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Abstract 
This dissertation addresses the autonomous localisation and navigation problem in the 

context of an underground mining environment. This kind of environment has little or no 

features as well as no access to GPS or stationary towers, which are usually used for 

navigation. In addition dust and debris may hinder optical methods for ranging. This study 

looks at the feasibility of using randomly distributed RFID tags to autonomously navigate in 

this environment. Clustering of observed tags are used for localisation, subsequently value 

iteration is used to navigate to a defined goal. Results are presented, concluding that it is 

feasible to localise and navigate using only RFID tags, in simulation. Localisation feasibility 

is also confirmed by experimental measurements. 
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Glossary 
CMI - Centre for Mining Innovation, the CSIR group focused on improving mining safetey 

and efficiency in South Africa 
CSIR - Council for Scientific Industrial Research, a state owned research organisation, 

founded to improve the quality of life of the people of the Republic of South Africa, 
through scientific research and invention. 

Localisation - this is the process of placing and orienting oneself in an environment 
MDP - framework for modeling decision making in situations where outcomes are partly 

random and partly under the control of a decision maker (def: wikipedia) 
MIAS - Mobile Intelligent Autonomous Systems, the mobile robots software group of the 

CSIR 
MMM: Mechatronics & Micro-manufacturing, the mobile robotics hardware group at the 

CSIR 
MSP - Mining Safety Platform, the iRobot mobile robot platform used to test robot 

autonmating/intelligence software 
RF -  Radio frequency refers to signals transmited between 3 kHz to 300 GHz frequency 

bands 
RFID - Radio Frequency Identification tags, these are small computer chips with antennas, 

that absorb electroomagnetic energy and use it to transmit a unique tag number and any 
addional data such as RSS 

RSS - Received signal strength, this is an indication of the power present in a recieved 
radio signal 

SLAM -  Simultaneous localisation and mapping, refers to the process of concurrently 
building a map and placing oneself in the map, in an unknown environment 
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1. Introduction

1.1. Background 

South Africa is the fourth largest gold producer in the world and has the second most gold 

reserves in the world after Australia [1]. As a result of this resource concentration, coupled 

with a lower temperature vs. depth gradient, it now has some of the world’s deepest gold 

mines, reaching depths in excess of 3000 m [2] [3]. At these depths, the temperature of 

rocks can reach up to 60 °C. The rocks are also prone to exploding [4] and there is limited 

air circulation. These deep mines need massive refrigeration and ventilation systems [5]. 

The working conditions are both uncomfortable and hazardous. Rock explosions are a real 

hazard and in South Africa kill roughly 20 miners each year [6]. As of 2012, gold mining in 

South Africa has resulted in more than 120 deaths every year over the past three years [7] 

and more than 3 500 injuries [8]. 

The most deaths occur after the blast stage in mining process. The basic mining process 

in South African gold and platinum mines consists of three stages [9]. First, holes are 

drilled in the ore-bearing rock wall to place explosives. Second, the rocks are blasted using 

the explosives. After the blast and once the explosive gases have cleared away, a miner 

inspects the area and checks if it is secure.  This is the most dangerous stage and 

researchers are investigating the use of autonomous robots [9] to alleviate the danger.  

Most efforts in mobile robotics are focused on creating robots that can autonomously 

perform tasks too tedious or dangerous for humans to do [10]. These can range from 

driving long distances, to delivering medical equipment in warzones. Some of these tasks 

are often performed in hazardous and/or unpredictable environments. Such tasks may 

include search and rescue operations in burning or collapsed buildings. In the South 

African context at the Council for Scientific Industrial Research (CSIR), autonomous 

vehicles are being developed to inspect the safety of working areas in mines after the blast 

stage. In this task a robot should enter and inspect the hanging wall (roof) of a mine for 

structural integrity and possible rock fall hazards after a blast. This would eliminate the 

danger in requiring a human miner to perform this inspection, as is currently being done. 

1.2. Project Motivation 

The CSIR Mobile Intelligent Autonomous Systems (MIAS) group, together with 

Mechatronics & Micro-manufacturing (MMM), Material Science & Manufacturing (MSM) 

and Centre for Mining Innovation (CMI) groups have undertaken to design and implement 
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intelligent algorithms to use on a mobile robot platform for mapping and navigation in an 

underground mine. This is part of a project known as the Mining Safety Platform (MSP) 

[11]. 

One of the main issues with sending an autonomous vehicle into an unknown environment 

is designing a robust navigation and localisation scheme. This task becomes even more 

difficult in an underground environment where no GPS signals or stationary landmarks are 

available.  

1.3. Problem Statement 

This study attempts to solve the underground environment (i.e. no global reference 

signals) localisation and navigation problem, by using RFID tags spread manually 

throughout the environment as markers. Later the vehicle may even place these tags itself 

using a method like a breadcrumb trail. The dissertation will build on previous work done 

by Forster [9] by implementing a snapshot matching localisation algorithm on the mining 

safety platform, testing it in a controlled environment and improving clustering of tags, 

detections and robustness of the system. Some of this work has been published at the 

RobMech 2012 Conference [12]. 

1.4. Importance of Research 

As mentioned above, mines remain a hazardous environment for humans to work in. In 

addition to the cost of human lives and injury claims to mining companies, trade unions 

insist on taking one day of production time-out to mourn & assess safety for every death 

which occurs in the mine [13]. This can lead to huge losses for South African mines. The 

CSIR has a duty to assist thought its mandate which reads, “...through directed 

multidisciplinary research and technological innovation, to foster, in the national 

interest...industrial and scientific development, and thereby contribute to the improvement 

of the quality of life of the people of the Republic...” [14]. 

1.5. Scope and Limitations of Research 

For the purpose of this research, the environment will not contain any obstacles, as a 

result obstacle detection and avoidance will not be addressed in this project. Additionally 

the environment under consideration will be static, not dynamic (i.e. the environment does 

not change with time). Additionally this work intends to address only localisation within an 

environment and subsequently navigation within said environment and hence should not 
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be confused with the simultaneous localisation and mapping (SLAM) problem, which 

consists of mapping and localisation at the same time. 

1.6. Plan of Development 

This dissertation will start with the literature review, followed by the main body, which 

contains the methodology of the simulation and the simulation results, as well as the 

methodology of the experimental setup and results. We then discuss the results and draw 

conclusions, followed by possible future work in this area. Finally we have the 

acnkowledgements and references ending with the code appendix. In the literature review, 

we discuss the current research efforts concerning navigation and localisation, including 

methods which employ RFID technology. We also explore the mathematical tools used in 

these areas. In the simulation and experimental setup sections, we discuss the modelling 

of the simulator and how the experiments will be conducted. Theses sections each have 

their corresponding results sections. We then discuss the results from both simulations 

and experiments in the discussion section. In the future work section, we briefly explore 

possible future avenues for this research; closing with the acknowledgement of 

contributions to this work. 
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2. Literature Review 

2.1. The SLAM Problem 

For an autonomous vehicle to perform inspection tasks in an underground environment, it 

needs to be able to know where it is (localise) in a given environment so that it can 

navigate within this complex environment. Thus the ability for the robot to accurately 

localise and map its environment becomes very important. This is known as the SLAM 

problem. Although the scope of this work focuses only on localisation and navigation, it is 

worthwhile to explore the literature on the SLAM problem, as much of the the work is 

relevant to localisation. Extensive research has been done to address the SLAM problem, 

especially with the introduction of the Defence Advanced Research Projects Agency 

(DARPA) Grand Challenge [15] [16]. For many, it is considered solved at least from a 

theoretical perspective [17], although implementation in the real world remains a 

challenge. The Google Self Driving Car is an example of a system which implements 

SLAM in the real world [18]. This vehicle uses laser rangefinders, radar, cameras and 

GPS; the data from all these sensors is then fused to form the best estimate (belief) of the 

environment. Based on previously collected data and the current data the vehicle can then 

localise itself within the map using a variation of Kalman, or other filters [19]. However, 

“many practical issues remain, especially in complex outdoor environments” [17], such as 

accuracy and computational limitations when scaling to larger environments. 

Most mobile robots utilise a combination of inertial sensors, odometry measurements and 

GPS antennas for localisation/positioning. The first two methods, although initially 

accurate, suffer from accumulating errors; GPS might be used to periodically zero these 

errors. Unfortunately the accuracy of GPS can vary in excess of 7 m [20]. Furthermore in 

an environment where there is insufficiently accurate or no GPS signal available, such as 

dense high-rise city blocks, underwater or underground, these methods lead to erroneous 

navigation. In [15] it is concluded that “a localisation algorithm is needed to operate 

indoors”, even in the case where a “robot is equipped with a state-of-the-art inertial 

navigation system”. 

2.2. Localisation and mapping in the absence of GPS 

In [15], an autonomous vehicle is tasked with navigating to a predetermined goal in a 

multi-level parking lot, a case where GPS and inertial sensor data proves insufficient for 

the purpose. The results showed that it is possible to use a SLAM algorithm based on 

laser data to navigate a large scale indoor environment. Other solutions such as that in 
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[21] also employ laser range scanners to map, localise and navigate unknown terrain. This 

is done by using the scanners to generate a 3D point cloud (by tipping the laser sensor), 

which can be stitched to form an accurate 3D map; this map in turn is used to build a 2D 

map illustrating the drivable surface [15]. This method also allows a drivability cost map to 

be generated. The aforementioned algorithm can lead to accurate positioning in the 

absence of GPS; unfortunately, optical methods are not well suited to dusty environments, 

such as those in an underground mine. In addition, in an underwater environment visibility 

can be limited [22]. There has been some recent research in localisation and mapping in 

these unconventional environments. It is of interest to look at the approaches taken to 

address the localisation problem in both these environments, as they offer similar 

challenges when it comes to solving the localisation problem, such as low visibility and no 

GPS. 

2.2.1. Underwater Localisation 

In [22] Hayato et al. look at autonomously exploring the oceans for the purposes of visually 

investigating and mapping underwater structures. The experiment yielded positive results, 

although as pointed out by the authors, it is assumed that visibility is sufficient, therefore 

limiting applications somewhat. Hayato uses two laser beams and a camera to create a 

simple and accurate laser ranging system. For navigation from a known origin, given the 

structure of the surfaces, the vehicle can accurately localise and thus navigate underwater. 

The requirement of having to know the surface structure beforehand further limits the 

applications of this optical approach and the assumed visibility further illustrates the 

challenge of implementing optical localisation in sub-surface environments. 

To address limitations of optical mapping and localisation underground and underwater, 

attempts have been made to use sonar/acoustic methods for localisation. Vassilis [23] 

looked at constructing a map and localising using sonar data; this was an early attempt at 

using sonar above ground for general mapping and localisation. The author notes 

improvements can be made to the positioning/localisation, but the work was incomplete. 

The approach of using sonar for mapping is more prevalent in underwater applications; 

this may be due to the fact that sound travels faster and further in water than in air [24]. 

One such example is in the paper by Zeng et al. [25] who investigates the use of forward 

looking sonar for the purpose of underwater SLAM. This particular approach works much 

like optical SLAM, in that it produces sonar images, which are used to create a 2D feature 
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map. This is later used to localise and navigate; the use of the Extended Kalman Filter 

(EKF) ensures consistent localisation. 

2.2.2. Underground Localisation 

An underground mine localisation and navigation method, referred to as opportunistic 

localisation in [26] takes advantage of the tunnel like nature of some mines, and uses a 

wall following technique in combination with weak localization (odometry). This method 

only requires fairly accurate localization at intersections and uses odometry for this. While 

this method works in navigating in haulages, it is unsuitable for navigation in the stope 

area. 

2.2.3. RFID Localisation 

Attempts have been made to address the GPS denied localisation problem using radio 

frequency identification (RFID) tags. These methods can be loosely categorised into two 

approaches. The first approach models the RFID tag sensor and uses it to estimate the 

location of the tag (with possibly known global co-ordinates) relative to the robot, and 

hence infer the pose of the robot. The second approach seeks to to capture snapshots of 

the RFID tags (from possibly known positions) and then match these snapshots from 

previously learned ones to infer the robots pose. Both approaches were investigated. 

An example of the first approach can be seen in [27], [28], [9] and [29]. These approaches 

use a sensor model to estimate the locations of tags relative to the robot. This model is 

build by recording the received signal strength values of tags as well as the number of 

replies vs the number of queries at different locations around the robot. Hahnel et al [29] 

uses two antennas facing +45° and -45° from the robot heading, in conjunction with a laser 

range sensor. This work showed that using a combination of RFID and laser range data to 

localise a robot in an environment can significantly improve the localisation efficiency (the 

number of particles needed to accurately estimate the robot pose), when compared to 

using only laser data. This method showed localisation with an accuracy of at least 2m. It 

is demosntrated that combining laser range data and RFID data can reduce the 

computational demand for global localisation [29]. This is shown by the fact that 10000 

particles are needed for efficient localisation using only laser data, whereas this is reduced 

to 50 particles if RFID localisation data is incorporated. Although effective, Hahnel’s 

approach relies heavily on laser data for accurate localisation, using RFID localisation only 

to supplement/improve the laser localisation. Additionally, localisation accuracy better than 

2m may be desirable for many applications. 
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In the work by Forster [9], one antenna is used, this, combined with the movement of the 

robot, is used to estimate the location of the tags as the robot traverses the environment. 

Like Hahnel [29], a sensor model is built for estimating the RFID tag locations. It is shown 

that it is possible to detect locations of RFID tags with an accuracy of 0.4 m. This approach 

shows a significant improvement in accuracy from Hahnel [29]; however the accuracy is 

dependent on the accuracy of the sensor model. Since the RSS values are influenced by 

the kind of surface they are attached to, it is difficult to find a sensor model which works 

well for more than one environment. Therefore they decided to use odometry to localise 

within/around a known RFID location/node over a short distance and use the RFID tag 

nodes to form a topological map for loop closure. However the dependence of the 

localisation accuracy on the sensor model remains an issue with these tag estimation 

approaches. 

On attempt to overcome this limitation can be seen in [30], which uses 6 antennas 

arranged to cover a 360° field of view around the robot. As such, only a physical sensor 

model (as opposed to the experimental/statistical histogram model used in [9] and [29] 

above) is needed to estimate the location of each tag. This approach uses the signal loss 

(the signal strength sent by the antenna vs the signal strength received by each tag) over 

distance, in conjuction with the 6, 360° antena coverage to estimate the distance and 

bearing of each tag. By adjusting the antenna power of subsequent tag queries (tags 

further away will not reply if there is less power), the distance of tags can be estimated and 

depending on which antenna receives the maximum RSS, the direction can be estimated. 

This method takes into account the multiple paths the RF signal can propagate through 

(such as bouncing of walls and ceilings). This approach exhibits 6.1° mean bearing error 

and 0.69m mean range error [30]. This approach uses many antennas and it may be 

desirable to have simple system, also the accuracy may also be insufficient for some 

applications. 

The second approach to the localisation problem is to use many tags and record and 

match snapshots of the RFID environment such as the method employed by Schneegans 

et al. [31], which uses four RFID antennas. This work is further developed by Vorst et al. 

[32]. Their work consists of issuing a series of RFID enquiries in an attempt to read all the 

RFID transponders in the read range. The tag ID’s and their number of responses are 

used as a fingerprint for each snapshot, essentially matching the robot pose with a 

corresponding snapshot. This method exploits the inherent spuriousness/irregularity of 
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transponder replies to construct a reply probability distribution for a given robot pose. It is 

also assumed that the probability distribution remains fairly constant for small changes in 

robot pose; this assumption was supported by experimental data with a few random 

exceptions. 

During training, the robot captures a large number of snapshots with their corresponding 

robot pose. This robot pose is measured through odometry data. During localisation the 

robot uses these snapshots to compute particle filter weights and hence the most likely 

robot location/pose based on the current scan and the most recent action (using a motion 

model for the robot). In this work a B21 service robot is used with four ALR-8780 Alien 

Technology UHF antennas, used in pairs, one pair to transmit and one to receive. 

In their papers Schneegans et al. [31] and Vorst et al. [32] conclude it is possible to 

localise using densely distributed RFID tags. They achieved a localisation accuracy of   0.4 

m or better in an indoor environment. Despite the fairly accurate localisation, the work 

above still has a few drawbacks; firstly the need for a reference system in the training 

phase using odometry can lead to bad localisation if the snapshots during the training 

phase are not recorded accurately. Secondly the current system is unable to incorporate 

changes in the RFID environment. 

This work is motivated by previous work by Forster [9] also carried out at the CSIR, by 

using some of the experimental data for creating the simulator. The aforementioned 

method uses groups of sparsely distributed RFID tags to form a hybrid metric-topological 

map to solve the SLAM problem. Topological maps consist of nodes which are connected 

in a graph like structure; this connectivity graph represents the topological map. In the 

work by Forster, the nodes represent groups of sparsely distributed RFID tags. This 

grouping is achieved in real-time, by either assigning a newly observed tag to the current 

node or creating a new node, a normalised cut algorithm is used to determine whether to 

assign the tag to the current node or create a new one. When navigating within a node, the 

robot uses a metric map. This map is created by estimating the location of each RFID tag 

using a particle filter (explained in section 2.3.2 Particle filter) and then using that to infer 

its own pose in the local metric map. First a sensor model is built using experimental data 

gathered from RFID tag responses at various distances, orientations of tags. Data are also 

gathered to measure the effect of different antenna heights. 



9 | 91 P a g e  

 

The SLAM method presented in this dissertation uses a method similar to that presented 

by Vorst et al. in [32], and builds on it by adding planning and self-navigation and unlike 

Vorst [32] and Schneegans [31], we intend on using a single antenna. We also make use 

of RFID tag response data gathered by Forster [9] for modelling the reader response in the 

simulator. Our method presents a novel way of exploring and mapping the RFID 

environment while building a transition matrix during the exploration phase. The vehicle 

can then use this, along with the internal map (the created map is topological and internal 

to the robots programming environment), to navigate to any mapped goal location. Our 

approach also allows proper vehicle orientation to be preserved when reaching the goal 

and does this using only passive RFID tags and a single antenna. 

2.3. Tools used in practical SLAM 

One of the issues experienced in the practical implementation of SLAM is determining the 

pose of the robot with sufficient accuracy, in the presence of noise. This is a necessary to 

be able to make sound navigation decisions autonomously. This means the robot’s initial 

location, actions and subsequent locations should be fairly predictable to be able to plan 

any kind of path to achieve a given goal. In other words the task of placing the vehicle 

pose accurately in state space consistently, and without sudden jumps between transitions 

(usually due to noisy sensor data), is very important for path planning and navigation. This 

is where the Kalman filter and later particle filters have been used extensively [33]. 

2.3.1. Kalman filter 

The Kalman filter is an algorithm that provides an efficient computational (recursive) 

means to estimate the state of a process, in a way that minimizes the mean of the squared 

error [34]. One of the major benefits is that it, being a recursive algorithm, does not require 

knowledge of all prior values of a particular state; this saves memory, although it can also 

be a disadvantage, as information is lost. The algorithm consists of two steps, a 

prediction/estimation and a correction/update step and uses the probability distributions to 

update the state. This filter intends to solve the problem of optimally estimating the value 

of a state   in the presence of process noise   and measurement noise  . Equations (2.1) 

and (2. 2) show the equations governing a systems behaviour, taking into account system 

and measurement noise. 

                               (2.1) 
 

Where   is the system function,   is the input function and   the control input into the 
system 
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                    (2. 2) 

 
Here   is the state measurement and   is the measurement function 

The Kalman filter explained in [35] uses the two-step process shown below. These steps 

are known as prediction and update, and are recursively used to make a best estimate of 

the state value given the current measurement. 

Prediction 

State Prediction: estimate of         i.e. future state value at time t 

                               (2.3) 
 

State Covariance Prediction (predict the uncertainty of the future state) 

                                 (2.4) 
 

Where        is the prior probability distribution and      is the variance 

Measurement Prediction: estimate of measurement         at time t 

                           (2.5) 
 

Measurement Covariance Prediction (predict the uncertainty of the future measurement) 

                                     (2.6) 
 

 

Filter Gain Computation (computes the importance of the predictions) 

                                (2.7) 
 

Update 

Measurement Update 

                         (2.8) 
 

        is the predicted measurement and        is the actual measurement at      . 

 

State Update 
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                                    (2.9) 
 

This is the best estimate of the true state        at time       given the measurement 

      ‘. 

 

State Covariance Update 

                                         (2.10) 
 

This updates our variance estimate based on the measurement        and is known as 

the posterior probability distribution 

Where     ,      and      are chosen by intuition.   and   are state and measurement 

noise covariances respectively.   is called the Kalman gain and is computed using the 

state covariance estimate [35] 

2.3.2. Particle filter 

An alternative to the Kalman filter is the particle filter (also known as a Monte Carlo 

simulation). This filter generates many points in state space, each representing a possible 

state value. A measurement is then taken to evaluate the likelihood of a particular particle 

being the true value of the state. Each particle is then assigned an importance weight 

according to its likelihood. The particles are then randomly re-sampled (selected as the 

next generation) with a probability equivalent to each particles’ importance weight. Particle 

filters have an advantage over Kalman filters in that they can be multi modal (as a result 

they can model complex distributions) at the cost of accuracy due to their discrete nature 

[36]. The operating principle of particle filters is similar to the Kalman filter, with the 

difference that particle filters approximate the probability distribution using particle weights, 

as opposed to a continuous Gaussian distribution. Their operation is shown below. 

 

Initialisation: 

Generate a set of n particles representing the robot state     probability density function 

(pdf) at time   

                  (2.11) 
 

Sampling: 
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From        particles choose (with replacement)   particles with probability proportional to 

weights   (which can be initialised to equal probability/importance values) 

         
   

 
 (2.12) 

 

Prediction: 

Using the system model, we predict the particle states one time step ahead for all particles 

      
              

                   (2.13) 
 

Where          is the system model and   is an independent sample drawn from the 

system noise pdf. G x and u are defined. This gives us the particles representing the 

approximate pdf            of   at time      , equivalent to (2.11) in the subsequent 

time step. 

Update: 

After a measurement of   at time       is observed, the weights   are updated 

according to the likelihood of observing   given    at       as shown (2.14) in below. 

      
              

    (2.14) 
 

These weights are then normalised according to (2.15) 

     
        

         
  

 

   
 (2.15) 
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2.4. Clustering and its Application 

The RFID localisation in this dissertation makes use of data clustering. Clustering is used 

in many applications where one has a large amount of data, most likely consisting of 

similar/repeated data or observations. For storage purposes and to speed up computation, 

it is desirable to group similar data/observations together and represent the group in terms 

of a cluster prototype/centre. 

Clustering is the process of finding a set of groups of similar objects within a data set, 

whilst keeping dissimilar objects in different groups [37] [38].  There are two types of 

clustering algorithms, hierarchical and partitioning [39]. Partitioning methods split the data 

into a predefined number of groups/clusters, and therefore requires some domain 

knowledge [40]. Hierarcical methods iteratively compute and join the points closest to each 

other (in a tree-like fashion) until a certain termination condition is met, the a general 

method of determinating this condition has proven difficult [40]. Although there are many 

distinct clustering approaches within these two categories, there are only a few which are 

most prevalent in the literature and as such were the focus. These are single linkage 

clustering (also known as nearest neigbhor) [41], centroid based clustering (such as 

kmeans) and density based clustering. Recent efforts have focused on improving the 

performance of clustering algorithms, largely due to the need to apply these algorithms to 

very large data sets (such as big data), such as in [42], [43] and [44] (CLARANS).  

2.4.1. Hierarchical Clustering 

The single link (hierarchical) clustering is one of the oldest methods of cluster analysis 

[41]. Single link clustering starts with (in the case of agglomerative/bottom-up clustering) 

considering all the points in the data as clusters; then for each cluster, the nearest 

neighboring cluster is found and the two clusters are then combined into one.Conversly 

divisive clustering would start by assuming all the point belong to one cluster, then the 

cluster is iteratively separated accoding to the furthest points. The metric used to 

determine the nearest neighbour can be any distance metric, such as Euclidian distance 

||a-b||2, squared Euclidean distance         
 ), manhattan distance ||a-b||1 etc. The point 

from which this distance metric is computed is what distinguishes the different kinds of 

single link agglomorative clustering, from complete linkage (uses the points in the clusters 

which are furthest apart) to minimum linkage (uses the points in the clusters which are 

closest to the other cluster) or even average linkage (which uses distance between the 
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average of all the points within each cluster). An example of a single link hierarchical 

clustering algorithm is illustrated in Figure 2.1. 

 

Figure 2.1: Hierarchical Clustering Algorithm 

This method is good for finding clusters of arbitrary shapes, but it has a well known 

disadvantage called the chaining effect [41]. This is a phenomenon in which the algorithm 

may merge points close to the current cluster even though these may be outliers. In some 

instances there may be a string of outliers between two distinct clusters, single link 

clustering may result merging of these clusters, this makes hierarchical clustering sensitive 

to noise. Another issue with hierarchical clustering is the space and time complexity of the 

algorithm limits the practical size of data set which can be processed [45]. In this 

dissertation, three different kinds of clustering algorithms were tested (k-means, k-

medoids, hierarchical).  

Compute the 
proximity of clusters

Merge closest two 
clusters

Desired clusters 
reached?

Done

Y

N

Define proximity 
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2.4.2. Centroid Based Clustering 

Centroid based clustering, and in particular K-means is one of the most widely used of the 

clustering algorithms [45] [38]. This may be due to is programming simplicity and its 

computational efficiency, as it requires linear time [46] to compute. Centroid based 

clustering methods start by (depending on the type of initialisation) creating a number of 

centroids, which may (in the case of k-medoids) or may not (k-means) be points in the 

data set. The points closest to each centroids are then assigned to the corresponding 

centroids’ cluster. As an example, assuming we have a set of observations O = [s1, s2, s3 

... sn], where si is a single observation matrix. K-means is implemented by first choosing K 

(the number of desired clusters), then initialising K centroids, represented by C = [c1, c2 ... 

ck] where k<n, with centroids M = [m1, m2 ...mk] (i.e mi is the mean of the observations in 

cluster ci). There are a number of ways to initialise the centroids; one is by simply selecting 

random data points from O, and using these as the initial choice of centroids. Another way 

would be to draw point’s uniformaly at random from O [47], or randomly define points 

within the hypervolume containing the set O [48]. The last method consists of clustering a 

random sub-sample of O, and then using these cluster centroids as the starting centroids. 

Next the observations si are assigned to a cluster, such that the distance from si to the 

cluster centroid mk is minimised.This can be expressed as the function in equation (2.16). 

While there are many options for computing this distance, Euclidian distance is the most 

commonly used in practice and research [49]. 

    
   

           
 

 

     

 

   

 (2.16) 
 

 

The new centroids are calculated using equation 2.17 below, which sums the observations 

assigned to the current cluster ck and divides by their total to get the mean/centroid.  

    
 

  
   

 

     

 (2.17) 
 

 

This process of assigning observations to the nearest cluster and re-computing the 

centroid is repeated until the centroids no longer change (i.e. have converged). This 

algorithm is shown in Figure 2.2.  
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Figure 2.2: K-means clustering algorithm 

Although k-means is simple and widely used, it has some practical problems [38]. The first 

of which is it being sensitive to the initial choice of centroids, and the second being 

unavailability of a general method of choosing these centroids. A bad choice of initial 

centroids can lead to sub-optimal clustering. Additionally when dealing with unknown data, 

it is difficult to know the number of clusters present in the data. 

There are a few ways to compensate for the initial centroid selection problem. One option 

is to use hierarchical clustering to a level of the desired clusters and then using these 

centroids as the starting point for k-means. This option works well but is only practical if 

the number of data points is small (a few hundred to a few thousand) and K is relatively 

small compared to the number of data points [45]. 

Another approach to choosing centroids is outlined in [45]. It consists of first choosing a 

random point, then choosing your second centroid to be a point furthest away from the 

current centroids, then choosing your third centroid to be the furthest point away from 

those centroids, and so on.  

This approach however also has a disadvantage when dealing with lots of data, as 

calculating the furthest point becomes computationally expensive [45]. Another issue with 

k-means is the possible formation of empty clusters (a scenario occurring when no points 
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have been assigned to a particular centroid). Typical ways to deal with this issue are to 

reinitialise the empty cluster centroid to be the furthest point from all the current centroids, 

or split a cluster with the most spread out points. Both these measures will reduce the Sum 

of Squared Errors (SSE), which is a measure of the distance between points and their 

centroids. Although k-means is simple and effective, it is not suitable for all data types, 

such as non-globular clusters or clusters of varying sizes and densities [45]. In these 

cases it can fail to identify natural clusters. 

K-medoids is another clustering algorithm very similar to k-means; with the exception that

the centroids must be one of the data points (as opposed to the mean of the points in the

given cluster) close to the mean [38].

2.4.3. Density Based Clustering 

Density based clustering is similar to single link clustering; with the additional constraint 

that for a cluster to be formed a density criteria must be met. This means that even though 

there may be a neighboring point close by, these points can only be merged into a cluster 

if there are a certain more than a minimum number of points within a given radius. 

Wishart’s [50] attempt to mitigate the chaining phenomenon in hierarchical clustering 

resulted in most likely the first density based clustering approach [37]. Density based 

clustering, like single link clustering, is able to cluster data of arbitrary shape, but unlike the 

latter, is less susceptible to the chaining phenomenon, due to the additional density 

requirement for merging clusters (this may not be the case if clusters are very close to 

each other). There are variations in the kinds of density based clustering methods, these 

vary in how the density is estimated as well as how the notion of connectivity is defined 

[37]. The overall principles remain closely related to the method explained above. 

The most popular density based clustering is density based spatial clustering of 

applications with noise (DBSCAN) [40]. Although in some literature it is stated that 

CLARANS is more well known [40], in the same work DBSCAN was proven to outperform 

CLARANS when dealing with point data. As such our review will concentrate on DBSCAN, 

since we will be clustering point data. DBSCAN is designed to cluster spatial data in the 

presense of noise [40] and claims to be scaleable to large data sets [37]. This algorithim 

uses the concept of an epsilon neighbourhood (  ), which is the number of points within a 

radius  , along with the notion of density-reachability. This is defined as a point p being 

density reachable from point q if: 
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1. the neighbourhood       of p includes q 

2. either         minimum neighbhood points        ) or         minimum 

neighbhood points        ) [40] 

The algorithm starts by choosing any point in the data set, it then groups into one cluster 

all the points that are density-reachable from the chosen point. If there are not points 

which are density-reachable from the chosen point, it is regarded as noise. Next another 

point which is has not been clustered (or classified as noise) is chosen, and the process is 

repeated until the complete data set has been clustered. One issue with density-based 

clustering is algorithms is they have difficulty detecting overlapping clusters as well as 

underlying cluster forms such as gausian clusters, as the border of these cluster becomes 

arbitrary depending on the chosen value of the density. Another issue is that it cannot 

cluster data sets with a large variation in density [51]. 

From the literature it is apparent that there is no general clustering algorithm which is 

guaranteed to give good clusters for any given data set, additionally having some prior 

knowledge about possible cluster locations, densities, sizes or some other information 

about the data drastically improves the effectiveness of each algorithm [52]. Due to it 

simplicity and ease of implementation, it was decided to use one of the centroid based 

clustering algorithms. Three centroid clustering algorithms are compared in this work for 

use in localisation. 
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2.5. Path Planning and Navigation 

Once a map of a robot’s environment has been generated, it may be desirable to have the 

robot be able to autonomously navigate to a desired goal, either selected by a human 

operator or identified by the robot itself as an area of interest or for further exploration. To 

be able to navigate to a desired goal, a robot needs to plan a path or determine which 

sequence of actions will get it to the desired location. It also needs to be able to deal with 

the non-deterministic nature of the natural environment, which may give rise to an 

unexpected result, such as ending up in a different state to that which was predicted given 

the executed action. The robot path planning problem has received considerable attention 

in the last ten years [53]. 

There are a great number of path planning algorithims available, from probabilistic 

planners [53], heuristic [54], randomised (such as random trees [55]) and shortest path 

(such as A*, value iteration or Dijkstra [56]), to name a few.  For our purposes, we were 

primarily interested in the shortest path algorithms, since this work was limited to a static 

environment with no obstacles. The shortest path algorithms provided the simplest 

potential solution for our requirements and therefore form the focus of our review. 

2.5.1. Dijkstra Algorithm 

The dijkstra algorithm works by marking a starting point and a goal on the map. Each 

state/node/intersection in the map is given the highest possible distance value. Starting 

from the starting state move to the closest unexplored/unlabeled state, make this the 

current state and update the distance (which is equal to the distance to the current state + 

distance to update state) to all the states directly connected to this current state (provided 

the distance is less than the current value). Then move to the closest unexplored state 

(from the starting point) and repeat the process until the goal is reached [57] [58]. Since 

the dijkstra algorithm is not directed towards the goal, but rather spreads out from the the 

starting node, it may be slow in the instance where the starting point is in the centre of the 

map and the goal is somewhere on the outer edge of the map. 

2.5.2. A* Algorithm 

A* is similar to the abovementioned dikjstra algorithm, but has the advantage of expanding 

the nodes in the direction of the goal. This reduces computation and as a result A* is faster 

than dikjstra, in fact A* is optimal in finding the shortest path under certain conditions [59]. 

To find the actual path to the goal, the algorithm should keep track of each node’s 

predecessor. 
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2.5.3. Markov Decision Processes 

When a path planning algorithm is combined with a set of possible robot actions, it can 

allow a vehicle to autonomously navigate to the desired goal. When navigating, a robot 

executes actions in order to transition along the nodes (also called states) in the 

desired/planned path to its destination. Each node in this chain represents a possible robot 

state or pose. This pose can consist of any useful (from a navigation perspective) vehicle 

information such as orientation, position, speed, acceleration etc. 

In the real world, the outcomes of each action are not deterministic, and as such may 

rather result in the desired outcome with a certain probability or some other outcome with 

some other probability. This system that transitions from one state to another through a set 

of actions is known as a Markov Chain [60]. If the transitions from one state to the next do 

not depend on any history, then this process is known as a Markov decision process 

(MDP). This pose/state information, together with the actions must be used by a descision 

making algorithim to navigate to the goal [61]. This problem can be reduced to the 

following question: given a set of states, each with a given reward for being in the given 

state, what actions should we take at any given state to maximise the the current 

reward/utility, bearing in mind the probabilistic nature of the state transitions? The map of 

of these actions to states is called a policy [62]. Therefore the goal is to find the policy 

which maximises the expected reward/utility [63]. While the are a number of approaches in 

the literature to solving this problem, such as brute force (simply evaluating every possible 

policy) or direct policy search [64], we will focus only on value function approaches, since 

almost all reinforcement learning algorithms are based on estimating value functions [65]. 

In practice (where we do not know the fully MDP) there are two categories of value 

function approaches to solving this optimization problem. The first is category are the 

Monte Carlo methods approach, which uses random initial state action pairs si and aj to 

asses the value of the given state action pair (si, aj). This value is the reward received if 

action aj is first executed from state si after which a greedy algorithm such as ε-greedy or 

dijkstra). These state action values are averaged over time, giving a progressively better 

estimate of action values for given states. One disadvantage of monte carlo methods is 

that they spend time evaluating sub-optimal policies, and use a long path to update only 

the initial state action pair. 

The second value function approaches are the temporal difference approaches 
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In the case where the full MDP is known, we can use the simplest two (excluding 

modifications) algorithms commonly used for determining an optimal policy for decision 

problems, namely policy iteration (and modified versions thereof) and value iteration [63]. 

2.5.4. Value Iteration 

Value iteration works by initialising the goal state with a reward value, then, using the state 

transition probability matrix Tm, each state is assigned a utility value based on the 

surrounding state utility values. The utility value of each state is computed as shown in 

equation (2.18). 

                                      

 

 

 (2.18) 
 

The equation above is executed for each iteration of the algorithm for all the states, and 

reads as follows; the future utility of state    is equal to its current utility plus the maximum 

across all (allowable) actions of the sum of the probability of reaching state    from state 

   given action  , multiplied by the utility of state   .  

 

Figure 2.3: Value Iteration Algorithm at Work for a Forward action 

An example of this in action is shown in Figure 2.3  for the forward action (each action has 

its own utility table such as the one in Figure 2.3), which has a 0.8 probability of moving 

forward, and a 0.2 probability of going left or right. Alongside is shown the calculation of 

equation 16 assuming the current utility value of U2,4 is 0. This process is repeated for all 

states until the change in state utility values are less than some threshold   usually some 

small value. 
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After all state utility values have been computed, the optimal action policy is then worked 

out based on choosing the action most likely to lead to the maximum utility at each state. 

Executing this action policy should lead the robot to the desired goal. 

2.5.5. Policy Iteration 

It has been observated that the policy becomes optimal long before the utility estimates 

have converged (i.e. change in utility is less than ε) to their correct values [63]. Policy 

iteration takes advantage of this by focusing, not on the convergence of the utilty values, 

but rather the convergence of the policy. The algorithm works as follows: 

1. Initialie a random policy, by choosing random actions for each state 

2. Compute each states value given the current policy 

3. Given the above state values, select the best action for each state (hence creating 

a new policy) 

4. Make this the current policy 

5. If there is a change in the policy, repeat from step 2 

6. End 

Policy iteration offers the advantage of converging faster in some cases than value 

iteration, because its convergence is based on the policy rather than utility values [66], 

However the policy evaluation step may itself be a protracted iterative computation [65]. 

In our case the robot builds a state transition matrix autonomously, therefore we have the 

complete MDP for the navigation problem; hence either of the simpler approaches (value 

iteration or policy iteration) is suitable. It was decided that value iteration was to be used in 

implementing the autonomous navigation in this dissertation, the convergence time 

between the two algorithms are negligible in our context, since we can choose the number 

of state/clusters. 
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3. Simulation Setup 
To test the feasibility of using RFID tags for localisation and navigation, a simulator was 

built. The simulator would model the behaviour of randomly distributed tags in an 

environment. The density of the tags can be varied until an optimum tag density is found. 

The robot’s motion would also be simulated in this environment. This would allow the 

evaluation of the accuracy of the localisation achieved, the effectiveness of clustering in its 

various forms (k-mean, k-medoids and hierarchical) and the results of navigation. 

3.1. Modelling the Simulator 

All the simulations were written in the Matlab programming language, and executed in a 

Matlab R2011b environment. The RFID reader used was the Alien ALR9900 and the 

antenna was the ALR8611-AC. A sensor model was derived based on experimental 

measurements from Forster [9] of the tags’ Received Signal Strength (RSS) in various 

orientations and distances. Table 3.1 below shows some of these resulting RSS values. 

Table 3.1: Experimental Data from [9] Showing average RSS values at different distances 
from the antenna 

Distance 

(m) 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

RSS(Units) 6500 6000 4500 2800 2500 1800 1500 1200 1000 600 

 

3.1.1. Modelling Sensor Response 

To model the RFID tag response from the reader, we utilised the experimental 

measurements from Table 3.1, these were fitted first with the polynomial function (polyfit) 

in Matlab [67] [ref]. The results in Figure 3.1 below show the curve fitting for polynomials of 

different orders. The 6th order polynomial over-fits the data, whereas the 3rd and 5th order 

increases the RSS over large distances, which we know to be impossible as RSS values 

from antennas decreases monotonically with distance. It was decided that the best 

polynomial fit was the 4th order polynomial, due to the fact that it not only fits the all points 

closely without visible overfiting, but it also plateaus at the correct value close to the origin. 

In addition, the sudden drop off after 2 m models the fact that RFID communication begins 

to be erratic after 2 m (sometime tags will respond, but sometimes they will not, with an 

increasing probability of not responding the further the tag is beyond the 2 m mark). This 

choice is to be compared with another curve fitting solution. 
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Figure 3.1: Polynomial fitting showing 3rd, 4th, 5th and 6th degree polynomials fitting 
experimental data 

 

We then used exponential functions to fit the data, based on the exponentially decreasing 

energy distribution of an antenna at increasing distances. Since Matlab has no built in 

exponential fitting function, we decided to make use of the matrix division operator “A\B” 

which gives the least squares solution to the system of equations A*X = B. First we 

created a matrix containing exponentials of different orders, and then used the least 

square solution finder built into Matlab to find the best combination of exponentials which 

would minimise the error. The exponential curves of orders 3 to 6 are shown in Figure 3.2. 

We can see from the curves that the 6th order suffers from over-fitting. The 4th diverges 

from the data points at the ends of the dataset, and as a result does not agree with 

antenna physics (the closer the tag, the higher the RSS must be), as the RSS does not 
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peak at 0 m. The 5th order also suffers from the same problem of not peaking at 0 m. The 

6th order, suffers from over-fitting (seen between 0 m and 0.5 m), and was thus not 

considered any further. Therefore it was decided that the best exponential fit is the 3rd 

order exponential. 

 

Figure 3.2: Exponential fitting showing 3rd, 4th, 5th and 6th order exponentials vs distance 
(m) 
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These two chosen fitting curves (polynomial and exponential) were compared for both 

minimising the error between the data-points and the fitted curve as well as each functions 

agreement with antenna physics. The error comparisons of the chosen curves are shown 

in Figure 3.3 below, for our test, we are only interested in modelling distances between 

0.2m and 2 m, beyond which the RFID tags response is unreliable (erratic). 

 

Figure 3.3: Polynomial and exponential fitting error (magnitude) for RFID tag response vs 
distance in m 

The accumulated error for polynomial and exponential fits was 1584 and 1907 RSS units 

respectively. The polynomial fit is better when considering only the total fitting error. But 

when comparing the two solutions taking into account all the factors, the issue 

experienced with using polynomial functions to fit this data was, polynomials are 

unbounded functions and as a result either tend to -∞ or + ∞. We also know that for 

physical systems the energy is bounded. This made polynomials unsuitable for modelling 
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the RFID sensor response. For these reasons it was decided to use the 3rd order 

exponential function to model the RFID sensor response. The coefficients of the 

exponential approximation are shown in Table 3.2. 

Table 3.2: Exponential least squares approximation coefficients 

1st Order Coefficient (c1) 2nd Order Coefficient (c2) 3rd Order Coefficient (c3) 

2235 17144 -12101 

 

Thus the function for approximating the RSS value for a tag at distance d is given by: 

             
      

       
      (3.19) 

   

 

Figure 3.4: Final 2D tag RSS response curve using exponential approximation 
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Figure 3.4 shows the final 2D sensor model, derived from experiments using a 3rd order 

exponential function fit from (3.19). As seen from the graph there is a small chance that 

the RFID tag reader can read tags that are behind the antenna, this occurs if the tag is 

sufficiently close to the antenna (confirmed experimentally), hence the non-zero RSS for 

negative distances in Figure 3.4. To simulate this effect, equation (3.19) was mirrored and 

attenuated about the y-axis to give RSS values for negative distances (i.e. behind 

antenna). Two different tag types were tested; a square 3 cm by 3 cm tag and a 

rectangular 2 cm by 6 cm. Different tags gave different RSS values at similar distances, 

with the rectangular tags giving the highest RSS for a given distance. The shape of their 

response curves remained the same albeit scaled. The experimental results can be found 

in the CD accompanying this project. 

The model was further extended to a 3 Dimensional reader response surface, allowing for 

the simulation of tag responses in a planar environment. This response was obtained by 

assuming the RSS value drops in accordance with the angle (θ, theta) of deviation from 

the normal angle(0° i.e. directly in front of the antenna). We can confirm this assumption by 

observing the antenna beam pattern from the antenna’s datasheet [68], this beam pattern 

is shown in Figure 3.5, 
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Figure 3.5: Alien Technology antenna ALR-8696-C beam pattern (from datasheet [68]) 

If we approximate the radiation pattern of the antenna with a centroid around a unit circle, 

then this function t(θ) can then be used to scale a version of the above tag response curve 

rotated about the origin, to give tag responses at various distances and angles from the 

antenna. t(θ) could be modelled as the intersection of the line t with the unit circle with an 

offset centre, as shown in Figure 3.6 below. The method for obtaining this function t is as 

follows: 

We want the intersection between the line: 

                                    (3.20) 
 

And the circle: 

    
 

 
 
 

     
 

 
   

(3.21 
) 
 

Substituting (3.20) into (3.21 ) we get: 
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Figure 3.6: Modelling 3D response model by rotation of 2D model 

The resulting equation gives us the RFID tag response RSS for a tag at distance d and 

angle θ: 

d>=0               
      

       
               (3.22) 

d<0               
       

        
                (3.23) 

Where a is an attenuation factor of 50. 

The resulting planar RSS response surface is shown below in Figure 3.7 and Figure 3.8 

also showing the pioneer robot platform in a top down view. The resulting sensor model is 

in close agreement with the energy distribution of the radio signal shown in the antenna 

datasheet (Alien Technology: ALR-8696-C circular polarised antenna) [68]. 
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Figure 3.7: Three dimensional tag response when vehicle is at (0; 0) in the x-y plane 

 

Figure 3.8: Top down view of 3D tag response when vehicle is at (0; 0) in the x-y plane 

 
Pioneer 
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3.1.2. The Case for Distance and Orientation 

In theory the case for judging distance and orientation can be made when the there are at 

least 3 visible tags, since there are no two points in state space (displacement and 

orientation) which would lead to identical RSS values. Any change in location or 

orientation will change the position of the tags relative to the robot in a unique way, and 

hence the RSS values of the snapshot will be sufficiently different for the algorithm to 

recognise that the robot is in a different state, provided the movement is significant 

(greater than 0.4 m). 

3.2. Simulation Environment Design 

The simulator was designed to model randomly distributed tag responses in a planar 

environment. The tags are represented by circles and the robot is represented by a blue 

cross. These tags are randomly distributed throughout the environment. The idea is to 

make the simulation as realistic as possible by ensuring that the robot motion and control 

commands are as close to the physical platform implementation as possible. This will not 

only ensure the accuracy of the simulation, but also simplify the implementation 

experiment stage of the project. 

 

Figure 3.9: Simulation Environment in Matlab (axis labels in [m]) 

The simulation environment is shown in  
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Figure 3.9. Red tags are dormant (out of read range) while green tags are active 

(responding/within read range). The dimensions of the space correspond to the size of lab 

environment we will be testing in. 

3.2.1. Snapshot Capturing 

To compute the RSS of readable tags in the robot environment, it was necessary 

transform the tag locations to the robots reference frame as shown below in Figure 3.10. 
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Figure 3.10: Global reference frame to robot reference frame, to compute tag RSS values, 
as these calculations are performed in a fixed reference frame 

Tag values below a threshold of 1000 RSS units were ignored. This was because of an 

observation made during the sensor modelling, which is that RSS values below 1000 

correspond to tags on the verge of the readable range, and thus reply inconsistently and 

lead to noisy snapshot measurements. A snapshot is stored as a 2D matrix consisting of a 

tag ID and its corresponding RSS value. A sample snapshot is in Table 3.3. Each 

snapshot is then added to an observation matrix, which is simply a tiling of these snapshot 

matrices. Sorting snapshots in accordance with tag IDs was needed to simplify 

comparisons and speed up clustering. 

Table 3.3: Example of a RFID snapshot 

Tag ID ABCD EFGH IJKL MNOP QRST UVWX 

RSS value 2500 5830 1500 4062 3140 4879 

3.3. Exploration, Localisation and Navigation 

The localisation and navigation algorithm was comprised of three steps: 

1. Exploration 
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2. Clustering of observations 

3. Building a state transition matrix 

The flowchart in Figure 3.11 illustrates the overall algorithm starting from exploration to 

navigation. The “Log on to reader” step does not apply to the simulation part of the project 

as it did not involve the physical implementation hardware. 

 

Figure 3.11: Overall Experiment Script 

 

 

3.3.1. Exploration 

Actions, that the vehicle can execute, were numbered from 1 to 5, in place of movement 

forward (F), arc left (AL), arc right (AR), rotate left (RL), rotate right (RR). These action 

names and their proximate motions are shown graphically in Figure 3.12. 
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Figure 3.12: Robot action labels and resulting motion used in implementation 

Since the vehicle commands used in all the algorithms had to be similar to those to be 

used on the pioneer platform, action commands we implemented by converting the action 

numbers (#) to translational and rotational velocities. Table 4 shows the values of these 

velocities for each action. 

Table 4: Actions and their corresponding velocities 

Action (#) Translational Velocity (m/s) Rotational Velocity (rad/s) 

Forward (1) 2.5 + ηt ηr 

Arc Left (2) 2.5 + ηt π/2 +ηr 

Arc Right (3) 2.5 + ηt -π/2 +ηr 

Rotate Left (4) 0.25 + ηt π/2 +ηr 

Rotate Right (5) 0.25 + ηt -π/2 +ηr 

Where ηt and ηr correspond to the translational [-1,1] and rotational noise [-π/5,π/5] 

respectively.  

During exploration, the vehicle first takes a snapshot, then chooses each action at random 

after taking a snapshot. This random choice is not uniformly distributed, but weighted such 

that the forward and arc actions are more likely during the early stages of exploration and 

rotations are least likely. This will allow the robot to map out larger areas more quickly. 
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Additionally the algorithm increases the probability of executing a rotation inversely to the 

number of tags observed, such that when there are no observable tags, the probability of 

executing a rotation is 1. Value iteration is not used during the initial exploration, as there 

are no states, or state transition matrices.  

The algorithm used for exploring the RFID environment is shown in Figure 3.13. This 

algorithm is used to obtain observation (snapshots) of tags within the read range. This 

rudimentary exploration was later extended to explore frontiers by biasing the forward 

action (increasing the probability of choosing the forward action) when unknown tags are 

detected. 

 

Figure 3.13: RFID exploration algorithm 

Given sufficient (more than 500 steps per 25 square metres) simulation time the algorithm 

is able to explore the entire area multiple times. 

3.3.2. Clustering 

The clustering algorithms used were k-means, k-medoids and a custom clustering 

algorithm. After clustering is performed, empty clusters are discarded. The custom 

clustering is similar to k-medoids except the initial choice of centroids is stationary. When 

using k-means, to increase the accuracy one can simply increase the number of clusters 
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(up until the number of observations), knowing that empty clusters will be discarded. 

Similarly with k-medoids with the exception that k-medoids does no produce empty 

clusters due to the restriction that a cluster centroid must be an observation. The 

reasoning behind this being that since it is a much simpler algorithm it should run faster. 

During experiments a modified hierarchical clustering was also tested. The value of k was 

chosen empirically, based on the different algorithms performances listed in the tables 

below. We found the best value (yielding good clustering accuracy, below 0.6 m, whilst 

minimising the number of clusters) to be between one half and two thirds the number of 

observations. 

Table 3.5: Comparison of clustering algorithms for 1625 observations and 405 States 

 k-means custom clustering k-medoids 

Number of Non-empty Clusters 319 316 358 

Ave Cluster Separation x (m) 1.009772 1.040637 0.878805 

Ave Cluster Separation y (m) 0.967746 0.996498 0.898314 

Ave Cluster Separation d (m) 1.487936 1.536722 1.359275 

Ave Cluster Separation θ (rad) 3.130666 2.934081 2.761911 

 107.626335 3.218349 0.295258 

 

Table 3.6: Comparison of clustering algorithms for 1625 observations and 813 States 

 k-means custom clustering k-medoids 

Number of Non-empty Clusters 449 550 662 

Ave Cluster Separation x (m) 0.846350 0.769972 0.648700 

Ave Cluster Separation y (m) 0.813128 0.659460 0.559164 

Ave Cluster Separation d (m) 1.302560 1.144415 0.996750 

Ave Cluster Separation θ (rad) 2.504633 1.971098 1.770322 

Computation Time (seconds) 231.718135 6.645083 0.383748 

 

  



39 | 91 P a g e  

 

Table 3.7: Comparison of clustering algorithms for 1625 observations and 1083 states 

 k-means custom clustering k-medoids 

Number of Non-empty Clusters 463 615 785 

Ave Cluster Separation x (m) 0.829449 0.714975 0. 510887 

Ave Cluster Separation y (m) 0.805798 0.670508 0. 685297 

Ave Cluster Separation d (m) 1.277713 1.131585 1.005238 

Ave Cluster Separation θ (rad) 2.553838 1.872474 1. 467408 

Computation Time (seconds) 380.937944 8.554062 0.376200 

 

Table 3.8: of clustering algorithms for 1625 observations and 1625 states 

 k-means custom clustering k-medoids 

Number of Non-empty Clusters 427 1040 1024 

Ave Cluster Separation x (m) 0.851935 0.518023 0.501029 

Ave Cluster Separation y (m) 0.821903 0.442401 0.434716 

Ave Cluster Separation d (m) 1.304289 0.840413 0.826336 

Ave Cluster Separation θ (rad) 2.704753 1.215803 1.197497 

Computation Time (seconds) 1142.754865 13.590391 0.530620 

 

Below we compare the three clustering techniques graphically; we measure their 

performance in terms of the average cluster spread (which will influence the localisation 

accuracy) in Figure 3.14.  
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Figure 3.14: Comparison of Clustering Algorithms 

From Figure 3.14 we see that the cluster spread is comparable between all three 

algorithms for number of clusters/states below 400. However this number of clusters is not 

accurate (1.5 m cluster spread is equivalent to 0.7 m accuracy) for our purposes of 

navigation. Beyond this k-medoids produces better results than all the other algorithms in 

terms of accuracy of clustering.  

Based on the above reasoning, k-medoids provided the best results and was also the 

quickest to compute. Therefore we decided to use k-medoids for all subsequent clustering 

for simulations.   

 

 

Below shows a sample of clustered observations, clusters are shown by colour. As we can 

see from the red and purple lines, orientation is preserved. 



41 | 91 P a g e  

 

 

Figure 3.15: Typical clustering output for various vehicle poses 

 

3.3.3. Localisation Method 

The localisation algorithm used in the simulations seeks to minimise the normalised 

difference/distance between the current RFID snapshot RSS values and those of the 

recorded cluster/state centroids. This normalised distance metric is computed subtracting 

the RSS values of the current snapshot from that of each of the cluster centroids for 

corresponding tag IDs. These values are then summed up and compared to the minimum 

of total RSS sum of either the centroid or snapshots. The proportion is then given a 

percentage RSS match score. Secondly the number of matching tag ID’s between each 

centroid and the snapshot is given a percentage match. These scores are than summed 

up with a bias of 60% ID score match plus 40% RSS score match, and the centroid with 

the highest score is selected as the closest or likely robot pose, thus localising the robot. 

This localisation algorithm was tested using the initial observations, and attempted to 

match each observation to its allocated cluster. The accuracy of the localisation scheme is 

shown in the results section. Additionally another localisation method was tested, which 

compared only the RSS values for matching IDs. 
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3.3.4. State Composition 

The state vector is a 2 by max matrix, max representing the maximum number of tags 

which can be read in one snapshot. This max value is preportional to the tag density, and 

represents the maximum number of tags which can appear in the antenna's readable 

range (in our case, a circle of radius 1.25 m in front of the antenna as seen in FIGZasa). 

This matrix consists of a list of tag IDs (10 digit hexadecimal numbers) in the first column 

and a RSS value varying from 0 to approx 60000 unit in the second column. This state 

matrix (snapshot) is then tiled into a 2 by max by nObs matrix of observations for storage 

and subsequent clustering. This state matrix is shown in FIZAasa. Once the observations 

in the observation matrix have been clustered, the cluster centroid will represent a robot 

state (i.e when the robot is observing a snapshot closely matching a certain centroid, it will 

be considered to be in the state represented by that centroid). Essentially a state is a 

snapshot of the RFID environment, which, after clustering, is represented by the cluster 

centroids. 

3.3.5. Building state transitions matrix and navigating 

The state Transition Matrix I represents a measure of the probability of transitioning from 

one state to another for a given action, in the form of a 3 dimensional [Sx(S+1)xA] (#states 

by #states+1 by #actions) sparse probability matrix. The clusters from the clustering 

algorithm were used as states for the state transition matrix. The additional state in the 

second dimension holds the probability of transitioning to an empty state. The vehicle uses 

a similar algorithm to that in Figure 3.13 to record the transition probabilities. It does this by 

exploring the environment, choosing set actions at random and executing them, it then 

increments the probability of transitioning from the previous state, to the current state, 

given the chosen action. It attempts to record at least 2 transitions for each action in every 

state. This ensures an accurate representation of the state transition probabilities. A 

section of the state transition matrix is shown in Figure 3.16 for the forward action. On the 

y-axis is the present state, on the x-axis is the state which can be transitioned to and the 

colour indicates the probability of making this transition (red being probability close to 1 

and blue probability close to 0) given the forward action is chosen. Additionally an extra 

column is added as the probability of transitioning to outside the read range.  
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Figure 3.16: Section of State Transition matrix 

When the TM has been acquired, the vehicle is now equipped to navigate using a value 

iteration algorithm. A goal location is selected from one of the states (these could be linked 

to any area of interest, possibly from images taken by the vehicle). A reward matrix is 

created with the goal location having a desired positive value and undesirable states (ones 

that are close to the edge of the environment, i.e. last column) are given negative values. 

The vehicle then uses value iteration to get an action policy (action to execute given the 

vehicle is in a certain state) that will allow it to reach the goal whilst avoiding the edges of 

the environment (where there are no RFID tags). Executing these actions, allows the 

vehicle to navigate to the desired goal autonomously. 
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4. Simulation Results 

4.1. Localisation Results 

These results were obtained in a simulated area of 5 by 5 metres, 800 tags and a 

simulation time of 1000 exploration time steps. The localisation of the vehicle averaged an 

error of 0.34 m over 20 simulations/trial runs. The average of the maximum localisation 

error for all 20 trials was 1.1 m in the same simulations. The table below shows these 

localisation results from different (randomly chosen) starting positions, to illustrate the 

performance of the algorithm over varying distances. 

Table 4.9: Numerical localisation results over 20 trial runs 

Test 

# 

Max Loc 

Error (m) 

RMS Loc 

Error (m) 

Initial 

Distance 

to Goal (m) 

Max 

Distance 

 to Goal (m) 

Time  

to Goal 

(st) Comments 

1 0.263108 0.113088 1.451262 1.451262 28 

 2 1.373005 0.408296 2.017578 2.017578 44 

 3 0.277988 0.115034 2.612348 2.613312 45 

 4 0.266809 0.127836 1.618905 1.618905 21 

 5 1.209967 0.339866 1.158275 1.158275 20   

6 2.573254 0.962738 5.180108 5.184237 85 

 7 1.209967 0.339866 1.158275 1.158275 20 

 8 0.770608 0.289507 2.255162 2.255162 77 

 9 0.396196 0.175624 2.562783 2.562783 30 

 10 0.84493 0.253016 2.035301 2.035301 182 Circling 

11 2.651533 0.997474 2.890733 3.259291 43 

 12 0.564744 0.213986 3.679879 3.701556 57 

 13 0.318143 0.180671 1.854034 1.856366 37 

 14 0.948004 0.246589 3.370003 3.370003 89 

 15 1.656564 0.412161 5.620122 5.620122 71 

 16 0.832765 0.18374 4.616417 4.616417 51 

 17 3.670778 0.858748 6.051785 6.775494 488 Limit Cycling 

18 0.355889 0.167153 1.706876 1.935891 48 

 19 0.407162 0.143514 2.070111 2.170551 41 

 20 0.663023 0.229172 2.984635 2.984635 114 
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       Ave 1.0627218 0.33790395 

     

A sample run of the localisation error is shown in Figure 4.1 below and a run with extended 

simulation time is shown in Figure 4.2. 

 

Figure 4.1: Localisation error simulation results 

We can see clearly from Figure 4.2 below the cycling between states which occurs on the 

border between states. Stricter clustering (using a higher number of clusters), although 

allowing more precision (due to higher density of centroids, meaning the distance to the 

closest cluster is reduced), can lead to worse accuracy manifested as this fluctuation 

between alternating states. Stricter clustering in this instance means using a higher 

number of clusters in the case of kmeans/kmedoids (leading to smaller clusters and ideally 

more accurate localisation). Having smaller clusters means the centroids are closer 

together, the action policy therefore may give similar actions or actions which may be in 

opposition due to slight variations due to noise in the snapshots. This can cause a 

situation, in the case where the goal is directly behind the robot , where the policy gives an 
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action rotate left, upon executing that action and ending up in a different state very close to 

the previous state, the action policy then gives an action rotate right. Thus the vehicle 

begins to cycle between these two state action pairs. 

 

Figure 4.2: Localisation error over long simulation time (y-axis: localisation error [m], x-
axis: simulation time) 
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Figure 4.3 below shows the vehicle position (in blue) in the simulation environment, the 

purple is the closest cluster that the vehicle has localised itself in and the green is the goal 

state/cluster. As in previous simulations the tags are the red circles. 

 

Figure 4.3: Simulation environment showing localisation with precision below 0.2 m 
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When performing simulations over longer time periods, which would produce a lot of 

observations close together, we noticed that clustering would occasionally assign circular 

clusters. These clusters, although giving accurate co-ordinate localisation, cause 

ambiguity in the robots pose orientation and hence poor navigation. Figure 4.4 shows this 

result. 

 

Figure 4.4: Simulation showing how clustering can lead to circular clusters and ambiguous 
orientation 
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On the border of the environment localisation tends to be very poor, since the clustering 

seems to cluster observations with small RSS values together (which are most 

observations on the outskirts), leading to these clusters having centroids which are close 

to the centre. Figure 4.5 below shows an example of this bad clustering, as above the 

robot is in blue, the cluster in purple and the goal in green. 

 

Figure 4.5: Simulation example of bad clustering leading to poor localisation 

 

Another observation of the simulation environment was that the determinism of the 

simulation lead to limit cycles wherein the vehicle would cycle between two opposing 

actions. This happens when the goal is either directly in front or behind the robot, and the 

localisation is not aligned with the navigation policy (the robot chooses to turn left when it 

is on the right and chooses to turn right when it is on the left, due to localisation alternating 

between opposite states incorrectly). This can also happen when the navigation policy 

leads to the vehicle to circle the goal without actually reaching it. We call this limit cycling 

and it is caused by the limited number of actions and a sparsely populated state transition 

matrix. It was observed that adding noise to the robot motion eventually eliminates limit 
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cycles. This is because limit cycles are the result of being stuck in an infinite action-

decision loop; adding noise can change the results of actions or influence the decision 

made or both. Since introducing noise was observed to eliminate limit cycles, it was 

introduced in the simulations, but it will not be necessary to include noise introduction in 

the experimental application, as the real world already has noise. Figure 4.6 shows an 

example of limit cycling using the localisation error. 

 

Figure 4.6: Limit cycling due determinism of the simulator 
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4.2. Navigation Results 

Figure 4.7 below shows a sample of the navigation results. As we can see the 

displacement error decays consistently over time. 

 

Figure 4.7: Navigation showing error from goal state over simulation time 
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Another error trace is shown in Figure 4.8; in this case the robot starts facing away from 

the goal, which can be seen by the initial increase in error as the vehicle turns around. In 

addition the orientation adjustment can be seen when the error increases slightly closer to 

the goal. 

 

Figure 4.8: Distance to goal over simulation time steps 

The reason for the robot not following a straight path may be due to the limited actions 

available to the robot, the limited time for exploration as well as the spread of the clusters 

i.e. there exist paths which may not have been explored yet, and states which have not 

been visited along the straight path. This leads to the robot path more likely to be along 

explored states. The non-visiting of states can be attributed to two reasons, firstly 

time/steps for explorations being limited and secondly, clustering can lead to some states 

being larger than others thus  overshadowing smaller states, hence the vehicle may never 

register some clusters even though it may be the same cluster location 

It is worth noting that when the vehicle is on the outskirts of the tag area (very low RSS), 

the poor localisation results in poor navigation results. The worst case results in the 
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displacement error not decaying to zero. Additionally, the clustering algorithm can lead to 

poor clusters depending on the starting centroids used. The clustering tends to put all the 

observations with low RSS (usually outskirts) in the same cluster, despite the different tag 

identities. This leads to observations at the centre of the environment being part of the 

cluster with observations on the outskirts. This is because the centroid will be in the centre 

of the environment. As seen in Figure 4.9, poor clustering can result in limit cycling and 

this can lead to bad navigation, where the robot cannot navigate to the goal, and as a 

result the distance to goal does not decrease to zero over time, Figure 4.9 illustrates this 

result.  

 

Figure 4.9: Limit cycling leading to poor navigation on the outskirts of the environment 
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5. Experiments and Setup 
For the second part of this work, it was desired to test the results of the simulation on the 

physical robot platform. For this stage, a Pioneer P3-DX (Adept Mobile Robots) was used; 

the platform was controlled using Robot Operating System (ROS: Electric 2011) [69] 

software running on a mini-notebook (dell inspiron) machine. The algorithms for the 

experiments were also written in Matlab 2011b, which in turn used MEX-functions to 

control the pioneer platform over a wireless connection. 

5.1. Experimental Setup 

Experiments were conducted in a lab of 5 m by 5 m with a line grid overlaid on the floor as 

the ground truth for the location of the robot. The tags were dropped at random locations 

and orientations in an approximately uniform distribution throughout the environment, their 

locations were recorded for ground truth. This setup is shown in Figure 5.1. 

 

Figure 5.1: Experimental environment setup 
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The notebook, which is connected to the pioneer via a serial connection, sends control 

commands from ROS to the pioneer hardware platform. These can be motion commands, 

such as translational and rotational velocity or sensor queries, such as odometry readings. 

This notebook was also running the mex-Server, which receives Matlab commands over 

Wi-Fi (from a client computer) and translates them into ROS commands, which in turn are 

sent to the platform. The connectivity setup for the experiments is shown in Figure 5.2 

below. 

 

Figure 5.2: Experiment Connection Setup 

 
During experiments, it turned out that the format of the tag ID (a 24-digit hexadecimal 

number), was too big for Matlab to distinguish between different tag IDs due to rounding 

errors. It was also observed that tags positions were subject to random shuffling and 

inconsistency during different observations. This made it difficult to use the clustering 

algorithms used in the simulator (k-mean and k-medoids), without sorting and using 

positional look-up tables (to place identical tags in the same row), as they require the data 

to be aligned. It was decided that implementing these measures would be computationally 

expensive especially for larger areas. To address issue of tag IDs, we chose to convert 

and process the tag ID as a 24-char string. We then used a modified form of a hierarchical 

clustering algorithm to cluster observations, because of its simplicity in implementation and 
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its robustness to unaligned data. The custom clustering was done using a thresholding 

technique to find the closet observations globally. The custom clustering algorithm is 

shown in Figure 5.3 and is based on a linearly increasing threshold for cluster matches. It 

is similar to hierarchical clustering, except observations are only grouped together if their 

separation metric is below this moving threshold. 

 

Figure 5.3: Custom clustering algorithm 
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5.2. Localisation Testing 

Figure 5.4 below illustrates how the accuracy of the localisation was measured. Since the 

cluster centroids are internal to the robot, and are topological rather than metric, it was 

decided that the accuracy would be measured experimentally by the diameter of each 

cluster.  

 

Figure 5.4: How the localisation accuracy was measured 

Localisation tests were conducted by obtaining the ground truth of the robot in the 

environment. The robot was then placed at random locations in the environment and 

issued a localisation command. The resulting cluster was recorded, then the robot was 

moved a set distance (0.1 m) and the process was repeated. We record the localisation 

error as the distance the vehicle must move until it registers a change in state. It is worth 

noting that, on the border between two or more states, the robots localisation may cycle 

between these bordering states. This fluctuation is measured as a percentage of incorrect 

state localisations (assuming the most recent state with above 90% certainty is the correct 

state) versus the total number of localisations performed. We call this percentage the 

localisation certainty. 

The above method was also used to assess the rotational localisation accuracy, although 

for our navigation purposes, we only required an angular accuracy of 45° due to the fact 

that our action commands rotated the vehicle by 45° and no less. 
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6. Experimental Results
This section looks at the results from testing our simulation algorithms on the pioneer

platform in a lab environment. During the practical implementation of the exploration

algorithm, it was found that the tag orientations’ effect on the RSS value was negligible

when compared to the random fluctuations of RSS values between sequential queries.

This simplified our tag placement, since we could ignore tag orientation.

6.1. Localisation Results 

The localisation of the vehicle was shown to be able to distinguish different clusters from 

distances of over 0.43 m over 13 random locations and four angles in rotations of π/2 (90°) 

at each location with 100% accuracy. Below this distance, the accuracy declines rapidly 

leading to spurious localisation of 30% consistency at 0.2 m. The straight line localisation 

accuracy (which is the measured localisation accuracy when moving in a straight line in 

varying steps/separation distances) is shown in Table 6.10 for various distances, and was 

measured by the number of incorrect vs. correct localisations. 

Table 6.10: Experimental Localisation Results 

Separation distance/precision (m) Localisation consistency/repeatability 

0.4 90% 

0.3 50% 

0.2 30% 

In addition to the co-ordinate consistency, the orientation consistency was also tested. 

These results are shown in Table 6.11  below, and were acquired by placing the pioneer at 

intervals and changing the orientation. We then issued localisation commands and 

recorded the most frequent state as the correct state and all others as the error states. It 

was found that there was ever only one error state (as can be seen from the table). The 

co-ordinates measured x from left to right, y from bottom to top of the lab area and 0 along 

the positive y axis (This is shown in Figure 6.1). 
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Figure 6.1: Co-ordinate reference frame 

The highlights show when the vehicle is on the border between two states, thus leading to 

a decrease in % consistency. 

Table 6.11: Orientation Consistency Test Results 

Theta (deg) x (m) y (m) Correct state Error state Consistency % 

0⁰ 0.8 0.40 31 0 

0⁰ 0.8 0.80 157 18 30 

0⁰ 0.8 1.20 18 0 

0⁰ 0.8 1.60 18 0 

0⁰ 0.8 2.00 307 0 

0⁰ 0.8 2.40 340 8 20 

0⁰ 0.8 2.80 8 21 25 

0⁰ 0.8 3.20 21 0 

0⁰ 0.8 3.60 473 0 

45⁰ 0.8 0.40 32 82 10 

45⁰ 0.8 0.80 82 18 45 

45⁰ 0.8 1.20 319 8 10 

45⁰ 0.8 1.60 8 0 

45⁰ 0.8 2.00 8 0 

45⁰ 0.8 2.40 56 8 30 

45⁰ 0.8 2.80 21 0 

45⁰ 0.8 3.20 124 0 

45⁰ 0.8 3.60 105 160 25 

90⁰ 0.8 0.40 82 0 

90⁰ 0.8 0.80 119 0 
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90⁰ 0.8 1.20 8 
 

0 

90⁰ 0.8 1.60 92 
 

0 

90⁰ 0.8 2.00 36 
 

0 

90⁰ 0.8 2.40 306 
 

0 

90⁰ 0.8 2.80 139 
 

0 

90⁰ 0.8 3.20 124 
 

0 

90⁰ 0.8 3.60 0 
 

0 

270⁰ 0.8 0.40 0 
 

0 

270⁰ 0.8 0.80 0 
 

0 

270⁰ 0.8 1.20 31 
 

0 

270⁰ 0.8 1.60 82 
 

0 

270⁰ 0.8 2.00 31 
 

0 

270⁰ 0.8 2.40 222 31 30 

270⁰ 0.8 2.80 31 18 40 

270⁰ 0.8 3.20 8 
 

0 

270⁰ 0.8 3.60 8 
 

0 
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7. Discussion and Conclusions

From our simulations, we verified the consistency of our RSS calculations by comparing 

them to the beam pattern of the Alien Antenna data sheet. We can conclude that 

localisation below 0.4 m precision is achievable with over 90% consistency. For our 

navigation simulations, looking at the state transition matrix we can see that the diagonal 

shows that for small movements of the forward action there is a finite probability of staying 

in the same state, this is influenced both by the localisation consistency and the 

displacement of each action. Based on the achieved consistency, we recommend using an 

action displacement of at least 0.4 m for each translational action. This will reduce the 

amount of localisation noise, as it ensures that the robot has completely transitioned to 

another cluster. 

From our experimental results we can confirm that localisation consistency below 0.4 m 

(linear) precision is achievable with at 90% consistency (i.e. 90% of the time). This is 

comparable to the accuracies achived by Schneegans et al [31] and Vorst et al [32], 

although their consistency was not mentioned.  Additionally orientation precision of 45⁰ is 

also achievable. This was precise and accurate enough for navigation, since our actions 

did not contain rotations of less than 45⁰ or translations of less than 0.4 m. 

Localisation consistency noise/errors were caused by the fluctuating number of visible tags 

from the RFID reader; this caused the localisation algorithm to cycle between states which 

are close to each other. 

It was also noted that, strict clustering can lead to better precision, but this method of 

increasing precision is also more susceptible to these fluctuations, hence consistency 

deteriorates; strict clustering although achieving better localisation, leads to erroneous 

autonomous navigation because of this. 

We can conclude that localisation using only RFID tags is both feasible and practical. This 

means it may be practical to apply it in environments without GPS or stationary landmarks, 

such as underground. 

Navigation was proved to be feasible from the simulation results, where successful 

navigation from distances of up to 8 m was achieved. These simulation results need to be 

confirmed experimentally to verify their accuracy and practicality. 
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8. Future Work
Due to time constraints it was not possible to fully test navigation using only RFID tags,

although it was implemented on the pioneer platform. Future work should look at how

navigation would be tested and judged both for end goal accuracy (closeness to goal in

metres and orientation in degrees) and navigation efficiency (i.e. time/steps to goal).

Additionally particle filters should be implemented for the localisation, which we believe

would greatly improve the localisation, due to the possibility that this would limit the cycling

between states that are close to each other. It follows that increasing the localisation

consistency would also improve navigation as well.

Lastly the experimental results should be confirmed in an underground environment, by 

distributing RFID tags and attempting to localise and navigate in this practical 

environment. 
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10. Appendix A: Code 

Simulation Script 
% RFID tag Localisation Simulator 

% This simualtion places tags in a grid with various orientations 

% (note that you can modifiy this to place tags in customised positions and orientations) 

close all 

clear all 

clc 

%rng(100) 

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%Simulation Parameters 

nt = 250;             % Number of Tags 

n = 6;               % Grid size 

ts = 500;            % Simulation Duration 

dt = 0.25;             % Simulation interval 

num_actions=5;          % L R F TL TR 

veh_state = [0,0,pi];% Initial Vehicle state [x y theta] 

thresholdRSS = 500;  % Set the threshold for tag detection 

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  

vs =0.2;            % Quiver Length 

v = 0;              % Vehicle Initial Velocity 

w = 0;              % Vehicle Initial Rotational Velocity 

  

% Place tags in grid 

fprintf('Initializing Tag Locations \n') 

  

tagx = n*rand(1,nt)-n/2;%[(n/nt):(n/nt):n]-n/2; 

tagy = n*rand(1,nt)-n/2;%[(n/nt):(n/nt):n]; 

tago = pi*rand(1,nt); %ones(1,nt); 

  

tag_list = [tagx;tagy;tago];        % Matrix containing all the tags in the grid 

  

% Initialise Entropy Trace 

tplot=[]; 

iplot=[]; 

  

% Start Simulation 

fprintf('Running Simulation\n') 

  

%% 

% Explore 

%veh_state = [rand(1),rand(1),2*pi*rand(1)]; % Place Vehicle 

[observations,observationsV] = explore(ts,dt,tag_list,thresholdRSS,veh_state); 

  

%% 

% Cluster The States Using k-means 

fprintf('Clustering...\n') 

num_States = round(length(observationsV)/4)*2-1; 

%[IDX, cluster_Centroids] = k_means(observations, num_States); 

%[IDX,cluster_Centroids,num_States] = k_hedge(observations',0.25); 

[IDX,~, cluster_Centroids] = kmedoids(observations',num_States); 

%IDX = 1:size(observations,1); 

%cluster_Centroids = (observations); 

  

% Clean Clusters 

[IDX, cluster_Centroids,num_States] = clean_clusters(IDX,cluster_Centroids); 

  

nnum = 0; 

for j = 1:1:num_States 

    num = 0; 

    for i=1:length(observationsV) 

         

        if IDX(i) == j % Check if IDX contains j 
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%quiver(observationsV(i,1),observationsV(i,2),vs*cos(observationsV(i,3)),vs*sin(observati

onsV(i,3)),'r*'); 

%hold on; 

num = num + 1; 

end 

end 

if num ~= 0 

nnum = nnum + 1; 

end 

end 

fprintf('Valid Clusters: %4.2f %% full\n',100*nnum/num_States) 

%% 

% Visualise State Clusters 

%fprintf('Visualising State Clusters\n') 

%k_viz(observationsV,IDX,tag_list) 

%% 

% Build State Transition Probabilities 

fprintf('Building State Transition Probability\n') 

steps = length(observations)*50; 

veh_state = [rand(1),rand(1),2*pi*rand(1)]; % Place Vehicle 

[state_transition] = build_transition(veh_state,tag_list,thresholdRSS, cluster_Centroids, 

steps,dt, num_actions); 

%fprintf('state transition matrix is %f4.2 %% full\n',1-

100*sum(sum(isnan(state_transition(:,:,1))))/(num_States*num_States)) 

veh_state = 0.8*[n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)]; 

%% 

save 'functional_workspace' 

fprintf('Running Value Iterations...\n') 

% Choose a random goal state 

goal_state = 0.8*[n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)]; 

ss = rssCalc(goal_state,tag_list); 

goal_state = localise( cluster_Centroids,ss ); 

% Initialise Value Iteration Values 

reward=num_States; 

discount=0.1; 

default = -10; 

%[ state_Value, nav_policy ] = value_iteration(af,al,ar, goal_state, reward,default, 

cost); %Not working properly yet 

R = default.*ones(num_States,num_States,num_actions); % Reward Matrix 

R(:,goal_state,:) = reward; 

[state_Value, nav_policy, ~, ~] = mdp_value_iteration(state_transition, R, discount); 

% Navigate 

fprintf('Starting Navigation...\n') 

%figure 

dt=0.05; 

% M = getframe(gcf); % Get current frame 

for nn=1:500 

ss = rssCalc(veh_state,tag_list); % Compute Current RSS for visible tags 

ss(ss<thresholdRSS)=0; % Zero non detections 

visible = sum(abs(ss)); 

plot(tagx,tagy,'ro') 

grid on 

hold on 

if visible  % if there are visible tags 

quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'b*'); 

else 

quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'k*'); 
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    end 

     

    % Mark Goal State 

    for i=1:size(observationsV,1) 

        if(IDX(i)==goal_state) 

            

quiver(observationsV(i,1),observationsV(i,2),vs*cos(observationsV(i,3)),vs*sin(observatio

nsV(i,3)),'g*'); 

        end 

    end 

  

    % Find the nearest state 

    if visible 

        df = num_States.*ones(1,num_States); 

        for i = 1:num_States 

            df(i) = norm(cluster_Centroids(i,:)-ss);          % Find Distance to Cluster 

Centroids 

        end 

        [~,minIndex] = min(df);                % Find Closest Cluster Centroid 

         

        % Mark nearest Cluster 

        for i=1:size(observationsV,1) 

            if IDX(i) == minIndex 

                

quiver(observationsV(i,1),observationsV(i,2),vs*cos(observationsV(i,3)),vs*sin(observatio

nsV(i,3)),'m*'); 

            end 

        end 

         

        %nav_policy(minIndex) 

         

        if minIndex==goal_state 

            fprintf('Found Goal!!!!!!!!!!!!!!!! :-D\n') 

            [v w] = act('S'); 

            

quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'g*'); 

            break 

        else 

            [v w] = act(nav_policy(minIndex)); 

        end 

    else % If ~visible 

        [v w] = act('b'); % Turn around 

    end 

  

    veh_state = driveBot(veh_state,v,w,dt); 

  

%     % Grab a frame 

%     M(nn) = getframe; 

     

    hold off 

    pause(0.1) 

     

end 

% movie2avi(M, 'movieNav', 'fps', 30); 

% grids=[-n/2,n/2,-n/2,n/2]; 

% polViz( nav_policy,grids,dt,cluster_Centroids,tag_list ) 

  

fprintf('Finished\n') 
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Calculate RSS Values Function 
function [ ss ] = rssCalc( veh_state, tag_list ) 

% RSSCALC This function takes in a vehicle state and a list of tags, and returns the 

RSS(recieved signal strength) for each tag 

% 

%   usage: rssCalc( veh_state, tag_list ) 

% 

%   veh_state: vector [x y phi] describing the state of the vehicle in 

% cartesian co-ordinates. phi is the orientation measured 

% positive counter clockwise from the positive x-axis 

% 

%   tag_list: 3 x n matrix [x1 x2 .. xn   tag characteristics for 'n' tags 

% y1 y2 .. yn   with co-ordinates x,y  

% a1 a2 .. an]  orientation of normal vector of the tag in the 

global referecnce frame 

% 

%   ss: vector [ss1 ss2 .. ssn]recieved signal strength for 

% corresponding tags 

vx = veh_state(1); % Robot/Vehicle x position (global ref frame) 

vy = veh_state(2); % Robot/Vehicle y position (global ref frame) 

vo = veh_state(3); % Robot/Vehicle orientation (global ref frame) 

to=tag_list(3,:); % Tag normal orientation (global ref frame) 

% Change to vehicle reference frame (place vehicle at the origin) 

tx = tag_list(1,:)-vx;  % Translate tags in the x direction to vehicle reference frame 

ty = tag_list(2,:)-vy;  % Translate tags in the y direction to vehicle reference frame 

tagpos = [tx;ty]; 

% Rotate frame to face align x direction (this is required for the PSS function) 

relpos = (tagpos'*[cos(vo) -sin(vo);sin(vo) cos(vo)])'; % Rotate tag positions 

% Reassign new tag co-ordinates in robot reference frame 

txv=(relpos(1,:)); % Tag x co-ordinates after rotation 

tyv=(relpos(2,:)); % Tag y co-ordinates after rotation 

% Calculate tag normal rel to vehicle 

to = atan2(sin(to-vo),cos(to-vo)); % Rotate tag angle (gives tag normal orientation 

in vehicle reference frame) 

tav=atan2(tyv,txv); % Work out angle to the tag relative to the 

vehicle (vehicle referenct frame) 

tov = atan2(sin(tav-to),cos(tav-to));   % Compute tag normal orientation relative to the 

vehicle 

%Compute RSS in the Vehicle reference frame 

ss=PSS(txv,tyv,tov); 

end 

function rss = PSS(x,y,ta) 

%This function accepts RFID tag location(cartesian co-ordinates) & its orientation & 

returns the recieved signal strength 

% 

%   Usage function rss = PSS(x,y,ta) 

% 

%   x: the tags' position along the x axis 

%   y: the tags' position along the y axis 

%   ta: the orientation of the tag relative to the vehicle/robot 

n = length(x); 

rss = zeros(1,n); 

a = [2235 17144 -12101]; % Coeficients of polynomial approximation of order 3 

d = sqrt(x.*x + y.*y); % Distance to tags 

ct = abs(cos(atan2(y,x))); % Compute angle of the tag rel to robot 

c = 50; % Set attenuation value behind the antenna 
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% For each tag calculate the rss using best-fit function based on experimental data 

for t=1:n 

    if (x(t)>=0)    % If the tag is in front of the antenna 

        rss(t) = [exp(-d(t)) exp(-2*d(t)) exp(-3*d(t))]*a'*ct(t);%*abs((cos(ta(t))+1)/2); 

    else            % If the tag is behind the antenna (increase attentuation) 

        rss(t) = [exp(-c*d(t)) exp(-2*c*d(t)) exp(-

3*c*d(t))]*a'*ct(t);%*abs((cos(ta(t))+1)/2); 

    end 

end  

 

Localise Algorithm Function 
function [ state ] = localise( cluster_Centroids,ss ) 

%LOCALISE localise( cluster_Centroids,ss ) 

%   Detailed explanation goes here 

  

    [num_States,~] = size(cluster_Centroids); 

    df = num_States.*ones(1,num_States); 

    for i = 1:num_States 

        df(i) = norm(cluster_Centroids(i,:)-ss);          % Find Distance to Cluster 

Centroids 

    end 

    [~,state] = min(df);                % Find Closest Cluster Centroid/State 

  

end 

 

Explore Function 
function [observations,observationsV] = explore(ts,dt,tag_list,thresholdRSS,veh_state) 
%EXPLORE Summary of this function goes here 

  
%   Detailed explanation goes here 

  

  
% Initialise Algorithm Variables 
index =1; 
vs =0.1;            % Quiver Length 
numObs = round(ts/dt); 
observations = zeros(size(tag_list,2),numObs); 
observationsV = zeros(numObs,length(veh_state)); 
%action = 'f'; 
tf = round(rand(1)); 
watchdog = 0; 
pv=0.1; 

  

  
% Plot Grid 
%figure 

  
fprintf('Start Exploring\n') 
for t=1:dt:ts % Walk around observing states 

     
    % Plot tags 
    %hold off 
%     plot(tag_list(1,:),tag_list(2,:),'ro') 
%     hold on 
%     grid on 

     
    if(mod(t,10)==1) 
        UpdateProgress(100*t/ts); 
    end 
    %veh_state = [2*rand(1)-1,2*rand(1)-1,2*pi*rand(1)]; 

     
    ss = rssCalc(veh_state,tag_list);           % Compute Current RSS for visible tags 



74 | 91 P a g e

ss(ss<thresholdRSS)=0; % Zero non detections 

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
% Planning Algorithm Goes Here 
visible = sum(abs(ss)); 

if visible  % if there are visible tags 
observations(:,index)=ss; 
observationsV(index,:) = veh_state; 

%quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'b*'); 
for i = 1:length(tag_list) 

if ss(i) 
plot(tag_list(1,i),tag_list(2,i),'go') 

end 
end 

else 

%quiver(veh_state(1),veh_state(2),vs*cos(veh_state(3)),vs*sin(veh_state(3)),'k*'); 
end 

%Explore using randomly selected actions 
action=round(3*rand(1)+0.5); 
% Choose Action 
[v w] = act(action); 

 if ~visible 
action = 'b'; 
v=0; 
if tf 

w=5; 
else 

w=-5; 
end 
if watchdog>10 

v=pv; 
end 

% fprintf('Turning Around\n') 
end 
% Check for looping 
if action~='b' 

watchdog=0; 
pv=0.5/10; 
tf=round(rand(1)); 

else 
watchdog=watchdog+1; 
pv=pv+0.1/10; 

end 
% Execute Move 
veh_state = driveBot(veh_state,v,w,dt); 
index = index+1; 
% Algorithm ends here 
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

%pause(0.1) 

end 
% Remove Empty Observations 
fprintf('\nRemoving Empty Observations...\n') 
empty = zeros(size(tag_list,2),1); 
for i=numObs:1 

question = sum(observations(:,i)==empty); 
if question==size(tag_list,2) 

observations(:,i)=[]; 
end 

end 
observations = observations'; 
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fprintf('Finished Exploring :-)\n') 
end 

  

Build Transition Function 
function [ state_transition ] = build_transition(veh_state,tag_list,thresholdRSS, 

cluster_Centroids,steps,dt,num_actions) 

%function [ af al ar ] = build_transition(veh_state, cluster_Centroids ) 

%Makes the robot wander around building a state transition probability matrix for each 

action 

%   [veh_state] = initial vehicle state (position and orientation) 

%   [cluster_Centroids] = centrods of the various state 

%   [num_State] =  total number of states 

%   [steps] = number of itaration to take to build probability matrix (in the order of 

num_States*100) 

%   function returns [af al ar] which correponds to the probability 

%   of transtioning from on state to another by executing the relevant 

%   action 

  

[num_States,~] = size(cluster_Centroids); 

%state_transition = sparse(zeros(num_States,num_States,num_actions)); 

state_transition = zeros(num_States,num_States,num_actions); 

%action = 1; 

%n=6; 

inc = 1; 

tf = randi(2,1)-1; 

watchdog=0; 

pv=0.1; 

  

% % First Find which state we are in..? 

% ss = rssCalc(veh_state,tag_list);           % Compute Current RSS for visible tags 

% df = ones(1,num_States); 

% for i = 1:num_States 

%     df(i) = norm(cluster_Centroids(i,:)-ss);          % Find Distance to Cluster 

Centroids 

% end 

% [~,minIndex] = min(df);                % Find Closest Cluster Centroid 

  

%veh_state = [n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)]; 

  

for nn=1:steps % Wander around Building State transision probability matrix 

     

    % Progress Bar 

    if(mod(nn,100)==1) 

        UpdateProgress(100*nn/steps); 

    end 

% % 

PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE><PLACE

> 

%     veh_state = [n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)]; 

% for direction=0:2*pi/10:2*pi 

% veh_state(3)=veh_state(3)+direction; 

% 

LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE> 

    ss = rssCalc(veh_state,tag_list);           % Compute Current RSS for visible tags 

    ss(ss<thresholdRSS)=0;                      % Zero non detections 

    visible = sum(abs(ss)); 

  

    if visible 

         

        %pminIndex=minIndex; 

         

        % Find the current/nearest state 

        for i = 1:num_States 

            df(i) = norm(cluster_Centroids(i,:)-ss);          % Find Distance to Cluster 

Centroids 

        end 
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        [~,pminIndex] = min(df);                % Find Closest Cluster Centroid Prev 

Index 

  

% 

LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE> 

  

%            for k=1:5 

            %Make a Move>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

                    %Explore using randomly selected actions 

                    action=randi(num_actions); 

                    %action=k; 

                    [v w] = act(action); 

                    % Execute Move 

                    veh_state = driveBot(veh_state,v,w,dt); 

            %Make a Move>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

  

                % 

LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE>

222222222222 

                    ss = rssCalc(veh_state,tag_list);           % Compute Current RSS for 

visible tags 

                    ss(ss<thresholdRSS)=0;                      % Zero non detections 

                    visible = sum(abs(ss)); 

  

                    if visible 

  

                        % Find the current/nearest state 

                        for i = 1:num_States 

                            df(i) = norm(cluster_Centroids(i,:)-ss);          % Find 

Distance to Cluster Centroids 

                        end 

                        [~,minIndex] = min(df);                % Find Closest Cluster 

Centroid Current Index 

  

                        if(pminIndex==minIndex)                % If its in the same state 

                            inc = inc/4; 

                        else 

                            inc = 1; 

                        end 

  

                    

state_transition(pminIndex,minIndex,action)=state_transition(pminIndex,minIndex,action)+i

nc; % Increment Transition 

                    %veh_state = 0.9*[n*rand(1)-n/2, n*rand(1)-n/2, 2*pi*rand(1)]; 

                    end 

%            end 

            % 

LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE>

222222222222 

         

     else % ie Outside tag range, then turn around 

            action = 'b'; 

            v=0; 

            if tf 

                w=5; 

            else 

                w=-5; 

            end 

            if watchdog>10 

                v=pv; 

            end 

        % Execute Move 

        veh_state = driveBot(veh_state,v,w,dt); 

     end 

     

    % Check for looping 

    if action~='b' 

        watchdog=0; 

        pv=0.5; 
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tf=round(rand(1)); 

else 

watchdog=watchdog+1; 

pv=pv+0.1; 

end 

%end 

end 

%save('before_norm.mat'); 

fprintf('\n...Normalising Probability Matrices\n') 

% Apply Laplacian Smoothing 

%state_transition=state_transition+1; 

% Normalising 

state_transition = state_transition ./ repmat(sum(state_transition,2),1,num_States); 

%[state_transition]=normalise(state_transition); 

end 

Experiment Code 
% Sisa James 

% CSIR 2013 

% This is the final script for my experiments and includes running the 

% entire experiment 

clear 

clc 

%SETUP AND INITIALISATION 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

% Define Global Variables 

global reader, 

global ServerAddr; 

%global state_transition; 

% Control Variables 

nActions = 3; 

dt=2; % Time Step 

v=0.15; % Maximum Velocity 

n=2; % Number of scans per observations (avarage reading over n scans) 

% Specify Mex Server 

ServerAddr='10.42.43.1'; 

% Create TCP/IP connection to reader 

% Specify server machine and port number. 

%reader = tcpip_open('146.64.165.29',23); 

reader = tcpip('146.64.165.29', 23); 

% Set size of receiving buffer, if needed. 

set(reader, 'InputBufferSize', 8000); 

% set line terminator 

%set(reader,'terminator','CR/LF') 

% Open connection to the server.  

fopen(reader); 

% Login to the RFID Reader 

fprintf(reader,'alien'); 

fprintf(reader,'password'); 

% Set the RFID reader settings 

fprintf(reader,'PersistTime = 0'); 

fprintf(reader,'NetworkTimeout = 65535'); 

fprintf(reader,'TagListCustomFormat = IDK %i RSSI %m TIME %t;'); 

fprintf(reader,'TagListFormat=Custom'); 

readerCommand(reader,['time=',datestr(now,'yyyy/mm/dd hh:MM:ss')]) 
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%% 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

if exist('idObs.mat','file') 

    fprintf('Removing previous Variables from memory...\n') 

    delete 'state_transition.mat'; 

    delete 'idObs.mat'; 

    delete 'rssObs.mat'; 

end 

%% 

% Explore 

steps=100;   % Number of Steps in exploration 

user = 'y'; 

while strcmp(user,'y')||strcmp(user,'Y') 

[idString,observations] = exploreReal(reader,steps,v,dt,n,nActions); 

  

user = input('Continue Exploring: y/n: ','s'); 

end 

fprintf('Finished Exploring\n') 

  

%% 

% Cluster 

%shuffle observations 

[nTags, nObs] = size(observations); 

for o_index=1:nObs 

    swap_index = randi(nObs); 

     

    tempID = idString(:,:,o_index); 

    tempRSS = observations(:,o_index); 

     

    idString(:,:,o_index) = idString(:,:,swap_index); 

    observations(:,o_index) = observations(:,swap_index); 

     

    idString(:,:,swap_index) = tempID; 

    observations(:,swap_index) = tempRSS; 

end 

%run clustering algorithm 

fprintf('Clustering...............\t') 

[IDX, nClusters] = preprocess( observations, idString, 0.8); 

fprintf('Done\n') 

% 

fprintf('Calculating Centroids....\t') 

[centroidID, centroidRSS] = calCentroids( IDX, idString,observations); 

  

if exist('state_transition.mat','file') 

    fprintf('Removing previous state_trantision from memory...\n') 

    delete 'state_transition.mat'; 

end 

  

fprintf('Done\n') 

save('matlab'); 

  

unreachable = [0 0 0 0 0]; 

  

%% 

[idScan,rss,tags] = scanNetTags(reader,n); 

fprintf('Localising...............\t') 

state = localise(centroidID, centroidRSS, idScan, rss) 

fprintf('Done\n') 

%% 

clc 

nActions=5; 

unreachable_old = unreachable; 

fprintf('Building State Transition Matrix\n') 

if exist('state_transition.mat','file') 

    fprintf('loading state transition matrix from memory...\n') 

    load('state_transition.mat'); 

elseif exist('state_transition','var') 

    fprintf('continue from state transition matrix...\n') 

else 
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    fprintf('Creating state transition matrix...\n') 

    % Create a laplacian smoothed transition probability matrix 

    state_transition = ones(nClusters+1,nClusters+1,nActions); 

end 

old_st = state_transition; 

tSteps = length(observations)*1.5; 

state_transition = build_transition_real(reader,centroidID, 

centroidRSS,tSteps,dt,nActions,0.15,state_transition); 

%clear R; 

save('state_transition'); 

  

% Exploit Action Symmetry 

%load('state_transition.mat'); 

%state_transition = sym_exp(state_transition,0.7); 

%clc 

  

%% 

%save('state_transition'); 

figure(3) 

subplot(2,2,1) 

imagesc(state_transition(:,:,1)) 

subplot(2,2,2) 

imagesc(state_transition(:,:,2)) 

subplot(2,2,3) 

imagesc(state_transition(:,:,3)) 

subplot(2,2,4) 

imagesc(state_transition(:,:,4)) 

% 

  

for i=1:5 

    fprintf('Old Unreachable States = %i of %i\n',unreachable_old(i),nClusters) 

end 

  

for i=1:5 

    unreachable(i) = sum(sum(state_transition(:,:,i),1)<nClusters+2); 

    fprintf('Unreachable States = %i of %i\n',unreachable(i),nClusters) 

end 

  

%% 

  

% Choose a goal state 

load('state_transition.mat','state_transition') 

goal_state = 166;%round(rand*nClusters);%localise( cluster_Centroids,ss ); 

  

fprintf('\n...Normalising Probability Matrices\n') 

% Normalising 

st = normalise( state_transition); 

  

% Initialise Value Iteration Values 

reward=1; 

discount=0.1; 

default = 0.5; 

%[ state_Value, nav_policy ] = value_iteration(af,al,ar, goal_state, reward,default, 

cost); %Not working properly yet 

R = default.*ones(nClusters+1,nClusters+1,nActions); % Reward Matrix 

R(:,nClusters+1,:) = -0.5;%reward; 

R(nClusters+1,:,:) = -0.5;%reward; 

R(goal_state,:,:) = reward; 

R(:,goal_state,:) = reward; 

%[state_transition_n]=normalize(state_transition); 

fprintf('Running Value Iterations...\n') 

[state_Value, nav_policy, it, ~] = mdp_value_iteration(st, R, discount); 

  

%figure(2),grid on,hold on,plot(1:nClusters+1,state_Value,'-r') 

%% 

% Navigate 

fprintf('Starting Navigation...\n') 

[success, state_transition] = navigate(goal_state, nav_policy,reader,centroidID, 

centroidRSS, state_transition ); 
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if ~success 

fprintf('Goal Not Reached :-(\n') 

end 

save state_transition; 

save('matlab'); 

%% 

for rows=1:8 

start = getPose(); 

poseData = zeros(72,5)-1; 

for i = rows*(9+4+9):rows*(9+4+9)+9 

moveRobot(0.1,0,4); % move 0.4m 

poseData(i,1:3) = (getPose()-start)'; 

[idScan,rss,tags] = scanNetTags(reader,n); 

poseData(i,5)=tags; 

fprintf('Localising...............\t') 

poseData(i,4) = localise(centroidID, centroidRSS, idScan, rss); 

end 

% 

pause(1) 

%getPose() 

fprintf('Turning...............\t') 

for j=1:4 

%set_angle(-j*pi/(4),0.005) 

moveRobot(0,-pi/(4*2),2) 

poseData(i+j,1:3) = (getPose()-start)'; 

[idScan,rss,tags] = scanNetTags(reader,n); 

poseData(i+j,5)=tags; 

fprintf('Localising...............\t') 

poseData(i+j,4) = localise(centroidID, centroidRSS, idScan, rss); 

end 

% 

for k = 1:10 

moveRobot(0.1,0,4); % move 0.4m 

poseData(i+j+k,1:3) = (getPose()-start)'; 

[idScan,rss,tags] = scanNetTags(reader,n); 

poseData(i+j+k,5)=tags; 

fprintf('Localising...............\t') 

poseData(i+j+k,4) = localise(centroidID, centroidRSS, idScan, rss); 

end 

save('matlab') 

moveRobot(0,pi/(4*2),2*2) 

moveRobot(0.1,0,4); % move 0.4m 

moveRobot(0,pi/(4*2),2*2) 

end 

poseData 

%% 

% Disconnect and clean up the server connection. 

% 

fclose(reader);  

%delete(reader);  

%clear reader  

Explore Algorithm Function Implementation 
function [idObs,rssObs] = exploreReal(alien,steps,vMax,dt,scans,nActions) 

%[observations,observationsV] = 

exploreReal(readerObject,steps,vMax,dt,scansPerObservation) 

%   Detailed explanation goes here 

if nargin<6 

nActions=5; 

end 

mxTags = 20; 
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tf=round(rand); 

watchdog=0; 

pv=0.05; 

curr=1; 

  

  

if exist('idObs.mat','file') 

    fprintf('Loading previous observations') 

    load('idObs.mat') 

    idObs = cat(3, idObs, char(zeros(mxTags,24,steps))); 

    load('rssObs.mat'); 

    curr = size(rssObs,2); 

    rssObs = [rssObs zeros(mxTags,steps)]; 

    size(rssObs,2); 

else 

    idObs = char(zeros(mxTags,24,steps)); 

    rssObs = zeros(mxTags,steps); 

end 

fprintf('Start Exploring\n') 

for n=curr:curr+steps % Walk around observing states 

     

    % Update Progess Bar (Not necessary for correct execution) 

    if(mod(n,5)==1) 

        save idObs; 

        save rssObs; 

        fprintf('\n') 

        UpdateProgress(100*n/steps); 

        fprintf('\n') 

    end 

     

    % Read Visible Tags 

    [id,obs,tags] = scanNetTags(alien,scans); 

    % If you can see at least 3 Tags, then you can successfully localise (x,y,theta) 

    visible = (tags>3) && (sum(obs)>3500); % tags is (int) 

     

    if visible  % if there are visible tags 

         

%         id 

%         size(id) 

%         size(obs) 

%         tags 

%         size(idObs(1:tags,:,n)) 

        idObs(1:tags,:,n) = id; 

        rssObs(1:tags,n)=obs; 

             

        %Explore using randomly selected actions 

        action=round(nActions*rand(1)+0.5); 

        % Choose Action 

        [v w] = actReal(action, vMax,1); 

        % Execute Move 

        moveRobot(v,w,dt); 

        %pause(dt+0.6)      % Wait for bot to complete action + latency 

         

        watchdog=0; 

        pv=0.05; 

        tf=round(rand(1)); 

         

    else % ie no visible tags (then turn around) 

         

        v=0; 

        if tf 

            w=pi/4; 

        else 

            w=-pi/4; 

        end 

        if watchdog>10 

            v=pv; 

            pv=pv+0.1/10; 

        end 
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watchdog=watchdog+1; 

fprintf('Turning Around\n') 

% Execute Move 

moveRobot(v,w,dt); 

%pause(dt+0.25) % Wait for bot to complete action + latency 

end 

end 

% % Remove Empty Observations 

% fprintf('\nRemoving Empty Observations...\n') 

% empty = zeros(mxTags,1); 

% for i=steps:1 

% question = sum(rssObs(:,i)==empty); 

% if question==size(tag_list,2) 

% rssObs(:,i)=[]; 

%     end 

% end 

% rssObs = rssObs'; 

fprintf('Finished Exploring :-)\n') 

end 

Preprocess Algorithm (Custom Clustering) Implementation 
function [ index,centroids] = preprocess( obs, idString, nObs, nTags, match) 

%PREPROCESS Summary of this function goes here 

%   Detailed explanation goes here 

if nargin<4 

match=0.70; 

end 

index = 1:nObs; 

IDmatch=0; 

RSSdiff=0; 

centroids = -1.*ones(2,nObs,nTags); 

%centCount=0; 

count=0; 

for observation1=1:nObs-1 

for observation2=observation1+1:nObs 

if index(observation2)>observation1 && index(observation1)>=observation1 % ie not 

already clustered 

for iTg=1:nTags 

count=count+1; 

for jTg=1:nTags 

%Check ID match 

if 

strcmp(idString(iTg,:,observation1),idString(jTg,:,observation2,:)) 

%obs(1,observation1,iTg) == obs(1,observation2,jTg) 

IDmatch=IDmatch+1; 

RSSdiff = RSSdiff + abs(obs(2,observation1,iTg)-

obs(2,observation2,jTg)); 

%break 

end % if ID match 

end % for j 
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end % for i 

% Compute Similarity Score 

% observation1 

% observation2 

IDsc = IDmatch/sum(obs(1,observation1,:)~=0) 

RSSdiff/sum(obs(2,observation1,:)) 

RSSsc = 1-RSSdiff/sum(obs(2,observation1,:)) 

score = 0.5*(IDsc + RSSsc) 

match 

% Check if they match 

if 0.5*(IDsc + RSSsc) >=match % ie they match 

index(observation2)=index(observation1); 

fprintf('changed') 

%centroids(1,); 

else 

fprintf('Not changed') 

end 

pause 

IDmatch=0; 

RSSdiff=0; 

end % if index 

end % for observation2 

end % for observation1 

end % Function End 

Calculate Centroids Function (calCentroids) 
function [ centroidID, centroidRSS ] = calCentroids( IDX, idObs,rssObs, match) 

%CALCENTRIODS Computes the cluster centroids 

%   [ centroidID, centroidRSS ] = calCentroids( IDX, idString,observations) 

% 

%   See also preprocess, readData. 

if nargin<4 

match=0.5; 

end 

[nTags, ~] = size(rssObs); 

nClusters = max(IDX); 

centTags = round(nTags*(2-match)); 

centroidID = char(zeros(centTags,25,nClusters)); 

centroidRSS = zeros(centTags,nClusters); 

% Find All Unique IDs in each cluster 

for cluster=1:nClusters 

cTag=1; % reset centroid tag stack 

clusterIDs = idObs(:,:,IDX==cluster); 

for obsInClust=1:size(clusterIDs,3) 

tag=1; 

% while tag is not empty & while we havent checked all the tags 
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while tag<=nTags && ((clusterIDs(tag,1,obsInClust)-0) > 42) %&& 

((centroidID(cTag,1,cluster)-0)>42) 

unique=1; 

for i=1:cTag 

% if cluster ID already exists in centroidID 

if strcmp(centroidID(i,1:24,cluster),clusterIDs(tag,:,obsInClust)) 

unique=0; 

centroidID(i,25,cluster) = centroidID(i,25,cluster)+1; 

% centroidID(i,25,cluster)*1 

% i,cluster 

break; 

end 

end 

if unique 

centroidID(cTag,1:24,cluster) = clusterIDs(tag,:,obsInClust); 

cTag=cTag+1; % increment centroid tag stack 

end % if unique 

tag=tag+1; % increment tag location along the entire cluster 

end % while idString 

end % for Each Observation in the Cluster 

% Remove Outliers 

for t = 1:centTags 

if centroidID(t,25,cluster)<0.6*size(clusterIDs,3) 

% Remove tag ID (and consequently the RSS) from centroid 

% 0.8*size(clusterIDs,3) 

% centroidID(t,25,cluster)*1 

% pause 

for ix=t:centTags-1 

centroidID(ix,:,cluster) = centroidID(ix+1,:,cluster); 

end 

end 

end 

end % for all clusters 

%centroidID(t,25,:)*1 

% Delete Occurance Column 

centroidID(:,25,:)=[]; 

% Find Average RSS for each centroid 

for cluster=1:nClusters 

clusterIDs = idObs(:,:,IDX==cluster); 

clusterRSS = rssObs(:,IDX==cluster); 

tag=1; 

% For all tags in centroid 

while tag<=nTags && (centroidID(tag,1,cluster)-0)>42 

centCount=0; 

   for obsInClust=1:size(clusterIDs,3) 

cTag=1; 

while cTag<=nTags && (clusterIDs(cTag,1,obsInClust)-0)>42 

% if centroidID matches Observation in Cluster 

if strcmp(centroidID(tag,:,cluster),clusterIDs(cTag,:,obsInClust)) 

centroidRSS(tag,cluster)=centroidRSS(tag,cluster)+clusterRSS(cTag,obsInClust); 

% cluster 

% tag,cluster 

% centroidID(tag,:,cluster) 
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% cTag,obsInClust 

% clusterIDs(cTag,:,obsInClust) 

% centroidRSS(tag,cluster) 

% pause 

centCount=centCount+1; 

end 

cTag=cTag+1; 

end 

end % for Each Observation in the Cluster 

% cluster 

% clusterRSS 

% clusterIDs 

% centroidRSS(tag,cluster) 

% centCount 

centroidRSS(tag,cluster)=centroidRSS(tag,cluster)./centCount; 

tag=tag+1; 

end % while: all tags in Centroid 

end % for all clusters 

end % Function End 

Scan Visible Tags Function (ScanNetTags) 

function [idReturn, rssReturn, maxTags] = scanNetTags(t,n) 

%[IDstring, RSS, nTags] = scanNetTags(readerObj, numOfScansToAverage) 

%   Detailed explanation goes here 

%n=1; 

RSS = zeros(1,1); % ID&RSS 

IDstring = char(zeros(1,24,n)); % # Tags, 24 Char ID 

%ID eg. E200 9033 1317 0087 0490 E133 

maxTags=0; 

maxScan=1; 

% fclose(t); 

% fopen(t); 

if strcmp(t.status,'closed') 

fprintf('Attempting to re-establish t communications...') 

set(t, 'InputBufferSize', 5000); 

fopen(t); 

fprintf(t, 'alien'); 

fprintf(t, 'password'); 

% Set the RFID t settings 

fprintf(t,'PersistTime = -1'); 

fprintf(t,'NetworkTimeout = 65535'); 

fprintf(t,'TagListCustomFormat = IDK %i RSSI %m TIME %t;'); 

fprintf(t,'TagListFormat=Custom'); 

readerCommand(t,['time=',datestr(now,'yyyy/mm/dd hh:MM:ss')]) 

end 

%clearReaderBuffer(t) 

flushinput(t) 

for scan=1:n 

% Send Read tags command 

fprintf(t, 't'); 
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    % Wait for tag Data 

    dataLine = fgetl(t); 

    count=1; 

    while sum(find(dataLine=='K'))<=0 && sum(find(dataLine=='>'))<=0 && count<3 

        dataLine = fgetl(t); 

        count = count+1; 

    end 

     

    tagCounter=0; 

    % While there is still tag data read all of it and store it 

    while ischar(dataLine) && sum(find(dataLine=='K'))>0 

  

        tagCounter = tagCounter + 1; % increment # of tags in scan 

        if tagCounter>maxTags 

            maxTags = tagCounter; 

            maxScan = scan; 

        end 

         

        % Find Delimiters 

        delimIDx = find(dataLine == 'K'); 

        delimRSSx = find(dataLine == 'T'); 

  

        % Extract tagID 

        id = dataLine(delimIDx(1)+2:delimIDx(1)+2+28); 

        id(isspace(id))=[]; % Remove Spaces 

        % Store tag-ID 

        IDstring(tagCounter,:,scan)=id; 

  

        % Extract RSS 

        rssString = dataLine(delimIDx(1)+2+28+6:delimRSSx(1)-1); 

        RSS(tagCounter,scan) = str2double(rssString); % Store Tag RSS 

  

        % Get the next line 

        %dataLine = fscanf(t); 

        dataLine = fgetl(t); 

        %dataLine = char(fread(t)); 

        %[m,~,~] = fread(t); 

        %dataLine = char(m)'; 

        % reply = [reply word]; 

         

    end 

     

end 

  

% averageScan 

idReturn=IDstring(:,:,maxScan); 

rssReturn = RSS(:,maxScan); 

  

for t=1:maxTags 

    match=1; 

    sc=1; 

    while sc<=n && sc~=maxScan 

        totalTags=size(IDstring(:,:,sc),1); 

        for tagN=1:totalTags 

            if strcmp(idReturn(t,:),IDstring(tagN,:,sc)) 

                rssReturn(t)=rssReturn(t)+RSS(tagN,sc); 

                match=match+1; 

                break 

            end 

        end 

        sc=sc+1; 

    end 

    rssReturn(t)=rssReturn(t)/match; 

end 

  

rssReturn(rssReturn<1500)=0; 

fprintf('Visible Tags: %i\n',maxTags); 
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end 

 

Build Transition Algorithm Function in Implementation 
function [ state_transition, ntr ] = build_transition_real(alien,centroidID, 

centroidRSS,steps,dt,nActions,vMax,state_transition) 

%BUILD TRANSITION [ state_transition, ntr ] = build_transition_real(alien,centroidID, 

centroidRSS,steps,dt,nActions) 

%Makes the robot wander around building a state transition probability matrix for each 

action 

%   alien = alien reader tcpi/ip object 

%   centroidID = ID char matrix of centroids (numTags-by-tagIDcharLength(24)-by-

numStates) 

%   centroidRSS = RSS double matrix of RSS values (numTags-by-numStates) 

%   steps = number of iterations to build probability matrix (in the order of 

num_States*10) 

% 

%   function returns 

%   state_transition which correponds to the probability 

%   of transtioning from one state to another by executing the relevant 

%   action(dim-3) size is (numStates-by-numStates-by-numActions) 

%   [ntr] = number of new transitions (an indicator of entropy/unexplored space) 

  

num_States = size(centroidRSS,2); 

  

if nargin<7 

    vMax = 0.15; 

    state_transition = zeros(num_States+1,num_States+1,nActions); 

elseif nargin<8 

    state_transition = zeros(num_States+1,num_States+1,nActions); 

end 

  

%state_transition = sparse(zeros(num_States,num_States,nActions)); 

%state_transition = zeros(num_States,num_States,nActions); 

inc = 1; 

scans=3; 

tf=round(rand); 

watchdog=0; 

pv=0.05; 

ntr=0; 

  

%figure(3) 

for nn=1:steps % Wander around Building State transision probability matrix 

     

    % Progress Bar 

    if(mod(nn,5)==1) 

        UpdateProgress(100*nn/steps); 

        save state_transition; 

    end 

     

    % Read Visible Tags 

    [id,obs,tags] = scanNetTags(alien,scans); 

    % If you can see at least 3 Tags, then you can successfully localise (x,y,theta) 

    visible = (tags>2) && (sum(obs)>3500); % tags is (int) 

  

    if visible 

  

        % LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE> 

        pState = localise(centroidID, centroidRSS, id, obs); 

        %pState=cState; 

         

        % Choose Random Action 

        action=actGen(); 

        %action=round(rand*nActions+0.5); 

        if round(rand+0.35) % 85% of the time choose the least occured action 

            [~,action]=min(sum(state_transition(pState,:,:),2)); 

        end 

        [v w] = actReal(action,vMax); 
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% Execute Move 

% MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE><MOVE> 

moveRobot(v,w,dt); 

%pause(dt+0.6)      % Wait for bot to complete action + latency 

% Reset Watchdog 

watchdog=0; 

pv=0.05; 

tf=round(rand(1)); 

% Read Visible Tags 

[id,obs,tags] = scanNetTags(alien,scans); 

% If you can see at least 3 Tags, then you can successfully localise (x,y,theta) 

visible = (tags>2) && (sum(obs)>3500); % tags is (int) 

if visible 

% LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE><LOCALISE> 

cState = localise(centroidID, centroidRSS, id, obs); 

if cState==pState 

inc=inc/2; 

else 

inc=1; 

if ~state_transition(pState,cState,action) 

ntr = ntr+1; 

fprintf('New Transision: %f \tState: %f to State: %f \tAction: 

%f',ntr,pState,cState,action) 

end 

end 

% Update State Transition Matrix 

state_transition(pState,cState,action)=state_transition(pState,cState,action)+inc; % 

Increment Transition 

else 

state_transition(pState,num_States+1,action)=state_transition(pState,num_States+1,action)

+inc; % Increment Transition To Empty 

end 

else % ie no visible tags (then turn around) 

v=0; 

if tf 

w=pi/4; 

else 

w=-pi/4; 

end 

if watchdog>5 

v=pv; 

pv=pv+0.01; 

end 

fprintf('Turning Around\n') 

% Execute Move 

moveRobot(v,w,dt); 

%pause(dt+0.6) % Wait for bot to complete action + latency 

% Increment Watchdog 

watchdog=watchdog+1; 

end 

end 

%save('before_norm.mat'); 

% fprintf('\n...Normalising Probability Matrices\n') 

% % Apply Laplacian Smoothing 

% state_transition=state_transition+1; 

% % Normalising 

% state_transition = state_transition ./ repmat(sum(state_transition,2),1,num_States); 

%[state_transition]=normalise(state_transition); 

ntr 
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end 

 

Navigation Algorithm Implementation Function  
function [ found,state_transition ] = navigate(goal_state, nav_policy,reader,centroidID, 

centroidRSS, state_transition ) 

%[found, state_transition] = navigate(goal_state, nav_policy, reader, state_transition ) 

%   Detailed explanation goes here 

%Attempts to Navigate to a desired goal state implemented on the robot 

  

nStates = length(nav_policy); 

  

if nargin < 4 

    state_transition = ones(nState,nState,max(nav_policy)); 

end 

  

tf=0; 

pv=0.05; 

watchdog=0; 

  

found = 0; 

cState = 0; 

pState = 0; 

inc=1; 

dt=2; 

%tcount=0; 

%action=1; 

  

for nn=1:50 

     

    [id,obs,tags] = scanNetTags(reader,3); 

     

    visible = (tags>2) && (sum(obs)>3500); % tags is (int) 

     

    % Find the nearest state 

    if visible 

         

        pState = cState; 

        % Localise the vehicle 

        cState = localise(centroidID, centroidRSS, id, obs); 

  

        if cState==goal_state 

            found=1; 

            fprintf('Found Goal!!!!!!!!!!!!!!!! :-D\n') 

            break 

        else 

            action=nav_policy(cState); 

            [v w] = actReal(action); 

             

            if pState % ie Transition is valid 

                if cState==pState 

                    inc=inc/2; 

                else 

                    inc=1; 

                    if ~state_transition(pState,cState,action) % ie transition is 0 

                        fprintf('New Transision! State: %f to State: %f \tAction: 

%f\n',pState,cState,action) 

                    end 

                end 

                % Update State Transition Matrix 

                

state_transition(pState,cState,action)=state_transition(pState,cState,action)+inc; % 

Increment Transition 

                fprintf('State: %f to State: %f \tAction: %f\n',pState,cState,action) 

            end 

             

        end 



90 | 91 P a g e  

 

        % Execute Move 

        moveRobot(v,w,dt); 

        watchdog=0; 

        pv=0.05; 

        tf=round(rand(1)); 

        %pause(dt+0.5)      % Wait for bot to complete action + latency 

         

    else % If ~visible 

         

        if ~watchdog && pState % Increment only once 

            cState = 0; 

            % Increment Transition To Empty 

            

state_transition(pState,nStates,action)=state_transition(pState,nStates,action)+inc; 

        end 

         

        action = 'b'; 

        v=0; 

        if tf 

            w=pi/4; 

        else 

            w=-pi/4; 

        end 

        if watchdog>10 

            v=pv; 

        end 

        fprintf('Turning Around\n') 

        % Execute Move 

        moveRobot(v,w,dt); 

        % Incriment Counter 

        watchdog=watchdog+1; 

        pv=pv+0.1/10; 

        %pause(dt+0.5)      % Wait for bot to complete action + latency 

    end 

    % Check for looping 

if mod(nn,10) 

    save('state_transition'); 

end 

     

end 

  

save('state_transition'); 

end 

 

Localisation Algorithm Function Implementation 
function [ state ] = localise( idCentroids,rssCentroids,scanID, scanRSS ) 

%LOCALISE [ state ] = localise( idCentroids,rssCentroids,scanID, scanRSS ) 

%   Detailed explanation goes here 

  

[nTags,clusters] = size(rssCentroids); 

[snTags,~]=size(scanRSS); 

IDscore = zeros(1,clusters); 

rssDiff = zeros(1,clusters); 

  

% Start Scoring 

  

% for each centroid 

for cCount=1:clusters 

     

    idMatch=0; 

     

    maxTags = 1; 

    sTag=1; 

    % for each scan tag 

    while sTag<=snTags && (scanID(sTag,1)-0)>42 

         

        cTag=1; 
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% for each tag in Centroid/Cluster 

while cTag<=nTags && (idCentroids(cTag,1,cCount)-0)>42 

% if tag IDs match 

if strcmp(idCentroids(cTag,:,cCount),scanID(sTag,:)) 

idMatch = idMatch+1; 

rssDiff(cCount) = rssDiff(cCount) + abs(rssCentroids(cTag,cCount)-

scanRSS(sTag)); 

end % if tagID match 

cTag=cTag+1; 

if cTag>maxTags 

maxTags = cTag; 

end 

end % for each tag in Centroid/Cluster 

sTag=sTag+1; 

if sTag>maxTags 

maxTags = sTag; 

end 

end % for each tag in the scan 

IDscore(cCount) = (idMatch)/maxTags;%./snTags) + (rssDiff); 

% fprintf('Cluster: %f\tScore: %f\n',cCount,score(cCount)) 

% fprintf('ID Match: %f\tRSSsc: %f\n\n',idMatch,rssDiff) 

end % for each Custer/Centroid (cCount) 

% Eliminate Low ID scores from RSSscore (difference) 

maxScore=max(IDscore); 

for i=1:clusters 

if IDscore(i) < 0.7*maxScore 

rssDiff(i)=Inf; 

IDscore(i)=0; 

end 

end 

% Find minimum non-zero RSS Difference 

minDiff = 50000; 

for i=1:clusters 

if rssDiff(i)~=0 && rssDiff(i)<minDiff 

minDiff = rssDiff(i); 

elseif rssDiff(i)==0 

rssDiff(i)=Inf; 

end 

end 

% 

for i=1:clusters 

if rssDiff(i) > 1.3*minDiff 

%rssDiff(i)=Inf; 

IDscore(i)=0; 

end 

end 

[maxID,state]=max(IDscore); 

if maxID==0 

fprintf('Failed to Localise...\n') 

end 

end 
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