
Univ
ers

ity
 of

 C
ap

e T
ow

n

by

Sisa James

Department of Electrical Engineering

at the

University of Cape Town

Supervisor

Robyn A. Verrinder, University of Cape Town (UCT)

Co-supervisors

Deon Sabatta and Ali Shahdi, Council for Scientific Industrial Research (CSIR)

A dissertation submitted for the degree of

Master of Science in Electrical Engineering

Pretoria, February 2014

Localisation and Navigation in

GPS-denied environments using

RFID tags

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

i | vi P a g e s

PLAGIARISM DECLARATION

I declare that this dissertation is my own unaided work, both in conception and execution,
and that apart from the normal guidence of my supervisor(s), I have received no
assistance apart from that which has been stated.

SIGNATURE: __________________________

DATE: 17/02/2014 _

ii | vi P a g e s

Abstract
This dissertation addresses the autonomous localisation and navigation problem in the

context of an underground mining environment. This kind of environment has little or no

features as well as no access to GPS or stationary towers, which are usually used for

navigation. In addition dust and debris may hinder optical methods for ranging. This study

looks at the feasibility of using randomly distributed RFID tags to autonomously navigate in

this environment. Clustering of observed tags are used for localisation, subsequently value

iteration is used to navigate to a defined goal. Results are presented, concluding that it is

feasible to localise and navigate using only RFID tags, in simulation. Localisation feasibility

is also confirmed by experimental measurements.

iii | vi P a g e s

Acknowledgements
I would like to thank the CSIR/MIAS for providing all the resources to perform this

research. I would also like to thank my co-supervisors Ali Shahdi and Deon Sabatta from

the CSIR. Lastly, I would extend my gratitude to the University of Cape Town (UCT) and

specifically my supervisor Robyn Verrinder for all of her support.

iv | vi P a g e s

Table of Contents
PLAGIARISM DECLARATION .. i

Abstract .. ii

Acknowledgements ... iii

List of Figures ... vi

List of Tables ... vii

Glossary .. viii

1. Introduction .. 1

1.1. Background ... 1

1.2. Project Motivation .. 1

1.3. Problem Statement .. 2

1.4. Importance of Research .. 2

1.5. Scope and Limitations of Research ... 2

1.6. Plan of Development ... 3

2. Literature Review ... 4

2.1. The SLAM Problem ... 4

2.2. Localisation and mapping in the absence of GPS ... 4

2.2.1. Underwater Localisation .. 5

2.2.2. Underground Localisation ... 6

2.2.3. RFID Localisation .. 6

2.3. Tools used in practical SLAM .. 9

2.3.1. Kalman filter .. 9

2.3.2. Particle filter ... 11

2.4. Clustering and its Application .. 13

2.4.1. Hierarchical Clustering .. 13

2.4.2. Centroid Based Clustering... 15

2.4.3. Density Based Clustering .. 17

2.5. Path Planning and Navigation ... 19

2.5.1. Dijkstra Algorithm .. 19

2.5.2. A* Algorithm .. 19

2.5.3. Markov Decision Processes .. 20

2.5.4. Value Iteration ... 21

2.5.5. Policy Iteration ... 22

3. Simulation Setup .. 23

v | vi P a g e s

3.1. Modelling the Simulator ... 23

3.1.1. Modelling Sensor Response .. 23

3.1.2. The Case for Distance and Orientation ... 32

3.2. Simulation Environment Design ... 32

3.2.1. Snapshot Capturing ... 33

3.3. Exploration, Localisation and Navigation ... 34

3.3.1. Exploration .. 35

3.3.2. Clustering .. 37

3.3.3. Localisation Method .. 41

3.3.4. State Composition ... 42

3.3.5. Building state transitions matrix and navigating... 42

4. Simulation Results ... 44

4.1. Localisation Results ... 44

4.2. Navigation Results ... 51

5. Experiments and Setup .. 54

5.1. Experimental Setup ... 54

5.2. Localisation Testing ... 57

6. Experimental Results ... 58

6.1. Localisation Results ... 58

7. Discussion and Conclusions .. 61

8. Future Work ... 62

9. Bibliography ... 63

10. Appendix A: Code .. 69

Simulation Script ... 69

Experiment Code .. 77

vi | vi P a g e s

List of Figures
Figure 2.1: Hierarchical Clustering Algorithm ... 14
Figure 2.2: K-means clustering algorithm .. 16
Figure 2.3: Value Iteration Algorithm at Work for a Forward action 21
Figure 3.1: Polynomial fitting showing 3rd, 4th, 5th and 6th degree polynomials fitting
experimental data .. 24
Figure 3.2: Exponential fitting showing 3rd, 4th, 5th and 6th order exponentials vs distance
(m) ... 25
Figure 3.3: Polynomial and exponential fitting error (magnitude) for RFID tag response vs
distance in m ... 26
Figure 3.4: Final 2D tag RSS response curve using exponential approximation 27
Figure 3.5: Alien Technology antenna ALR-8696-C beam pattern (from datasheet [69]) .. 29
Figure 3.6: Modelling 3D response model by rotation of 2D model 30
Figure 3.7: Three dimensional tag response when vehicle is at (0; 0) in the x-y plane 31
Figure 3.8: Top down view of 3D tag response when vehicle is at (0; 0) in the x-y plane .. 31
Figure 3.9: Simulation Environment in Matlab (axis labels in [m]) 32
Figure 3.10: Global reference frame to robot reference frame, to compute tag RSS values,
as these calculations are performed in a fixed reference frame ... 34
Figure 3.11: Overall Experiment Script .. 35
Figure 3.12: Robot action labels and resulting motion used in implementation 36
Figure 3.13: RFID exploration algorithm .. 37
Figure 3.14: Comparison of Clustering Algorithms .. 40
Figure 3.15: Typical clustering output for various vehicle poses .. 41
Figure 3.16: Section of State Transition matrix .. 43
Figure 4.1: Localisation error simulation results ... 45
Figure 4.2: Localisation error over long simulation time (y-axis: localisation error [m], x-
axis: simulation time) ... 46
Figure 4.3: Simulation environment showing localisation with precision below 0.2 m 47
Figure 4.4: Simulation showing how clustering can lead to circular clusters and ambiguous
orientation .. 48
Figure 4.5: Simulation example of bad clustering leading to poor localisation 49
Figure 4.6: Limit cycling due determinism of the simulator .. 50
Figure 4.7: Navigation showing error from goal state over simulation time 51
Figure 4.8: Distance to goal over simulation time steps ... 52
Figure 4.9: Limit cycling leading to poor navigation on the outskirts of the environment ... 53
Figure 5.1: Experimental environment setup ... 54
Figure 5.2: Experiment Connection Setup ... 55
Figure 5.3: Custom clustering algorithm .. 56
Figure 5.4: How the localisation accuracy was measured ... 57
Figure 6.1: Co-ordinate reference frame .. 59

vii | vi P a g e s

List of Tables
Table 3.1: Experimental Data from [9] Showing average RSS values at different distances
from the antenna .. 23

Table 3.2: Exponential least squares approximation coefficients 27

Table 3.3: Example of a RFID snapshot .. 34

Table 4: Actions and their corresponding velocities ... 36

Table 3.5: Comparison of clustering algorithms for 1625 observations and 405 States 38

Table 3.6: Comparison of clustering algorithms for 1625 observations and 813 States 38

Table 3.7: Comparison of clustering algorithms for 1625 observations and 1083 states ... 39

Table 3.8: of clustering algorithms for 1625 observations and 1625 states 39

Table 4.9: Numerical localisation results over 20 trial runs .. 44

Table 6.10: Experimental Localisation Results .. 58

Table 6.11: Orientation Consistency Test Results ... 59

viii | vi P a g e s

Glossary
CMI - Centre for Mining Innovation, the CSIR group focused on improving mining safetey

and efficiency in South Africa
CSIR - Council for Scientific Industrial Research, a state owned research organisation,

founded to improve the quality of life of the people of the Republic of South Africa,
through scientific research and invention.

Localisation - this is the process of placing and orienting oneself in an environment
MDP - framework for modeling decision making in situations where outcomes are partly

random and partly under the control of a decision maker (def: wikipedia)
MIAS - Mobile Intelligent Autonomous Systems, the mobile robots software group of the

CSIR
MMM: Mechatronics & Micro-manufacturing, the mobile robotics hardware group at the

CSIR
MSP - Mining Safety Platform, the iRobot mobile robot platform used to test robot

autonmating/intelligence software
RF - Radio frequency refers to signals transmited between 3 kHz to 300 GHz frequency

bands
RFID - Radio Frequency Identification tags, these are small computer chips with antennas,

that absorb electroomagnetic energy and use it to transmit a unique tag number and any
addional data such as RSS

RSS - Received signal strength, this is an indication of the power present in a recieved
radio signal

SLAM - Simultaneous localisation and mapping, refers to the process of concurrently
building a map and placing oneself in the map, in an unknown environment

1 | 91 P a g e

1. Introduction

1.1. Background

South Africa is the fourth largest gold producer in the world and has the second most gold

reserves in the world after Australia [1]. As a result of this resource concentration, coupled

with a lower temperature vs. depth gradient, it now has some of the world’s deepest gold

mines, reaching depths in excess of 3000 m [2] [3]. At these depths, the temperature of

rocks can reach up to 60 °C. The rocks are also prone to exploding [4] and there is limited

air circulation. These deep mines need massive refrigeration and ventilation systems [5].

The working conditions are both uncomfortable and hazardous. Rock explosions are a real

hazard and in South Africa kill roughly 20 miners each year [6]. As of 2012, gold mining in

South Africa has resulted in more than 120 deaths every year over the past three years [7]

and more than 3 500 injuries [8].

The most deaths occur after the blast stage in mining process. The basic mining process

in South African gold and platinum mines consists of three stages [9]. First, holes are

drilled in the ore-bearing rock wall to place explosives. Second, the rocks are blasted using

the explosives. After the blast and once the explosive gases have cleared away, a miner

inspects the area and checks if it is secure. This is the most dangerous stage and

researchers are investigating the use of autonomous robots [9] to alleviate the danger.

Most efforts in mobile robotics are focused on creating robots that can autonomously

perform tasks too tedious or dangerous for humans to do [10]. These can range from

driving long distances, to delivering medical equipment in warzones. Some of these tasks

are often performed in hazardous and/or unpredictable environments. Such tasks may

include search and rescue operations in burning or collapsed buildings. In the South

African context at the Council for Scientific Industrial Research (CSIR), autonomous

vehicles are being developed to inspect the safety of working areas in mines after the blast

stage. In this task a robot should enter and inspect the hanging wall (roof) of a mine for

structural integrity and possible rock fall hazards after a blast. This would eliminate the

danger in requiring a human miner to perform this inspection, as is currently being done.

1.2. Project Motivation

The CSIR Mobile Intelligent Autonomous Systems (MIAS) group, together with

Mechatronics & Micro-manufacturing (MMM), Material Science & Manufacturing (MSM)

and Centre for Mining Innovation (CMI) groups have undertaken to design and implement

2 | 91 P a g e

intelligent algorithms to use on a mobile robot platform for mapping and navigation in an

underground mine. This is part of a project known as the Mining Safety Platform (MSP)

[11].

One of the main issues with sending an autonomous vehicle into an unknown environment

is designing a robust navigation and localisation scheme. This task becomes even more

difficult in an underground environment where no GPS signals or stationary landmarks are

available.

1.3. Problem Statement

This study attempts to solve the underground environment (i.e. no global reference

signals) localisation and navigation problem, by using RFID tags spread manually

throughout the environment as markers. Later the vehicle may even place these tags itself

using a method like a breadcrumb trail. The dissertation will build on previous work done

by Forster [9] by implementing a snapshot matching localisation algorithm on the mining

safety platform, testing it in a controlled environment and improving clustering of tags,

detections and robustness of the system. Some of this work has been published at the

RobMech 2012 Conference [12].

1.4. Importance of Research

As mentioned above, mines remain a hazardous environment for humans to work in. In

addition to the cost of human lives and injury claims to mining companies, trade unions

insist on taking one day of production time-out to mourn & assess safety for every death

which occurs in the mine [13]. This can lead to huge losses for South African mines. The

CSIR has a duty to assist thought its mandate which reads, “...through directed

multidisciplinary research and technological innovation, to foster, in the national

interest...industrial and scientific development, and thereby contribute to the improvement

of the quality of life of the people of the Republic...” [14].

1.5. Scope and Limitations of Research

For the purpose of this research, the environment will not contain any obstacles, as a

result obstacle detection and avoidance will not be addressed in this project. Additionally

the environment under consideration will be static, not dynamic (i.e. the environment does

not change with time). Additionally this work intends to address only localisation within an

environment and subsequently navigation within said environment and hence should not

3 | 91 P a g e

be confused with the simultaneous localisation and mapping (SLAM) problem, which

consists of mapping and localisation at the same time.

1.6. Plan of Development

This dissertation will start with the literature review, followed by the main body, which

contains the methodology of the simulation and the simulation results, as well as the

methodology of the experimental setup and results. We then discuss the results and draw

conclusions, followed by possible future work in this area. Finally we have the

acnkowledgements and references ending with the code appendix. In the literature review,

we discuss the current research efforts concerning navigation and localisation, including

methods which employ RFID technology. We also explore the mathematical tools used in

these areas. In the simulation and experimental setup sections, we discuss the modelling

of the simulator and how the experiments will be conducted. Theses sections each have

their corresponding results sections. We then discuss the results from both simulations

and experiments in the discussion section. In the future work section, we briefly explore

possible future avenues for this research; closing with the acknowledgement of

contributions to this work.

4 | 91 P a g e

2. Literature Review

2.1. The SLAM Problem

For an autonomous vehicle to perform inspection tasks in an underground environment, it

needs to be able to know where it is (localise) in a given environment so that it can

navigate within this complex environment. Thus the ability for the robot to accurately

localise and map its environment becomes very important. This is known as the SLAM

problem. Although the scope of this work focuses only on localisation and navigation, it is

worthwhile to explore the literature on the SLAM problem, as much of the the work is

relevant to localisation. Extensive research has been done to address the SLAM problem,

especially with the introduction of the Defence Advanced Research Projects Agency

(DARPA) Grand Challenge [15] [16]. For many, it is considered solved at least from a

theoretical perspective [17], although implementation in the real world remains a

challenge. The Google Self Driving Car is an example of a system which implements

SLAM in the real world [18]. This vehicle uses laser rangefinders, radar, cameras and

GPS; the data from all these sensors is then fused to form the best estimate (belief) of the

environment. Based on previously collected data and the current data the vehicle can then

localise itself within the map using a variation of Kalman, or other filters [19]. However,

“many practical issues remain, especially in complex outdoor environments” [17], such as

accuracy and computational limitations when scaling to larger environments.

Most mobile robots utilise a combination of inertial sensors, odometry measurements and

GPS antennas for localisation/positioning. The first two methods, although initially

accurate, suffer from accumulating errors; GPS might be used to periodically zero these

errors. Unfortunately the accuracy of GPS can vary in excess of 7 m [20]. Furthermore in

an environment where there is insufficiently accurate or no GPS signal available, such as

dense high-rise city blocks, underwater or underground, these methods lead to erroneous

navigation. In [15] it is concluded that “a localisation algorithm is needed to operate

indoors”, even in the case where a “robot is equipped with a state-of-the-art inertial

navigation system”.

2.2. Localisation and mapping in the absence of GPS

In [15], an autonomous vehicle is tasked with navigating to a predetermined goal in a

multi-level parking lot, a case where GPS and inertial sensor data proves insufficient for

the purpose. The results showed that it is possible to use a SLAM algorithm based on

laser data to navigate a large scale indoor environment. Other solutions such as that in

5 | 91 P a g e

[21] also employ laser range scanners to map, localise and navigate unknown terrain. This

is done by using the scanners to generate a 3D point cloud (by tipping the laser sensor),

which can be stitched to form an accurate 3D map; this map in turn is used to build a 2D

map illustrating the drivable surface [15]. This method also allows a drivability cost map to

be generated. The aforementioned algorithm can lead to accurate positioning in the

absence of GPS; unfortunately, optical methods are not well suited to dusty environments,

such as those in an underground mine. In addition, in an underwater environment visibility

can be limited [22]. There has been some recent research in localisation and mapping in

these unconventional environments. It is of interest to look at the approaches taken to

address the localisation problem in both these environments, as they offer similar

challenges when it comes to solving the localisation problem, such as low visibility and no

GPS.

2.2.1. Underwater Localisation

In [22] Hayato et al. look at autonomously exploring the oceans for the purposes of visually

investigating and mapping underwater structures. The experiment yielded positive results,

although as pointed out by the authors, it is assumed that visibility is sufficient, therefore

limiting applications somewhat. Hayato uses two laser beams and a camera to create a

simple and accurate laser ranging system. For navigation from a known origin, given the

structure of the surfaces, the vehicle can accurately localise and thus navigate underwater.

The requirement of having to know the surface structure beforehand further limits the

applications of this optical approach and the assumed visibility further illustrates the

challenge of implementing optical localisation in sub-surface environments.

To address limitations of optical mapping and localisation underground and underwater,

attempts have been made to use sonar/acoustic methods for localisation. Vassilis [23]

looked at constructing a map and localising using sonar data; this was an early attempt at

using sonar above ground for general mapping and localisation. The author notes

improvements can be made to the positioning/localisation, but the work was incomplete.

The approach of using sonar for mapping is more prevalent in underwater applications;

this may be due to the fact that sound travels faster and further in water than in air [24].

One such example is in the paper by Zeng et al. [25] who investigates the use of forward

looking sonar for the purpose of underwater SLAM. This particular approach works much

like optical SLAM, in that it produces sonar images, which are used to create a 2D feature

6 | 91 P a g e

map. This is later used to localise and navigate; the use of the Extended Kalman Filter

(EKF) ensures consistent localisation.

2.2.2. Underground Localisation

An underground mine localisation and navigation method, referred to as opportunistic

localisation in [26] takes advantage of the tunnel like nature of some mines, and uses a

wall following technique in combination with weak localization (odometry). This method

only requires fairly accurate localization at intersections and uses odometry for this. While

this method works in navigating in haulages, it is unsuitable for navigation in the stope

area.

2.2.3. RFID Localisation

Attempts have been made to address the GPS denied localisation problem using radio

frequency identification (RFID) tags. These methods can be loosely categorised into two

approaches. The first approach models the RFID tag sensor and uses it to estimate the

location of the tag (with possibly known global co-ordinates) relative to the robot, and

hence infer the pose of the robot. The second approach seeks to to capture snapshots of

the RFID tags (from possibly known positions) and then match these snapshots from

previously learned ones to infer the robots pose. Both approaches were investigated.

An example of the first approach can be seen in [27], [28], [9] and [29]. These approaches

use a sensor model to estimate the locations of tags relative to the robot. This model is

build by recording the received signal strength values of tags as well as the number of

replies vs the number of queries at different locations around the robot. Hahnel et al [29]

uses two antennas facing +45° and -45° from the robot heading, in conjunction with a laser

range sensor. This work showed that using a combination of RFID and laser range data to

localise a robot in an environment can significantly improve the localisation efficiency (the

number of particles needed to accurately estimate the robot pose), when compared to

using only laser data. This method showed localisation with an accuracy of at least 2m. It

is demosntrated that combining laser range data and RFID data can reduce the

computational demand for global localisation [29]. This is shown by the fact that 10000

particles are needed for efficient localisation using only laser data, whereas this is reduced

to 50 particles if RFID localisation data is incorporated. Although effective, Hahnel’s

approach relies heavily on laser data for accurate localisation, using RFID localisation only

to supplement/improve the laser localisation. Additionally, localisation accuracy better than

2m may be desirable for many applications.

7 | 91 P a g e

In the work by Forster [9], one antenna is used, this, combined with the movement of the

robot, is used to estimate the location of the tags as the robot traverses the environment.

Like Hahnel [29], a sensor model is built for estimating the RFID tag locations. It is shown

that it is possible to detect locations of RFID tags with an accuracy of 0.4 m. This approach

shows a significant improvement in accuracy from Hahnel [29]; however the accuracy is

dependent on the accuracy of the sensor model. Since the RSS values are influenced by

the kind of surface they are attached to, it is difficult to find a sensor model which works

well for more than one environment. Therefore they decided to use odometry to localise

within/around a known RFID location/node over a short distance and use the RFID tag

nodes to form a topological map for loop closure. However the dependence of the

localisation accuracy on the sensor model remains an issue with these tag estimation

approaches.

On attempt to overcome this limitation can be seen in [30], which uses 6 antennas

arranged to cover a 360° field of view around the robot. As such, only a physical sensor

model (as opposed to the experimental/statistical histogram model used in [9] and [29]

above) is needed to estimate the location of each tag. This approach uses the signal loss

(the signal strength sent by the antenna vs the signal strength received by each tag) over

distance, in conjuction with the 6, 360° antena coverage to estimate the distance and

bearing of each tag. By adjusting the antenna power of subsequent tag queries (tags

further away will not reply if there is less power), the distance of tags can be estimated and

depending on which antenna receives the maximum RSS, the direction can be estimated.

This method takes into account the multiple paths the RF signal can propagate through

(such as bouncing of walls and ceilings). This approach exhibits 6.1° mean bearing error

and 0.69m mean range error [30]. This approach uses many antennas and it may be

desirable to have simple system, also the accuracy may also be insufficient for some

applications.

The second approach to the localisation problem is to use many tags and record and

match snapshots of the RFID environment such as the method employed by Schneegans

et al. [31], which uses four RFID antennas. This work is further developed by Vorst et al.

[32]. Their work consists of issuing a series of RFID enquiries in an attempt to read all the

RFID transponders in the read range. The tag ID’s and their number of responses are

used as a fingerprint for each snapshot, essentially matching the robot pose with a

corresponding snapshot. This method exploits the inherent spuriousness/irregularity of

8 | 91 P a g e

transponder replies to construct a reply probability distribution for a given robot pose. It is

also assumed that the probability distribution remains fairly constant for small changes in

robot pose; this assumption was supported by experimental data with a few random

exceptions.

During training, the robot captures a large number of snapshots with their corresponding

robot pose. This robot pose is measured through odometry data. During localisation the

robot uses these snapshots to compute particle filter weights and hence the most likely

robot location/pose based on the current scan and the most recent action (using a motion

model for the robot). In this work a B21 service robot is used with four ALR-8780 Alien

Technology UHF antennas, used in pairs, one pair to transmit and one to receive.

In their papers Schneegans et al. [31] and Vorst et al. [32] conclude it is possible to

localise using densely distributed RFID tags. They achieved a localisation accuracy of 0.4

m or better in an indoor environment. Despite the fairly accurate localisation, the work

above still has a few drawbacks; firstly the need for a reference system in the training

phase using odometry can lead to bad localisation if the snapshots during the training

phase are not recorded accurately. Secondly the current system is unable to incorporate

changes in the RFID environment.

This work is motivated by previous work by Forster [9] also carried out at the CSIR, by

using some of the experimental data for creating the simulator. The aforementioned

method uses groups of sparsely distributed RFID tags to form a hybrid metric-topological

map to solve the SLAM problem. Topological maps consist of nodes which are connected

in a graph like structure; this connectivity graph represents the topological map. In the

work by Forster, the nodes represent groups of sparsely distributed RFID tags. This

grouping is achieved in real-time, by either assigning a newly observed tag to the current

node or creating a new node, a normalised cut algorithm is used to determine whether to

assign the tag to the current node or create a new one. When navigating within a node, the

robot uses a metric map. This map is created by estimating the location of each RFID tag

using a particle filter (explained in section 2.3.2 Particle filter) and then using that to infer

its own pose in the local metric map. First a sensor model is built using experimental data

gathered from RFID tag responses at various distances, orientations of tags. Data are also

gathered to measure the effect of different antenna heights.

9 | 91 P a g e

The SLAM method presented in this dissertation uses a method similar to that presented

by Vorst et al. in [32], and builds on it by adding planning and self-navigation and unlike

Vorst [32] and Schneegans [31], we intend on using a single antenna. We also make use

of RFID tag response data gathered by Forster [9] for modelling the reader response in the

simulator. Our method presents a novel way of exploring and mapping the RFID

environment while building a transition matrix during the exploration phase. The vehicle

can then use this, along with the internal map (the created map is topological and internal

to the robots programming environment), to navigate to any mapped goal location. Our

approach also allows proper vehicle orientation to be preserved when reaching the goal

and does this using only passive RFID tags and a single antenna.

2.3. Tools used in practical SLAM

One of the issues experienced in the practical implementation of SLAM is determining the

pose of the robot with sufficient accuracy, in the presence of noise. This is a necessary to

be able to make sound navigation decisions autonomously. This means the robot’s initial

location, actions and subsequent locations should be fairly predictable to be able to plan

any kind of path to achieve a given goal. In other words the task of placing the vehicle

pose accurately in state space consistently, and without sudden jumps between transitions

(usually due to noisy sensor data), is very important for path planning and navigation. This

is where the Kalman filter and later particle filters have been used extensively [33].

2.3.1. Kalman filter

The Kalman filter is an algorithm that provides an efficient computational (recursive)

means to estimate the state of a process, in a way that minimizes the mean of the squared

error [34]. One of the major benefits is that it, being a recursive algorithm, does not require

knowledge of all prior values of a particular state; this saves memory, although it can also

be a disadvantage, as information is lost. The algorithm consists of two steps, a

prediction/estimation and a correction/update step and uses the probability distributions to

update the state. This filter intends to solve the problem of optimally estimating the value

of a state in the presence of process noise and measurement noise . Equations (2.1)

and (2. 2) show the equations governing a systems behaviour, taking into account system

and measurement noise.

 (2.1)

Where is the system function, is the input function and the control input into the
system

10 | 91 P a g e

 (2. 2)

Here is the state measurement and is the measurement function

The Kalman filter explained in [35] uses the two-step process shown below. These steps

are known as prediction and update, and are recursively used to make a best estimate of

the state value given the current measurement.

Prediction

State Prediction: estimate of i.e. future state value at time t

 (2.3)

State Covariance Prediction (predict the uncertainty of the future state)

 (2.4)

Where is the prior probability distribution and is the variance

Measurement Prediction: estimate of measurement at time t

 (2.5)

Measurement Covariance Prediction (predict the uncertainty of the future measurement)

 (2.6)

Filter Gain Computation (computes the importance of the predictions)

 (2.7)

Update

Measurement Update

 (2.8)

 is the predicted measurement and is the actual measurement at .

State Update

11 | 91 P a g e

 (2.9)

This is the best estimate of the true state at time given the measurement

 ‘.

State Covariance Update

 (2.10)

This updates our variance estimate based on the measurement and is known as

the posterior probability distribution

Where , and are chosen by intuition. and are state and measurement

noise covariances respectively. is called the Kalman gain and is computed using the

state covariance estimate [35]

2.3.2. Particle filter

An alternative to the Kalman filter is the particle filter (also known as a Monte Carlo

simulation). This filter generates many points in state space, each representing a possible

state value. A measurement is then taken to evaluate the likelihood of a particular particle

being the true value of the state. Each particle is then assigned an importance weight

according to its likelihood. The particles are then randomly re-sampled (selected as the

next generation) with a probability equivalent to each particles’ importance weight. Particle

filters have an advantage over Kalman filters in that they can be multi modal (as a result

they can model complex distributions) at the cost of accuracy due to their discrete nature

[36]. The operating principle of particle filters is similar to the Kalman filter, with the

difference that particle filters approximate the probability distribution using particle weights,

as opposed to a continuous Gaussian distribution. Their operation is shown below.

Initialisation:

Generate a set of n particles representing the robot state probability density function

(pdf) at time

 (2.11)

Sampling:

12 | 91 P a g e

From particles choose (with replacement) particles with probability proportional to

weights (which can be initialised to equal probability/importance values)

 (2.12)

Prediction:

Using the system model, we predict the particle states one time step ahead for all particles

 (2.13)

Where is the system model and is an independent sample drawn from the

system noise pdf. G x and u are defined. This gives us the particles representing the

approximate pdf of at time , equivalent to (2.11) in the subsequent

time step.

Update:

After a measurement of at time is observed, the weights are updated

according to the likelihood of observing given at as shown (2.14) in below.

 (2.14)

These weights are then normalised according to (2.15)

 (2.15)

13 | 91 P a g e

2.4. Clustering and its Application

The RFID localisation in this dissertation makes use of data clustering. Clustering is used

in many applications where one has a large amount of data, most likely consisting of

similar/repeated data or observations. For storage purposes and to speed up computation,

it is desirable to group similar data/observations together and represent the group in terms

of a cluster prototype/centre.

Clustering is the process of finding a set of groups of similar objects within a data set,

whilst keeping dissimilar objects in different groups [37] [38]. There are two types of

clustering algorithms, hierarchical and partitioning [39]. Partitioning methods split the data

into a predefined number of groups/clusters, and therefore requires some domain

knowledge [40]. Hierarcical methods iteratively compute and join the points closest to each

other (in a tree-like fashion) until a certain termination condition is met, the a general

method of determinating this condition has proven difficult [40]. Although there are many

distinct clustering approaches within these two categories, there are only a few which are

most prevalent in the literature and as such were the focus. These are single linkage

clustering (also known as nearest neigbhor) [41], centroid based clustering (such as

kmeans) and density based clustering. Recent efforts have focused on improving the

performance of clustering algorithms, largely due to the need to apply these algorithms to

very large data sets (such as big data), such as in [42], [43] and [44] (CLARANS).

2.4.1. Hierarchical Clustering

The single link (hierarchical) clustering is one of the oldest methods of cluster analysis

[41]. Single link clustering starts with (in the case of agglomerative/bottom-up clustering)

considering all the points in the data as clusters; then for each cluster, the nearest

neighboring cluster is found and the two clusters are then combined into one.Conversly

divisive clustering would start by assuming all the point belong to one cluster, then the

cluster is iteratively separated accoding to the furthest points. The metric used to

determine the nearest neighbour can be any distance metric, such as Euclidian distance

||a-b||2, squared Euclidean distance
), manhattan distance ||a-b||1 etc. The point

from which this distance metric is computed is what distinguishes the different kinds of

single link agglomorative clustering, from complete linkage (uses the points in the clusters

which are furthest apart) to minimum linkage (uses the points in the clusters which are

closest to the other cluster) or even average linkage (which uses distance between the

14 | 91 P a g e

average of all the points within each cluster). An example of a single link hierarchical

clustering algorithm is illustrated in Figure 2.1.

Figure 2.1: Hierarchical Clustering Algorithm

This method is good for finding clusters of arbitrary shapes, but it has a well known

disadvantage called the chaining effect [41]. This is a phenomenon in which the algorithm

may merge points close to the current cluster even though these may be outliers. In some

instances there may be a string of outliers between two distinct clusters, single link

clustering may result merging of these clusters, this makes hierarchical clustering sensitive

to noise. Another issue with hierarchical clustering is the space and time complexity of the

algorithm limits the practical size of data set which can be processed [45]. In this

dissertation, three different kinds of clustering algorithms were tested (k-means, k-

medoids, hierarchical).

Compute the
proximity of clusters

Merge closest two
clusters

Desired clusters
reached?

Done

Y

N

Define proximity
measure

15 | 91 P a g e

2.4.2. Centroid Based Clustering

Centroid based clustering, and in particular K-means is one of the most widely used of the

clustering algorithms [45] [38]. This may be due to is programming simplicity and its

computational efficiency, as it requires linear time [46] to compute. Centroid based

clustering methods start by (depending on the type of initialisation) creating a number of

centroids, which may (in the case of k-medoids) or may not (k-means) be points in the

data set. The points closest to each centroids are then assigned to the corresponding

centroids’ cluster. As an example, assuming we have a set of observations O = [s1, s2, s3

... sn], where si is a single observation matrix. K-means is implemented by first choosing K

(the number of desired clusters), then initialising K centroids, represented by C = [c1, c2 ...

ck] where k<n, with centroids M = [m1, m2 ...mk] (i.e mi is the mean of the observations in

cluster ci). There are a number of ways to initialise the centroids; one is by simply selecting

random data points from O, and using these as the initial choice of centroids. Another way

would be to draw point’s uniformaly at random from O [47], or randomly define points

within the hypervolume containing the set O [48]. The last method consists of clustering a

random sub-sample of O, and then using these cluster centroids as the starting centroids.

Next the observations si are assigned to a cluster, such that the distance from si to the

cluster centroid mk is minimised.This can be expressed as the function in equation (2.16).

While there are many options for computing this distance, Euclidian distance is the most

commonly used in practice and research [49].

 (2.16)

The new centroids are calculated using equation 2.17 below, which sums the observations

assigned to the current cluster ck and divides by their total to get the mean/centroid.

 (2.17)

This process of assigning observations to the nearest cluster and re-computing the

centroid is repeated until the centroids no longer change (i.e. have converged). This

algorithm is shown in Figure 2.2.

16 | 91 P a g e

Assign each point to
the nearest centroid

cluster

Calculate the new
centroid of each

cluster

Have the
clusters

converged?

Done

Y

N

Select/Generate K
centroids, hence K

clusters

Figure 2.2: K-means clustering algorithm

Although k-means is simple and widely used, it has some practical problems [38]. The first

of which is it being sensitive to the initial choice of centroids, and the second being

unavailability of a general method of choosing these centroids. A bad choice of initial

centroids can lead to sub-optimal clustering. Additionally when dealing with unknown data,

it is difficult to know the number of clusters present in the data.

There are a few ways to compensate for the initial centroid selection problem. One option

is to use hierarchical clustering to a level of the desired clusters and then using these

centroids as the starting point for k-means. This option works well but is only practical if

the number of data points is small (a few hundred to a few thousand) and K is relatively

small compared to the number of data points [45].

Another approach to choosing centroids is outlined in [45]. It consists of first choosing a

random point, then choosing your second centroid to be a point furthest away from the

current centroids, then choosing your third centroid to be the furthest point away from

those centroids, and so on.

This approach however also has a disadvantage when dealing with lots of data, as

calculating the furthest point becomes computationally expensive [45]. Another issue with

k-means is the possible formation of empty clusters (a scenario occurring when no points

17 | 91 P a g e

have been assigned to a particular centroid). Typical ways to deal with this issue are to

reinitialise the empty cluster centroid to be the furthest point from all the current centroids,

or split a cluster with the most spread out points. Both these measures will reduce the Sum

of Squared Errors (SSE), which is a measure of the distance between points and their

centroids. Although k-means is simple and effective, it is not suitable for all data types,

such as non-globular clusters or clusters of varying sizes and densities [45]. In these

cases it can fail to identify natural clusters.

K-medoids is another clustering algorithm very similar to k-means; with the exception that

the centroids must be one of the data points (as opposed to the mean of the points in the

given cluster) close to the mean [38].

2.4.3. Density Based Clustering

Density based clustering is similar to single link clustering; with the additional constraint

that for a cluster to be formed a density criteria must be met. This means that even though

there may be a neighboring point close by, these points can only be merged into a cluster

if there are a certain more than a minimum number of points within a given radius.

Wishart’s [50] attempt to mitigate the chaining phenomenon in hierarchical clustering

resulted in most likely the first density based clustering approach [37]. Density based

clustering, like single link clustering, is able to cluster data of arbitrary shape, but unlike the

latter, is less susceptible to the chaining phenomenon, due to the additional density

requirement for merging clusters (this may not be the case if clusters are very close to

each other). There are variations in the kinds of density based clustering methods, these

vary in how the density is estimated as well as how the notion of connectivity is defined

[37]. The overall principles remain closely related to the method explained above.

The most popular density based clustering is density based spatial clustering of

applications with noise (DBSCAN) [40]. Although in some literature it is stated that

CLARANS is more well known [40], in the same work DBSCAN was proven to outperform

CLARANS when dealing with point data. As such our review will concentrate on DBSCAN,

since we will be clustering point data. DBSCAN is designed to cluster spatial data in the

presense of noise [40] and claims to be scaleable to large data sets [37]. This algorithim

uses the concept of an epsilon neighbourhood (), which is the number of points within a

radius , along with the notion of density-reachability. This is defined as a point p being

density reachable from point q if:

18 | 91 P a g e

1. the neighbourhood of p includes q

2. either minimum neighbhood points) or minimum

neighbhood points) [40]

The algorithm starts by choosing any point in the data set, it then groups into one cluster

all the points that are density-reachable from the chosen point. If there are not points

which are density-reachable from the chosen point, it is regarded as noise. Next another

point which is has not been clustered (or classified as noise) is chosen, and the process is

repeated until the complete data set has been clustered. One issue with density-based

clustering is algorithms is they have difficulty detecting overlapping clusters as well as

underlying cluster forms such as gausian clusters, as the border of these cluster becomes

arbitrary depending on the chosen value of the density. Another issue is that it cannot

cluster data sets with a large variation in density [51].

From the literature it is apparent that there is no general clustering algorithm which is

guaranteed to give good clusters for any given data set, additionally having some prior

knowledge about possible cluster locations, densities, sizes or some other information

about the data drastically improves the effectiveness of each algorithm [52]. Due to it

simplicity and ease of implementation, it was decided to use one of the centroid based

clustering algorithms. Three centroid clustering algorithms are compared in this work for

use in localisation.

19 | 91 P a g e

2.5. Path Planning and Navigation

Once a map of a robot’s environment has been generated, it may be desirable to have the

robot be able to autonomously navigate to a desired goal, either selected by a human

operator or identified by the robot itself as an area of interest or for further exploration. To

be able to navigate to a desired goal, a robot needs to plan a path or determine which

sequence of actions will get it to the desired location. It also needs to be able to deal with

the non-deterministic nature of the natural environment, which may give rise to an

unexpected result, such as ending up in a different state to that which was predicted given

the executed action. The robot path planning problem has received considerable attention

in the last ten years [53].

There are a great number of path planning algorithims available, from probabilistic

planners [53], heuristic [54], randomised (such as random trees [55]) and shortest path

(such as A*, value iteration or Dijkstra [56]), to name a few. For our purposes, we were

primarily interested in the shortest path algorithms, since this work was limited to a static

environment with no obstacles. The shortest path algorithms provided the simplest

potential solution for our requirements and therefore form the focus of our review.

2.5.1. Dijkstra Algorithm

The dijkstra algorithm works by marking a starting point and a goal on the map. Each

state/node/intersection in the map is given the highest possible distance value. Starting

from the starting state move to the closest unexplored/unlabeled state, make this the

current state and update the distance (which is equal to the distance to the current state +

distance to update state) to all the states directly connected to this current state (provided

the distance is less than the current value). Then move to the closest unexplored state

(from the starting point) and repeat the process until the goal is reached [57] [58]. Since

the dijkstra algorithm is not directed towards the goal, but rather spreads out from the the

starting node, it may be slow in the instance where the starting point is in the centre of the

map and the goal is somewhere on the outer edge of the map.

2.5.2. A* Algorithm

A* is similar to the abovementioned dikjstra algorithm, but has the advantage of expanding

the nodes in the direction of the goal. This reduces computation and as a result A* is faster

than dikjstra, in fact A* is optimal in finding the shortest path under certain conditions [59].

To find the actual path to the goal, the algorithm should keep track of each node’s

predecessor.

20 | 91 P a g e

2.5.3. Markov Decision Processes

When a path planning algorithm is combined with a set of possible robot actions, it can

allow a vehicle to autonomously navigate to the desired goal. When navigating, a robot

executes actions in order to transition along the nodes (also called states) in the

desired/planned path to its destination. Each node in this chain represents a possible robot

state or pose. This pose can consist of any useful (from a navigation perspective) vehicle

information such as orientation, position, speed, acceleration etc.

In the real world, the outcomes of each action are not deterministic, and as such may

rather result in the desired outcome with a certain probability or some other outcome with

some other probability. This system that transitions from one state to another through a set

of actions is known as a Markov Chain [60]. If the transitions from one state to the next do

not depend on any history, then this process is known as a Markov decision process

(MDP). This pose/state information, together with the actions must be used by a descision

making algorithim to navigate to the goal [61]. This problem can be reduced to the

following question: given a set of states, each with a given reward for being in the given

state, what actions should we take at any given state to maximise the the current

reward/utility, bearing in mind the probabilistic nature of the state transitions? The map of

of these actions to states is called a policy [62]. Therefore the goal is to find the policy

which maximises the expected reward/utility [63]. While the are a number of approaches in

the literature to solving this problem, such as brute force (simply evaluating every possible

policy) or direct policy search [64], we will focus only on value function approaches, since

almost all reinforcement learning algorithms are based on estimating value functions [65].

In practice (where we do not know the fully MDP) there are two categories of value

function approaches to solving this optimization problem. The first is category are the

Monte Carlo methods approach, which uses random initial state action pairs si and aj to

asses the value of the given state action pair (si, aj). This value is the reward received if

action aj is first executed from state si after which a greedy algorithm such as ε-greedy or

dijkstra). These state action values are averaged over time, giving a progressively better

estimate of action values for given states. One disadvantage of monte carlo methods is

that they spend time evaluating sub-optimal policies, and use a long path to update only

the initial state action pair.

The second value function approaches are the temporal difference approaches

21 | 91 P a g e

In the case where the full MDP is known, we can use the simplest two (excluding

modifications) algorithms commonly used for determining an optimal policy for decision

problems, namely policy iteration (and modified versions thereof) and value iteration [63].

2.5.4. Value Iteration

Value iteration works by initialising the goal state with a reward value, then, using the state

transition probability matrix Tm, each state is assigned a utility value based on the

surrounding state utility values. The utility value of each state is computed as shown in

equation (2.18).

 (2.18)

The equation above is executed for each iteration of the algorithm for all the states, and

reads as follows; the future utility of state is equal to its current utility plus the maximum

across all (allowable) actions of the sum of the probability of reaching state from state

 given action , multiplied by the utility of state .

Figure 2.3: Value Iteration Algorithm at Work for a Forward action

An example of this in action is shown in Figure 2.3 for the forward action (each action has

its own utility table such as the one in Figure 2.3), which has a 0.8 probability of moving

forward, and a 0.2 probability of going left or right. Alongside is shown the calculation of

equation 16 assuming the current utility value of U2,4 is 0. This process is repeated for all

states until the change in state utility values are less than some threshold usually some

small value.

22 | 91 P a g e

After all state utility values have been computed, the optimal action policy is then worked

out based on choosing the action most likely to lead to the maximum utility at each state.

Executing this action policy should lead the robot to the desired goal.

2.5.5. Policy Iteration

It has been observated that the policy becomes optimal long before the utility estimates

have converged (i.e. change in utility is less than ε) to their correct values [63]. Policy

iteration takes advantage of this by focusing, not on the convergence of the utilty values,

but rather the convergence of the policy. The algorithm works as follows:

1. Initialie a random policy, by choosing random actions for each state

2. Compute each states value given the current policy

3. Given the above state values, select the best action for each state (hence creating

a new policy)

4. Make this the current policy

5. If there is a change in the policy, repeat from step 2

6. End

Policy iteration offers the advantage of converging faster in some cases than value

iteration, because its convergence is based on the policy rather than utility values [66],

However the policy evaluation step may itself be a protracted iterative computation [65].

In our case the robot builds a state transition matrix autonomously, therefore we have the

complete MDP for the navigation problem; hence either of the simpler approaches (value

iteration or policy iteration) is suitable. It was decided that value iteration was to be used in

implementing the autonomous navigation in this dissertation, the convergence time

between the two algorithms are negligible in our context, since we can choose the number

of state/clusters.

23 | 91 P a g e

3. Simulation Setup
To test the feasibility of using RFID tags for localisation and navigation, a simulator was

built. The simulator would model the behaviour of randomly distributed tags in an

environment. The density of the tags can be varied until an optimum tag density is found.

The robot’s motion would also be simulated in this environment. This would allow the

evaluation of the accuracy of the localisation achieved, the effectiveness of clustering in its

various forms (k-mean, k-medoids and hierarchical) and the results of navigation.

3.1. Modelling the Simulator

All the simulations were written in the Matlab programming language, and executed in a

Matlab R2011b environment. The RFID reader used was the Alien ALR9900 and the

antenna was the ALR8611-AC. A sensor model was derived based on experimental

measurements from Forster [9] of the tags’ Received Signal Strength (RSS) in various

orientations and distances. Table 3.1 below shows some of these resulting RSS values.

Table 3.1: Experimental Data from [9] Showing average RSS values at different distances
from the antenna

Distance

(m)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

RSS(Units) 6500 6000 4500 2800 2500 1800 1500 1200 1000 600

3.1.1. Modelling Sensor Response

To model the RFID tag response from the reader, we utilised the experimental

measurements from Table 3.1, these were fitted first with the polynomial function (polyfit)

in Matlab [67] [ref]. The results in Figure 3.1 below show the curve fitting for polynomials of

different orders. The 6th order polynomial over-fits the data, whereas the 3rd and 5th order

increases the RSS over large distances, which we know to be impossible as RSS values

from antennas decreases monotonically with distance. It was decided that the best

polynomial fit was the 4th order polynomial, due to the fact that it not only fits the all points

closely without visible overfiting, but it also plateaus at the correct value close to the origin.

In addition, the sudden drop off after 2 m models the fact that RFID communication begins

to be erratic after 2 m (sometime tags will respond, but sometimes they will not, with an

increasing probability of not responding the further the tag is beyond the 2 m mark). This

choice is to be compared with another curve fitting solution.

24 | 91 P a g e

Figure 3.1: Polynomial fitting showing 3rd, 4th, 5th and 6th degree polynomials fitting
experimental data

We then used exponential functions to fit the data, based on the exponentially decreasing

energy distribution of an antenna at increasing distances. Since Matlab has no built in

exponential fitting function, we decided to make use of the matrix division operator “A\B”

which gives the least squares solution to the system of equations A*X = B. First we

created a matrix containing exponentials of different orders, and then used the least

square solution finder built into Matlab to find the best combination of exponentials which

would minimise the error. The exponential curves of orders 3 to 6 are shown in Figure 3.2.

We can see from the curves that the 6th order suffers from over-fitting. The 4th diverges

from the data points at the ends of the dataset, and as a result does not agree with

antenna physics (the closer the tag, the higher the RSS must be), as the RSS does not

25 | 91 P a g e

peak at 0 m. The 5th order also suffers from the same problem of not peaking at 0 m. The

6th order, suffers from over-fitting (seen between 0 m and 0.5 m), and was thus not

considered any further. Therefore it was decided that the best exponential fit is the 3rd

order exponential.

Figure 3.2: Exponential fitting showing 3rd, 4th, 5th and 6th order exponentials vs distance
(m)

26 | 91 P a g e

These two chosen fitting curves (polynomial and exponential) were compared for both

minimising the error between the data-points and the fitted curve as well as each functions

agreement with antenna physics. The error comparisons of the chosen curves are shown

in Figure 3.3 below, for our test, we are only interested in modelling distances between

0.2m and 2 m, beyond which the RFID tags response is unreliable (erratic).

Figure 3.3: Polynomial and exponential fitting error (magnitude) for RFID tag response vs
distance in m

The accumulated error for polynomial and exponential fits was 1584 and 1907 RSS units

respectively. The polynomial fit is better when considering only the total fitting error. But

when comparing the two solutions taking into account all the factors, the issue

experienced with using polynomial functions to fit this data was, polynomials are

unbounded functions and as a result either tend to -∞ or + ∞. We also know that for

physical systems the energy is bounded. This made polynomials unsuitable for modelling

27 | 91 P a g e

the RFID sensor response. For these reasons it was decided to use the 3rd order

exponential function to model the RFID sensor response. The coefficients of the

exponential approximation are shown in Table 3.2.

Table 3.2: Exponential least squares approximation coefficients

1st Order Coefficient (c1) 2nd Order Coefficient (c2) 3rd Order Coefficient (c3)

2235 17144 -12101

Thus the function for approximating the RSS value for a tag at distance d is given by:

 (3.19)

Figure 3.4: Final 2D tag RSS response curve using exponential approximation

28 | 91 P a g e

Figure 3.4 shows the final 2D sensor model, derived from experiments using a 3rd order

exponential function fit from (3.19). As seen from the graph there is a small chance that

the RFID tag reader can read tags that are behind the antenna, this occurs if the tag is

sufficiently close to the antenna (confirmed experimentally), hence the non-zero RSS for

negative distances in Figure 3.4. To simulate this effect, equation (3.19) was mirrored and

attenuated about the y-axis to give RSS values for negative distances (i.e. behind

antenna). Two different tag types were tested; a square 3 cm by 3 cm tag and a

rectangular 2 cm by 6 cm. Different tags gave different RSS values at similar distances,

with the rectangular tags giving the highest RSS for a given distance. The shape of their

response curves remained the same albeit scaled. The experimental results can be found

in the CD accompanying this project.

The model was further extended to a 3 Dimensional reader response surface, allowing for

the simulation of tag responses in a planar environment. This response was obtained by

assuming the RSS value drops in accordance with the angle (θ, theta) of deviation from

the normal angle(0° i.e. directly in front of the antenna). We can confirm this assumption by

observing the antenna beam pattern from the antenna’s datasheet [68], this beam pattern

is shown in Figure 3.5,

29 | 91 P a g e

Figure 3.5: Alien Technology antenna ALR-8696-C beam pattern (from datasheet [68])

If we approximate the radiation pattern of the antenna with a centroid around a unit circle,

then this function t(θ) can then be used to scale a version of the above tag response curve

rotated about the origin, to give tag responses at various distances and angles from the

antenna. t(θ) could be modelled as the intersection of the line t with the unit circle with an

offset centre, as shown in Figure 3.6 below. The method for obtaining this function t is as

follows:

We want the intersection between the line:

 (3.20)

And the circle:

(3.21
)

Substituting (3.20) into (3.21) we get:

30 | 91 P a g e

Figure 3.6: Modelling 3D response model by rotation of 2D model

The resulting equation gives us the RFID tag response RSS for a tag at distance d and

angle θ:

d>=0

 (3.22)

d<0

 (3.23)

Where a is an attenuation factor of 50.

The resulting planar RSS response surface is shown below in Figure 3.7 and Figure 3.8

also showing the pioneer robot platform in a top down view. The resulting sensor model is

in close agreement with the energy distribution of the radio signal shown in the antenna

datasheet (Alien Technology: ALR-8696-C circular polarised antenna) [68].

31 | 91 P a g e

Figure 3.7: Three dimensional tag response when vehicle is at (0; 0) in the x-y plane

Figure 3.8: Top down view of 3D tag response when vehicle is at (0; 0) in the x-y plane

Pioneer

32 | 91 P a g e

3.1.2. The Case for Distance and Orientation

In theory the case for judging distance and orientation can be made when the there are at

least 3 visible tags, since there are no two points in state space (displacement and

orientation) which would lead to identical RSS values. Any change in location or

orientation will change the position of the tags relative to the robot in a unique way, and

hence the RSS values of the snapshot will be sufficiently different for the algorithm to

recognise that the robot is in a different state, provided the movement is significant

(greater than 0.4 m).

3.2. Simulation Environment Design

The simulator was designed to model randomly distributed tag responses in a planar

environment. The tags are represented by circles and the robot is represented by a blue

cross. These tags are randomly distributed throughout the environment. The idea is to

make the simulation as realistic as possible by ensuring that the robot motion and control

commands are as close to the physical platform implementation as possible. This will not

only ensure the accuracy of the simulation, but also simplify the implementation

experiment stage of the project.

Figure 3.9: Simulation Environment in Matlab (axis labels in [m])

The simulation environment is shown in

33 | 91 P a g e

Figure 3.9. Red tags are dormant (out of read range) while green tags are active

(responding/within read range). The dimensions of the space correspond to the size of lab

environment we will be testing in.

3.2.1. Snapshot Capturing

To compute the RSS of readable tags in the robot environment, it was necessary

transform the tag locations to the robots reference frame as shown below in Figure 3.10.

34 | 91 P a g e

Figure 3.10: Global reference frame to robot reference frame, to compute tag RSS values,
as these calculations are performed in a fixed reference frame

Tag values below a threshold of 1000 RSS units were ignored. This was because of an

observation made during the sensor modelling, which is that RSS values below 1000

correspond to tags on the verge of the readable range, and thus reply inconsistently and

lead to noisy snapshot measurements. A snapshot is stored as a 2D matrix consisting of a

tag ID and its corresponding RSS value. A sample snapshot is in Table 3.3. Each

snapshot is then added to an observation matrix, which is simply a tiling of these snapshot

matrices. Sorting snapshots in accordance with tag IDs was needed to simplify

comparisons and speed up clustering.

Table 3.3: Example of a RFID snapshot

Tag ID ABCD EFGH IJKL MNOP QRST UVWX

RSS value 2500 5830 1500 4062 3140 4879

3.3. Exploration, Localisation and Navigation

The localisation and navigation algorithm was comprised of three steps:

1. Exploration

35 | 91 P a g e

2. Clustering of observations

3. Building a state transition matrix

The flowchart in Figure 3.11 illustrates the overall algorithm starting from exploration to

navigation. The “Log on to reader” step does not apply to the simulation part of the project

as it did not involve the physical implementation hardware.

Figure 3.11: Overall Experiment Script

3.3.1. Exploration

Actions, that the vehicle can execute, were numbered from 1 to 5, in place of movement

forward (F), arc left (AL), arc right (AR), rotate left (RL), rotate right (RR). These action

names and their proximate motions are shown graphically in Figure 3.12.

36 | 91 P a g e

Figure 3.12: Robot action labels and resulting motion used in implementation

Since the vehicle commands used in all the algorithms had to be similar to those to be

used on the pioneer platform, action commands we implemented by converting the action

numbers (#) to translational and rotational velocities. Table 4 shows the values of these

velocities for each action.

Table 4: Actions and their corresponding velocities

Action (#) Translational Velocity (m/s) Rotational Velocity (rad/s)

Forward (1) 2.5 + ηt ηr

Arc Left (2) 2.5 + ηt π/2 +ηr

Arc Right (3) 2.5 + ηt -π/2 +ηr

Rotate Left (4) 0.25 + ηt π/2 +ηr

Rotate Right (5) 0.25 + ηt -π/2 +ηr

Where ηt and ηr correspond to the translational [-1,1] and rotational noise [-π/5,π/5]

respectively.

During exploration, the vehicle first takes a snapshot, then chooses each action at random

after taking a snapshot. This random choice is not uniformly distributed, but weighted such

that the forward and arc actions are more likely during the early stages of exploration and

rotations are least likely. This will allow the robot to map out larger areas more quickly.

37 | 91 P a g e

Additionally the algorithm increases the probability of executing a rotation inversely to the

number of tags observed, such that when there are no observable tags, the probability of

executing a rotation is 1. Value iteration is not used during the initial exploration, as there

are no states, or state transition matrices.

The algorithm used for exploring the RFID environment is shown in Figure 3.13. This

algorithm is used to obtain observation (snapshots) of tags within the read range. This

rudimentary exploration was later extended to explore frontiers by biasing the forward

action (increasing the probability of choosing the forward action) when unknown tags are

detected.

Figure 3.13: RFID exploration algorithm

Given sufficient (more than 500 steps per 25 square metres) simulation time the algorithm

is able to explore the entire area multiple times.

3.3.2. Clustering

The clustering algorithms used were k-means, k-medoids and a custom clustering

algorithm. After clustering is performed, empty clusters are discarded. The custom

clustering is similar to k-medoids except the initial choice of centroids is stationary. When

using k-means, to increase the accuracy one can simply increase the number of clusters

38 | 91 P a g e

(up until the number of observations), knowing that empty clusters will be discarded.

Similarly with k-medoids with the exception that k-medoids does no produce empty

clusters due to the restriction that a cluster centroid must be an observation. The

reasoning behind this being that since it is a much simpler algorithm it should run faster.

During experiments a modified hierarchical clustering was also tested. The value of k was

chosen empirically, based on the different algorithms performances listed in the tables

below. We found the best value (yielding good clustering accuracy, below 0.6 m, whilst

minimising the number of clusters) to be between one half and two thirds the number of

observations.

Table 3.5: Comparison of clustering algorithms for 1625 observations and 405 States

 k-means custom clustering k-medoids

Number of Non-empty Clusters 319 316 358

Ave Cluster Separation x (m) 1.009772 1.040637 0.878805

Ave Cluster Separation y (m) 0.967746 0.996498 0.898314

Ave Cluster Separation d (m) 1.487936 1.536722 1.359275

Ave Cluster Separation θ (rad) 3.130666 2.934081 2.761911

 107.626335 3.218349 0.295258

Table 3.6: Comparison of clustering algorithms for 1625 observations and 813 States

 k-means custom clustering k-medoids

Number of Non-empty Clusters 449 550 662

Ave Cluster Separation x (m) 0.846350 0.769972 0.648700

Ave Cluster Separation y (m) 0.813128 0.659460 0.559164

Ave Cluster Separation d (m) 1.302560 1.144415 0.996750

Ave Cluster Separation θ (rad) 2.504633 1.971098 1.770322

Computation Time (seconds) 231.718135 6.645083 0.383748

39 | 91 P a g e

Table 3.7: Comparison of clustering algorithms for 1625 observations and 1083 states

 k-means custom clustering k-medoids

Number of Non-empty Clusters 463 615 785

Ave Cluster Separation x (m) 0.829449 0.714975 0. 510887

Ave Cluster Separation y (m) 0.805798 0.670508 0. 685297

Ave Cluster Separation d (m) 1.277713 1.131585 1.005238

Ave Cluster Separation θ (rad) 2.553838 1.872474 1. 467408

Computation Time (seconds) 380.937944 8.554062 0.376200

Table 3.8: of clustering algorithms for 1625 observations and 1625 states

 k-means custom clustering k-medoids

Number of Non-empty Clusters 427 1040 1024

Ave Cluster Separation x (m) 0.851935 0.518023 0.501029

Ave Cluster Separation y (m) 0.821903 0.442401 0.434716

Ave Cluster Separation d (m) 1.304289 0.840413 0.826336

Ave Cluster Separation θ (rad) 2.704753 1.215803 1.197497

Computation Time (seconds) 1142.754865 13.590391 0.530620

Below we compare the three clustering techniques graphically; we measure their

performance in terms of the average cluster spread (which will influence the localisation

accuracy) in Figure 3.14.

40 | 91 P a g e

Figure 3.14: Comparison of Clustering Algorithms

From Figure 3.14 we see that the cluster spread is comparable between all three

algorithms for number of clusters/states below 400. However this number of clusters is not

accurate (1.5 m cluster spread is equivalent to 0.7 m accuracy) for our purposes of

navigation. Beyond this k-medoids produces better results than all the other algorithms in

terms of accuracy of clustering.

Based on the above reasoning, k-medoids provided the best results and was also the

quickest to compute. Therefore we decided to use k-medoids for all subsequent clustering

for simulations.

Below shows a sample of clustered observations, clusters are shown by colour. As we can

see from the red and purple lines, orientation is preserved.

41 | 91 P a g e

Figure 3.15: Typical clustering output for various vehicle poses

3.3.3. Localisation Method

The localisation algorithm used in the simulations seeks to minimise the normalised

difference/distance between the current RFID snapshot RSS values and those of the

recorded cluster/state centroids. This normalised distance metric is computed subtracting

the RSS values of the current snapshot from that of each of the cluster centroids for

corresponding tag IDs. These values are then summed up and compared to the minimum

of total RSS sum of either the centroid or snapshots. The proportion is then given a

percentage RSS match score. Secondly the number of matching tag ID’s between each

centroid and the snapshot is given a percentage match. These scores are than summed

up with a bias of 60% ID score match plus 40% RSS score match, and the centroid with

the highest score is selected as the closest or likely robot pose, thus localising the robot.

This localisation algorithm was tested using the initial observations, and attempted to

match each observation to its allocated cluster. The accuracy of the localisation scheme is

shown in the results section. Additionally another localisation method was tested, which

compared only the RSS values for matching IDs.

42 | 91 P a g e

3.3.4. State Composition

The state vector is a 2 by max matrix, max representing the maximum number of tags

which can be read in one snapshot. This max value is preportional to the tag density, and

represents the maximum number of tags which can appear in the antenna's readable

range (in our case, a circle of radius 1.25 m in front of the antenna as seen in FIGZasa).

This matrix consists of a list of tag IDs (10 digit hexadecimal numbers) in the first column

and a RSS value varying from 0 to approx 60000 unit in the second column. This state

matrix (snapshot) is then tiled into a 2 by max by nObs matrix of observations for storage

and subsequent clustering. This state matrix is shown in FIZAasa. Once the observations

in the observation matrix have been clustered, the cluster centroid will represent a robot

state (i.e when the robot is observing a snapshot closely matching a certain centroid, it will

be considered to be in the state represented by that centroid). Essentially a state is a

snapshot of the RFID environment, which, after clustering, is represented by the cluster

centroids.

3.3.5. Building state transitions matrix and navigating

The state Transition Matrix I represents a measure of the probability of transitioning from

one state to another for a given action, in the form of a 3 dimensional [Sx(S+1)xA] (#states

by #states+1 by #actions) sparse probability matrix. The clusters from the clustering

algorithm were used as states for the state transition matrix. The additional state in the

second dimension holds the probability of transitioning to an empty state. The vehicle uses

a similar algorithm to that in Figure 3.13 to record the transition probabilities. It does this by

exploring the environment, choosing set actions at random and executing them, it then

increments the probability of transitioning from the previous state, to the current state,

given the chosen action. It attempts to record at least 2 transitions for each action in every

state. This ensures an accurate representation of the state transition probabilities. A

section of the state transition matrix is shown in Figure 3.16 for the forward action. On the

y-axis is the present state, on the x-axis is the state which can be transitioned to and the

colour indicates the probability of making this transition (red being probability close to 1

and blue probability close to 0) given the forward action is chosen. Additionally an extra

column is added as the probability of transitioning to outside the read range.

43 | 91 P a g e

Figure 3.16: Section of State Transition matrix

When the TM has been acquired, the vehicle is now equipped to navigate using a value

iteration algorithm. A goal location is selected from one of the states (these could be linked

to any area of interest, possibly from images taken by the vehicle). A reward matrix is

created with the goal location having a desired positive value and undesirable states (ones

that are close to the edge of the environment, i.e. last column) are given negative values.

The vehicle then uses value iteration to get an action policy (action to execute given the

vehicle is in a certain state) that will allow it to reach the goal whilst avoiding the edges of

the environment (where there are no RFID tags). Executing these actions, allows the

vehicle to navigate to the desired goal autonomously.

44 | 91 P a g e

4. Simulation Results

4.1. Localisation Results

These results were obtained in a simulated area of 5 by 5 metres, 800 tags and a

simulation time of 1000 exploration time steps. The localisation of the vehicle averaged an

error of 0.34 m over 20 simulations/trial runs. The average of the maximum localisation

error for all 20 trials was 1.1 m in the same simulations. The table below shows these

localisation results from different (randomly chosen) starting positions, to illustrate the

performance of the algorithm over varying distances.

Table 4.9: Numerical localisation results over 20 trial runs

Test

Max Loc

Error (m)

RMS Loc

Error (m)

Initial

Distance

to Goal (m)

Max

Distance

 to Goal (m)

Time

to Goal

(st) Comments

1 0.263108 0.113088 1.451262 1.451262 28

 2 1.373005 0.408296 2.017578 2.017578 44

 3 0.277988 0.115034 2.612348 2.613312 45

 4 0.266809 0.127836 1.618905 1.618905 21

 5 1.209967 0.339866 1.158275 1.158275 20

6 2.573254 0.962738 5.180108 5.184237 85

 7 1.209967 0.339866 1.158275 1.158275 20

 8 0.770608 0.289507 2.255162 2.255162 77

 9 0.396196 0.175624 2.562783 2.562783 30

 10 0.84493 0.253016 2.035301 2.035301 182 Circling

11 2.651533 0.997474 2.890733 3.259291 43

 12 0.564744 0.213986 3.679879 3.701556 57

 13 0.318143 0.180671 1.854034 1.856366 37

 14 0.948004 0.246589 3.370003 3.370003 89

 15 1.656564 0.412161 5.620122 5.620122 71

 16 0.832765 0.18374 4.616417 4.616417 51

 17 3.670778 0.858748 6.051785 6.775494 488 Limit Cycling

18 0.355889 0.167153 1.706876 1.935891 48

 19 0.407162 0.143514 2.070111 2.170551 41

 20 0.663023 0.229172 2.984635 2.984635 114

45 | 91 P a g e

 Ave 1.0627218 0.33790395

A sample run of the localisation error is shown in Figure 4.1 below and a run with extended

simulation time is shown in Figure 4.2.

Figure 4.1: Localisation error simulation results

We can see clearly from Figure 4.2 below the cycling between states which occurs on the

border between states. Stricter clustering (using a higher number of clusters), although

allowing more precision (due to higher density of centroids, meaning the distance to the

closest cluster is reduced), can lead to worse accuracy manifested as this fluctuation

between alternating states. Stricter clustering in this instance means using a higher

number of clusters in the case of kmeans/kmedoids (leading to smaller clusters and ideally

more accurate localisation). Having smaller clusters means the centroids are closer

together, the action policy therefore may give similar actions or actions which may be in

opposition due to slight variations due to noise in the snapshots. This can cause a

situation, in the case where the goal is directly behind the robot , where the policy gives an

46 | 91 P a g e

action rotate left, upon executing that action and ending up in a different state very close to

the previous state, the action policy then gives an action rotate right. Thus the vehicle

begins to cycle between these two state action pairs.

Figure 4.2: Localisation error over long simulation time (y-axis: localisation error [m], x-
axis: simulation time)

47 | 91 P a g e

Figure 4.3 below shows the vehicle position (in blue) in the simulation environment, the

purple is the closest cluster that the vehicle has localised itself in and the green is the goal

state/cluster. As in previous simulations the tags are the red circles.

Figure 4.3: Simulation environment showing localisation with precision below 0.2 m

48 | 91 P a g e

When performing simulations over longer time periods, which would produce a lot of

observations close together, we noticed that clustering would occasionally assign circular

clusters. These clusters, although giving accurate co-ordinate localisation, cause

ambiguity in the robots pose orientation and hence poor navigation. Figure 4.4 shows this

result.

Figure 4.4: Simulation showing how clustering can lead to circular clusters and ambiguous
orientation

49 | 91 P a g e

On the border of the environment localisation tends to be very poor, since the clustering

seems to cluster observations with small RSS values together (which are most

observations on the outskirts), leading to these clusters having centroids which are close

to the centre. Figure 4.5 below shows an example of this bad clustering, as above the

robot is in blue, the cluster in purple and the goal in green.

Figure 4.5: Simulation example of bad clustering leading to poor localisation

Another observation of the simulation environment was that the determinism of the

simulation lead to limit cycles wherein the vehicle would cycle between two opposing

actions. This happens when the goal is either directly in front or behind the robot, and the

localisation is not aligned with the navigation policy (the robot chooses to turn left when it

is on the right and chooses to turn right when it is on the left, due to localisation alternating

between opposite states incorrectly). This can also happen when the navigation policy

leads to the vehicle to circle the goal without actually reaching it. We call this limit cycling

and it is caused by the limited number of actions and a sparsely populated state transition

matrix. It was observed that adding noise to the robot motion eventually eliminates limit

50 | 91 P a g e

cycles. This is because limit cycles are the result of being stuck in an infinite action-

decision loop; adding noise can change the results of actions or influence the decision

made or both. Since introducing noise was observed to eliminate limit cycles, it was

introduced in the simulations, but it will not be necessary to include noise introduction in

the experimental application, as the real world already has noise. Figure 4.6 shows an

example of limit cycling using the localisation error.

Figure 4.6: Limit cycling due determinism of the simulator

51 | 91 P a g e

4.2. Navigation Results

Figure 4.7 below shows a sample of the navigation results. As we can see the

displacement error decays consistently over time.

Figure 4.7: Navigation showing error from goal state over simulation time

52 | 91 P a g e

Another error trace is shown in Figure 4.8; in this case the robot starts facing away from

the goal, which can be seen by the initial increase in error as the vehicle turns around. In

addition the orientation adjustment can be seen when the error increases slightly closer to

the goal.

Figure 4.8: Distance to goal over simulation time steps

The reason for the robot not following a straight path may be due to the limited actions

available to the robot, the limited time for exploration as well as the spread of the clusters

i.e. there exist paths which may not have been explored yet, and states which have not

been visited along the straight path. This leads to the robot path more likely to be along

explored states. The non-visiting of states can be attributed to two reasons, firstly

time/steps for explorations being limited and secondly, clustering can lead to some states

being larger than others thus overshadowing smaller states, hence the vehicle may never

register some clusters even though it may be the same cluster location

It is worth noting that when the vehicle is on the outskirts of the tag area (very low RSS),

the poor localisation results in poor navigation results. The worst case results in the

53 | 91 P a g e

displacement error not decaying to zero. Additionally, the clustering algorithm can lead to

poor clusters depending on the starting centroids used. The clustering tends to put all the

observations with low RSS (usually outskirts) in the same cluster, despite the different tag

identities. This leads to observations at the centre of the environment being part of the

cluster with observations on the outskirts. This is because the centroid will be in the centre

of the environment. As seen in Figure 4.9, poor clustering can result in limit cycling and

this can lead to bad navigation, where the robot cannot navigate to the goal, and as a

result the distance to goal does not decrease to zero over time, Figure 4.9 illustrates this

result.

Figure 4.9: Limit cycling leading to poor navigation on the outskirts of the environment

54 | 91 P a g e

5. Experiments and Setup
For the second part of this work, it was desired to test the results of the simulation on the

physical robot platform. For this stage, a Pioneer P3-DX (Adept Mobile Robots) was used;

the platform was controlled using Robot Operating System (ROS: Electric 2011) [69]

software running on a mini-notebook (dell inspiron) machine. The algorithms for the

experiments were also written in Matlab 2011b, which in turn used MEX-functions to

control the pioneer platform over a wireless connection.

5.1. Experimental Setup

Experiments were conducted in a lab of 5 m by 5 m with a line grid overlaid on the floor as

the ground truth for the location of the robot. The tags were dropped at random locations

and orientations in an approximately uniform distribution throughout the environment, their

locations were recorded for ground truth. This setup is shown in Figure 5.1.

Figure 5.1: Experimental environment setup

tags

pioneer

Antenna

55 | 91 P a g e

The notebook, which is connected to the pioneer via a serial connection, sends control

commands from ROS to the pioneer hardware platform. These can be motion commands,

such as translational and rotational velocity or sensor queries, such as odometry readings.

This notebook was also running the mex-Server, which receives Matlab commands over

Wi-Fi (from a client computer) and translates them into ROS commands, which in turn are

sent to the platform. The connectivity setup for the experiments is shown in Figure 5.2

below.

Figure 5.2: Experiment Connection Setup

During experiments, it turned out that the format of the tag ID (a 24-digit hexadecimal

number), was too big for Matlab to distinguish between different tag IDs due to rounding

errors. It was also observed that tags positions were subject to random shuffling and

inconsistency during different observations. This made it difficult to use the clustering

algorithms used in the simulator (k-mean and k-medoids), without sorting and using

positional look-up tables (to place identical tags in the same row), as they require the data

to be aligned. It was decided that implementing these measures would be computationally

expensive especially for larger areas. To address issue of tag IDs, we chose to convert

and process the tag ID as a 24-char string. We then used a modified form of a hierarchical

clustering algorithm to cluster observations, because of its simplicity in implementation and

56 | 91 P a g e

its robustness to unaligned data. The custom clustering was done using a thresholding

technique to find the closet observations globally. The custom clustering algorithm is

shown in Figure 5.3 and is based on a linearly increasing threshold for cluster matches. It

is similar to hierarchical clustering, except observations are only grouped together if their

separation metric is below this moving threshold.

Figure 5.3: Custom clustering algorithm

57 | 91 P a g e

5.2. Localisation Testing

Figure 5.4 below illustrates how the accuracy of the localisation was measured. Since the

cluster centroids are internal to the robot, and are topological rather than metric, it was

decided that the accuracy would be measured experimentally by the diameter of each

cluster.

Figure 5.4: How the localisation accuracy was measured

Localisation tests were conducted by obtaining the ground truth of the robot in the

environment. The robot was then placed at random locations in the environment and

issued a localisation command. The resulting cluster was recorded, then the robot was

moved a set distance (0.1 m) and the process was repeated. We record the localisation

error as the distance the vehicle must move until it registers a change in state. It is worth

noting that, on the border between two or more states, the robots localisation may cycle

between these bordering states. This fluctuation is measured as a percentage of incorrect

state localisations (assuming the most recent state with above 90% certainty is the correct

state) versus the total number of localisations performed. We call this percentage the

localisation certainty.

The above method was also used to assess the rotational localisation accuracy, although

for our navigation purposes, we only required an angular accuracy of 45° due to the fact

that our action commands rotated the vehicle by 45° and no less.

58 | 91 P a g e

6. Experimental Results
This section looks at the results from testing our simulation algorithms on the pioneer

platform in a lab environment. During the practical implementation of the exploration

algorithm, it was found that the tag orientations’ effect on the RSS value was negligible

when compared to the random fluctuations of RSS values between sequential queries.

This simplified our tag placement, since we could ignore tag orientation.

6.1. Localisation Results

The localisation of the vehicle was shown to be able to distinguish different clusters from

distances of over 0.43 m over 13 random locations and four angles in rotations of π/2 (90°)

at each location with 100% accuracy. Below this distance, the accuracy declines rapidly

leading to spurious localisation of 30% consistency at 0.2 m. The straight line localisation

accuracy (which is the measured localisation accuracy when moving in a straight line in

varying steps/separation distances) is shown in Table 6.10 for various distances, and was

measured by the number of incorrect vs. correct localisations.

Table 6.10: Experimental Localisation Results

Separation distance/precision (m) Localisation consistency/repeatability

0.4 90%

0.3 50%

0.2 30%

In addition to the co-ordinate consistency, the orientation consistency was also tested.

These results are shown in Table 6.11 below, and were acquired by placing the pioneer at

intervals and changing the orientation. We then issued localisation commands and

recorded the most frequent state as the correct state and all others as the error states. It

was found that there was ever only one error state (as can be seen from the table). The

co-ordinates measured x from left to right, y from bottom to top of the lab area and 0 along

the positive y axis (This is shown in Figure 6.1).

59 | 91 P a g e

Figure 6.1: Co-ordinate reference frame

The highlights show when the vehicle is on the border between two states, thus leading to

a decrease in % consistency.

Table 6.11: Orientation Consistency Test Results

Theta (deg) x (m) y (m) Correct state Error state Consistency %

0⁰ 0.8 0.40 31 0

0⁰ 0.8 0.80 157 18 30

0⁰ 0.8 1.20 18 0

0⁰ 0.8 1.60 18 0

0⁰ 0.8 2.00 307 0

0⁰ 0.8 2.40 340 8 20

0⁰ 0.8 2.80 8 21 25

0⁰ 0.8 3.20 21 0

0⁰ 0.8 3.60 473 0

45⁰ 0.8 0.40 32 82 10

45⁰ 0.8 0.80 82 18 45

45⁰ 0.8 1.20 319 8 10

45⁰ 0.8 1.60 8 0

45⁰ 0.8 2.00 8 0

45⁰ 0.8 2.40 56 8 30

45⁰ 0.8 2.80 21 0

45⁰ 0.8 3.20 124 0

45⁰ 0.8 3.60 105 160 25

90⁰ 0.8 0.40 82 0

90⁰ 0.8 0.80 119 0

60 | 91 P a g e

90⁰ 0.8 1.20 8

0

90⁰ 0.8 1.60 92

0

90⁰ 0.8 2.00 36

0

90⁰ 0.8 2.40 306

0

90⁰ 0.8 2.80 139

0

90⁰ 0.8 3.20 124

0

90⁰ 0.8 3.60 0

0

270⁰ 0.8 0.40 0

0

270⁰ 0.8 0.80 0

0

270⁰ 0.8 1.20 31

0

270⁰ 0.8 1.60 82

0

270⁰ 0.8 2.00 31

0

270⁰ 0.8 2.40 222 31 30

270⁰ 0.8 2.80 31 18 40

270⁰ 0.8 3.20 8

0

270⁰ 0.8 3.60 8

0

61 | 91 P a g e

7. Discussion and Conclusions

From our simulations, we verified the consistency of our RSS calculations by comparing

them to the beam pattern of the Alien Antenna data sheet. We can conclude that

localisation below 0.4 m precision is achievable with over 90% consistency. For our

navigation simulations, looking at the state transition matrix we can see that the diagonal

shows that for small movements of the forward action there is a finite probability of staying

in the same state, this is influenced both by the localisation consistency and the

displacement of each action. Based on the achieved consistency, we recommend using an

action displacement of at least 0.4 m for each translational action. This will reduce the

amount of localisation noise, as it ensures that the robot has completely transitioned to

another cluster.

From our experimental results we can confirm that localisation consistency below 0.4 m

(linear) precision is achievable with at 90% consistency (i.e. 90% of the time). This is

comparable to the accuracies achived by Schneegans et al [31] and Vorst et al [32],

although their consistency was not mentioned. Additionally orientation precision of 45⁰ is

also achievable. This was precise and accurate enough for navigation, since our actions

did not contain rotations of less than 45⁰ or translations of less than 0.4 m.

Localisation consistency noise/errors were caused by the fluctuating number of visible tags

from the RFID reader; this caused the localisation algorithm to cycle between states which

are close to each other.

It was also noted that, strict clustering can lead to better precision, but this method of

increasing precision is also more susceptible to these fluctuations, hence consistency

deteriorates; strict clustering although achieving better localisation, leads to erroneous

autonomous navigation because of this.

We can conclude that localisation using only RFID tags is both feasible and practical. This

means it may be practical to apply it in environments without GPS or stationary landmarks,

such as underground.

Navigation was proved to be feasible from the simulation results, where successful

navigation from distances of up to 8 m was achieved. These simulation results need to be

confirmed experimentally to verify their accuracy and practicality.

62 | 91 P a g e

8. Future Work
Due to time constraints it was not possible to fully test navigation using only RFID tags,

although it was implemented on the pioneer platform. Future work should look at how

navigation would be tested and judged both for end goal accuracy (closeness to goal in

metres and orientation in degrees) and navigation efficiency (i.e. time/steps to goal).

Additionally particle filters should be implemented for the localisation, which we believe

would greatly improve the localisation, due to the possibility that this would limit the cycling

between states that are close to each other. It follows that increasing the localisation

consistency would also improve navigation as well.

Lastly the experimental results should be confirmed in an underground environment, by

distributing RFID tags and attempting to localise and navigate in this practical

environment.

63 | 91 P a g e

9. Bibliography

[1] Micheal W. George, "U.S. Geological Survey, Mineral Commodity Summaries,"
January 2011. [Online]. https://www.cia.gov/library/publications/the-world-
factbook/geos/sf.html

[2] Mining Weekly. (2009, February) Mining Weekly.com. [Online].
http://www.miningweekly.com/article/worlds-new-deepest-mine-safe-cheap-anglogold-
2009-02-09

[3] G. R. Adams and A. J. Jager, "Petroscopic observations of rock fracturing ahead of
stope faces in deep-level gold mines," vol. 80, no. 06, 1980.

[4] Steven Schultz. (1999, December) Princeton University Website. [Online].
http://www.princeton.edu/pr/pwb/99/1213/microbe.shtml

[5] Nick Wadhams. (2011, February) Wired Magazine March 2011. [Online].
http://www.wired.com/magazine/2011/02/st_ultradeepmines/

[6] James S. Monroe and Reed Wicander, "The Changing Earth: Exploring Geology and
Evolution," 1997.

[7] Dineo Matomela. (2011, April) Business Report. [Online].
http://www.iol.co.za/business/rising-sa-mine-deaths-need-urgent-attention-1.1055349

[8] Department of Mineral Resources, "Annual Report 2010/11," Pretoria, 2011.

[9] Christian Forster, Deon Sabatta, Roland Siegwart, and Davide Scaramuzza, "RFID-
based hybrid metric-topological SLAM for GPS-denied environments," in IEEE
International Conference on Robotics and Automation (ICRA), Ka, 2013, pp. 5228-
5234.

[10] Bryan Adams, Cynthia Breazeal, Rodney A. Brooks, and Brian Scassellati, "Humanoid
Robots: A new kind of tool," IEEE Intelligent Systems, vol. 15, no. 4, pp. 25-31 , 2000.

[11] CSIR. (2011, July) Council for Scientific and Industrial Research (CSIR). [Online].
http://www.csir.co.za/mias/mining.html

[12] Sisa James, Robyn A. Verrinder, Deon Sabatta, and Ali Shahdi, "Localisation and
Mapping in GPS-denied Environments using RFID Tags," in Robotics and
Mechatronics Conference of South Africa, Pretoria, 2012.

[13] Mining Weekly. (2011, August) Mining Weekly.com. [Online].
http://www.miningweekly.com/article/num-calls-for-more-compassion-from-the-
industry-when-it-comes-to-mine-fatalities-2011-08-05

https://www.cia.gov/library/publications/the-world-factbook/geos/sf.html
https://www.cia.gov/library/publications/the-world-factbook/geos/sf.html
http://www.miningweekly.com/article/worlds-new-deepest-mine-safe-cheap-anglogold-2009-02-09
http://www.miningweekly.com/article/worlds-new-deepest-mine-safe-cheap-anglogold-2009-02-09
http://www.princeton.edu/pr/pwb/99/1213/microbe.shtml
http://www.wired.com/magazine/2011/02/st_ultradeepmines/
http://www.iol.co.za/business/rising-sa-mine-deaths-need-urgent-attention-1.1055349
http://www.csir.co.za/mias/mining.html
http://www.miningweekly.com/article/num-calls-for-more-compassion-from-the-industry-when-it-comes-to-mine-fatalities-2011-08-05
http://www.miningweekly.com/article/num-calls-for-more-compassion-from-the-industry-when-it-comes-to-mine-fatalities-2011-08-05

64 | 91 P a g e

[14] CSIR. (2011, January) Council for Scientific Industrial Research (CSIR). [Online].
wwww.csir.co.za/profile_of_csir.html

[15] Rainer Kummerle, Dirk Hahnel, Dmitri Dolgov, Sebastian Thrun, and Wolfram
Burgard, "Autonomous Driving in a Multi-level Parking Structure," in Robotics and
Automation, IEEE International Conference on, Kobe, 2009.

[16] MIT and Olin College, "DARPA Grand Challenge," 2007.

[17] Hugh Durrant-Whyte and Tim Bailey, "Simultaneous localization and mapping: part I,"
Robotics & Automation Magazine, IEEE, vol. 13, no. 2, 2006.

[18] John Markoff. (2010, October) New York Times Reprints. [Online].
http://bngumassd.org/neatstuff/selfdrive%20cars.pdf

[19] Sebastian Thrun. (2012) Udacity. [Online].
http://www.udacity.com/overview/Course/cs373/CourseRev/apr2012

[20] US Goverment. (2012, July) GPS.gov. [Online].
http://www.gps.gov/systems/gps/performance/accuracy/

[21] C. Baker et al., "A Campaign in Autonomous Mine Mapping," in Robotics and
Automation, IEEE International Conference on, vol. 2, Los Angeles, 2004.

[22] Hayato Kondo and Tamaki Ura, "Navigation of an AUV for investigation of underwater
structures," Control Engineering Practice, vol. 12, no. 12, pp. 1551–1559, December
2004.

[23] Vassilis Varveropoulos, "Robot Localization and Map Construction Using Sonar Data,"
The Rossum Project, 2000.

[24] Engineering ToolBox. [Online]. http://www.engineeringtoolbox.com/speed-sound-
d_82.html

[25] Wen-jing Zeng, Lei Wan, Tie-dong Zhang, and Shu-ling Huang, "Simultaneous
localization and mapping of autonomous underwater vehicle using looking forward
sonar," Journal of Shanghai Jiaotong University (Science), vol. 17, no. 1, pp. 91-97,
Feb. 2012.

[26] Elliot S. Duff, Peter I. Corke Jonathan M. Roberts, "Reactive navigation and
opportunistic localization for autonomous underground mining vehicles," Information
Sciences, vol. 145, no. 1-2, pp. 127-146, August 2002,
http://www.sciencedirect.com/science/article/pii/S002002550200227X.

[27] Sangdo Park and Hongchul Lee, "Self-Recognition of Vehicle Position Using UHF
Passive RFID Tags," IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp.

wwww.csir.co.za/profile_of_csir.html
http://bngumassd.org/neatstuff/selfdrive%20cars.pdf
http://www.udacity.com/overview/Course/cs373/CourseRev/apr2012
http://www.gps.gov/systems/gps/performance/accuracy/
http://www.engineeringtoolbox.com/speed-sound-d_82.html
http://www.engineeringtoolbox.com/speed-sound-d_82.html

65 | 91 P a g e

226 - 234, January 2013.

[28] Y. Raoui et al., "RFID-based topological and metrical self-localization in a structured
environment," in International Conference on Advanced Robotics, Munich, 2009, pp. 1
- 6.

[29] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose, "Mapping and
Localization with RFID Technology," in International Conference on Robotics and
Automation, vol. 1, Barcelona, 2004, pp. 1015 - 1020.

[30] Charles C. Kemp, and Matthew S. Reynolds Travis Deyle, "Probabilistic UHF RFID
tag pose estimation with multiple antennas and a multipath RF propagation model," in
International Conference on Intelligent Robots and Systems, Nice, 2008, pp. 1379 -
1384.

[31] Sebastian Schneegans, Philipp Vorst, and Andreas Zell, "Using RFID Snapshots for
Mobile Robot Self-Localization," EMCR, Tubingen, 2007.

[32] Philipp Vorst, Sebastian Schneegans, Bin Yang, and Andreas Zell, "Self-Localization
with RFID Snapshots in Densely Tagged Environments," in Intelligent Robots and
Systems, International Conference on, Nice, 2008.

[33] Xiaoqin Zhang, "SVD based kalman particle filter for robust visual tracking," in Pattern
Recognition, International Conference on, Beijing, 2008.

[34] Greg Welch and Gary Bishop, "An Introduction to the Kalman Filter," Chapel Hill,
27599-3175, 2006.

[35] Lindsay Kleeman, "Understanding and Applying Kalman Filtering," in Proceedings of
the Second Workshop on Perceptive Systems, Perth, 1996.

[36] Daniel Seliger. (2012) State Estimation: Particle Filter. Presentation.

[37] Hans-Peter Kriegel, Peer Kroger, Jorg Sander, and Arthur Zimek, "Density-based
clustering," WIREs: Data Mining and Knowledge Discovery, vol. 1, no. 3, pp. 231–240,
April 2011.

[38] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Stanford, California: Springer Series
in Statistics, 2008.

[39] Leonard Kaufman and Peter J. Rousseeuw, Finding groups in data: An Introduction to
Cluster Analysis.: John Wiley & Sons, 2009, vol. 344.

[40] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu, "A density-based
algorithm for discovering clusters in large spatial databases with noise," in Knowledge

66 | 91 P a g e

Discovery and Data Mining, vol. 96, Portland, 1996, pp. 226-231.

[41] R. Sibson, "SLINK: An optimally efficient algorithm for the single-link cluster method,"
The Computer Journal, vol. 16, no. 1, pp. 30-34, 1973.

[42] Zhexue Huang, "Extensions to the k-Means Algorithm for Clustering Large Data Sets
with Categorical Values," Data Mining and Knowledge Discovery, vol. 2, no. 3, pp.
283-304, September 1998.

[43] Tian Zhang, Raghu Ramakrishnan, and Miron Livny, "An Efficient Data Clustering
Method for Very Large Databases," in International Conference on Management of
Data, New York, 1996, pp. 103-114.

[44] R.T. Ng and Jiawei Han, "CLARANS: A Method for Clustering Objects for Spatial Data
Mining," Knowledge and Data Engineering, IEEE Transactions on, vol. 14, no. 5, pp.
1003 - 1016, September 2002.

[45] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, "Cluster Analysis," in
Introduction to Data Mining.: University of Minnesota, 2006.

[46] Vladimir Estivill-Castro and Jianhua Yang, PRICAI 2000 Topics in Artificial
Intelligence. Callagahn, Australia: Springer Berlin Heidelberg, 2000, vol. 1886, Fast
and Robust General Purpose Clustering Algorithms.

[47] Mathworks. (2013) Mathworks. [Online].
http://www.mathworks.de/de/help/stats/kmeans.html

[48] A. Jain, M. Murty, and P Flynn, "Data Clustering: A Review," ACM Computing Surveys
(CSUR), vol. 21, no. 3, pp. 264-323, September 1999.

[49] Junjie Wu, Advances in K-means Clustering: A Data Mining Thinking., 2012.

[50] D. Wishart, "Mode analysis: a generalization of nearest," London and New York
Academic Press, 1969.

[51] Narendra Sharma, Aman Bajpai, and Ratnesh Litoriya, "Comparison the Various
Clustering Algorithms of Weka Tools," International Journal of Emerging Technology
and Advanced Engineering, vol. 2, no. 5, pp. 73-80, May 2012.

[52] Joey Kippen, "Clustering: Knowledge From Understanding," Colorado State
University, Fort Collins, Review 2009.

[53] P. Svestka and M. H. Overmars, "Probabilistic Path Planning," in Robot Motion
Planning and Control, Jean-Paul Laumond, Ed., 1998, ch. 5.

[54] Dave Ferguson, Maxim Likhachev, and Anthony Stentz, "A Guide to Heuristic-based

http://www.mathworks.de/de/help/stats/kmeans.html

67 | 91 P a g e

Path Planning," in International Conference on Automated Planning and Scheduling,
Monterey, 2005, pp. 9-18.

[55] Steven M. LaValle and James J. Kuffner, "Rapidly-Exploring Random Trees: Progress
and Prospects," 2000.

[56] Daniel Delling, "Engineering and Augmenting," Universit¨at Fridericiana zu Karlsruhe ,
Karlsruhe , Dissertation 2009.

[57] S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory with
Mathematica, 3rd ed.: Addison-Wesley, 1990.

[58] Thomas H. Connen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
Introduction to Algorithms, 2nd ed. London, England: McGraw-Hill Book Company.

[59] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths," Systems Science and Cybernetics, IEEE
Transactions on, vol. 4, no. 2, pp. 100 - 107, July 1968.

[60] Charles M. Grinstead and J. Laurie Snell, "Markov Chains: Introduction," in
Introduction to Probability.: American Mathematical Society, 1998, ch. 11.1, pp. 405-
407.

[61] Martin L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, USA: John Wiley and Sons, 2005.

[62] Manuela Veloso, "Reinforcement Learning: Value and Policy Iteration," Carnegie
Mellon University: Computer Science Department, Pittsburgh, Lecture Slides 2001.

[63] Elena Pashenkova, Irina Rish, and Rina Dechter, "Value iteration and policy iteration
algorithms for Markov decision problem," University of California: Department of
Information and Computer Science, Irvine, Paper 1996.

[64] Verena Heidrich-Meisner and Christian Igel, "Evolution Strategies for Direct Policy
Search," in Parallel Problem Solving from Nature - PPSN X.: Springer Berlin
Heidelberg, 2008, pp. 428-437.

[65] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction.
Cambridge, US: The MIT Press, 1999.

[66] Machine Learning Experiences in Artificial Intelligence. (2009) Value Iteration, Policy
Iteration, and Q-Learning. Document. [Online].
http://uhaweb.hartford.edu/compsci/ccli/projects/QLearning.pdf

[67] The MathWorks Inc., MATLAB 2011b. Natick, Massachusetts, United States: The
MathWorks Inc., 2011.

http://uhaweb.hartford.edu/compsci/ccli/projects/QLearning.pdf

68 | 91 P a g e

[68] ALIEN Technology. (2000) Low VSWR/Axial Ratio Antenna ALR-8696-C. Data Sheet.

[69] Morgan Quigley et al., "ROS: an open-source Robot Operating System," in ICRA
workshop on open source software, 2009, p. 5.

[70] Earle B. Amey, "U.S. GEOLOGICAL SURVEY MINERALS YEARBOOK," 2002.

[71] (2007, Nov.) DARPA Grand Challenge. [Online].
http://www.darpagrandchallenge.com/

[72] James Norris. (2004, September) Markov Chains: Descrete Time Markov Chains.
Cambridge University Press: Document. [Online].
http://www.statslab.cam.ac.uk/~james/Markov/

[73] Hongpeng Chi, Kai Zhan, and Boqiang Shi, "Automatic guidance of underground
mining vehicles using laser sensors," Tunnelling and Underground Space Technology,
vol. 27, no. 1, pp. 142-148, January 2012,
http://www.sciencedirect.com/science/article/pii/S0886779811001155.

http://www.darpagrandchallenge.com/
http://www.statslab.cam.ac.uk/~james/Markov/

69 | 91 P a g e

10. Appendix A: Code

Simulation Script
% RFID tag Localisation Simulator

% This simualtion places tags in a grid with various orientations

% (note that you can modifiy this to place tags in customised positions and orientations)

close all

clear all

clc

%rng(100)

%+++

%Simulation Parameters

nt = 250; % Number of Tags

n = 6; % Grid size

ts = 500; % Simulation Duration

dt = 0.25; % Simulation interval

num_actions=5; % L R F TL TR

veh_state = [0,0,pi];% Initial Vehicle state [x y theta]

thresholdRSS = 500; % Set the threshold for tag detection

%+++

vs =0.2; % Quiver Length

v = 0; % Vehicle Initial Velocity

w = 0; % Vehicle Initial Rotational Velocity

% Place tags in grid

fprintf('Initializing Tag Locations \n')

tagx = n*rand(1,nt)-n/2;%[(n/nt):(n/nt):n]-n/2;

tagy = n*rand(1,nt)-n/2;%[(n/nt):(n/nt):n];

tago = pi*rand(1,nt); %ones(1,nt);

tag_list = [tagx;tagy;tago]; % Matrix containing all the tags in the grid

% Initialise Entropy Trace

tplot=[];

iplot=[];

% Start Simulation

fprintf('Running Simulation\n')

%%

% Explore

%veh_state = [rand(1),rand(1),2*pi*rand(1)]; % Place Vehicle

[observations,observationsV] = explore(ts,dt,tag_list,thresholdRSS,veh_state);

%%

% Cluster The States Using k-means

fprintf('Clustering...\n')

num_States = round(length(observationsV)/4)*2-1;

%[IDX, cluster_Centroids] = k_means(observations, num_States);

%[IDX,cluster_Centroids,num_States] = k_hedge(observations',0.25);

[IDX,~, cluster_Centroids] = kmedoids(observations',num_States);

%IDX = 1:size(observations,1);

%cluster_Centroids = (observations);

% Clean Clusters

[IDX, cluster_Centroids,num_States] = clean_clusters(IDX,cluster_Centroids);

nnum = 0;

for j = 1:1:num_States

 num = 0;

 for i=1:length(observationsV)

 if IDX(i) == j % Check if IDX contains j

70 | 91 P a g e

%quiver(observationsV(i,1),observationsV(i,2),vs*cos(observationsV(i,3)),vs*sin(observati

onsV(i,3)),'r*');

%hold on;

num = num + 1;

end

end

if num ~= 0

nnum = nnum + 1;

end

end

fprintf('Valid Clusters: %4.2f %% full\n',100*nnum/num_States)

%%

% Visualise State Clusters

%fprintf('Visualising State Clusters\n')

%k_viz(observationsV,IDX,tag_list)

%%

% Build State Transition Probabilities

fprintf('Building State Transition Probability\n')

steps = length(observations)*50;

veh_state = [rand(1),rand(1),2*pi*rand(1)]; % Place Vehicle

[state_transition] = build_transition(veh_state,tag_list,thresholdRSS, cluster_Centroids,

steps,dt, num_actions);

%fprintf('state transition matrix is %f4.2 %% full\n',1-

100*sum(sum(isnan(state_transition(:,:,1))))/(num_States*num_States))

veh_state = 0.8*[n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)];

%%

save 'functional_workspace'

fprintf('Running Value Iterations...\n')

% Choose a random goal state

goal_state = 0.8*[n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)];

ss = rssCalc(goal_state,tag_list);

goal_state = localise(cluster_Centroids,ss);

% Initialise Value Iteration Values

reward=num_States;

discount=0.1;

default = -10;

%[state_Value, nav_policy] = value_iteration(af,al,ar, goal_state, reward,default,

cost); %Not working properly yet

R = default.*ones(num_States,num_States,num_actions); % Reward Matrix

R(:,goal_state,:) = reward;

[state_Value, nav_policy, ~, ~] = mdp_value_iteration(state_transition, R, discount);

% Navigate

fprintf('Starting Navigation...\n')

%figure

dt=0.05;

% M = getframe(gcf); % Get current frame

for nn=1:500

ss = rssCalc(veh_state,tag_list); % Compute Current RSS for visible tags

ss(ss<thresholdRSS)=0; % Zero non detections

visible = sum(abs(ss));

plot(tagx,tagy,'ro')

grid on

hold on

if visible % if there are visible tags

quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'b*');

else

quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'k*');

71 | 91 P a g e

 end

 % Mark Goal State

 for i=1:size(observationsV,1)

 if(IDX(i)==goal_state)

quiver(observationsV(i,1),observationsV(i,2),vs*cos(observationsV(i,3)),vs*sin(observatio

nsV(i,3)),'g*');

 end

 end

 % Find the nearest state

 if visible

 df = num_States.*ones(1,num_States);

 for i = 1:num_States

 df(i) = norm(cluster_Centroids(i,:)-ss); % Find Distance to Cluster

Centroids

 end

 [~,minIndex] = min(df); % Find Closest Cluster Centroid

 % Mark nearest Cluster

 for i=1:size(observationsV,1)

 if IDX(i) == minIndex

quiver(observationsV(i,1),observationsV(i,2),vs*cos(observationsV(i,3)),vs*sin(observatio

nsV(i,3)),'m*');

 end

 end

 %nav_policy(minIndex)

 if minIndex==goal_state

 fprintf('Found Goal!!!!!!!!!!!!!!!! :-D\n')

 [v w] = act('S');

quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'g*');

 break

 else

 [v w] = act(nav_policy(minIndex));

 end

 else % If ~visible

 [v w] = act('b'); % Turn around

 end

 veh_state = driveBot(veh_state,v,w,dt);

% % Grab a frame

% M(nn) = getframe;

 hold off

 pause(0.1)

end

% movie2avi(M, 'movieNav', 'fps', 30);

% grids=[-n/2,n/2,-n/2,n/2];

% polViz(nav_policy,grids,dt,cluster_Centroids,tag_list)

fprintf('Finished\n')

72 | 91 P a g e

Calculate RSS Values Function
function [ss] = rssCalc(veh_state, tag_list)

% RSSCALC This function takes in a vehicle state and a list of tags, and returns the

RSS(recieved signal strength) for each tag

%

% usage: rssCalc(veh_state, tag_list)

%

% veh_state: vector [x y phi] describing the state of the vehicle in

% cartesian co-ordinates. phi is the orientation measured

% positive counter clockwise from the positive x-axis

%

% tag_list: 3 x n matrix [x1 x2 .. xn tag characteristics for 'n' tags

% y1 y2 .. yn with co-ordinates x,y

% a1 a2 .. an] orientation of normal vector of the tag in the

global referecnce frame

%

% ss: vector [ss1 ss2 .. ssn]recieved signal strength for

% corresponding tags

vx = veh_state(1); % Robot/Vehicle x position (global ref frame)

vy = veh_state(2); % Robot/Vehicle y position (global ref frame)

vo = veh_state(3); % Robot/Vehicle orientation (global ref frame)

to=tag_list(3,:); % Tag normal orientation (global ref frame)

% Change to vehicle reference frame (place vehicle at the origin)

tx = tag_list(1,:)-vx; % Translate tags in the x direction to vehicle reference frame

ty = tag_list(2,:)-vy; % Translate tags in the y direction to vehicle reference frame

tagpos = [tx;ty];

% Rotate frame to face align x direction (this is required for the PSS function)

relpos = (tagpos'*[cos(vo) -sin(vo);sin(vo) cos(vo)])'; % Rotate tag positions

% Reassign new tag co-ordinates in robot reference frame

txv=(relpos(1,:)); % Tag x co-ordinates after rotation

tyv=(relpos(2,:)); % Tag y co-ordinates after rotation

% Calculate tag normal rel to vehicle

to = atan2(sin(to-vo),cos(to-vo)); % Rotate tag angle (gives tag normal orientation

in vehicle reference frame)

tav=atan2(tyv,txv); % Work out angle to the tag relative to the

vehicle (vehicle referenct frame)

tov = atan2(sin(tav-to),cos(tav-to)); % Compute tag normal orientation relative to the

vehicle

%Compute RSS in the Vehicle reference frame

ss=PSS(txv,tyv,tov);

end

function rss = PSS(x,y,ta)

%This function accepts RFID tag location(cartesian co-ordinates) & its orientation &

returns the recieved signal strength

%

% Usage function rss = PSS(x,y,ta)

%

% x: the tags' position along the x axis

% y: the tags' position along the y axis

% ta: the orientation of the tag relative to the vehicle/robot

n = length(x);

rss = zeros(1,n);

a = [2235 17144 -12101]; % Coeficients of polynomial approximation of order 3

d = sqrt(x.*x + y.*y); % Distance to tags

ct = abs(cos(atan2(y,x))); % Compute angle of the tag rel to robot

c = 50; % Set attenuation value behind the antenna

73 | 91 P a g e

% For each tag calculate the rss using best-fit function based on experimental data

for t=1:n

 if (x(t)>=0) % If the tag is in front of the antenna

 rss(t) = [exp(-d(t)) exp(-2*d(t)) exp(-3*d(t))]*a'*ct(t);%*abs((cos(ta(t))+1)/2);

 else % If the tag is behind the antenna (increase attentuation)

 rss(t) = [exp(-c*d(t)) exp(-2*c*d(t)) exp(-

3*c*d(t))]*a'*ct(t);%*abs((cos(ta(t))+1)/2);

 end

end

Localise Algorithm Function
function [state] = localise(cluster_Centroids,ss)

%LOCALISE localise(cluster_Centroids,ss)

% Detailed explanation goes here

 [num_States,~] = size(cluster_Centroids);

 df = num_States.*ones(1,num_States);

 for i = 1:num_States

 df(i) = norm(cluster_Centroids(i,:)-ss); % Find Distance to Cluster

Centroids

 end

 [~,state] = min(df); % Find Closest Cluster Centroid/State

end

Explore Function
function [observations,observationsV] = explore(ts,dt,tag_list,thresholdRSS,veh_state)
%EXPLORE Summary of this function goes here

% Detailed explanation goes here

% Initialise Algorithm Variables
index =1;
vs =0.1; % Quiver Length
numObs = round(ts/dt);
observations = zeros(size(tag_list,2),numObs);
observationsV = zeros(numObs,length(veh_state));
%action = 'f';
tf = round(rand(1));
watchdog = 0;
pv=0.1;

% Plot Grid
%figure

fprintf('Start Exploring\n')
for t=1:dt:ts % Walk around observing states

 % Plot tags
 %hold off
% plot(tag_list(1,:),tag_list(2,:),'ro')
% hold on
% grid on

 if(mod(t,10)==1)
 UpdateProgress(100*t/ts);
 end
 %veh_state = [2*rand(1)-1,2*rand(1)-1,2*pi*rand(1)];

 ss = rssCalc(veh_state,tag_list); % Compute Current RSS for visible tags

74 | 91 P a g e

ss(ss<thresholdRSS)=0; % Zero non detections

%>>>
% Planning Algorithm Goes Here
visible = sum(abs(ss));

if visible % if there are visible tags
observations(:,index)=ss;
observationsV(index,:) = veh_state;

%quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'b*');
for i = 1:length(tag_list)

if ss(i)
plot(tag_list(1,i),tag_list(2,i),'go')

end
end

else

%quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'k*');
end

%Explore using randomly selected actions
action=round(3*rand(1)+0.5);
% Choose Action
[v w] = act(action);

 if ~visible
action = 'b';
v=0;
if tf

w=5;
else

w=-5;
end
if watchdog>10

v=pv;
end

% fprintf('Turning Around\n')
end
% Check for looping
if action~='b'

watchdog=0;
pv=0.5/10;
tf=round(rand(1));

else
watchdog=watchdog+1;
pv=pv+0.1/10;

end
% Execute Move
veh_state = driveBot(veh_state,v,w,dt);
index = index+1;
% Algorithm ends here
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

%pause(0.1)

end
% Remove Empty Observations
fprintf('\nRemoving Empty Observations...\n')
empty = zeros(size(tag_list,2),1);
for i=numObs:1

question = sum(observations(:,i)==empty);
if question==size(tag_list,2)

observations(:,i)=[];
end

end
observations = observations';

75 | 91 P a g e

fprintf('Finished Exploring :-)\n')
end

Build Transition Function
function [state_transition] = build_transition(veh_state,tag_list,thresholdRSS,

cluster_Centroids,steps,dt,num_actions)

%function [af al ar] = build_transition(veh_state, cluster_Centroids)

%Makes the robot wander around building a state transition probability matrix for each

action

% [veh_state] = initial vehicle state (position and orientation)

% [cluster_Centroids] = centrods of the various state

% [num_State] = total number of states

% [steps] = number of itaration to take to build probability matrix (in the order of

num_States*100)

% function returns [af al ar] which correponds to the probability

% of transtioning from on state to another by executing the relevant

% action

[num_States,~] = size(cluster_Centroids);

%state_transition = sparse(zeros(num_States,num_States,num_actions));

state_transition = zeros(num_States,num_States,num_actions);

%action = 1;

%n=6;

inc = 1;

tf = randi(2,1)-1;

watchdog=0;

pv=0.1;

% % First Find which state we are in..?

% ss = rssCalc(veh_state,tag_list); % Compute Current RSS for visible tags

% df = ones(1,num_States);

% for i = 1:num_States

% df(i) = norm(cluster_Centroids(i,:)-ss); % Find Distance to Cluster

Centroids

% end

% [~,minIndex] = min(df); % Find Closest Cluster Centroid

%veh_state = [n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)];

for nn=1:steps % Wander around Building State transision probability matrix

 % Progress Bar

 if(mod(nn,100)==1)

 UpdateProgress(100*nn/steps);

 end

% %

PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE

>

% veh_state = [n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)];

% for direction=0:2*pi/10:2*pi

% veh_state(3)=veh_state(3)+direction;

%

LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE>

 ss = rssCalc(veh_state,tag_list); % Compute Current RSS for visible tags

 ss(ss<thresholdRSS)=0; % Zero non detections

 visible = sum(abs(ss));

 if visible

 %pminIndex=minIndex;

 % Find the current/nearest state

 for i = 1:num_States

 df(i) = norm(cluster_Centroids(i,:)-ss); % Find Distance to Cluster

Centroids

 end

76 | 91 P a g e

 [~,pminIndex] = min(df); % Find Closest Cluster Centroid Prev

Index

%

LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE>

% for k=1:5

 %Make a Move>>>

 %Explore using randomly selected actions

 action=randi(num_actions);

 %action=k;

 [v w] = act(action);

 % Execute Move

 veh_state = driveBot(veh_state,v,w,dt);

 %Make a Move>>>

 %

LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE>

222222222222

 ss = rssCalc(veh_state,tag_list); % Compute Current RSS for

visible tags

 ss(ss<thresholdRSS)=0; % Zero non detections

 visible = sum(abs(ss));

 if visible

 % Find the current/nearest state

 for i = 1:num_States

 df(i) = norm(cluster_Centroids(i,:)-ss); % Find

Distance to Cluster Centroids

 end

 [~,minIndex] = min(df); % Find Closest Cluster

Centroid Current Index

 if(pminIndex==minIndex) % If its in the same state

 inc = inc/4;

 else

 inc = 1;

 end

state_transition(pminIndex,minIndex,action)=state_transition(pminIndex,minIndex,action)+i

nc; % Increment Transition

 %veh_state = 0.9*[n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)];

 end

% end

 %

LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE>

222222222222

 else % ie Outside tag range, then turn around

 action = 'b';

 v=0;

 if tf

 w=5;

 else

 w=-5;

 end

 if watchdog>10

 v=pv;

 end

 % Execute Move

 veh_state = driveBot(veh_state,v,w,dt);

 end

 % Check for looping

 if action~='b'

 watchdog=0;

 pv=0.5;

77 | 91 P a g e

tf=round(rand(1));

else

watchdog=watchdog+1;

pv=pv+0.1;

end

%end

end

%save('before_norm.mat');

fprintf('\n...Normalising Probability Matrices\n')

% Apply Laplacian Smoothing

%state_transition=state_transition+1;

% Normalising

state_transition = state_transition ./ repmat(sum(state_transition,2),1,num_States);

%[state_transition]=normalise(state_transition);

end

Experiment Code
% Sisa James

% CSIR 2013

% This is the final script for my experiments and includes running the

% entire experiment

clear

clc

%SETUP AND INITIALISATION

%++

% Define Global Variables

global reader,

global ServerAddr;

%global state_transition;

% Control Variables

nActions = 3;

dt=2; % Time Step

v=0.15; % Maximum Velocity

n=2; % Number of scans per observations (avarage reading over n scans)

% Specify Mex Server

ServerAddr='10.42.43.1';

% Create TCP/IP connection to reader

% Specify server machine and port number.

%reader = tcpip_open('146.64.165.29',23);

reader = tcpip('146.64.165.29', 23);

% Set size of receiving buffer, if needed.

set(reader, 'InputBufferSize', 8000);

% set line terminator

%set(reader,'terminator','CR/LF')

% Open connection to the server.

fopen(reader);

% Login to the RFID Reader

fprintf(reader,'alien');

fprintf(reader,'password');

% Set the RFID reader settings

fprintf(reader,'PersistTime = 0');

fprintf(reader,'NetworkTimeout = 65535');

fprintf(reader,'TagListCustomFormat = IDK %i RSSI %m TIME %t;');

fprintf(reader,'TagListFormat=Custom');

readerCommand(reader,['time=',datestr(now,'yyyy/mm/dd hh:MM:ss')])

78 | 91 P a g e

%%

%++

if exist('idObs.mat','file')

 fprintf('Removing previous Variables from memory...\n')

 delete 'state_transition.mat';

 delete 'idObs.mat';

 delete 'rssObs.mat';

end

%%

% Explore

steps=100; % Number of Steps in exploration

user = 'y';

while strcmp(user,'y')||strcmp(user,'Y')

[idString,observations] = exploreReal(reader,steps,v,dt,n,nActions);

user = input('Continue Exploring: y/n: ','s');

end

fprintf('Finished Exploring\n')

%%

% Cluster

%shuffle observations

[nTags, nObs] = size(observations);

for o_index=1:nObs

 swap_index = randi(nObs);

 tempID = idString(:,:,o_index);

 tempRSS = observations(:,o_index);

 idString(:,:,o_index) = idString(:,:,swap_index);

 observations(:,o_index) = observations(:,swap_index);

 idString(:,:,swap_index) = tempID;

 observations(:,swap_index) = tempRSS;

end

%run clustering algorithm

fprintf('Clustering...............\t')

[IDX, nClusters] = preprocess(observations, idString, 0.8);

fprintf('Done\n')

%

fprintf('Calculating Centroids....\t')

[centroidID, centroidRSS] = calCentroids(IDX, idString,observations);

if exist('state_transition.mat','file')

 fprintf('Removing previous state_trantision from memory...\n')

 delete 'state_transition.mat';

end

fprintf('Done\n')

save('matlab');

unreachable = [0 0 0 0 0];

%%

[idScan,rss,tags] = scanNetTags(reader,n);

fprintf('Localising...............\t')

state = localise(centroidID, centroidRSS, idScan, rss)

fprintf('Done\n')

%%

clc

nActions=5;

unreachable_old = unreachable;

fprintf('Building State Transition Matrix\n')

if exist('state_transition.mat','file')

 fprintf('loading state transition matrix from memory...\n')

 load('state_transition.mat');

elseif exist('state_transition','var')

 fprintf('continue from state transition matrix...\n')

else

79 | 91 P a g e

 fprintf('Creating state transition matrix...\n')

 % Create a laplacian smoothed transition probability matrix

 state_transition = ones(nClusters+1,nClusters+1,nActions);

end

old_st = state_transition;

tSteps = length(observations)*1.5;

state_transition = build_transition_real(reader,centroidID,

centroidRSS,tSteps,dt,nActions,0.15,state_transition);

%clear R;

save('state_transition');

% Exploit Action Symmetry

%load('state_transition.mat');

%state_transition = sym_exp(state_transition,0.7);

%clc

%%

%save('state_transition');

figure(3)

subplot(2,2,1)

imagesc(state_transition(:,:,1))

subplot(2,2,2)

imagesc(state_transition(:,:,2))

subplot(2,2,3)

imagesc(state_transition(:,:,3))

subplot(2,2,4)

imagesc(state_transition(:,:,4))

%

for i=1:5

 fprintf('Old Unreachable States = %i of %i\n',unreachable_old(i),nClusters)

end

for i=1:5

 unreachable(i) = sum(sum(state_transition(:,:,i),1)<nClusters+2);

 fprintf('Unreachable States = %i of %i\n',unreachable(i),nClusters)

end

%%

% Choose a goal state

load('state_transition.mat','state_transition')

goal_state = 166;%round(rand*nClusters);%localise(cluster_Centroids,ss);

fprintf('\n...Normalising Probability Matrices\n')

% Normalising

st = normalise(state_transition);

% Initialise Value Iteration Values

reward=1;

discount=0.1;

default = 0.5;

%[state_Value, nav_policy] = value_iteration(af,al,ar, goal_state, reward,default,

cost); %Not working properly yet

R = default.*ones(nClusters+1,nClusters+1,nActions); % Reward Matrix

R(:,nClusters+1,:) = -0.5;%reward;

R(nClusters+1,:,:) = -0.5;%reward;

R(goal_state,:,:) = reward;

R(:,goal_state,:) = reward;

%[state_transition_n]=normalize(state_transition);

fprintf('Running Value Iterations...\n')

[state_Value, nav_policy, it, ~] = mdp_value_iteration(st, R, discount);

%figure(2),grid on,hold on,plot(1:nClusters+1,state_Value,'-r')

%%

% Navigate

fprintf('Starting Navigation...\n')

[success, state_transition] = navigate(goal_state, nav_policy,reader,centroidID,

centroidRSS, state_transition);

80 | 91 P a g e

if ~success

fprintf('Goal Not Reached :-(\n')

end

save state_transition;

save('matlab');

%%

for rows=1:8

start = getPose();

poseData = zeros(72,5)-1;

for i = rows*(9+4+9):rows*(9+4+9)+9

moveRobot(0.1,0,4); % move 0.4m

poseData(i,1:3) = (getPose()-start)';

[idScan,rss,tags] = scanNetTags(reader,n);

poseData(i,5)=tags;

fprintf('Localising...............\t')

poseData(i,4) = localise(centroidID, centroidRSS, idScan, rss);

end

%

pause(1)

%getPose()

fprintf('Turning...............\t')

for j=1:4

%set_angle(-j*pi/(4),0.005)

moveRobot(0,-pi/(4*2),2)

poseData(i+j,1:3) = (getPose()-start)';

[idScan,rss,tags] = scanNetTags(reader,n);

poseData(i+j,5)=tags;

fprintf('Localising...............\t')

poseData(i+j,4) = localise(centroidID, centroidRSS, idScan, rss);

end

%

for k = 1:10

moveRobot(0.1,0,4); % move 0.4m

poseData(i+j+k,1:3) = (getPose()-start)';

[idScan,rss,tags] = scanNetTags(reader,n);

poseData(i+j+k,5)=tags;

fprintf('Localising...............\t')

poseData(i+j+k,4) = localise(centroidID, centroidRSS, idScan, rss);

end

save('matlab')

moveRobot(0,pi/(4*2),2*2)

moveRobot(0.1,0,4); % move 0.4m

moveRobot(0,pi/(4*2),2*2)

end

poseData

%%

% Disconnect and clean up the server connection.

%

fclose(reader);

%delete(reader);

%clear reader

Explore Algorithm Function Implementation
function [idObs,rssObs] = exploreReal(alien,steps,vMax,dt,scans,nActions)

%[observations,observationsV] =

exploreReal(readerObject,steps,vMax,dt,scansPerObservation)

% Detailed explanation goes here

if nargin<6

nActions=5;

end

mxTags = 20;

81 | 91 P a g e

tf=round(rand);

watchdog=0;

pv=0.05;

curr=1;

if exist('idObs.mat','file')

 fprintf('Loading previous observations')

 load('idObs.mat')

 idObs = cat(3, idObs, char(zeros(mxTags,24,steps)));

 load('rssObs.mat');

 curr = size(rssObs,2);

 rssObs = [rssObs zeros(mxTags,steps)];

 size(rssObs,2);

else

 idObs = char(zeros(mxTags,24,steps));

 rssObs = zeros(mxTags,steps);

end

fprintf('Start Exploring\n')

for n=curr:curr+steps % Walk around observing states

 % Update Progess Bar (Not necessary for correct execution)

 if(mod(n,5)==1)

 save idObs;

 save rssObs;

 fprintf('\n')

 UpdateProgress(100*n/steps);

 fprintf('\n')

 end

 % Read Visible Tags

 [id,obs,tags] = scanNetTags(alien,scans);

 % If you can see at least 3 Tags, then you can successfully localise (x,y,theta)

 visible = (tags>3) && (sum(obs)>3500); % tags is (int)

 if visible % if there are visible tags

% id

% size(id)

% size(obs)

% tags

% size(idObs(1:tags,:,n))

 idObs(1:tags,:,n) = id;

 rssObs(1:tags,n)=obs;

 %Explore using randomly selected actions

 action=round(nActions*rand(1)+0.5);

 % Choose Action

 [v w] = actReal(action, vMax,1);

 % Execute Move

 moveRobot(v,w,dt);

 %pause(dt+0.6) % Wait for bot to complete action + latency

 watchdog=0;

 pv=0.05;

 tf=round(rand(1));

 else % ie no visible tags (then turn around)

 v=0;

 if tf

 w=pi/4;

 else

 w=-pi/4;

 end

 if watchdog>10

 v=pv;

 pv=pv+0.1/10;

 end

82 | 91 P a g e

watchdog=watchdog+1;

fprintf('Turning Around\n')

% Execute Move

moveRobot(v,w,dt);

%pause(dt+0.25) % Wait for bot to complete action + latency

end

end

% % Remove Empty Observations

% fprintf('\nRemoving Empty Observations...\n')

% empty = zeros(mxTags,1);

% for i=steps:1

% question = sum(rssObs(:,i)==empty);

% if question==size(tag_list,2)

% rssObs(:,i)=[];

% end

% end

% rssObs = rssObs';

fprintf('Finished Exploring :-)\n')

end

Preprocess Algorithm (Custom Clustering) Implementation
function [index,centroids] = preprocess(obs, idString, nObs, nTags, match)

%PREPROCESS Summary of this function goes here

% Detailed explanation goes here

if nargin<4

match=0.70;

end

index = 1:nObs;

IDmatch=0;

RSSdiff=0;

centroids = -1.*ones(2,nObs,nTags);

%centCount=0;

count=0;

for observation1=1:nObs-1

for observation2=observation1+1:nObs

if index(observation2)>observation1 && index(observation1)>=observation1 % ie not

already clustered

for iTg=1:nTags

count=count+1;

for jTg=1:nTags

%Check ID match

if

strcmp(idString(iTg,:,observation1),idString(jTg,:,observation2,:))

%obs(1,observation1,iTg) == obs(1,observation2,jTg)

IDmatch=IDmatch+1;

RSSdiff = RSSdiff + abs(obs(2,observation1,iTg)-

obs(2,observation2,jTg));

%break

end % if ID match

end % for j

83 | 91 P a g e

end % for i

% Compute Similarity Score

% observation1

% observation2

IDsc = IDmatch/sum(obs(1,observation1,:)~=0)

RSSdiff/sum(obs(2,observation1,:))

RSSsc = 1-RSSdiff/sum(obs(2,observation1,:))

score = 0.5*(IDsc + RSSsc)

match

% Check if they match

if 0.5*(IDsc + RSSsc) >=match % ie they match

index(observation2)=index(observation1);

fprintf('changed')

%centroids(1,);

else

fprintf('Not changed')

end

pause

IDmatch=0;

RSSdiff=0;

end % if index

end % for observation2

end % for observation1

end % Function End

Calculate Centroids Function (calCentroids)
function [centroidID, centroidRSS] = calCentroids(IDX, idObs,rssObs, match)

%CALCENTRIODS Computes the cluster centroids

% [centroidID, centroidRSS] = calCentroids(IDX, idString,observations)

%

% See also preprocess, readData.

if nargin<4

match=0.5;

end

[nTags, ~] = size(rssObs);

nClusters = max(IDX);

centTags = round(nTags*(2-match));

centroidID = char(zeros(centTags,25,nClusters));

centroidRSS = zeros(centTags,nClusters);

% Find All Unique IDs in each cluster

for cluster=1:nClusters

cTag=1; % reset centroid tag stack

clusterIDs = idObs(:,:,IDX==cluster);

for obsInClust=1:size(clusterIDs,3)

tag=1;

% while tag is not empty & while we havent checked all the tags

84 | 91 P a g e

while tag<=nTags && ((clusterIDs(tag,1,obsInClust)-0) > 42) %&&

((centroidID(cTag,1,cluster)-0)>42)

unique=1;

for i=1:cTag

% if cluster ID already exists in centroidID

if strcmp(centroidID(i,1:24,cluster),clusterIDs(tag,:,obsInClust))

unique=0;

centroidID(i,25,cluster) = centroidID(i,25,cluster)+1;

% centroidID(i,25,cluster)*1

% i,cluster

break;

end

end

if unique

centroidID(cTag,1:24,cluster) = clusterIDs(tag,:,obsInClust);

cTag=cTag+1; % increment centroid tag stack

end % if unique

tag=tag+1; % increment tag location along the entire cluster

end % while idString

end % for Each Observation in the Cluster

% Remove Outliers

for t = 1:centTags

if centroidID(t,25,cluster)<0.6*size(clusterIDs,3)

% Remove tag ID (and consequently the RSS) from centroid

% 0.8*size(clusterIDs,3)

% centroidID(t,25,cluster)*1

% pause

for ix=t:centTags-1

centroidID(ix,:,cluster) = centroidID(ix+1,:,cluster);

end

end

end

end % for all clusters

%centroidID(t,25,:)*1

% Delete Occurance Column

centroidID(:,25,:)=[];

% Find Average RSS for each centroid

for cluster=1:nClusters

clusterIDs = idObs(:,:,IDX==cluster);

clusterRSS = rssObs(:,IDX==cluster);

tag=1;

% For all tags in centroid

while tag<=nTags && (centroidID(tag,1,cluster)-0)>42

centCount=0;

 for obsInClust=1:size(clusterIDs,3)

cTag=1;

while cTag<=nTags && (clusterIDs(cTag,1,obsInClust)-0)>42

% if centroidID matches Observation in Cluster

if strcmp(centroidID(tag,:,cluster),clusterIDs(cTag,:,obsInClust))

centroidRSS(tag,cluster)=centroidRSS(tag,cluster)+clusterRSS(cTag,obsInClust);

% cluster

% tag,cluster

% centroidID(tag,:,cluster)

85 | 91 P a g e

% cTag,obsInClust

% clusterIDs(cTag,:,obsInClust)

% centroidRSS(tag,cluster)

% pause

centCount=centCount+1;

end

cTag=cTag+1;

end

end % for Each Observation in the Cluster

% cluster

% clusterRSS

% clusterIDs

% centroidRSS(tag,cluster)

% centCount

centroidRSS(tag,cluster)=centroidRSS(tag,cluster)./centCount;

tag=tag+1;

end % while: all tags in Centroid

end % for all clusters

end % Function End

Scan Visible Tags Function (ScanNetTags)

function [idReturn, rssReturn, maxTags] = scanNetTags(t,n)

%[IDstring, RSS, nTags] = scanNetTags(readerObj, numOfScansToAverage)

% Detailed explanation goes here

%n=1;

RSS = zeros(1,1); % ID&RSS

IDstring = char(zeros(1,24,n)); % # Tags, 24 Char ID

%ID eg. E200 9033 1317 0087 0490 E133

maxTags=0;

maxScan=1;

% fclose(t);

% fopen(t);

if strcmp(t.status,'closed')

fprintf('Attempting to re-establish t communications...')

set(t, 'InputBufferSize', 5000);

fopen(t);

fprintf(t, 'alien');

fprintf(t, 'password');

% Set the RFID t settings

fprintf(t,'PersistTime = -1');

fprintf(t,'NetworkTimeout = 65535');

fprintf(t,'TagListCustomFormat = IDK %i RSSI %m TIME %t;');

fprintf(t,'TagListFormat=Custom');

readerCommand(t,['time=',datestr(now,'yyyy/mm/dd hh:MM:ss')])

end

%clearReaderBuffer(t)

flushinput(t)

for scan=1:n

% Send Read tags command

fprintf(t, 't');

86 | 91 P a g e

 % Wait for tag Data

 dataLine = fgetl(t);

 count=1;

 while sum(find(dataLine=='K'))<=0 && sum(find(dataLine=='>'))<=0 && count<3

 dataLine = fgetl(t);

 count = count+1;

 end

 tagCounter=0;

 % While there is still tag data read all of it and store it

 while ischar(dataLine) && sum(find(dataLine=='K'))>0

 tagCounter = tagCounter + 1; % increment # of tags in scan

 if tagCounter>maxTags

 maxTags = tagCounter;

 maxScan = scan;

 end

 % Find Delimiters

 delimIDx = find(dataLine == 'K');

 delimRSSx = find(dataLine == 'T');

 % Extract tagID

 id = dataLine(delimIDx(1)+2:delimIDx(1)+2+28);

 id(isspace(id))=[]; % Remove Spaces

 % Store tag-ID

 IDstring(tagCounter,:,scan)=id;

 % Extract RSS

 rssString = dataLine(delimIDx(1)+2+28+6:delimRSSx(1)-1);

 RSS(tagCounter,scan) = str2double(rssString); % Store Tag RSS

 % Get the next line

 %dataLine = fscanf(t);

 dataLine = fgetl(t);

 %dataLine = char(fread(t));

 %[m,~,~] = fread(t);

 %dataLine = char(m)';

 % reply = [reply word];

 end

end

% averageScan

idReturn=IDstring(:,:,maxScan);

rssReturn = RSS(:,maxScan);

for t=1:maxTags

 match=1;

 sc=1;

 while sc<=n && sc~=maxScan

 totalTags=size(IDstring(:,:,sc),1);

 for tagN=1:totalTags

 if strcmp(idReturn(t,:),IDstring(tagN,:,sc))

 rssReturn(t)=rssReturn(t)+RSS(tagN,sc);

 match=match+1;

 break

 end

 end

 sc=sc+1;

 end

 rssReturn(t)=rssReturn(t)/match;

end

rssReturn(rssReturn<1500)=0;

fprintf('Visible Tags: %i\n',maxTags);

87 | 91 P a g e

end

Build Transition Algorithm Function in Implementation
function [state_transition, ntr] = build_transition_real(alien,centroidID,

centroidRSS,steps,dt,nActions,vMax,state_transition)

%BUILD TRANSITION [state_transition, ntr] = build_transition_real(alien,centroidID,

centroidRSS,steps,dt,nActions)

%Makes the robot wander around building a state transition probability matrix for each

action

% alien = alien reader tcpi/ip object

% centroidID = ID char matrix of centroids (numTags-by-tagIDcharLength(24)-by-

numStates)

% centroidRSS = RSS double matrix of RSS values (numTags-by-numStates)

% steps = number of iterations to build probability matrix (in the order of

num_States*10)

%

% function returns

% state_transition which correponds to the probability

% of transtioning from one state to another by executing the relevant

% action(dim-3) size is (numStates-by-numStates-by-numActions)

% [ntr] = number of new transitions (an indicator of entropy/unexplored space)

num_States = size(centroidRSS,2);

if nargin<7

 vMax = 0.15;

 state_transition = zeros(num_States+1,num_States+1,nActions);

elseif nargin<8

 state_transition = zeros(num_States+1,num_States+1,nActions);

end

%state_transition = sparse(zeros(num_States,num_States,nActions));

%state_transition = zeros(num_States,num_States,nActions);

inc = 1;

scans=3;

tf=round(rand);

watchdog=0;

pv=0.05;

ntr=0;

%figure(3)

for nn=1:steps % Wander around Building State transision probability matrix

 % Progress Bar

 if(mod(nn,5)==1)

 UpdateProgress(100*nn/steps);

 save state_transition;

 end

 % Read Visible Tags

 [id,obs,tags] = scanNetTags(alien,scans);

 % If you can see at least 3 Tags, then you can successfully localise (x,y,theta)

 visible = (tags>2) && (sum(obs)>3500); % tags is (int)

 if visible

 % LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE>

 pState = localise(centroidID, centroidRSS, id, obs);

 %pState=cState;

 % Choose Random Action

 action=actGen();

 %action=round(rand*nActions+0.5);

 if round(rand+0.35) % 85% of the time choose the least occured action

 [~,action]=min(sum(state_transition(pState,:,:),2));

 end

 [v w] = actReal(action,vMax);

88 | 91 P a g e

% Execute Move

% MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE>

moveRobot(v,w,dt);

%pause(dt+0.6) % Wait for bot to complete action + latency

% Reset Watchdog

watchdog=0;

pv=0.05;

tf=round(rand(1));

% Read Visible Tags

[id,obs,tags] = scanNetTags(alien,scans);

% If you can see at least 3 Tags, then you can successfully localise (x,y,theta)

visible = (tags>2) && (sum(obs)>3500); % tags is (int)

if visible

% LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE>

cState = localise(centroidID, centroidRSS, id, obs);

if cState==pState

inc=inc/2;

else

inc=1;

if ~state_transition(pState,cState,action)

ntr = ntr+1;

fprintf('New Transision: %f \tState: %f to State: %f \tAction:

%f',ntr,pState,cState,action)

end

end

% Update State Transition Matrix

state_transition(pState,cState,action)=state_transition(pState,cState,action)+inc; %

Increment Transition

else

state_transition(pState,num_States+1,action)=state_transition(pState,num_States+1,action)

+inc; % Increment Transition To Empty

end

else % ie no visible tags (then turn around)

v=0;

if tf

w=pi/4;

else

w=-pi/4;

end

if watchdog>5

v=pv;

pv=pv+0.01;

end

fprintf('Turning Around\n')

% Execute Move

moveRobot(v,w,dt);

%pause(dt+0.6) % Wait for bot to complete action + latency

% Increment Watchdog

watchdog=watchdog+1;

end

end

%save('before_norm.mat');

% fprintf('\n...Normalising Probability Matrices\n')

% % Apply Laplacian Smoothing

% state_transition=state_transition+1;

% % Normalising

% state_transition = state_transition ./ repmat(sum(state_transition,2),1,num_States);

%[state_transition]=normalise(state_transition);

ntr

89 | 91 P a g e

end

Navigation Algorithm Implementation Function
function [found,state_transition] = navigate(goal_state, nav_policy,reader,centroidID,

centroidRSS, state_transition)

%[found, state_transition] = navigate(goal_state, nav_policy, reader, state_transition)

% Detailed explanation goes here

%Attempts to Navigate to a desired goal state implemented on the robot

nStates = length(nav_policy);

if nargin < 4

 state_transition = ones(nState,nState,max(nav_policy));

end

tf=0;

pv=0.05;

watchdog=0;

found = 0;

cState = 0;

pState = 0;

inc=1;

dt=2;

%tcount=0;

%action=1;

for nn=1:50

 [id,obs,tags] = scanNetTags(reader,3);

 visible = (tags>2) && (sum(obs)>3500); % tags is (int)

 % Find the nearest state

 if visible

 pState = cState;

 % Localise the vehicle

 cState = localise(centroidID, centroidRSS, id, obs);

 if cState==goal_state

 found=1;

 fprintf('Found Goal!!!!!!!!!!!!!!!! :-D\n')

 break

 else

 action=nav_policy(cState);

 [v w] = actReal(action);

 if pState % ie Transition is valid

 if cState==pState

 inc=inc/2;

 else

 inc=1;

 if ~state_transition(pState,cState,action) % ie transition is 0

 fprintf('New Transision! State: %f to State: %f \tAction:

%f\n',pState,cState,action)

 end

 end

 % Update State Transition Matrix

state_transition(pState,cState,action)=state_transition(pState,cState,action)+inc; %

Increment Transition

 fprintf('State: %f to State: %f \tAction: %f\n',pState,cState,action)

 end

 end

90 | 91 P a g e

 % Execute Move

 moveRobot(v,w,dt);

 watchdog=0;

 pv=0.05;

 tf=round(rand(1));

 %pause(dt+0.5) % Wait for bot to complete action + latency

 else % If ~visible

 if ~watchdog && pState % Increment only once

 cState = 0;

 % Increment Transition To Empty

state_transition(pState,nStates,action)=state_transition(pState,nStates,action)+inc;

 end

 action = 'b';

 v=0;

 if tf

 w=pi/4;

 else

 w=-pi/4;

 end

 if watchdog>10

 v=pv;

 end

 fprintf('Turning Around\n')

 % Execute Move

 moveRobot(v,w,dt);

 % Incriment Counter

 watchdog=watchdog+1;

 pv=pv+0.1/10;

 %pause(dt+0.5) % Wait for bot to complete action + latency

 end

 % Check for looping

if mod(nn,10)

 save('state_transition');

end

end

save('state_transition');

end

Localisation Algorithm Function Implementation
function [state] = localise(idCentroids,rssCentroids,scanID, scanRSS)

%LOCALISE [state] = localise(idCentroids,rssCentroids,scanID, scanRSS)

% Detailed explanation goes here

[nTags,clusters] = size(rssCentroids);

[snTags,~]=size(scanRSS);

IDscore = zeros(1,clusters);

rssDiff = zeros(1,clusters);

% Start Scoring

% for each centroid

for cCount=1:clusters

 idMatch=0;

 maxTags = 1;

 sTag=1;

 % for each scan tag

 while sTag<=snTags && (scanID(sTag,1)-0)>42

 cTag=1;

91 | 91 P a g e

% for each tag in Centroid/Cluster

while cTag<=nTags && (idCentroids(cTag,1,cCount)-0)>42

% if tag IDs match

if strcmp(idCentroids(cTag,:,cCount),scanID(sTag,:))

idMatch = idMatch+1;

rssDiff(cCount) = rssDiff(cCount) + abs(rssCentroids(cTag,cCount)-

scanRSS(sTag));

end % if tagID match

cTag=cTag+1;

if cTag>maxTags

maxTags = cTag;

end

end % for each tag in Centroid/Cluster

sTag=sTag+1;

if sTag>maxTags

maxTags = sTag;

end

end % for each tag in the scan

IDscore(cCount) = (idMatch)/maxTags;%./snTags) + (rssDiff);

% fprintf('Cluster: %f\tScore: %f\n',cCount,score(cCount))

% fprintf('ID Match: %f\tRSSsc: %f\n\n',idMatch,rssDiff)

end % for each Custer/Centroid (cCount)

% Eliminate Low ID scores from RSSscore (difference)

maxScore=max(IDscore);

for i=1:clusters

if IDscore(i) < 0.7*maxScore

rssDiff(i)=Inf;

IDscore(i)=0;

end

end

% Find minimum non-zero RSS Difference

minDiff = 50000;

for i=1:clusters

if rssDiff(i)~=0 && rssDiff(i)<minDiff

minDiff = rssDiff(i);

elseif rssDiff(i)==0

rssDiff(i)=Inf;

end

end

%

for i=1:clusters

if rssDiff(i) > 1.3*minDiff

%rssDiff(i)=Inf;

IDscore(i)=0;

end

end

[maxID,state]=max(IDscore);

if maxID==0

fprintf('Failed to Localise...\n')

end

end

	PLAGIARISM DECLARATION
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Glossary
	1. Introduction
	1.1. Background
	1.2. Project Motivation
	1.3. Problem Statement
	1.4. Importance of Research
	1.5. Scope and Limitations of Research
	1.6. Plan of Development

	2. Literature Review
	2.1. The SLAM Problem
	2.2. Localisation and mapping in the absence of GPS
	2.2.1. Underwater Localisation
	2.2.2. Underground Localisation
	2.2.3. RFID Localisation

	2.3. Tools used in practical SLAM
	2.3.1. Kalman filter
	2.3.2. Particle filter

	2.4. Clustering and its Application
	2.4.1. Hierarchical Clustering
	2.4.2. Centroid Based Clustering
	2.4.3. Density Based Clustering

	2.5. Path Planning and Navigation
	2.5.1. Dijkstra Algorithm
	2.5.2. A* Algorithm
	2.5.3. Markov Decision Processes
	2.5.4. Value Iteration
	2.5.5. Policy Iteration

	3. Simulation Setup
	3.1. Modelling the Simulator
	3.1.1. Modelling Sensor Response
	3.1.2. The Case for Distance and Orientation

	3.2. Simulation Environment Design
	3.2.1. Snapshot Capturing

	3.3. Exploration, Localisation and Navigation
	3.3.1. Exploration
	3.3.2. Clustering
	3.3.3. Localisation Method
	3.3.4. State Composition
	3.3.5. Building state transitions matrix and navigating

	4. Simulation Results
	4.1. Localisation Results
	4.2. Navigation Results

	5. Experiments and Setup
	5.1. Experimental Setup
	5.2. Localisation Testing

	6. Experimental Results
	6.1. Localisation Results

	7. Discussion and Conclusions
	8. Future Work
	9. Bibliography
	10. Appendix A: Code
	Simulation Script
	Calculate RSS Values Function
	Localise Algorithm Function
	Explore Function
	Build Transition Function

	Experiment Code
	Explore Algorithm Function Implementation
	Preprocess Algorithm (Custom Clustering) Implementation
	Calculate Centroids Function (calCentroids)
	Build Transition Algorithm Function in Implementation
	Navigation Algorithm Implementation Function
	Localisation Algorithm Function Implementation
	Untitled

