresponding frequency responses as assessed by the PSDA method (Capilla et al., 2011) 
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 SSVEP-based BCIs 

The term “BCI” was coined by Vidal (1973), who described the possibility of using the classification of 

EEG to decode user intent. Vidal (1977) would go on to provide evidence that it was possible  to use 

VEPs as an input to BCI. From there the SSVEP BCI evolved.  

The original reasoning behind the use of VEPs remains at the forefront of their use in current-day BCIs. 

SSVEPs offer comparatively reliable and repeatable signals which are not dependent on the unique 

higher-order processing of a subject. Furthermore, they do not require much training, if any at all, to 

obtain accuracies above 70% (Guger et al., 2012). SSVEP BCIs can also achieve high ITRs (Above 70 

bits/min) with little training (Zhu et al., 2010). 

The main paradigm of SSVEP classification in BCIs is to use the steady-state portion of the SSVEP to 

inform a classification choice (Vialatte et al., 2010). This is generally induced by presenting the subject 

with either a single stimulus or multiple stimuli flashing at a known frequency.  

Using various signal processing methods the recorded EEG is identified in relation to the stimulus type, 

generally frequency is used. It is possible to modulate SSVEPs with different configurations of shapes 

and colours, these do not have a very high modulatory effect of the amplitude and are hard to detect, 

and unreliable for classification (Vialatte et al., 2010) due to this most BCIs use some form of frequency 

encoded stimulation. SSVEPs can be induced by multiple stimuli at once, as the additive effect of the 

stimuli contrast, brightness colour and frequency can create distinct SSVEPs this phenomenon can be 

used to encode information for use in BCIs(Srihari et al., 2006). This research however only explores 

SSVEP classification induced by a single flashing stimulus.  

While it is possible to increase the amplitude, and thus classification performance of an SSVEP BCI. 

Increasing the contrast and luminosity can add a certain level of user discomfort (Figure 2-4). It is also 

not always possible to achieve these levels in everyday situations, and most SSVEP research is 

conducted in controlled laboratory conditions, because of this a method that is able to classify SSVEPs 

using different features would add to the performance of BCIs in general (Bieger & Molina, 2010).   

 

Figure 2-4: Luminance contrast vs comfort relative to performance measured in ITR. It is seen that higher-contrast 
systems perform better with spectral methods, owing to the increased SSVEP amplitude. Yet they are rated as 
more uncomfortable to the end user (Bieger & Molina, 2010). 
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 10–20 system of electrode placement 

Multiple standard systems exist for placing and naming electrode sites on the human scalp. The most 

commonly used system is the international 10–20 system that derives its name from the fact that is uses 

10% and 20% spacing between electrode sites. This allows the system to accommodate various head sizes. 

It also uses anatomical landmarks for a constant reference point to the spacing of the electrodes. These 

include the nasion, inion and preauricular points (Herwig et al., 2003). 

In this study, the Electrical Geodesics Inc. net was used to acquire data. The net uses an electrode 

reference system that is built on the 10–20 naming standard but accommodates configurations of 256- 

and 128-channel sensor nets (Figure 2-5). 

 

 

Figure 2-5: The classic 10–20 electrode placement system is seen in A and B above. C shows the extended 10–20 
system with 70 electrode sites (BCI2000, 2012). 

 Information transfer rate (ITR) 

Shannon’s ITR can be used to assess the performance of a BCI system, and it extends in general to any 

communication system (Schreiber, 2000). It is measured in bits/min and this measurement depends on 

three factors: speed, accuracy of classification and the number of targets (stimuli) simultaneously 

presented (Volosyak, 2011). It quantifies the number of commands the BCI can successfully execute, 

where a command is a single event that the BCI can trigger. In the case of a BCI that presents a keyboard 

of 26 buttons, it will have 26 commands; in the case of a wheelchair, it may have five commands: forward, 

back, left, right and stop.  

For a BCI system with N equally probable commands, s commands performed per minute and a probability 

p of a true positive decoding of each command, the ITR is given by Equation 1. Given a fixed p, the ITR 

increases for an increasing number of commands N (Vialatte et al., 2010). 

Equation 1: Formula for Shannon’s ITR 

                                                                           (1) 
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 SSVEP Classification Methods 
A large number of SSVEP classification methods have been developed for use in BCIs. The purpose of 

an SSVEP classifier is to identify which stimulus was viewed by the subject – this is identified by the 

frequency at which the stimulus was presented. There are three stages to classification: (i) signal pre-

processing, (ii) feature extraction and (iii) feature classification. In some methods (such as PSDA), 

feature extraction and classification are combined (Mason et al., 2007). 

Once SSVEP data have been pre-processed, features can more easily be extracted and classified. Three 

methods of feature extraction are considered in this study:  

1. Power spectral density analysis (PSDA)  

2. Canonical correlation analysis (CCA)  

3. Model-based classification.  

 

Each method is outlined below. In addition, the SLIC time–domain classification method is outlined 

because it serves as the motivation for exploring a time–domain model approach.  

After features have been extracted, they are classified in a feature-classification stage. Since we used 

support vector machines (SMV) to classify the model fit output, a brief introduction is provided. 

 Pre-processing 

The purpose of pre-possessing is to reduce the signal-to-noise ratio and remove unwanted artefacts. Most 

pre-processing uses frequency filtering, such as removing the 50 Hz band of electrical noise or unwanted 

higher- and lower-frequency EEG activity. SSVEPs are also generally filtered by a bandpass filter that is set 

to the range of stimulus frequencies presented. Spatial filtering can also be applied in which a linear 

combination of electrodes is used to reduce unwanted noise (Liu et al., 2013). Filtering is also used to 

remove distinct artefacts in the signal, such as those resulting from eyeblinks or movement of the subject.  

 Feature classification of power spectral density analysis (PSDA) 

The PSDA method involves taking the power spectral density of a segment of EEG data. This can be done 
from a single electrode, or from multiple electrodes (Ortner et al., 2011). It is the most common approach 
to SSVEP classification because it is computationally cheap and easy to implement. In the study of BCIs it 
offers a very quick solution to the challenge of online signal classification (Liu et al., 2013).  
 
The SSVEP data are broken down into their frequency components using fast Fourier transforms. The 

power of each frequency present in the SSVEP can be plotted as an amplitude vs a frequency plot 

(Figure 2-6). A threshold is applied to the data and an SSVEP is classified as occurring when a frequency 

has power above the selected threshold (Xia et al., 2013). 

The longer the window period used, the more distinct the frequency components become. When the 
window period is decreased below 2 s, the frequency components of the presented stimulus start to 
decrease, to the point where background EEG data can add unwanted noise producing mis-classifications 
(Figure 2-6). This method is also susceptible to noise from other stimuli that may be simultaneously 
presented to the subject: if more than one stimulus is presented simultaneously, multiple SSVEP 
responses can be induced, which may either mask the frequency component in question or trigger the 
classifier’s threshold (Zhang et al., 2013; Xu et al. 2014).  
 



  
  

18 
 
 

 

 

Figure 2-6: Normalised amplitudes of frequency components are shown for a single subject’s SSVEP for to 
different window periods. Window durations greater than 2 s are required for classification (Wang et al., 2006). 

 

Fourier methods are limited by the window used to measure the data and therefore require a window 

period of more than a second to achieve reasonable results. The window period selected also adds to 

the delay between command inputs achievable in a BCI context (Hansson-Sandsten, 2010). Figure 2-6 

shows that a window period of at least 4 s is required before user intent can be detected, which implies 

a 4 s delay before a command can be actioned.  

 Feature classification of canonical correlation analysis (CCA) 

Canonical correlation analysis (CCA) is another method for classifying SSVEPs with accuracies that 

outperform PSDA methods given the same window period of SSVEP data (Lin et al., 2007). CCA exploits 

the fact that the frequency of the presented stimulus is known. It requires that reference signals, normally 

sinewaves, be generated at the same frequency at which the stimuli are presented (Lin et al., 2007). CCA 

draws a statistical conclusion by comparing the reference frequency signal to that of measured SSVEP 

data.  

Measured EEG data are linearly combined with a weighting coefficient for each measured channel. The 

resulting signal is then correlated with a linear combination of the reference signals, each with their own 

weighting coefficients. When a strong correlation between these two linear combinations is found, the 

weighting coefficients are examined. The reference signal with the largest coefficient is assigned as the 

frequency of the measured SSVEP. Essentially, the reference signal that is closest to the recorded data is 

selected (Figure 2-7).  
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Figure 2-7: An illustration of CCA processing. EEG signals x1 , x 2 … x 8 are compared to reference signals y1, y2 … y6, 
which have the same frequency as the presented stimuli. Linear combinations of each are generated such that X 
= (Wx 1 + ... + Wx8) and Y = (Wy1 + … Wy8). X and Y are compared until they have a high correlation. At this point 
the largest coefficient in the Wyn set indicates the frequency of the SSVEP (Lin, et al., 2007). 

 

As with PSDA, the accuracy of the CCA method is affected by the window period of SSVEP data used in 

the classification. CCA outperforms PSDA classification methods, given the same window period. A 

window period of 4 s is required to achieve classification accuracies above 90% (Figure 1-7). 

There are many variants of the CCA method, these could involve using multiple numbers of electrodes 

or various filtering methods before the EEG us analysed or constraining the coefficients or weighting 

the components differently (Bin et al., 2009). CCA can also be used in combination with PSDA for an 

improved classifier selection (Liu et al., 2013). This study uses the CCA method proposed by Lin et al., 

(2007) as a baseline for comparison, this is the standard method described above.  
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 Extraction and classification of time-domain features 

Time-domain classification of SSVEP responses has been successfully implemented in SSVEP BCIs (Luo 

& Sullivan, 2010). Furthermore, time-domain classification has been shown to outperform spectral 

approaches (Manyakov et al., 2010; Abbasi et al., 2015; Müller-Putzet et al., 2008). 

This method of classification relies on detecting features in the time-domain signal (Müller-Putz et al., 

2008). One such method is SLIC (Luo & Sullivan, 2010a). This method exploits the fact that when a flashing 

stimulus is attended by a subject, initial and repeated VEP components can be found.  

SLIC takes a recorded EEG segment containing SSVEP data and divides it into repeated windows, starting 

at time 0 s (stimulus onset). The same EEG segment is assessed with varying repeated window periods. 

These are then averaged to create a VEP response. The window periods used are dependent on the 

frequency of the stimulus being presented (Manyakov et al., 2010).  

The window periods are chosen such that a full period of oscillation induced by the stimulus can occur. 

This averaged response contains information about the stimulus being presented, and is used as input a 

linear discrimination analysis (LDA) classifier Figure 2-8 shows an example of a four--class BCI with 

stimulus frequencies at 10, 12, 15 and 20 Hz. The subject in this instance is attending the 20 Hz stimulus.  

This method looks for the repeated VEPs of which the SSVEP is composed by assessing a single channel 

using different stimulus-locked windows.  

 

 

Figure 2-8: Individual VEP traces for repeated window periods are shown in blue and their averages in red. Each 
stimulus frequency will produce a characteristic response in the time domain for a distinct repeat window period. 
For example, in the case of a 10 Hz stimulus, data averaged across multiple 100 ms windows will produce a 
characteristic response. Since the subject was attending a 20 Hz stimulus in this instance, averaging data over 
multiple 50 ms window periods produces a characteristic response, compared to the relatively flat responses at 
15 Hz and 12 Hz, and the 20 Hz signal evident on the 10 Hz plot (Manyakov et al., 2010) 
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This set of averaged VEPs is then input into a trained classifier scheme using multiple LDAs, with each LDA 

trained on the features that present at the various stimuli frequencies. The coefficients of the LDAs 

indicate the probability of a stimulus being attended (Figure 2-9).  

 

 

Figure 2-9: A four-class SLIC BCI schema able to distinguish between four different stimuli by employing four LDAs 
trained on the subject’s response (Luo & Sullivan, 2010a) 
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Although sufficient EEG data is required to generate a useful average of VEP responses, SLIC has been 

shown to achieve good accuracy with a data segment length of about 1 s (Figure 2-10), compared to 

roughly 5 s of EEG data required for CCA and PSDA methods to achieve a similar degree of accuracy. This 

enables SLIC to improve the BCI’s ITR because fewer SSVEP data are required for classification decisions, 

which increases ITR. In addition, because this method uses time-domain features and not frequency-

domain features, it is less susceptible to spectral noise or to interference induced by multiple stimuli being 

displayed at once, as well as the refresh-rate limitations imposed by monitors (Abbasi et al., 2015). 

 

Figure 2-10: Accuracy of SLIC LDA classification for three subjects, given various lengths of recorded SSVEPs 
(Manyakov et al., 2010) 

 

 Model-based Feature Extraction 
Model-based feature extraction involves constructing a mathematical model of a signal in question, in 

this instance the human SSVEP response. In the ideal case, as a function of a given set of model 

parameters (Pn), the model is able to output a synthetically generated signal that matches the measured 

signal exactly. In general there may be some degree in error between the measured and synthetic signals, 

Equation 2 describes this.  

Equation 2: Model based measurement 

Model_SSVEP(Pn) + Error = Measured_SSVEP (2) 

From this we are able to associate a given set of model parameters (Pn) with a measured SSVEP. The task 

of classifying which “user intent” (stimulus) a certain parameter set belongs to is then performed by a 

multiclass support vector machine. If the parameter space P is separable into uniquely identifiable regions 

such that a combination of parameters can be linked to unique responses, a classification is able to be 

made.   
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 Feature Classification of Support Vector Machine (SVM)  
SVM-based classification has been directly applied to SSVEP classification problem in several studies 

(Jian & Tang, 2014; Singla, 2014; Ioannis Kompatsiaris et al., 2016) as well as to transient VEPs 

(Yoshimura & Itakura, 2011). 

SVMs are supervised machine-learning classifiers; they are binary classification systems able to 

distinguish between two class types. SVMs function by describing the classes as a function of the 

parameters that constitute each class. In the two-dimensional example (Figure 2-11) there are two 

parameters, P1 and P2. A hyperplane is fit onto separate the classes; in this instance, Class 1 is all data 

points that are above the line H [Class 1 = (P1,P2) > H]. Class 2 is all points below line H [Class 

2 = (P1,P2) < H]. This principle can be extended into a multi-dimensional parameter space of n 

dimensions. If we use all data presented for classes 1 and 2 as training data for the SVM and we are 

given a new data point D1, the SVM will classify D1 as Class 2, as it satisfies D1 < H. SVMs can be 

extended to multiclass classification systems by chaining together multiple binary SVMs (Hsu & Lin, 

2002). 

The hyperplane (H) used to separate classes can be mapped to various shapes, from linear to nth order 

polynomials. This is referred to as the kernel function and it dictates the shape of the hyperplanes. 

Various kernels have been used in SSVEP identification: quadratic (Singla, 2014), radial biased functions 

(Yoshimura & Itakura, 2011) and polynomials (Singla et al., 2014b). An 8th-degree polynomial was 

chosen, because the SVMs were being trained on parameters output from the model and not directly 

on the recorded SSVEP data. A high-order polynomial is able to accommodate the non-linearity of 

parameters (Ben-Hur & Weston, 2010), was is expected from the non-linear behaviour of the model’s 

oscillators.  

 

 

Figure 2-11: Representation of a binary SVM. Two classes of data exist: Class 1 and Class 2, each a function of the 
parameters P1 and P2. When the SVM is trained, it fits a hyperplane (H) between the two classes such that they 
are maximally separable. Given an unseen data point D1, the SVM will classify it in relation to the hyperplane that 
separates the classes. In this instance, D1 would be identified as belonging to Class 2. 
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 Assessing Multiclass Classifier Performance 
In this study, the output of each of the classification methods is constrained, since they are able to classify 

the input data only as belonging to one of a predefined set of classes. Given all the frequencies under 

assessment, the classifiers will label an unseen SSVEP response as one of the following: 6 Hz, 6.5 Hz, 7 Hz, 

7.5 Hz, 8.2 Hz, 9.3 Hz, 10 Hz.  

Three measures of performance are used to describe the overall ability of a multiclass classifier to classify 

data. These measures, accuracy, precision and recall, are derived using a confusion matrix.   

A confusion matrix for a hypothetical three class classifier is shown in Table 1. Each element in the 

confusion matrix is an integer number representing how many times a particular classification (or 

misclassification) occurred. The rows represent the actual class value, while the columns represent the 

predicted class value. The values TP(A), TP(B) and TP(C) show true positives, i.e. TP(A) shows the number 

of times class A was correctly classified as being class A, this is the True Positive occurrence. 

The number of false negatives (FN) for a class is given by the sum of all other values (excluding the TP 

value) in the corresponding row of the matrix. The total number of false positives (FP) for a given class is 

the sum of all other values (excluding the TP value) in the column corresponding to the class. The true 

negative for a given class is given by the sum of all values in the matrix, excluding the row and column to 

which that class belongs (i.e. for A: TN = TP(B) + TP(C) + E(BC) + E(CB)). 

 

Table 1: Generic confusion matrix for a three class classifier.  

 Predicted class 

 
Actual 
class 

 A B C 

A TP(A) E(AB) E(AC) 
B E(BA) TP(B) E(BC) 

C E(CA) E(CB) TP(C) 

 

 

When assessing a multiclass classifier it is important to asses it in the context three measures, accuracy, 

precision and recall rate. The singular metric of accuracy can over represent the performance of the 

classifier. In the context of BCIs this is important as the aim is to have the highest possible accuracy, 

precision and recall because this leads to correct predictions of user intent and higher ITRs.  
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 Accuracy of classification 

For each class, accuracy is defined as the ratio of the sum of the True Positives (TP) and True Negatives 

(TN) to the sum of all positive (TP+FP) and all negative cases (TN+FN): 

Equation 3: Class accuracy of classification 

Class accuracy = (TP+TN) / (TP+FP+TN+FN) (3) 

 

An overall accuracy of the classifier, across all classes, is calculated as the sum of the diagonal over the 

sum of all occurrences in the matrix. This accuracy in the context of BCIs reflects the number of TP as a 

ratio to all other attempts. It is referred to in this research as Prob(TP) – as it is effectively the probability 

of a TP occurring. 

 Precision of classification 

Precision represents the proportion of classifications assigned to a class that are correct. For each class in 

the confusion matrix this is the ratio of TPs to the total number of times the class was predicted, i.e. the 

sum of all values in the column.  Precision quantifies how probable it is that the classification was correct.  

Equation 4: Class precision of classification 

Class precision = TP / (TP + FP)  (4) 

 

 Recall of classification 

Recall is a counterpart of precision and is also referred to as sensitivity or true-positive rate. It represents 

the number of times a given class was classified correctly, and is defined by equation 5. Recall quantifies 

the likelihood that a class was misclassified. 

Equation 5: Recall of classification 

Class recall = TP / (TP + FN)  (5) 
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 A Model of Visually Evoked Potentials (VEPs) as a Feature Extractor 
VEPs can be modelled as an oscillation with perturbations such as changes of amplitude, frequency and 

phase (Kremlácek et al., 2002). Kremlácek et al. (1999) proposed a mathematical model of transient VEPs 

structured around three chained damped harmonic oscillators, a model that is replicated and explored in 

this research. An outline of this model is given below. Models constructed using oscillators have 

previously been used with to successfully model VEPs (Wang et al., 2013). For example, Wang et al (2013) 

used forced Van der Pol oscillators to describe a VEP waveform. 

 Underlying principles of the model 

The Kremlácek et al. model is based on the principle that different neuronal groups along the visual 

pathway can be activated sequentially and that each contributes jointly to a final VEP measured over the 

occipital cortex (Kremlácek et al., 1999). 

Kremlácek conducted both principal component analysis (PCA) and independent component analysis 

(ICA) on VEP data. The results indicated that three components, each representative of neuronal groups 

along the visual pathway, described the data optimally (Kremlácek et al., 1999). Based on the results of 

the PCA and ICA, each component was modelled as an oscillator. The oscillators were connected in series, 

with delays introduced between consecutive oscillators, thereby mimicking the sequential activation of 

the visual pathway.  

 Model implementation 

The model was built by Kremlácek in MATLAB Simulink. A schematic representation is given in Figure 

2-12(A). Three distinct areas of neuronal groups within the visual system were modelled using the same 

oscillator scheme (configured individually and labelled OSC1, OSC2 and OSC3, respectively, in Figure 

2-12(B). 

Each oscillator represented one of the following: primary visual cortex, secondary visual cortex and, 

finally, higher-order processes, possibly associated with perception (Kremlácek et al., 2002). T1, T2 and 

T3 describe the delay in activation as the signal propagates through the visual cortex. For each neuronal 

group a delay time Tn transpires before the following oscillator is activated. Finally, each oscillator’s 

contribution to the final signal is weighted by coefficients K1, K2 and K3. Since the SSVEP recorded on the 

scalp represents an additive combination of all electrical activity below the electrode site, the model 

computes the weighted sum of the components.  
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Figure 2-12: (A) Kremlácek et al.'s (1999) model, as originally published, for visually evoked potentials. y(t) 
represents the model VEP output while x(t) is the initial input stimulus. Delays are indicated by T1, T2 and T3; 
weighting factors by K1, K2 and K3. (B) A single-oscillator schema, these represent blocks OSC1, OSC2 and OSC3 
in (A). Coefficients –a and –b in (B) control the damping factor and the frequency of oscillation, while v(t) 
represents the output to the next stages. c is a constant of intergration. 
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 Model parameters (feature descriptors) 

The model has 12 unique parameters that make up its parameter space. These parameters are 

categorised into three different types according to their position and function in the model. The three 

parameter types are:  

1. Frequency of oscillation: There are three sets of (a, b) parameters, one for each oscillator. They 

describe the frequency of relaxed oscillations and the damping factor of OSC1, OSC2 and OSC3.  

2. Time delays: Onset delay before each oscillator is activated by the previous oscillator; indicated 

by parameters T1, T2 and T3 in Figure 2-12(A). 

3. Weighting coefficients: These amplify or attenuate the oscillator outputs before they are jointly 

summed; indicated by parameters K1, K2 and K3 in Figure 2-12(A). 

 

For a given simulation of the model, the parameters are grouped as a set, such that the parameter set 

(Pn) represents the model’s state at a given time: 

Equation 6: The model parameter space 

Pn = [T1, T2, T3, K1, K2, K3, Osc1a Osc1b, Osc2a, Osc2b Osc3a Osc3b]      (6) 

a, b parameters and the frequency of oscillation 

The parameters a and b together describe the frequency of oscillation for each oscillator as well as the 

damping factor that attenuates it. Each parameter name includes the oscillator with which it is associated: 

(Osc1a Osc1b, Osc2a, Osc2b Osc3a Osc3b). 

T parameters and the time delay  

Each oscillator models a separate system along the visual pathway. The time delays (T1, T2, T3) account 

for the delay in signal propagation between these systems. In effect, this models the time taken for a 

neuronal group to propagate an EEG signal.  

K parameters as weightings 

The scaling factor K, applied to each oscillator’s output, represents the contribution of the oscillator as a 

cortical source to the measured scalp potential. The gains are linear scalar values. 

 Model output  

Figure 1-8 shows the output of Kremlacek’s model, after it has been fit to averaged measured VEP data. 

Each individual oscillator’s contribution is also, along with the final modelled VEP. 

 Model validation  

Kremlácek et al. (2002) gathered data from four subjects using three VEP stimulation paradigms, namely, 

fast- and slow-motion onset stimuli, as well as pattern-reversal stimuli. Twenty responses were recorded 

per subject. The current investigation focuses on steady-state pattern-reversal stimulation; as a result, 

only the P-VEP (pattern-reversal VEP) data from Kremlácek et al. (2002) is discussed.  

Kremlácek et al. (2002) took a grand average of each subject’s VEPs on which the model was fit. It was 

found that the initial model parameter values had a large influence on the model’s performance. As a 

result, initial starting points were selected via a direct search.  
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The goodness of fit was reported as a normalised root mean square error (NRMSE) value. In all cases the 

NRMSE was below 13% (Kremlácek et al., 2002). It should be noted that in this study a goodness–of-fit 

indicator was used which was equal to 1 minus NRMSE – this is explained in the methodology section.   
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Experimental methodology 
 

The overall objective of this study was to establish the feasibility of using a time-domain based 

classification scheme of SSVEP data, required to encode intent in a BCI system. The proposed method was 

compared to two widely used frequency-domain based classification methods with particular interest in 

the length of window period required to facilitate successful classifications.  

All the experiments carried out in this study were approved by the Human Research Ethics Committee 

(HREC) of the Faculty of Health Sciences of the University of Cape Town (UCT) (Ref. number 073/2012). 

 EEG Data Acquisition  

 Recording equipment and electrode placement 

EEG data were recorded using an EGI 300 Geodesic EEG System (GES 300) with a 128-channel HydroCel 

Geodesic Sensor Net (HCGSN) and a sampling rate of 512 Hz. Electrodes were spaced in accordance with 

the 10–20 system (Figure 2-5). Data captured with electrodes O1, Oz and O2 were used during analysis, 

with a reference at electrode Fz. All the other channels were recorded but not processed.  

Electrode impedance was kept below 6 kOhm. The impedance of the sensor net was checked at the start 

and end of the recording using the calibration and impedance recording functionality of the GES 300. If a 

recording channel had increased to above 6 kOhm of characteristic impedance by the end of the recording 

session, the affected datasets were discarded. The net was then adjusted, additional conductive saline 

solution was applied, and the measurement session was repeated. 

 Stimulus design and presentation 

Three different types of stimuli were designed, namely a VEP-inducing checkerboard stimulus and two 

different SSVEP stimuli – pattern-reversal checkerboards and two white flashing LED lights.  

The subject was positioned 0.5 m from the CRT monitor on which the checkerboard VEP and SSVEP stimuli 

were presented. A CRT monitor with a refresh rate of 100 Hz was used because a periodic flashing 

stimulus requires a refresh rate of at least double the stimulus frequency to avoid distortion as per the 

Nyquist sampling criterion. With a 100 Hz refresh rate, the maximum presentable frequency is therefore 

50 Hz.  

The recordings were performed in a closed room with the curtains drawn to control the amount of 

ambient light entering the recording area. A Lux meter was used to ensure that a level of 250 to 300 Lux 

was maintained during the recording session. This range is similar to that of a normally lit room and just 

below the brightness of office lighting, which is between 350 and 500 Lux. The light level was controlled 

to reduce the impact on the recordings and also to represent a configuration similar to that in which a 

BCI would typically be used.  

Stimuli displayed on monitors and point light sources induce different EEG waveforms. An LED light source 

induces the largest-amplitude SSVEP response, while a checkerboard stimulus is more robust to noise and 



  
  

31 
 
 

stimulates more of the visual pathway. Checkerboard stimuli are therefore more widely used in SSVEP-

based BCIs (Vialatte et, al. 2010).  

Each frame of the alternating achromatic checkerboard stimulus was designed in MATLAB and then 

compiled as a compressed .avi file. The checkerboard stimulus was presented at a resolution of 

1024 x 768 px. In this configuration the stimulus had a field of view of 15 cycles per degree. The CRT 

monitor was connected to a PC separate from the EEG acquisition system to ensure that the stimulus 

would be displayed without stutters or discontinuities caused by the processing load experienced by a PC 

when recording raw EEG data. Anomalies in stimulus presentation would manifest as artefacts in the EEG 

data (Vialatte et al., 2010). 

The checkerboard stimulus had a small centred fixation target, as can be seen in Figure 3-1 that 

remained on the screen at all times, providing the subject with a reference point that they were 

instructed to focus on. This prevented the subject’s eyes from drifting when no stimulus was being 

presented.  

 

 

Figure 3-1:  VEP and SSVEP checkerboard stimulus. The white block at the bottom left of the stimulus flashed at 
the stimulus frequency. It was covered at all times by a light-dependent resistor (LDR), which detected changes 
in light. The white fixation mark is visible in the centre of the screen. 

 

Two white LEDs spaced 10 cm apart and driven by a programmable function generator were used as the 
flashing light stimulus. During the LED stimulus recordings the two white LEDs were positioned at the 
centre of the CRT monitor screen, ensuring the same distance and field of view to the subject as the 
checkerboard stimuli.  

The SSVEP stimuli were designed to oscillate in the low-frequency region where the amplitude of the 

SSVEP response is greatest (Figure 3-2). Notably, a frequency around 12 Hz produces the greatest 

amplitude SSVEP response. This increased amplitude response was motivation for the chosen frequencies 

of stimulation.  



  
  

32 
 
 

 

Figure 3-2: SSVEP response amplitude as a function of stimulation frequency (Wang et al., 2006) . 

 

 Synchronisation of stimulus display and EEG recording 

A light-dependent resistor (LDR), as well as one of the LED stimuli, were connected both to the CRT 

monitor and to the EEG recording device. At every presentation of the stimulus, the LDR was triggered 

and the EEG data tagged. In this way any delay or variation in stimulus frequency could be detected 

and accounted for in the analysis. The white block used for this synchronisation (Figure 3-1) was 

completely covered by a 3D printed adapter that held the LDR in place on the screen; this ensured that 

it would not be visible to the subject and thus not add additional SSVEP stimulation.  

 Exploratory data set  

The implementation and feasibility of the proposed model was initially assessed using data recorded in 

a single subject (male, 24 years) at the occipital lobe while observing the stimuli described above, 

designed to elicit either a distinct VEP or SSVEP response. The VEP response was evoked by the single 

presentation of a flashing checkerboard stimulus. Each VEP stimulus was presented to the subject 20 

times, with a rest period between each exposure of 15 s. SSVEP responses were recorded separately 

for both single-frequency flashing light and pattern-reversal checkerboard stimuli. Stimuli were 

presented at various frequencies around 12 Hz, specifically 1, 2, 4, 9, 10, 11, 13, 16 and 19 Hz (Figure 

3-3). Each frequency was presented 5 times, for 5 s duration, with a 15 s break between presentations, 

for a total of 45 recordings per SSVEP stimulus.  
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Figure 3-3: (A) Checkerboard stimuli flashing at various frequencies were presented to the subject one at a time. 
(B) Each stimulus frequency induces a unique SSVEP response in the subject viewing the stimulus . The SSVEP 
response is recorded and saved (C). 

 

 Main data set used for hypothesis testing 

The performance of the proposed time-domain model for feature extraction and classification was 

investigated using published SSVEP data (Vilic, 2015). This data set comprised SSVEP data from four 

subjects in response to single-frequency flashing checkerboard stimuli presented at 6, 6.5, 7, 7.5, 8.2, 

9.3 and 10 Hz, respectively. A single SSVEP trial consisted of 5 s of EEG data recorded while the subject 

viewed a fixation cross at the centre of a blank screen, followed by 10 s of stimulus presentation at a 

particular frequency, and 15 s rest while again viewing the fixation cross (Figure 3-4). This sequence 

was repeated four times for each stimulus frequency. As such, 28 SSVEP recordings were available per 

subject. The order of stimulus frequencies was randomised. EEG recording was continuous. Table 3.1 

provides demographic details of the subjects and Table 3.2 the order in which the different frequencies 

were presented to individual subjects. Electrode Oz was with reference to Fz with ground placed on Fpz 

as per the 10-20 system (Figure 2-5).  
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Figure 3-4: A single SSVEP trial. Subjects first viewed a fixation cross for 5 s, followed by 10 s of stimulus 
presentation, and 15 s again viewing a static fixation cross. The fixation cross was kept constant throughout the 
experiment so as not to induce any VEPs and to give the subject a reference point to focus on. 

 

Table 3-1: Participant demographics.  

 Age Gender Handedness 

Subject 1 32 Male Right 

Subject 2 27 Male Right 

Subject 3 27 Male Right 

Subject 4 31 Female Right 

 
 

Table 3-2: Frequency randomisation order. 

 Order of stimulus frequencies (Hz) 

Subject 1 6, 6.5, 7, 7.5, 8.2, 9.3, 10 

Subject 2 7, 6, 10, 6.5, 8.2, 7.5, 9.3 

Subject 3 8.2, 6, 7.5, 9.3, 10, 6.5, 7 

Subject 4 10, 7, 6, 7.5, 6.5, 9.3, 8.2 

 

 

 Data Pre-processing 

 SSVEP window period selection 

Recordings for each trial were initially truncated to 512 samples from stimulus onset, which corresponds 

to 1 s of recorded SSVEP data. Subsequently, data for three window periods were generated, namely 

0.25 s, 0.5 s and 1 s corresponding to 128, 256 and 512 samples, respectively.   
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 Removal of DC offset 

Impedance of the electrodes or the choice of reference could cause a DC offset in the recorded data. 

Although a reference electrode was used to remove the bulk of the DC offset, drifts in the baseline EEG 

reference voltage and fluctuations in the offset of the SSVEP signal could cause additional DC offset. Since 

the model does not have a parameter that accounts for DC offset, additional offset correction was 

necessary.  

A filter-based approach was deemed unsuitable in this instance because it would add a time-domain shift 

to the recorded data. Such a shift would not have been accounted for by our time-domain-based model 

and could therefore potentially have affected the accuracy of the classification.  

The DC offset was removed by subtracting the mean of the signal over the window period from each point 

in the signal (Figure 3-5). Although this method does not remove all the DC components, it yielded data 

that were clean enough and centred about the 0 V point while not inducing phase shifts or non-linearity.  

 

 

Figure 3-5: Comparison of an SSVEP signal before (left) and after (right) DC offset correction (note the difference 
in the y-axis values). 

 

 Noise reduction 

The data were filtered to remove any noise arising from the electrical mains, because such noise can add 

a large frequency component to the signal at 50 Hz. In this instance, a 50 Hz notch filter was applied (Vilic, 

2015). 

 Eyeblink removal  

Eyeblinks were identified by using a plugin for EEGLAB called corrmap. This plugin identifies ocular 

artefacts based on templates. As accounting for eyeblinks is beyond the scope of this project, any trial in 

which an eyeblink was detected in the first second after stimulus onset was discarded. After exclusions, 

at least three trials per stimulus frequency remained for each subject.  
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 Model Construction 
The model described in Chapter 2 was constructed using MATLAB and Simulink in accordance with the 

original literature (Kremlácek et al., 2002). Here, three serially connected forced oscillators were created 

so that the model parameters and model dynamics could be replicated. Each oscillator was modelled as 

a separate block titled OSC1, OSC2 and OSC3, respectively. Figure 3-6 is a schematic representation of an 

oscillator.  

 

Figure 3-6: MATLAB Simulink schematic of a single oscillator, OSC2. 

 

The three oscillators were connected in series, including the delay and weighting coefficients (Figure 3-7). 

Output probes were added at every major junction in the system, as these points were of interest in the 

tuning and performance-evaluation of the system. This enabled the individual components of the 

modelled data to be accessible.  

 

Figure 3-7: Schematic representation of the model implemented in MATLAB Simulink.  
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A graphical user interface (GUI; Figure 3-8) was designed to run the model and display the parameter 

set and resultant output.  

 

Figure 3-8: MATLAB GUI designed to run the model. 

 

The sampling time was set to 1.953125 ms, which corresponds to a sampling rate of 512 Hz to match that 

of the recorded SSVEP responses. The simulation time would therefore be determined by the number of 

samples (i.e. 512 for 1 s, 256 for 0.5 s, and 128 for 0.25 s).  

The model generates output data by means of a 4th-order ordinary differential equation (ODE) solver 

that uses the Runge-Kutta method (Cheever, 2015). This method performs well when a small fixed-

sample time step is chosen. Given that 3rd-order ODEs describe each individual oscillator block, lower-

order solvers would not have been appropriate.  

 

 Model Validation 
The model output was initially visually compared to the plots published by Kremlácek et al (2002) when 

using the input parameters recommended by the authors for pattern reversal checkerboard stimuli 

(Table 3-3).  

Table 3-3: Input parameters for checkerboard stimuli (Kremlácek et al., 2002). 

K1 K2 K3 OSC1a OSC1b OSC2a OSC2b OSC3a OSC3b T1 T2 T3 

-5.2293 -2.4574 0.2404 0.0335 0.0091 0.0058 0.0017 0.0142 0.0001 24.6984 53.1513 6.4955 
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 Feature Extraction by Model Fitting 
Model fitting refers to the process whereby the model output is computed after initialisation by an initial 

parameter (IP) set, the difference (error) between the model output and the signal being fit is evaluated, 

and the model parameters are subsequently adjusted programmatically using a pattern search algorithm 

to reduce the error. This process is repeated iteratively until either a suitable fit is found (i.e. the error is 

reduced to zero) or the maximum number of iterations has been completed. Model fitting therefore 

produces a set of estimated parameters (EPs), also known as a feature set (Pn), that when substituted 

back into the model produces a synthesised version of the signal to which the model had been fit, and 

some error. 

In the original study from which the model was adapted, the normalised root mean square error (NRMSE), 

which represents the difference between the model output for a given Pn and the measured data, was 

used to assess performance (Kremlácek & Holcık, 1999). In this study goodness of fit was calculated using 

the goodness-of-fit function (goodnessOfFit) available in MATLAB using the default MATLAB 

configurations. Goodness of fit provides a measure of the similarity between the model output and signal 

being fit. The function uses NRMSE as a cost function when determining error in the fit and returns a value 

of (1-NRMSE). Thus a goodness of fit value of 1 (100%) and a NRMSE of zero indicate a perfect fit. The 

model seeks to maximise the goodness of fit by iteratively estimating parameters that reduce the NRMSE 

from that of the previous iteration.   

Model fitting was set to perform 500 iterations, regardless of whether the error was reduced, with a 

maximum of two restarts. The iteration and error threshold values were based on the work of the 

developers of the model (Kremlácek & Holcık, 1999). The impact of IPs on fitting performance was 

examined in the stimulus-locked average of the VEP recordings from the exploratory dataset by 

initialising the model with either the input parameters recommended by Kremlácek et al. (2002) for 

pattern reversal stimuli or zeroes.  

The feasibility of fitting the model to SSVEPs was examined using SSVEP data from the exploratory data 

set once it has reached steady state.  

Based on these initial experiments, initial parameters and parameter constraints were determined. 

 Initial parameter selection 

In this work, three sets of initial parameters (IPs) were defined, each of which will generate a unique set 

of estimated parameters during model fitting (Table 3-4).  

Although the IP’s impact fit performance and a direct search method can be used to find good starting 

points (Kremlácek, et. al 2002), IP selection and optimisation was not a focus of this study. The three 

possible IP sets (IP1, IP2 and IP3) were defined in a way that each would relate to different characteristics 

of the SSVEP response being fit. It should be noted, however, that restricting the possible IPs to three 

fixed sets may limit the performance of the model across multiple subjects.  
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Table 3-4: Initial parameters used during model fitting. 

SSVEP response: Model starting 

point 

Estimated 

parameters 

Satisfying: 

 

 

IP1 EP1 Model(EP1) + NRMSE1 = 

Measured SSVEP 

IP2 EP2 Model(EP2) + NRMSE2 = 

Measured SSVEP 

IP3 EP3 Model(EP3) + NRMSE3 = 

Measured SSVEP 

 

Figure 3-9 shows the model output for each of the three initial parameter sets for 256 samples (i.e. 0.5 s). 

The sampled points, which correspond to the measurements of the recorded EEG signal, are shown on 

the x-axis, and the amplitude of the model output on the y-axis. The amplitude is scaled during parameter 

estimation by the K1, K2 and K3 parameters to match that of the recorded SSVEP signal. Table 3-5 gives 

the parameter values for each of the three IP sets. 

 

 

Figure 3-9: Model outputs for each of the three IP sets. The model output for IP1 is a cosine wave at 12 Hz; IP2 
generates a low-frequency 1.6 Hz cosine wave; and IP3 is a set of parameter estimates that produced a successful 
fit to a 12 Hz flashing checkerboard SSVEP response during model testing. 
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IP1 was constructed so that when it is input into the model, a 12 Hz cosine wave with unit amplitude 

would be generated. This frequency was selected as it produces the largest amplitude SSVEP response 

(Wang et al., 2013; Figure 3-2). 

IP2 corresponds to a low-frequency 1.6 Hz cosine wave. This frequency was selected so that the negative 

gradient increases in the region where the P100 peak (sample 51) of the VEP response transitions to its 

N135 peak (sample 69). The largest change (steepest gradient) in the VEP response (Figure 2-1) occurs 

when the signal amplitude decreases from P100 to the N135 inflection point. The first low point at around 

330 ms (sample 170) would be optimised during fitting to approach the N135 point. If a VEP response is 

heavily smoothed a similar shape would emerge, which would move towards the shape of a 1.6Hz cosine 

wave. Since the pattern simplex search examines the gradient of the function being fit and attempts to 

match the model output to distinct gradients, it was hoped that the gradient of the 1.6Hz wave would be 

matched to distinctive VEP features – specifically the N135 point.  

IP3 was based on a parameter set that produced a good fit to a 12 Hz flashing checkerboard SSVEP 

response during model testing. 

  

Table 3-5: Initial parameter sets. 

 K1 K2 K3 OSC1a OSC1b OSC2a OSC2b OSC3a OSC3b T1 T2 T3 

IP1 1 1 1 0.5 5 000 0.5 5 000 0.5 5 000 0 0 0 

IP2 1 1 1 5 100 5 100 5 100 0 0 0 

IP3 1 1 1 0.5 2 000 0.75 5 000 0.9 9 000 0 0 0 

 

 Parameter constraints 

To improve the accuracy of the model fit and parameter estimation, scaling factors were applied to 

parameter estimates and upper and lower bounds were imposed. Scaling factors were used to weight 

each parameter value relative to the other values because the downhill-simplex method otherwise 

assumes that all parameters change at the same rate. This allows the relative magnitudes of parameters 

to be taken into account when making adjustments. The scaling factors and adjustments were kept 

constant for every iteration performed.  

K1, K2 and K3, which scale the amplitudes of each oscillator in the model, were assigned weightings of 1 

relative to the other parameters. 

Time parameters were assigned weightings of 0.1, reducing the sensitivity of the model output to these 

parameters by a factor of ten compared to the gain parameters K1, K2 and K3. The delays T1, T2 and T3 

were restricted to positive values as the SSVEP signal starts at 0 s, and the step size of the solver was set 

to a minimum of 1.9 ms, which corresponds to a 512 Hz sampling rate. The latter reduces calculation 
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complexity and erroneous pattern matching caused by trying to fit data generated by the model between 

recorded samples. Finally, the sum of all the time delays was constrained to be less than the period in 

which the initial VEP occurs (i.e. T1+T2+T3 < 0.5 s). This prevents the model from maximising the delays 

or setting delays greater than the window period of the acquired data, ensuring that each oscillator is 

able to contribute to the synthetic SSVEP. 

OSC1a, OSC1b, OSC2a, OSC2b, OSC3a and OSC3b, which describe the frequency and damping of each 

oscillator, were scaled to match the characteristics of a damped oscillator. To have a critically damped 

system, the damping factor (OSCa/OSCb) must be less than 1. 

 

 Model Fitting to the Initial SSVEP Responses 
The performance of model fitting to initial portions of the SSVEP signal was examined in the published 

data described previously. 28 SSVEP recordings were available in each of 4 subjects – 4 SSVEP trials for 

each of 7 stimulus frequencies. Since at least 3 trials per stimulus frequency remained for each subject 

after exclusions due to eyeblinks, the trial with the worst signal-to-noise ratio was excluded for stimulus 

frequencies with 4 surviving trials, leaving 3 SSVEP trials per stimulus frequency for each subject (i.e. 21 

SSVEP trials in each of 4 subjects). 

As described previously, the SSVEP trials were truncated to 512, 256 and 128 samples, producing three 

data sets corresponding to window periods of 1 s, 0.5 s, and 0.25 s, respectively (i.e. 21 SSVEP trials for 

each of 3 window periods in each subject; 84 SSVEP trials per window period; 252 SSVEP trials in total).  

Figure 3-10 illustrates the model fitting and parameter estimation process for a single SSVEP trial. During 

fitting the model is initialised by one of the three IP sets (IP1, IP2 or IP3). Each model fit produces for a 

specific SSVEP trial a set of estimated parameters (EPs) (Figure 3-11).  

For each SSVEP trial, the model fitting process was repeated three times, once for each IP set (IP1, IP2 or 

IP3), yielding three sets of EPs (EPi, where i = 1 to 3). As such, a total of 756 EP sets were generated. 

Goodness of fit was calculated for each of the estimated parameter sets, the distribution of which was 

investigated using notched box-and-whisker plots. The notches in the boxes represent 95% confidence 

intervals (CI) around the median, defined as M±1.57*(IQR/sqrt(n)), where M is the median, IQR is the 

interquartile range and n is the number of measurements. Data points more than 1.5*IQR below or above 

the 25th and 75th percentiles, respectively, are considered to be outliers. The whiskers extend to the 

most extreme data points that are not classified as outliers. 

Multi-way ANOVA was used to examine the effect of window period, stimulus frequency, IP set, and 

subject on goodness of fit.  
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Figure 3-10: Feature extraction by model fitting and parameter estimation. The model starts with one of three 
sets of initial parameters (IP1, IP2 and IP3). The estimation process adjusts the model parameters (Pj) iteratively 
using a pattern-search method to obtain a better fit (PG), each time comparing the output to the measured SSVEP 
response. This process is repeated for 500 iterations. Once the iterations are complete or the normalised root 
mean square error (NRMSE) has been reduced to zero, the parameter estimation stops and the final estimated 
parameters (EP) are output. 
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Figure 3-11: Feature extraction by model fitting and parameter estimation for a single SSVEP response: (A) SSVEP 
data are entered into the model. (B) The model fits the measured data through a process of parameter estimation. 
(C) A set of parameters (Pn) is generated that describes the measured SSVEP signal as a function of the model . 

 

 Feature Classification  
In this study three feature-classification methods were compared: a model-based approach with a 

multiclass SVM scheme and the commonly used spectral-domain CCA and PSDA methods. While the CCA 

and PSDA methods combine feature extraction and classification into one closed process, the proposed 

model-based approach has distinct feature-extraction (by model fit) and classification (by SVM) stages. 

Every set of parameters output by the model fit is considered a descriptive feature set.  

 Multiclass SVMs 

The objective of the multiclass SVM classifiers in this context is to determine from only the estimated 

parameter sets (EPn) generated by the model for each SSVEP response which stimulus frequency the 

subject was attending at a given time.  

All SVMs were trained in the same way and with the same configuration in order to ensure that the SVM 

scheme would be an independent variable when SVM classifiers are later compared to other classification 

methods. Each of the SVMs consisted of a set of chained binary-class SVMs to allow for a multiclass SVM 

classifier configuration. The chaining of SVMs was handled by the MATLAB fitcecoc function and is not 

discussed further here.  

For each subject, SVMs were trained for a specific window period and IP set using the associated 

estimated parameter sets that were generated by the model. The frequency of the stimulus represents 

the class. Table 3-6 shows a single SVM training set for one subject for a window period of 0.25 s and IP1. 

X, Y and Z are generic place holders for the frequencies of 6, 6.5, 7, 7.5, 8.2, 9.3 and 10 Hz. 
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Table 3-6: A single SVM training set for one subject 

Subject n, SVM1 (t = 0.25 s):  

Frequency of 
stimulation 
(class) 

Estimated parameters (EPs) from model fit, with t = 0.25 s and IP1 

X Hz EPX1: {T1, T2, T3, Osc1a, Osc1b, Osc2a, Osc2b, Osc3a, Osc3b, K1, K2, K3} 

Y Hz EPY1: {T1, T2, T3, Osc1a, Osc1b, Osc2a, Osc2b, Osc3a, Osc3b, K1, K2, K3} 

Z Hz EPZ1: {T1, T2, T3, Osc1a, Osc1b, Osc2a, Osc2b, Osc3a, Osc3b, K1, K2, K3} 

 

 

A total of 12 SVMs were trained per subject. The first nine SVMs include estimated parameters generated 

from fitting, for each SSVEP trial, three different window periods of data for each of three IP sets. Since 

each fit produces a unique set of EPs, nine unique SVM training sets are generated per subject. The final 

three SVM training sets, one for each of the three window periods, includes estimated parameters from 

all three initial parameter sets. Table 3-7 summarises the 12 SVM training sets used for each subject. 

These twelve SVMs enabled classifier performance to be assessed as a function of initial parameters 

and window period. Each SVM is named after the set of EPs (linked to the IPs) on which it was trained. 

As such, SVMn (n = 1,2,3,all) denotes the SVM trained using the sets of EPs generated from model fitting 

using IP set n.  

 

Table 3-7: SVMs trained per subject. 

SVMs trained per 

subject 

Window period of 

SSVEP data used 

in the fit process 

Model initialisation 

parameters used in 

the fit 

Estimated parameters 

SVM1(t = 0.25 s) 0.25 s IP1 EP1(0.25) 

SVM1(t = 0.5 s) 0.5 s IP1  EP1(0.5) 

SVM1(t = 1 s) 1.0 s IP1 EP1(1) 

SVM2(t = 0.25 s) 0.25 s IP2 EP2(0.25) 

SVM2(t = 0.5 s) 0.5 s IP2  EP2(0.5) 

SVM2(t = 1 s) 1.0 s IP2 EP2(1) 
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SVM3(t = 0.25 s) 0.25 s IP3 EP3(0.25) 

SVM3(t = 0.5 s) 0.5 s IP3  EP3(0.5) 

SVM3(t = 1 s) 1.0 s IP3 EP3(1) 

SVMAll(t = 0.25 s) 0.25 s IP1, IP2 and IP3 EP1(0.25), EP2(0.25) and EP3(0.25) 

SVMAll(t = 0.5 s) 0.5 s IP1, IP2 and IP3 EP1(0.5), EP2(0.5) and EP3(0.5) 

SVMAll(t = 1 s) 1.0 s IP1, IP2 and IP3 EP1(1), EP2(1) and EP3(1) 

 

 SVM construction 

Each SVM was built using the same configuration. A polynomial kernel function of degree 8 was used 

as the SVM kernel since polynomial kernel functions are better suited to learned models in which the 

features have a non-linear relationship. When assessing the position of a single value in the parameter 

set, a polynomial kernel function takes into account not only the relative spacing of a single variable, 

but also the combinations of all the features (Rai, 2011).  

The predictor data of the SVM were standardised such that each column of input data is weighted by a 

column mean and a standard deviation. This reduces the effect of outlying data points. This functionality, 

and that of the polynomial kernel, are dealt with entirely by MATLAB’s Machine Learning toolbox.  

The MATLAB function, fitecoc, was used to train the multiclass SVM classifiers. MATLAB’s random 

variable generation was reset before each SVM was trained using the command rng(1). This enables 

the training outcome to be repeatable (Figure 3-12):  

 

% SVM template 
Data.SVMData.t = templateSVM('Standardize',1,'KernelFunction' ... 

,'polynomial', 'PolynomialOrder',8,'SaveSupportVectors',true); 
% Train Models: 
rng(1) 
Data.SVMData.SVM1.Mdl = fitcecoc(X1,Y,'Learners',Data.SVMData.t);  

Figure 3-12: Code snippet of MATLAB code used to train the SVM's with the defined template Data.SVMData.t . 

 

 CCA feature extraction and classification  

CCA was introduced and first used by Lin et al. (2007). The MATLAB functions to perform CCA classification 

of SSVEPs have been made available by the authors of a study that compared CCA to another classification 

method (Zhang, 2014). The only change made to their implementation was to replace the reference sine 

waves they employed with sine waves that corresponded to the stimulus frequencies presented in this 

research. Essentially CCA classification compares unknown signals to a set of known patterns. 
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 PSDA feature extraction and classification  

PSDA feature classification is available in the MATLAB EEG-processing-toolbox. The toolbox was 

developed specifically to compare different SSVEP classification methods in a study published by 

Kompatsiaris et al. (2016). These validated functions were used in the present study (Ioannis 

Kompatsiaris et al., 2016) to build the PSDA classification system. Since PSDA uses the frequency 

responses in the data as features for classification, the time-series SSVEP data needed to be 

transformed into the frequency domain prior to classification.  

The classifier returns the largest primary frequency component, which is assumed to represent the 

stimulus frequency.  

 Assessing Classifier Performance 

 Cross-validation 

A cross-validation model was constructed for each SVM that was trained. This was generated using 

MATLAB’s crossval function. For each subject, the cross-validation models for SVM1, SVM2, and SVM3 

each contained 21 sets of EPs (3 per class), while that of SVMAll consisted of 63 sets (9 per class). For each 

subject, both in-sample and out-of-sample resubstitution losses were evaluated for each SVM for each 

window period using the cross-validation model.  

The in-sample resubstitution loss gives an indication of the ability of the SVM to classify data from within 

the training set. All data are included in the training set and the SVM attempts to classify a data set from 

the training set. In the ideal case this would return no errors, however a perfect in-sample loss does not 

imply that the SVM is perfect at classification, as it may be over fit to the training data (i.e. it may only be 

good in the context of the training data).   

The out-of-sample resubstitution accuracy was calculated using a leave-one-out cross-validation 

approach. This method trains the classifier with the given data, leaving out one data set (a class and its 

associated parameters). The ability of the trained SVM to then correctly classify the left-out data set is 

assessed. This process is repeated for every data set in the training set.  

For each subject, in-sample confusion matrices were generated for SVMall and window period. Class-

specific accuracy, precision and recall were calculated from the confusion matrices for SVMall and 

window period for each subject.  

Out-of-sample confusion matrices for all subjects combined were generated for SVMall and window 

period by adding the out-of-sample confusion matrices of individual subjects. Class-specific accuracy, 

precision and recall across subjects were then computed for each class and window period. 

For comparison, out-of-sample confusion matrices were constructed for CCA classification for each 

window period, across all subjects, and class-specific accuracy, precision and recall computed.  
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 Statistical comparison of classifiers 

 

For the four SVM-based classifiers, three-way ANOVAs were used to examine the effect of window 

period, classifier, and frequency on class-specific accuracy, precision and recall. In addition, the effect 

of window period on accuracy, precision, and recall was evaluated separately in the SVMall and CCA 

classifiers using one-way ANOVAs. Finally, three one-way ANOVAs were performed to compare 

accuracy, precision and recall between the four SVM-based classifiers and CCA.  

 

 

 Classifier Performance in the Context of BCIs 

 Probability of a true positive decoding 

The performance of the classifiers in a multi-class BCI application were evaluated using the probability 

of a true positive decoding, Prob(TP), to quantify the fraction of all classified signals which are assigned 

to the correct class. It is defined as the sum of the diagonals (TPs) over the sum of all entries in the 

confusion matrix: 

 Prob(TP) = TP/[TP+FP+TN+FN] (3-1)  

Prob(TP) values were computed for each classifier for each window period, both for subjects individually 

and for all subjects combined.  

 McNemar testing 

Asymptotic McNemar testing was performed for each subject for each window period to examine 

whether Prob(TP) differed significantly between the various SVM-based classifiers and CCA. McNemar 

testing is a categorical statistical test designed for comparing multi-class classification methods. 

McNemar testing was implemented here using the MATLAB function testcholdout. The null 

hypothesis was that classifier A is at most as accurate as classifier B. Rejection of the null hypothesis 

therefore indicates with 95% certainty that classifier A is more accurate than classifier B. Since each 

classifier was compared with every other classifier (20 comparisons) for every window period (3) and 

each subject (4), a total of 240 tests were performed. The resulting p-vlaues were tabulated in 5x5 

matrices - one for each subject for every window period. 

The McNemar results were summarised across subjects by producing for every window period a 5x5 

matrix where every entry shows the number of subjects for which the null hypothesis was rejected at 

that position in the individual subject matrices.  

 Hypothetical ITRs 

Hypothetical ITR values were then computed for each classifier for each window period, both for subjects 

individually and for all subjects combined. During computation of the ITRs, some limits were placed on 

the variables. For instance, the number of possible commands, N, was fixed at 7, which corresponds to 

the number of unique frequency classes presented. Further, processing time was assumed to be 

instantaneous, so that the number of commands possible per second was fixed:  

 Number of commands per second = 1/(data window period) (3-2)  
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Results 
 

 Model Validation 
Figure 4-1 shows the output from our replicated model when using model parameters specified by 

Kremlácek et al. (2002). This output is similar to that produced by the authors using the same model 

parameters (see Figure 1-8).  

 

 

Figure 4-1: Output from our replicated model when using the parameters specified by Kremlácek et al. (2002) for 
pattern reversal stimuli. Not  
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 Feature Extraction by Model Fitting 

 Model fit on VEP results 

The dashed red lines in Figure 4-2 and Figure 4-3 show the outputs when fitting the model to a stimulus-

locked average of 20 occurrences of a single subject’s VEP response for two different initial parameter 

sets. For the fit in Figure 4-2, the initial starting parameters suggested by Kremlácek et al. (2002) for 

pattern reversal VEPs were used, producing a fit with an NRMSE of 0.26. Although this is higher than 

the 0.13 NRMSE reported by Kremlácek et al. (2002) for the same starting parameters, the characteristic 

features of the VEP response (N70, P100, N135) are preserved. In contrast, setting initial parameters to 

zero produced a poor fit with an NRMSE of 0.86 (Figure 4-3). Notably, the model, which increases or 

decreases from a starting value of zero, is not able to account for the DC offset of ∼2.5 μV at 0 s (present 

in the grand averaged VEP data). 

 

 

Figure 4-2: Model fit (red dashed line) to a stimulus-locked average of 20 occurrences of a single subject’s VEP 
response (solid blue line) when initial starting parameters suggested by Kremlácek et al. (2002) for pattern 
reversal VEPs were used. The model fit produced an NRMSE of 0.26 (goodness of fit = 0.74).  
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Figure 4-3: Model fit to the same stimulus-locked average of 20 occurrences of a single subject’s VEP response 
(solid blue line) when initial starting parameters were set to zero. The NRMSE is 0.86, yielding a goodness of fit 
of 0.14. 

 Fitting the model to SSVEP data in steady state  

Fitting the model to SSVEP waveforms, excluding the initial 1 s portion of the SSVEP response before 

the signal reaches steady state, consistently yielded NRMSEs below 25% (goodness of fit > 0.75). Figure 

4-4 shows an example of a recorded SSVEP response to a 4 Hz flashing checkerboard stimulus (solid 

blue line) together with the synthetic SSVEP generated after 500 iterations of parameter estimation by 

the model (dashed red line). Note that the x-axis is the sample length and does not indicate the stimulus 

onset. The NRMSE for this particular fit is 21% (goodness of fit = 0.79). Although the shape of the 

synthetic SSVEP closely matches the data, it can be seen to deviate from the recorded SSVEP over time 

due to signal drift.  
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Figure 4-4: Comparison of an SSVEP response to a 4 Hz flashing checkerboard stimulus (solid blue line) and the 
output from the model after 500 iterations (dashed red line). The NRMSE is 21% (goodness of fit = 0.79). Although 
the initial model fit closely follows the recorded data, it deviates over time due to signal drift.  



  
  

52 
 
 

 Model Fitting to the Initial SSVEP Responses  
Figure 4-5, Figure 4-6 and Figure 4-7 show examples of model fits to the initial 1 s, 0.5 s and 0.25 s of 

SSVEP responses recorded for different subjects for different stimulus frequencies. In each plot the 

solid black line indicates the recorded SSVEP response following stimulus onset at 0 s. The other lines 

show the synthetic SSVEPs generated by the model for each of three different initial parameter sets. 

The fits shown are part of the dataset used to train the SVMs. The goodness of fit values for each fit are 

shown in the legends found in the top right hand corner of the figures. 

In general the plots demonstrate that the model can be fit to the initial SSVEP response. Although the 

goodness of fits are lower than that achieved when fitting to VEPs, the main features of the SSVEPs are 

generally preserved. Small perturbations in the SSVEP response are, however, not fitted well (see, for 

example, features at 0.1 s and 0.4 s in Figure 4-6). It is also evident from the red curve in Figure 4-7 

that it is possible to generate a fit with a reasonable goodness of fit (0.41) that in no way mirrors the 

physiological SSVEP response. Notably, since each SSVEP represents a single trial and not an average of 

trials, the features of the initial SSVEP response are highly variable and the characteristic features of a 

VEP response (N75, P100, N135) are generally not evident.  

 

 

Figure 4-5: Model fit to 1 s of recorded SSVEP data. The black line shows the SSVEP response recorded in subject 
4 following onset of a 7.5 Hz flashing checkerboard stimulus at 0 s. The other colours (blue, red, green) show 
model fits for each of three different initial parameter sets. The goodness of fit for each plot are shown in the 
legend on the top right. 
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Figure 4-6: Model fit to 0.5 s of recorded SSVEP data. The black line shows the SSVEP response recorded in subject 
3 following onset of a 6.5 Hz flashing checkerboard stimulus at 0 s. The other colours (blue, red, green) show 
model fits for each of three different initial parameter sets. The goodness of fit for each plot are shown in the 
legend on the top right.  

 

Figure 4-7: Model fit to 0.25 s of recorded SSVEP data. The black line shows the SSVEP response recorded in 
subject 2 following onset of a 6 Hz flashing checkerboard stimulus at 0 s. The other colours (blue, red, green) 
show model fits for each of three different initial parameter sets. The goodness of fit for each plot are shown in 
the legend on the top right. 

 

Figure 4-8 shows the distribution of the goodness of fits achieved, for all subjects and initial parameter 

sets, when fitting the model to recorded SSVEPs from different stimulus frequencies and for different 

window periods of data. Figure 4-9 shows the same data collapsed across stimulus frequencies. Figures 

4-8 and 4-9 demonstrate for each stimulus frequency separately and all frequencies combined that the 

goodness of fit increases significantly when the model is fit to longer window periods of data (F = 203.4, 

p < 0.0001, df = 2). This is supported by the fact that the notches for all three window periods do not 
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overlap (Figure 4-9), which provides strong evidence that the median goodness of fit for the three 

window periods is different from each other at a significance level of 5%. 

Although visual inspection of the goodness of fits, for each window period of data, appear similar for 

different stimulus frequencies, multi-way ANOVA showed a significant effect of frequency (F = 2.52, p 

= 0.02, df = 6). Post-hocs revealed that (when averaged over all window periods, subjects and initial 

parameter sets) the model produced better fits to SSVEPs recorded from 9.3 Hz stimuli than 6 Hz stimuli 

(Figure 4-10); goodness of fits did not differ significantly between any other stimulus frequencies. 

Notably, when fitting to 1 s of data, the goodness of fits achieved for different stimulus frequencies 

show greater variability than when fitting to shorter window periods of data (Figure 4-8). 

The choice of initial parameter set also significantly impacted fitting performance (F = 21.67, p < 0.0001, 

df = 2). Figure 4-11 shows that the median goodness of fit averaged across all subjects, stimulus 

frequencies and window periods. The range of goodness of fit values found for all three IPs is 

comparable, although post-hocs do reveal that the median value for IP2 is lower at the 5% significance 

level as compared to IP1 and IP3 (Figure 4-12) . It should be noted however that they differed by only 

0.07 in goodness of fit value. 

Finally, goodness of fits (when averaged over all window periods, stimulus frequencies and initial 

parameter sets) differed significantly between subjects (F = 5.4, p = 0.0011, df = 3), with SSVEP 

responses from subject 2 producing poorer fits than those recorded in subjects 1 and 3 (Figure 4-13). 

None of the factors showed significant interaction effects (all p’s > 0.1).  
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Figure 4-8: Box-and-whisker plots showing the distribution of goodness of fit values achieved in all subjects for different frequencies and window periods. The notches 
in the boxes represent 95% confidence intervals (CI) around the median, defined as M±1.57*(IQR/sqrt(n)), where M is the median, IQR is the interquarti le range and n is 
the number of measurements. Red crosses denote outliers, that is points more than 1.5*IQR below or above the 25th and 75th percentiles, respectively. The whisk ers 
extend to the most extreme data values that are not outliers.
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Figure 4-9: Box-and-whisker plots showing goodness of fit, averaged over all subjects, stimulus frequencies and 
initial parameter sets, as a function of data window period. The fact that the notches for 0.25 s, 0.5 s and 1 s do 
not overlap provides strong evidence at a significance level of 5% that the median the goodness of fit improves 
when fitting to longer periods of the initial SSVEP response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10: Post-hocs revealed that, when averaged over all window periods, subjects and initial parameter sets, 
the model achieved significantly better fits to SSVEP responses from 9.3 Hz stimuli than SSVEP responses from 6 
Hz stimuli. No other stimulus frequencies showed significant differences.  
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Figure 4-11: Comparison of goodness of fits achieved for each of the three initial parameter (IP) sets, averaged 
across all subjects, stimulus frequencies and window periods. The fact that the notches for IP2 do not overlap 
with those of IP1 and IP3, provides strong evidence that the median goodness of fit for IP2 is lower that that of 
IP1 and IP3 at a significance level of 5%. 

 

 

Figure 4-12:  Post-hocs revealed that, when averaged over all window periods, subjects and stimulus frequencies, 
the model achieved significantly better fits for IP1 and IP3 compared to IP2.



  
  

58 
 
 

 

Figure 4-13: Post-hocs revealed that, when averaged over all window periods, stimulus frequencies and initial 
parameter sets, the model achieved significantly better fits to SSVEP responses recorded in subjects 1 and 3 
compared to subject 2. 
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 Assessing Classifier Performance 

 Cross-validation: SVM in-sample classification performance  

Figure 4-14 shows the in-sample resubstitution losses of each SVM for each window period and subject. 

Since the in-sample loss represents the proportion of data used in the training set that is classified 

incorrectly by the SVM, low losses are typical. Although in-sample loss values were generally between 

10 and 20%, the loss reached as high as 30% in some instances. In all subjects, SVMAll demonstrated 

good classification performance with losses of 20% or less for all three data window periods. 

  

 

 

Figure 4-14: Each subject’s in-sample resubstitution loss for different SVMs for different window periods of data. 
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Figure 4-15 shows for subject 4 the in-sample confusion matrices of SVMAll for each window period. 

The confusion matrix indicates true classes on the y-axis vs predicted classes on the x-axis. As such, the 

diagonal represents true positives (TP).  

For example, in the confusion matrix for the 0.25 s window period instance, 6 Hz was classified correctly 

nine times (TP = 9), and never incorrectly (FN = 0), as seen by the horizontal 6 Hz row. The vertical 6 Hz 

column, tells us that one 10 Hz signal was incorrectly classified as belonging to the 6 Hz class (FP = 1). 

All other signals (matrix entries not found in the 6Hz row or column) were correctly classified as not 

belonging to the 6 Hz class (TN = 53).  

In contrast, 10 Hz was classified correctly six times (TP = 6) and incorrectly three times (as 6 Hz, 7 Hz 

and 7.5 Hz; FN = 3). Two signals, one 7.5 Hz and one 9.3 Hz signal, were incorrectly classified as 

belonging to the 10 Hz class (FP = 2), and all other signals were correctly classified as not belonging to 

the 10 Hz class (TN = 52).  

From the confusion matrices of multiclass classifiers the accuracy, precision and recall, defined in 

section 2.5, can be calculated for each class. Accuracy reflects the fraction of all classifications that are 

true (i.e. (TP+TN)/(TP+TN+FP+FN)); precision, the fraction of positive classifications that are true (i.e. 

TP/(TP+FP)); and recall, the fraction of signals belonging to a class that are correctly assigned to that 

class (i.e. TP/(TP+FN)). Figure 4-16 shows for subject 4 the in-sample class-specific accuracy, precision 

and recall of SVMAll for the 0.25 s window period.  
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Figure 4-15: In-sample confusion matrices of SVMAll for Subject 4 for each window period.
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Figure 4-16: In-sample class-specific accuracy, precision and recall of SVMAll for subject 4 and a window period 
of 0.25 s. Accuracy reflects the fraction of all classifications that are true; precision, the fraction of positive 
classifications that are true; and recall, the fraction of signals belonging to a class that are correctly assigned to 
that class.  

 

 Cross-validation: SVM out-of-sample classification performance 

Figure 4-17 shows the out-of-sample resubstitution losses of each SVM for each window period and 

subject. The out-of-sample losses were typically high (between 80 and 100%), corresponding to values 

one would expect by chance. Since there were seven classes to classify, a random guess would have a 

1 in 7 chance of correctly classifying the data, corresponding to a loss of 85.8%. A loss of 100% indicates 

that none of the data excluded from the training set were correctly classified by the SVM. As with the 

in-sample case, SVMAll was least affected by the data window period. 

Out-of-sample confusion matrices for each window period are presented for the SVMAll and CCA 

classifiers in Figure 4-18 and Figure 4-19, respectively, for all subjects combined. These were 

constructed by adding the out-of-sample confusion matrices of individual subjects. As such, for SVMAll, 

which includes fits from all three initial parameter sets in the training set, entries on the diagonal 

represent the number from a total of 36 signals (3 per subject for each of 4 subjects and 3 IPs) per class 
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that were classified correctly (TP). For CCA, diagonal entries represent the number from a total of 12 

signals per class that were classified correctly. The colour coding serves to highlight the performance 

of the classifier. A large number of true positives, compared to FNs and FPs, would result in hot colours 

on the diagonal and cool colours elsewhere. As such, the distribution of hot colours throughout the 

confusion matrix of SVMAll for the 0.25 s window period reflects poor performance, compared to 

relatively more hot colours along the diagonal and cool colours off the diagonal in the CCA confusion 

matrix for the 1 s window period signifying better performance.  Figure 4-20 and Figure 4-21 show the 

corresponding class-specific accuracy, precision and recall for each window period for the SVMAll and 

CCA classifiers, respectively. 

  

Figure 4-17: Each subject’s out-of-sample resubstitution loss for different SVMs for different window periods of 
data. 
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Figure 4-18:  Out-of-sample confusion matrices of SVMAll summed across subjects for data window periods 0.25 s, 0.5 s, and 1 s, respectively.  

 

Figure 4-19: Out-of-sample confusion matrices of CCA summed across subjects for data window periods 0.25 s, 0.5 s, and 1  s, respectively. 
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Figure 4-20: Class-specific accuracy, precision and recall for the SVMAll classifier across all subjects for window periods 0.25 s, 0.5 s, and 1  s, respectively. 

 

Figure 4-21: Class-specific accuracy, precision and recall for the CCA method across all subjects for window periods 0.25 s, 0.5 s, and 1 s, res pectively.
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 Statistical comparison of classifiers  

For the SVM classifiers, the effects of window period, classifier and frequency class on accuracy, precision, and recall were 

examined using three-way ANOVAs. Accuracy only showed a significant effect of frequency (F = 5.05, p = 0.0008, df = 6), 

with 8.2 Hz, 9.3 Hz and 10 Hz stimuli achieving better accuracies than 6 Hz stimuli (Figure 4-22). In contrast, precision and 

recall both showed significant effects of classifier (F = 6.01, p = 0.002, df = 3 and F = 4.61, p = 0.0079, df = 3, respectively), 

with SVMAll performing better than SVM1, SVM2, and SVM3 on precision and better than SVM1 on recall (Figure 4-23).  

Neither accuracy, precision nor recall showed any effect of window period (all p’s > 0.40). 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 
Figure 4-23: Post-hocs revealed that SVMAll achieved better precision (left) and recall (right) than 
the other SVM-based classifiers.  

 

Figure 4-22: Post-hocs revealed that the SVM classifiers achieved greater 
accuracies for 8.2 Hz, 9.3 Hz and 10 Hz stimuli compared to 6 Hz stimuli. 
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In contrast to SVMAll that did not show an effect of window period on accuracy, precision or recall (all p’s > 0.75; Figure 

4-24), for CCA all three measures showed a significant effect of window period (accuracy: F = 6.2, p = 0.0089, df = 2;  

precision: F = 10.3, p = 0.001, df = 2; and recall: F = 3.67, p = 0.046, df = 2) (Figure 4-25). Post hocs revealed that accuracy 

and precision improved for the 1 s window period as compared with the two shorter window periods. In the case of recall, 

the 1 s window period produced significantly better results than the 0.25 s window period. 

Figure 4-26 shows the distribution of class-specific accuracy, precision and recall measures for the four SVM-based 

classifiers and CCA when data from all the window periods were combined. All three measures showed significant effects 

of classifier (accuracy: F = 4.11, p = 0.004, df = 4; precision: F = 12.63, p < 0.0001, df = 4; and recall: F = 10.67, p < 0.0001, 

df = 4). Post-hocs revealed that CCA yielded better precision and recall than all the SVM-based methods, as well as better 

accuracy than SVM1, SVM2, and SVM3. Only on precision did SVMAll perform better than SVM1 and SVM2.   
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Figure 4-24: Box-and-whisker plots showing for SVMAll the distribution of class-specific accuracy (left), precision (middle) and recall (right) measures as a function of 
window period. 

 

Figure 4-25: Box-and-whisker plots showing for CCA the distribution of class-specific accuracy (left), precision (middle) and recall (right) measures as a function of window 
period. Window periods showing significant differences are indicated by brackets above the plot. 
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Figure 4-26: Box-and-whisker plots showing the distribution of class-specific accuracy (left), precision (middle) and recall (right) measures for the different SVM-based 
classifiers and CCA when data from all the window periods are combined. Significant differences are indicated by brackets above the plot. 
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 Classifier Performance in the Context of BCIs 

 Probability of a true positive decoding 

To evaluate the performance of the classifiers in a multi-class BCI application, we calculated the 

probability of a true positive decoding (Prob(TP) = TP/[TP+FP+TN+FN]). Figure 4-27 shows Prob(TP) 

for all subjects combined as a function of window periods for each of the classification methods. 

These values reflect the fraction of all signals classified that are assigned to the correct class . 

Consistent with the results shown previously for accuracy, precision and recall (Figures 4-24 and 4-

25), Prob(TP) is unaffected by window period for the SVM-based classifiers while it increases with 

increasing window period for CCA and PSDA. Figure 4-28 shows Prob(TP) as a function of window 

period for each subject individually. Similar trends are seen as those observed in Figure 4-27 for the 

case of all subjects combined. 

Figure 4-27: Comparison of the probabilities of a true positive decoding (Prob(TP)) for all subjects 
combined, for different classification methods as a function of window period.  
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Figure 4-28: Comparison in each subject of Prob(TP) for different classification methods as a function of data 
window period. 

 McNemar testing 

Mc Nemar testing was used at each window period to examine whether Prob(TP) was significantly 

better for certain classification methods as compared to others. Tables 4-1 to 4-3 show examples 

for three different subjects and different window periods of results from Mc Nemar tests. The null 

hypothesis was that the classifier in each row is at most as accurate as the classifier in each column. 

Green shaded regions indicate rejection of the null hypothesis with 95% certainty, i .e. that the 

classifier in the row is more accurate than the classifier in the column. Each table entry shows the 

p-value of the statistical comparison. McNemar tests show, for example, that no classifier 

outperforms any other classifier in subject 2 for 0.25 s of data (Table 4-1, all p’s > 0.28). In contrast, 
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for the same subject but a 1 s window period of data, the CCA method is significantly more accurate 

than SVM1, SVM2, and SVMAll (Table 4-2). Similarly, CCA outperforms all the SVM-based methods 

in subject 4 for a 1 s window period of data (Table 4-4).  

The results of the McNemar tests performed in all subjects are summarised in Figure 4-29. For each 

window period, each entry in the matrix shows the number of instances in which the null hypothesis 

was rejected in any of the 4 subjects, notably, for window period 1 s, CCA outperforms the SVM-

based methods in at least 3 of 4 subjects. At shorter window periods, CCA and SVMAll outperforms 

some of the other SVM-based methods in only 1 or 2 subjects. 

Table 4-1: McNemar test results: p-values for subject 2, window period = 0.25s. Green shaded regions indicate 
rejection of the null hypothesis which implies that the classifier in the row is more accurate than that in the 
column. 

 SVM1 SVM2 SVM3 SVMAll CCA 

SVM1 1.0000 0.3274 0.5000 0.2819 0.5000 

SVM2 0.6726 1.0000 0.6726 0.5000 0.6726 
SVM3 0.5000 0.3274 1.0000 0.2819 0.5000 
SVMAll 0.7181 0.5000 0.7181 1.0000 0.6726 
CCA 0.5000 0.3274 0.5000 0.3274 1.0000 

 

Table 4-2: McNemar test reults: p-values for subject 2, window period = 1s. Green shaded regions indicate 
rejection of the null hypothesis which implies that the classifier in the row is more accurate than that in the 
column. 

 SVM1 SVM2 SVM3 SVMAll CCA 

SVM1 1.0000 0.7181 0.9488 0.1587 0.9902 

SVM2 0.2819 1.0000 0.9584 0.0786 0.9711 
SVM3 0.0512 0.0416 1.0000 0.0127 0.8716 

SVMAll 0.8413 0.9214 0.9873 1.0000 0.9977 
CCA 0.0098 0.0289 0.1284 0.0023 1.0000 

 

 

Table 4-3: McNemar test results: p-values for subject 4, window period = 1s. Green shaded regions indicate 
rejection of the null hypothesis which implies that the classifier in the row is more accurate than that in the 
column. 

 

 

 

 

 SVM1 SVM2 SVM3 SVMAll CCA 

SVM1 1.0000 0.1284 0.0899 0.2071 0.9873 

SVM2 0.8716 1.0000 0.5000 0.7181 0.9943 

SVM3 0.9101 0.5000 1.0000 0.6726 0.9943 
SVMAll 0.7929 0.2819 0.3274 1.0000 0.9959 

CCA 0.0127 0.0057 0.0057 0.0041 1.0000 
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Figure 4-29: Summary of the results from McNemar tests performed for each subject at each window period. For each window period, each entry in the matrix shows 
the number of instances in which the null hypothesis was rejected in any of the 4 subjects. As such, values reflect the number of subjects in whom the c lassifier in the 
row performed better than the classifier in the column.
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 Hypothetical ITRs 

Figure 4-30 shows average hypothetical ITRs corresponding to the above Prob(TP) values for the 

SVM, CCA and PSDA classification methods as a function of window period. ITRs for each subject 

individually are shown for the different classification methods as a function of window period in 

Figure 4-31. The hypothetical ITR generally follows a trend of decreasing with increased window 

period. 

The ITR generally decreases, as expected, with an increase in window period, which demonstrates 

a strong need to reduce the window period to improve BCI performance. Whereas the SVM scheme 

was less accurate, it allowed for a higher theoretical ITR than that of the PSDA method. The CCA 

method still outperformed the SVM.  

 

 

Figure 4-30: Average theoretical ITRs for different classification methods as a function of window period.  ITR 
values are artificially inflated due to the assumption of instantaneous processing speeds. The hypothetical ITR 
is thus orders of magnitude larger than normal ITR values.  
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Figure 4-31: Individual subject theoretical ITRs for different classification methods as a function of window 
period. ITR values are artificially inflated due to the assumption of instantaneous processing speeds. 
Discontinuities in subject 4 arise from data points with zero accuracy.   
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Discussion 
The findings of this study show that it is possible to fit Kremlácek’s model of VEPs to SSVEP responses, 

with a goodness of fit within the range of approximately 0.05 to 0.6, depending on the window period 

and the stimulus frequency (Figure 4-8). This result validates Hypothesis 1: Kremlácek’s VEP model can 

be fit onto the initial VEP portion of an SSVEP response.  

However, the classification performance of the SVM classifiers, informed by the estimated model 

parameters, was found to be poor. On average, the probability of a true positive decoding (Prob(TP); 

Figure 4-27) was found to be roughly the same as that of a random choice (∼14%). On a subject-

specific basis, only a few SVMs performed better than random choice, the highest Prob(TP) value 

achieved being 28% (subject 1, SVM1 at 1 s; subject 3, SVM3 at 1 s; Figure 4-28). Overall, it was not 

possible to determine with any reliability which stimulus was attended by a subject; this may be due 

to the small dataset (4 subjects) used to train the SVMs. We therefore reject both Hypothesis 2a: The 

model fit onto the initial portions of SSVEP signals can generate unique feature-descriptive parameters 

that relate to the frequency of the stimulus presented and Hypothesis 2b: These unique features enable 

the SSVEP signal to be classified relative to the stimulus frequency, using a multiclass SVM approach.  

The CCA method at any of the three window periods (0.25 s, 0.5 s or 1 s; Figure 4-29) outperformed 

the SVM-based classifiers in contradiction of Hypothesis 3: The classification approach based on the 

time-domain model proposed here outperforms traditional spectral classification methods (PSDA and 

CCA) when the input to the classifiers comprises a 1 s or less window period of EEG data as recorded 

from stimulus onset; the shorter the window period, the more pronounced the effect. 

A few observations could be made regarding the SVM classifiers. The SVM classification 

performance at the shortest window period (0.25 s) is on average comparable to the CCA and PSDA 

approaches (Figure 4-28 and 4-30). At larger window periods the CCA and PSDA methods improved 

in performance as expected; however, the SVM-based approach did not improve noticeably. On a 

subject-specific basis, the SVM performance varied without any discernible patterns being evident 

(Figure 4-28 and 4-31).  

What follows is a discussion of the various factors that contributed to these results in the context 

of this and future research.    

 

 Using Kremlácek’s Model for fitting SSVEPs  
When fitting VEP data, Kremlácek et al. (2002) averaged data to remove spontaneous EEG activity 

and to account for noise. No such averaging was performed in this study, although an attempt was 

made to train and classify the data using a single stimulus exposure which resulted in much more 

spurious EEG activity being present in the data. The dataset used was also very small, consisting of 

only 4 subjects. Future work would need to address these limitations by using a larger dataset that 

might show improvements in the model’s potential as a classifier when applied to SSVEPs.  
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Various factors influence the model fit and classification process, namely: (i) the choice of initial 

model parameters; (ii) the downhill-simplex method of parameter estimation; (iii) the use of NRMSE 

as a goodness-of-fit function; (iv) the portion of SSVEP being fit to; (v) the window period used in 

the fit, and (vi) the selection of the stimulus frequencies used. 

 

 Initial model parameters 

The ability of the model to fit to the VEPs and SSVEPs was dependent on the choice of initial 

parameters (IPs). This was clearly evident during the initial exploration, where a set of initial 

parameters all set to zero (Figure 4-3) produced far worse fits than those obtained using the input 

parameters recommended by Kremlácek et al. (2002) (Figure 4-2). Furthermore, the choice of IP 

was seen to produce a significant difference in the goodness-of-fit values (Figure 4-12), even though 

the size of this difference was small (0.07). An improved selection of the IPs may therefore yield 

improved fit results, which Kremlácek et al. (2002) also postulate.  

A possible method to identify better IPs would be to assess a larger range of subjects and stimulus 

frequencies, the resultant estimated parameters found in this process could then be used as initial 

parameters for future fits. Furthermore, EPs found in this way should be obtained from fits on grand 

averages of SSVEP data instead of the single-stimulus exposure used in this study. It is expected that 

averaging out spurious EEG activity would result in better fits and therefore improved IPs. 

 

 Downhill simplex method of parameter estimation  

The specific pattern search method used in the fit process, namely the downhill simplex method, 

may have played a significant role in the model’s performance. The model fit was limited to a set 

number of 500 iterations and two restarts; it is possible that increasing the number of iterations 

could improve the fit, simply because more possible solutions could be tested. However, the 

disadvantage of that would be increased processing time. The downhill simplex method is 

computationally expensive, with a single SSVEP fit of 500 iterations taking approximately 30 minutes 

to complete. Such long fit times may be acceptable for  training a BCI system on a user offline; it is, 

however, a limitation of using a time-domain model in a BCI context, because SSVEP systems that 

use spectral classification techniques generally do not require extended periods of training.  

Future work should look at exploring the effect of alternative parameter estimation methods on the 

goodness of fit and subsequent classification performance, as well as on the processing time 

required. Furthermore, a better selection of initial parameters would reduce the fit time required 

as the IPs would be closer to the expected EPs.  

Information transfer rate (ITR) 

The theoretical ITR used in this study makes an assumption regarding the window period required 

to classify, namely that the computational time was zero. If the actual computational time were 

taken into account, the CCA would perform by an order of magnitude better than the SVM 

classifiers, as a result of the large difference in processing times. This highlights a limitation of the 

theoretical ITR used in this study due to its extending the ideas behind ITR and fixing certain values. 
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 NRMSE as a goodness-of-fit function 

Using NRMSE as the cost function for the goodness-of-fit criteria may not be the best approach for 

reducing the errors in fit: whereas it gives a mathematical description of fit, there are instances 

where a perceived ‘good’ fit may not have an actual valid fit.  

Figure 4-7 shows three fits for each EP generated (subject 3 stimulated at 6 Hz). The goodness of fit 

is indicated as 0.41 for EP2 in red and 0.44 for EP3 in green. While there is a very small difference 

(0.03) in the goodness-of-fit values between the two fits, visual inspection of Figure 4-7 shows that 

EP3 is closer to the measured signal in form, whereas the fit from EP2 has sudden, almost 

discontinuous changes in amplitude that are uncharacteristic of EEG activity.  

It is possible that the model may fit onto underlying trends in the data that are visually inconsistent 

but which are mathematically valid when assessed by the NRMSE method. Mean squared error has 

the disadvantage of heavily weighting outlying points, so that when an attempt is made globally to 

minimise such points during the pattern search, the model may have exaggerated responses to the 

forced linear minimisation of global maxima (Chai & Draxler, 2014). Owing to this weighting, the 

signal amplitude dominates the fitting process over other aspects such as frequency of oscillation 

or the selection of the oscillators’ damping factors. This effect is seen in Figure 4-5, which shows 

that the EPs fit better to high-amplitude, low-frequency oscillations (0.35–0.65 s) compared to the 

lower-amplitude, higher-frequency oscillations (0.7 –1 s).  

There are many other goodness-of-fit indicators that place emphasis on different aspects of error. 

These include mean absolute error (Chai & Draxler, 2014) and mean absolute percentage error 

(Myttenaere, et. al, 2015). In possible future explorations of this work, alternative goodness-of-fit 

indicators should be examined to find a measure that is more sensitive to matching the fit, based 

on frequency and not on signal amplitude. 

Poor fits have repercussions for machine-learning approaches to data classification, as pointed out 

by Singla (2014) in the case of neural networks. It may be mathematically possible that a model fit 

that appears uncharacteristic of the signal being measured can generate features that are unique 

to the signal and are interpreted as being classifiable. 

 

 Fitting to different portions of the SSVEP  

An SSVEP consists of two portions: an initial transient response and a steady--state response. The 

steady-state response emerges ∼1 s after stimulus onset.  

The model was able to produce a synthetic VEP that had the traditional characteristics of a VEP 

response (N70, P100, N135) and a relatively high goodness of fit (0.74; Figure 4-2). However, it was 

not able to account for the DC voltage offset (∼2.5 μV at t(0)). The existing model could potentially 

be improved by adding a new voltage offset parameter to the model in order to shift the model 

response and more accurately fit the VEP. However, this would be at the cost of increased model 

complexity. Alternatively, any DC offset present in the SSVEP data could first be eliminated from the 

signal to ensure that the first SSVEP data point is always at 0 μV before presenting the signal to the 
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model. A more drastic approach would involve using a completely new model, such as those 

explored by Wang et al. (2013), who used a forced Van der Pol oscillator to model VEP responses, 

and Zhang et al. (2013), who used their own multivariate synchronisation index (MSI) method to 

better model the dynamics of the SSVEP response.   

The model’s ability to fit the transient response (goodness of fit = 0.74; Figure 4-2) was found to be 

less than the fit achieved for the steady-state response of the SSVEPs (goodness of fit = 0.79; Figure 

4-4). One possible cause of this difference in fit performance is that the attributes of the model – 

already being oscillatory in nature – have a stronger ability to fit periodic signals, as is typical of 

SSVEPs. 

 Window period 

This study used shorter window periods than would normally be used with SSVEP-based BCIs and 

spectral classification methods. The longest window period used (1 s) is generally where the lower 

bounds of other classification methods start, spectral methods typically not being able to detect 

SSVEPs reliably below 0.5 s (Bin et al., 2009; see Figure 1-5). In this case, three window periods of 

interest were identified (0.25 s, 0.5 s and 1 s). 

Similarly to the spectral methods, the model showed that increasing the window period during a fit 

produced a corresponding improvement in the goodness of fit (Figure 4-9). This may be a 

combination of an increased window period incorporating more of the steady-state SSVEP, thus 

enabling the oscillators to fit better onto the signal, and smaller errors in the goodness-of-fit 

function for the damped higher-frequency oscillations (compare the differences in EPs and SSVEP 

response for the 1 s window period in Figure 4-5 against those of the 0.5 s window period in Figure 

4-6).  

 Selection of stimulus frequencies 

The frequency of the stimulus used did not have a noticeable effect on the fit results (Figure 4-10). 

The goodness-of-fit values were shown to be of similar distribution for all but two (9.3 Hz 

significantly outperforming 6 Hz) of the stimulation frequencies used. Furthermore, there was no 

noticeable relationship between frequency of stimulation and goodness of fit across all window 

periods (Figure 4-8). These results are an indication of the robustness of the technique; varying the 

frequency (as one would do in BCI) yields similar fit results independently of the frequency of 

stimulation.  

Typically, SSVEPs can be seen from 1 Hz to 100 Hz, although the frequency response is not linear 

and the amplitude decays as the frequency increases (Vialatte, Maurice, Dauwels & Cichocki, 2010). 

A shortcoming of the selection of frequencies used in this study is that only a narrow band of all 

possible SSVEP-inducing frequencies was investigated (6–10 Hz). The choice of frequencies 

investigated was based on a need to obtain the highest possible SSVEP amplitude response (Figure 

3-2).  

Figure 4-22 shows the class-specific accuracy across the SVM-based classifiers. It is interesting to 

note that 8.2, 9.3 and 10 Hz performed better than 6 Hz, with the accuracy increasing as the stimulus 

frequency increased. It is possible that this increased accuracy is a result of the larger SSVEP 

amplitudes (a 10 Hz SSVEP typically has twice the amplitude of a 6 Hz SSVEP; Figure 3-2). 
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Future work could expand the selection of stimulation frequencies to include SSVEPs with reduced 

signal amplitude. This would be of interest for comparing them against spectral classification 

methods that rely heavily on amplitudes to distinguish the signals. At higher SSVEP responses, the 

additive effect of EEG noise makes for a signal that is much more difficult to distinguish (Wang et 

al., 2006). This may not be the case for the time-based method. Furthermore, the SSVEP amplitude 

is connected to the stimulus luminosity, with brighter – higher-contrast – images producing more 

easily classifiable SSVEPs for spectral methods. However, such systems report low usability scores, 

because they require intense changes in contrast (Figure 2-4). If the time-based model proves better 

suited to lower-amplitude signals, and therefore to the detection of lower-contrasting stimuli, it 

would be more comfortable for end-users.  

Stimulation frequency could potentially be used to improve the performance of the model. It has 

been shown that SSVEPs can be modelled as compositions of multiple VEPs (Luo & Sullivan, 2010a). 

As such, the initial oscillator (OSC1) could be excited with a repeated wave oscillating at the stimulus 

frequency to which a fit is trying to be made. This would add an extra parameter to the model; 

however, it may force the model to act more in line with that of a repeated VEP – by constantly 

triggering the model with a forced input. Alternatively, the IPs could be preconfigured to certain 

generic stimulus frequencies, thereby offering a better initial starting point for the parameter 

estimation process. This would also reduce the fit time required as the IPs would be closer to the 

expected EPs.  

 

 SVM Classifier Performance 
Overall, the performance of the SVM classifiers was poor, as measured by accuracy, recall, precision 

and Prob(TP). Possible reasons for this are discussed below, but they include overfitting (5.2.1), 

separation of parameters (5.2.2), the influence of initial parameter selection (5.2.3) and inter-

subject variability (5.2.4).  

 Cross-validation and overfitting 

The SVM classifiers have an average in-sample resubstitution loss of about 20% (Figure 4-14). This 

indicates that when they were based on previously seen data, the SVMs had, on average, an 80% 

level of accuracy. In-sample resubstitution is an optimistic measure of classifier performance, 

because good in-sample loss may not be a predictor of classifier performance on unseen data. Yet 

a bad in-sample loss generally leads to poor classification performance (Anguita et al., 2012). The 

ability of the SVMs to distinguish accurately (> 80%) between seen data indicates that the data are 

potentially neatly separable (as described in section 5.2.2).  

The out-of-sample losses calculated during the cross-validation process were very high, having an 

average misclassification rate of about 85% (Figure 4-17). Viewed in conjunction with the in-sample 

losses this misclassification rate indicates that the SVMs may have been overfit (Anguita et al., 

2012). Overfitting can be seen in the 0.25 s window period confusion matrix of SVMAll (Figure 4-18). 

Specifically by noticing the increased weights in the 6 Hz column it can be seen that the classifier 

favours ‘guessing’ that the stimulus is 6 Hz. This could explain the significant difference in class-

specific accuracy seen for 6 Hz in Figure 4-22. An overfit model tends to perform very well on seen 
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data and poorly on unseen data, as was found to be the case for the model (see sections 4.4.1 and 

4.4.2).  

There are two main causes of overfitting: insufficiently large training datasets and the complexity 

of model parameters. The dataset used in this study was small, each class being observed only three 

times per subject per window period. The model parameter space was relatively larger, consisting 

of 12 parameters. If this study were to be repeated, a much larger dataset should be used to reduce 

the potential for classifier overfitting. A reduction in model parameters may also help to reduce the 

chance of overfitting. 

In an exploratory principal component analysis (PCA), eight optimal parameters were identified. 

However, the motivation behind the 12 parameters used is that each oscillator is associated with a 

biological process in the human visual system. The ultimate goal is that the parameters produced 

by a model fit are able to be used for some form of clinical diagnosis. For example, if there were a 

much larger than average T1 (initial delay), it might indicate a physiological difference in the 

subject’s primary visual cortex. Whereas the diagnostic aspect can potentially add further clinical 

value to BCI applications, it is not a requirement for BCI to replicate SSVEP physiology, but only to 

identify when a subject attends a stimulus.  

 

 Separation of parameters  

The ability of the classifiers to distinguish between classes correctly is dependent on the distribution 

of parameters, in the model the parameter space. This is illustrated for a hypothetical two-

dimensional parameter space in Figure 5-1 

Initially the two groups of parameters (or classes) are spaced closely together, but they are still 

considered to be classifiable because a hyperplane can be fit between them. If each fit has an error 

introduced to the parameters (P1 + Error, P2 + Error) such that the class grouping is extended into 

regions R1 and R2, the groupings become less distinct and start to overlap. The hyperplane is then 

unable to distinguish classes in this region (R1 ∩ R2). In the context of the SVM classifiers, any 

variance introduced by the fit error could result in the misclassification of closely spaced EPs.  
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Figure 5-1: In the two-dimensional parameter space P1, P2 we have two classes (1 and 2). We assume these 
represent perfect fits onto data and the classes are neatly separable by the hyperplane H. If an error is 
introduced to the parameters in each fit (P1 + Error, P2 + Error), the class groupings are extended into regions 
R1 and R2. The hyperplane is no longer able to distinguish classes in the region (R1 ∩ R2). 

Consider, for example, the very closely spaced stimulus frequencies used in this study. The smallest 

spacing separating the stimuli is only 0.5 Hz. This may have produced EP sets with insufficient 

distance between the parameters to enable the stimuli to be classified accurately. It is possible that 

stimulus frequencies with larger frequency differences between the stimuli may yield EPs which 

themselves have larger distances between the parameter groupings, making them more distinct and 

thus easier to classify. This theory was explored by training the SVMs on only three frequencies of 

stimulation (6, 8.2 and 12 Hz). Figure 5-2 shows the Prob(TP) results for subject 1. An interesting 

improvement around the 0.5 s mark is seen for SVM1, SVM2 and SVM3, as compared to the results 

shown in Figure 4-28. It should be noted, however, that this improvement could in part be due to 

the decrease in the number of classes, resulting in a random chance Prob(TP) of 33%.  

 

 

Figure 5-2: Prob(TP) of SVMs trained on only three frequencies (6, 8.2 and 12 Hz) for subject 1. An 
improvement around the 0.5 s point is seen as compared with Figure 4-28. This could, however, be due in 
part to the decrease in classes used, which resulted in a random chance accuracy of 33%. No statistical analysis 
was performed on these results. 
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The fit error is due in part to the spurious EEG activity inherent in the single-trial SSVEPs used in this 

study. By averaging SSVEP signals according to stimulus frequency,  a reduction in the spurious 

activity could also reduce the fit error by training fits on this averaged data. In doing so, estimated 

parameter sets that are more generally representative of a given subject’s SSVEP would be 

produced. However, the classification scheme would still aim to classifiy on a single trial because 

averaging in the BCI system would involve exposing subjects to the same stimulus multiple times 

before a BCI command could be classified and acted on. This would affect the ITR, because the 

window period would be multiplied by the number of exposures required to classify the SSVEP.   

 

 Initial parameter variability  

In an ideal case, the model output would be independent of the initial parameters used, as all fits 

would converge on the same EP set for a given SSVEP signal, regardless of the starting point used 

for the model. The extent to which this holds true for the SVM classifiers was investigated by 

considering the variability seen in the classification accuracy attributed to IP1, IP2 and IP3 by using 

the SVMs to classify estimated parameters that they had not seen. For instance, SVM1, which was 

trained on EP1, was used to classify EP1, EP2 and EP3. 

Figure 5-3 shows the resultant classification accuracy for subject 4. The high classification accuracy 

scores in each window are effectively 1 less the in-sample resubstitution loss,  using trained data 

for the prediction. The low classification accuracy scores are effectively 1 less the out-of-sample 

resubstitution loss, using unseen data for the prediction. These results indicate large initial 

parameter variability in the SVM-based classifiers used in this study. Improvements in the fitting 

approach used by the model might reduce this effect. 

 

 

 

Figure 5-3: Classification accuracy (1 – resubstitution losses) of subject 4’s SVMs classifying EPs which it had 
been trained on as well as those it had not been trained on. The plot on the left shows SVM1(EP1), SVM1(EP2) 
and SVM1(EP3). The middle and right plots show similar results for SVM2 and SVM3 respectively. 
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 Inter-subject variability  

Each subject had at least one SVM classifier that showed increasing Prob(TP) as the window period 

increased (Figure 4-28); however, there was no consistency as to which of the SVMs performed best 

across subjects. This seems to indicate that there is at least some inter-subject variability inherent 

in the performance of the SVM classifiers. The extent of this variability was investigated by training 

SVMAll on a single subject’s data and then classifying the estimated parameters from all subjects. 

Figure 5-4 shows the classification accuracy results for subject 1. The top trace (subject 1) is 

effectively 1 less the in-sample resubstitution loss, whereas the lower traces (all other subjects) are 

1 less the out-of-sample losses. The large difference between the traces indicates a large inter-

subject variability inherent in the SVM-based classifiers. For this reason, in a BCI context, it is 

imperative that the classifiers are trained for each subject individually using subject-specific data.   

 

 

Figure 5-4: Classification accuracy (1 – resubstitution losses) of subject 1’s SVMall classifier using the 
estimated parameter sets from all subjects. The top trace (green line) shows 1 less the in-sample loss as the 
SVM is classifying the training data. The lower traces show 1 less the out-of-sample loss, which are within the 
same range given by the out-of-sample classification rate for subject 1’s SVMs (Figure 4-17). 
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 Future work 

 SVM training dataset size 

ANOVAs (Figure 4-23 and Figure 4-26) performed on the accuracy of the SVMs revealed that there 

was no significant difference in performance between SVM1, SVM2, SVM3 and SVMAll. SVMAll did, 

however, outperform SVM1, SVM2 and SVM3 with regard to precision, while for recall it 

outperformed only SVM1. These results are interesting because SVMAll was trained on all the 

available EPs, and thus had a larger training set than those used for SVM1, SVM2 or SVM3. This 

suggests the possibility that a larger training would produce better results. 

 SVM training method 

The method of training SVMs was kept constant so as to better assess other factors that influenced 

classification. There is scope to explore different approaches to SVM training with a view to 

improving the results. The choice of kernel function plays a large role in identifying support vectors 

of SVMs that are used as boundaries between classes (Hsu & Lin, 2002).  

In this study, an 8th-degree polynomial kernel was used, specifically because it is better suited to 

fitting parameters with a non-linear relationship. However, the spacing of parameters may lend 

itself more readily to a radial-basis function kernel (RBF). A two-dimensional example of 8th-degree 

polynomial and RBF kernel functions is shown in Figure 5-5, the RBF kernel being better suited to 

grouping clusters of disjointed parameters. 

RBF has been shown to work well with SVM features (Jian & Tang, 2014). Another option is a 

quadratic kernel, which has been shown to outperform both the RBF and a 3rd-order polynomial 

when directly assessing SSVEP data and not model parameters (Singla, 2014). A custom kernel 

mapping could also be considered. In order to assess which of these kernels would be most 

appropriate, they would need to be tested on a much larger cross-validated dataset. 

 

 

Figure 5-5: Examples of (A) a hyperplane implemented with an 8th-degree polynomial function and (B) a 
hyperplane generated by an RBF kernel. 
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 Hybrid classification schemes  

A method of improving classification accuracy would be to combine various classification methods. 

Zhang et al. (2012) showed that adding a linear discriminant analysis step to the PSDA method 

improved performance, and similarly using tensors to enhance the CCA method yielded better 

results, as did combining CCA with other Fourier methods.  

A possible combination of an adapted CCA method with the model-based approach could be 

examined. The CCA method compares reference sine waves of various frequencies to the measured 

SSVEP and makes a classification based on the reference sine wave that has the highest correlation 

to the measured SSVEP. Transferring this idea to the model-based approach, instead of reference 

sine waves being used and correlated to the measured signal, reference model fits could be used 

(generated by training on the subject). A high correlation with a synthetic SSVEP would indicate to 

which class of SSVEP the measured signal belongs. In so doing, the model would attempt to classify 

the SSVEPs using the weighting of a coefficient attached to each parameter. 

In recent years, the field of machine learning has taken several large leaps into the field of artificial 

neural networks (ANN). A combination SVM and ANN methods recently demonstrated accuracies 

of 88.5%, with a window period of 1 s (Singla, 2014). This work investigated the SSVEPs recorded 

directly and focused only on the steady-state portions of the SSVEP, with a rolling average 

segmenting the data every 0.25 s. Another possible approach to consider would be to use such a 

combination method, including the model-based features, to find fits on the initial SSVEP in the first 

0.25 s.  
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Conclusion 
This study assessed the performance of an SSVEP model-based classification method. The ability of 

the model to fit SSVEP data was examined, with different initial model parameters used in the 

parameter estimation process and for three different window periods. It was found that the model 

was able to fit SSVEP data within a reasonable goodness-of-fit range. 

Estimated parameters which described the measured SSVEPs, with a degree of error, were used to 

train a series of SVMs. The performance of the SVM classifiers was then tested, while considering 

the impact of initial parameters, the window period and the frequency of stimulation. This 

performance was compared to CCA and PSDA methods, which are traditional methods of SSVEP 

classification, and it was found that in most cases the CCA method outperformed the SVM method. 

The SVM performance tended to be erratic and dependent on the subject, initial parameters and 

window period used.    

Specifically, a number of hypotheses were examined in this study. They are repeated here for ease 

of reference. 

Hypothesis 1: Kremlácek’s VEP model can be fit onto the initial VEP portion of an SSVEP response. 

Hypothesis 2a: The model fit onto the initial portions of SSVEP signals can generate unique feature-

descriptive parameters that relate to the frequency of the stimulus presented. 

Hypothesis 2b: These unique features enable the SSVEP signal to be classified relative to the stimulus 

frequency, using a multiclass SVM approach.  

Hypothesis 3: The classification approach based on the time–domain model proposed here 

outperforms traditional spectral classification methods (PSDA and CCA) when the input to the 

classifiers comprises a 1 s or less window period of EEG data as recorded from stimulus onset; the 

shorter the window period, the more pronounced the effect. 

We found that Hypothesis 1 was possible, and that the Kremlácek et al. (2002) model of VEPs was 

able to fit onto the initial portion of SSVEPs. The fit was not as good as Kremlácek’s reported NRMSE; 

however, some improvements could be made to the model possibly to reduce the error in fit. 

The performance of the SVM classifiers was generally poor. The classifiers showed dependencies on 

numerous factors, including EEG data window period, initial parameters, goodness-of-fit function 

and choice of SVM configuration used. However, a limitation of the current study that would have 

had an impact on the performance measures, was the small dataset (four subjects). Nonetheless, in 

the context of the results presented here, Hypothesis 2 has to be rejected. 

The model-based approach was compared to the CCA and PSDA methods. CCA outperformed the 

SVM method, even though the window period was greatly reduced. This was not in line with 

Hypothesis 3 – which was therefore rejected.  
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Overall, the accuracy of this novel system did not perform at expected levels, although there were 

peaks of performance which, given the construction of the model and the classifiers, points to the 

fact that this may be a viable method of signal classification. But it is acknowledged that a fair 

amount of work will have to go into refining the model in order for it to attain performance levels 

comparable to that of CCA.   
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