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The only way of teal advance in biology lies in the 

. taking as our starting point, not the separated parts of an organism 

and its environment, but the whole organism in its actual relation 

to environment, and defining the parts and activities in this whole 

in terms implying their existing relationships to the other parts 

and activities. 

J.B.S. Haldane. 

(cited in ref. 378) 
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SUMMARY 

This thesis describes an investigation, by computer 

simulation, into the nature of the metal ion binding to low molecular 

weight ligands in blood plasma. A successful attempt is made to 

acconnnodate the effects of metal protein binding on the computed 

distribution that is obtained. An evaluation of the results is 

undertaken. The value and some applications of the knowledge arising 

from this kind of study are examined. 

The collection, assembly and processing of the data is 

described. A computer program is written to cope with the very large 

equilibrium systems that are simulated. The experimentally deter-

mined values for the formation constants of the metal ion ligand 

complexing reactions in the biofluid are found in the literature. 

These are corrected whenever they are not applicable to. physiological 

conditions of temperature and ionic strength. Where no experimental 

values were available, formation constants for complexes that seemed 

likely to be important were estimated using certain types of chemical 

trend. 

The results of the blood plasma model may be sunnnarized 

as follows. Copper and ferric· iron are found to exist exclusively 

as ternary complexes except that the copper dihistidinato complex is 

important. With copper, these t.ernary co'mplexes always involve 

histidine whilst citrate plays an analogous role in the ferric complex 

formation. Calcium, magnesium and manganese do not appear to exist 

as ternary complexes. With these three cations the bicarbonate species 

predominate although the binding is weak; as a consequence of the 
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relatively high ligand concentration in plasma. Zinc and lead form 

both binary and ternary complexes. The ternary zinc cysteinate 

citrate complex is found to account for a significant percentage of 

the low molecular weight complex fraction of this metal. This result 

is in contrast to those of previous models. 
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INTRODUCTION 
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1.1 Motivation for the research. 

This thesis describes an investigation, by computer 

simulation into the nature of the metal ion binding to low molecular 

weight ligands in blood plasma. The study is motivated by the large 

number of biochetiticd syste111s which depend ofi metal ioh participation: 

and by the central and pervading role that is played by blood in 

maunnalian physiology. Attention is focused on this biof luid because 

it has been the subject of extensive research and so there exists in 

the literature not only a substantial background of information but 

also much of the necessary data. However, it is emphasised at the 

outset, that the kind of analysis developed for plasma may in principle, 

also be applied to other physiological solutions. 

The primary object of this research lies. in the elucidation 

of the equilibrium distribution of the complexes formed in multi­

component biosolutions by the transition metal ions copper(!!), iron(III), 

lead(II), manganese(!!) and zin:c(II). These metals all occur in 

plasma in very Small quantities. Their low concentrations in vivo 

are indicative of their catalytic function and are unrepresentative of 

their considerable biological importance. Total concentrations in 

normal human plasma fall between 50 and O,lµM (534) which means that, 

in general, experimental measurements are difficult and that, as yet, 

there is no practical method of determining the free metal ion 

concentrations. · In addition, the problems with experimental 

assessment of the equilibrium concentrations are heightened both. by 

the large number of potential ligands that occur in biofluids and 

by the fact that probes which interact chemically with the system 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

2. 

are likely to upset the very distribution one is attempting to 

monitor. For these reasons, simulation of the metal ion ligand 

equilibria in biofluids using high-speed computers constitutes the 

only current method of achieving the proposed objective. 

Meta:l ions in biofluids occur in a: number of distinctiy 

separate fractions each of which is characterized by the type of 

chelation involved. Apart from the non-chelated, free metal ions 

themselves, metals are bound both to low molecular weight ligands 

and to proteins. Further, the protein bound amount may be divided 

into two : a fraction in which the metal is loosely held and in 

labile equilibrium with other similar ions in solution a.nd the 

remainder which is tightly bound and therefore not exchangeable 

(see, for example, 552). To all intents, the latter non-exchangeable 

metalloproteins do not have any direct or dynamic part to play in 

the strong competition for the relatively scarce transition elements 

and thus, are of little immediate pertinence to the present study. 

However, the other protein fraction includes the large percentage 

of the bound but labile metal ions in the equilibrium pool and as 

such is likely to determine, at least in part, the concentrations of 

the low molecular weight complexes in the fluid. ·As the metal 

protein interactions are at present not sufficiently well characterized 

to incorporate them in a simulation of the whole system, this raises 

a fundamental obstacle which must be overcome or circumnavigated 

before a realistic picture of the detailed distribution of metal ions 

in physiological solutions can be constructed. A Significant portion 

of this work is consequently directed as establishing means whereby 

the effect of labile metal protein complexes on the rest of the 
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equilibrium system can be acconnnodated. 

Although the low molecular weight fraction of metal ion 

complexes is small in contrast to the amount of metal bound to protein, 

its significance in vivo should not be underestimated. There is a 

clear need for a detailed knowledge of the equilibrium concentrations 

of these complexes because, expecially in the case of the transition 

metals where the free ion concentration is always very small, complexes 

of low molecular weight ligands play an important background role in 

many vital biochemical and physiological processes (see, for example, 

534, 507). They are likely to be involved as intermediates when 

metal ions are inserted into or removed from metalloenzymes or . 

carrier proteins. There is a growing body of evidence which 

implicates them in the transfer of some metal ions across membranes. 

In addition, chelation is an effective means of keeping essential 

metals in solution and it can also be exploited in nature as part of 

a procedure for altering the potential of certain redox couples. 

In fact, the concentrations of low molecular weight complexes provide 

a foundation not only for the metal ion chemistry that takes place in 

·the biofluid itself but also, less directly, for the reactions and 

equilibria which are set up within cells supported by the medium. 

Finally, once the normal equilibriUm. state of the low 

molecular weight fraction has been successfully simulated, the stresses 

.which are imposed on the system by metal ion poisoning, deficiency or 

by drugs can also be investigated. This may throw light on the 

mechanisms whereby some of these imbalances exert their effects and 

consequently suggest ways of improving current therapy or of reducing 

undesirable side-effects. 
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1. 2 The biological role of metal ions. 

It is not easy to keep the biological significance of the 

transition metals in true perspective. This is well illustrated in 

the literature where those reports which deal specifically with metal 

ions in vivo tend to emphasise their indispertsible role whilst else-

where this is of ten completely neglected. The polarization of . 

viewpoints has also been intensified by attempts to correct the· 

inadequate impression which has been created by a predominance of 

organically-orientated investigations . (543, 536) • So, before 

focusing on the detailed biochemical mechanisms in which metal ions 

constitute an .. essential· part, it is as well to consider their overall 

po.sition in the life process. Hopefully, this will, to some extent, 

compensate for the bias which is almost inherent in a review of this 

subject and if, by reflecting that life is indeed chiefly 'organic', 

it highlights the imposing array of auxiliary services that the· 

transition metals provide, then it will have served a useful purpose. 

Of all that is known about the chemistry of life, little 

can be more impressive than the fact that the vast majority of the 

very considerable number of compounds employed in living systems 

consist of less than half a dozen elements. The molecules which 

can be constructed from only carbon, hydrogen, oxygen and nitrogen 

are infinite both in nUtliber and variety and it is primarily this 

flexibility which makes a chemical life feasible. These four 

elements account for more .than 99 percent of the atoms in a human 

body (301). However, in spite o.f all the organic possibilities, 

all biosystems employ to a greater or lesser extent a generous 
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selection of inorganic elements. These are used because they provide 

a wide range of additional chemical facilities. The importance of 

this inorganic contribution centres on the ability of most of these 

elements to exist in aqueous solution as stable ions. The transition 

metals in particular possess two additional features which have a key 

role to play in the overall biochemical scheme. These are the 

capacity to bond, co-ordinately and with a particular stereochemistry, 

to electron donors (especially oxygen and nitrogen) and the ability 

to set up easily reversible electron transfer systems. These features 

are by no means the prerogative of the transition metals, but their 

special usefulness arises because their reaction energies are of ten 

moderate enough for them to participate in cyclic processes (619) 

and because the ranges of properties which the series exhibits makes 

it easier to meet exact chemical requirements. Thus, the prominence 

of metals arises largely because without them, the full organic potential 

could not be biologically realized. 

A consideration of the pathways by which primary organic 

metabolites are interrelated and synthesised into the diverse and 

of ten sophisticated compounds required for biological growth, reveals 

that very many chemical reactions take place in vivo under conditions 

that can truly be described as astonishingly mild~ It is no wonder· 

that prior to.Wohler's preparation .of urea, popular scientific belief 

held that organic materials could only be constructed under the 

influence of a so-called 'life force 1 • In terms of the ordinary 

reactions conducted in laboratories~ it is not only difficult to 

imagin~ how all the life processes are so unerringly accomplished 

and the various syntheses so precisely controlled but it is also 
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hard to comprehend how so many transforniations take place with 

apparently minimal energy of activation. Today, with hindsight, 

it is clear that all living organisms have at their disposal a large 

number of catalytic mechanisms embodied, for the most part, in their 

enzyme activity. These catalytic properties together with the 

various energy transfer and storage systems prov:i..de the basic _tools 

employed in metabolism. lt is in both these sets of biochemical 

processes that the transition metals are intimately involved.· 

Throughout the scientific disciplines, generalization 

has proved an invaluable aid in understanding natural order so the 

fundamental trends in the biochemical properties of metal ions need 

to be considered before concentrating on individual systems. The 

classification of cations in a biological sense is not a, recent 

innovation for the pattern which emerges from the grouping of elements 

in the periodic table .is too clear to be obscured. During the last 

decade, however, the concept of a"fine delineation that emphasises 

biological features has been advanced, primarily by R.J.P. Williams 

(2, 95, 100, 73, 50). Using several selected characteristics, he 

has stressed the differences between the various types of cation 

whilst simultaneously pointing to the graduation of properties between 

them. The criteria used are essentially Pearson's hard and soft 

acid and base (HSAB) ·principles (35, 100, 86, 87; 101) but these 

are applied in conjunction with the generally observed biochemical 

nature of the metal ion in question. A particularly characteristic 

property called 'mobility' by Williams, describes the ef!se with 

which the ion is able to move about in vivo. Table l.l summarises 

the picture which is produced (50) and with some additional emphasis 
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TABLE 1.1. 

BIOLOGICAL CLASSIFICATION. OF CATIONS. 

CATION FUNCTION HSAB COMPLEX MOBILITY 
PREFERENCE STABILITY OF' IONS' 

SODIUM Charge Hard Weak Fast 
POTASSIUM Carriers oxygen 

anions 

' 

CALCIUM ·Structure Hard, Moderate Moderate 
MAGNESIUM formers and oxygen 

trigger anions 
mechanisms 

IRON Red ox Inter.,... Strong Slow 
COPPER catalysts. mediate 
COBALT nitrogen 

ligands " 

ZINC Super- Inter- Strong Slow 
acid mediate 
catalyst nitrogen/ 

sulphur 
ligands. 
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on the analagous trends within the transition series itself, provides 

a helpful background to the variation in the biological roles played 

by the individual elements. In strong contrast to the Group IA and 

IIA elements, the transition metals act predominently as redox 

catalysts and they are rather immobile in vivo because they form 

strong complexes, preferentially with nitrogen and sulphur don.ors. 

Zinc is somewhat exceptional in that the dlO ion is not prone. to 

a change of its valence state and so catalytic action is usually 

confined to its Lewis-acid nature. No doubt, unique abilities in 

this regard have promoted the evolutionary selection of this metal 

in spite of the fact that it is far scarcer than less familiar artd 

less used elements such as zirconium, vanadium, titanium and strontitµn 

(293). Manganese, at the opposite end of the first series, behaves 

more like calcium and magnesium. Consequently, its biochemistry 

is of ten more in line with these Group IIA cations than that of the 

other transition meta.ls (95). 

1. 2. 1 The essential elements. 

The transition metals are not the only 'trace' inorganics 

necessary for plant arid animal life although they are amongst the 

more abundant. The~e are, in total, twenty five elements presently 

regarded as essential and. these are listed in Table 1.2 (294, 301, 196, 

601). It can be seen that most of these appear in characteristically 

minute quantities and the curr.ent interest in trace element mechanisms 

follows from the recognition that importance is not a priol'i reflected 

in biological concentration. The major effe.cts produced by small 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

9. 

amounts of metal, in particular, have profound implications as far 

as nutrition, therapeutics and pollution are concerned. tt is 

only by understanding the processes involved and the consequences 

of disturbing the equilibrium balance that damage to delicate life 

mechanisms may be foreseen and thus avoided. Attempts to define 

the set of indespensib1e elements have been largely tnotbtated by 

the desire to ascertain the minimal nutritional requirements needed 

for good health. These have, however, also set the stage for 

investigation into the mechanisms whereby specific elements exert 

their vital properties. The ultimate criterion which determines 

whether a given element is essential, is of course, the detrimental 

effect on growth that is produced by the exclusion of the substance 

from every potential source and the reversal of such symptoms once 

the deficiency is corrected. Often, it is only when the function 

of an_ in vivo process is impaired that it draws attention to itself. 

Thus, the understanding of the normal role of trace elements is 

often aided by the disruption of their physiology. 

Recently, very sophisticated techniques have been devised 

to test the need for various elements and these efforts have been 

rewarded in tha,t the list of essentials which has been produced is 

now likely to be close to completion. The attainment of this· 

objective could hitherto never have been claimed with certainty 

because of the rapid rise in the practical difficulties associated 

wi.th diminishing concentrations. Those experiments in which the. 

growth of rats is retarded when they are subjected to a stringent 

trace element isolation (301) illustrate the problems; although 

the control animals are fed the same ultra-pure diet, they remain 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

10. 

healthy because they can pick up sufficient quantities of the screened 

mineral from their surroundings. However, there are good grounds for 

suggesting that there is a limit to the number of elements that 

mammalian life requires and that this will not be many more than the 

twenty five already known (nickel, aluminium and boron have been 

suggested as essentials but their status 1.s still uncertairt). 

The most pertinent factor is the evolutionary disadvantage suffered 

by a species which is dependent on scarce commodities (2, 301, 72)." 

Hence, the availability of an element must be weighed against its 

chemical usefulness. It is certainly no coincidence that the 

composition of the human body has some striking parallels with the 

composition of seawater and the earth's crust (294, 301). Also, 

solubility can limit biological utilization by preventing sufficient 

trace element uptake (2). Furthermore, the strong binding of 

nickel and chromium in the minerals of basic magmas has been used 
. . ' . 

to account for the dearth of these elements in living systems (548). 

On the other hand, once a metal ion has.been absorbed, chelation 

tends to prevent it being excreted so most organisms accumulate a 

broad spectrum of trace and ultratrace elements. Shell-fish, for 

example, are particularly prone to collecting heavy metals. Because 

nuclides such as polonium are about one million times more concentrated 

in the digestive glands of the rock-lobster, somewhat less. than 7 kg 

of this material is officially regarded in South Africa as a radio-

active source! (604, 605). 
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ELEM£NT _ ,_ 

1. OXYGEN 
2. CARBON 
3. HYDROGEN 
4. NITROGEN 
5. CALCIUM 
6. PHOSPHORUS 
7. POTASSIUM 
8. CHLORINE 
9. SULPHUR 
10 SODIUM 
I I. MAGNESIUM 
12. IRON 
13. FLUORINE 
14. ZINC 
JS. COPPER 
16. MANGANESE 
17. SELENIUM 
18. IODINE 
19. MOLYBDENUM 
20. CHROMIUM 
21. COBALT 
22. BROMINE 
23. SILICON 
24. TIN 
25. VANADIUM 

11. 

TABLE 1.2 

THE ESSENTIAL ELEMENTS 

GRAMS 
PER 
70 KG 
MAN 

45000 
13000 
7000 
2000 
1700 
700 
250 
115 
100 
70 
40 
4, 3 -
2,6 
2,3 
0,10 
0,013 
0,013 
0,011 
0,009 
0,003 
0,002 
-
-
-
-

PERCENT OF TOTAL NUMBER OF ATOMS 

IN MEN IN SEAWATER IN EARTH'S CRUST 

25,5 33 47 
9,5 0,001 0,2 

63 66 0,2 
1,4 - -
0,31 0,006 3,5 
0,22 - -
0,06 0,006 2,5 
0,03 0,33 -
0,05 0,17 -
0,03 0,28 2,5 
0,01 0,033 2,2 

""" - 4,5 
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- 0,0005 -
- - 28 
- - -
- - -



Univ
ers

ity
 of

 C
ap

e T
ow

n 

1.2.2. 

~ ,, .... 

The mechanisms of the biological activity of transition 

metal ions. 

A detailed review of the biomechanisms in which transition 

metals are an intrinsic part would require a. very lengthy exposition 

and is beyond the scope of this work. The field is growing rapidly 

and its development is well recorded in a number of collected reports, 

the most recent and comprehensive of which are· 'Inorganic Biochemistry' 

(1973), edited by Eichhorn, G.L. and the series on 'Metal ions {n 

biological systems' edited by Sigel, H. Here only an outline will 

be presented to indicate the substantial role of transition elements 

in vivo and to communicate several of the more fundamental ideas 

behind the simulation of the metal ion-ligand equilibria in biofluids, 

Evaluation of the metal complex concentrations in physiologic.al media 

a.nd a knowledge of how these concentrations are altered, either by 

accident or by design, tnay contribute considerably towards understanding 

the overall function of metal-protein systems. The inhibition of 

enzyme activity by heavy metal poisoning is today well known. Also, 

in the reversed serise, several investigations have concerned themselves 

with the effect of chelating agents on systems that are known to be 

metal ion dependent (154, 346, 347, 343, 549). In fact, it is the 

delicate balance of metal concentrations upon which optimttm health 

depends (534). Furthermore; the perturbation of these concentrations, 

within the normal limits, activate and inhibit particular metabolic 

sequences and thereby constitute the metal ion contribution to the 

incredibly complicated system of physiological feedback controls. 
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Mention of the role that enzymes play in the biochemical 

synthesis of organic compounds has already been made. It seems no 

exaggeration to claim they are the key to life process; almost every 

metabolic step is catalysed by one enzyme or another (551). Their 

retriarkable activity has been irttenseiy ittvestigated for many years 

and it appears, primarily, to be a consequence of the interplay .. 

between a number of their features rather than any particular one 

individually. The potential for modification in macromolecules 

generally, provides a variety which simply ~annot be matched by 

smaller systems. This is reflected in the astonishing range of 

highly specific tasks that enzymes perform. Their diversity is 

exploited in two ways the structure of the protein creates a 

geometrical environment in which ordinary chemical functions attain 

extraordinary properties (73) and the combination of groups, available 

from a broad spectrum of permutations, ensures that the individual 

parts are able to react together in a most synergistic manner (339). 

More specifically, a lowering of the activation energy for the 

desired reaction is accomplished by imposing a series of constraints 

on the catalysed mechanism. Amongst these are the introduction of 

strain in the grou~d state complex, the stabilization of intermediates, 

the immobilization of atoms involved in the bond breaking and making 

process and the advantageous positioning of high reactive functions 

capable of attacking normally inert sections of the substrate molecule 

(487, 372). In addition, the active site needs to be highly 

selective l;>ecause catalytic efficiency must be high for one set of 

reactions but low for all others (534). Breslow has pointed out that 

the organisation of the site and the reactive groups must preclude 

the possibility of the enzyme 'biting' other parts of itself (372). 
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FIGURE 1. 

CH CH-C-C-CH C 
2 2 10'H 9 'H a 2 1 

'1gure 1 A whimsical representation of the factors involved in selective enzymatic 
cxidotion 

t from 372 
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Both selectivity and reactivity have been associated with another 

feature of proteins, namely, the fact that they exist as polyelectro-

lytes with definite regions of opposite hydrophylic and charge nature 

(339, 73). These changes produce unusual states of salvation 

(possibly similar to the boundary between two phases) which can 

enhance the general hybridization of properties and thereby create 

a chemical system completely without analogy in the realm of homogenous 

solvents and low molecular weight reagents. A sobering perspective 

of these phenomenal catalytic powers is provided in a theory of their 

evolution that has been advanced by Black to describe. their contribution 

to the origin of life (562). This picture is well balanced by 

Mildvan when he notes that 'Before ascribing this combination of 

techniques to any undue wisdom of Mother Nature or her various male 
' 9 

consorts, we must recall that she has had 10 years to evolve 

2 enzymes while man has had but 10 years to comprehend and duplicate 

them. Thus, like ordinary mortals, the forces of nature plod 

slowly along by trial and error occasionally making and order of 

magnitude advance,, occasionally a mistake resulting in the disappearance 

of a species' (487). 

Although the trend has certainly appeared, the division 

between 'organic' and 'inorganic' has not been as extreme in the 

study of enzymology as in so many other biochemical areas. The 

reasons for this are mainly twofold; most classes of enzymes have 

at least one member which is metal ion dependent (73) and the 

investigations into these complicated systems have been enormously. 

aided by the fact that metals in the active centres provide a most 

convenient focus for a whole host of experimental probes. Since 

the met~l ion is so physically and chemically distinct from the bulk 
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of protein surrounding it, monitoring the variations which occur in 
I . 

its environment are facilitated by its presence. In this way metals 

have been instrumental in revealing much of what is known about the 

general mechanism of enzyme action (552, 545, 609, 561). Apart 

from the measurements which can be made on the properties of the 

naturally occurring ion, substitution of one metal for another is a 

powerful experimental technique which has only partially been 

exploited. Furthermore, a recent innovation extends available 

methods by synthesising ligands with the specific objective of 

labelling metal-containing enzymes with radioactive isotopes. The 

investigators forsee that 'The preparation of chelating agents 

whose complexes can interact, in some selected maimer, with biological 

macromolecules could make possible several new applications of 

metal ions as probes of biological systems' (614). 

Evaluated in terms of the special requirements for enzyme 

activity, the transition cations are remarkably well endowed with 

suitable chemical properties. No undue coincidence is implied by 

this because no doubt these attributes directed evolution's course. 

It is nevertheless true that the transition metals' biological 

importance is an outcome of the usefulness of a combination of 

their features. As they are most effective co-ordinators, their 

ability to bind several donors simultaneously enables them to 

transform bimolecular to unimolecular reactions. Also, the independence 

of their inner and outer co-ordination spheres can be utilized for 

~atalytic purposes (544, 487). Both their capacity to provide a 

reversible electron sink-and-source and their stereocherti~cal constraipts 

(which can be changed with oxidation state and other factors) are ideal. 
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While chelation of low molecular weight ligands is able to enhance 

their reactivity (338), macromolecules can exploit this effect to 

the full. So, it is not surprising to find that a broad range 

of metal-enzyme mechanisms have been described in terms of quite 

detailed aspects of the chelation at the active centre (581, 574, 

456, 601). 

For operational convenience, metal-enzyme interaction 

is classified on the basis of binding stability. Those proteins 

which hold the metal ion very tightly give rise to the so-called 

metalloenzymes which, typically, have sufficiently high binding 

constants to prevent the ion being extracted during the isolation 

and purification of the substance (349, 147). This property causes 

a stoichiometrie relation between the metal and the protein and has 
' 
i 

led Vallee and Coleman to deduce, 'that this unique association has 

specific biological significance' (552). The roles of haemoglobin, 

chlorophyll and vitamin B12 are good examples. On the other hand, 

numerous labile metal-protein interactions occur with no specific or 

exclusive affinity for certain ion types and these are denoted by the 

term 'metal-enzyme complex'. The chief role of the metal in such 

systems is often just to stabilize a special conformation of the 

protein (552, 363). In general, these enzymes may be activated by 

a series of different metal ions. A reversible, competitive 
! 

association with the metals is set up between the proteins and other 

ligands in solution. The equilibrium is easily displaced by powerful 

chelating agents which are therefore capable of inhibiting enzyme 

activity (552, 154, 346, 347). The re-activation which follows the 

replacement of the metal in question underlines the nature of the 
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metal's role and points to one of the possible means of controlling 

metabolic catalysis in vivo. Mildvan has suggested that metallo-

enzymes and metal-activated enzyme complexes can be distinguished 

b · b·1· 1 f 108 M- 1 (574). Th' d. ·d· y a sta 1 ity constant va ue o 1s 1v1 ing 

line, however, is somewhat arbitrary and it is important to remember 

that the 'stability of metal-containitig proteins, like that of 

simpler metal-ligand complexes, may be expected to span a considerable 

and continuous range of values depending of the number of donors and 

the geometry of the binding site' (552). Although the stoichio-

metry of metal-activated enzyme systems is not apparently cons.taut 

(as in the case of metalloenzymes), it has been noted that in their 

functional state they also have a 1:1 :1 ratio with respect to metals, 

enzyme sites and bound substrates (574). The enzymes in blood 

plasma which are activated or inhibited by metal ions appear in. 

Table 1.3 (576, 577, 552). 

Two additional aspects of metal ions in biological roles 

are worthy of specific mention although they are an integral part of 

the topics on energetics and synthesis which have been discussed. 

The first is the wide-spread formation of adducts of biologically 

important gaseous molecules by metals supported in a protein matrix. 

The phenomenon includes nitrogen fixation processes in which attachment 

of the molecule precedes its catalytic reduction and oxygen binding 

by haemoglobin or similar systems where reversibility is the essence of 

the reaction (582, 546, 541, 593, 401, 624, 483). The tremendous 

import of such processes on physiology is difficult to describe 

adequately. The second aspect which requires some mention, concerns 

the party played by metal ions in the structure and replication of the 

nucleic acids. Eichhorn and his co-workers have been amo~~st the 
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ENZYMES IN BLOOD-PLASMA WITH AN ACTIVITY THAT IS ALTERED BY METAL IONS 

ENZYME 

Alcohol dehydrogenase 

Aldo lase 

Amylase 

Alkaline phosphatase 

Arginase 

Ceruloplasmin 

Glycylglycine peptidase 

Glutamade-oxalacetate 
trans aminase 

Glutamate-pyruvate 
trans aminase 

Lactic dehydrogenase 

Leucine aminopeptidase 

Lipase 

Malic dehydrogenase 

Phosphoglucomutase 

Plasma amine oxidase 

Metal activators 

Zn++ 
++ ++ ++ 

Zn .· ; Fe ; Mn - ; 

Z ++ M ++ n ; g 
++ 

Mn ; 
Cu++ 

Mn++ 

++ 
Zn 

++ 
Mn ; 

Zn++> 

++ 
Cu 

C ++ N.++ 
0 ; 1. 

++ 
Mg 

Co++ 

! 
i 

Catalytic activity 

Alcohols into aldehydes 

Hexose diphosphate into triose phosphate 

Hydrolysis of starch glucosidic bonds 

.Hydrolysis of orthophosphonic monoesters 

Arginine into Ornithine 

Oxidation reactions 

Hydrolysis of glycylglycyl glycine 

Amino group transfer 

Amino group transfer 

Lactate into pyruvate 

Hydrolysis of peptides with free amino 
on N-terminal LEU. 
Hydrolysis of dicarboxylic acids (fat) 
Malate into oxalo acetate 

Glucose-1-phosphate to Glucose-6-phosphate 

Amino oxidation 

Metal inhibitors 

++ + 
Cu ; Ag 

Heavy metals 

Heavy metals 

Heavy metals 

Heavy metals 

++ ++ ++ 
Cu++;Zn ;Pb ,-
Hg . 
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most instrumental in formulating the evidence which shows that 'virtually 

every step in the utilization of the genetic code for the eventual 

production of the proteins specified by the code is governed in some 

way by the presence of metal ions' .(585), (542, 584), (231, 283). 

Possibly the most striking information in this regard is (a) the 

selectivity exhibited by certain ions which ensures that only de­

oxynucleotides as opposed to ribomtcleotides are incorporated in DNA 

synthesis, (b) the ability of divalent ions to stabilize the DNA 

helix and (c) the role played by copper and zinc cations in the 

reversible unwinding and rewinding of the DNA and, in particular, 

the proper alignment of base pairs which is brought about by 

chelation. 

1. 2.3 Mineral metabolism and homeostasis. 

Blood, as the chief distributor of nutrients, enjoys a 

prominent position in the scheme of metabolic activity and it merits 

attention amongst other reasons, simply because it is such a vital 

link in the processes of absorption, utilization and disposal. In 

many instances, this fluid acts not only as a transporter but also 

as a storage reservoir so it is appropriate to consider both these 

properties and specifically, to summarise the metabolism of the 

essential transition metals in this context. 

The word 'homeostasis' embodies a variety of ideas (602, 

603). The initial impression conveyed is almost invariably asso.ciated 

with the constancy exhibited by living systems, particularly with 
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regard to concentrations. In fact, this does reflect a fundamental 

connotation in that the well-being of an organism depends on limited· 

fluctuations in its 'internal environment'. Actually, the control 

of this constancy is more to the point. Furthermore, the control 

applies not only to concentrations but also to factors such as the 

organism's body weight, temperature, fluid volumes; blood pressure, 

respiration rate and so on. Anything which has a beating on the 

status of the 'internal environment' and which is subject to regulation 

is included. Moreover, no absolute constancy is necessarily implied 

because many homeostatic controls involve a systematic variation of 

the parameter irt question. If control is regarded as messages which 

positively alter a set -of characteristics of a receiver, then homeo­

stasis may be seen as a cybernetic feedback which, at the most 

elementary level, links some kind of sensor to an organ which is 

capable of affecting the change required to return the parameter to 

its proper level. This demands that variation in the parameter 

is likely or essential and that self regulation is'really the 

maintenance of a steady state. In terms of concentration, which is 

our primary concern, the controlling device must be able to alter 

the input or output of the substance either by directly influencing 

the supply or removal or py manipulating the amount stored in some 

kind of internal reservoir. 

As far as transition metal homeostasis is concerned, a 

complicated and interrelated system has evolved because no universal 

process is capable of regulating the whole spectrum of.essential 

elements and because trace quantities are particularly subject to 

severe disturbances as they lack any type of 'concentration buffering'. 
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Without a fairly advanced form of protection, inadvertent ingestion 

of small amounts of contaminant could easily result in poisoning.· On 

the other hand, even with the most effective means of avoiding 

excretion, natural losses of skin, sweat, blood, hair and so on would 

soon cause general deficiencies if the body's reserves were not 

regularly replenished. So, it is clear that a very fine balance 

between supply and demand must be set up and maintained. . Uptake 

of metal ions can be controlled by the secretion of chelators into 

stomach and intestinal fluids. Losses may be restricted by metal-

bindi1'g once the ion has been absorbed. Excessive quantities may 

also be rejected by trapping the metal in mucosal cells thereby 

ensuring it is lost. when the cell is finally sloughed. 
( . 

The differences 

in transition metal solubility, which are caused by the variation in 

pH along the gastro-intestinal tract,· can also be exploited. Moreover, 

when natural losses prove insufficient, activation of excretion 

processes in organs such as the kidneys provides an additional resort. 

Excretion is, in fact, the predominant means of homeostatic adjustment 

for cations except iron. It has been shown to be controlled, in some 

cases, by hormones produced in various, distant sensor glands (563). 

In spite of this knowledge, much remains to be learned about such 

controls. It is easily appreciated that an understanding of both 

regulators and the sensors involved would be advanced by an improved 

perceptiOn of the equilibrium or near-equilibrium conditions under 

which they Qperate. 

Although the characteristics of the transition: metals 

and proteins have been described in an attempt to show how the 

extraordinary powers of enzymes are achieved, the specific effects 
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of these systems on animal physiology and the actual biochemical 

processes in which they are involved have yet to be considered. 

Many of the individual aspects will be presented in the sunnnaries 

of copper, iron, manganese and zinc metabolism which follow but 

before concentrating on these, a broader perspective can be obtained 

by examining the role which they all play in connective tissue 

synthesis. The term 'connective tissue' means that bodily material 

which joins together the primary epithelial, muscle and nervous 

tissues (618). The eel.ls producing it may secrete either the solid 

of cartilage and bone or :the fibrous materials used in the construction 

of collag~n, elastin, tendons and skin. Only recently has the 

participation of trace etements in this area of metabolism become 

regarded ~s a general phenomenon with each of the most biologically 

important transition metals individually involved (447). However, 

there now seems little doubt that they all have their own particular 

part to play,·probably by their participation in at least one 

essential enzymic contribution. Both zinc and manganese are 

involved in the control of calcification processes (479, 436), whilst 

cobalt is implicated in lipid metabolism arid copper in the formation . 

of both collagen and elas~in (480). Iron is required for the 

hydroxylation of lysine and proline in protocollagen synthesis (482) 

and it has long been known that zinc is essential for rapid healing 

of wounds (616, 617). Both skeletal and postural defects associated 

with a reduction in tissue mucopolysaccharide content have been 

attributed to manganese deficiency which impairs at least two different 

enzyme systems (481). In general, an inadequate supply of any of 

the above mentioned minerals eventually leads to connective tissue 

disorders and in turn, to the variety of pathologies which such 
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breakdowns imply. 

Finally, there follows a short metabolic outline for each 

of the transition metals which contribute significantly tO the pool 

of low molecular weight complexes in blood plasma. The reader is 

referred to a selection of comprehensive accounts on the metabolism 

of the other essential minerals (553, 620, 371, 571, 572, 573, 527. 

528). 
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a) Copper (403, 567, 191, 596, 371, 587, 608, 610, 146, 530, 

553, 620, 478, 633) 

Due to uncertainty that the copper found in various organisms 

was possibly just a contaminant, this metal was not recognised as an 

essential element until the early nineteen twenties. Today, the 

established minimum requirei.nent for a human being is about two milligrams 

per day and due to widespread occurence of the mineral it is difficult 

to consume a balanced diet which does not fulfil these· requirements. 

Consequently, natural cooper deficiency has never been demonstrated 

to occur iri human beings. 

Absorption of copper occurs predouihutntly in the stomach and 
.,,_,. ...... , . 

upper intestine. This process is usually about 30 percent efficient. 

There is evidence for both active and passive transport through the 

intestinal .membrane. As certain ligands, especially amirio acids, 

increase absorption it 1s likely that chelation is involved and it is 

possible that such complexes are absorbed intact. 

Once the metal enters the bloodstream, it is transported by 

serum albumin to the liver where it is largely incorporated into 

ceruloplasmin·~ The degradation of this metalloprotein is possibly 

involved in the synthesis of cytochrome . oxidase but little else is 

known about its catabolism except that ultimately some of its copper 

is found in the bile. No doubt, much of the non-ceruloplasmin copper 

in vivo is complexed to protein and peptides. As is often the case 

with heavy metals, copper tends to accumulate in specific organs 

rather than appear evenly throughout the body tissue. The liver; 

brain, heart and kidneys contain, in rlecreasing order, the highest 

concentrations. 
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Whenever copper deficiency is induced either artifically, by 

genetic defect or other diseases it i$ associated with a pernicious 

anaemia in all the species examined. The exact function of the metal 

in this regard is not known but is thought to involve mobilization of 

iron from body stores, possibly by oxidase conversion of the ferrous 

to the ferric state. 

Important copper-containing enzymes include ceruloplasmin, 

cytochrome oxidase, monamine oxidase, tyrosinase, laccase, superoxide 

dismutase, uricase and ascorbic acid oxidase. Copper is essential 

in the formation of both elastin and collagen where it is involved 

in the cross-linking of chains and so deficiency results in defective 

connective tissue, bone disorders, lack of pigmentation and cardio­

vascular failure. It has long been known that copper is esserttial 

for the normal keratinization of skin. 

Excretion of copper is almost exclusively via the faeces 

and negligible quantities, appear i.n urine. Bile is involved in 

the homeostatic control of this metal and haif of the copper therein 

is bound to proteins other than ceruloplasmin. 
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b) Iron (566, 553, 419, 103, 295, 468, 396, 485, 597, 405, 

593; 138, 507, 344, 424, 400, 590, 174, 175, 442, 

443, 444, 458, 459, 620, 297, 298, 420, 522, 464, 

386, 6i3, 625, 589', 632, 441' 323, 172 
' 401' 661). 

If the theme propounding the essentiality of ma.ny transition 

elements has created the impression that all carry an equal priority, 

then this perspective should be corrected by even the shortest account 

of iron metabolism. That this metal is paramount amongst the trace 

element;s is clear whether assessment is made in terms of quantity or 
' 

with regard to the number and consequence of the functions for which 

it is physiologically responsible. This is well expressed by Neilands 

when he wrote. 'Aniong those elements essential to life, iron enjoys a 

status of extraordinary importance. It is involved in storage and 

transpo.rt of oxygen, in electron transport, in the metabolism of N2 

and H2, in the reduction of ribotides to deoxyribotides (precursors 

of DNA), in oxidation and hydroxylation of a h.ost of inorganic an.d 

organic metabolites and, finally, in the decomposition or utilization 

of hydrogen peroxide'. It is no wonder that he is drawn to the 

conclusion· that 'Life, in any form, without iron is in all likelihood 

impossible' (103). 

The homeostatic control of iron is quite different from all 

the other'essential transition elements principally because there is, 

except in circumstances ·of the moErt chronic overload, negligible 
' --

physiological ability to excrete the metal. This is-probably an 

evolutionary consequence of the fact that only about one fifth of the 

dietary intake can actually be absorbed. Because such an amount only 

just replaces the natural loss, (a little through the faeces, and the 
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rest in blood, sweat, tears and so on) there is obvious difficulty in 

avoiding negative iron balance. As a matter of concern, iron 

deficiency anaemia has been said to be second only to protein malnut"".' 

rition in the number of people it affects. Lack of iron depresses 

growth, causes a reduced resistance to infection and as a consequence 

of iron's contribution to the body's energy supply processes, produces 

fatigue, listlessness and palpitation upon exertion. Thus,, this 

mineral needs to be very carefully husbanded. In stark contrast to 

the fate of the porphyrin moeity from haemoglobin, the metal is 

removed iri the protein degradation and returned to the st(!rage pool. 

The critical nature of the position is illustrated by the difference 

in the daily minimum requirements of adults : whilst men need about 

1,0 mg/day and can usually satisfy this demand, pre-menopausal women 

need 1, 5 mg/day and are often iron deficient. 

As the homeostatic mechanism for iron does not. lie with 

excretion,' investigation into the process and control of absorption 

has been both determined i:lnd intense. However, other than establish-

ing that absorption does indeed regulate the induction of the metal, 

according to iron status, little has been unequivocably discoveted 

that may suggest exactly how this is managed. Absorption of iron 

takes place throughout the intestine but mainly in the duodenum and 

many studies have shown that the principal factor involved -i;-~-i.mply 

that of iron solubility. Anything which tends to make the ironmore 

soluble thereby preventing hydroxide precipitation as the pH rises 

upon exit from the acid stomach, will promote iron absorption. So, 

ferrous forms are preferred to ferric. Furthermore, both chelators 

and reducing agents are almost always beneficial. Ascorbic acid is 
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well established for its enhancement in both these regards. 

Alternatively, substances,.which form insoluble salts such as phosphate, 

oxalate and phytate (froin cereals) depress absorption, as do excessive 

quantities of citrate which encourage polymerization. Returning to 

factors which could regulate the process, no humoral substances whose 

effect is not attributable to indirect action, have been: identified. 

Moreover, the hypothesis that the phenomenon is controlled by.conform.:. 

ational changes, induced by saturation, in the plasma iron-binding 

protein, transferrin, has failed to be verified in vivo. 

Suggestions which assign the control to substances secreted into the 

intestinal milieu have pr'.oduced a fair measure of confusion and much 

controversy. Such secretions have been claimed to regulate passage 

of iron through the intestinal membrane by chelating the.metal whilst 

it is rendered soluble in the acid content of the stomach. . Whether 

this binding enhances or inhibits absorption, however, is, in the face 

of contradictory assertions, unclear and governance by such means is· 

currently thought to be unlikely. More attractive is the concept 

that iron remains solubilized, if not by co-ordination to low molecular 

weight-ligands, then by binding to a mucopolysaccharide which can . 

carry the metal to the mucosal surface. In any event, the macro­

molecular ligana is unable to penetrate the membrane. Hence, iron 

must be released either to acceptor sites on the intestinal brush 

borders or to small chelators such as citrate, ascorbic acid or 

low molecular weight sugars • 

. As soon as the iron enters the bloodstream, it is rapidly 

bound into the primary transport form, transferrin. This metal-protein 

complex has great stability because the free iron concentration must 
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be kept very low to prevent precipitation and bacterial growth. 

Actually, the co-ordination is of sufficient strength to prevent 

iron exchange even between transf errin molecules unless the swop is 

mediated by a powerful ligand such as citrate. As yet, the exact 

mechanism of physiological extraction from this avid protein is not 

known but is likely to involve one or more of the following 

alterations : (i) reduction of the tnetal (ferrous ion is bound only 

weakly, if at all), (ii) transfer to low molecular weight adducts 

and (iii) conformational '.changes of the protein. Whether ligands 

are involved or not, it is evident at this stage that the investi­

gation irito both the absorption and transport processes would benefit 

'from any information pertaining to the concentrations of low molecular 

weight iron complexes in vivo. 

Most of the transf errin iron is delivered to the erythroid 

marrow for haemoglobin synthesis but a significant fraction is trans­

ported to the liver for storage and other purposes. At the marrow, 

the iron is transferred into reticulocytes which show.a marked 

preference for. the iron-laden transferrin over the apoprotein. 

Radioactive studies have shown that absorbed metal can be incorporated 

in haemoglobin within a mere four hours and that a complete dose is 

utilized within a week.· It is this production of red blood corpuscles 

which is first affected by iron deficiency. Indeed, the reduced 

concentration of haemoglobin in erythrocytes is a principal indication 

of this common condition. Haemoglobin·normally comprises just less 

than seventy percent of the body's total iron whilst myoglobin, the 

oxygen birider in muscle tissue, holds about three percent. Most of 

the remaining iron is stored as.ferritin, a macromolecule consisting 

of a relatively li:irge inner sphere of ferric hydroxyphosphate polymer 
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~urrounded by protein. Chelating agents have als.o been implicated 

in the transfer of iron •to. arid from the ferritin reservo~r. 
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c) Manganese (553, 568~ 481, 462, 620, 257) 

The metabolism of copper, iron and zinc have all been 

far more extensively inv~stigated and are much better understood 

than that of manganese. Even today, knowledge of manganese in 

physiology exhibits a not.iceable dearth of unifying prl.nciples. 

With the single exception of skeletal defects, manganese deficiency 

symptoms are relatively difficult to induce. This state of affairs 

is due, in large measure, to the ability of other tons, particularly 

magnesium, to substitute for this transition element with on~y a 

small deterioration in biochemical efficiency. By no means does 

this imply that manganese is a superfluous mineral ( it was recognised 

as essential about 1930) but the systems in which it participates can 

. often continue operating with an ,!lterrtative metal ion activator. 

per day. 

The normal intake of manganese is about five milligrams 

Precisely where absorption best takes place is still not 

clear but the locality is certainly not as specific as it is with 

iron. Excretion provides the principal means of homeostatic control. 

It seems well established that much of the metal that is returned to 

the intestine is reabsorbed and subsequently again excreted. This 

cyclical procedure underlies many of the experimental difficulties 

which are encountered with this mineral. Excretion takes place 

largely by way of the bile. · Hence, manganese in urine is usually 

negligible. Most mallimals have a particularly high tolerance towards 

overdoses of the metal because excretion is both quick and thorough. 

This efficiency introduces its own disadvantages, however, because 

the excretory process, although it can be moderated, cannot be curtailed 
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completely so any cut-off in the dietary supply brings on the symptoms 

. of deficiency. 

Manganese exists chiefly as the divalent ion but provided 

the trivalent form is stabilized by some complexation, it alsb appears 

in vivo and has an important role to play. Concentrations of the 

mineral are highest in bone, pituitary gland, mammary glands and 

liver, in that order. The state in plasma is rather unclear but 

some maaganese is definitely bound to transferrin. Most of the 

remainder is associated with, another 131-globulin or serum albtimin. 

The chief enzyme systems in which it participates are pyruvate 

carboxylase (for co2 fixation), arginase, isocitrate dehydrogenase 

and glycosyl transferase. This last enzyme is responsible for an 

essential step in mucopoly-saccharide synthesis and it is this which 

causes the connective tissue defects which are brought on by manganese 

deficiency. Apart from the skeletal abnormalities mentioned, other 

effects which arise from deprivation of this ·metal are the development 

of congenital ataxia and a loss of balance due to defects in the 

construction of the inner:ear. 
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':(553, 293, 569, 349, 529, 479, 362, 289, 371, 

620, 5, 555, 616, 617). 

The occurrence of zinc in living material is quite universal 

and whilst this in itself pointed to the metal's essentiality, general 

acknowledgement of its indispensibility to life was not achieved until 

1934 because the widespread appearance also made this difficui.t to 

prove. The minimum daily requirement is still not well. established 

as deficiency is highly unlikely to develop in persons receiving an 

average diet. The figure is probably upward of five milligrams per 
' 

day compai;-ed with a normal daily intake of·· between ten 'anti" fifteen 

milligrams. Death from zinc deficiency has never been observed 

although severe ill-effects which commonly include lesion~ of the .. ' ' . 

skin, skeletal defects, r:eproductive organ abnormalities; dwarfism 

and hypogonadism are often associated with a general malnutrition. 

' 
Accordingly, these have b:eennoted particularly in the Middle East. 

Absorption of the metal occurs chiefly in the distal 

portion of the small intestine. Once again, complexation to low 

molecular weight ligands has an important function because zinc 

solubility drops sharply as it moves from an acid to a neutral 

environment. Amino acids, peptides and. some synthetic chelating 

agents increase absorption in contrast to phosphate and phytate which 

·form insoluble compounds with the metal ions. 

In blood, about eighty percent of the zinc is held . in 

the erythrocytes (almost all of this is contained in carbonic anhydrase), 

fifteen percent occurs in the plasma and approximately three percent 

in the leucocytes. ThP.re is considerable exchange of the metal 
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between the red blood corpuscles and the plasma pool. 

The bones (which are.the major storage locality), tissues of 

the eye, the prostate gland and skin all exhibit high concentrations 

of zinc. 

The remarkable acceleration in the healing of wounds which 

follows zinc administration is well known, and has been attributed 

to the metal's role in connective tissue synthesis. Zinc has long 

been ~~garded as an integral part of insulin although this is no 

longer accepted implicitly because of the impossiblity of an in vivo 

investigation in the absence of the metal. The number of zinc 

metalloenzymes and metal-activated enzyme complexes is legion, amongst 

the more important being carboxypeptidase, carbonic anhydrase, 

alkaline phosphatase, uricase, arginase, enolase and the alcohol 

malate and glutamate dehydrogenases. 

Most of the e~cretion of zinc is in the faeces although 

significant amounts are lost in sweat and skin. Somewhat less than 

ten percent of the dietary intake appears in urine. Clearance rates 

vary widely from one organ to another. Homeostatic control .resides 

primarily with excretion but there is evidence that regulation is 

also imposed upon absorption in spite of the fact that the absorption 

mechanism probably does not involve an active transport. 
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1.2 .4 Transition metals and disease. 

In their discussion about the implications of trace metals 

in human diseases, McCall et aZ. have commented that the 'trace metals 

are more 4iverse, more interdisciplinary, and, often, more misunderstood 

than any other group of cpnstituents essential to biological function' 

(478). Now, although this is, indeed; applicable to all trace 

mineral biochemistry, it is particularly pertinent in the context of 

metabolic malfunction. Whilst an enormous volume of data has been · 

collected .on the fluctuations of metal concentrations- in: vivo that 

occur witq_ a host of illnesses, it is difficult to co-ordinate this 
' . I I . 

t . . -

information and to formulate hypl)'theses that .~y suggest :ti}:>w ·an~ 
. ~.· 

why these concentration changes take place. · The authors 'mentioned 

above, go on to say that trace metals 'have been implicated in 

diseases since it was first shown that metals.were an integral part 

of metabol;i.sm' and that there 'are few diseases of any consequence 

which are ~ot accompanied by changes in the concentration of one or 

more trace.metals in some tissues or body fluids'. Yet, even today, 

very few diagnostic techniques based on trace metal imbalance have 

been developed. Whilst there.are statistically significant .increases 

of copper and to a lesser degree, decreases of zinc with most patho~ 

logical conditions, a large number of patients in each category 

exhibit values that are well within the normal ranges (631). The 

picture is further complicated by the tr~atment of diseases with drugs 

that may alter metal ion distributions by chelation (478). 

Before the implications of the trace metal ·involvement 

in human diseases can begin to be appreciated, a great deal must still 
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be learned about the normal metabolic interrelationships that exist 

between trace metals •. Once again, there is very little theory upon 

which to hang a good deal of experimental observation. In fq.ct, only 

a few principles have emerged. Reports of antagonistic and sympathetic 

relationships between different metals abound in the literature. For 

example, e:Jtcess dietary zinc can induce a copper deficiency which then 

upsets the metabolism of fron and thereby causes anaemia (567). Also, 

the effects of copper and .other heavy metal excesses can be, at least 

partially, alleviated by zinc supplementation (569, 343). The inter-

relationships of iron with other metals have been the most investigated 

(596, 523, 626, 627)~ The link between copper and iron metabolism is 

most important as it involves haemoglobin biosynthesis; the ferroxidase 

activity of ceruloplasmin releases iron from the body stores (547). 

The action of heavy metal poisons is believed to be due, in part, to 

the repta.e.~~h:t of benevolent ions from pt'.otein and enzyme systems. 

Some interaction between different metals is attributable to competition 

for common intestinal absorption pathways (see, for example, 627). 

Also, it appears that the ratio between two metal concentrations in 

living systems is often ritore important than their absolute values (606). 

Although transition metal concentrations in vivo are 

commonly observed to change during many pathological conditions, it 

is often difficult to establish the extent to which an imbalance is 

a 'cause' rather than art 'effect' of the disease and its symptoms. 

·Nevertheless, for the purposes of this discussion, one may distinguish 

three situations in spite of the 'fact that there is actually a grad-

uation between them. The first is the most clear-cut. This is 

because it is the extreme situation of poisoning or deficiency which 
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is imposed' by an unbalanced diet. Obviously, such circumstances are 

ultimately responsible fo~ all the symptoms which accompany them. 

The second is similar to the first in that the effects of poisoning 

or deficiency are also induced but in this case, these are due to a 

defect in the primary homeostatic control of a metal ion. The over­

all result is still, clearly, too much or too little of the metal in 

question. The third situation also entails alterations in the 

concentrations of metal ions as a consequence of the disease but it 

differs from the others in that the source of the disorder does not 

necessarily involve metal :ions directly. The imbalances result 

from the disturbance of many related physiological reactions. 

Furthermore, the changes are less inclined to pivot on a single type 

of metal ion and the direction of the stress is not so pronounced 

because concentration upsets are more of an 'effect' than a 'cause' 

of the disease. A knowledge of metal ion participation in sicknesses 

belonging to the third category is likely to yield the richest reward · 

because those cases in which there is a more direct metal involvement 

are relatively rare. At the same time, the very fact that the trends· 

are less definite means that they are less consistent and harder to 

monitor, systemize and understand. 

Cancer is an excellent example of a disease in the 

third category. This notorious and intensiveiy studied disease is 

almost invariably associated with high zinc concentrations and low 

copper contents (293). Cancer cells, therefore, have a greater need 

.for exogenous zinc than their normal counterparts (638). They 

usually show elevated potassium levels, reduced calcium concentrations 

and lower pH (638). Furst outlined the relationship between metals, 

ligands and cancer in 1963 (.620). Since then, chemical carcinogenesis 
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as well as cancer therapy has been increasingly associated with both 

metals .and ligands. Most non-metallic carcinogens are potential 

chelating agents which may, for example, inhibit enzyme systems and 

thereby initiate or promote the malignancy. · On the other hand, 

many therapeutic agents i:ire also potential metal ion binders and may 

be effective because they are able to transport the ions in question 

into or out of the neoplastic cell (320). There are few transition 

metals that are not potentially capable of inducing cancer (637) but 

this should be viewed in light of the fact that many widely used 

materials, some as innocent as glucose, have been made to produce 

malignancies in test animals. Conversely, a range of metal anti-

tumour compounds is well known (72). Some platinum complexes, 

especially, are spectacularly effective in certain cases although 

these 'are not likely to be a panacea for all cancers' (320). They 

are believed to proceed ~y.way of interaction with nuclear DNA. In 

this regard, stereo specificity has proved to be an important and 

intriguing factor. Other chelates, espec'ially some involving 
' . 

copper, are alSo thought.to exert their selective cytotoxic activity 

by inhibition of DNA synthesis (638). The investigation into the 

mechanisms whereby metals and ligands encourage or suppress carcinoma 

has now reached the stage wher.e the actual design of drugs has crossed 

the threshold of f:asibility. D.R. Williams has reveiwed metal ions 

and amino acids in this context (82). Such a coalition between 

chemistry and medicine is a po~erful defence again~t disease and 

so it is hoped that the present research project can contribute towards 

this goal. There are many possible applications. For example, one 

triay inves~igate the nature of the actual complex of the metal.which 

exists.in vivo. It should not be forgotten that in biofluids many 

species will be sufficiently labile to undergo modificad.on, by ligand 
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substitution. Thus, the administered compound is not necessarily 

the active form. 

Other diseas.es in which metal ion concentrations 

are characteristically disturbed but which cannot be classified as 

an expression of metal deficiency or poisoning are numerous. 

Representative examples include Diabetes, Encephalitis, Hodgkin's 

disease, Parkinson 1 s syndrome., Rheumatoid Arthritis and Schizophrenia 

(294, 494, 491, 489, 490, 191, 293, 470). This does not inean that metal 

ion intake cannot influence the condition. On one hand, heavy metal 

poiso,ning can initiate or intensify the symptons (e.g •. in Parkinson's· 
• I ' 

syndrome (294)).whilst in:different circumstances, metals and metal 

complexes may alleviate the condition (e.g. copper armbands and 

bangles are popularly thought to be beneficial in many Rheumatic 

illnesses and although this is difficult· to substantiate scientifically 

there is a growing body of evidence in support .of .the contention (e.g. 

493)). Rheumatoid arthritis, in fact, serves as a good reminder of 

the complicated interplaY, of metal ion reactions in physiology which 

must be unravelled before systematic chemical therapy can begin to 

succeed~ Conflicting opinions as to the cause, treatment and the 

role of metal ions in this disease abound (see, for example, 469, 492, 

495,. 496). In this regard, consider the relationship between iron 

and copper metabolism. Few signs of Rheumatic affliction are more 

characteristic than anaemia (471). The cause of this is an inability 

to utilize iron body Stores. This is bewildering because ceruloplasmin 

levels are often raised and, as mentioned, iron mobilization is one 

of the vital functions of the metalloenzyme (472, 497, 494). It is 

also tempting to speculate about the connection between copper-

orientated therapy and thia ceruloplasmin increase but the same irtcrease 
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is commonly observed during most inflammatory diseases so a direct link 

is by no means certain (Meyers, O.L., private communication). 

Attention may now be focused on those pathological conditions 

which are associated with actual metal poisoning and deficiency. In 

addition to cases which arise from an unsatisfactory metal·intake, 

there is a number of physiological disorders which specifically inter­

fere with the normal inorganic homeostasis control processes (474). 

Apart from the fact that a physiological malfunction may affect only 

a limited part of a mineral's metabolism and thus deplete or poison 

only a few body compartments, the consequences of too much or too little 

metal in vivo are obviously largely independent of the cause. For 

this reason, these two categories will now be considered together. 

As outlined in Section 1.2.3, insufficiency of essential 

metals deactivates enzyme systems and thus, impairs the growth of a 

large variety of body ti~sues. This factor is primarily r.esponsible 

for the specific physiolc;>gical.defects observed in metal deficiency 

diseases. Menkes's kinky hair disease, for example, arises from a 

genetic defect which prevents the proper absorption of copper. It 

causes arterial degeneration, cerebral degeneration, hypothermia, 

peculiar hair changes and bone lesions (622, 357, 403, 628, 6). 

Fortunately, there is no counterpart of this condition known in either 

zinc or manganese metabolism (474). Iron deficiency and the anaemia 

that results, have been dealt with in some detail (see, Section 1.2.3 

and additional references 598, 599, 600). In all cases of deficiency, 

it is clearly desirable to be able to raise the bodily or compartmental · 

metal concentrations. Section 3.2.4 indicates a possible means where-

by the simulation of metal ion distributions in biofluids can indicate 

how low molecular weight complexes could be set up to bypass defective 
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absorption pathways and introduce metal directly into the bloodstream. 

There is no ~oubt that a combination of effects contri- · 

butes to the consequence of metal ion poisoning, whether this is the 

result of excessive intake or physiological disorder. The disruption 

of enzyme systems by malevolent replacement of ·essential types of 

metal ion is probably the most serious factor. It certainly underlies 

a large number of the symptoms which arise from this kind of bio-

chemical trauma. The strong affinity for many biochemical sites by 

metal ians in general may severely :interfere with numerous delicate 

organic. processes whenever these must take place in the presence of 

high concentrations of the ··offending element. This could be over and 

above those instances when an essential metal ion is lost by competitive 

substitution. Many reviews detail the toxic. eff.ects of the whole range 

of trace elements (for two of the more recent, consult 343,549). 
. . 

· For examp~e, mercury, cadmium and lead all interfere with cerebral 

pyruvate iltetabolisni and s·imulate thiamine deficiency (343). It is 

also kno~ that lead toxicity interrupts the synthesis of both haem 

a.nd globin; not surprizingly, this leads to anaemia (343). Under 

chronic conditions, all metals tend to be deposited in certain organs. 

This is obviously lethal unless arrested and medically reversed. 

The toxicity of excess metal ion has also been suggested to be due, 

at least in part, to the alterations which they can induce in 

cellular membranes. Changes in function and permeability are 

produced, especially by copper (623). 

As far as severe metal overload is concerned, it is 

sufficient to consider just two of the more important conditions which 

belong to :this pathological category. They serve as good illustrations 
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of the type of problem which may arise. The first of these diseases 

is particularly pertinent in the Southern African context as it is 

ubiquitous amongst the Bantu peoples of this subcontinent. It is called 

Siderosis (468). It differs from other iron overload conditions, such 

as idiopathic haemochromatosis, in that it is not brought about by 

some abnormality in mucosal behaviour. The overload results from gross 

excesses of dietary iron; between 100 and 200 mg pet day are commonly 

ingested. This is to be compared with a daily requirements of about 

1,5 mg and a normal Western diet which contains somewhat less than 20 mg 

per day (386). The iron stems from cooking pots and drums which are 

used to prepare food and an alcoholic, home-brewed 'beer'. The 

staple catbohydrate diet makes matters worse because the polysaccharides, 

by complexation, keep the metal solubilized in the relatively alkaline 

intestinal fluid and appear to transport the metal directly through 

the mucosal barrier. Once the iron binding capacity of the plasma 

transferrin is exceeded, the metal begins to be deposited in a number 

of organs, particularly the liver and urinary excretion increases 

markedly (405). It is estimated that the majority of Bantu suffer from 

Siderosis and that oyer 20 percent are severly affected (468). It is 

noteworthy that the normal, protective mucosal blocks are not infallible 

and, in fact, are clearly overwhelmed. This suggests.· that ir9_p. 

deficiency anaemia, a far more frequent occurence, may possibly 1'e 

corrected by a therapeutic strategy based on a knowledge of how the 

mucosal mechanism is by-passed. 

The other example of metal overload which is to be 

considered, is Wilson's disease. Here, copper levels are elevated as 

a result of an inability to discharge the metal from the liver (191). 

This syndrome, otherwise known as hepatolenticular degeneration, has 

been the subject of many I;typotheses but .to date, none of these can be 
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accepted as proven (403). Like most other inborn errors of metabolism, 

this rare disease is inherited in a recessive manner (341). Although 

a complete set of. symptons is not conmon to every case of Wilson's 

disease, the very large majority of victims exhibit a variety of 

neurological abnormalities (such as tremor, dystonia and ataxia) with 

cirrhosis of the liver .and less ofteri, cartilage disorders (341). 

Most patients are about twenty years old when the condition is first 

detected although this is quite variable (191): The uncontrolled 

disease is lethal and sometimes swift but once again, this is subject 

to little uniformity (530). Death usually results from haemorrhage 

and liver failure. Copper concentrations are then invariably found 

to be elevated in the brain and the liver. The kidneys also usually 

show increased copper levels whilst plasma values are reduced as a 

secondary effect of the characteristically low·ceruloplasmin concen-

trations (_191). Failure to incorporate copper into this metallo,... 

protein is. a most Significant aspect of the disease but the exact: 

reason for this and its actual role in the consequences of the disease 

are still unclear. The presence of a protein with increased copper 

binding capacity could explain most clinical observations; it would 

appear that the defect must occur prior to both the excretion of copper 

and its incorporation into ceruloplasmin (403). This hypothesis 

has re.cently been supported by evidence for such a copper binding 

macromolecule but this has still to be confirmed (640). Although 

rare, Wilson's disease has been vigorously investigated (see, for 

exariiple, 341, 191, 352). In this regard, it provides a perfect 

·example. of·the contribution which research into physiological disorders 

can make towards the understanding of both normal and abnori:ital 

mineral metabolism (.341). 
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FIGURE 2 

H:mdwriting of X. Y., a patient with \Viwm's di!ie:L"(!: (upper) af lt·r 0111? year of 
infrrmittent treatment \\·ith BAL, und (lower) again after 20 month:; of trcat.mcnt with 
1>-penic:ilL-unine HCI, 1800 mg daily. 

t frcim 342 
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Today's growing concern with pollution is certainly a 

most powerful factor educating the man in the street towards some 

awareness of the biological implications of the heavy metals. In 

particular, the toxicity of many non-essential trace elements has 

been emphasized, sometimes to a point of hysteria. It has been 

primarily described in terms of industrial waste and the contamination 

of consumab.les. Whilst there is no denying the seriousness of both 

these instances, a better balance would recognize that all metals, 

even the most essential, are lethal in high concentration. Moreover, 

it would be wise to reflect that cases of acute poisoning represent 

only one side of the problem. 'Still unknown is the influence that 

small amounts of such substances have on man when ingested or inhaled 

over a prolonged period .of time. Yet, this is probably the most 

important aspect of trace substance exposure' (549). One of the 

most frightening thoughts about this type of long term intake concerns 

the mental and psychological consequences. Metals tend to conce.ntrate 

in all body organs and the brain is no exception. MetalS are implicated 

in a number of intellectual disorders artd in general behaviour (see, 

for example, 473, 513, 430, 432). A short consideration of lead, 

alone, will suffice to illustrate the point. Bryce-Smith has questioned 

the adequacy of modern food regulations pertaining to this metal (431). 

He claims that lead causes brain damage and produces .a hyperactivity 

with a predisposition towards delinquent behaviour. This is supported 

by a study of lead blood levels of prison inmates compared with those 

of normal, city-dwelling compatriots (430, 432). These and other 

similar results merit deep concern, especially wheri once focuses on 

the high lead concentrations which have been found to accumulate iJ:l 

the blood of people residing close to some motorways in Britain. (634). 
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Before leaving the topic of pollution and heavy metal 

toxicity,· it is difficult to refrain from commenting on those indiv{duals 

who, discontented with general background concentrations, wilfully 

expose themselves to considerable additional amounts of cadmium, 

nickel and other trace metal poisons. Cigarette tobacco contains 

relatively high concentrations of these substances. So, even 

moderate smokers annually inhale several times the amount of nickel 

required to induce tumours in rats (549). Inhalation, in fact, is 

a most efficient means of absorbing trace metals. 

Although in this discussion little mention has so far 

been made of the role of medical chelating agents, it is clearly· 

often desirable to administer a drug in order to remove unwanted 

metal ions. Some such compounds in everyday use are deferoxamine 

and penicillamine• The former helps in cases of iron overload (402} 

whilst penicillamine is the currently accepted treatment of Wilson's 

disease (342). In fact, the overall development of therapeutic 

ligands has not been neglected (7, 402, 236, 534, 536, 537, 188, 229) 

but until recently there has been a distinct lack of systematic 

approach. Progress has been largely a matter of trial and error, 

although occasionally compounds were suggested by analogy. Thus, 

even today, there are relatively few medical chelating agents in use 

and these tend to exhibit general rather than specific binding 

properties. For example, BAL (2,3 - dimercaptopropanol alias 

British Anti-Lewisite) was originally developed to treat the toxic 

effects of Lewisite (an arsenical mustard gas used in World War I) 

but has since been administered quite widely to counteract a variety 

of heaV'y metal poisons. _Unfortunately, both EDTA (ethylenediamine-
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tetra acetic acid) whic:h is usudly taken·as its daughter compound 

calcium disodium edetate and penicillamine are also non-selective. 

·These drugs are all well established and therefore enjoy an advantage 

because the risk inherent in the use of any drug is obviously 

greatest when it is first introduced. However, it should not be 

difficult to appreciate that a search for new ligands,· especially· for 

those which are able to discriminate between different metal ions, 

could produce some substantial improvements~ Indiscriminant. ligands 

tend to remove essential ions such as"zinc in addition to· the toxic 

ones. Moreover, many chelating agents are themselves poisonous, 

particularly in high concentrations •. So, a systematic drtig design 

mus.t attempt. to overcome both these limiting factors. In this 

regard, a number of principles are being increasingly recognised. 

Hard and soft acid and base properties must be exploited (534, 224). 

Whenever possible, drugs should be built from non-toxic sub-units 

such as amino acids which are harmless after the compou11d has been 

biologically degraded. Efforts to understand and simulate the 

binding sites of nature's metal-carrying macromolecules are potentially 

most rewarding. Both of the last two principles have been embodied 

in the synthesis of a peptide with which it .is hope to improve upon 

penicillamine irl the treatment of Wilson's disease (641). The tripep­

tide mimics the copper binding site of serum albumin and therefore, 

should be able to compete effectively with the protein in vivo. It 

is expected that the copper complex will be small enough to cross the 

biological membrane in the kidneys and hence, be excreted. Another 

development with much potential is the construction of cyclic molecules 

with selective ion binding in the interior of the ring (398). By 

matching the size of any chosen metal ion to the internal diameter 

" 
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of such a ligand one hopes to ensure that it tvill discriminate in a 

pre-determined manner. Furthermore, the lessons which can be learned 

from medical chelating agents already in use should not be overlooked. 

For instance, in the search for powerful ligands it is easy to rieglect 

the fact that unless ternary complexation formation is possible, the 

chelating agent may be unable to extract the ion from its Jl;lacro-

molecular transporting agent. It has been suggested that the exist-· 

ance of a ternary complex is a necessary stage in the migration of. 

copper from serum albumin to the penicillamine complex (269). If 

this is indeed the case, both denticity and ligand bulkiness are 

factors which should be taken into consideration. Finally, the 

performance of metal chelating agents in biofluids may be evaluated 

by computer simulation. 

Section 3.2.4. 

This. is considered in some detail in 
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1.3 Blood and metal ion transport. 

A comparison of the number of pages devoted to a synopsis 

on many of the body fluids by that excellent publication Documenta 

Geigy 'Scientific Tables' (577) clearly reveals th~ superiority of 

blood over the other fluids as far as accumulated knowledge is 

concerned. The sheer bulk of the data that has been collected 

about blood reflects both on its importance and on the relative ease 

with which it may be sampled and studied. The biological functions 

of this fluid are many and varied (618, 606). A means of supplying 

nutrients and removing wastes is inherently necessary whenever organs 

and tissu~s are physically separate. Thus, the movements of meta­

bolites throughout the body is, obviously, a most fundamental concern. 

Bloods' role in respiration, alOne, for example, requires counter­

currents of oxygen and carbon dioxide. The homeostatic function 

of blood involves a variety of controls in addition to general service 

as a storage reservoir. These include acid-base homeostasis, body 

fluid balances and temperature regulation. Blood is also a key 

factor in the body's defence against infection. 

Whole blood consists of a pale, straw-yellow fluid called 

plasma in which the platelets and the red and white blood corpuscles 

are. suspended (618). The suspended particles are called 'the 

fortned elements' of the _blood. The platelets are cytoplasmic particles 

without a nucleus and are involved in the blood clotting process. 

The red blood corpuscles or erythrocytes also have no nucleus; their 

chief constituent is haemoglobin. They transport oxygen from the 

lungs to the tissues where it is used. On the other hand, the white 

cells or leucocytes do have a nucleus. They.are primarily concerned 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

51. 

with the protection of the body from infection. Healthy adult males 

usually have a whole blood volume of about 5 litres, approximately one 

third of which is occupied by the formed elements (577, 618). Blood 

plasma consists of just over 91 percent water and about 7 percent 

protein (618). 

7 - 7,Sg/lOOml 

The total protein concentration of plasma is between 

(606). Inorganic salts and low molecular weight 

organic metabolites constitute most of the small plasma fraction 

remaining. 

618). 

total. 

There are. three types of plasma protein in mammals (606, 

The first is albumin, which accounts for over half of the 

This is a multipurpose macromolecule but is especially 

responsible for the maintenance of the osmotic pressure between the 

tissues and the blood vessels. Next, there are the globulins. These 

also have more than one function.. They are responsible for the 

transport of lipids, hormones and sugars. Many of they-globulins 

are antibodies. The third type of plasma protein is fibrinogen. 

This particularly elongated macromolecule is a major contributor 1n 

the coagulation of blood. This coagulation is actually a most 

fascinating and complicated process which involves ~any so-called 

'blood clotting factors' including some a- and. S-globulins, as well 

as calcium ions. Blood serum is the liquid which is exuded from 

blood during the coagulation. It differs from plasma in that the 

f ibrinogen is converted to fibrin during the clotting and is thus 

removed from the fluid (608). The relative sizes and shapes of 

the plasma proteins are shown in Figure 4 (from 618). 
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1.3 .1 Metal binding proteins in blood plasma. 

Proteins are the major transporting agents for metal ions 

in blood plasma. The protein-bound metal ion fraction is insignificant 

only for sodium and potassium. The percentage of these alkali metals 

attached to macromolecules is very small riot only because their bind­

ing is weak but also as a consequence of their relatively high plasma 

concentrations (575). With calcium and magnesium, the metal ions 

complexed to protein are of ten in lower concentration than the free 

ion but, especially for calcium, the magnitudes of both these fractions 

are similar (577). ln the case of the transition metals, however, 

proteins bind the very large proportion of these elements in plasma. 

The fraction of cations bound to low molecular weight ligands is 

invariably small. This is particularly true of the transition 

elements copper, iron, lead, manganese and zinc, with which this 

'thesis is concerned. Nevertheless, Laurell has pointed out that 

even though a certain type of cation affinity may predominate, this 

does not exclude the possibility of the smaller fractions 'possessing 

a much higher specific activity in certain biochemical processes and 

thereby being of great physiological importance' (575). On the other 

hand, the disparity between the various metal ion fractions of plasma 

is of concern because the behaviour of the low molecular weight 

fraction may easily be dominated by metal-protein interaction. The 

protein bound metal £raction thus merits further consideration. 

The protein which is most likely to control or seriously 

affect the low molecular weight distribution Of most metals in blood 

plasma is albumin. This is not only because it has a relatively 

high concentration. Serum albumin has the least specific cation 
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affinity of all the important metal-binding proteins. Apart from 

anything else, it has a high net negative charge at physiological 

pH (190). In fact, the interaction of serum albumin with a whole 

range of metals has been experiment.ally investigated (see, for example, 

22, 23, 24, 28, 31, 32, 33, 160, 178, 445, 446). It is potentially, 

a most powerful binding agent for the large majority of biologically 

important metals. As it contains numerous, 'hard', carboxylate 

groups, it is particularly well suited to co-ordinate the ions of 

calcium and magnesium, both of which appear in much larger concentrations 

than. the transition metals. This protein is thus a dominating factor 

in the percentage of alkaline-earth ions in plasma which are protein 

bound.. However, it also possesses, a:t its amin.o-terminal end, a 

copper-binding site of great importance in copper metabolism (31, 173, 

177, 178, 180, 181, 190). It is this site which carries the metal, 

after it has been absorbed into the bloodstream, to the .liver for 

incorporation into ceruloplasmin. In addition to serum albumin's 

role as a transporting agent for essential ions, it also has been 

·demonstrated to be able to moderate the toxic effects of metals (623). 

Moreover, it also binds a number of organic metabolites which would 

otherwise be difficult to keep in aqueous solution. The most important 

of these are bilirubin and the fatty acids; the free concentration 

of these hydrophobic molecules is maintained at about 1/5000 of their 

total plasma value by binding to serum albumin (190). Plasma trypto-

phan, three quarters of which is also attached to albumin protein, 

is the only amino acid markedly affected in this manner (556, 239). 

Serum albumin, witha molecular weight of some 65 000 daltons, is 

formed in the liver (190). It is assembled from free amino acids 

by the normal ribosome mechanism for protein construction (190). 

'The synthetic machinery performs the remarkable feat of selecting 
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. and linking all 575 amino acid residues of· albumin within about one 

minute' ·(190). The albumin concentration in blood serum is some 

42g/l or about 650µM~(190, 577). 

With the exception of a normally very small quantity of 

haemoglobin which is firmly bound toa protein called haptoglobin 

(575, 644), almost all the iron in plasma is bound to tratisferrin. 

The percentage of this metal which is not attached to macromolecules 

is so minute that many authors have claimed that transferrin holds 

the entire plasma store of iron (see, for example, the discussion 

··about this in reference 169). A consideration of the ferric hydroxide 

solubility product shows that at physiological pH, the free Fe3+ ion 

concentration cannot exceed about 10-16M. (560). So, the need for 

a specific carrier to maintain iron in a soluble and atoxic form is 

quite clear.. In fact, to prevent bacterial growth, even lower free 

ferric ion levels must be achieved (99). It is thus not surprizing 

that transferrin binds this metal with an affinity that leaves little 

for distribution amongst the other iron chelating agents in plasma. 

The biological significance of trartsfertin has meant that this B1-

globulin has received much experimental attention (589, 485, 99). It 

has a molecular weight of about 90 000 daltons (353). With its 

concentration of about·30µM. (575~ 200), transferrin is the most pre-

dominant B-globulin in plasma. Titration data, various spectrophoto.-

metric techniques, optical rotatory dispersion studiesf the effects of 

chemical modification and electron spin resonance measurements have 

all been combined to throw light on the metal binding structure of 

the protein. Co-ordination by three tyrosyl residues, two to four 

nitrogen ligands and one bicarbonate ion appear to be involved in 
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. h . ; 3+ . d" . t e reaction with Fe at each b1n ing site. Two of the nitrogen 

donors are believed to belong to imidazole residues. There has beeri 

much controversy about the role of bicarbonate in the transferrin 

iron-binding (179, 409, 410) but the evidence seems to favour attach-

ment of this inorganic species to the protein rather than directly 

to the •etal (179, 589). There are two ferric ions bound by each 

transf errin molecule but the equivalence of the binding sites and 

thus of the two binding constants is also controversial (485, 589, 

404). A number of workers have attempted measurements and although 

their exact magnitudes vary, both values are very large. Under 

physiological conditions of pH and co2 tension, these lead to an 

apparent equilibrium consta:nt of 5.1023 M""' 1. (162, 611). Transferrin, 

in fact, binds most of the transition metais but these are all easily 

displaced by ferric ion {27, 184). Even ferrous ion is only weakly 

co-or~inated (463). This fact suggests a means whereby the iron may· 

be liberated from transferrin in vivo. A simple mechanism is necess-

ary because there is no evidence for any special enzymic process for 

this dissociation in body tissue (99). Other possible means of 

release are listed in Section 1.2.3. The importance of chelation 

in iron ~etabolism particularly in the removal and exchange of iron 

from transferrin, is also discussed therein. 

Neither the nature nor the concentration of all the metallo-

proteins in plasma are known. this is for the most part due to the 

very small abundances of some of these substances. Whereas the more 

important metalloproteins of copper, iron and zinc have been extensively 

characterized, spectrographic and chromatographic work by Hinnnelhoch 

et aZ. indicate that metal loproteins of, at least, manganese and nickel 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

56. 

FIGURE 3. 

RELATIVE DIMENSIONS OF. VARIOUS PROTEINS 

·~ 

Albumin 
69,000 

..._.. 
. a, - Lipoprotein 

200,000 

Scale 
. . . 

IOmµ No Cl Gbcose 

• Hemoglobin 
68,000 

13,- Lipoprotein 
~300,000 

Fibrinogen 
400,000 

-. ... 
Y- Globulin 

156,000 

~ 
A • Globulin 

90,000 

Diagram showing relative dimensions and molecular weights of blood proteins. 'the molecules 
of albumin. globulin and fibrinogen are elongated bodies of about the eame diameter but of very 
different lengths according to their molecular weights (E. J. Cohn (1945), Sci .. in Pr~~~ 4~ 319). 

t from 618 
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also exist (559). They point out that, in addition, there may be 

other metal::..binding proteins containing the three first-mentioned 

cations. For example, they note the possibility of an iron-binding 

protein in addition to transferrin. 

The major copper-containing metalloprotein in plasma is 

ceruloplasmin (J 44, 133) • This protein with a molecu.lar weight of 

about 150 000 daltons, contains.between six and eight copper atoms per 

molecule, half of which are in the cuprous state and cannot be oxidized 

without denaturation (580, 141). Some reports of other copper-

binding proteins have appeared but remain to be confirmed (645, 640). 

·Zinc in blood plasma is known to be consistently attached to albumin, 

transferrin and an a.2-macroglobulin (557, 345). Immunoglobulin G 

also appears to bind this cation (557). However, approximately two 

thirds of serum zinc is associated with albumin. This 'loosely.,... 

bound' fraction represents the primary transport form (646, 345). 

The state of manganese and lead in plasma is less clear. Both these 

metals are certainly bound by albumin (28, 155, 332). Manganese, 

particularly, can occupy some of the unfilled iron-binding sites of 

ttansferrin (184, 99). However, general interaction with the multi­

tude of donor groups in proteins will ensure .that all cations in blood 

will associate, albeit to a limited extent, with the whole spectrum 

of plasma proteins (see, for example 225). 

l • 3 •. 2 The low molecular weight complexes in plasma. 

Although most of the transition metal ions in blood plasma 

are protein-bound, it is chemically ~ecessary that the macromolecules 
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compete for these cations with all the low molecular weight ligands 

in the biofluid. Hence, the proteins participate in an equilibrium 

which must exist between the free metal ions and the full variety of 

possible complexes. The free ion concentration and the low molecular 

weight complex fraction may be very small. Indeed, with a number of 

the transition elements, if not all of them the concentrations 

concerned are below the level of analytical detection:. Nevertheless, 

the small complex fraction and more especially, the distribution of 

the metal ion amongst the various low molecular weight chelators are 

of great int:erest, as outlined in Section 1.1. 

Great effort has been expended·in numerous studies designed 

.to demonstrate; experimentally, the existence of the low molecular 

weightmetal complex fraction. Many attempts have even been made 

to elucidate its nature. Neumann and. Sass-Kortsak initiated this 
. . 

movement (135), Consequently they have often been quoted in support 

of other experiments and in various argtnnents concerning the low 

molecular weight fraction. These workers showed that a substantial 

number of amino acids compete effectively with serum albumin for the 

binding of copper. They proposed that the amino acid bound fraction 

had a physiological role in the biological transport of the metal. 

They also suggested that under normal conditions histidine would be 

the amino acid primarily involved in the formation of mixed amino acid 

copper complexes in the serum. Now, whilst it is not intended to 

dispute their findings, it is important at this stage to point to the 

hazards which militate against attempts to draw physiological conclusions 

from this type of experiment, especially if these are in any way 

quantitative. The investigators mentioned measured the percentage 
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of radioactive copper in the supernatant fluid after ultracentrifugal 

sedimentation of the protein and the copper protein complex. They 

showed that this percentage was dramatically diminished in the absence 

of serum amino acids. Thus, these ligands ate responsible for most 

of the copper which 'escaped' ultracentrifugal sedimentation. 

Hence, they are implicated in the formation of any low molecular 

weight fraction. However, whilst care tas taken to utilize physio­

logical concentrations of the amino acids in the experiment, the 

nature of the technique requires considerably larger than physiological 

doses of copper. In fact, the copper to albumin molar ratio used, 

only produces the pertinent effect convincingly when it is ranged 

upward of 0,5 (this represents approaching saturation of the specific 

copper binding site of the protein!). The applicable plasma ratio 

is actually less than 0,002 (see 144 for the non-ceruloplasmin copper 

and 190 for the albumin concentration). It is clear that under t.he 

extreme experimental conditions, the copper distribution amongst 

low molecular weight ligands need not necessarily be anything like 

their physiological counterpart. This criticism is applicable 

to a number of similar studies (for copper: 280; for zinc: 140; for 

iron: 131; 200, 169). In spite of these difficulties, there is no 

doubt that the. transition metal ions not bound to protein will be 

largely co-ordinated to low molecular weight ligands, probably as 

ternary complexes. 

In much of the earlier work on metal complex equilibria 

in plasma, the presence of low molecular weight complexes was ignored. 

This omission calls the interpretation of many experiments into doubt 

because the investigators did not take into account all the equilibria 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

60, 

that could be disrupted. Pertin (369) cites the 'typical experiment 

where plasma was dialysed against large volumes of buffer' (his example 

is reference 133). He notes that 'amino acids would be progressively 

removed by diffusion across the cellophane membrane until only the 

protein remained to bind exchangeable copper; such an experiment does 

not provide information about the nature of metal complexes in the 

original plasma'. In fact, this sort of comment is applicable, to 

differing extents, to many experimental techniques which are applied 

to the study of metal ions in physiological solutions. Biological 

investigators, in general, would be well advised to consider the 

degree to which equilibrium disruption may influence their results. 

Furthermore, this is pertinent to a number of reported studies which 

have been concerned with the type of low molecular weight.complexes 

that are formed in plasma. Unless exact physiological conditions are 

set up and strictly maintained, one may.easily upset the equilibrium 

and alter the concentrations one is attempting to measure. This 

explains the discrepancies found between certain theoretical simulations 

and reported experimental studies (369, 340, 166). In fact, there 

is no valid comparison. However, whilst complexes produced under 

pseudo- or non-physiological conditions are not necessarily the same 

as those formed in vivo, investigations such as those referenced (340, 

166) can yield a valuable insight into the real situation provided 

they are interpreted with caution. 

One of the most interesting insights into the biological 

role of low molecular weight complexes has been described by Osterberg 

(319). It concerns the biological specificity of copper and zinc ions. 

His calculations reveal that the mixed amino acid complexes of copper 
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may account for the zinc metal-activated enzyme systems which occur 

in physiological solutions. A superficial appraisal could easily 

lead to the conclusion that zinc would compete ineffectively with 

copper ions. Indeed, the latter metal is certainly capable of 

forming very strong complexes so some means is required to ensure 

that enzyme sites are reserved for zinc. Osterberg demonstrates 

that most. protein binding of copper would not take place in the . 

presence of histidine and other amino acids because the mixed ligand 

complexes would be formed preferentially. Thus, many protein· 

sites would be left available for zinc occupation. Osterberg 

also shows that the zinc mixed ligand complexes .are incapable of 

a role analag.ous to' that of the copper compounds. 
~ .~ -- ·. 

This and similar 

types of calculation may be facilitated by accurate compu~_er simulations 

of the low molecular. weight distribution of cations in biofluids. 
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1..4 Models. 

In the sense employed in this thesis, a model is anything 

which simulates a real system. It i.s a construction which attempts 

to imitate reality by representation of the system.' s various parts 

and of the interrelationships which are manifest between those parts. 

Models come in a variety of forms. Sometimes they are reai but they 

may also be. imaginary. ·The models of science. ate often mathematical; 

the rigorousness of a mathematical formulation helps to avoid both 

errors and ambiguities. Models have an important role to play in 

mankind's efforts to describe the physical universe. In fact, they 

are an integral part of the scientific method. This philosophy 

requires· that hypotheses, drawn up in the light of observation, be 

used to make predictions which are then confirmed or refuted by 

further experiment• In this context, the behaviour of the model 

constructed on the basis of the hypotheses and manipulating the early 

observations·as data, constitutes the prediction. Typically, the 

model is subjected to a new set of circumstances. If it reacts 

towards them in the same way as the real system, the hypotheses are 

to some extent substantiated. If it does not, they must be rejected 

or modified. By repeated application of this procedure involving 

extensive re-evaluation in terms of a broadening horizon of experimental 

observation, the hypotheses become accepted. Finally, many 

complementary hypotheses are fashioned into a single broad explanation. 

This is called a theory. The entire scientific method depends on 

an ability to predict future observations. Furthermore, these 

observations should not be a simple re-arrangement of the old data 

By manipulating the constraints on a model it is often po~sible to 
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generate predictions which are by no means obvious because they depend 

on the relationships which exist within the system. These, then, enable 

one to design new experiments that test both theories and hypotheses 

extensively. 

One of the foremost applications .of computers in science 

today is model testing. During the last two decades, these machines 

have been increasingly recognised as an essential scientific tooL 

In the field of chemistry alone, computerization has revolutionized 

many areas of research - N.M.R. studies, X-ray crystallography and 

ab initio molecular orbital calculations, to mention just a few. The 

idea that computers are merely a convenience has been steadily replaced 

by an awareness that their advantages of speed, calculation reliability 

and vast data storage capacity endow them with capabilities which 

cannot be equalled. The ease with which computer models can be 

varied illustrates this unique potential. In the pre-computer age, 

the enormous quantity of work which simulation often required precluded 

the thorough analysis which models can now receive. A good example 

of this, applied in the determination of formation constants, is the 

recent PSEUDOPLOT program (317). Essentially, this provides a 

convenient means of evaluating one's postulated choice of species 

that exi.st .in solutions under potentiometric investigation. The new 

program creates an alternative to the lengthy graphical normalized 

curve fitting procedures as a means of detecting oligonuclear complexes 

in metal ion-ligand solutions. Another example which displays how 

effectively computers may supplement graphical methods as far as 

chemical mbdel selection is concerned is the series of studies by 

Ulmgren and Wahlberg on ascorbate complexation (234, 233, 235, 448) 

using the LETAGROPVRID program (42, 46, 47). 
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1 • 4. 1 Physiological models. 

There have been many contributions to the development of 

the current philosophy on models of living systems. However, two 

sources in particular must be acknowledged for their part towards the 

. following disc'ussion. Iri 1973, a conference was. held on modelling 

techniques in animal science (475). This outlined a number of. 

potential applications of systems analysis. It also included a 

comprehensive account of the simulation of biological systems at the 

level of biochemistry and physiology (476). However, i;:be most direct 

attack on physiological simulation.has been conducted under the 

auspices of the Rand Corporation,. California (378, 220, 380, 381, 

281). De Haven, especially, has detailed the fundamentals of chemical 

thermodynamic·application to models of in vivo processes (281). Some 

of the more important aspects follow: 

1 ) It is taken as axiomatic that all the physical laws apply 

to biological systems • These laws may not all be known or even in a 

. form that is easily applicable to the complexity of life processes. 

2) Even a rigorous model may appear inconsistent and at odds 

with reality if it 'is being stressed in an inappropriate fashion, 

i.e., it is being asked questions it was not designed to answer' (281). 

3) No model can create new information. It can only reflect 

old information in an economic, effective and eniightenini ~.ray. Both 

this and the previous point are applicable to models in general but are 

entered here because these issues are easily obscured in complicated 

physiological simulations. 
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4) A most important concept is that of body compartments. 

All chemical systems may be regarded as a finite number of homogenous 

phases. This is also true of a physiological entity (378, 281). A 

phase is defined in terms of chemical composition, temperature .and 

pressure and need not be physically continuous. 'The idea of ·a 

phase as defined by Gibbs is identical with the concept of compartment 

as used by many physiologis_ts to designate a body space' (281). 

Thus, although the cells exist individually in blood, it is legitimate 

to designate a 'red cell compartment'. Plasma is the body compart-

ment treated. in this thesis. 

5) Modelling compositional aspects of physiological systems 

is likely to be easier and more reliable than energetic simulations .• 

The measurement of substance is almost invariably less difficult than 

the measurement of energy. It is also easier to keep track of matter; 

energy transformations on the other hand are often quick, diverse and 

hard to detect • 

6) . Although no biological system is ever in true equilibrium, . . 

they often approach and sometimes attain a steady state. Moreover, 

'to achieve high efficiencies of energy conversion, most biological 

systems operate near to reversible equilibria' (369). Thus, to 

assume that equilibrium exists is often justifiable. It has the 

added advantage that any need to involve kinetics is removed. The 

theory of kinetics is less well developed than that of thermodynamic 

equilibritim and the mathematical treatment is also more difficult (281). 
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7) Finally, it is necessary to comment on that mythical 

target of so many models - the so-called 'standard man'. . Whilst 

it is true that the set of 'normal' values does not necessarily 

represent any of the individuals upon which they are based, this 

problem is experienced by all investigators concerned with living 

organisms. It does not appear unreasonable to inf er that the 

properties of the 'standard man' will reflect those of at least 

the majority of persons concerned. This is particularly so 

because most biological variation is continuous. Furthermore, 

averaged data permits the development of models which may in time 

be applied to simulate and thereby solve the problems of specific 

individuals. 

In reply to those who criticize the whole concept of 

simulating physiological solutions, this author cannot express a 

more cogent argument than that presented by Iversen in his discussion 

on a model for homeostasis (603). 

'Many biologists of the old school react strongly 
against the use of mathematical models for interpreting 
biological phenomena, arguing that all biology is 
so fantastically complex that any model is bound to 
be an oversimplification of the grossest kind. 
On reflection it will be evident, however, that a 
good simplifi,aation is a big advantage - as a matter 
of fact it is a precondition for a model being at 
all serviceable. Ii a map included all the details 
really present, it would be quite useless ••••• 
If we succeed in constructing mathematical models 
that include the main features of the structure of 
a biological system, such simplification will not 
rule out the possibility of finding the biological 
laws. On the contrary, the model offers us the 
opportunity to understand the main points of what 
goes on in biology.' 

...... : 
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I . 4. 2 Previous simulations of metal ion distributions in biofluids. 

The well-behaved and uncomplicated nature of metal ion 

equilibria in aqueous solution is reflected by the large proportion of 

physiological simulations in the literature which are concerned with 

metal ion systems. Furthermore, apart from models of metal-protein 

interactions (for example, 526, 381) and a few studies on compartmental 

electrolyte distributions (439, 220), most of the simulations mentioned 

above focus on the distribution of the metal ion amongst the low 

molecular weight complexes it can form in the biofluid. 

In spite of.the wide variety of biofluids in which .metal 

ion equilibria are important, for the most pa.rt only two of them, 

natural waters and blood, have been simulated. The concern with 

natural waters has motivated a number of investigations. In fact, 

this has led to the determination of formation constants with a host 

of.ligands (see, for example, 434 a.nd 524, 512 and the preceding parts 

of this series) • Moreover, Sillen's classical simulations of sea 

water pioneered modelling of metal ion distributions in biofluids 
, 

generaily. Sillen's work ( see 519) is a striking application of 

the scientific method. In particular, it demonstrates the value of 

models. He showed that the control of pH in his sea water model was 

primarily effected by the reactions between micas and kaolinite. This 

was in stark contradiction to the widespread belief that bicarbonate 

buffering was responsible for the constancy of the sea's pH. However, 

subsequent research into the chemical properties of the clay minerals 

has substantiated his ideas. Today, they are thought to be quite 

acceptable. Bicarbonate may have some local buffering action (653). 

It certainly facilitate$ equilibration (519). Otherwise, it acts more 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

68. 

as an indicator than as a buffer (653 and 519 with the references 
I 

therein). Other models of natural waters include a simulation of 

'all the principal inorganic chemical species in Lake Keystone, Okla.' 

(246) and a study of the metal ion equilibria in drinking water 

contaminated with nitrilotriacetic acid (244). The concentration 

of this ligand (NTA) is on the increase in natural waters because it 

is being used in commercial detergents as a replacement for poly-

phosphates. The 'heavy metal binding sites' in river water have 

also been recently investigated (535). 

Whilst De Land has set up a very successful mathematical 

model of blood biochemistry (380), his simulation was designed to 

investigate the gross chemical properties of this biofluid and so it 

included no transition metal ion equilibria. The investigation into 

the computation of the distribution of metal ions among mixtures of 

complexing agents in blood plasma has been pioneered by Perrin and 

developed by him in a series of published studies which date back to 

1965 (3, 286, 158, 369). Since then, Perrin has concentrated on 

expanding the model's size and eliminating some of the many difficulties 

which are inherent in this type of physiological simulation. He has 

been especially concerned with two metal ions, copper and zinc, although 

recently he has inc1u,ded some calcium and magnesium ion reactions (369). 

A similar trend may also be discerned in his choice of ligands; earlier 

models contained only 16 amino acids (286) but this number has been 

steadily erilarged. In his latest work, 22 amino acids in the presence 

of copper and zinc were considered to form 217 complex species (369). 

The results of this study were not materially different from previous 

computed distributions (158). They have been set out in Table 3. -1. 

Another model, the one with magnesium and calcium ions, contained 147 
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species. Copper and zinc were included as usual, along with the more 

important amino acids and some additional inorganic and organic 

ligands. At the same time, Perrin attempted to take some account 

of the metal protein interactions in plasma. Unfortunately, his 

efforts did not meet with much success. For example, the model 

predicted negligible formation of the copper-albumin complex (369). 

Also, the computed estimate of the calcium distribution between 

albumin and globulin is in complete disagreement with that found 

by direct measurement. Indeed, a comparison of the results in 

reference 369 with those reported in reference l 36 (and other cited. 

therein), shows that the ratios in question are.reversed. Incorpor-

ation of protein equilibria in simulations such as these is, at 

present, extraordinarily diffic~lt. ·this subject is discussed at 

greater length in Section 2.2. Two other models for metal ion 

reactions in blood plasma have been published. Giroux and Henkin 

re-investigated the competition for zinc among amino acids in the 

presence of serum albumin (164). The major zinc ligands of low 

molecular weight that they found were essentially the same as those 

suggested by Perrin although, as they pointed o.ut, Perrin had used . 

an inaccurate value for the total plasma zinc. Using a practical 

equilibrium constant they had formulated and measured, they found 

that about two percent of the exchangeable zinc in plasma was not 

bound to albumin. This value is in agreement with the percentage 

of ultrafiltratable zinc in normal human serum as measured by Prasad 

and Oberleas (140). Finally, Brandegard and Osterberg have simu-

lated the calcium ion reactions in blood plasma (525). They set 

up an eight component model that included proteins, carbonate, 

phosphate, sulphate, amino acids and organic oxy-acids as ligands. 
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Their findings are of considerable interest and appear to be reasonably 

realistic. They do, however, neglect the formation of calcium 

bicarbonate which, in spite of the undoubtedly weak association, is 

likely to exist in significant concentration due to the relatively 

high concentrations of bicarbonate and free calcium ions (see Section 

3.2). This omission thus introduces a distortion into their results. 
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I. 5 Objectives of the research. 

Perrin's conclusions have far-reaching medical implications. 

He has, for example, investigated the effects of penicillamine 

treatment on the copper distribution in the plasma of persons suffering 

from Wilson's disease (369). However, criticism that bi's results 

may be unrealistic iS justified on the grounds that his model is too 

simple. Just over ·200 species must be a small fraction of the 

total number of possible -complexes that can form from copper and zinc 

in a biofluid that contains as many ligarids as plasma does. Moreover, 

the metals he has concentrated on are only two of about a dozen bio~ 
.. 

logically important cations occuring in blood. Whilst there are 

good reas-0ns for assuming that a model can be rigorous without 

· including all these metal ions (see Section 3 ~), a number of questions 

remain unanswered. For example, .what would the consequences be of 

including the complexing reactions of manganese in the model? 

Manganese does not as a rule complex very strongly but for this 

tea:son may.not be associated with proteins to the same extent as 

the other trarisition metals, leaving it free to compete more 

effectively for low molecular weight ligands. Furthermore, the 

full consequences of protein binding, to anions as well as cations,. 

ought to be taken into account. 

The present work is concerned with the_construction of a 

very large model for computing the distribution of metal ions among 

the low molecular weight ligands in blood plasma. This involves 
\--~ 

over 50'of the more important ligands and the several thousand species 

which arise· from complexation between these ligands and the metal 

ions ca2+, cu2+, Fe3+, Mg2+, Mn2+, Pb2+, Zn2+. A strong emphasis 

• 
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on the formation of ternary mixed ligand complexes is regarded as 

a pre-requisite. An attempt is made to accommodate the effects of 

protein binding and it is hoped that this will enable the simulation 

to reflect more accurately than earlier models, the complicated 

interrelationships which stem from the competitive metal ion equilibria 

in plasma. 

Accordingly, the objectives of the. research are stated 

as follows: 

1) • The acquisition of formation constants. 

The model needs as many formation constants as it is to contain 

complex species. 

experimentally. 

A large fraction of these remain to be determined 

This is especially true of mixed ligand complexes. 

Moreover, fewer have been measured under conditions appropriate to 

blood plasma. Methods of estimating missing values are therefore 

investigated; also, the influence of temperature and ionic strength 

on the magnitude of various formation constants are considered. 

Selected means of estimating and correcting formation constants 

are applied and a large data base is thus accumulated. 

2). The development of a computer program capable of 

handling the very large system which is envisaged. 

At present no program exists which could be satisfactorily applied 

to the present problem. Both the computer core storage requirements 

and the time needed to reach a solution are substantial. A program 
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that can cope with both these difficulties, therefore, is developed. 

3) • Construction of the model. 

This entails setting up the formation constants in a self-consistent 

fashion. It also involves selection of components a.nd their represent-

ative concentrations. A major task in the construction of this or 

any model is the search to find and remove aspects which have no 

counterpart in reality. For example, care is taken not to overlook 

erroneous relationships which are so easily generated amongst thousands 

of similar but legitimate reactions. In the plasma model, this 

commonly concerns the simulated chelation by a ligand which is known, 

by experiment, to oxidize or reduce the metal ion in question. 

Furthermore, omission of t.he anomalous complex is not necessarily 

the best resort because the redox potential may be altered in the 

biofluid by other ligands. (158). 

4). · Evaluation of the consequences of model. segmentation. 

It is clearly impossible to include every metal ion interaction in 

the simulation. So, the effects of segmenting the model are investi­

gated. Whilst it is essential to ensure that no important aspect of · 

the system is omitted, it is also pertinent to determine. which parts 

do not play a dominating role and can thus be removed. Such an 

analysis includes a comparison of the results obtained, by Perrin 

(158, 369) and those produced by the extended model of this thesis. 
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5). Investigation into the applications of the model. 

The importance of metal ions in vivo has been emphasized in this 

introduction and many applications which require.a knowledge of the 

metal ion distribution amongst low molecular weight ligands have 

been noted. In this connexion, investigations are made (i) into 

the effects on the computed distribution of metal ion poisoning or 

deficiency, (ii) into the corresponding effects of administered 

therapeutics and (iii) into possible applications to probl.ems 

concerning the transport of metal ions through biological membranes .. 
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THE ACQUISITION OF FORMATION CONSTANTS 
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2. I Metal-ligand equilibria. 

The title of this section covers an extremely broad 

subject, the details of which have been presented in numerous books 

and articles (see, for example, 367, 364, 368, 365, 656, 654, 655). 

It is not intended to dwell here on the vast majority of these 

considerations. Rather, the purpose of this section: is to cover 

those aspects which have a direct bearing on the equilibrium reactions 

.set up between metal ions and ligands in plasIIla.. It is hoped to 

highlight those thermodynamic principles upon which depend the 

formation constants to be used and thus, also, the computed distri­

bution of the metal ions among the low molecular weight ligands in 

the biofluid. 

Consider a mixture of metal ions and ligands in aqueous 

solution. These components come into a competitive chemical equili­

brium with the manifold complexes that can be formed from them. In 

general, there will exist for each type of metal ion with each ligand 

a series of complexes created by successive co-ordination of ligand 

moeities to the central cation. This 'step,....wise' formation is 

limited by a saturation of the metal ion and thus terminates with 

'a fully co-ordinated species'. The maximum number of ligands 

which may be attached to the metal ion is a characteristic of the 

properties of both components. The step-wise complexes will, on 

the one hand, incorporate only one kind of ligand. Alternatively, 

'mixed ligand complexes' will be produced and in fact, are favoured 

statistically. Further, polynuclear complexes with two or more 

metal ions, be they similar or not, can also exis·t. Finally, it 
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should not be forgotten that the ligands can themselves appear in a 

number of protonated and deprotonated forms. 

The concentrations of all the complex species in the 

solution depend upon the equilibrium constants of their formation 

reactions. The computation of these concentrations in a general 

cont~xt is dealt with in Section 3;1.1. For the time being, a 

more limited approach wiil simplify the following discusSion. · 

Consider the formation of a complex M L li . 
P q r 

A list of symbols· 

used in this section and their meanings is provided in Appendix 5.1. 

We have the-formation reaction, which we alway~ write in terms of 

the free concentrations of each component: 

pM + qL + rH ~ M L H 
~ P qr 

The thermodynamic equilibrium constant is then given by 

= 
{M L H } 

P qr ...•• (2.1) 

The braces.indicate acti~ities. Now, letting S represent the 

complex species and f the activity coefficient, expression 2.1 

may be reformulated 

[ML H] 
p qr . ·----- ••••• (2. 2) 
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Provided the activity coefficients, f, are fixed, expression 3.2 

can be reduced to a 'concentration' formation constant, 0 
µpqr; 

as follows: 

[ML H ] 
p q r = ~~~~~~~~ 

[M]P [ L]q [ H]r 
.•.•. (2.3) 

The analogous expression 3.1 is the general statement of equation 

2.3. Note also, that the step-wise formation constants are the 

products of each individual equilibrium constant for the successive 

additions of ligands. For example, 

. [ML] 
where· K1 = 

[M] [ L] 

[ML ] . 
2 

K2 = ...----
[ML] [ L] 

Several aspects of metal ion equilibria that are relevant 

to biofluids can now be examined. 

1) Co-ordination sites which are left unfilled by ligand 

components will be occupied by water molecules. These moeities are 

not reflected in this thermodynamic treatment because as the pure 

solvent, their activity is taken to be unity. 

2) Hydroxyl ionco.,..ordination may be regarded in the same 

light as any other ligand attachment. However, for reasons arising 

from (1) above, their binding is analogous to a deprotonation of the 
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complex. This treatment is unable to distinguish between the two 

alternatives because the complexes·, although structurally quite different, 

are stoichiometrically equivalent. Both effects may be expressed by 

decrementing the hydrogen ion index, r. Thus, this subscript can 

assume negative values. 

3) In aqueous solution, eiectron donors are not exclusively 

available to metal ions. Competition by hydrogen ions adversely 

influences metal-ligand co-ordination. This fact is exploited in 

the determination of formation constants by glass electrode potentio-

metry. It is also a most important factor in simulations such as 

the one presented in this thesis. The outcome of the metal-hydrogen 

ion competition depends on a balance between the protonation anci the 

metal ligand formation equilibria. It is important to note that only 

a simulation, using all the applicable equilibrium constants, wiil 

unerringly predict the result of these competitive reactions. 

4) The metal ion equilibria in biofluids with which this 

thesis is concerned are all required to be fairly labile. Inert 

complexes, being those which are dissociated slowly, must be excluded 

because the simulation is based on the assumption that the system is 

at equilibrium. 

5) In order to employ concentration formation constants 

.(as in. expression 2.3), the activity coefficients of the species in 

solution must be maintained constant (see 41, 373). As the activity 

coefficients of charged species, at least,· vary with ionic strength, 

the requirement is not fulfilled in dilute -solutions when the concentration 
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of ionic charges present in the system is altered by the reactions 

under investigation. In such cases, research workers must resort 

to attempts to calculate the changes in ionic strength and thus in 

the activity coefficients; these approaches are often difficult and 

are subject to increasing; inaccuracy as the concentrations are raised. 

However, the.ionic strengt:h of a ~olution may be maintained materially: 

constant by a relatively high concentration of 'inert', 'background' 

electrolyte. This swamps the effect of reactions taking place in the 

solution and justifies th~ use of equation 2.3. This particular 

/approach is employed in the determination of many formation constants. 

Thermodynamic equilibrium: constants· can be obtained by measuring a 

series of concentration constants at various ionic strengths and 

extrapolating to infinite dilution. However, the tacit assumption 

that the supporting electrolyte does not interfere with the reactions 

being studied is_not completely justified. The myth of the non 

co-ordinating anion has been exposed (392). In fact, the concentration 

constants one measures in a supporting electrolyte medium .reflect the · 

competition of the electrolyte ions with the other components. As 

the electrolyte is chosen because of the feeble binding abilities of 

both its cation and anion, the interference is minimal at low background 

concentrations, especially below 0, ZSM. (see, for example, 377). 

Po.tassium nitrate (with the added advantage that its ions have approxi­

mately_ equal transport numbers(639)) and sodium perchlorate are the 

salts usually employed. Sodium chloride has also been used but 

nowadays investigators tend to avoid it because the co-ordination by 

chloride ion can certainly not be taken as negligible. However, 

this trend neglects the £:act that sodium chloride medium is ideal for 

the purposes of simulating metal ion dis.tributions in blood and other 
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biofluids because this eliminates the need to include chloride as a 

ligand in the model. This is a big advantage as accommodation of 

chloride binding in this way introduces considerably less error than 

quantitative consideratiOns of the weak binding by an ion in relatively 

very high concentration(~ JOOmM). 
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2.2 The difficulties with metal protein binding con~tants. 

Whilst the phenomenon of metal protein binding is quite 

easily demonstrated, it is not a simple matter to establish the 

quantitative aspects of this. In addition to the difficulties 

which apply to the measurement of any formation constants the 

nature of proteins, in particular the multiple equilibria in which 

they participate, add considerably to the problems associated with 

both theoretical and practical elucidations. Metal protein 

binding studies are generally designed to accomplish three objectives 

(699). The first is to determine the number of binding sites. 

The second is to estimate the strength of the bonds formed. The 

last is to establish .. the identity· of the ligand atoms. ·Techniques 

which .are usually employed include equilibrium dialysis measurements, 

gel filtration chromatography and potentiometric titrations. 

In contrast to low molecular weight.systems, proteins 

exhibit. an interesting gradation in binding properties which is 

based upon a change in the specificity of the interaction with a 

given type of metal ion. All proteins interact with cations as 

a consequence of the donor atoms that belong to the amino acid 

residues making up the protein skeleton. At the other extreme, 

a number of proteins have binding sites which are very specific 

for a certain type of ion. Between these two opposite modes of 

binding, one finds~ for various metal ions, differences in {i) 

selectivity, (ii) strength of the bonds formed and (iii) the number 

of sites involved. Serum albumin ill4strates the situation very 

well. Ions such as calcium will interact with the carboxylate 
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groups of the protein. The binding is relatively weak ht.it there 

are almost one hundred sites a,vailable (388). Zinc has .been 

suggested as co-ordinating 16 imidazole side chains at physiological 

pH (23) although two of .the sites appear stronger than the others 

(32, 33). The specificity on one site for copper at the amino 

terminal end of sel;'um albumin, is well known (31, J 73). The 

selectivity of this site is du.e to both the positioning and the 

variety of ligand atoms. These are a nitrogen from the a-amino 

terminus (31), two peptide nitrogens and one imidazole donor from 

HIS ( 3) ( 1 7 8). These confer such a preference for copper that" 

this metal is not displaced or blocked even in the presence of 

very high zinc concentrations (366). 

The difficulties inherent in any attempted sifuulatiori 

· of the metal binding properties of proteins compose the core of 

objections directed at the conc-ept of computing metal ion distri­

butions in biofluids (Kench, J.E., private conmmnication). This. 

opposition is not without foundation. Indeed, there is as yet 

no rigorous means of accommodating protein effects in models of 

metal ion co-ordination in solution. Proteins possess a large 

number of donor sites whieh bind to both hydrogen and metal ions. 

Thus, the macront>lecule complexes can exist in numerous forms, 

differing in their degree of protonation. In practice; it is 

not possible to determine the concentrations of these individual 

species (569). However, a selection of experimental methods 

can provide estimates of the average number of substrate molecules 

or ioris bound to the protein (659, 657, 622, 658). If one makes 
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some rather sweeping assumptions about th.e relationships that ope.rate 

between binding sites, this average number can be used to determine 

parameters that, under .the assumptions, characterize the properties · 

of the macromolecule (657, 662). Unfortunately, these assumptions 

are rarely good ones. It is usually necessary to consider all sites 

to be identical. Also, the independence of or co-operativity 

between the sites is important. If they are considered to be 

completely independent, the individual.binding constants K. 
1 

n equivalent sites are given by 

;for 

·n-i+l 
K. = •Ko 

l i 
••••• (2. 4) 

where K is the intrinsic constant applicable to each interaction 
0 

(657). The factor is a consequence of the statistical effect 

arising from more than one site. Alternatively, the interaction 

between binding sites may be taken as highly co-operative. ThiS is 

exemplified by the oxygen binding of haemoglobin in which attachinent 

at the first site activates the others so that they then become more 

readily occupied. The potential advantages of such control processes 

are obvious and thus, some co-operativity is always to be expected. 

Such features distinguish macromolecules from low molecular weight 

systems. Interactions between binding sites can arise through (i) 

steric interference, (ii) electrostatic interactions and (iii) con-

formational changes induced by binding (657). In fact, most proteins 

do not fall into either of the extreme categories. Thus, they are 

not suited to simplified analyses such as equation 2.4, which can 

be developed from the assumptions discussed above. 
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To incorporate a protein in a model like Perrin's (369) 

or that presented in this thesis (see Section 3.2) would strictly 

require all the equilibrium constants (i) for the proton dissdciations 

and (ii) for the formation of the large variety of possible IJletal 

complexes. The full implications of the second requirement are 

staggering. If the model is to simulate the true competition 

between protons and metal ions, it needs the metal binding constants 

for each species that. is formed by protonation and deprotonation of 

the native protein. Whilst it is no doubt possible to leave out 

many of these equilibrium constants and still obtain a realistic 

picture, the difficulty is still unsolved: the definition of the 

important protein species in terms of the number of protons and 

metal ions that are bound is no less tractable. 

As it is not presently possible to adopt. the theoret­

ically ideal method of incorporating metal ion binding by proteins 

in the model, the objectives of this thesis can only be fulfilled if 

some other satisfactory means of accommodating their effects can be 

found. Actually there are a number of approaches that can be 

followed. A brief survey of these reveals that all have limitations. 

Perrin has chosen to apply equation 2.4 to estimate a stability 

constant for copper binding to serum albumin in plasma (369). This 

assumes 16 equivalent and independent sites for copper which, as he 

acknowledges, is certainly not very realistic. In this author's .. 

opinion, the procedure of Branegard andOsterberg is more likely to 

achieve the desired results. In their model of the calcium reactions 

of blood plasma, .the interaction with serum albumin was represented 

by formation constants from a single, isolated carboxylate ligarid (525). 
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The protein was regarded as ninety-?ine separate carboxylate groups. 

So, the albumin's concentration rather than the protein's formation 

constant was multiplied by this figure. The outcome differs from 

that of equation 2.4 whenever the free concentration of the protein 

is not taken to be the same as its total concentration. Other 

workers have determined 'practical' metal protein binding constants 

(for example, 164, 155). These have an advantage because no assumptions 

are made about the relationships between binding sites. However, the 

values are only applicable to the conditions .under which they are made. 

Moreover, they do not often reflect the influence of changes in pH. 

Apparent pH dependant constants which r.elate the number of binding 

sites carrying metal to those which do not can, in fact, be defined 

(see, for example, 366). However, these require electrostatic 

interaction factors to allow for charge interactions on the macro-

molecule. Finally; all the methods mentioned so far tend to focus 

on one of the more important proteins and thus neglect the influence 

of all the others. 

It is now suggested that the difficulties associated 

with proteins and the computation of the metal ion distribution 

among low molecular.weight substances can be largely circlllllvented 

by a direct method. By supplying the model with either the free 

concentration of each metal ion or its total concentration not bound 

to protein, the simulation is expected to produce a realistic low. 

molecular weight complex distribution. Provided thesevalues replace 

the total concentrations of 'exchangeable' metal ion that are usually 

employed, the effects of metal protein binding are validly excluded. 

In particular, if the metalibn's fi;:ee concentration is known; the 
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low molecular weight complex concentrations depend only on the free 

concentrations of each ligand. These free ligand concentrations ar~ 

determined by the model from (i) the total concentration of each ligand 

not bound to protein, (ii) the pH of the biofluid, (iii) the ligand's 

acid dissociation constants and (iv) the competition for each ligand 

by the metal ions in solution. 

Unfortunately, the free concentrations of the transition 

metals in biofluids are all necessarily very low and as yet, remain 

unmeasured. Furthermore, at least the majority of these concentrations 

are likely to be below the level of analytical detection for a long 

time. Thus, the following steps to break the deadlock are proposed. 

1) To utilize those fre.e concentrations which· have been 

experimentally measured, for example, free calcium concentrations · 

which have been estimated using ion-specific electrodes (136). 

2) To ascertain, where possible, the total concentrations 

of metal ions not bound to protein. The free concentration of 

magnesium is not generally as well established as that of calcium. 

However, the total amount that is bound to protein has been estimated 

.(see Section 3.2). This can be used to calculate the magnesium 

concentration which constitutes the free ion and low molecular weight 

fraction. 

3) To estimate values for the free metal ion concentrations 

of each of the transition metal ions. This can be done by using the 

1practical constants' which have been measured for the most important 

binding proteins (see, for example 164, 155, 23). Then, by scanning 
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in the model a range of concentrations around these values, it is 

hoped to obtain some idea of the real distribution. If the 

changes in free concentration do not induce radical alterations 

in the computed distributions of the metal ions, confidence in 

the results of the simulation is unlikely to be misplaced. 

These suggestions do not pretend to be an ultimate 

answer to the question concerned with incorporating metal protein 

binding into a simulation. The approach suffers from a number of 

limitations which are discussed in detail in Section 3.2.3. However, 

it is hoped that the proposals will help to free this type of model 

from the stigma which is.attached to studies that ignore the patently 

important influence of proteins. 
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2.3 The acquisition of formation constants. 

The acquisition of the formation constants for the model 

presented in this thesis was accomplished by a three phase procedure. 

To begin with~ as many of the applicable values that had been experi-

mentally measured were collected together from the literature. . This· 

accumulation did not exclude values which did riot correspond to .· 

physiological conditions. So, where necessary, the formation constants 
' ' 

were then corrected for both temperature and ionic strength. Finally, 

missing va1ues deemed to be important were estimated by a variety of 

methods. 

An important guideline used throughout the procedure for 

acquiring formation constants, needs to be emphasised before each of 

the three phases are described separately. The concept actually ha.s 

a number of interrelated facets which may be outlined as follows. 

Every complex species that is to be included in the model requires 

a corresponding formation constant. The fewer species that are 

omitted and the more acc~rate the formation constants used,. the 

smaller.will be the error in the computed distribution. Converse~y, 

omitting complex species which really appear in the biofluid.in 

significant concentration is tantamount to using a formation constant 

equal to zero; it is thus in error and may well distort the simulated 

result. On such grounds, it is necessary to utilize experimentally 

measured values, no matter how unreliable the value is adjudged to be 

whenever there is no alternative. Similarly, it is better to guess 

formation constants than to leave them out. Olilission will always 

be worse than a guess if the estimate used is lower than the real 

value. Thus, whilst estimates should be freely made when th~y are 
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required, a value lower than that which might otherwise have been 

used, should be chosen in an attempt to .ensure that it is on the low 

side of its real counterpart. 

2.3.1 The literature search. 

Preliminary work produced a list of almost one hundred 

low molecular weight ligands of potential importance to the metal 1on 

distribution in blood plasma. A comprehensive literature search 

was carried out with the following objectives in mind~ 

1) To collect as many formation constants pertaining to each 

of the ligands and the seven types of metal fon named in Section l.1. 

This included the protonation constants. In those cases where no value 

had been measured under physiological conditions particular care was 

taken .to inciude any reports which could contribute towards an 

'educated' assessment of the equilibrium constant operative under 

the desired conditions. 

·2) To acquire up-to-date values for the total concentrations 

of each ligand in blood plasma. 

3) To collect evidence in the literature about the state of . . 

these ligands in plasma. The fraction of each that is bound to 

protein, for example, is considered to be excluded from the metal 

binding pool and must therefore be subtracted from the total amount 

present in the bfofluid. 
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Two sources of formation constants which deserve specific 

mention are (i) the special publications of the Chemical Society Nos.· 

17 and 25 'Stability Constants' edited by Sillen et a~ and (ii) 

the values measured experimentally by Perrin et a~ and listed along­

side the accounts of Perrin's blood plasma models (158, 369). The 

other formation constartts used in this work were obtained from the 

literature appearing sub&equent to that covered by the tstability 

Constant' publications. The search extended up to March, 1975. 

This included a systematic coverage of each ligand of potential 

importance in plasma and indexed by the Chemical Abstract Service 

up to and including Volume 80. 

In order to catalogue the large number of references 

that arose from this literature search, a computer program called 

INDEX was developed. A listing of the program appears in Appendix 

5. 4. The program was de.signed to sort and process a data set 

comprising the suitably coded references which had been accumulated 

in a random order. The output lists the references chronologically 

and in.order for each author, keyword and journal in turn. These 

catalogues .have also proved most valuable .throughout the organisation 

and writing of this thesis. 

Finally, a list of formation constants used in ·the 

model, suitably adjusted to the conditions of temperature and ionic 

strength of blood plasma as discussed in the remaining sections of 

this chapter, is presented in Appendix 5.6. 
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2.3.2 Adjustments for temperature and ionic strength. 

The theoretical means of calculating an equilibrium 

constant for a given temperature from one measured at a different 

temperature has long been established. Assuming that the standard 

change in heat content 6H
0 

is independent of temperature, integration 

of the von't Hoff relationship between the temperature limits T
1 

and T2 yields an expression 2.5 (639). 

· ln • •.•. (2.5) 

Actually, the heat of reaction often varies slightly between T1 

and T
2 

and in sophisticated treatments this may be accommodated 

by expressing 6H
0 as a function of temperature. This, however, 

requires a knowledge of the heat capacities of the reactants and 

products and such data is not generally available. So, in this 

work, the less exact method has been adopted. 

Corrections for temperature were applied whenever 

necessary throughout the acquisition of the formation constants. 

This is illustrated in Table 2.1 Data measured by Gergely et al. 
. 0 

was used to transform their equilibrium constants measured at 25 C 

(504) into values applicable to 37°C. These were compared with 

Perrin'.s formation constants for the same reactions (369, 158) 

0 which were experimentally determined at 37 C. The comparison 

revealed that the agreement was reasonable in all cases except one, 

bearing in mind the slightly different ionic strengths (6 = 0,05M). 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

92. 

TABLE 2.1 

FORMATION CONSTANT TEMPERATURE CORRECTION 

Reaction 

Cu+Asn =-.Cu(Asn) 
Cu (Asn) +Asri = Cu (Asn) 2 
Cu+Gln = Cu(Gln) 
Cu(Gln)+Gln = Cu(Gln) 2 

Cu+Aba = Cu(Aba) 
Cu(Aba)+Aba = Cu(Aba) 2 

2+ Cu = Cu 

Asn = Asparagine 

Gln.= Glutamine 

Aha = Aminobutyric .acid. 

tiH
0 

KJ/mole 

-26,3 
-27,9 

-22,9 
-25,6 

-22,6 
-27,4 

log~ K2) 
log K log K 
Observed Predicted 

. Kl @ 25°c @ 37°c 

-o, 18 7,79 7,61 
-0,19 6,50 6,31 

-o' 15 7,62 7,47 
-0, 17 6,38 6,21 

-0, 15 8,02 7,81 
-0' 19 6,70 6,51 

log K 
Observed 
@ 37°C 

7,69 
5,97 

7,24 
6' 16 

7,65 
7,44 
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Furthermore, the calculated predictions were in better agreement with 

Perrin's values thart the constants measured at 25°c, except the one 

already mentioned. The exception drew attention to the fact that 

Perrin's value for the formation constant of copper (aminobutyric 

acid) 2 was extraordinarily high. Further examination, in the light 

of (i) other independent work cited in 'Stability Constants' 

Special Publication 25 and (ii) the observation that this ligand 

tends to exhibit formation constants which are lower than most other 

amino acids, led to the conclusion that Perrin's value was erroneous. 

Thus, this was considered to be an exception to the rule that formation 

constants measured under 'physiological' conditions are used in 

preference to other values obtained from studies under different 

temperatures and ionic strengths. 

' 
Corrections for ionic strength are not as straightforward 

as those applied for temperature differences. The reasons for this 

are twofold. In the first place, the theory involved is not as 

funda'!llental or as well established. Secondly, the variations which 

arise from the non-ideal nature of the system are more pronounced. 

In 1923 Debye and Ruckel published their theory on the 

influence of interionic attraction in electrolyte solutions (663, 664). 

They attributed the departure from ideality of such solutions to the 

charges carried by the ions and from a mathematical consideration of 

these electrical interactions derived a limiting expression for 

activity coefficients of ion pairs in terms of the ionic strength (I). 

Their relationship has been verified for extremely dilute solutions 

(70) but attempts to extend it to deal with mixed electrolytes and 

higher concentrations have been met with limited success. The 
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extension to concentrated solutions is particularly difficult 

because many specific properties of the ions need to be taken 

into account. The application t~ mixtures is even more complicated, 

largely because of the presence of more than one kind ion with 

different sizes (71). One approach to which reference is often 

made, introduces a term,which allows for the finite sizes of ions• 

This uses equation 2.6 for the activity coefficient, f 

log f = ..... (2.6) 
1 + Bal 2 

where A ·and B are constants, z is the ionic charge and a is 

the average diameter of the ions in solution. However, it is 

'thermodynamically inconsistent' to use equation 2.6 with systems 

of mixed electrolytes (654). Thus, a number of empirical expressions 

have been proposed for solutions of mixed electrolytes at moderate 

concentration. One of these which is in very good agreement with 

experiment for solutions having an ionic strength up to I= O,lM 

is the Davies equation 2 •. 7 

..... (2. 7) 

Unfortunately, none of these methods has proved to be 

much use in the present study. The available data is almost 

invariably insufficient to determine the parameters which appear 

in the various equations. Moreover, few .of the methods are applicable 
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to solutions with an ionic strength greater than O,lM whilst the 

background electrolyte concentrations used in f orrnation constant 

measurements are seldom below this figure. The greatest need, in 

fact, for this type of calculated correction applies to solutions 

with I = 3,0M. This is for two reasons. A large number of 

formation constants have been determined under these conditions. 

Also, the formation constants exhibit minima between I= O,lSM 

and I= 3,0M so other means which can sometimes be employed(see 

Section 2.3.4) such as empirical interpolation, become quite 

unreliable. 

One report by Gergely et al.has been of particular 

value in the attempt to make the model's formation constants 

representative of the ionic strength of plasma. This study· 

investigated the dependence on ionic strength of the formation 

constants of parent and mixed complexes of copper (II) with some 

amino acids (377). The change of each formation constant is 

depicted not only as a function of ionic strength but also for 

each of three background electrolytes, potassium chloride, potassium 

nitrate and sodium perchlorate. These workers have thus established 

a guideline concerning the approximate variation one can expect for 

formation constants measured under different conditions. Figure 4 

shows their results (377). The following points have all been 

applied on several occasions on the present work. 

1) At the ionic strength of plasma (c.a.0,15M) the nature of 

the electrolyte used has little influence on the value of the 

formation constants. 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

96. 

FIGURE 4. 
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2) The plots all show a minimum. This is in accordance 

with theoretical considerations, for example, the Davies equation 

2. 7. Specific applications of this have included the fact that 

the formation constant applicable to physiological ionic strength 

I 

is lower than the value reported for infinite dilution and probably 

greater than that measured at I = 0,2M. Formation.constants at 

infinite dilution are conunonly found in the literature. 

3) Formation constants measured in 3,0M NaC104 are very 

much larger than the corresponding values .:t.t 0, 15M, . often by more 

than an order of magnitude. On the other hand, formation constants 

measured at .· I = 1, OM are very approximately the same value as those 

applicable to plasma ionic strengths. This is important because 

many studies use one or other of these high electrolyte concentrations. 

So, in desperation and only when there is no alternative, corrections 

can be made by analogy to the behaviour of the systems studied by 

Gergely et al. (see the example in Section 2.3.4). 

2.3.3 The ~amputation of ternary complex formation constants. 

Many articles dealing with the formation of mixed complexes 

comment on their biological significance (for example, 336, 502, 221, 

334, 97' 183, 453, 279, 186, 307, 308, 309). This is in large measure 

owing to the realization that ternary protein complexes are the 

intermediates between the metal ions bound to protein and those 

belonging to the low molecular weight fraction (see 168, 29, 185, 269). 

The possibility of ternary complexes arises whenever two or more 
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ligands are present in solutions of metal ions although this has only 

become generally recognized during the last two decades (74). All 

biofluids contain a multitude of potential ligands in high concen­

traction compared with the transition metal ions so mixed ligand 

complexes will be the rule rather than the exception. At least 

the majority of such ternary species in blood plasma will need to 

be included in the model to ensure its reliability but unfortunate.ly, 

·only a very small fraction of the applicable formation constants 

have been experimentally measured. Even fewer have been determined 

under the appropriate conditions of ionic strength and temperature. 

Thus, the outstanding values need to be calculated before the 

simulation is attempted. Perrin (369) has set a precedent in 

this regard by computing estimates of 28 constants each for mixed 

copper and zinc complexes. However, with n different ligands 

there are n(n-1)/2 possible ternary combinations so that 28 

constants seems completely inadequate; the actual number of 

ternary complexes for each metal ion formed by, say, 50 ligands 

is well over one thousand. 

In the presence of equal concentrations of two ligands 

A and B, the mixed complex MAB is statistically more favoured 

than MA2 or MB 2 (74,88). This is simply the outcome of the 

probability associated with the formation of each species.- The 

binary complexes are only half as likely as the ternary one. 

Each binary complex is associated with a probability of one in four 

because the chance that a particular ligand will co-ordinate is 

exactly 50 percent on each of two occasions. On the other. hand, the 

ternary complex is formed by both of the remaining combinations . 
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On these grounds, an estimate for the formation constant for the 

mixed ligand constant is taken to be twice the average of the binary 

formation constants. Hence, 

* log SMAB = ~(log SMA + log SMB ) + log 2 
2 2 

..... (2.8) 

and 

log SMAB = 
[MAB] * ~ log SMAB 
[ M] [A] [ B] 

Sharma and Schubert have outlined a general approach for calculating 

statistical factors for the mixed complexes formed when more than 

two ligands are involved (88). These factors can be quite considerable 

but owing to the dearth of experimental evidence it is difficult to 

evaluate their real influence for species more complicated than 

quaternary complexes. 

It would be most surprizing to find that the statistical 

enhancement of mixed ligand formation constants accounted completely 

for their observed stability. In fact, this is not the case. The 

large majority of ternary complexes have formation constants somewhat 

larger than that predicted by equation 2.8. This reflects a number 

of factors which are energetically favourable (502). The most 

coI!imon of these are (i) further neutralization of charge, (ii) steric 

synergism and (iii) the formation of additional hands, IT-bonds and 

hydrogen bonds, for example. However, ligand-ligand interactions 

occasionaly also lead to destabilization. Thus it is conventional 

to employ a factor, ~-log· 8 which expresses the enhanced or diminished 

stability of the mixed ligand complex after correction for statistical 
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effects (88, 83). 

* !::. log BMAB = log BMAB - log BMAB ..... (2.9) 

Most studies concerned with the formation constants of ternary 

complexes provide !::. log f3 or analogous values (83, 336, 88, 502, 

74, 308, 334, 504, 335, 267). These stabilization factor~ may be 

used to compute estimates of the formation constants and indeed, 

provide one of the easiest means of doing so. 

Appendix 5.5 contains a listing of a Fortran program 

MIX which was developed using the University of Cape Town's UNIVAC 

1106 computer. This program was designed to accomplish three tasks; 

they are dealt with by a single program because they all involve 

manipulation of the primary formation constant data. The objectives 

may be detailed as follows. 

1) To compute the ternary complex formation constants 

which have not been experimentally measured, using equation 2.8 and 

a general stabilization factor 6 log B provided by the user. The 

value usually employed is a little greater than zero because except 

when the two ligands are very similar this is likely to introduce 

less error than zero itself. The program is required to set up 

all the possible ternary complexes that can arise from ligands for 

which MA2 formation constants are known. As the formation constants 

it uses are already applicable to the ionic strength and temperature 

of plasma no further adjustment in this regard is necessary. 
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2) To correct the ternary formation constants which have 

been experimentally measured to values more appropriate to plasma 

conditions. Direct application of the various correction methods 

0 . ·. 
used to obtain binary constants for 37 C. and I= O,ISM is not favoured 

because of the widespread dearth of data.concerning ternary complexes. 

The problem is instead tackled by taking the 6 log B 

factor which is observed under the (non-plasma) experimental conditions 

and after scaling.it to take account of the different conditions, 

substituting it for the theoretical stabilization factor used in '(l). 

The scaling adjustment reflects the difference between the binary 

constants applicable to plasma and those measured for the experimental 

solution. In other. words, by considering equations 2.8 and 2.9 one 

obtains 6 log 6MAB (experimental conditions) and scales it to 

6 log 6MAB (model conditions) by applying equation 2.10. 

6 log 6MAB(model) = b log 6MAB(exp.) ( 
6MA (model). 6MB (model) " 

2 2 

l 6MA (exp.) .6MB (exp.) 
\ · 2 2 I 

. ,' ... (2.10) 

The scaling factor adopted is chosen somewhat arbitrarily. However; 

its value is seldom far from unity so tht error introduced is limited. 

Moreover, its effect on the relatively small 6 log 6 s is much more 

controlled than it would be if applied directly to the ternary 

formation constant. 
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3) To set out the data required by each model. Program 

MIX assembles the data from three computer files. These contain (i) 

a list of components desired for the particular occasion, (ii) all 

the binary formation constants and (iii) the experimentally measured 

ternary complex formation constants and appropriate stabilization 

factors. The program only selects the formation constants and 

corresponding species appearing in the latter two files if they 

involve components appearing in the first file. This procedure 

facilitates the numerous manipulations and alterations which are 

inherent in a study of this kind because it enables one to set up 

different models without tampering with the primary formatiOn 

constant data base. 

2 •. 3 •. 4 Miscellaneous estimations of·formation constants. 

For the reasons already stated, the formation constants 

which are required by a rigorous model but which have not yet been 

experimentally measured under the appropriate conditions must be 

estimated by one means or another. These outstanding values fall 

into two categories. A small fraction have not been measured at 

all. T~e remainder have been determined but are not suited to a 

theoretical adjustment for ionic strength or temperature (as discussed 

in Section 2.3.2), usually because there is insufficient data avail­

able or because the evidence is not mutually compatible. This 

section outlines the variety of methods used, where possible irt 

concert, to estimate many of the formation constants listed in 

Appendix 5.6. To illustrate these procedures the estimates for 

aspartic acid, tabulated with the values upon which they are based, 
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are presented in Table 2.3 after the following disctission. No 

formation constants for this ligand under blood plasma conditions 

of temperature and ionic strength have so far been determined. 

1) Numerical interpolation and extrapolation. 

This is the device most commonly employed. It is given 

preference whenever sufficient data is available. It entails 

estimating the change in the formation constant value produced by 

changes in temperature or ionic strength. Quite satisfactory values 

can often be procured by such means. However, a major obstacle 

encountered was the large disparity often found between values for 

the same constant reported by different workers. These discrepancies 

sometimes extend to orders of magnitude (see, for example, 'Stability 

Constants' Chem. Soc. Spec. Pub. Nos, 17 and 25). Extrapolations 

by analogy with the ionic strength plots of Gergely et al. also 

proved very valuable (377). 

2) Relations between ligand basicity and complex stability. 

It is well known that for a series of structurally 

similar ligands, a linear relationship often exists between the 

protonation and metal-ligand equilibrium constants (364). Some 

correlation. is to be expected whenever metal ions and protons are 

in competition for the same ligand site. Sigel has recently extended 

this approach to include ternary complexes in solution (505). The 

most important application of this method for estimating formation 

constants in the present work applies to the ferric and ferrous 

complexes with amino acids. Few studies have been published about 
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these equiliabria other than those by Perrin (St, 52, 53). 

Unfortunately, Perrin's measurements were made under conditions ill-

suited to the plasma mod~t. These were in aqueous solution at 

20°C and unit ionic strength. In fact, the considerable difference 

in conditions makes it inadvisable to apply any of the usual methods 

of correction unless there is absolutely no alternative. However, 

Perrin has established that there is a linear dependence of the 

logarithm of stability constants of the iron complexes on the acid 

ionisation constants of the amino acids. Equation 2.11 is applicable 

to the combination of a cation with a series of similar ligands. 

log K = apK' + C ..... (2.11) 

where a and C are constants and. K' is the ionisation constant 

of the ligand. Perrin evaluated the slope of the linear relationship 

for both ferric (a = 1,8) and ferrous complexes (a = 0,4) so these 

have been applied to the acid dissociation constants applicable. to 

37°c and I = 0,15M. to obtain certain of the ferric and ferrous ligand 

formation constants listed in Appendix 5.6. Provided that the actual 

form of the linear relationship is not too dependent upon the experi-

mental temperature or ionic strength, the observed change in proton-

ation constants will impose upon the difference between the formation 

constants of the iron complexes. In fact, the slopes evaluated 

by Perrin !are simply convenient proportionality constants. The 

applicatidn of this procedure to ferrous aspartate is illustiated 

in Table 4,3 (9). Incidentally, one might note that the magnitude 

of the correction for both ferric and ferrous complex is small. 

This is in line with the suggestion made in Section 2.3.2 (3) and 

applied, for example, in Table 2.3 (17) that formation constants 
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measured at I = I, OM often correspond to those applicable to plasma 

conditions. 

3) Chemical analogies. 

Whenever no formation constant at all has been determined, 

the estimation of its value has had to depend upon some kind of 

chemical analogy. Using the Irving-Williams rule and other observed 

chemical trends (see Table 2.2 for binding trends of the amino acids, 

for example); it is often possible to gauge an approximate value. 

Of course, the more of these analogies which can be brought to bear on 

any one prob{~, the better that answer is likely to be. This approach 

has been used, for example, to obtain most of the magnesium amino acid 

complex formation constants used in the model. Very few have been 

measured because of the weak binding and experimental difficulty in 

monitoring complexation especially by pote?tiometry. By considering 

a number of chemical aspects, a satisfactory picture has emerged. 

At physiological pH magnesium binding is likely to be predominantly 

to the deprotonated carboxylate function of the amino acid. Thus, 

formation constants with log 8 ~ 2,0 are expected. This figure is 

a little lower than the majority of reported magnesium-carboxylate 

interactions (see 'Stability Constants' Chem. Soc. Spec. Pub. Nos. 

17 and 25), in line with the general drop in magnitude associated with 

the transitions 25°c -· 37°c and O,OM - 0,15M (see Section 2.3.2). 

Moreover, the magnesium species are likely to be more stable than the 

analogous calcium ones but less stable than the corresponding manganese 

compounds. Finally, the general binding trends exhibited by the series 

of amino acid ligands towards other metals can be superimposed (see 

Table 2.2). This exercise underlines the principle that even a 
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poor estimate is usually better than no value at all. Although the 

magnesium amino acid binding is weak, the complexes formed in plasma 

are important because of the relatively high concentrations of both 

components. The considerable influence of the magnesium and calcium 

amino acid complexes on the computed distribution of the transition 

metals amongst the low molecular we1ght ligands in blood plasma is 

discussed in Section 3.2.3. 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

107. 

TABLE 2.2 

TABULATION OF.THE BINDING TRENDS* EXHIBITED BY A SERIES OF AMINO ACIDS 

Amino acid Trend CuL CuL 2 MnL MnL2 

Simple amino acids 0 8,0 14,7 2,5 4,4 
Average ·a 8,1 14,6 2,6 4,6 
Alanine 0 8,0 14,6 2,4 4,3 
Aminobutyric acid - 7, 7 14,0 
Arginine - 7,4 13,7 
Asparagine - 7,7 13,7 
Glutamic acid + 8,7 14,9 
Glutamirte - 7,2 13,4 
Glycine 0 8,0 14,7 2,7 4,8 
Histidine + 9,8 17,5 3,2 6,2 
Isoleucine .0 8,0 14,7 
Leucine 0 8;0 14,7 
Lysine 0 9,3 14,6 
Methionine - 7,7 14' 1 
Ornithine + 9,8 14,8 
Pheynlalanine -. 7,7 14,4 
Pro line + 8,7 16,0 2,8 5,5 
Serine - 7,6 14,0 2,5 4,0 
Threonine - 7,6 14,0 2,5 3,9 
Tryptophan + 8, 1 15,3 
Tyrosine + 9' 1 15, I 
Valine 0 7,9 14,6 2,3 4,0 

0 Cumulative stability constants measured at .37 C; 

I= 0,15M KN03 (158, 369, 62) 

ZnL Zn12 ZnL3 

4,6 8,5 10,9 
4,7 8,4 10,8 
4,6 8,6 10,7 
4,4 7,2 
4,0 7,6 
4,5 7,8 10,0 
4,8 8,5 
4,3 7,9 
4,9 9,0 11 '3 
6,3 1 1 '7 
4,4 8' 1 
4,5 8,6 
3,5 7,0 
4,2 6,9 
5,9 
4,5 8,4 
5' 1 9,7 1 1 '2 
4,5 8,3 10,6 
4,4 8' 1 10, I 
4,5 8,8 1 1 , 6 
6' 1 
4;4 8,2 10,6 

Simple amino acids = Alanine, Glycine, Leucine, Isoleucine and Valine. 

*'TREND' means the strength of binding of the particular amino acid 

relative to the average for the series of similar ligands. 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

IOH. 

TABLE 2.3 

ESTIMATION OF LOGS OF CUMULATIVE FORMATION CONSTANTS FOR ASPARTIC ACID 

0 AT 37 C ; I= 0,15M. 

References with alphabetic characters refer to 'Stability Constants' 
Chem. Soc. Spec.· Pub. Nos 17 and 25 and references therein. Other 
'Refs' are those listed for this thesis. See Appendix 5.7 for 
explanation of symbols. 

I ) ASP2 ( + 1 ) H+ 1 ( + 1) log s 101 = 9. 20 

Ref log 8 I 

53L 9.62 0. 1 
52C 9.46 0 .1 
52K 9.60 0. 1 
61B 9.87 0. 1 
62Ca 9.63 0 .1 
65R 9.63 0. I 
Ref 377 9.73 0. 1 
Ref 377 9.63 0.2 

Estimation: log f3 = 9,7@ 25;0,10 as average 
log 8 = 9,6@ 25;0,15 ref 377 

t medium 

25 KCl 
30 KCl 
20 KCl 
25 KCl 
30 KCl 
25 KN0

3 25 KCl 
25 KCl 

~ ~ 0,2 from 25 to 30 ref 62Ca more recent 
Assume ~ i= 0,4 from 25 to 37 

2) ASP2(+1) H+l (+2) log s102 = 12.60 

-

Ref log K I t medium 

61B 3.87 0. 1 25 KCl 
62Ca 3.79 0.1 30 KCl 
63F 3.69 0.2 25 KNO 
Ref -377 3.75 0.1 25 KC13 

Ref 377 3.72 0.2 25 KCl 
Ref 267 3.68 0.2 25 KCl 
65R 3.71 0. I 25 KN03 

Estimation: log K = 3,7@ 25;0,15 
Assume log K = 3,4 @ model conditions 

continued, •• 
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3) ASP2(+1) H+l(+3) log I~ I CD 14 • :~o 

Ref log K I t medium 

52K 1.88 0. 1 20 KCl 
531 1. 94 0.1 25 
52A 2.08 0.01 20 
63F 1.92 0.2 25 KN03 65R 1.94 0.1 25 KNO 
Ref 377 1.81 0. 1 25 KC13 

Ref 377 1.85 0.2 25 KCl 

Estimation: log K = 1,9@ 25;0,15 
Assume log K = 1,6@ 37;0,15 analogy with glutamic acid 

4) ASP2(+1) CA+ 2(+1) 

Ref log K 

531 1.60 
Ref 668 1.53 
Ref 668 1.53 

I 

0. 1 
0.7 
0.7 

t 

25 
37 
25 

log s1 IO = 1.60 

Estimation: log K = 1,60@ 25;0,15 
Assume log K = 1.60@ 37 L'iH

0 
= 0 ?Ref 668 

5) ASP2(+2) CA+2(+1) log s210 2.10 

Guess; log K2 is unlikely to be less than 0,5 

6) ASP2(+1) CU+2(+1) 

Ref log K I 

52C 8.57 0. 1 
57M 8.40 o. 1 
Ref 377 8.99 0.1 
Ref 377 8.86 0.2 
Ref 267 8. 70 0.2 

Estimation: log K = 8,7@ 25;0,15 
Take log K = 8,5@ 37;0,15 

log s110 8.50 

t medium 

30 KCl 
25 KN03 25 KCl 
25 KCl 
25 KCl 

conservative value ~H0< o 
for glutamic acid 

continued ..• 
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7) ASP2(+2) CU+2(+1) 

Ref log K I 

52C 6.78 0. 1 
Ref 377 6.89 0. 1 
Ref 377 6.88 0.2 
Ref 267 6.96 0.2 

Estimation: log K = 6,9 @ 25;0,15 
Assume log K = 6,7@ 37;0,15 

8) ASP2(+1) cu+i(+l) H+l(+l) 

Ref log (3 I 

Ref 267 12.38 0.2 

9) ASP2(+1) FE+2(+1) 

·Ref log S I 

Ref 53 4.34 1.0 

t 

30 
25 
25 
25 

t 

25 

t 

20 

log s210 15.20 

medium 

KCl 
KCl 
KCl 
KCl 

0 
Li = 0.1 for 5 C 

log s111 = 12.20 

medium 

KCl 

log s 110 = 4. 20 

medium 

KCl 

Estimation: log K = 0.4 pK' + C; C = 4.34 - 0.4 x 9.56 
(see Section 2.3.4(2)) C = 0.52 
log K = 0.4 x 9.2 + 0.52 = 4.2 

10) ASP2(+2) FE+2(+1) log s210 = 7.75 

Ref log S I t 

52A 8.5 0.01 20 

Estimation: log S = 7.75 conservative value 

continued ... 
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11 ) ASP2(+1) FE+2(+1) log Bl 10 11. 0 

Ref log B I t 

Ref 52 11.4 1.0 20 

Estimation: Linear calculation as in (9) with slope= 1.8 
(see Section 2.3.4(2)) 

12) ASP2(+2) FE+3(+1) log s210 = 17.0 

Guess; very conservative value 

K2/K1 is the approximate minimum of the same ratio with Cu amino acids 

13) ASP2(+1) MG+2(+1) 

Ref log K I t 

531 2.43 0. 1 25 

Estimation: By analogy with other amino acids 
(see Section 2.3.4(3)) 

14) ASP2(+2) MG+2(+1) 

Guess; conservative value 

15) ASP2(+1) MN+2(+1) 

Ref 

52A 
52K 

c.f. Manganese K1 

log 13 

4.0 
3.74 

I 

. 0 .01 
0. 1 

t 

20 
25 

2.20 

medium 

KCl 

log 13 210 = 2.90 

log s110 = 3.20 

Estimation: see Table 2.2 for other amino acid values 

continued ..• 
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16) ASP2(+2) MN+2(+1) log 8210 = 5.20 

Guess; based on K2JK
1 

ratio from Table 2.2 

17) ASP2(+1) PB+2(+1) log 8110 s.80 

Ref log 8 I t medium 

64R 5.88 1.0 30 KNO 
ref 311 6.67 3.0 25 Nacto4 

See connnent in text; Section 2.3.2(3) reference 377 

18) ASP2(+2) PB+Z(+l) log 8210 = 8.20 

I ·. Ref log K I t medium 
I 

64R LS 1.0 30 KNO 
Ref 31 l 2.76 3.0 ·25 Nacio4 

Estimation: log K = 2.4 conservatively 
Using K2/K1 ratio; c.f. Zn and Mn ratios 

19) ASP2(+1) ZN+2(+1) log 8110 = 5.80 

Ref log K I t 

52C 5.84 0. 1 30 KCl 

Estimation: c.f. other Zn amino acid values Table 2.2. 
Aspartic acid is invariably a stronger ligand 

20) ASP2(+2) ZN+2(+1) log 8
210 

9.3 

Estimation: 

Ref 

52C 
52A 

log 8 

l 0. 15 
10.4 

I 

0. I 
0.01 

t 

30 
20 

medium 

KCl 

log 8 unlikely to be greater than 10.0 conservative value 
log 8 = 9.3 is already considerably larger than average 
8.4 (Table 2.2) 
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CHAPTER THREE 

THE SIMULATION OF BLOOD PLASMA 
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3.1 Computer simulation of large equilibrium systems. 

A knowledge of the distribution of components and the 

evaluation of constituent concentrations in chemical equilibrium 

mixtures is important for many reasons in addition to those associated 

with the present application to biofluids. The computation of the 

amounts of specific species present in solutions involved in spectro­

photometric, calorimetric and other physical studies is perhaps the 

most obvious (114, 115). Other examples centre on the determination 

of optimum conditions for a variety of analytical and chemical 

separation techniques. Also, the effects produced by the addition 

of some reagent can be calculated. It has already been implied 

that one of the primary motivations behinc:l t.h~ weasurement$ of 

formation constants is that. they enable evaluations of this sort ~o 

be made. 

Although the equilibrium concentrations may in principal 

be evaluated directly from Guldberg and Waage's law of mass action, 

formulated in 1864, the solution of the appropriate equation is, 

except in the. case of relatively simple systems' by no means straight-

forward. This is largely the outcome of the non-lin~ar nature of ·the 

mathematical relations involved; these complicate any sort of general 

approach. Under some of the more elementary conditions, specific 

methods are easier and more economic. So, over the last thirty 

years this problem has been tackled by many investigators (e.g. 10, 

11, 12, 13, 91, 92, 215). With the advent of conunon high-speed 

computer availability, the last decade has seen it fall increasingly 

into the realm of computer application (liS, 85). Early work 
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concentrated on gaseous equilibria and using a variety of optimisation 

techniques usually approached the question by minimising free energies. 

With mixtures in solution, a fundamentally analogous means seeks a best 

fit to the mass action and mass balance expressions. This is more 

convenient and nowadays more common. The most frequently referenced 

programs in this regard are HALTAFALL by Irtgri et aZ. ( 112) and COMICS 

which was developed by Perrin and Sayce (111). There have also 

appeared a selection of others (49, 219, 110, 214, 119, 245, 227, 

327). The trend is hardly surprising because manual methods, especially 

those with generai applicability, are tedious and difficult. 

In addition to the problems which are associated with the 

actual calculation of concentrations, multicomponent mixtures in 

chemical equilibrium may also exhibit a behaviour which, to those 

well-versed in the properties of systems with only a few components, 

may appear at first sight to be. a contradiction of Le Chatelier's· 

principle! Broadly speaking, this may arise as follows. When 

the concentration of any one component in a large, general and well­

defined equilib
0

rium system is altered, there is no rule of thumb which 

will always correctly predict the effect of the change on any specific 

reaction operating in the solution. The direction of equilibrium 

shift is determined by the relative magnitudes of all the equilibrium 

constants acting in concert so the outcome on one particular equilibrium 

can easily seem anomalous. For example, if the free concentration 

of a component common to more than one species is raised, the product 

favoured by a large formation constant can quite possibly increase 

to a lesser degree than other species whose formation is governed by 

smaller equilibrium constant values. In the extreme case, the 
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concentration of the former species may even decrease provided that 

the equilibrium is disturbed, in such a way that the free concentrations 

of its other components are sufficiently reduced. For this reason, 

the only method by which the influence of any factor may be properly 

evaluated is to compute the equilibrium concentrations before and 

after the change. A comparison of the results which emphasises 

the differences that have arisen will then reveal the exact effect 

of the disturbance. This :has a bearing on the philosophy which is 

adopted in this thesis because it denies the validity of short-cuts 

to the solution which rely on a straightforward chemical intuition. 

3.1.1 Program theory and development. 

In almost all but the most trivial of computer projects, 

a balance must be found between the two limiting factors of processing 

time and core storage requirements. Program development must 

consequently take place within a framework that not only attempts to 

achieve an overall coding optimisation but also reflects, in the 

compromise between the two factors mentioned, the unique demands of 

the particular problem. The approach adopted towards this question 

must be formulated before the coding is begun because time and time 

again it will be found necessary to decide in favour of one or the 

other. 

In the present case, largely because of the considerable 

number of constituents in living systems, the size of the model wilf 

invariably represent one of its most fundamental restrictions. 
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So, special care needs to be paid to the question of computer core 

storage. Whilst the value of speed should never be forgotten, whenever 

its needs would seriously conflict with spatial considerations, the 

latter must be given priority. This point is pertinent throughout 

the following discussion. 

The problem under consideration here, is to calculate the 

concentration of all·the chemical constituents which exist in a well-
. . . 

defined, single-phase equilibrium mixture. These constituents are 

classified either as components or as complex spec~es. The components 

are st.oichiometrically independent and are selected as fundamental 

in the sense that there may be no complex·species which comprises a 

more elementary chemical unit. This definition is arbitrary and· 

chosen merely for convenience - sometimes components have been selected 

on the grounds of highest concentration at equilibrium. The concen-

tration of each complex species (S) is then fixed by the law of mass 

action. It is a function of the cumulative stability constant (S) 

and the free concentrations of each of its components (X). If i 

is the index for components and j the index for complex species, 

.one has: 

s. = ~.Tfxk(i,j) 
J J i 

( 3. 1) 

. . 

where k(i;j) is the ·matrix containing the number of times the ith 

component appears in the jth complex species. It may be pointed 

out here that the distinction between metals and ligands in this 

context is superfluous for mass action is indifferent as to the 
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nature of the reactant. A list of the symbols used in this section 

appears in Appendix 5.1. 

Generally, the equilibrium system is defined ih terms of 

the total concentrations of each of the components. However, if 

the free concentration is known instead, that is, of course, just as 

satisfactory. In most e:)Cperimental situations, only the free 

concentrations of hydrogen ion arid possibly hydroxyl ion will be 

available but sometimes free metal ion concentrations and/or free 

ligand concentrations are also measured~ It is therefore important 

that the program be able to accept the input data in terms of either 

the total or the free component concentrations. 

As there is no direct way to determine the equilibrium 

concentrations, the approach usually adopted is.based on an iterative 

improvement of some set of initial estimates. By systematic 

variation of the unknown free component concentrations and calculating 

via equation 3.1 the corresponding values of all the complex species, 

it is possible to arrive at the point where the mass balance equations 

for each component are satisfied. These are: 

T = x + Es·k(m,j) 
m m j 

(3. 2) 

where m is a specific value of i and is the index pertaining to 

a particular component. ~ is the total concentration of that 

component. Provided the concentrations of all the constituents · 

are not permitted to be less than zero, once the mass balance relations 

are all obeyed, the unique solution has been found . (see, for example, · 

216). 
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It has long been appreciated that the constraints of mass 

balance and of mass action may be fully described by n nonlinear 

equations in n unknowns, where n is,the number of components 

whose free concentration must be determined. The question may 

therefore be solved, in principle, by the application of any nonlinear 

optimization technique which yields those conditions which produce a 

set of total calculated concentrations from equation 3.2 that are 

identical to the given real concentration totals These 

calculated 'values (cTm) are obtained by summation over all the 

species concentrations arising from the current free component 

estimates. The objective function to be minimised could be, say, 

the sum of the squares of the differences between the corresponding 

totals. However, except in the case of smaller systems (where both 

general and specific techniques are effective), it transpires that 

an exchange of the particular problem for the general, introduces 

more disadvantages than it is worth. Equilibrium is dictated by a 

set of well behaved and easily manipulatable relations and methods 

of general applicability do not exploit this. These methods also 

suffer in a number of ways as the nonlinear system expands. General 

convergence difficulties become more apparent (Zeleznik and Gordon 

have pointed out that in practice many algorithms fail in this 

regard (216)). In fact, no general method can be trusted always 

to converge if the initial estimates are poor ones (621). In 

large systems, good starting values are likely to be the exception 

rather than the rule. Gans and Vacca (329, 330) have gone so far 

as to produce an entirely new program for the calculation of stability 

constants because both the other programs commonly employed for this 

(42, 113) exhibit limitations as a result of the iterative procedures 
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upon which they are based. Above all, most general techniques are 

unsatisfactory because their computer core storage requirements would 

seriously limit the magnitude of the models which could be investigated. 

Large matrix manipulations are inclined to be expensive in terms of 

both size and time required for computation. Moreover, many methods 

are affected by round-off errors and thus become incapahh• of lengthly 

iteration procedures. Both the Newton-Raphson technique (so often 

used, .with or without modification) (214, 227)' and Powell's algorithm 

for a sum of squared terms (61'5, 329) have been rejected, for the 

problem in this thesis, in the light of these arguments. All in all, 

it appears best to use a simple successive approximat.ion function 

which varies the current estimates in such a way that' the new values 

can hat~ly fail to be an improvement on the old ones. Perrin and 

Sayce have employed such a function in COMICS (lit). This is shown 

as equation 3.3 where the superscripts n, o, r and c denote 

'New\ 'Old', 'Real' and 'Calculated' quantities respectively. 

' (3.3) 

In spite of the fact that at first sight one may anticipate a slow 
' ' ' 

rate of convergence, the function has proved to be remarkably 

efficient. It is unfortunate that the authors do not indicate 

exactly why this expression was chosen. Some time after the 

original publication, Perrin connnents that 'for all positive values 

of .x, xi is always closer to unity than x1 
' (369). Whilst of 

course, the argument of the square root is indeed required to approach 
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unity, does this .necessarily imply that the new estimation from 

equation 3.3 will consistently be an improvement on the old one? 

Another important aspect of the program development is 

the means whereby a suitable set of initial approximations are 

obtained for each component's free concentration~ In COMICS, it 

is assumed that complex formation is negligible and that rough free 

ligand concentrations can be calculated directly from pKa values (II I). 

However, when complexation is not minimal, especially in large 

systems, this approach is redundant and one might just as well put 

all the free component concentrations equal to the real totals. 

Moreover, it is this artifical approach which requires COMICS to 

draw a distinction between metals and ligands arid thereby suffer 

from a lack of optimisation in the program coding. On the other 

hand, if one substitutes the real total concentrations as the first 

free estimates, as suggested, one obtains calculated totals (cTm) 

that are enormous and can hardly be said to represent an astutely 

chosen set of initial approximations. Perrin's and Sayce's formula 

(equation 3.3) is not really satisfactory under these extreme conditions, 

largely because it treats every component independently in a situation 

where their mutual interplay is most significant. What is actually 

required is a function which modifies the new value (nXro) on the basis 

of changes that are about to be imposed on the whole system. 

An investigation into the relationships that operate in 

the equilibrium systems presently under consideration, was undertaken 

with three broad goals in mind. These may be formulated as attempts 

(i) to find a more efficient approximation formula, (ii) to discover 
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why the equation 3.3 used by Perrin and Sayce, in fact, works and 

(iii) to develop an expression that would cope effectively with very 

poor initial estimates. The applicable equations were subjected to 

a parallel .consideration in terms of both the real and calculated 

quantities, as follows. 

From equation 3.1, one may write 

Hence, by substitution 

rs 
j = 1T 

i 

..... (3.4), 

..... (3.5). 

.•••• (3;6) 

Note that, at this stage, any component whose free concentration· 

is krtown (so that r c X. / X.), cancels. 
1 1 
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Moreover, from equation 3.2, 

..... (3.7), 

.. ~ •• (3.8). 

Substituting equatiori 3.6 into equation 3~7, one obtains 

where 

Now, extracting 

rT = rx +E[rrF.k(i,j).cs. 
m "in • . i J 

] . l. . . 

F = 
. i 

F by factorization 
m 

F 
m 

• k(m,j~ 

....• (3.9), 

..... (3.10) . 

.., 
k(m,j~ /Fm 
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one obtains : 

rx = m 

123. 

G. = Tr F k( i 'j) 
J . i 

l 

rT . ex 
m m 

+~rj ex . 
m 

..... (3.11), 

..... (3.12). 

. k(m,j] cs. 
J 

Equation 3.12 is an exact expression for the real free.component 

concentrations but it cannot be used to find the solution directly 

because the set G. 
J 

is unknown. These factors G. 
J 

include real 

free component concentrations (compare 3.10 and 3.11) and therefore 

can only be evaluated once the entire problem has been solved. 

Nevertheless, the expression 3.12 has considerable value because it 

may be compared with various ·approximation formulae in order to 

discover their properties and to judge their likely performance. 

To begin with, take G'. 
J 

to be some approximation for. G. 
J 

itself. 

Then, equation 3.12 transforms into an expression which can possible 

be employed to improve successively a set of (old) estimates 
0 xm 

by obtaining (new) values °xm which are closer to 

the case with 
0

Xin,. This expression is : 

r o 
'T x 

m m = 

rx than was 
m 

..... (3.13). 

For example, if G '. is obtained by takin. g rT ./ ~. as an approximation 
J l. 1 

for 
r c 
X/ Xi and applying equations 3.10 and 3.11, it is suggested 
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(in Appendix 5.2) that an iteration procedure based on 3.13 may be 

expected to converge on rx provided that all the initial 
m 

This proviso is easily satisfied; for example, by taking the starting 

values for ex to be equal to the real concentration ~otals. 
m 

Equation 3.12 may also be compared with two approximation formulae, 

3. 14 and 3. 15. Under the starting conditions proposed in the last 

example for equation 3.13, when 
c r 
X. > X., .it is demonstrated that 

1 l 

the unknown G. factors are all, effectively; less than unity (see 
J 

equation 5.5). So, by comparison with equation 3.8, it may be seen 

that the denominator in equation 3.12 is somewhat less than 

This means that the formula 

..... (3.14) 

will always convert which is greater than to a value 

°xm which is smaller than the desired real concentration. In other 

words, it overshoots. The expression has been tried .in an iteration 

procedure but premature application was found to set up an oscillation 

with very poor or even no convergence power. However, if the 

equation 3.3 of Perrin and Sayce is re-written as 

~ =ox ..... (3.15) 
m m 

j 
.... 

c . T 
m 

the denominator is seen to be intermediate between cT (which m 

would overshoot) and rT (which yields no improvement). 
m 

Thus 

the tendency of 3.14 to overcorrect and to oscillate is curbed and 
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convergence may be exprected to follow. Another point which merits 

brief attention at this stage, is the fact that the square root 

function in equation 3.3 (and equation 3.15), moderates those ratios 

(rT /cT ) which are far from unity to a greater degree than those m m 

which are close to this desired value. 

With the preceding points in mind but also by trial and 

error, the following procedure was adopted. The first few iterations 

employ a formula 3.13 because it rapidly produces values in the 

proximity of the solution. Its success is in large measure due to 

the fact that it does not treat each component individually. The 

factors G! wh1ch modify the calculated complex species concentrations 
J 

include ratios which take into account changes which are about to be 

·imposed on the other free component concentration estimates. These 

approximation factors G! 
J 

are obtained by assuming that equation 

3.15 yields a fraction ~ /oX 
·. m m 

that approximates the 

That is, 

1 

Fi " [ ::~ J 2 

F. 
l. 

ratio. 

With the number of iterations as a criterion, this arrangement would 

be employed exclusively but in fact, the formula requires so much 

computation that it is only profitable to employ it during the early 

stages of the iteration procedure. Apart from this economy, the 

expression is used because it helps to forestall divergence by 

coping effectively with the large discrepancies that arise when the 

real total concentrations are used as starting values for the free 
~ ~ . 
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concentrations. Once the application of 3.13 is completed, the program 

moves. into an intermediate phase in which, the iteration formula of 

Perrin and Sayce (3.15) is used alone. This expression is all the more 

satisfactory because it involves almost a minimum of computation (369). 

Finally, as the solution is approached, formula 3.14 is applied on 

alternate iteration cycles. Contrasting this formula with• equation 

3. 12 reveals that the former improves pr.ogressively as the · G. factors 
J 

tend to unity during the final stages. This additional facility 

improves the rate of convergence which would otherwise fall off quite 

markedly as the estimated free concentrations get closer and closer 

to the solution. The fall off in convergence rate as the solution is 

approached is by no means unusual for successive approximation techniques. 

So, various convergence forcing methods were tried. These efforts were 

not rewarded by significant improvements in performance and were thus 

abandoned. 

3. 1. 2 Program coding. 

A FORTRAN V program called ECCLES (for Evaluation of 

Constituent Concentrations in Large Equilibrium Systems) was written and 

tested on the University of Cape Town's UNIVAC 1106 computer. A program 

listing and an operation manual which details the program's requirements 

and capabilities may be found in the appendix. In addition to the 

mathematics and. general principles described in section 3.1.1 special 

consideration was given to ways which would facilitate.the gross 

manipluations inherent in a simulation of any system as large as the 

envisaged blood plasma model. To prevent waste when only the components' 

free concentrations at equilibrium are required, a user option permits the 
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print-out. of the very numerous complex species concentrations to be 

suppressed. A search-and-sort routine can also be implemented to 

find and output in order, the forty most predominent species formed 

at equilibrium from each or just a selected few components. This 

is particularly helpful with the comparison between two sets of 

output which reflect some equilibrium displacement, because it focuses 

attention on any component in question. In addition, it is possible 

to examine the effects of any systematic alteration in the total or 

free concentrations of a given component. The program increases 

the concentration of the component which is being scanned, either 

by addition of or multiplication by an amount specified. Oh each 

occasion, it solves for the new equilibrium values. This procedure 

is far more efficient than the alternative which would require 

repetitive execution of the entire program because at the start of 

each cycle, the previous equilibrium concentrations and not the real 

totals are used as the new initial estimates. As the displacement 

is usually fairly small, these previous amounts rarely turn out to be 

an infeiior choice. 

The most restricting aspect which applies to any program 

designed to calculate equilibrium concentrations in the present 

context is certainly ·the magnitude of the k(i,j) matrix. The 

latt;.er defines the number of each component in a complex species. 

Because of the very limited number of components which can associate 

to form a chemical unit, the array can be clearly seen to contain a 

very large proportion of zeros. The saturation of co-ordination is 

a most common expression of this limit and in the case of many ligands 

in solution with metal ions, prevents more than, say, ten components 
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from combining into one complex. So, unless steps are taken to 

eliminate these superfluous zeros, both core storage and time expended 

in needless processing will be seriously increased. Moreover, the 

larger the system, the more acute this detrimental factor will become. 

Hence, the most important concern of program coding must be to set up 

and operate within, a bookkeeping routine that minimises this sort of 

waste. 

At present, the bookkeeping in ECCLES centres about a 

three-dimensional array which replaces the conventional k(i,j) matrix. 

The new array holds, for each complex species, a pair of numbers which 

· specify not only the number of times the component appears but also 

the identity of the component itself. Although this increases the 

number of computer operations which are required to reference the 

components in a complex species, a considerable saving is achieved, 

on balance, because only the relevant components are involved. The 

need to make an arbitrary choice about the maximum number of components 

in any complex species is inconvenient but an incorrect decision is 

easily adjusted. It is, in fact, possible to improve further the 

storage features of the program but by and large, this is undesirable 

because a more sophisticated bookkeeping technique could easily entail 

an unwarranted increase in processing time. An improvement that 

probably will prove to be an exception in this regard, involves 

storing both of the numbers referred to above in one memory location. 

This could be achieved by combining the integers, using some reversible 

arithmetic process such as the muliplication of the first by a factor 

of ten or one hundred and then adding the second. This would eliminate 
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the need for the array's third dimension and would result in an 

overall storage reduction of about 30-40 percent. 

3. I. 3 Program testing. 

The program ECCLES was initially tested on data pertaining 

to several small equilibrium systems so that the solutions could be 

easily checked manually. Once it was clear that no elementary coding 

errors remained, the program was applied to the same data as that used 

to exemplify COMICS (111, 77). ECCLES converged on the solution in 

less than twenty seconds compared with the time of somewhat over two 

minutes needed by COMICS on the same computer, ECCLES has also been 

tested using the blood plasma model of Hallman et al, (158). 

The results were identical to those published by the.above workers 

and they appear in Table 3.J. To date, ECCLES has successfully 

tackled an equilibrium model having some 4000 complex species from 

55 components (see Section 3.2). This simulation required 70 K of 

computer core. The equivalent investigation using COMICS would take 

about 200 K, a figure that exceeds the working capacity of the large 

majority of computers presently available. 

To the best of this author's knowledge, the largest model 

which has been referred to in the literature contained 'up to a few 

thousand' species and some thirty components (245). As a listing of 

the program which was used in this instance cost $50 for printing and 

handling (private conununication), the actual core storage requirements 

have not been determined. However, taking for comparison, the 
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. TABLE 3. l 

COMPUTED DISTRIBUTION OF COPPER AND ZINC IONS AMONG I 7 AMINO ACIDS 

AT PH= 7,4 AS OBTAINED BY 'COMICS' (158) AND 'ECCLES'. 

2+ 13 2 6 [Cu ] = 3,4. JO'."" M; [Zn +] = 4,0. 10- M. 

COMPLEX 

-(Cu. Cystine. Histidine) 

(Cu. H. Cystirie. Histidine) 

(Cu. (Histidine) 2) 

(Cu. (Glutamine) 2) 

(Cu. OH. Histidine) . . I 
(Cu. H. (Histid~ll,~) 2) + 

(Cu. Histidine)-+ 

t 
I 
! 

(Zn. Histidine. Cysteine) 

(Zn. Histidine)+ 

(Zn. (Cysteine) 2) 2-

-

(Zn. H~ E,Utidine. Cystine) 

(Zn. (Histidine) 2> 

' . + 
(Zn. Glutamine) 

(Zn. H. Cysteine. Histidine) 

(Zn. HistidinE?· Cysteine) 

(Zn. H2• Histidin~. Cystine) 

Concentration of complex 
as percentage of total 
metal. 

48 

37 

13 

0.3 

0.3 

0.2 

0.2 

24 

21 

16 

5.8 

5.7 

3.3 

2.2 

1. 7 

1.5 
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number of complex species to be 4000 COMICS would need ahout 120 K 

of core. This emphasises the fact that the size of a model is very 

much a function of the number of components as well as the number of 

co~plex species~ 

3.1.4 Discussion. 

ECCLES suffers from two chief limitations. Both are of 

a fundamental nature and arise from the type of simulation for which 

the program was originally designed, namely the study of metal ion­

ligand equilibria in biofluids. The first limitation has already 

been mentioned; the.program is inapplicable to systems other than 

those confined to a single phase. However, Cumme has noted that, 

in many instances, a multiphase feature is not necessary for bio­

chemical simulations (119). The second restriction applies to the 

hydrogen ion mass balance relation. To accommodate hydrolysis, it 

is conventional to regard the total ·hydrogen ion concentrations as 

negative whenever the total hydroxyl ion concentration predominates 

in aqueous solution (629). This is mathematically quite acceptable 

even if negative concentrations at first appear somewhat strange! 

Unfortunately, negative total concentrations are not compatible with 

the ECCLES iteration procedures, particularly with regard to the 

square root in Perrin's and Sayce's equation 3.3. By considering 

the hydrogen ion mass balance separately, it would be possible to 

apply a different optimization procedure to this component and 

thereby eliminate the obstacle. However, as the pH and not the 

total hydrogen ion concentration of most biofluids is experimentally 
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measurable, this additional facility is not essential and has not 

been included. 

With the exception of size requirements, speed and that, as 

presently coded, COMICS is unable to accept free concentrations for 

components other than hydrogen ion, this program and ECCLES are 

both subject to the same limitations. This is not the case with 

HALTAFALL, however. The latter Swedish program can simulate 

titrations because it can process total hydrogen ion concentrations 

(that can become negative) and it can also deal with multiphase 

problems. It is ~cknowledged that the more general nature· of 

.y-·· 

HALTAFALL is certainly desirable. In fact, it' will be.come essential 

for simulations which are required to determine the distribution of 

reactants between various biofluid compartments in living systems. 

After all, as Ingri et aZ • . have commented 'computer time is getting 

less and less expensive in comparison with human time' (112). It 

is obviously bad economics to write programs of a specific nature 

when the alternative remains open. However, with the computer 

resources presentiy available, there is .no alternative. A HALTAFALL 

type of approach would seriously curtail the size of the biosystem 

which could be investigated. A detailed look at the thousands of 

metal ion reactions contributing towards the competitive equilibrium 

in each biofluid is the most useful simulation which can realistically 

be attempted. Models of the partition between various body compart-

ments still belong to the future. This is not only because the 

former simulations require all ( and more ) of the available core storage 

and would need to be set up simultaneously but also because very 

little data has so far been accumulated on the distribution co­

efficients which a partition.model would require. 
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In conclusion, it should be borne in mind that the performance 

of this type of program, especially considering the non-linear nature 

of the problem, can really only be judged by trial and error. With 

limited time available, it is not easy to select, unerringly, either 

the best iteration procedures or the most revealing test data. 

Nevertheless, within the context of large systems, the three-tier 

algorithm which has been developed for ECCLES appears to be robust 

and quite quick. No doubt, as the computer industry matures and 

machine capacities increase, the approach outlined or other similar 

methods will be able to expand until the ultimate goal, the simulation 

of the entire metal ion picture in vivo, is at last achieved. 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

... 

3.2 The blood plasma models. 

It follows from the preceding sections that it is not 

presently possible to set up and execute a single simulation of blooq 

plasma which will unequivocally reflect the low molecular weight 

complex distribution of the transition metal ions in the biofluid. 

The difficulties associated with metal protein binding as discussed 

in Section 2.2 are not the only obstacle. The concentrations of 

many components are not completely certain. Even.which ligands to 

include in the model is open _to dispute. Some formation constants 

remain unmeasured. Those that have been determined are subject 

to experimental error. Proteins are likely to bind ligands as well 

as metal ions. This binding has not been sufficiently studied to 

incorporate it in the simulation. Even low molecular weight ligand­

ligand interactions occur but as yet ·remain inadequately understood. 

In spite of all these difficulties it is proposed that 

a satisfactory and informative picture of the low molecular weight 

complex distribution in plasma can be achieved: This may be accom-

plished by conducting numerous simulations specificaily designed to 

throw light on the magnitude and nature of the errors introduced by 

each of the model's various defects. 

3.2.1 The composition of the plasma models. 

The strategy which is adopted towards the selection of 

components and complex species is largely dictated by the availability 

of experi_mental data. The restrictions thus introduced are seldom 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

135. 

unduly onerous ·because investigators tend to study the more abundant 

and more important substances first. The assumptions made and the 

criteria employed are detailed below. The evaluation of each, however, 

is reported in ~ection 3.2.3. 

l) The criteria for selection of ligand components. 

Initially, just less than one hundred ligands were 

selected from various tabulations on blood plasma compo·sition (577, 

647, 648). This number was reduced as follows. High concentration 

was chos.en as the first criterion. It seems unlikely that a.· ligand 

in low abundance ~ill play an important role in metal ion distributions 

when one considers the relatively high concentrations.and high form­

ation constants of substances such as the amino acids and the organic 

oxyacids (for example, citrate). This eliminated pyridoxine, nitrite, 

histamine, folic acid, thiamine, serotonin and biotin amongst others. 

Next, a·number of ligands were omitted owing to insufficient formation 

constant data. The most significant of these were taurine, borate, 

hilirubin, creatinine, glycocyamine, indican, urea, uric acid, acetone, 

glucose and glycerol. The defects introduced by these omissions are 

easily repaired as soon as the necessary data becomes available. 

Finally, some ligands were eliminated because of weak binding; bromide, 

fluoride, chloride, iodide and nitrate were considered to contribute 

to the metal complex distribution only as a result of their background 

electrolyte effects (see Section 2.1). The list of remaining ligands, 

· used in the plasma models is to be found in Appendix 5. 7. 
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2) Criteria for the selection of metal ion components. 

The criterion of high concentration is as important for 

metal ions as it is in the case of ligands. . If the model is to 

compute a realistic distribution, no metal ion whose concentration 

is sufficient to compete for ligands and thereby significantly 

influence the ligand protonation equilibria, can be legitimately 

·neglected. The ions which are thus essential to the model are 

calcium, magnesium, and zinc. Manganese and lead may also belong 

to this ca~egory. On the other hand, metals such as iron, whose 

free concentration is very small indeed, do not need to appear 

because· they cannot materially alter the free ligand concentrations. 

This question is probed at length in Section 3.2.3. Of course, iron 

and oth~r such metal ions may be included in order to investigate 

their complex distribution. This work is actually co.ncerned with 

both iron and copper in addition to the other metals already mentioned 

because their biological roles have been the most studied and are the 

best under.stood. Other metals such as nickel and chromium can easily 

be incorporated at a later date. 

3) Criteria for i:he selection of complex species. 

For the most part, the complex species included in the 

simulation are those which have been found in experimental studies on 

individual metal-ligand systems. .Also, as indicated in Section 2.3.3, 

the ternary complexes are considered most important so, where experi­

mentally determined formation constants are not available, these have 

been estimated instead. The ligands which are taken to participate 

in mixed 'ligand complex formatiOn with a particular metal ion are those 
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for which formation constants for the species ML
2 

or M(I.H)
2 

are 

available. For this reason, a number of ML 2 formation constants 

have been guessed when no experimental value could be found provided 

. that, at the same time, no reason for the non-existence of the complex 

could be envisaged. Polynuclear complexes have been widely ignored. 

This is justified by the very low metal to ligand ratios in blood 

plasma. In any event, very few formation constants for polynuclear 

complexes are available. Quat~rnary complexes have also been excluded 

from the model. Criteria for selecting those ligands which may 

participate in the foP,Jtation of such complexes are not clear-cut. 

They should certainly encompass a wider field than merely those ligands 

which form ML
3 

complexes but, except in the simplest of circumstances; 

the factors which influence the stabilization of the complexes are 

uncertain. Cromer-Morin et al. have shown that with ligands that 

do form ML
3 

complexes that statistical factor accounts for the 

experimentally observed stabilization almost entirely (223). However, 

the ligands they studied, glycine, alanine and valine, were not very 

dissimilar so their results are to be expected. The likely effects 
. . 

of omitting quaternary complexes from the simulation are considered 

in Section 3.2.3. Finally, the redox equilibrium balance needs 

to be considered. If the data is available, it is possible to include 

the appropriate redox relationships as' constraints upon the simulation. 

However, owing to the uncertainties which are associated with the free 

concentrations of transition metal ions it is easier and probably more 

reliable to regard different oxidation states of the same metal ion as 

different components. In particular, Cu(I) has been totally ignored. 

Perrin has commented on the implications of this concerning the redox 

equilibrium between cystine and cysteine (158, 369). In line with his 
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conclusions, this study has assumed that both cysteine and cystine are 

present in plasma (see 666) and that other ligands preferentially 

stabilize Cu(II) by lowering the oxidation potential of Cu(II)/Cu(I). 

On the other hand, Fe(II) has been introduced into a few simulations 

to investigate the possible influence of this ion (see Section 3.2.3). 

4) The ligand concentrations, 

The ligand concentrations used in the blood plasma 

simulations are documented inAppendix 5.7. These are usually the 

average of many reported_ values; both standard tabulations and more 

recent literature were consulted (see Appendix 5.7 for references). 

However, the concentrations of several components were reduced to 

correspond with the known prot:ein binding of the ligand in question. 

Al.though interactions with protein are likely to be a conunon phenomenon, 

several substances are very much more tightly bound than the others. 

The most important of these are salicylic acid, tryptophan, urea, 

fatty acids, bilirubin, folic acid and fluoride. The last five 

· substances have not been included in the model so protein binding 

serves to minimise the error which is thus introduced. The total 

concentration of salicylate in plasma is normally abm.~t l, 3mg/lOOIIil 

which is,equivalent to lOOµM. The binding to plasma proteins, 

especially albumin, is well documented (296,375,247). The concentra­

tion not bound tp protein varies between·o and 25 percent (247). ·The 

level may be raised by doses of aspirin (acetylsalicylic acid) and acute 

toxic symptoms are produced when about 50.percent is not bound to 

protein (247). From the study by Lomax (375) it is estimated that a 

concentration of 5µM is representative.of the amount of salicylate 

available for low molecular weight complexation. The free concentration 
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of the other component tightly bound by protein, tryptophan, is less 

certain. The total is about 58~M. Fuller and Roush report that 

13 percent is not bound to protein (239) as opposed to the 25 percent 

cited by Peters (190). .A free concentratibn of IOµM has. been adopted 

in the present work. This is in agreement with a valu~ calculated 

from the results of McMenamy (556) - particularly if competition i'11r 

serum albumin binding sites by other ligands is talc:en into consideration. 

This author has also pro~ided valuable evidence that the other amino 

acids are not bound to serum albumin to any significant extent (556, 

558). 

For reasons of economy, many of the simulations performeci 

have included a single component to represent five very similar amino 

acids.namely alanine, aminobutyric acid, isoleucine, .ieucine and 

valine. These ligands are all homologues of glycine and contain no 

functional groups other than the definitive one. Their metal 

binding abilities· are almost idential as can be seen in Table 2.2. 

The component has been named the 'average amino acid' (AAA). It 

has a toncentration equal to the total of the concentrations of all 

the amino acids it represents. Perrin has set a precedent for this 

procedure (369). Several simulations conducted during the course 

of this work confirm that it imposes negligible distorition on the 

models' results (see Section 3.2.3). Perrin, in fact, included 

glycine.in his average component. Whilst, there is no objection 

to this, glycine has been included. separately in the simulations of 

this thesis simply for purposes of comparison with the average amino 

acid component. This provides a further check on the validity of 

the simplification. 
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5) The metal concentrations. 

Owing to metal protein binding and the factors detailed 

in Section 2.2, it is not possible to arrive at art unequivocal 

concentration which can be used for each of the metal ions. Thus, 

it is intended to employ a range of values for the uncertain con-

centrations. This is reported in Section 3.2. 3, Meanwhile, a set 

of approximate values needs to be determined in order that they may 

be used for purposes of comparison (see Table 3.2). Also they 

will help to establish a reasonable concentration range that should 

be scanned.· The means whereby these estimates can be obtained is 

now described for each metal ion in turn. 

(a) Calcium (194, 525, 171, 202, 198, 136, 142}~ 

Experimental studies ori calcium in blood plasma are more advanced 

than is the case of any of the other metal ions. The free concentration 

has been measured frequently; the best determinations have employed 

++ specific ion sensitive electrodes to arrive at a value of [Ca }=I; I 2mM 
J .· . . . 

(202) ~ ·In fact most estimates do -~ot fall far fro:in this. Greater 

precision cannot be expected because of considerable physiological 

variation. Changes of up to 20 percent of the free ion concentration 

are regarded as normal (577). Taking the mean total calcium concen-

tration in serum to be 2,5mM, about I ,OmM is bound to protein (136). 

This leaves about 0,3mM of the calcium to appear as low molecular 

weight complexes. 

(b) Copper. 

The total concentration of copper in blood plasma is about 18µM but 
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almost all of this is very tightly bound in ceruloplasmin. The 

'exchangeable' non-ceruloplasmin copper concentration is only about· 

lµM (133, 144, 135, 491, 369). Futhermore, the larger percentage of 

·this exchangeable metal ion fraction is bound to serum albumin (190). 

The blood plasma model requires either the total copper bound to low 

molecular weight ligands (TLMWF) or the free concentration. There 

are several approaches which help to estimate these quantities. Lau 

and Sarkar have determined a practical dissociation constant for the 

copper.,..albumin binary complex (185). By assuming that (i) the vast 

proportion of exchangeable copper in plasma is bound to albumin and 

(ii) this quantity is negligible compared with the total albumin 

concentration of SOOµM (190) it is possible to solve for a free copper 

concentration. 

= 
[Alb] [ Cu2+J 

[Cu Alb] 
= 6,6 x 10- 17 

By substitution of [Alb] = · SOOµM and [Cu Alb] = 1 µM, this yields: 

In plasma, other cations will compete for the copper binding site so 

this figure may be regarded as a minimum value. It should be noted 

here that in any event, the free copper concentration is below the 

level which could be measured by ion selective electrodes. This is 

approximately 10-9M (667). On the other hand, the total concent-

ration of copper bound to the low molecular weight fraction is 
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indicated by several reports in the literature. Neumann and Sass-

Kortsak show that at physiological ratios of copper to serum albumin 

about 0,4 percent of the ~etal ion is ultrafiltratable. If this is 

taken to .represent the low molecular weight complex fraction, one 

obtains TLMWF ~ 

by Peters (190). 

. -9 
5 x 10 M. This is not far from a value cited 

Furthermore it is in reasonable agreement with 

calculations made by Osterberg (319). Osterberg estimates that the 

copper albumin to copper mixed amino acid complex ratio will be about 

106
• This puts TLMWF = 10 ..... 1 ~ as a lower limit. 

(c) Ferric iron. 

The total concentration of plasma iron is about 22µM and at least 

99,99999 percent of it is bound to tranaferrin (see Section 3.2.2). 

·The free concentration of ferric ion is limited by the solubility 

product to a maximum of about 10-lSM under physiological conditions 

of pH (138). In fact, the free concentration is likely to .be 

considerably lower than this• A number of iron transf errin binding 

constants have been meastired (see Section 1.3~1). The most appro-

priate and easy to apply is the apparent constant for physiological 

conditions measured by Aasa et aZ. (162, 611). They have proposed 

so that 

[ FeTr] = S x 1023M-l 
[ Fe3+J [Tr] 

[ Fe3+] -s, -5 = 2,2 • 10 3,3.10 

.;. 1 o-24M 

5 1023 , 
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(d) Lead. 

The estimation of even the most approximate free concentration of 

plumbous ions in blood plasma has proved most difficult. The 

reasons for this are twofold. Lead is not specifically associated 

with any particular plasma protein (225). Moreover, the studies 

on the binding of this metal to serum albumin are in disagreement 

concerning the nature of the interaction and the sites at which it 

takes place (22, 28). The total concentration of lead in plasma 

varies quite considerably; average levels are about 0,5µM (577, 647, 

648, 534) ~ut increase to 3,0µM before it is po~sible to diagnose 

plumbism (311). It is estimated from the data provided by Gurd 

and Murray (28) that the maximum f;-ee concentration is below l0-9M. 

However, as many proteins other than albumin compete for the metal 

the normal value is likely to be considerably lower than this. 

(e) Magnesium (194, 143, 272, 531, 532; 148). 

Few investigators have attempted to estimate free magnesium ion 

concentrations in plasma because measurements using selective ion 

electrodes are riot presently reliable, especially in the presence 

of other metal ions. This is in contrast to the position with 

calcium. However, Heaton has obtained as approximate value from 

measurements of adsorption by a cation exchange membrane (532). 

He found that ionized magnesium averaged 79 percent of the ultra-

· filtratable magnesium in serum. This yields a free concentration 

of about 530µM. Many experiments have determined the fraction of 

magnesium not bound to protein. The average is close to 650µM of 
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of the cation. TTnfortunately, a number of these studies appear to 

neglect the low molecular weight complex fraction (see, for example, 

143 and 148). In any event, it seems unlikely that the free magnesium 

fraction ~ill constit~te less than 530/650, that is about 80 percent 

of the non-protein bound amount. 

(f). Manganese (262, 149, 257, 332, 155, 612, 554). 

There has been a great deal of controversy about manganese in blood 

plasma. Conflicting assertions concerning the protein to which the 

metal is selectively bound have appeared even quite recently (462,257). 

Furthermore,· the total concentration in plasma which is generally ·. 

reported to be approximately 1,0µM (517, 534, 647, 648) has been 

attributed to contamination by workers using the very sensitive neutron 

' . . 
activation procedure (612). It seems best,.therefore,.to determine a 

maximum free concentration from binding constants measured for serum 

albumin and scan downwards from there. Neglecting all the weak 

binding sites in view of the low metal to protein ratio, a free 

concentration of approximately 5.l0-8M is obtained (from 155, 149, 

257, 332). Making the assumptions analogous to those for copper, 

iron and zinc (see (b), (c), and (g)) the concentration is obtained from 

K .: . [Mn Alb] 

[Mn] [Alb] 

• 3 104 

' 
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(g) Zinc. 

The total concentration of zinc in plasma is about 16µM (577, 606, 

196, 669, 164) and not 46µM as is· so often claimed (286, 158, 369, 647, 

648, 534 etc.). The erroneous value appears to stem from a 1948 

report by Vallee and Gibson (670). Of the total, some 35 percent 

is firmly bound in a metallo protein identified as an a. 2 -niacroglobulin 

(345, 577). This means that the concentration of exchangeable zinc 

in plasma is about IOµM. Most of this is loosely bound to serum 

albumin (see Section I. 3, I). From the study of zinc binding to 

serum proteins by Prasad and Oberleas it seems that less than two 

.percent of the IOµM will be available to the low molecular weight 

fraction (140). Furthermore, an approximate value of the free zinc 

concentration in plasma can be obtained from a practical constant 

evaluated.by Giroux and Henkin (164). The constarit is derived from 

measurements on the competition set up in serum between the albumin 

protein and the low molecularweight amino acids~ The workers found 

that 

K =(Zn Alb] 

[ Zn2+J [Alb] 

Making the same assumptions as in the case of copper, iron and manganese 

namely that (i) almost all the metal is protein bound and (ii) that 

as the albumin/zinc ratio is so large the free albumin concentration 

is equal to the total value, one finds 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

146. 

TABLE 3.2 

. METAL ION CONCENTRATIONS USED IN THE SIMULATIONS 

··Metal Free Free Estimated.· Approximate total 
Ion concentration concentration. total low 'exchangeable' 

estimates range scanned molecular metal ion 
used as weight metal concentration 
average complex 

concentration 

Ca 
2+ 

1, 14mM Fixed 300µM 2,45tiiM 

--· - . 

Cu 
2+ . l0- 18M 1 o- 19M-I o-7M • 1 o- 12M-I o-9M · 'lµM 

Fe 3+ to-23M l0-24M-10-ISM 

Pb2+ 10-l 4M 1 o-16M-1 o-9M · SOOnM 

. 
Mg2+ .520µM 510µM-550µM 120µM 900µM 

Mn2+ l0'."" 12M JO-ISM-10-BM J0-8M-I0-6M 

Zn2+ 10-gM 10-l 1M-l0-6M 1 o-7M-I o-6M · JOµM 

. 
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The model can be used to determine whether this free concentratiort 

yields a total fow molecular weight zinc complex concentration in 

agreement with the 200nM maximum which iS. estimated from the experi-

ments of Prasad and Oberleas mentiorted above. This check does away 

with the need to employ other methods of estimating the free zinc 

concentration •. For example, an approach using the imidazble binding 

constant, at sixteen identical and independent sites, as evaluated by 

Gurd and Goodman(23) is not necessary. 

3.2.2 The results 

'Without generalisation there.is no meaning and 
without concreteness there is no significance.' 

A.N. Whitehead 

(cited in ref~. 647) 

Throughout the ·following presentation of t.he results of the 

blood plasma simulations, a deliberate attempt has been made to avoid 

tabulating the absolute values which the models have produced. This is 

in recognition of the fact that such values reflect most accurately the 

error in the parameters from which they are generated. Instead, it 

seems more propitious to record the results in a manner which is as 

independent of the variation in the parameter values as possible. With 

this in mind, the formation of each complex is expressed as a percentage 

of the total concentration of the relevant metal ion contained in the 

low molecular weight complex fraction. The constartcy of these percent-

ages is discussed at greater length below. On the other hand, such 

generalisation is not always the most suitable means of comparing the 

models' results with experimentally measured concentrations. They also 

cannot be used to calculate approximate concentrations of complex species 
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which have not been included in the model, to judge whether they may be 

significant. For this reason, absolute concentrations have sometimes 

also been presented. However, the uncertainty associated with these 

values should not be discounted (see Section 3.2.1). If a realistic· 

picture is to emerge, it is essential to maintain a balanced perspective 

·between the general and the specific aspects of the results. 

Before the computation of the metal ion distributions was 

initiated, it was necessary to choose a representative pH for the 

plasma solution. A~ average value of -log [ H] = 7 ,4 was adopted. 

The act:ivit~ coefficient is unlikely to alter the concentration obtained 

from hydrogen ion activity by niore than 0,1 log units (see 394) so, as 

this is well within the normal physiological variation, the coefficient 

has been neglected. Two limits of plasma pH corresponding to -log [ H] = 

7,6 and 7,2 respectively were also selected. This was in order to 

evaluate the influence of hydrogen ion concentration on the metal 

complexes formed in plasma. It is in line with the idea that as many 

parameters as possible should be varied to gauge their effect on the 

computed distributions. Although very few of the formation consta.nts 

listed in Appendix 5.6 apply to complex species defined in terms of 

hydroxyl ion instead of negative hydrogen ion indices, a f.ew except:-

ions do occur. These were not converted as a general rule due to 

uncertainty in the respective values of the ~xperimentaZ dissociation 

constant of water, pK' • 
w 

So, the hydroxyl ion concentration in the 

plasma medium needs to be calculated instead. A value of pK' = 
w 

13,62 was used for this purpose (see 321 and the reference therein). 

Using the free metal ion concentrations listed in Table 3.2 

as those which, in this author's opinion are representative of the true 
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values in plasma (see Section 3.2.l) distributions of the metal ions 

2+ 2+ 3+ 2 2+ 2+ 2+ 
Ca , Cu , Fe , Mg +, Pb , Mn and Zn amonst 35 ligands were 

computed using program ECCLES. The formation of 3967 complex species 

was simulated. The program was instructed to print out the 40 most 

predominant complexes formed with each component in turn. The output 

also included the free ligand concentrations and the total concentrat-

ion of each metal contained in the low molecular weight fraction. The 

results are to be found in Table 3.3 and 3.4 respectively. The per-

centage of the total low molecular weight metal ion concentration bound 

by the most predominant complexes for each metal ion is listed in 

Table 3.5 for each complex under three different conditions of pH. 

These results all apply to the 'primary' model, the parameters and 

· data for which are provided in Appendices 5. 6 and 5. 7 ~ 

The results of the 'primary' model exhibit a number of 

aspects which merit specific attention. Possibly the most striking 

is the effect of the relatively limited changes in hydrogen ion· 

concentration. It is not surprizing to find that the total concen-

tration of each metal complexed to low molecular weight ligands 

increases with pH. However, the marked alteration in the computed 

distribution as shown in Table 3.5 is possibly less expected. Moreover, 

it is no simple matter to foresee the direction of the change·undergone 

by several of the complexes individually. Whilst there is often no 

discernable alteration, both increases and decreases in the degree of 

complexation can be observed for increasing pH. The changes are really 

only predictable when two complexes which differ only in their state of 

protonation are in obvious competition (for example, the two most 

abundant copper complexes). The metal ions in plasma appear to form 

complexes in a. manner that is reminiscent of the categories suggested 
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TABLE 3.3 

TOTAL CONCENTRATIONS OF METAL IONS IN THE LOW MOLECULAR WEIGHT 

COMPLEX FRACTION IN PLASMA 

METAL FREE ION TOTAL CONCENTRATIONS 

ION CONC(M) -log [H]=7,2 -log [ li]=7 ,4 -log [ H]=7 ,6 

Ca2+ l,14xl0 -3 -3 l,4Jxl0 M -3 l,43xl0 M -3 l,47xl0 M 

· Cu2+ 10-18 3,35xl0- 12M 1 , I 2x 1 0 - l l M 4,9lxl0-JIM 

Fe3+ 10-23 3,84xl0-13M 6, 71xl0- 13.M l,34xl0- 12 M 

. Pb2+ 10-14 l,43xlO-l lM 3,82xl0-l IM l,20xl0-JOM 

Mg 2+ 5,20xl0 -4 -4 6;42xl0 M . -4 
.6, 53xl0 M 6, 72xl0-14M 

. 2+ 
Mn 10-12 l,57xlO-J 2M 1, 63x10;... l 2M 1, 7 lxl0-J 2M 

Zn2+ 10-9 -8 -7 8 52xl0-7M 4,67xl0 M l ,58xl0 · M ' .. 
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TABLE 3.4 

FREE LIGAND CONCENTRATIONS I~ PLASMA. 

(Simulation for "'.'log [ H] = 7 ,4) 

LIGAND CONC(M) LIGAND CONC(M) 

AAA* 7,74xl0 -6 Carbonate 
. -5 

3 ,23xl0 

Arginate 3;46xl0 -6 Phosphate 
.· -8 

3,79x10 

Aspataginate 
. -6 

r 2, 72x:J..0 Silicate 2,67xl0~ 1 o. 

Aspartate 7,7Sxl0 -8 Sulphate 2,04xl0 -4 

Cit'rullinate 
. -6 
I, 28xl0 · Thiocynate J,40xl0 -5 

Cysteinate 
. -9 

5,89xl0 Ammonia 5,73xl0 -7 

Cystina~e 4,35xl0 -7 Citrate 
-5 2,67xl0. 

Glutamate 4,83xl0 -7 Lactate . 1, 72x10~3 

Glutaml.nate 1 86 10-5 Ma late 
-5 

' . x 3,llxlO 

Glycinate 2,SlxlO -6 Oxalate 
. -6 

7,70xl0 

Histidinate 
. -6 

2,4Jxl0 Pyruvate 9;4lxJO -5 

Hydroxyprolinate 
. ..;8 

8,66xl0 Salicylate . J , 25xl0 - 11 

Lysinate 4,83xl0 -9 Succinate 4,lOxlO -5 

Methionate. -7 Ascorbate . 
-8 

8,64xl0 4,78xl0 

Ornithinate 
-- . -9 

5,73x10 .. 

Phenylalanate 
. . . -6 
l,99xl0 

Prolinate 
. -7 

2,4Jx10 

Serinate 4,25xl0 -6 

Threoninate 6,96x10 -6 

Tryptophanate 
. -7 

1,99xlO 

Tyrosinate 3,52x10 -9 

*AAA = Alanate, Aminobutrate, Isoleucinate; Leucinate and Valinate 

combined. 
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TABLE 3.5 

PREDOMINANT COMPLEXES OF F..ACH METAL ION FOUND BY SIMULATION OF 

BLOOD PLASMA 

(Symbols defined in Appendix 5. 7) 

PERCENTAGE OF THE TOTAL METAL BOUND IN 
THE LOW MOLECULAR WEIGHT COMPLEX FRACTION 

COMPLEX 

.:.log [ H]=7, 2 -fog [ H)=7 ,4 . -log [ H]=7 ,6 

' 

CA+2(1) C032(1) H+ 1 ( 1) 8 . 8 8 
CA+2( 1) LTAl (I) 5 5 5 
CA+2(1) CTA3(1) 4 4 4 
CA+2( 1) C032 (1) 1 2 4 

CU+2(1) CIS2(1) HISl{l) 21 30 43 
CU+2(1) CIS2(1) HISl(l) 28 24 17 

H+ 1 ( 1) 
CU+2(1) HIS.1(2) 17 16 14 

CU+2(1) HISl(l) THRl(l) 9 8 7 

CU+2(1) HISl(l) SER 1(1} 5 5· 4 

CU+2(1) HIS 1(1) AAA 1( 1) 4 4 4 
CU+2(1) HIS 1 (1) GLN 1(1) 2 2 2 

CU+2(1) HISl(l) GLU2(1) 2 2 2 

CU+2( 1) HIS 1( 1) GLYl (1) 1 1 1 

FE+3( 1) CTA3(1) OH-1( 1) 99 99 99 
FE+3(1) CTA3 ( 1 ) SLA2 ( 1 ) - - -
FE+3(1) CTA3( 1) GLU2( 1) - - -
FE+3(1) CTA3 (1 ) OXA2 (1) - - -
FE+3(1) CTA3 ( 1 ) GLN 1 ( 1) - - -
FE+J(l) CTA3( 1) GLYI (1) - - -
FE+3(1) CTA3 ( l) SCA2 (I ) - - """ 

FE+3 ( 1) CTA3 (1) SERI (I ) - - -

PB+2(1) CYS2(1} 73 77 80 

PB+2(1) CYS2(1) CTA3(1) 10 10 11 
PB+2(1) CIS2 ( 1) H+ 1 ( 1) 12 7 4 

l>B+2{_1) CYS2 (I) P043(1) 4 5 5 
H+ I (I) 

PB+2(1) CYS2(2) - ·- 3 

MG+2(1) C032 ( l) H+ I ( 1) 8 8 8 
MG+2( I) CTA3(1) 5 5 5 
MG+2(1) -LTAl ( 1) 3 3 3 
MG+2(1) C032(1) 1 . 2 4 
MG+2(1) P043(1) H+l(l) 1 2 2 

MN+2( 1) C032 (I ) H+ 1 ( 1) 25 25 25 

(continued) 
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TABLE 3.5 (continued) 

. PERCENTAGE OF THE TOTAL METAL BOUND IN 

C.OMPLEX THE LOW MOLECULAR WEIGHT COMPLEX FRACTION 

.-log [H]=7,2 -log [ H]=7 ,4 -log [ H]=7 ,6 

MN+2( 1) CTA3(1) 3 3 2 
MN+2( 1) C032(1) 1 . 3. 5 
MN+2( 1) P043(1) H+l ( 1) 2 2 2 
MN+2(1) OXA2(1) 2 2 1 
MN+2 (1) 8042 (1 ) 1 1 1 
MN+2(1) LTAl(l) 1 1 1 

ZN+2(1) CYS2(1) CTA3(1) 43 36 2t 
ZN+2(1) CYS2(2) 9 21 41 
ZN+2(1) CYS2(1) HISJ(l) 10 15 18 
ZN+2(1).CYS2(1) 4 4 2 . 

.· ZN~~'(J) HI Si (I)' 6 3 1 
ZN+2(t) CYS2(2) H+1(1) · 1 2 2 
ZN+2(1) HISJ(2) 2 2 l 
ZN.f.2(1) HISJ (1) CYSt(I) ·· 2 1 -

H+ 1 (I) . 
ZN+2(1) CYS2(1) CIS2(1) 

H+t(l) 1 I 1 
ZN+2 (I) CYS2 (1) GLN 1 ( 1) - 1 1 
ZN+2(1) AAA.I( 1) CYS2(1) - 1 1 
ZN+2(1) C032(1) H+l(l) 1 - -
ZN+2( 1) CTA3(1) 1 - -



Univ
ers

ity
 of

 C
ap

e T
ow

n 

154. 

by R.J. Williams (see Table 1. 1). Ternary complexes account for the 

large percentage of those formed by copper and ferric iron. Binary 

complexes are favoured by calcium, magnesium and manganese. ·.Zinc and 

lead are intermediate in this respect. The con~entration~ of copper 

and iron complexes are respectively, some seven and ten orders of 

magnitude larger than the free metal ion concentrations~· This fact 

lends credibility to proposals that.low molecular weight complexes 

can have important biological roles in spite of the extremely low 

free ion levels of certain transition metals. It is interesting to 

note that all the more important copper complexes contain hist_idinate. 

Citrate plays·an analogous role in the formation of ternary ferric 

complexes. It is to illustrate this aspect that the most predominant 

complexes of iron other than ferric hydroxy citrate are included in 

Table 3.5 even though they account for less than one percent of the 

total metal ion in toto. · Another reason is that the formation 

constants used for these ternary species are all most probably too 

low. This is due to the deliberate policy of conservatism adopted 

during the estimation Of formation constants (see Section 2.3). With 

very few exceptions, no measurements of the formation constants of 

ML 2 complexes have been made where M is ferric ion and L is an 

amino acid. Thus, it is to be expected that a more even distribution 
. . 

of iron amongst low molecular weight ligands will emerge when the 

necessary formation constant values have been determined. The pre-

dominance of the ferric hydroxy citrate species, on the other hand, is 

not surprizing as it reflects the tendency of ferric ion to hydrolyse in 

aqueous solution (see 619). Lead appears to be mainly bound by the 

sulphur donors, cysteinate and cystinate. The other amino acid in 

the model which contains sulphur is methionine. It does not appear 
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to compete effectively for lead. This is due to (i) the notice~ 
. , . 

ably small formation constant of the lead methionine complex compared, 

say, with the cysteine equivalent and (ii) the fact that methionine 

tends to compiex calcium and magnesium more than the other two sulphur 

amino acids. The similarities of the predominant complexes formed 

by lead and zinc are of interest. The ternarycysteine - citrate 

species is important in both cases. One of the poisonous aspects 

of lead overload may be the displacement of zinc by lead from cysteine 

moeities of certain enzymes. Simulating the effect of high lead 

concentrations on the distribution of these two metals amongst low 

molecular weight ligands (vide inf!'a) actually shows that lead 

complexationoccurs at the expense of zinc cysteinate complexes. 

Finally, it may be noted that the predominant species shown in Table 

.3.5 cannot be selected in a simplistic way looking only atthe magnitude 

.of thei~ formation constants. This is true of all multicomponent 

systems. 

It should be recorded that a simulation of the 'primary' 

mo.del which included ferrous complexes revealed that their distribution 

pattern is akin to those of manganese, calcium and magnesium. Pre-

dominant complex species turn out to be ferrous-bicarbonate, ferrous-

carbonate, ferrous-ascorbate, ferrous-histidinate and ferrous citrate. 

These results are not shown in Table 3.5 because the formal concen-

trations of ferrous ion and the very existence .of the complexes in 

plasma is uncertain. 
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Using the 'primary' model as a reference, the free 

concentration of each metal ion in turn was varied through the range 

depicted in Table 3.2. The outcome of each concentration scan was 

then evaluated by comparison with the results of the 'primary' model. 

The concentrations of the complex species obviously increased in a 

manner corresponding to the rise of each component. However, as 

orie would expect, the increase was also reflected in the total concen­

tration of the metal contained in the low molecular weight compiex 

fraction. In fact, the change in individual concentrations is · 

paralleled by the changed in total concentration to the extent that 

the percentages recorded in Table 3.5 remain constant. In other words, 

these percentages are, to a precision of one percent, independent of 

the free metal ion concentrations which one chooses for a given model, 

within the ranges shown in Table 3.2. This may be at first sight 

ra·ther surprizing because in general the complex distribution of a 

given system does change when the component concentrations are varied. 

Thus, the behaviour of the plasma system which is presently being 

simulated is exceptional~· The reason for this is to be found in the 

fact that the formation of low molecular weight complexes in the bio~ 

fluid is minimal. The very low total concentrations of the transition 

metal ions, the weak binding of the calcium and magnesium cations and 

the lowering 'of free metal ion concentrations by protein binding are 

all contributory factors. In consequence, the concentration of each 

complex species is altered in direct proportion to the change in free 

concentration of its metal ion component. This is evident from the 

general equation 3.1, provided that the free concentrations of the 

other components are unaffected by equilibrium displacements. The 

condition is not as·a general rule fulfilled because the complex 
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formation tends to reduce the availability of the ligands (see Section 

3. J). However, in the plasma simulations, the free concentrations 

of the ligands are usually several orders of magnitude larger than the 

complex concentrations. This is an outcome.of the extremely .low free 

metal ion concentrations, Thus, the free ligand concentrations are 

not significantly altered by changes in the complex concentration. 

So, the percentage of metal ion appearing in a given complex species 

is independent of the free metal ion concentration. 

Of course, .in systems where the complex formation is not 

negligible by comparison with the free ligand concentrations, the 

constancy of the percentages in Table 3.5 as described above, will no 

longer· occur.· In the case of the present models, deviation is in 

fact observed towards the upper limits of the free concentration range 

• set out in Table 3. 2 for magnesium, lead and zinc. Even in these 

' extreme instances, the displacement observed is not large. .The 

variation is usually confined to one percent and in no case exceeds 

five percent. This. is especially gratifying in view of the unlike-

lihood of these higher concentrations in vivo (see Section3.2.I). 

As is to be expected, the complexes of the metal whose .concentration 

is scanned are influenced the most but the effect may be seen with 

the complexes of other metals as well. These results were extended 

and substantiated in two ways. A simulation using concentrations at 

the upper limit of the scanning range for all the metals produced a 

computed distribution the same, within a tolerance of two percent, 

as that shown in Table. 3.5. Then, all the simulations were repeated 

using the hydrogen ion concentration limits of -log [ H] = 7 ,2 and 7 ,6. 

Although the computed distributions are quite different in each case 

(see Table 3.5), the percentages obtained were again independent of the 
., 
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free metal ion concentrations that were adopted. This confirms 

conclusion that the overall picture of the metal ion distribution 

amongst lowmolecular weight ligands in plasma is not going to be 

upset by an improved knowledge concerning metal-protein binding in 

plasma even if this alters the estimates for the free metal ion 

concentrations. 

3.2.3 Model evaluation. 

One of the most powerful motivating factors leading to 

the development of the models presented in this thesis is the fact 

that ·the low molecular weight complexes of the transition metals 

exist in plasma in amounts wh.ich are not measurable by experiment • 

. This is the outcome of their very low concentrations,. their labile 

nature and the complexity of the system. There is therefore no 

direct means of verifying·either the qualitative· or quantitative 

results of this kind of simulation. Moreover, one is confronted 

with the problem of substantiating the theoretical construction by 

some other, less direct method: to neglect to test experimentally 

both the model and the hypotheses upon which it is founded is to 

violate the principles of the scientific method. 

The inability to_ make direct measurements does not 

preclude the application of the scientific method. The detection 

and measurement of postulated low molecular weight species in plasma 

is certainly not the only acceptable test. Many theories in science 

are established entirely upon circumstantial evidence - a fact which 

in no way implies discredit. The paramount criterion, by which all 

hypotheses must ultimately stand or fall is the ability of models 
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which embody the hypotheses to produce verifiable predictions. This 

aspect is treated in Section l.3. Before such considerations are 

made, however, it is proper to impose a number of internal checks. 

For example, it is obviouSly necessary to ensure that different 

aspects of the simulation are at least self-consistent. Furthermore, 

it is important to evaluate the error which is imposed by (i) the 

simplification inherent in any model and (ii) inaccuracies in the 

formation const?nts. It is only when this preliminary evaluation 

·has been accomplished that the model is ready to be compared and 

contrasted with reality. 

The 'internal' evaluation of the model which is now to be 

discussed, falls into two categories. l'he first is concerned with 

the effects due to numerical uncertainty in the data for the model. 

The second category deals with the error which results from the omission 

of complex species from the simulated system. The evaluation of the 

influence of both these factors on the computed distributions will, 

hopefully, yield som~ idea·of the confidence which can be placed in 

the model's results as far as reproducibility is concerned.. One 

would .be interested in the effects of changes in (i) the formation 

constants supplied, (ii) the estimates of component concentrations 

and (iii). the complexes appearing in the simulated sys,tem. 
' .• 

Thus, 

it is the model's precision rather than its accuracy which is 

investigated. 

The majority of the investigations which are described 

below are accomplished by comparison of the results of simulations 

in whch the parameter in question has been varied. Although a less 
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empirical approach may be thought desirable, this is generally not 

possible. The complexity of multicomponent systems means that 

comprehensive theoretical analyses are quite out of reach. Moreover, 

most simple treatments are open to criticism for one reason or another. 

So, it seems best to credit empirical results whenever t:hey can be 

successfully merged into a broad pattern. 

The choice of ligand concentrations as described in Section 

3.2.l (4) is not an easy one. This is due (i) to the large number of 

low molecular weight substances in blood plasma and (ii) to the unknown 

extent of ligand-protein and ligand-ligand interaction. Only the 

most pronounced protein binding.has been.able to be accommodated. 

However, these major adjustments make it unlikely that the effective 

concentrations of the majority of ligands used will be far from the· 

values adopted. In any event, there is ri:o good purpose in reducing 

all the ligand concentrations by some constant proportion because the 

significant errors are going to arise when the ligand concentration 

ratios rather than the absolute concentrations areincorrect. The 

effect of employing radically different ratios is well illustrated 

by the ligands salicylate an.d tryptophan. These have been investigated 

because they are both predominantly bound to protein in plasma (see 

Section 3.2.t (4)). The exact extent of this protein binding is 

uncertain. It transpires that this factor is most important in the 

case of salicylate. If protein binding is ignored, the ligand 

concentration is increased by a factor of twenty causing a redistri­

bution of iron in favour of the ferric salicylate citrate complex 

(see Section 3.2.l and Table 3.5). On the other hand, tryptophan is 

not involved in any of the major complexes found in.plasma and thus, 

it may be concluded that the extent of protein binding is immaterial. 
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As the question concerning the free metal ion concentrations has been 

dealt with at length in Sections 3.2.1 (5) and 3.2.2, there is no need 

to reconsider the details here. Suffice it to say that the computed, 

distribution is insensitive to errors in this regard unless unrealistic­

ally high concentrations are utilized. 

The effect of errors in the formation constants of complex 

species in the simulated system is similar to the effect of most of the 

possible .defects presently under consideration. The p:l<;ture which has 

been discerned is simply that the error is only significant if it 

applies directly to predominant species. In other words, even moder-

ately large errors in the formation constants of species .which are 

found to exist in concentrations some orders of magnitude below the 

concentrations of the complexes shown in Table 3.5, can have little 

influence on the computed distribution. Moreover, there appears to be 

no cumulative effect of the errors pertaining to minor complexes. This 

is in no way surprizing but needs to be stated specifically because 

to assume as much without confirmation would be unwise. As a result 

of this observation, it is possible to.focus on the relevant factors 

which may produce an erroneous computed distribution. To begin with, 

the proton:ated forms of each ligand are invariably important. Only in 

the case of sulphate and some of the organic oxy..;.acids such as citrate, 

malate, lactate and oxalate do the calcium and magnesium complex 

concentrations exceed the concentration of the singly protonated 

ligand. Fortunately the acid dissociation constants are likely to 

be amon~st the most accurately known. Many have been measured under 

the model conditions. The rest have .been determined under a wide 

range of temperature and ionic strength so adjustment procedures 

(see Section 2.3) have been facilitated. The same cannot be said for 

the calcium and magnesium.complexes. The accurate determination of 
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the applicable formation constants will enhance the quantitative 

results of .the simulations considerably. This is particularly true 

for the series of.amino acids as ligands. Although calcium and 

magnesium are recognised to be weakly co-ordinating, the relatively. 

high concentrations of these cations means that they form the most 

predominant (metal ion) complexes with all the important ligands 

except cysteine. Apart frotn these circumstances, the present model 

actually performs a valuable service towards the computation of 

accurate metal ion distributions in plasma by isolating the set of 

major species for each type of metal ion. By concentrating efforts 

to obtain very accurate formation constants for these important 

complexes, the goal maybe achieved surprizingly quickly. 

It is evident that regardless of the size of the model 

which may be constructed, some complex species existing in a mixture 

as complicated as blood plasma will inevitably be omitted. In view 

of this, it is important to be able to judge the extent of the effects 

which may arise because the model is incomplete. This has been 

attempted by undertaking a fairly intensive program during which 

many simulations were conducted using 'segments' of the primary model. 

On the one hand, individual species were excluded. Alternatively, 

all those complexes formed from one or more components were removed. 

This procedure showed that the segmentation of the model has an 

outcome similar to that described in context of numerical uncertainty 

in the model's parameters. Only the omission of the predominant 

species seriously disrupted the computed dis.tribution (vide infra). 

Indeed, omission of a complex is tantamount to using a formation 

·constant of zero and as such i_s an extreme case of error in this 

parameter. Nevertheless, the picture· which emerges is somewhat 

surprizing. . The very large errors involved are alone sufficient to 
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s~ggest that they might introduce distortion into the results. In 

addition to this, it is rare to find a simulation whch neglects some 

· important relationships without upsetting the manifestation of the 

others. As in the case of the uncertainty associated with the free 

metal ion concentrations where a variation of several orders of 

magnitude did not alter the percentage of metal ion bound in a particular 

complex, the reason for this exceptional behaviour is to be found in 

the very small degree of metal complex formation in plasma. Once 

again, provided that the ligands in question are represented, their 

free concentrations are for the most part independent of factors other 

than the hydrogen ion concentration and the ~relevant protonation 

constants. 

The generalisations asserted in the above paragraphs 

pertain only to the overall picture of the distribution of metal ion 

complexes in plasma. They are not intended to convey the impression 

that the simulation is quantitatively unaffected by the omission of 

various equilibrium constraints. In fact, quite the reverse is true. 

Whilst the order of the complexes, sorted according to highest con­

centration, is often difficult to upset, even this happens when the 

computed concentrations of two or more of. them are of equal orders of 

magnitude. However, as evident from Table 3.5, the percentage of 

metal ion bound in the most predominant complexes usually falls off 

rapidly so small fluctuations do not disturb the broad pi~ture. The 

·situation is well illustrated by a comparison of the results of the 

'primary ' model of this thesis with those of Perrin (158) shown in 

Table 3 .1. Perrin 1 s is a subset of the former model. To begin with,· 

the percentage of each metal ion bound in a given form differs 
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noticeably. This is in spite of the fact that the major copper 

species are found .to be the same in both cases. The very marked 

decrease in the percentage of copper distributed amongst the low 

molecular weight ligands as observed by Perrin is now suggested to 

b.e less pronounced. This is due to Perrin's failure to include 

important equilibrium reactions. This was partially rectified in 

a subsequent simulation by Perrin himself; the copper was then shown 

to be spread slightly more evenly than had been predicted earlier. 

However, the major difference between Perrin's computed distributions 

for copper and those which are presented in this thesis stem from the 

calcium and magnesium amino acid complex reactions which the earlier 

work omitted.· These cations do react with amino acids to a limited 

extent. .The dominant interaction is most probably with the 'hard' 

carboxylate function of .these ligands. So, whilst the degree of 

complexation is not sufficient to seriously disrupt the computed 

distribution; it does alterthe availability of the ligands (as manifest 

by their free concentrations) to a certain degree. On the other hand, 

both Perrin (158, 369) and Giroux and Henkin ( 164 ) failed to find 

a most important zinc species.because they did not include citrate in 

their simulations. · Thus, the ternary zinc citrate cysteine complex 

has been ptevfously overlooked. It is obvious that omission of a 

major species or important component is always going to produce a 

defect in the model's results. Even such a gross error, however, does 

not appear to radically disturb the relative distribution of the other 

complexes which have been considered. For example, the omission of 

either of the two most predominant ferric complexes mere1y reflects 

as a redistribution of iron amongst the other major contenders. The 

quantitative effects are disastrous. The total concentration of iron 

bound to low molecular weight ligands, for one thing, can drop a 
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hundredfold. But the order of the other complexes is quite unaltered 

(see Table 3.6). Furthermore, Perrin's results for zinc (158, 369) 

show all the important complexes that had not been omitted. More 

important, they did not foster belief in a completely false 'pretender'. 

One might also note that the order of Pen;:in' s zinc complexes in terms 

of concentration differs from that shown in Table 3.5. This is 

partiallydue to the similarity between the concentrations of the 

predominant zinc complexes. It has been noted previously that the 

order.of the complexes in Table 3.5 can become altered if their 

concentrations are close together. 

In view of the fact that the omission of important complex 

. species, rather than some other fault, is the factor most likely to 

cause the models' results to be in serious error, it seems sensible to 

examine the possibility of the models, in this thesis, suffering from 

this kind of defect. The most obvious starting point in this regard 

is a consideration of the ligands which have been neglected. These 

include bilirubin, sugars such as glucose and fructose, histamine and 

·the low molecular weight peptides. Bilirubin does form complexes with 

2+ 2+ 3+ 2+ . . 
Ca , Cu , Fe , Zn (730) Jmt these are unstable i.n vitro and this 

substance does not appear to be a strong ligand. Carbohydrates, on 

the other hand, are likely to be important iron binders at least (161, 

374). Glucose, in particular, has a high plasma concentration (577). 

Histamine, in spite of a low plasma concentration, is a powerful ligand 

and thus may well prove to be important. This ligand is prone to form 

ternary complexes (58, 60, 334). Perrin has commented that peptide 

chains made up of simple amino acids are unlikely to prove effective 

binding agents for copper and zinc in plasma (369). This is probably 

the case due to the low concentrations of these compounds normally 
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TABLE 3.6 

PREDOMINANT COMPLEXES OF FERRIC ION FOUND BY SIMULATION OF· BLOOD 

'PLASMA.WHEN THE FERRIC HYDROXY CITRATE COMPLEX IS OMITTED FROM THE 

.MODEL. 

(Symbols defined in Appertdix 5.7) 

PERCENTAGE OF THE TOTAL FERRIC IRON 
.. 

BOUND IN THE LOW MOLECULAR WEIGHT 

COMPLEX COMPLEX FRACTION 

~10g[RJ=7,2 -log [ H]=7 ,4. -log [ H]=7 ,6 
.·:· ·- - . _,. . ~. 

·- -:- .. 

FE+3(1) CTA3(1) SLA2(1) 30 34 36 
FE+3(1) CTA3(1) GLU2(1) 11 12 13 
FE+3(l) CTA3(1) OXA2 ( 1) 18 12 6 
FE+3 (1) CTA3 (1) GLNl ( 1) 5 5 5 
FE+ 3 ( 1 ) CTA3 ( 1 ) GLYJ( 1 ) 5 5 5 
FE+3 ( 1) CTA3 (1) SCA2 (t) 8 5 3 
FE+3(1) CTA3(1) SERl(l) 4 4 4 
FE+3(1) CTA3(1) AAAl(l) 4. 4 4 
FE+3 (1) CTA3 (1) THR 1 (1) 4 4 4 

. FE+3(1) CTA3(1) PHEl(l) 2 2 2 
FE+3(1) CTA3(2) 2 2 -
FE+3 (1) CTA3 ( l) ARG 1 (1) 1 1 1 
FE+ 3 ( 1) CTA3 ( 1 ) SLA2 ( I ) . 1 1 1 

Total concentration of ferric ion in the low molecular weight complex 

fraction in plae~a. 

-log [ H] = 7,2 

. -.log[ H] = 7,4 

-log [ H] = 7;6 

(c.f. Table 3.3) 

: -
. -. 
: -

. . -15 
3,15 x 10 M 

-15 4,90 x 10 M 

9,18 x l0- 15M 
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present in the biofluid (577). This is in spite of a recent publication 

by Agarwal and Perrin which implies otherwis.e (499). In any event, 

opinion about all these ligands must remain neutral until formation 

constants for each with a range of metal ions become available. The 

same applies to the question of quaternary complexes although it 

presently appears that these will not be very important. 

Finally, it is instructive to note that the independence 

which the complexes have been found to exhibit with regard to each 

other is a direct outcome of the fact that the model is designed to 

accommodate protein binding. Metal-protein species are actually 

the most predominant transition metal complexes in plasma. The way 

that the model is set up ensures that the distribution of the complexes 

'in relatively low abundance is not upset by an absence of knowledge 

about the major species. 
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3.3 General discussion. 

As it is the ability of models to yield verifiable 

predictions that serves as the yardstick of their value and validity, 

it is surely on this aspect that the final analysis of any model must 

focus. It is not necessary to formulate in advance the sort of 

prediction by which the model will ultimately be judged; the results 

·themselves must suggest the direction of subsequent experiments. 

However, it is important to consider the possible applications of the 

model. In particular, it is desirable to outline those which may 

provide the framework within which predictions can be.made and experi-
•' .. 

ments then designed to test them. Thus, whilst it is not the 

responsibility of the moder-builder himself to establish. the absolute 

value of his results (by their very nature, models often predate the 

experimental means of substantiatfon), the onus is on him to clarify 

the relationship between reality and the simulation. 

In the.present context. there are considerable grounds 

which provide assurance concerning the reliability of the model's 

mathematical .construction. There can be little concern with the 

thermodynamic theory and relationships that have been employed. In 

this type of situation, chemists universally depend upon the conserv-

ation of matter; the equilibrium functions are also exceedingly well 

established. Similar calculations, for example, are employed 

whenever formation constants are determined. The .only uncertainties 

are those associated with (i) the applicability of the thermodynamic 

theory and (ii) the experimental error in the parameters of the model. 

These have been discussed in Sections 2.J and 3.2 respectively. 

Neither factor seems likely to invalidate the results of this work. 
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The experimental error, which presently merits the most concern, is 

constantly being diminished as research in this field progresses. 

Moreover, whilst the difficulty in verifying the predictions of 

analogous computations becomes insurmountable as the system gets more 

complicated or the concentrations involved are decreased, there is 

no reason to believe that a discontinuity separates these extreme 

cases from the simple and tractable ones. In this regard, it is 

of special int~rest to consider the astonishingly low free ion 

concentrations which have been utilized in the simulations. This 

applies only to the transition meta.ls. ln the case of iron, for example, 

concentrations as low as l0-24M have been used. These concentrations 

refer to solutions in which there is less than a single free ferric ion 

in one litre! This, in fact, reflects not.so much on the actual 

concentration of the ion species (which, indeed, need not be present 

at all) but rather, expresses the chemical J>Oten:tial of such an ion 

with respect to the other ferric species present in the solution. 

Concern that a thermodynamic treatment might fail beca'use it no longer 

deals tvith a number of particles sufficient to ensure statistical 

effects, is therefore unfounded. The situation is .analogous to that 

of the aqueous solution in calomel electrodes (Schwarzenbach, G. -

private connnunication). The insolubility of mercurotis chloride 

ensures that the concentration of the metal ion is so low that it is 

certainly non-existent in aqueous chloride solutions. Nevertheless, 

a non-zero concentration, equivalent to one ion in a volume of water 

larger than that of the earth, may be utilized in a consideration 

of the reactions and thermodynai:nics of the electrode system. 

Turning to the model in its physiological context, it 

appears that tnost of the predictions will arise from the application 
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of results towards an interpretation of the mechanisms of various pro­

cesses. For example, major complex species postulated by the model 

are suggested to participate in the transport of metal ions into and 

o~t of protein structures in plasma. This, of course, does not 

apply to situations where the metal may be transferred directly from 

one protein to another. The exchange of ferric .ions between trans-

ferrin molecules is therefore according to the results in Table 3.5 

predicted to take place via a mixed complex involving only one citrate 

ligand rather than as the dicitrato complex as previously implied (611, 

404). This applies to the exchange in plasma and is not necessarily 

applicable to in vitro experiments. However, it is encouraging to 

note that Bates et ai. have studied the kinetics of iron (III) exchange 

between chelates and transferrin and their work confirms the prediction 

in so far as they find that the iron-dicitrate is not the most reactive 

species (114), Similarly, it may be concluded from Table 3.5 that the 

· exchange of copper and possibly lead between proteins in plasma involves 

mixed ligand complexes. The opposite conclusian is drawn for manganese .. 

A most direct assurance that the model is not grossly in 

error is provided by a comparison of Tables 3.2 and 3.3. It is 

evident that the simulation predicts total low molecular weight metal 

complex concentrations (see equation 3.2) in very satisfactory agreement 

with those estimated from experimental considerations (see Section 3~2.1) 

for calcium, copper, magnesium and zinc. _Moreover, this establishes 

that the free metal ion concentrations chosen for the 'primary' model 

are reasonably accurate. The negative aspect of this has even 

greater absolute significance. The possibility of free concentrations 

as large or larger than the upper limits which have been scanned (see 
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Section 3.2.2) is denied. Such high values produce complex concen-

tractions incompatible with a number of experimental measurements 

(see,. for example 155, 135, 194, 140 and other references cited in 

Section 3.2.1 (a), (b), (e) and (g)). 

lnteresting implications of the model conce:m the effect 

of administered therapeutics on: the plasma metal ion distribution. It 

is 'clear from the model's results that if a ligand is to compete 

effectively against those normally present, it will need to be both 

powerful and in relatively high concentration. Indeed, very few 

therapeutics will be able to exert a noticeable influence on the. 

physiological distribution of the transition metal ions. However, 

those which ate potentially capable of disrupting the ~quilibria are 

of great interest.· Doses of aspirin, for example, are capable of 

increasing the salicylic acid concentrations in plasma tenfold (533). 

The effect of even such mild treatment is to produce a surge in the 

salicylic acid not bound .to protein (375, 247). the model shows 

clearly that this will, in turn, cause a marked alteration in the 

ferric iOn distribution amongst the low molecular weight ligands with 

the emergence of the mixed citrate-salicylic acid complex (see Table 

3. 7). Thus, the widespread use of aspirin as a multipurpose thera-

peutic may have a pronounced influence on iron metabolism, depending 

on the role of low molecular w~ight complexes in this context. 

Possibly the most important application of models such 

as the one presented in this thesis concerns the transport of transition 

metal ii:>ns through biological membranes. Very little is known about 

this subject so it provides a fertile area for making predictions 

without the prior knowledge of experiment. This is not meant to imply 
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TABLE 3.7 

PREDOMINANT LOW MOLECULAR WEIGHT FERRIC COMPLEXES* FOUND BY SIMULATION 

OF BLOOD PLASMA FOR INCREASING CONCENTRATIONS OF SALICYLATE THAT MAY 

BE PRODUCED BY .DOSES OF ASPIRIN (ACETYLSALICYLIC ACID). 

(Symbols defined in Appendix 5.7) 

COMPLEX Concentration of salicylate. 

5µM 50µM IOOµM 500µM 

FE+3(1) CTA3(1) OH-1 99(1) 97(1) 94 (I) 77(1) 

FE+3(1) CTA3(1) SLA2(1) (2) 2(2) 5(2) 19(2) 

FE+3( 1) CTA3(1) GLU2(1) (3) (3) (5) (6) 

FE+3(1) CTA3(1) OXA2(1) (4) (5) (6) (7) 

FE+3(l) SLA2 ( 1 ) OXA2 (1 ) (14) (4) (3) .(4) 

FE+3(1) SLA2(1) GLU2(1) (26) (14) (13) (5) 

FE+3(1) SLA2(2) (-) (12) (4) 2(3) 

* Given as the percentage of the total low molecular weight ferric 

ion fractiOn. Figures in parentheses are the positions of each 

complex after they had been sorted according to highest concen,.... 

tratiort@ -log [HJ = 7,4. 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

173. 

that this field of res~arch has been_neglected. On the contrary, 

much effort has been directed at elucidating the nature -of biological 

membranes. Their physiological significance is obvious and so their 

transport properties, in particular, have been intensively studied. 

However, the understanding of life processes is rarely easy and membrane 

phenomena have proved no exception to the general rule. Most work has 

been confined to organic molecules (370) and the more abundant inorganic 

ions such as 
+ + - - + 

Na , K , Cl , HC0
3

, H (564). Very little has dealt 

with the transition metals. Thus, it is necessary to formulate 

predictions pertaining to the transition metal ibns from a knowledge 

of these which are better understood. Paradoxically, small organic 

molecules are probably more analogous than the alkali metal ions. 

This is because the latter are known to participate inactive transport 

processes which require metabolic energy and involve astonishingly 

selective reactic>ns. On the other hand, at least part of the transition 

metal movement through membranes is believed to occur by passive 

diffusion. Their penetratiOn is invariably slow, suggesting passive 

"flux (677). Active processes certainly do not account for the total 

intestinal absorption of iron, copper and zinc (vide infra and also 

Section 1.2.3). 

Little can be concluded about the model's results in 

terms of the active transport of transition metal ions through membranes. 

This will have to wait until considerably more has been learned about 

such processes. One can only opine that it is not improbable that 

low molecular weight conplexes participate in one way or another. 

After all, low molecular weight complexing agents have been implicated 

in the transport of alkaline metal ions through membranes (see, for 
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example, 675). Furthermore, the very low free metal ion concentrations 

of the transition elements require that complexes rather than the 

hydrated ion species participate in many .physiological processes. 

These facts should all be evaluated in the knowledge that· the movement 

of macromolecules through membranes is generally restricted. This 

limitation on the nature of carrier ligands applies equally to active 

·and passive transport. It should thus be borne in mind throughout 

the present discussion. 

Far more is known about passive transport than about the 

active process. The fact which is possibly of greatest applicability 

is that small, uncomplexed inorganic ions cannot cross thin lipid 

membranes at a measurable rate (676). Similar restrictions apply to 

small organic ions (370). The amount of energy required to transfer 

a charge of small dimensions from water into hydrocarbon is totally 

prohibitive (676). This is well illustrated by organic ligands whose · 

rate of transport is observed to be very dependant on the protonation 

constant of the substance and the pH on either side of the membrane. 

The molecule can only migrate through the membrane in the non-ionised 

form of the weak acid or base (370). The magnitude of the flux is 

a function of the difference in concentration of the neutral species in 

the solutions on either side of the membrane barrier. A similar 

situation applies to the low molecular weight complexes of the transition 

metal ions. Only the neutral complexes will be lipid soluble. This 

criterion underlies an important application of the model The con­

centration of the neutral species in two blof luids may be calculated 

and compared. The simulations can also indicate how the distribution 

changes with pH. So, the results can be used to predict the direction 

of passive diffusion through a membrane separating the two biofluids. 
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Moreover, the search for conditions which will.either increase or 

decrease the flux should be facilitated. 

Consider a person suffering from transition metal overload. 

It is obviously desirable to be able to administer a drug that will 

bind the offensive cation, thereby enabling it to be excreted. This 

applies equally to patients who have been poisoned by excessive intake 

(e.g. those suffering from plumbism) and to those afflicted by a meta-

bolic disorder such as Wilson's disease. The difficulties experienced 

by those seeking more efficient medical chelating agents are discussed 

in Section 1.2.4. In this regard, the value of the model lies in its 

ability to test that potential of large numbers of drugs quickly and 

cheaply. . The treatment of Wilson's disease by penicillamine provides 

a good illustration of the sort of computer investigation which can 

eliminate much of the randomness which has often characterized the 

search for better therapeutics. It has been shown that the mode of 

action of penicillamine depends upon the fact that it renders plasma 

copper more available for diffusion across a membrane (341). The 

experiments have been conducted both in vitro and in vivo. There is 

a very marked rise in urine copper within hours of the administration 

of the drug. Table 3.8 shows a number of important aspects which are 

disclose.d by simulating the low molecular weight metal ion distributions 

of plasma in which the concentration of the tetramethylcystine (the 

oxidation product of penicillamine) is systematically increased. A 

similar model has been produced by Perrin (369). Whilst the overall 

picture is unchanged, differences have arisen because the present model 

contains estimates of the formation constants for a substantially larger 

number of tetramethyl cystine complexes. It can be seen from Table 

3 . 8 that penicillamine therapy can raise the concentration of the low 
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TABLE 3.8 

MODEL RESULTS FOR THE TREATMENT OF WILSON'S 

DISEASE WITH PENICILLAMINE* 

a) Changes in the total concentrations of metal ions bound to low 

molecular weight ligands expressed as a percentage of the normal 

value. 

Metal ion Total concentrations of tetramethyl cystine in plasma 

OµM 50µM lOQµM 150µM 200µM 300µM 

.. 
2+ ·Ca . 1001 100 100 100 100 100 

Cu 
2+ 

100 110 126 175 224 286 

Fe 3+ 
JOO 100 100 100 ·100 101 

Pb2+ 100 103 107 110 115 122 
Mg2+ 100 100 100 100 JOO 100 
Mn2+ 100 100 100 100 JOO 100 
zn2+ 100 103 107 111 117 - 127 

b) Changes in the percentage of neutral species in plasma 

Metal ion Total concentration of tetrarilethyl cystine in plasma 
-

OµM lOOµM 200µM 300µM 

Cu2+ 62 66 66 68 
Zu2+ 8 8 8 I 1 

*Penicillamine is taken to be totally oxidized in plasma to 

tetramethyl cystine. 
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molecular weight copper fraction quite considerably. Small increases 

in the corresponding fractions of zinc and lead are also evident. The 

total concentration of low molecular weight complexes for the remaining 

metal ions are substantially unaltered. This is an important property 

of a good medical chelating agent; the distributions of the ions other 

thart the metal which is in excess should be distrubed as little as 

possible. Further, the model reveals that whilst the percentage of 

neutral copper species is incr.eased, the same change only affects zinc 

at high therapeutic concentrations. So, it would seem that the 

beneficial removal of copper would continue as the size of the penicilla:...._ 

mine dose was stepped-up but that at higher levels one might find that 

this is accompanied by an undesirable loss of zinc. Uncertainty is 

warranted here because nothing is as yet known about the corresponding 

complex distributions in urine. Only when the two biofluids can be 

compared will it become possible tci properly investigate the phenomena 

in question. 

Another aspect of the application of the model to the 

question of transition metal ion transport through membranes concerns 

the absorption of iron. Iron deficiency anaemia is a very widespread 

condition which provides scope for further investigation. Persons who 

have been diagnosed as iron deficient can only absorb a small fraction 

of the iron therap~utics presently available due to the body's pro-

tective mechanism described in Section 1.2.4. The tolerance of an 

individual towards most irori compounds is limited. In addition to 

these drawbacks, alternatives to oral therapy are expensive and thus 

beyond the reach of the majority which require this kind of treatment. 

It is therefore evident that there is a pronounced need for a simple, 

cheaply manufactured iron complex which can significantly enhance 
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considerable stability of the computed distribution of the metal ions 

amongst low molecular weight ligands has some profound implications. 

To begin with it indicates that neither metal ion deficiency or over­

load is likely to alter the gross distribution. The negligible 

influence of the majority of therapeutics on the low molecular weight 

complex distribution of the transition metal ions has already been 

mentioned. It may weil transpire that, based on the evidence of 

the model, a given complex or even the entire low molecular weight 

fraction may be eliminated as possible participants in various physio­

logical processes under investigation. 

Finally, it is necessary to consider the future of the 

work that has been presented in this thesis. Much remains wh.ich can 

be done to improve the detail of the blood plasma model itself. . The 

present project has helped to delineate the most pressing tasks. These 

.are (i) the accurate determination of all the as yet unmeasured form­

ation constnts for the important complex species (bicarbonate complexes 

and calcium and magnesium amino acid species, in particular), (ii) the 

experimental measurement of many more mixed ligand complex formation 

constants and (iii) the improvement of estimates of the free metal ion 

concentrations in plasma, especially that of magnesium. As far as 

the simulation of other solu.tions is concerned, numerous possibilities 

exist. Intestinal fluid, cerebrospcinal fluid, 'gastric juice, urine 

and cytoplasm are obvious examples. Simulations of these body fluids 

are pre-requisites of predictions about the passive diffusion of trans­

ition metal fons through membranes in vivo. These models only await 

the necessary experimental data. 

be simulated to great advantage. 

Sea, river and lake waters can also 

The same can be said of many 

industrial solutions •. There niust be.considerable potential in the 
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absorption of the metal. A consideration of the iron overload disease, 

siderosis, suggests that the normal iron absorption pathways can be. 

by-passed by low molecular weight complexes .. This, in fact, has been 

incorporated in the description of iron absorption by Forth and Rummel 

(400). So, the computer models are clearly applicable. Indeed, a 

less sophisticated but analogous approach has been taken by Schubert 

when he calculates (using calcium as the only competitive metal ion) 

the 'effective stability' of iron complexes under physiological 

conditions (726). ·An elementary model calculation of the concentratiqns 

of iron complexes over a range of physiological pH values has, in fact, 

already been published (316) •. However, once again it is necessary to 

refrain from making definite predictions until the complex distribution 

in both plasma and. intestin:a1 fiuid have been simulated. Even this 

advance may prove insufficient because the muco!3al cell may well behave 

as an additional compartment. and not simply as a single phase partition. 

Still mindful of the limiting factors which have been. 

stressed above, it is tempting to speculate about the results of the 

model with regard to the body's inability to excrete iron (see Section 

I .2.3). It is shown in Table 3.5 that all the predominant low· 

molecular weight ferric complexes are negatively charged. This could 

well be biologically significant because it would tend to prevent loss 

of the metal through biological membranes. It is .. certainly true that 

the homeostatic control mechanism for iron is unlikely to have evolved 

as it did had the metal been difficult to retain in vivo. 

In spite of all the applications that one might envisage, · 

it is important ot recognise that the negative evidence produced by 

the model may ultimately prove to be that of greatest value. The 
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simulation of systems concerned with metal extraction, for example. 

In all these cases, the investigation of the metal complex distribution 

is motivated by the fact that only in the light of such knowledge 

can one truly understand the chemical processes which are taking place 

in the solution. However, no model can ever be complete. No model 

can behave exactly as the real system. 'It does require maturity to 

realize that models are to be used but not to be believed.' (Henri 

Theil in 'Principles of Econometrics' , 1971). The best that can 

be done is to strive to simulate the major relationships which regulate 

the real behaviour by over-riding the effect of the less important 

aspects. Eventually, this can establish the validity of the hypotheses 

which the model manifests. It is in this spirit that the blood plasma 

.model is presented. One should not overemphasise the shortcomings of 

the simulation, especially during the early stages: it is always a 

pity not to advance for fear of taking the first few steps. Further'."". 

more, it is important to remember that accuracy is of greater value 

than precision. As Perrin has suggested (369), it is well to recall 

Tukey's Principle: 'Far better an approximate answer to the right 

question, which is of ten vague, than an exact answer to the wrong 

question; which can always be made precise.' 
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STU£'11ES, 
CO-ORDillAT(0 1~ r.·ftEtl REV. 197'11 12• 309 

3-- CLEl\RE' ''•J• 
Tr.Ar•s Ir 1 nH llETAL cor:r>LF:Xr.t; 1 n C:A!·rCF.:R cHf:MOTHERAPY, 
CO-OR'.111:ATIOM CHEM PE'J, 19J'I, .12• 3'+9 

321 CHILDS c,~. 
A P')Tf•:Tl0l~ETRJC ST!!£'1Y OF F.:f')!)ILlflP.!A JN Aoui::ous DIVALENT METAL ORTHOPl-IOSPHATE 
SOLllT I CH.'S, 
l IJC:>GA'l I c c1tr.n I 5TRY 

321 01.ll?<;T R, A• 

32'.l 

llEC'!AIJJS•t OF Tl!F: Gl.A<;S Ctrr.TRO()f RF.:SrOtlSE. 
J, CHEif F:O\ICllT!ON )Qb7o '+'+• 175 

CRICHTON R.R. 
FERP.JTJtJ, 
STn!ICT.llRE AFIO llOtJOl:!G 19731 17• 67 

,, ;- ,, I n \I ! r JG H • :·t ·• . '1 l L .. <; , ' • ~ • "r. TT .J T L • () • 
A STUDY OF SOflF: OF T!!E ,..,r.or.l.CIS llJ OETtRMlrll'I:; THC STGJCHlJOlll:TRIC PROTON 
OlS50ClATtClil cotl.sTl.::T~ OF' cor•r1.ExEs .nv pOTt.!IT!OllETRIC TITRATlot~S USING A GLASS 
ELEcrnnnr.. 
AllAL Cltl 1·1 ACTA 191.7, 3a·;. '175 

3.'.''" OU1!SMORE H, S • !1! fViLCY 0 • 
TllE CALlllflATIO!l OF r.LA5S CLF:CT!'lODES 111 CELLS :·:tTli L.lOUID JUHCTION, 
AHAL CHIM ACTA 1972, 611 llS 

32/, ZUR NEOOEtl p, 11F'l?Ctl.lY E. DUYCl<AERTS G, . 

'-.~ ... ,_, 

327 

COflTRinllTIOl4 A LA Or.TE!<iitr!ATIO!l ?OT[llTJ011ETRll)llr: DES CMISTAflTS DE STAOILITE .DES 
COMrLExr:s 1:2 AVEC LES A~IDES AHIHOPOLY-ACETIQUES MEl11KINIYl21. 
At4AL. CHIM A.CTA 1973 1 .6'ft 197. 

DUHSMORE ~.s, MIO~LEY O, 
COMpUTER CALCULAT[Otl Of Tiit .cOttPOSITION OF EQUILIBRIUM HIXTIJl?ES Ill SOLUTION, 
A ti AL CH I :t ACT A I 9 7 't, 7 2, 12 1 

HAllSEll r.11. l?UZICrA "· 
SEU:CTi>O!)F. - T11r. UllJl.'".r:.Al. !OfJ•SELECTlvr. [l.[CT"nnr. V• co:1PLF'X FORMATION STUDIES 
11 I TH THE CU 1 I I I SE Lr.CT r. ('IDE , . 
TALANTA 1973, 200 110~ 

GAtlS p, VACCA A, . . . 
APPLICATION OF THE DAVIDON•FLEtCHER-PO~ELL METHOD TO THE CALtULATlON OF' 
STAr:ILJTY C011STA'llT·S, 
TALANTA !97't, 2lo 't~ 



Univ
ers

ity
 of

 C
ap

e T
ow

n 
33.., 

JJA 

33n 

J'I ~ 

SAA.Hlfll Ao VACl'".A A. GA!IS r, 
Mitl!QlJf10 - A GE:ttr:r.A1. c11·1~11TER PROGRAIH!E. FOP. Tl'f: co11p\1TATION OF FOR!1ATION 
con~TAr.tT<.; rRni· rnrr:•:r1r,,•t:Trnc riATA; 
TALANTA 197q~ 21• SJ 

Vfl!MOV r., 71t:nv1v r, TCHArARClVA P. Flllf.F:VS!C'.Y o. 
poTrNTIO!![TPIC DETC::-:1111ATIOrt or AutorrrntOLYSis COll<;TANTS Of' SOLVENTS. 
TALANTA 197q, 211 163 

CHArMA!I 3,E. t!ACflt~l!'l'!'T T.r:. O•SULLIVAtJ W,J, 
STUOIES ON MAl:GA!lf:SE cnPrLEJCtS OF HUf!Ar. SERUM Al(IUMitl, 
BIOJtrnRG CllE'.r·•, 1<173, 31 27 

CLAPKE r.R. MAPTELL A,r, 
METAL CHF:i..ATf:S OF AF"<ilflPl.f. AtJD RELATED LIGA'lDSo 
J. 1 rrnRC'i r;ucL c11r.t1. 1 <17C, '32 • 911 

GEP~ELY A, 50VA~O. I, 
LOG BETA:-lo DELTAll A:J'l OELTAS VALuts 'or !l!XED C0!1PLEXES OF CU(lll \-!ITH HISTAMINE 
Allf\ SO~H: ALIPHATIC A!l!llOACIDS, 
J, tNORt; '.H!Cl CHEM, 1.9731 3'it '13S'i. 

NAGVPAL I, ~E~~~LV A, FARKAS r. 
Tt!Ef>MODY'IA!JIC STUflY :'IF '!'II[ f'AREl-IT l\:JI') 111.X[() cc.:~PL.EXES c;r ASPAf:TIC /1CID1 GLUTAMIC 
ACIO AMO C'iLYCI!IE l'IITH cu1111. 
J, ItlORG ::UCL Cllf':M, 1?7 11t 36• 6?? 

HAPTIN P.A. PRA~~s n. 
som: F'ACTciP.S ltlf'Lllf.P!t:lllG !!IXED CO!!PLEY. F'ORMATIOll, 
J, l~IORG ~lllCL CH:::M, 1'?7 1lt 3(,t i66S 

RM:AMOORTHY S, ·i1AllllllJG .p,r,,. 
EQUILlflRllJM STUOIES, OF SOUJTIOllS COIHAINltJc; PP.12+1 Ori ZN12+1 AND CYSTEINE• 
OP.THOPHOSpltATF: t.110 A CARP.nxvLIC ACID 
J, I NORG NUCL CllEH, 1•1q, . 36.• 1671 

PASINI Ao CASELLA L, 
SOME ASPECTS OF THt REACTIVITY OF AHtNo ~cros COOROIMATEO TO METAL IONS, 
J, INORG·~lUCL CHEii, i9H't . J6i 213j 

BENtJETT L, E. 
llETALLOPROTE Ill 11EOOX REACTIONS, 
PR%PC:<;:, IN Jt!Ot?r,AIJIC C:IEI!, 1 '173, 1 e. • 

SAPrAR n. KfHlC'Y. T,P.~. 
corrER•AM!llO Aclo· CO~lPLEXES Ir! HUMAll SERUt1t 
THE RIClCHC:H OF COPPER. rrioc s·v~ip' COPPER IN f:lIOL ·SYSTS •. ED PEISACH J ETAL. 

1.'IALSHE ,J,!l, 
nlLSOtls•s OlSEASE• A REVJCn, 
THE RIOCHEH or corrCP., r~nc sy~P C~PPER IN ~I~L SySTS. Eo PEISAcH J ETAL. 

196St 183 

196St · q15 

! 
I 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

3q' ~ALSH£ J,H,. 
PE:ltCILLt'·ll'lF'.t A ll[!'' Of.'f\L T!lERAF'Y ror. ~dLS(llJtS r.JSF.:A.sr:. 
AHCP. J. 1'.f:f:\IClrlE JQSb, 21• '1137 

3q-,· VALL.EE f'l,L, l)U;r:~ t",,., 
OincYE••JCAL !".Ff'ECTS nf' r•[f'Cllr.'Yt CAD!llllli AMD LE~f'I. 
Afl'J REV 'l l'lCl!Er•.• • J.<?7?,t·: -.'I I• •).! • 

3 11'' CHAf'LEY P,J. t?OS!'"'ISTF:Jll 11. SHORE E. SALTMAn p, 
THE ROLF.Of' CllF.'Lf\TJ('~l At:!:' ril'JCPIG E·llllLIHRIJ\ JM IRO~I 11ETA!l0LISM. 
ARCH fl!OCHF.:H BIOPHYS, 1?60t ~8• 222 

3q~ PARISI A.r. VALLE!'" n,Li . 
ISOLATIO'l. Of' A ZirlC ALl"!l1\ 2-rlACR<'.IGl.Ol'ULIN f'R.;M !Wt1AN SERU:'i, 
fllOCHE:IJSTr>Y 1970, 9, ?.'Iii· 

3 'I ,r, 0 A P n S l.f". Y \'.' • r. , I'.! I I LI" S . R • f , 
llJHIRITtn·1 or- E'lzYr::<; :,y ::t'Tlll.' tor~ Cll[LATll!G :~r.AGE!JTS, Tfl[ORY ANO r>F.:W 
GIHPHICAL rtf.THODS OF STllDYt 
OIOCHEH J 0 197'1. 137, SS 

3'1"' BARDSLEY •·1 •. G, Cll!LT\~ R,E, CRAriBE M.J,C. 
1:rn1~!Tt');1 nr f'l7.Yt'.'"<; r:Y '.~LT~L Inf.I (".Jl[Lt.TlllC': ;:,tA<;ErJTS, THE ACTION OF' C,OPPER 
CHEL.AT!rl'; Rt:AGE'JTS r,•1 ;>1~•1I 1 lE OXIDASE. 
OIOCHE~ J, 197'1, 137, 6l 

3q- SCHADE A.L, 
PLASMA rnorJ: ITS Tl"IAllSf'ORT AND SIGNIF'ICAtlCE. 
llUT.RITJO'J RE.VIEl~S !955t . 13• 225 

VALLEE R.L, 
ZllJC Ario METALLOF.:ll'Z'YHES,·. 
AOVJ\NCF:S rn PRoTl:lll CHEM. .1955t 10• 317 

3~! GU!?O F,P.r1. l'JILCOX l' •. E. 
COMPLEX F'PRttATIOM OET~E£N METALLIC CATIONS AND PROTEINS• PEPTIDES AND AMINO 
ACIDS. 
ADVANCES IN PROTEIN C~EM, . · 1956, 11 • 31 I 

SHARPq:ss u.s. llUEllTER M.D, TYCE G.M. 01'/EN c.A. 
3-MEHIOXY-'l-HYDl"IOXY PftEIJYL ALAlllNE 13-0-METHYL-DOPAI IN PLASMA CURING ORAL 
L-DClPA THERAPY or PATIErtT:::: r:JTll'PARKllJSON•s !'II5EASE, 
CLl'I Cf!!'~ ACTA J'172, 37, 359 

J':"' OICSOLO "• r,lJllf'lfFl r., 
IMPROVED METHOD ron JllVESTIGATIOIJ OF COPPER rtETABOLISM Ill PATIENTS WITH 
W IL S 0th 5 0 I SE A!; E US I qr, b 'IC IJ 9 
CLIM CllI:-1 ACTA 1972, 'll·• 3.53 

LAllRELL C,FI, 
WHAT Is 'THE FU:ICTICIP {1f' TPA~;c;rEFlRIN ltl PLASMA? 
BLOOD 195.1,· 6; ~· lll3 . ; 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

J':• 'I c R 0 5 By I',' • H • 
Tiff C('l~•T~0L nr !1?01'. nfll.•~'!Cf. PY THE JrtTE5llttAL HIJCOSf\, 
nLono lq63, 22, q11 

HEIJrlll r.1. <;C:lllfl.'.i,\:I .1.ri. SCHUl~Jl/\11 ('.,!'. Pf:OllZE 1H o,A. 
CH/\'!G[S IM TOT/\Lo rtn'Jf'Jrr1rs1nu:.u10 ['llFFUSir.LE PLASllA zJ~IC A!lO COPPER DURING 
lllFANCY, 
J, PEDIATRICS lq73, A2o A31 

J~S SAss~~orTSAK A. ~Art:~r o. 
At;E-RELATED CllAIJGES I!I corr£~ AND THE BIOLOGlCAl. TRANSPORT OF COPPER: A 
C0~·1 1•E :J TA" Y, 
J, PEDIAT!1IC~ 

'Oldlr,S t:',",, Cf\111"!\(LI. r,r.,. 
r~Ctl•:E•s Ktt:r.v llllIR SY'.ff\'10'.H: •. f\11 

SPrlr::AD F:FFECTS, 
rEntATRICS lq72o 50• 18~ 

STEVE~S A,J, HAY~E V, CARTWRIGHT E, 
lllHE~ITED oEFf:cT 1-rl COPP£R A9SCJRBTJOI~ ;1ITH '.''_IDE-

3~·. GILL \\'~N. 
LAPLAC!:: TRA!ISFO'l!15 P'll1\'

0

lf'1!: SOLUTIONS TO PARTIAL DIF"Ff.REfHIAL EQU/\TIOtlS, 
CHEil t'IGo 19b21 l"?bi1 97 

~' !'.: ' ' c; I LL II , IJ , 

11/\THEMllTICS rR01i1orc; llflf'l[PSTAll!'ll:·ICi FOR MEVI InEAS. 
C1tEr1 E~·ICi, 191>21 l 9b2, I !19· . 

36: GILC W,N, 

361 

362 

MATHEMATICS FOR C:HEr!ICAL E!lc;ltlEERS, 
CHEil EllGo 19620 19621 l~l 

HED~IG G.R. rha~LL H.t:.J. 
DIRECT POT~NTloMtTn!c HEASUREllENT OF HYDROGEN ION CONCENTRATIONS IN SODIUM 
CHl.ORlnE SOLtJT!OIJS OF' FIXED l'l~llC STP.EMGTll, 
ANAL CHF:~1. 19711 '131• 1206 

\'llLLIAMS O,R .. 
THE CHEMISTRY OF TRACE HETALS, IN VIVO ANO THE a•oLOGY OF ZiftC, 

l<ENCH J,E, 
HETAL5 A~D PR~TE!MS, 
TltE OArlli::L HAHM MEl!ORIAL LECTURE, u.c.T. 19691 

3C.'l f\ECr. 11, T, 
Tllf" CllF.tllsTr.Y OF CO!'l"LE:( r:cuiLifllHA, 197n 

3l- ANCrLICI P,J, 
STARILITY OF COOl?OINAT10N COHPOUNOS, 
I NO"!c;AN I c flt oc11ntt ST"!Y \1(1(. I F.o. r I CH•rnfltl r, ,L. 1973. 63 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

J£." Fll"iE"'.LO"I E, 
~(~~LMrPOTCIH c~~PLtXF:<;, 
lfilJRGM:lc l'IOC11Er.Y~T~Y V!'lL f"I, E!CHHOP.11 G,L, 19730 227. 

ROS~OTTI r,J.C, POSSATTI ~.s. 
THE OE Tr. R•·i !fh\T I Ori OF' ST M": IL lT Y C: ()llS TA IH S, 1?61 

36' JAMESON R,F, 
TllE :-1.T,P, INTERIJAT ~f:111r.•·; or SCIENCE, SERIES I VOL 10 [('l, SrJNllEH H,A, 1973 

36" P[f'IQJN D,o, AGAP~AL P,P, 
IHILTl-l'F:TAL-'1LILTILlt;Ar:~1 F:"ll!ILlll.~IA: A MODEL FOP. BIOLOGICAL .SYSTEMS, 

·riET.\L l.O'I<; l~J f'J()LCt;JCAL SYSTE•r<;, VOL II fr>, S·!GEL Ho 19731 167 

J: -, GI) L ~ s Tr I "I fl • A l'I 0 I'·'),... L • KA L 11 Ar~ s • M, 
THE PRl'IC[l'LES OF' l"l'." 11\'i llCTION, 

J'.' I ,.,.E~T r.s. ror.n ·.·~r. ~tAsnrJ ~··.R·· 

THE METAArJL!Stl Ot Tiit. l!IOf"<.Atll'C ELEMEIHS, 
Tl!E TEXT rioor. Of' l\IM'.l!Cl!STF:Y, 19.661 13.76 

3'.'~ OP.ESLO~ 1, 
I' I IH' I : '.ET I C C rir M I c:; T P v , 
CllE!' SOCIETY f?F:'Jlf.\"''-; 1"721 Io r;53 

J7' OllH.r(I H. r-IEl)l='.f11·1"1HI (;, 
TE!';T F't"r' TllF. VALIDITY 0r Ct:ltlSTArlT. llJrJIC MEDIU:! PRINCIPLE, VAP.1ATI0:1 Of' THE 
ACTIVITY coErf'ICIErlT OF' HYOP.OGEll ION. Ill VARIOUS COMPOSITIONS Of'. MEDIUM CATIONS 
VJITH 3M PEr?CllLORATE IOtrs, . 
EULL c;oc CllEM JAPAll. I 1111.. '+'+. 1515 

37·~ SAMII C,R, 111TRA ·A,K, 
FUllOAMErlTAL STuOIES O!I THE INTERACTION Of' TRAllSITION METALS WITH CARBOHYDRATE 
rERJVATIVES AS LIGA~~s. 

J, lllD!Atl CHEM SOCIETY 1971• '+8• 795 

37~ LOMAX G,D, 

37b 

THE OETERr!lllATION Of' PRO'.l"E.111 OOUNO SAllcYLATEs. 
J, MEO LAB TECH, 1970, 271 6l 

FOYE w,o, AAUM M,O~ ~ILLIAMS O,A. 
STAf'ILITY Of' HETAL cn:•rL~Xf~ OF SALICYLIC ACID DERIVATIVES ANO A~ALOIS III~ ~·6 
OIALKYL ;ir:r:IVllTIVC:<; ,,nr. PYf'l["ll~lf' ANALOG<;,. 
J, PHARH SCI, l967, 560 332 

377 GERGELY A, llAGYPAL I~ f'~RKAS E, 
oErENOEllCE O!I rnr. IClrll( <;TPE!lc;TH OF THE STllRILITY collSTANTS or THE PARENT ANO 
MIXF'.O CO!tru:xEs Of' CIJ FO!''ttEO l'!JTH SOi·lE AMINO A·CIOS, 
t'Al.VAR r<Cf'IAI F'OLYOl!?AT 1.97'1o. ll01 25 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

.) 7 . ., 

3 :. I 

JA1 

J '. ,, 

OAt-JTZir. r.,n, OF: HAVr:•! ,1,c. COOPEI\ '· JOH:JSON S,M~ OE LAllD E,C, 
A t~H11n1ATJCJ\L 11nor:1. or T"( lllll~A~l l::XTER•IAL Rf'.!::Pl!'ATORY SYSTEt1, 
PEl"1<;PEcTrvcs rri ntnL 11·m 'tEo. 1?01• <i. 32'• 

SA I' I' A::? I'\ ; r. f' IJ C !". .T • r-> , A , 
1310LOr.JCALLY It~rORTA'IT n:rt!J\RY cri-onr.JtU.TIOtl conru:xES or CUIIll ANO A111rl0-AC10S 
At;!') l\M APrr.AISAL or TJIC: f.11f!A'lCF: 1!F:tJT OF' TEf>t!ARy COtlPL[X STAC!LtTY, 
F'ROr PH corir co-onn CllF.M tPROC SYMPI. 1972t 19721 39S 

ClE LAiJn E ,C • · 
THE CLASSICAL STr>UCTll'.'.'E nr P,L00[l nIOCHEt:ISTRY - A MATHE!1ATICAL HOOELo 
R i\ '.11"1 CC r. r' Mr: '1 , . I "'1> i, , I q 6 b • q 9 b 2 

DE l. A !.fO f': , C , Hr: I r SCH f' f. LDT P , 
PROTF.111 i'olllrlllG or ~·l·'.LL lotJ<;, - A i·!ATHEl•ATICAL !'OOEL Of' SERUM l\LBUl11N, 
P J\ ! l 1' co r i' I' r •1 , I 9 b 7 , I CJ 6 7 • c; 2 r; q 

CAf'ALIH S, 
GLYCl'lt.-METAL COP!PLEX[S 1:J pORr>HYP.Itl OJOSYflTHESIS, 
REV ROii!! l'HYSIOLo 1'H21 9, · 27.3 

AARL!N G,n. rF:RRill n.n, 
('llS<;OC!AT!nF! Cn!l<;Tfd'TS Pr Tiff'. [l.UCIOATION OF STRl.•CTU~[. 
TE c I I ~n 1llr.5 n F' c: ! t E rt I ';Tr. y I 9 7" • ,, • 6 I I 

ALIH:RT /\, 
Qlll\ 11 T!Tt.Trvr 'srnoJF:r; nr r·1r AVlr11T.Y (If' ~-IATllRALLY. occURiofrlG Sllt<;TAtlCES f'.OR 
TRACE 11ETALS0 lo Ar:Jtlo AC:Il'r- llAVlflG Oil.LY T!70' IotHZllJG GROuPSt 
~JOCHE~ J, 1950, '+7~ SJ! 

T MIF'ORO C, SI? /\llSOll S, A, . SHOllE \II, S, 
HYD~bGF:tl !Oil F:t)Ul.LIR.~IA OF' BOV!llE SE!"IUH ALflUtll~o 
J, AMER CHEM SOC, 19551 77• 6•lq 

MARTINF:7-TOriF>ES Co LAYRISSf'. 11, 
ltHf'.REST f'OR THE STllOY Of' DIETARY ABSORPTION AMC\ IRON F'ORTIFICJ\TION, 
WORLD REVIEW NUTR DIETETICS . 197q, 19• 51 

STAIJCHF.:VA P, 
CO-OROlllAT!Oll COHl'OllllOS OF' MAIHiANC:SE WITH UREA ANO THIOUREA, 
NAUCH TR. VISSH PEOAGOG 19701 a, 103 

llELr"F.!? ,1,11. 11(/\f' r., 
A Sf~lPLf'.X 11ETllO!'I ror. f'li'ICTIO:J r:l:Jlt·117.ATJOilo 
cow•urrR J,. i 96S, 7, :408 

TE 1·1 AR f !<. C , L f. F: J , .L I ll , C , 
ZINC At!!) MF'.l?CURY IHTf.'.RACT.IONS \''ITlt CYTIOINE ANO GLYCYLGLYCINE, 
TRA!IS rr.~ <;ric. 1970, !.61 ?.t'169: 

KANTER I~, E 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

llO!J A, 
F'!CTIO!I<; f'.'ITr.Y. 
J. CHEr.: SOC, R 

1QI MOPF'~O r~c. 
F!CTICIOIJS E'lTRY. nur;'.JY ro~ J,C,S, FARArtAY 
J, CHEt• SOC, F"ARAflAY 

P.OSrNTHAL r1,R. 
THE MYTll OF' TllE llOfl-C0'1'1f'IP!ATiflt"; AN!ntl, 

J, CHEM EDUCATION 1q73~ SO• 331 

O•!H'.Ll. R.L. 
EFFTCT OF OIETARY Ct'\!lf"fl'.'('lTS UPO!l ZI!JC AVAILAGILITY, 
At!Er> J, CLI!l!CAL IHJTRITIO'.I · 1?69, 22• 1315 

CllJLDS t.·.•.o, 
Er;ll!LIPP.IA l'.1 rilLllTF' A:" 1J['.HI<; S~LIJT!01!S OF ORT11rir11ospHATf.S, 
J, PHYS CHEii, 19691 731 2•iS6 

]Qr nlLLIA~S o.n. 
STAnILITY co~~5Tl\ll.TS ror. n10-1r10P.GAIHC SYSTEMS, 
SUJl~·E'r. ".Cft011L nll <;T,,1 IL !TY C')qc:;TJViTS, F"LO!'f"'llCE, .197q o ·.I 

3~A Gll~LER C,J, 
ARS0RPTl0'J A'ID '1F:TA~OL !Sn Of IRC'I 
SCIENCE l~~b, 1231 n7 

3~~ SILLEN L.G •. 
HIGH-SPF:ED COllPUTCr.s AS A surrLE:tEN.T TO GRAPHICAL METHODS, 111. 
Tv1IST MATRIX ME,THOl'IS FOR 11.INlrll.ZING THE ERROR-SQUARE SUM IN PROBLEMS 
VllTH llAMY Ufll<llO"ill COl!STl\llTS, 
ACTA CHF:I SCAllO, 1cit,q, !Ao 1085 

CH P I ST r: M <; f. l·I J , J , JI I LL J , 0 , I Z I\ TT P , M, 
!Oil BlllD!f.li; ev SytlTHETIC !11\CPOCYCLIC COMPounos. SELECTIVE lciN BIHClNG 
IN THC INTERIOR or RI~G stRUCTURES CHARACTERIZE THESE.COMPOUN~s. 
SCIENCE 19711 17'11 '159 . 

39? SUl.1110NS R,E, PEREIRA \V;E, REYNOLDS 11 •. E.. . Rl!JOrLEISCH T.c. DUFFIELD A.H. 
ANllLYSIS or Tl"iELVE At111JO ACIDS rn BIOLOGICl\L FLUIDS OY MASS FRAGMENTOGRAPHY,. 

qo~ 

AtJAL Cl-'E'1; !97'1o q6, !'·A2 

FORTH n, RUMMEL r. 
Jr.nr.1 "1'50f·~PTl0f.I 

PHYSIOLOGICAL REVIErS 1973, 53,. 72'1 

'IOI llDAt•SOM J,\'I, r1ric11 C,_A. 
ltEt'n';t'.)r.ftl r 1.111cr1ot1. l'•YYt";".11 AF"·l"Pl.ITYo A'-10 f:PYTl-H'Of'(')lt.TIN. 
ANM REV PHYSIOLOGY !?751 37•. 351 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

'ID~ PULL!-1A•I T,tJ, LAVCN!'F:!? A.r~. F'ORLAIHl M, 
SYllTHtTIC C!tELATPI<; ACr:rJT<; Ill CLitl!CAL l'EDICl:tE 
Atlf.1 REV 'l'':t"l.(CI!IE l"1b31 l'I• 115 

'fr·' E\/ArJS r;,"', 
COPrER fl(1:1ro'.;TAS·tS. l'I Tt•.r: l1fd'f1,\l.J AN SYSTEilt 
PHYSIOLDGICAL REVIEn5 1973, 531 535 

GAllZONI A,11, 
TRA'!SF'tf"'I I tt: 
EXPERIEtlTIA 

PAVICRA n, 'HAHN D, 
IMTf.fll101.EC 1 1L.\r~ IRON EXCHAN(';E 

197'tt 30• 32 

'If',.... coo·~s c,:1, 

'10"' 

qn~. 

'I I~ 

'+ l l 

IRON l'ETA30LIS:1, 
Al~M RE\/ ~IOCIH'.11, 1~6'1, 33,. 'l!i9 

RATLEDGE (:, tlAr.SllALL n,J, 
IRO!I TPAflSF'O~·T. Ill nvco_r . .\c'rERIUI! S!'.EG11ATISI THE ROLE or l·IYCJGACTIN. 

BIOCHIM 3IOP~YS ACTA l~i2~ 2791 58 

.KOfH!f'ELD 3, 
THE EFFf:CT OF' 11f:TAL ATHcrrnEtlT To HUMAN APOTRT.!ISFERRH! ON ITS BINDING TO 
RETI CLILOCYT[!';, 
6101'.:HIN 11nr1ns ·4CTA 1?69t .l"''• 25 

HOKIN L~E. !JO.Kill 11,r.i, 
TflE CHrnl<;Tr.v OF" CELL nrrrn~All-E'i·• 

SCIENTIFIC A~ERICAM · 

PRICF: r.r~. GIOSO!I J.r. 
A RE-INTERPRETATION OF BJCARBONATE•FREE FERRIC TRANSFE~RIN E.p.~. SPECTRA, 
BIOCHEM RIOPHYS RES co.~mH~ 19721 'i6t . 6'+6 

VAN SNICK. J~L~ MASSON p,L, HEREMA~S j~F. 
THE IllVOLVEMENT' or· £1ICARROtlATE IN mt BINDING OF IRON BY TRANSF'ERRINt 
BIOCHIM GIOPHYS ACTA 19731 3221 231 

ULMER 0,0 1 
EFFECT OF tttTAL D1ND~~d. ON: THE HYDROGEN-TRITIUM EXCHANGE OF CONALBUHIN, 
E\IOCHIM AIOPHYS A-CU }?691 1Bl1 JDS 

MAl?Cf:AIJ tJ, ASP!ll ti, 
THE t:Hr.\crLLULA~ Dl~T~lnuTi'lll OF" THE l'!ADJOCOr.F'ER DEIHVF:f> F"ROti CERULOPLASMIN ANO 
FRO~• Alf\U:I Ill;. 
BIOCHIM ~IOPH'l'S ACTA 19731 2931 338 

'113 DIHF'OR~ J,S, FOSTER J,C, 
CALORIMEHV OF THE TRAtlSF'ER or F'EIIlll FROM IHTRILOTRIACETATE TO APOfRANSFERRIN 
rn ro.iE 1>Ri::st.NcE ANr. ir1 THE ArlSEMr.t. OF otcr.P.not1.o\TE,-
J. RIOL CHEM, 197'+, 2'i9t. '+01 



Univ
ers

ity
 of

 C
ap

e T
ow

n 
111 .. 

'II"' 

'121 

RATLEDGF: C, ~!ARSllALL r.,.1, f·!ACHAJ: L,P, RRO\'!M K,A, 
tr.O'! TnA'JSrOl?T l'l l·lVt:')r.A(".TERllll~ SHEGl~t.TIS: A r-E<;TiltCT[!) i'OLE fOR SAL.ICYLIC ACID 
I ~I. THE EXTRACF:LLllLAP r:riv tr'l'Hi'!tl!T. 
FllOCHl':1 'ltOrllYS ACTA 197'1• 372, 39 

FROST r..E, r!OSE'l'lE:'lG H, 
THE l!!'.)UCinU: ctTRAT!:-!lfCP[rlt>E:IJT rr.oTJ TRt.NSPORT SYSTEM IN ESC:IERICHIA COLI 1<12 
OIOCHI~ 9tnrHYS ACTA 1971· 330. 90 

OSHIMA q,G, ~ILLIS r,t, FURLONG C~E.. SCHNE!O[R J,A, 
f\INfll!lG t\SSAYS F'OR A~Htt'.JACI05~ THE.llTiLlzATtON Of A CYSTINE OINOING PROTEIN 
FROr• ESCHERICHIA COLI F'i'lR THI;; nETER!tllJATlON or ACID•SOLUEiLE (ySTl!iE JI~ SMALL 
PHYSIOL:Jr.tcAL SAl~F'Lrs. 
J, P.IOL Clt£M, 197'1, 2'19, .6rJ33 

HAHM p,f. f.,\l r. '',i'/: ~·ass J,F:, 8ALFOU~ "l,:·1, l~lllPPLE G,H, 
RADTOACTIVE IRO'l Ar.~o~ritorl BY r.Asrno-PHEsTnlAL TRACT. INFLUEllCE Of ANEMIAt 
At·IOXlAo A:J!") AflTECEOCIT .r'El:l'l'l~!Ci ll-1'.iTRinUTlOll Ill GRO';IPIG DO.GS, 
J 0 EXPERIMEln'AL MEO.IClltE· 1~'13, 78.t .i69 .. 

TllH'.ERLAKE C.f. · 
lRON-MALATF: ANO IRON•CITRATF COMPLEXF:So 
J. ('.It['' s1c. 1?6'1; r,')711 

CAllHAM G ... ~.11. u:vi:r A,P.r., 
fllOl~IOPc;A'.HC CHEMIST~Y; SillrLf" l10r>EL5 OF JROH SITES IM SQME BIOLOGICAL SYSTEMS, 
J 0 <;HEt·• EOtlCATIOl·l J972o, . '19• 656 

SMITH P 0
1l, STUr.LEY I" 0 • . , •.. '!II LL IAMS r., .. 

POSTULATED GASTl'IIC rAcTlm.°.ErJHAnC-ltlG ·IROtl AesorrTION rn HAEMOCHR0t1ATOSIS 
BRITISH J •. OF HA£HOTOLOi;°y\;:· .· ·1.9691 '16• '1'13. 

cur~r•ING R,L.c. 5Mt11J. ,1,.a:. .t!lLLAR ·J,A• GOL:D.flE.RG At 
TllE RELATIONSHIP OET'"'EE 11-COb'Y.lRON STORES AIJO FERRtT'IN .TURHOV.ER ltl RAT LIVER AND 
l~TESTI~AL M~COSA, 
DRIJISH J 0 Of HAEHOTOLOGY. 

'122 JIRKA M, BLAN ICKY P •.. -.·· ·. Cf.f?llA M. 
THE ZN-ALPHA-2•GL YCCIPROTE I'll LEVEL 111 HUMAtl SERllH OUR ING ONTOGENES IS 
CLIN CHIM ACTA J97qt 5'~ 31, 

Lt~~ i<RAt1SE" R •. ~. LOTT J.A. 
USE OF T:·IE str:r:'>L!:X n<:T!ll'lO T6 op.Tlr:tzr. A:tALYTICAL comnrtotlS L:I Cllll!CAL 
CHE~lSTRY 

CL I '·I CfiEM, 

q2~ CALLENDER s.r. 
197'1, 2'.':• 1~p···· 

1 ROfJ Al'l~O~PT ION 

P.IOr~Efl'.'P.A'.H'.S VOL.'+r.. E::v, <;'r•YTll,!':.~1. i97q, 761 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

'l'.'": RAt1.AMOn~TllY s. . "A:J 11J'lf. r,r.. 
EOl.IILI!'lrtur: <;T11r-tr.<; 'lf" ~n1.11r1n·1~ COMTAJrilrJG AL3+t CA2+ !')R C02+ Arrn CYSTEIN(t 
ORTHOPHOSPHATE Af.10 A CflP.rnxYLIC ACID. 
J. JNOP.G !lllCL CHEil. I q75, 37 • 3b3 

'12i, LE·rlZ G. R. MAr.TELl. A, E, 
r!ETAL cl~ELATES or sn"E s111.ruR;.CO~JTAINING AMitlO ACIOS, 
l\IOCHEMISTRY 19b'lt 3, 7'15 

'12"1 KLEIN !l, .. 
AuTl'MATf:f1 sr!"u·~ r P.0.:1 · ('l[Tt.<:tl r FIAT I O!IS. 
CLHI TOXICOLOGY, 1971.. 'It 631 

'12". \'IEfH'.R o,A, sI1-1i:::o:1 V,L. 

'12" 

CllEL.ATJO'l or 5nnE r,IIJAL(':!IT MEllil rous DY RACE!~IC AMO Er!ANTI0"1EP.IC rORMS Of 
TYPnSl'!E AllD TrnpTorHAll, 
l\lOt:HIM f'IOPllYS ACTA 1'?71o 2'1'1o 9'1 

OSTERRERG. R, 5JORE~G ~~ . 
THE MEHL C0 11PLl'.XES (')f" rr.rTf['IES AMO f'ELATEO COMPOUtJOS vrlr. POLYNUCLEAR COPPER 
(Ill COMrLCXES or GLYCYL-L-lfISTl!'.IYLGLYCINE. A pll-STATIC STUDY, 
J, l~ORG ~UCL CHEM. 197~~ 37• 815 

'131 BRYCE-SMITH ~. 
REHAVll'ltJRAL r.rrEcTs Of LEAD /\II!'! ·ornER Hr.AvY METAL POl.LliTArlTS. 
CllEl~ISTr.Y IN P.RITAII! 197.20 a, 2'10 

'131 BRYCE-SMITH. D, '.1ALORO!l"H;A,· 
LEAi' IN fQOO - ARE Tlll'lAY•S REGULATIOllS SUF"fJCJEllT? 
CHEMISTRY. HI ORiTAHI 197'1t. IC•, 202 

.: ... ;... 

'13'.' BRYCE•SHlnt O, \°IALORON HeAo' 
LEAi' IN OELINQlJENTS, . 
CHEMISTRY IN ORITAIM 19fq;· 10• 205 

'133 AISEN P, LEIBHAll A. RE[CH.H;A. 
STUDIES ON THE BINDlllG ·or. IR:ON T.o T~ANS"fE:RRIN. AND coNALBLIMINo 
J. EIOL'CHEHe 1966.t. 

0

2ii1~··· 1666. '. 

'13'1 GARRELS R,H, CllRIST'c:.L, 
IOtl PAIRS 
SOL11TIOIJ<;, MlllCRALS A'il'l r.l)t1JLinRIA, 

q3r, AGARWAi. R.P. .PERRiii n,n, 
STAr.ILITY COllSTANTS Of" .CO~lrLExrs Of COPPER 1111 JOt!S •~ITH SOME HISTIDINE 
PEPTIDES, 
J. CHEM SOC, DALTON 1975,. 2.8 

oa.: :." 

'13~ HOEKSTRA w.G, . . . 
Sr.ELETAL A!ln SKIM 1.ES!Ot!";'of .ZINc-oEfICIENT CHICKEtlS flt.JO SWINE, POSSIBLE 
RELATIONSHIP TO COIHIECTIVE TISSUE OISEASES Of MAN, 
AME~ J. CLllHCAL tlUTRl,.IOtl ::J9·69t.· 22• 1268 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

. '137 BECI'. M.T. ORSZAGH I. 
(IN~ ~-;!S~n.-Hlo 1 1 fltT•'.·[r:1 THE ovrrALL SHAil.lTY tcitiSTAMTS OF l·'F.TAL COf"PLEXES 1 
J 1 l'IORG :Jl'C:L CHEii< 1"751 37• 32R 

tlAGYPAL I• 
A Gril[P.AL r-•F.TH00 iO"' THE r.Al.CUl.f,TIOM Of THE CO!·ICE~IT?ATIO!!-OlSTRIBUT!Oi·l ANCI 
F'Of'!•ATIOll cO'lSnHTS llJ CllF:lllCAL [QIJILfB~IUM sysTtttc;1 
MAGYAR KE~!Al F'OLYO!nAT 197'11 AOt '19 

'll" LLAURAOO J1G• 
COMrARTHE~TAl APPROACHE~ TD ~ATER ANO ELECTROLYTt DISTRleUTIOH. 
EllG PRl!ICIPLE!: r'HYSIOL. l973o 2, 3'17 
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MAllGAMESE PrOTEIMS IN PLOn~ PLASMA, 
BICICHIM RIOF"llYS ACT,\ 19730 32Clo '!86 

GA[;fR r,F", AISE'l P, 
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p.!O(HE'11CAL 01sr11sr5. 1r:11t:tncAL PF"OIATRICS1. l?b'lo 62 

'i7" l'lJ(;[LMA5S I. tJ., 
llrnRuAr,;1c 11o•~(nSTATJC r'f<;orioEf'!S. 
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TRACE ELF.nr.tJTS Ill nF.TAroLISM or 
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FEDERATION PROCEOlllGS 19710 
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MCCALL Joli 
CONNECTIVE TISSUE, 
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30• lOll 

NUTR, SOC, SYHPo 
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COfHIECTIVE Tlssur. ALTERATIONS IN ZINC OEF'ICIEUCY· 
rEDERATl0N PROCEOINGS 1971, 30• 1001 

qB~ CARllES ~.H. 
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ETllf'E '1f'.'; c0r1rt.F.xEs ntr:':Tf\LLl0llf:S. II. DETE!'l!!J~•ATIOrJ DES CONSTAtHf.s OE STABILITE 
['ES CITP\T(S {",iyTTPl!.Jt: ET .C\\.I CJTnAn:: Rl'IETALLl'll!E nE CtllVRE ET DIYTTRIUM· 
BULL SOC CHIM FR, lq7'11 1?7'11 1259 

'ID~ MILOVAN .A.5, 
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ARTHRITIS AND RHEUHATl~H 19681 11• 65 
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~91 GER!'ER D.A, 
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11 "~ N I E !' f' r :• E I ER '' , . 
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q"~ NIEDERMEIER ~. PRILLAMA!I ~.~. GRIGGS J,H, 
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CHF.11 REVrc·1s 1?7'1, 7'1t '171 
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THEP.HOOYNAMIC 
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STUDY ~F' COl"PERcIIJ CO~PLEXES 
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TRANSITION METAL JONS, VIII 
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50? SIGEL. H, 
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.. , " Lr E fl ~ •• n • ,., l LL ' An-:; r. • n • 
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~['• 11[!1 .. AIJnS J,I'\, 
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~C~ SALTMAN P, 
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BUl?TOM A,C, 
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THE DISADVANTAGES 
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APPEND IX 5 • 1 

List of Symbols 

a) Concentrations 

b) 

s 

x 

T 

Indices 

i 

j 

m 

p 

q 

r 

the concentration of a complex species 

the free concentration of a component 

the total concentration of a component 

the general ind ix for components 

the general index for complex species 

the specific component index 

the index for a metal ion component 

the index for a ligand component 

the index for a hydrogen ion component 

c) Superscripts 

c 

r 

0 

n 

t 

denotes a 'calculated' quantity 

denotes a 'real' quantity 

denotes an 'old' value in an iteration 

denotes a 'new' value in an iteration 

denotes a 'thermodynamic' formation constant 

d) Parameters 

k 

the cumulative stability constant of a complex 

species as defined by equations 2.1, 2.3 and 3.1 

the matrix which defines the components and their 

multiplicity in a complex species 
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e) Factors 

F a factor defined by equation 3. l 0 

G a factor defined by equation 3. 11 

' ' F & G - approximations for F and G respectively 

f) Miscellaneous symbols 

M metal iori 

L ligand 

A ·ligand (as opposed to ligand B) 

B ligand (as opposed to ligand A) 

H hydrogen ion 

f activity coefficient 

I ionic strength 

T thermodynamic temperature 

t - temperature in Celsius 
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APPENDIX 5.2 

A consideration of the convergence properties of expression 3.13. 

It is required to investigate expression 3.13 and to establish 

whether it may be a suitable iteration formula that, by successive 

approximation, may converge on the real free component concentrations, 

when the approximation is used to 

obtain Gj . One has, 

rT oX 
= m • m -----------'--· ..... (3. I 3). 

cxm + f [Gj . csj • k(m,j~ . · 
m 

Equation 3 .12 _provides an exact expression for· rx 
m 

G. factors. If one begins by setting all ex. = 
J 1 

and 

(see equations 3.7 and 3~8 with 3.4 and 3.5). 

We have 

and 

rx. 
1 

k(i,j) 
l""m. 

c k(i ,j) 
xi4'in 

rx k(m,j) 
m 

ex k(m,j) - 1 
m 

< 1 

in terms of 

r then T.' l 

••••• (5. 1 ) 

...... (5. 2) 

.•••• (5. 3) 

.••.• (5.4) 
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except when k(m,j) = 0. Hence, from equations 3.10 and 3.11, 

because the product of 5.3and 5.4 is equal to G., 
J 

except when k(m,j) = 0, 

that 

Therefore, in general 

G. < l 
J 

..... (5. 5) 

From equatiorts 3.8 and 3.12, it follows 

r rT T . 

+'&[c . . 
• J 
J . 

m . >-m-
. k(m,j)] cTnt 

.. ... (5.6) 

r r X: T. 
1 > __ 1_ 

ex. cT. 
1 1 

Note that when k(m,j) = O, the term in the sunnnation becomes zero 

and the magnitude of G. 
J 

is then irrelevant. Hence, if 

r c is substituted as an approximation for the factor ' ( Xm/ X~) in equation 

3. 13 (see equations 3 .10 and 3, 1 l), it follows from equation 5. 6 that · 

G~ <c. 
J J . .... (5. 7) 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

In such a case, a comparison of equations 3.12 and 3.13 where 

0 xm - cxm , reveals. that 

.nx. > rx m m 
(5.8) 

for convergence, theri, all that is necessary is 

nx <ox 
m m 

(5.9) 

Although this is not aa unreasonable expectation, it is difficult 

to prove in the general caae. This is not very important, however, 

because as·discussed in Section ·3.1.3, formula 3.13 is only utilized 

profitably during the initia.l stages. of the iteration procedure. 

Its chief task is to improve the 'poor initial estimates obtained 

by setting ox. . l = Under these circumstances, for the 

first iteration, the inequality 5.9 is certainly true. This 

follows from· equation 3 .13 where the sug~ested substitution for 

starting values ensures that the denominator is greater than 

because a number. of terms in the swmnation are non-zero and are 

added to o r X = . Tm m 

I -
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appendix . S.3 

L I <; Tl 'l G ,\ II r. I!I s T I' 'J c T I 0 1' s F' 0 fl ,, ;rn G R A ., E cc I. Es • 

--------------------------~----------------

THI<; .-.pnr,rl\" (IJ"P'JTES THr Er,ilJl.LI~f?IUfl co:JcEr1TR1'1TIOr1c; OF' METAL I.ON LIGAND 
COl!r'L~Xr:r: P.l L.Ar.i,E Ai1UI:OUS f.l'lUILIF>t?IU'1 SYSTEMS. IT REQUIRES THE FORMATION 
C~il<;TAnT~ rnP. ALL THE co:~p1.r:x I'll'; RCACTIO'IS AS i•ELL AS THE TOTAL OR FREE 
cor1crr1TR AT I ow;; Of THE COMPOllENTs l"~ESEHT IN THE MI x TURE. IT ALSO NEEDS 
A f"r.[( llY[)2QG[ll ·1011 cor:CENTRATIQ'l. 

E~.Cll cow•n·1r:1r ••UST rir 11c;s1(itlED /\ SVMl:IOL WHICH IS FOUR CHARACTERS IN LENG'.T'Ht 
·.T!li. r:y•:r."t. rn'? !IY'.')~(l(jf.f: 10:1 ·~ . 'H + 1' ( !!OTE THF.: BLAfJK SPACE I. 
Ct1C:I CO!::-'lJX '.:;:-'f:C!i.S IS THL'i irrl'Ji:"\ 'jy A ST~!:;".; or C'J:1POIJENT SYtl:lOLS fOLLOv;E;) 

t:lfl':"C:r I ATLY r;y T!IF: t·J"tHlF.R OF" T.tnr.s T11AT COMPO!iENT APPEARS IN THE COHPLEX -
THC •:i1~1r;-:~ t<; rt_1\Cf.D !'i!T:11;1 P.\fl':!iTH:s!:c;. TllE t:QMf'('l•:F:!H SYM30LS Ir~ THE STRING 
Df:'.F'l!!I!lr; T:::-: C'.:1'.:rL.CX srEr.n:c; Arc rlELPllTf.O av IJflE RLA'lK SPACE. 

THI'.: rIRs.T THREE HIPUT CARDS SHOUL') co~JT/\HI ALPtJAflU;iERIC INF"OR'1ATION FOR 
ll"lf.!JT.IF'ItATTOT.f ru.r.rosr.s •. THE EY.PE!'?tMEMT TITu:. THE INVESTIGATORS NAME 
AllD TliE DATE A!'H.: SUGliF.STF.O, 

ECCL r5 c f\11 '11'1'1 I Tnr. EI TllER ALL OR UP .TO TEN S[LEC TED COMPONENTS. 
TIHS llEA'IS THAT THE COMPLl::X SPECIES \'IHICH CONTAIU HIE COMPONENT IN QUESTION 
A~E SORTEl"I lllTO O~DER Of HIGHEST COMCENTRATION, THE FORTf HOST PREDOMINANT 
COHPt.CX ~PF.CIES FOR EACH '~ONITOREDt COMPONENT ARE ~RINTED OUT IN ORDER, 
THE rnsrr.uc:Tl'.)~I FOR nrts IS SUPPLIE["I OM THE FOURTH lNrUT CARO. IF THE 
COMPOfJEllTS ARE 1\1.L TO BE 't10tJITORED' • THE CARD. SHOULD READ 

rnuc .'\LL 

IF' OtlLY A FEW SELECTED COMPOIJEIHS ARE Of" INTERESTt THE CARO SHOULD READ 

T~UE XXXX YYYY 7.?ZZ 

'.1HERf XXXX • YYYV ArlD ZZ'ZZ ARE THE SVMl"IOLS OF TttE COtlPONENTS TO BE tHONlTO~EOt • 
OTHER~ISE~ THE cAqo SHOULD READ 

FALSE.· 

ECCU'.S CA'! SCAf~ T'4F. t:ONCENTRATIOll Of" ANY GIVEN COMPONENT. THE EQUILIBRIUM 
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CO!IC:C'IT!",\TI')'l5 ARC: ((l'1PlJTE() AT "'.ACH STAGE. T!1E STARTll~G co:~cENTRATION 

15 HKE!I Tl'! GE THE VALUE SUPPLIED A5 TllE COMPOtJE!lT COHCENTRATlON IN THE 
MAill !.\ODY or Tiff: OATA,. TllF. 5Yt·1nOL Of' THE COMPOf~ENT \'/HOSE CONCENTRATION 
IS TO RE ~CAN~C~t THE INCREMEHT f'ACTOR BY WHICti THE STARTING VALUE MUSf BE 
I'·ICfffAStO Ari!) T:lf: MAXlt1Ut1 VALLIE or THC SCMINEO CONCENTRATION AT WHICH THE 
SCAtt ~IUST Tt;"lfll~IATE, ARE IHDICATEO OtJ THE FIF'T11 tNpiJT CARO, If" THERE IS 
TO OE NO SCANt THE CARO SHOULD SINPLY READ 

F'ALSE 

Ir THF: Cill!C['ITRATION IS TO E\E JrlCREASED MULTIPLICATIVELY• INSTEAD Of AootTlvELY• 
A CAI'?!) r?i':Af'IIN(; •MULTIPLY•· i1UST ttHIEOIATLY FOLLOW THE CARD CONTAINING THE SCAN 
PARA!IETf'.RS, 

THE n11Trt1T Of' n1r: Cl)l·ICE!HRATIO·i~S OF EACH COMPLEX SPECIES CAN BE SUPPRESSED, 
TittS IS Plf)JCATrCl BY A CAfHl r?EArlI!lG 

51.lf PrESS OUTPUT 

HI TPE Cl\c;F: OF' VERY LARGE S!t'STEMS \'IUICH ARE BEHIG SUBJECTED TO REPEATED ANALYSIS 
. THE trlPIJT CHEcKitl<; PROCEOURF:S WITHIN mt PRor.RAt1 CAN RE SVHTCHED OFF' BY A. CARD 

Rt: Ar· t !IG 

ortn ttlPtlT CHECKS 

THI:, IS· !!!'lT. AhVISABt.;F'. IJllLESS. THE lJSf.R IS ABSOLUTELY CERTAIN THE INPUT IS 
E:?ROF'l•F'rH:c, 

THE CARDS FIF'.ARirlG THF. TOTAL COllCENTRATIONS OF THE COMPONENTS ARE ENTERED 
NEXT, THtS~ ARE ANHOONtro BY A CARD READING 

I 

TOTAL coru:EtlTRAT t OMS 

THEN, THE CA~DS WITH THE KNOWN FREE CONCENTRAT.ONS FOLLOW1 
HE~ocn DY A CARO READING. I 

I 

FREE CONCF:llTRATIONS 
. i 

F'l:NALLYt TllE f'09MATION CONSTANT DATA FOLLOWS A CARO READING 

Sl"ECIES FOP.llHION CQNSTANTS 

THESE ARE 

TIH'. f'ATA IS SET lJP AS IM APPEtlDJCES 5,7 & 5,6, FOR EXAMPLE, ·AS PRESENTLY DIHEN 
ECCLES ~ILL ACCEPT up TO qs COHP-ONEHTS WITH TOTAL CONCENTRATION SUP~llEDt 
10 COMPONENTS WITH GIVEH f'REE CONCENT~AtlONS AtlD •ooo COMPLEX SPECIES. 
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rr.or.r Alt C:CCLES .• 

---------------

C DEVELOPED AT THE UNIVERSITY OF CAPE TO~N DURING 197~. 
c 
c Tt1I5 rROGRAM EVALUATES THE CO~PONE~T coNcENTRATIONS IN LARGE 
C EQllllJRRillM SYSTEMS, IT JS DESIGflED TO RCFLECT THE MOST 
c PP!''ll!OlJ'ICEn EfFF:CTS OF SYSTf.MATIC cor~CEIHRATIQN CHANGES IN 
c THE cnutLIBRIUM HIXTllRE. 
c 
c T It E r r 0 <; j) ,, M I s ~1R I TT i: N IN r 0 H TR Ai~ v • 

c SCCTIOfl crnt. STORAGE ALLOr.ATIOll Arm FORMAT STATEMENTS• 

C 0 II r• IL r: R I l( I~ m 2 l 
PA'.'f.r;rn:r~ i~S:s'f!lOO• ltX•'f5· llXX=lOo UKEY•'t 
p J\ .; ~. ~; r: Tr: r~ 11L Pt r: 5 = !:) !i • ·~ ~ T n r .. r; (l 0 
PA~Allf:TF:R •mo .. NKF:Y • 2. NXP I =UX + l' ,,SP l • us • 1 
P M~ .'I ~ T T ER 'IX X )( = ·~ )( + 't X :< 
I!IT[r;[R CHJT• TlTLC::(l~lt !'.lATElbl• CllECKC:JXXXl 
D r)ll n l. [ f' ii CC I S l I) !I . H 0 L.f'l I 'JS I • 5 P :::: C I E C II S I 
LOGICAL !iCAllt lttJLTlP• SELF:CT• rtOllALL• CMpRESo UCHEKe 

1 n~·11r. $UPRES· TRIAL. 
Dtr:Er!SIOll KEYC:,KEY.tlS•2l• CONSTCHS)• NUtHCNS)• NUM2CNSJ• XCNXI• 

1 TRF:ALINXl• TCALCCNXXX)t CRITCNXl1 XXCNXXl• NAMEl61t NOUMCNNOlt 
2 l'llJ!llflY.I• flCOllPlllXXXlt IQllECNSlt NKYINKEY12>1 
3 CO!HIHICTIXXX), Il10N'101t CONC<NSJ 

EQUIVALEUt:E CHOLOC 11 • IQUEC 111 • C lQliECNSpl > • CONCI 11 J 
C CH1'40 It I\ F: Y · . 

IO'fOI FO!"!lJ\T(l2.A61 
IO'f02 FORl1AT(L5dXo 101A'fdXI I 
10'103 roRMATILS1lX1A'ft2Xt3G10141 
lO'fQq FORMAT(A'f1Al12G101'fl . 
lO'fOS FORHATIG9,StlX18CA'ftlX•l212Xll 
20'f.OO roRllATC//tQ• • 12A6o///) 
20'f0l ronttATC'O'•'THE MAXIMUM NUMBER OF VARIABLE COMpONENTS IS•tl3J 
20'f02 FORMATC 1 0 1 • 1 THE MAXIMUM NUMBER OF FIXED COMPONENTS IS•tlll 
20'f03 FORMAT(•O•••THE MAXlHIJM NUMBER or SPECIES 'IS•tlSI 
20'fO'f FO~HATC'0'•'SPECIE NUMBER'•IS,• HAS TOO MANY COHPONE~TStl 
20'+05 FOnr1ATC'O't'THE PROGRAM LIMITS HAVE BEEN EXCEEDED,•) 
20'106 FORMATC•O•t•ExECUTI6N TERMINATED, ERROR ON CARD•tlS1///~/I 
20'107 FORllAT( 10'•'ALL SPECIES HUST HAVE HORE THAN ONE COMPONENT,•) 
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2o•ne FORMATC 10 1 t•COHPOHENT ERROR IN SPECIE NUMBER•.tSI 
2o•oq FORl!AT( 10 1 t 1A SPECIE WITH NO VARIABLE COMPONENTS IS SUPERFLUOUS'> 
20•lO FORflATC//•O•••EXECUTION TERHINATE0,•1/t •t•COMPO~ENT NUHBER•113• 

l ' tS NEVER REFERENCED,•t/////I 
20'*11 FOl'HlllTl 10'•'SCAN COMPO"EMT lllllDEllTIFIABLE. 1 ) 
20•12 FO~HAT(//'0 1 • 1 SPECIE DUPLICATION,••/' •,•SPECIE NUMBER•, 

l IS•' HAS ALREADY BEEN ENTEREO,*•//I 
2 0 q l 3 F 0 n,, A T ( I I I • 0 • • • • • • • • • • :·: A R rn NG • • • • • • • • • • I • • • 

l •tr THE SOLIJTlON IS AQUEOUS• A FREE HYDROGEN cONCENTRHiON IS REQ 
2ll IF?ED, •ti 111 

20qlq FORHATC// 10 1 ••COMPONENT DUPLICATION,•,/• '•'CO~PONENT•1lq1 
l • II A ~ ,. LR E AD y A E E N. E fl TE R F. D I • , 

20•1s FO~HATc•O•••MOHlTOR COMPONENT uNIOENTIFlABLE, 1 1 
20•16 FO~~ATl//tQ•o•A MONITORED COl1PONENT HUST APPEAR IN AT LEAST THREE 

l SPECICS' •/' •,Aq,t HAS REEN REMOVED FROM THE LIST,•1///I 
20•11 FO~MATC//IQl~ITHE SCAN INcnEHENT FACTOR IS TOO SMALL.•> 
20•1s ror.r1AT(//•0•1•THE 11AXIMll~1 SCAIJ CONCENTRATION IS LO~IER THAN THE STA 

lRTlllG VALUE,•1 
lo•1q FO~MAT(I ··•THE CONC, OF THE scA~NEO COMPONENT MUST INCREASE,•) 
20•20 FORMATC//•0•1•llODEL SELECTIOll COMPOllENTS MUST BE SPECIFIED ON THE 

111nrrtTOR CARO, t 1//1 
20801 f"OPllATl//IQlttEXECUTION TERMlllATEO AS A nESULT or NOll-CONVERGENCEt 

l', I II 
21000 ro~11Ar1•1•11•0•.sc1H•lt2(bXt'+ClH•lltSX•lH••'+Xt21SX•SllH•l,,/t •• 

1 6 (1ll•t9X I 1/ 1 ', q I 1H•),6X 1 3 ( l H• 1 9X,, 't I HI•) t 6X t S 11H•>•/ 1 't 
2 :, I l II• , 9 X I • q X tl !! • , I 1 ' • 511 lh I , 2 I 6 X • q I HI• It • 3 I S lC t 5 Cl H • » • I ' ' • 
3 55ClH·l•/////////tQ•,T2Stq0(2H<>l•21/t •1T2St2H<>1Tl03t2H<>• 
q ,. •.r2s.•H<> •l2A61•H <>•I' 1 tT2St2H<>•T103t2H<>lt/• •1T2St 
S qOC2H<>l1////// 10 11T2S1•TOTAL NUMBER OF' COHPONtHTS ••tl'tt 
6 I' •tT2St 1 NUH~ER or COttpONENTS ~ITH FIXED FREE CONCS, ••• 
7 llt/• •·T251•TOTAL ttUMBE~ or SPECIES ••1151//l 

21001 FOl'HIATC t 1t1TSQt •ECCLES: SCAN CYCLE NUMBER' t 131/' 'tTSOt30C lH•l///I 
21002 ronMAT(//•O•••CONCENTRATIONS OF THE FREE COMPONENTS.••/' •• 

l 37 ( lH-1//) 
21003 FORHAT(t COMP,••Tlq1•COttP 1•1Tl't1•REAL•tTSq1•CALC1•tT921•COHp,t1/ 

1 3X1•No,•,T1•.•COHC,•1TJq,•TOTAL'1TS't1•ToTAL•tT92,•NAHE•1//I 
2100q FORMAT(' 1 tl't,2XtqllPG15,695X)tT92tA'ttl5) 
2100s FORHATI' •1t•12XtlPG15,&16X1'FIXED FREE cONC,•1lX12ClPGl516tSXl1 

l T921AqtJSI 
~1006 FORMATl'l'•l'O'•'CONCENTRATlONS OF THE SpEClES,•1/ 1 1 t29ClH-t1//) 
21007 FORMATC•O•t1Xt 1SPECIE•tTl't1•SPEClE•1T321•LOG STAB,•1TS01 

l •COt1POSJTIOUt1/ 1 •12X•'NO,••Tl5••CONC,•1T3qt•CONST1•t//I 
21008 FO~MATC' '•l•,2X1211PG15,61SXl1TS01lOIAq,t(•,121'I 1 11 
21009 F'ORHAT(IHll 
21010 FORllAT(/t0•1•THE SOLUTION WAS REACHED AFTER 11fq,1 ITERATIONS,•> 
21011 FORHATC 10 1 •T2St 10UTPUT't2A6) 
21012 FOl'HlATC •o• tT2St •NO SCAN REQUIRED•) 
21013 FORMATC•0 1 •T251•SCAN COMPONENT '•T•S•Aq) 
210l't FO~MATC•O•tT251•COMPONENT HONITOR •1A31 
21015 F'ORMATC•O•tT251•INPUT ERROR DETECTORS •eA3) 
21016 FORMATc•l••/'O't'MONITORED COMPONENT '•A••I' •t2SClH•le///) 
21017 FORHATC•l•t•THE FOLLOWING COMPONENTS 00 NOT APPEAR lN THE SELECTED 

l MODEL, t 1///1 
21018 FORMAT(' •1Aq) 
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21019 FO MAT!'0'•T2So'MULTIPLICATIVE INCREMENT,•> 
210?.0 F"O !!AT!'O•oT25o'AOOITlVE IllCRE:MENT, 1 > 
2107.1 ro f!AT(•O•tT2St'MODEL scu:CTOR '•Al> 
31011 FO '!ATIG9.3olXtRIA'+•'l'tl;>o•I •)I 
9Q999 fO!'W1\TI • 1 • •3'+1-i".'!ELL UONF:t Eccu::s• SAID llORIARtv. •l/llfj 

c SECTIOfl T''!O, 

2nh tHJL = O 
I II = R 
nu T = ~ 
ll!l = 'i .' 
r11 . = n x r 1 
r12 = JIXX .+ 
tiJ = n!'rl 
MULT!P "' .FALSE, 
surnr.5 .. ,FALSE. 
Tr T.AL ... r Al.SE • 

.. f10'.l;\'LL = ~rALsr: •. 
5 t L r er ·= .• F" Al 5 t • 
Uc11rr.. =· •. rALSE, 
or. 211 I=Jt!IXXX 

.201 CH.-r:r I Y. I = fl 
!'lO ;>~2 J=l •~lS . 
00 .:?:2 .L=l •"IKEY 

202 KEYILtJ~21 • 0 
KOlllJT a 0 
GO TO 'fOD 

INITIALISATION• 

c SECTIOU THREE. rnrur (f/ITHOUT ERROR.OETECTIDNI .• 

300 IHI :r 0 
D 0 3 0 l M I = 1 , tJ l 
P.F:Af) I Ir1, 1C'+O11 IX A 
I~llXA.En.•rREF: c•.oR.IXA.Eo.•SPEC!E•) GO TO 302 
READ.(tlUL•lO'iOi+I NCOMPINt), IXA• TREl\L(NI)t COMMIN(Nll 

JO 1 CO!JT ItlUE 
302 NI = tll - 1 

1411 = 0 
lF"fIXA,EQ.•SPECIE•> GO TO 305 
N = Ill 
DO 303 Nil :a J1tl2 
N = 'l + 1 
RE A Q I I fl , 1 0 '+ 0 1 > l X A 
1r1rx11,ro.•SPECIE•) GO TO 30'1 
RF:ADllJUL•IO'fO'tl NCOHPlNJ1 I,XAt XXlNII>t COMHININ) 

303 CONTitlUE 
30'+ NII = NII • 1 
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3 0 ~. ti I I t = N I + Ill I 
oo 311 n.1:1,113 
Rf.fd'l(IN1l0 1HlS,EtlO=.'H7.I CO"ISTlf.IJI• NhUH 
NU n l n: J I = 0 
tltJ'1211lJI = a 
!IPl-I ::: l 
DO 310 iJ=lt!lllDt.2 
trlNDUM!Nl.EO.t ,, GO to 311 

Jnb [')0 '3!17 r1:tlP~1. NI 11 
1 r It I[') ll M (f I h E Q • fl c 0 Mp ( M I I G 0 T 0 3 0 a 

307 CO'IT I tlllF.: 
1rc11rr1,c.:o.11 GO TO c+37. 
r1r11 = 1 
GO TO 31'.!6 

30.A CllECK I 111 = CllEC•~ (Ml + 1 
~IP', = M 
IFIM,Gf,rlp GO TO 309 
I. =" t!l 1 !1 l (t.IJ I + 1 
rwr~11r!.JI = L 
KF.YILtllJtll = M 
GO TO 310 

309 L :o 'IKF:Y • tlllM211lJl 
111.1!1 ~I t!,l J :o ~IUM 2 C tJJ l + 
Kr: Y I L , tl J • l I = M • tJI 

31;:'1 t'(Y!Lo'.IJ•~I = t!DUl!IN+ll 
311 CO~ITtrlUE 

317. tl.J .. rtJ -
GO Tl" 'tSO 

SECTIOll rouR .• INpuT cwtTH E~ROR DETECTION), 

'+00 REAOltN,lO'tdll TITLE 
lflTITLElll,EQ,•AOORT 'J n~ITECOUTt20'tOOI TITLE 
lFITITLElll,EQ,•ABORT ') GO TO 9999 
READ I IM ti O'+O 1 I . NAME 
REAOIINolO'+Oll DATE· 
RE AD I IM , 1 0 '+ 0 2 I MO tH T t IJ~ 0 ti 
IF" II llOfH 11, EQ • t ALL t) MOIJALl. ,. 1 TRUE, 
llU = s 
P.EAOI 1r1, 10'+03,ERR='+321 SCAN• ·1sCN• SCNitlC• SCNMAX 
tlll = 6 
READIINelO'+Ol) IX~ 
lF"llXA,EQ,•MULTIP 1 1 MULTIP = ,TRUE, 
IF"IHULTIPI READllUtlO'+Oll IXA 
lflr1ULTIPI llN = 7 . 
IF'llXA,EQ.•SELECT'I SELECT= ,TRUEo 
IF"ISELECTI READllN1lO'+Oll lXA 
IF'ISCLECTI tlN = NN +. 1 
1r1.r·JOT,llOMIT,AND,SELECT1 GO TO 't'tl 
IFllXA,EQ,tCOMPRE•I CMPRES = ,TRUE, 
IF"ICt,PRESl READC IN• lO'tOI) IXA 
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1r1c;wrn:s1 ~m = riN + 1 
lrl I'/.A,EQ,•SUPRF::S• I SUPIH:S 
Ir ISllPRESI REAOI JM, 111 1rn1, 
lFISIJPRES) NN = tHI + I 
IrtlXA,EQ,•TP.lAL 'I TRIAL 
irlT~iALI RtADl1N•l04011 
1 F I T '.? t AL I tHl = i IN + l 
Ir1IXA,Et1.'rit11T 1'1 llCHCI". 
Irtur:HF:K I . Rf:AOI Iflt lO'IOi I 
Ir ( llCliO'. I GO rn 300 

= ,TRUE, 
IXA 

= .TRUE, 
IXA 

= ,TRUE, 
l XA 

lrllXA,'lf:.'TOTAL 'I GO Tl) '+31 

'l~f = rl!J + l 
~t.\o I rn. I ')'+0'+. ERr.='+321 MC:Ol1r ( l,. IXA. TREAL ( 11. COMM IN 11, 
trlI.::.l\,itr:,• 1 1 GO TO '132 
f1 r'l 11 '.11 'I T = 2 1 :11 

r:n = m1 + 1 
REAOIIIJ.l[)li!)ll IXA 
lrCt~A.En.•rREE c•.oR.IXA,E~.•SPECIE•J ,0 TO '102 
RC ~r. l'!UL. I (l~Cl'I • [RP='IJ';~ I :ic(l;1r I ru I. txA. TR EAL ( N l .1. COHM IN IN 11 

1Fll~,\ 1 HE.• 'I GO TO lf32 
n = 'lt ,;. I 
0 0 ;I G 1 I = l • :1 
l r ( ~! c n f·~ !"' ( ~I I I • E,., • r i c 0 Mp ( I , I t'10 T 0 . "3? 

'+O l CO':T I 'llJE 
II = '! '< 
~PIT~IOUT,2tilfOll H 
GO Ti'l 'Dl 

'102 III = Ill - 1 
NII= 0 . 
IFIIXA,EQ.•SPECIE•) WRIT:couT.204131 
trl t:'.A,EO •. 'SF'EC:TE• 1 GO To '!!JS. 

fl = ~II 
D 0 'I 0 3 ~l I l = I • N 2 
fl = II + l 
NU = tl!J + l 
RfA!'llJ'l,11'+fJll 1Xt'I 
IrltXA,EQ. 1 SPECIE 1 1 GO TO '104 
Rtl\r'lftl'.JL•IO'+D'f•f.RR='t3?.I '·!COMPHll• J)(Ao XXINIJlt COHMINCNJ 
lrtnA,fJE, 1 'I (.;0 TO '132 
,, .. ,, - 1 

D 0 •HH I = I • 1·1 
tr llJCClt·IP I !II, EQ, NCOMP C 11 J GO TO '139 

'103 COllT I llUE 
PJ = fl XX 
WPITECOUT,20'102) N 
Go rn '+31 

'I 0 'I N 1 I = r~ I I - l 
'105 Hiil ~ ~l +NII 

DCl '+12 '.~J::l,113 

rm = t111 + l 
R£ADlfN11D4051ERR='1321ENO~'l~6) CONSTtHJ), NDUM 
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fl U M l I ti .I I = 0 . 
~111'12!:1.JI = O 
tH'rl = 1 
DO 't11 ~=LtH~D•2 
tr 1~ 1 nu1:.1111. EQ, • ., GO ro •n 1 

'HJ " n o 111 7 ': = • 1 r :1 , N I t I 
IF'!rH'l'.lJl!lll.EQ,NCOMPl!-111 GO TO 408 

'tn7 c,..,~JT l :1ur. 
1r1nr•1,r:c.n GO ro •1J't 
r1r•1 = 1 
GO fr) 'tOb 

'trrn c:11r.cr.w1 = CHECKCM>. + l 
!1Pt1 = 11 
Ir 1'lll'111 t!J l +'lllM2 ( nJ) ,r,r:. :iv.EV) 
1rc·1,r,T,lltl GO TO 'tO? 
L = 'lU!l l ( :JJ) + 1 

l.111!' l I '!J l = L 
K r: Y I I. t I J ~' • l l • ~I 

GO to 't!O 
1H19 L = m:e:Y • 'WM2Ct1JI 

NU!121MJI = tWM2CNJI +. l 
KF:YCL1llJ1ll =!I - 'JI 

41Q Jrl'lf':tJ:l(tJ+ll.EC'l.O) GO To 't31f 
~~r'.Y(l.1'.l,Jt:>I = :l~U!l(N+l) 

'ti l CO'.ITillUi. 

GO TO If 30 

t r ( n 1 If, I ( ! l J ) ~!I IJ fl 2 c NJ ) • t. E • 1 ) G 0 T 0 If 3 3 
1rcmtt11ctJJ),LE.O) GO TO 't3S 

'H 2 co:1r 1 :n1r. 
llJ "' !IJ - I 

OIJTrUT r:.:R ~OR MESSAGES• 

rm I rec our, 2otto31 NJ 
GO TO If 31 

't30 \'Jr'! I TE (OUT I 20't01f) NJ 
If 31 l'IP. I Tr. I OUT 1 2::l'tOSI 
't32 wrn TC (OUT' 201f06) !·IN 

<l (') T'l 9??'? 
lf31 ~''.'.\ t Tr. ( QIJT, 20'+07) 
't 3 If WR I TE C OUT, 20'l08 I NJ 

<10 T !1 'i32 
q3; 'i/F? I TE I OllT, 21Jlf09) 

GO TO 't 3 't 
't 36 tlJ = !IJ - l 

DO 't3 7 l=l•~lll 
lflCllECKC i I ,LE.OJ GO TO q38 

't37 CO!ITIUUE 
GO TO 'tSO 

'DA mn TE I OUT' 2:1'l 10) 
GO TO 9999. 

lf39 \:JR I TE I OIJT i tOlf 1 't l 
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GO TO 1.\32 
l.\'10 GRITCCOUT,21'1171 

GO TO qq?. 
I.\ I.\ 1 l'i R l Tr. I QIJ T, 2 0 'I 111 I 
4 it ?. , .. r r t : 1 ~ u r • 21'1 'I 1 11 1 

llH = S 

I.\ 11 3 '.~ !' I T r: I 0 !J T , 2 '.l I.\ 2 0 I 
GO TO '+32. 

P(l':ITJl)~I THE TITLE AMO OATE ALPHANUMERIC STRJNGSe 

l.\SO 
'151 

l.\S2 

'+53 

'15'~ 

'IS<; 

!II .. 1. 
I r llH; T F: ! 6 I • •! E • • 
fl I :s .111 + l 
D 0 I.\ c-, 2 n = b • :u , - I 
OATEIHI = ~ATECH•ll 
l'H.TF.ntl-11 =' t· 

'l G'.'.> TG '153 

IF!tll.LT.~l GO Hi 't51 
Ir ( T T TL f'. I l 2 I • NE • ' t •I) R • T I TLC C 1.1 I •NE 0 t 
[)(? 1.\ 1~'1 'J=IOtlo-1 
IFCTITLF.:Pll.UE,' t) liO TO 'f55 
t:O'IT I lllJF. 

(j(l T0 '160 
!11 :s Cl2•1!1 I 2 
nn IJ57 tJ=l•'ll 
oo· 'fS6 rw= 11 •·t • • l 
IJ i a IHI. + 1 

'156 TITLECN2t = jlTLECNNI 
'1~7 TJTL~CII :s' .. 

'l GO TO 'f60 

c SrITCH THE ORDER oF THE COMPONENTS WITH ~IXED fREE CONCENTRATIQNS1 

1.\60 00 '163 J:l•NJ 
lF!:ltiM2<J1,LE.ll GO TO •f6.3 
fll =!!KEY - NUM?.CJI + 1 
N = :IUH21JI + 1 
DO '161 L=IH1~lKEY 

N "' N - I 
flK Y C fl , l l = KEY .1 L • J • 1 I 

l.\6t HKYIHo21 = KEYIL•J•21 
N ;a 0 
DO lf62 L=I! 1, llKEY 

M = n + 1 
KEYCLoJoll = NKYINoll 

1.\62 KEYILeJo21 = NKYCNt21 
't63 CO!IT PIUE 
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I rt • ! : 0 T • SC A '41 G 0 T 0 'f 7 2 
nr 'l7fl t=l •Nt If 
IrPiC:0>H'llloEQ.ISCN) GO TO 'f71 

'f7f) C0 11T I MUE 
~I!-? = 5 
"!f"1 I Tr: I 0 I.IT , 2 0 'f I 1 I 
GO TO '132 

'171 I">":tr = I 
1 r ( • ~!OT • rm LT Ip • Ar~ D • 5 c ~I I n c • u.: • 0. 0 0 0 I G 0 T 0 'f If 0 
IFl"'ILTtr.A•10,c;o11'.IC;L1: .. 1.:ioo1 GO TO lf'fO 
I F ( I. l E • r JI • A! If) • TR r ~ L ( I I • GT • s c mll\ x ) G 0 Ti) 'I '+.I 
I F I I. r, T , r J 1. A rl'D , X X ( I - t ll I , G T • SC 1 J ~1 A X I G .0 T 0 'I 'f I 

'+72 tF{.!Jnr.1:nn1r1 GO .To i+1rn 
Ir !rHlHALL I GO TO 'lB;J 

K = I 
lf73 II = I 
1+7q [IQ q75 l='Jt!Jl 11 

1rn·rn·11r1.E11.r1r.0MPCI)) GO TO q76 
'l7.'; Cn'•Tt '!'.JC 

trP1.11e:.1) c;o TO 'f73 
IHI • 11 
t" r; t T; 1 I')'' r , 2 1 11 1 ~ 1 

GO TO '132 
q76 1r1c11r.:cKltl.GE,31 GO TO 'f7A 

llnITEIOUT120'fl61 NCOi1PIII 
If"CJrlONIK+ll.E!'lo'. ··•.OReKeEQ,101 GO TO 'f79 

:bo 'f77 M=.K.•9 
'177 If,Otllf'. I = I'IONlt'.+1 I 

IWJNUOI .. ' 
GO TO 'f 7'f 

lf7a IllONIKJ = I 
K = K + ··a 
IFIK.~T.101 GO Tri lf79 
U = I 
tr I t',O'ICK I .NE.' 

'f7Q IH-H'IN = K - I 
'I GO TO lf74 

C TEST FOR SPEclE UNIQUENESS• 

lfsJ If"CUCllE:l<I GO TO SOD 
00 'lR3 J=ltNJ 
!QUE I JI = 0 
HL = NllMllJI 
DO 'fSl L=l•NL 

'181 IQ IJ E I J I = IQ u E ( J ) . + c KEY ( L t J t I I • KE y ( L • J I 2 I I 
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Ir1 11'l!l2(J).E'1.0) GO .To 'IB3 
tlL = !!KEY • tJU!121JI + 1 
00 'ln2 L=tlLtllKEY 

'IA2 l~ltEIJI = ll)llEIJI + IKEYIL•Jtll • KEYILtJt211 
'1113 CO'lt I 'ii.Ii'.: 

111 = 2 
'IS'I IHI = Ill • l 

fl : PJ 1 
'IRS DO qn6 J=~•~J 

Ir1Il1llE(ll'·Jl,EQ 0 tQUEIJll GO TO '188 
'll'lb CO'lT I tlUE 
'+ n 1 r.: l = r 1 t + 1 

trl'l!.GT.!IJI GO TO 500 
GO '!'.''.l IPl'I 

'llHl IFIPl~lt!l(J),tlE.rlUMl(N:n.oR,fHJl12(Jl.11E,tlllM2(flN)) GO TO '196 
tr1rr:v110-Jtll.llE.KEYlltq!J.111 GO TO '192 
DO '!~0 L=l•NKEY . 
DI') '!Qn fli'=I t2 
I rt t'. r: ':' I L • J • N 2 I • ti E , I< E Y I L • :rn ~ ti 2 I I G 0 TO 'I 9 2 

'19'J C'l'IT I '!lff 
'!?! •:.:-;:y~~(C'JT.~'.1'1121 IJ'l 

'192 

1191 

1111 = J + 111 + flt I + 8 
IFl! 1 1•t.TlPl ll!l = fi!I + 1 
tr.< '-";i!i"'~~-~ > rli! 

tr15FL~CTI rm 
If" I c:~rRES l Nii 

GO TO '!32 
113 = 1 
Ill = lHJMl(J) 
r- l'l '!..,:, L='l3, l!L 
DO q9q l=tl3ttlL 

= Iii! 

= 111-1 

= MN 

+ 
+ 
+ 

l 
1 ' 
1 

If" I KEY I L • J • 1 I t E Q , KEY U •MN t 1 I e AND , KEY I L • J • 2 > • E Q ~ r. E Y I l • N N .t 2 > > 
l GO TO '195 . . . 

'19'! CO'ITlllUE 

'f9S 

GO TO '196 
CO'IT I !JUE 
IF"l!IL.EO.l~KEY,OR,NUM21J),;Elh01 GO TO '+91 

113 = Ill<'. E Y - II U It 2 I J I + 1 . 
llL = ilt:EY 
GO TO tf93 
If"IJ.~O.NJI GO TO '187 
II = J + 1 

.GO.TO '185 

SECTION rtvE. CONSTAllT EvALUATlOtlo 

SOD If"ITRIALI GO TO 1000 
00 501 l•'ltlH 
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XIII= rnr:ALlll 
501 CP.ITlll = TrlEAL.111 • 0.000001 
'..02 tlWI = Q 

no 5:'1'+ ,1= 1. 11J 
H n Lr. t ,J l = 1 d , O "J '1 • • C Ml ST I J l 
1r1iitir121J1.r::n.J1 r.o.ro 5tit+ 
t.J! = nt:EY - llUtHIJI + l 
:"n ~,"J L::'!l 1 r!K(Y 

I I = 1: r. Y I L 1 J • 1 l 
503 llOLOLJl = liOLDIJl • IXXIIll •• KEYIL•Jt21l 

S:'i'I conr I !JUE 

Sf.CTi:'l'I St~. EvALlJll.T_I~'l or Tift CALClJLf\TE[) SPECIE coNcEMTRATIONS. 

6no DO 6Gl J=l•~J 
~rr~1r1Jl = HOL"IJl 
!JL = rlU~l 1 IJ I 
00 Mll L=l•fll 
I = 1: r Y I L , ,I , l I 

i>r'll 5F'f.C:lf':l.ll ,. SPF:CIEIJl • IXlll •• i<EYIL1J,·2ll 

7!'JG 
701 

702 

D O 7 0 l . I = I • ~I I 
TCALCll) =XII) 
Dn 102 J=l t!IJ 
llL = t!U!ll IJ1~ . 

DO 702 L= l t !IL, 
I = KEYIL1J•ll . 
TCALCIII c TCALCCil + CSPECIE(J) '.•.KEYCL•J•2>1 

SECTION EIGHT• TEST FOR CONVERGENcE• 

BOG rq = o 
min = wrn + 1 
n n fl c t I = 1 • ~ll 
IFCAB~ITRCALCil-TCALClllloLE.CRlTIIll Nl • Nl + 1 

80 I C'1'!T ! llU~ 
tr1trn11.LT.llSTOP0AND.N!.LT.~lll GO TO 900 
IF'PPHl,LT,tJSTOP) CiO TO 1000 
~·:r. t TC: I OUT, 20SO I) 
s c An = • f AL s.E • 
GO TO 1000 
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SF:/".TrC'lll !JillE. EVALUATIOtl Of" TltE COMPotlENTS IJE>\' rREE CONCEIHRATIONSe 

?Or. tr1rw:1.r.;r.2i;.l\nr'.t100!N~!tl.?l.El),ll GO TO 908 
lFl'l!:r•.sf.IJ) G() Trl 910 

n n 9 n 1 I = 1 • ·~ I 
9:11 r•W'. 11 l = <;~r'T I Tr'[ AL< 11 /TCf,l.C <I I) 
1rn2 rin °::11 !~=1 •nt 

[l['l.= XH1l 
r o q ;i;t. J = I. • ri J 
Ml.= nu1•11.11 
[Hl 903 L= l • ~iL · 
'1r-o·r:v1L•J•ll.r'.!').Ml- co TO 9nq 

?01 CO!!TTnt•E 
Gn TO ?'Jb. 

?n~ rA(T"r • 1.~00 
f'('I <1[i'"· Ll=l,'JL 
l = I'. r Y ( L L • J • I l 

?rl".f"ACTNI = rACTon. IOUfl!Il •• 1(EYILL1J12ll 
fi[tl = DEii + <FACTOl'l•SF'ECIE:IJ.l•KEYIL1J121/0UH!H)) 

?0t.. C'l'IT I llU!": . 

r.11:11111. = ~:nn 
Xl''I "' '.((!') • Tl'l[AL(11l I l'\f.:rl 

907 n11·1('.'.l = l:l~ll I DU!11fll 
r,n rn 1.00 

?n~ ~n ?CQ l=t•~I 
?O? XI fl = y!tl • TRCAL!Jl/TC~LClll 

1i0 TO 601 
91r Dn 911 I=l•~I 
911 ~Ill =XIII • S~RTITREALlll/TCALClll) 

GO Tn 600 

sr:cT t 011 · HJl, OUTPUT, 

1000 KOIJfJT = KOUUT + 1 
Ir lt'.Oll!JT.•!E, 11 ·r;o TO 1002 
~·mtTEIOUT1210001 TITLE• NAME• ·DATE• NIIl1 NJl1 NJ 
I! l = • C rHlP • 
ti?. = 'LF:TF. 
lr!CnrRESJ Nl = • COMPR• 
IF"IC!!rRESl 1.12 = 1 ESSEl'l t 

If"ISIJPRESI Ml = ' SUFRE• 
If" I S lH' RES I II 2 = ' SSE Cl 
''IP I.TC: I 0 ll T 1 2. ro I l I N I , N 2 
tH = •orr• 
1r1MM11T1 !U a •ON • 
IF"IMOllALLI Nl = •ALLI 
~RITEIOUT12l0lql NI 
111 i: •orr• 
IFCSrLECTl NI • •ON ' 
\''I? ITE I OUT i 21021) 
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!It = 'O'l ' 
1r1L1c11r1<> Ml = •orr• 
l'!n,IT[!(litT,~10151 ~II 

IF"l$r".i\f!I r;O TO 1001 
'"!" I Tr: ( 0 II T I 2 I 0 I ?. l 
GO T·I l 'JiJ;> 

10::11 r:r1r:::101.'r,210131 11ro:1rc1sc10 
1r1•••tt.Tlr'1 ~'.'RIT[('.'lUT1?.llJ!?l 

I r < • r ' n T • 11 ! 1 l. T I p I ~!1 R I T r. ( 0 U T • 2 1 0 2 0 I 
1 a 0 2 I re s ('(\ I J I , .• :-l I T E ( f) lJ T I 2 I n o· 1 I K 0 lJ N T . 

I r I •• i " T • s r: ,t, n , t'• P. I T F: ( I) ll T • 2.1 n 0 9 l 
\''~I tr. ( O!.IT I 7.1 ~Ol I 
'.': <> I Tr I· (lfl T , 2 I 0 0 3 I 
IrtT~TALl GO Tn !hSO 

0 0 I n I I I r = I • t~ I t 
Ii = :11 + .I I 

1011 TCftL((~) = JXIIII 
{'" 1·:11 ,i:::J,'!J 
Irt~llll'21Jl,(G,OI GO TIJ lfll3 
Ill. = r.1:~Y - flUi!:>(J\ + I 
~·l"l I .. I~ L ::r!L tlil' FY 
I t = t: I. Y I l. • J • I l 
II = ! : ·I + I I 

1011 TC~.U:lll,i .= TCALCH'l + tsri::crr:cJI • KEYILo,Jt2) I 
I 0 13 COllT ItHJF: 

c OUTPUT co;•pQrJEflT CONCEtlTFIAT IONS. 

!050 ti = flLillES - 15 
IFISCMll II = N - 10 
r1rr1 = ( (IJI [I - M, I I MLI !JES - 9 l , + 2 
t r ( I! I I I • L.:. • !·J , : l r r ~ = l 
'!? :: ( ! J I I 1 I ! Ip I' , + l 
1rir:.Gr:.n21 ti= N2 
lr<!1 0 Gr.,·171 GO TO !OSI 
r12 =(I'll[! - Ml I tNr~i - 'Ill+ I 

1051 NPM = II 
D n l r. ~ 2 I = 1 , ~II 
1r1I,LT1llrM,OR.l.EQ,llll GO TO 1052 

Mrr1 = tlP!l + N2 
";R[TE!OIJT,210091 
DRlTC!OUT,210031 · . 

1052 ~rrrr1~ur.21ooq1 l• XIII• TREALlll• TCALC(llJ COMMINCll• 
l tJCOllP ·, I I , CB ECK I I I 
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:11 =fl[ 
r• l'l 1 '1 l1 I I l = l • N I I 
!11 = I! 1 + 1 
I r ( 11 I • L T ' ! ! r ! , • 0 r~ • I I ·' t ·, ' ;,, I I I G 0 T 0 1 ab l 
!!Pll = !JPl1 + IJ2 
:·:r Irr: I 'J',JT' '.'!I !J09 I 
\··::1rr.1011r,21no31 .· 

1 0 b l ''.' R I TE ( 0 I.I T t 2 I 0 0 ~ I r r" )t x ( t t ) t Tc AL c 111 I ) ' (".)HM I I j( N l I • 

1 fl C: rl: i I' ( ! l l I • C H f. ".: !-'. I ·~ l I 

Ir ( StlPPF.S I GO TO 1077 
!J ::: '.ILJ'lF.S - 15 
!Ir!,= llll,J - tll I INLIMES • 911 + 2 

IF'l'!J9L~.! 1 1 PP!l = 1 
fl;?= llLJ I !IPMI + l 
Ir I r,J. <; F , 1·! 2 I fl = II 2 
I.rl'l,r,f,:121 .-;o TO 1071 
rn = ( PlJ - 111 · / ( l~PM - 11 I + I 

1071 !11 = I 

.'"r. I TC I f)l!T, 21 C106 I 
\"' r. T T E I () IJT , 2 I 0 U 7 I 
DO tn7b J=l~llJ . 
trnrl.LT,!IF'~l,QR.J,fO,MJi c,O TO 1072 
!lrr~ = nr:1 + 112 
··: ~ I Tr I ()wt , 2.1 0 ti Q. \ . 

\'JRITEIOUT12l0071 

107? II =l 
N3 = l . 
Ill = fl UM 1 I JI 

J073 00 107q L=N3tNL 
II= KEY(L,Jtll 
If"IML,Efl.ilKEY,ANO,llUM21Jl,NE,O) ti= M +NI 
Ir<cnrRES.A'JD,SPECIE(JI ,LT.COMMINIMI I GO TO 1076 
nn" • 1 1 r: 1 = ~ii: o M r 1 r·1 1 
r1r11•11•1+11 = ·~EY!L •• 1.21 

t 07 q ri = 11 + 2 
tFCtll!t!?l,Jl,EQ,O,OR 0 NL.E~,NKEYI GO TO 1075 
NL ,. NKF.:Y 
M3 = :-!KEY - IWlt;?IJI +.I 
GO TO 1073 

107S NN = N .. I 
~RtTr.1our.21otta1 J• srEClEIJlt CONSTIJlt 1NDUH(Nlt N=ltNNl 
IJJ .. f!l + l 

1076 co:ITl!!UE 
lF'fTRIALI GO TO 9~99 
\'IRlTEIOUT,210101 !INN 
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1 o 1 1 I r 1 : 1 • ir 1 • r, r. • r '. -; Tor > •:1 RI T i:: 1 1 !.• T , 2 o a a 1 I 
IF1.:10T.!1MIITI GO TO l09S 
no IJ78 I::l1MIII 

t07ri ClffCl\IIl = 0 

lFli~rll!ALL) IJMO~l: Nill 
on 1 !19 !')_ f~= I. tlMO!! 

i·i = 1:. 
1r1.·:"'r.:1o~l.\LL.I M = JPrl.i!CKl 
111 = r. 
··:r: l Tr C ')l!T,:? 1 Cl I b I '!C•11? I ill 
I F C ! l , r; T • : 11 I r, 0 T 0 l ,J 117 
1'1" l'l~I J=l1!1J 
HL • l:Ut11 I JI 
DO IC.1'·1 l.::l,l!L 
1r1r.r:YtL•J•l·l111E.11) c;o TO 1030 
:11 = I! I +. 1 
;.n·:r:1;111. = <;r'ECIF.:1,11 

tour 11.11 > = J 
~n H1 l 'Ji'i 1 

I '.Jn"'. Cn'!T T ''US 
l an 1 Cfo'.H t r1~1::: 
1on2 C/1LL 50RTIC:OllCt Jf.)U·E:1fH i 

w r. I Tt: 1 o u t_, 2 1 a o 1 > 

00 lOBo li::l .100 
J = I OUE l I I 
!I = l 

. t~3 = 1 
!IL = rlUM l I JI 

1003 DO I OBLJ L:ll3 •NL 
M = KEYIL1J1ll 
IFIHL.EO.rtKEY.A~D,NUH2(JJe~E!OI M = H +NI 
11['11.Jll I I! I = NCOMP CM) 
IFC~[LECTI CHECKCMI • CHECK(MI + 1 
N 0' HI I I I + l i = Y. E Y I L ~ J :. l I 

lOtl't 'I = II + 2 
1rir1ur121J1.t.Q.o.0R.NL.EO.r:lKEYI GO TO 1005 
l!L = !IY.f.Y . . .. ·.. . . 

il3 = llKEY - IJUM2CJl +.I 
GO TO 1003 

ions 1111 = 11 - 1 
IrcsrLFCT) ~RITE128•3IOOll CONSTCJl1 INOUMCN)t N=l•NNJ 
JFCl,LE.NPHI ~~lTECOUT~21oos1J•SrEClECJJttONST(JltlNDUHlN)•N=l1NN) 
Ire I .GE.ill 1 ci6 To 1090 

10('}6 cot•T PlllE . 
GO TO 1090 

1087 M = rt - U I 
DO 1089 J:l,NJ 
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1r1 11'1112(·l).r:li.Ol GO TO 1~09 
Ill "' !Jr.EV - l~U1121JI + 1 
no 1 G!38 L=rlL • llKEY 
Irly[Yll•Jtll.!lt.111 GO TO IOA8 
ti I = '11 + 1 
CO'!Clllll = Sl"ECIEIJI 
1r.•Jr.1t111 = J 
GO TO l'JEl9 

l on?. CO!:T tnUE 
I 009 CO'lT I llUE . 

. GO .TO 1oa2 
1 O?C' C:O'IT I l!llE: 

10<')1 Irl .rirn.sn.EcT> G('i TO 1Q9S 
r~ r ·~ = 1 

1097 no l'l'?.3 I:n;>ll,!llll 
I r ( c r If: c Y. I I ) • ( f') • :11 G 0 T n I IJ 9 '+ 

109 3 COllT I!iUF.: . 
(jl" TO l 111'/r; 

I a? 'I I r I ! Jr I' • r: (i • l I '."I'? I TE I 0 u T • 2 1'.J I 7 ) 
r1r~1 = 1 + 1 
.,~trr1011r,21::;1'll •:c;;·~r-1I1 

I r I fl I" r1 • L E. fl I I 1 1. r. 0 T 0 1 0 92 
I rl'7':". ·IF I. !!C'T. SC ;;:j I 1'.iO TO '>?9'1 

1 1"1,.. 

I I 0 I 

Jf(t'.".<:l!.liT,'111 (jO TO !p'.q 
IFITREALllSCrl1,LE.,1f:.;..2q1 XIII= SCllH!C 
lf'(,tlOT,llllLTipi TREAL<l5Clll = Tl'IEALClSCtll + SCNlllC 
IFIHULTIPI . TREALCISCHI = TREALCISCN> • SCNl~C 
IrlTRf.ALIISCtl),LE,,IE-2llol XCII = SCNINC 
IFITPEALIJSCNl,GT,SCHMAX) GO TO 9999 
CRITllSCill = TREALIIS.CMI • 0,000001 
GO TO 502 
I J = I 5 C ii - ! 11 
If'IKOIJIJT,!":t:!.l I SC~·iMIM = XXI JI I 
1r1,11nr .• 1111LTIPI XXIII> .. XXITII + SCNINC 
lf(HULTIPI XXCJII ~ jxc11r. SCHINC 
1r1xx11n.LE,SCIHIAY.I GO TO 502 

9999 nRITtlouT,999991 
IFlSELECTI E~hFILE 28 

SUCROUT J!JE SORT< AR~AY ~-NARRAY •NI . . . 
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fll'IC'l'.';lOfl Af'1RAYllll • !HR~AYIN) 
f'!f. AL LAYl>Y 
I i!TEGr:R OLO 
ti = 2 
f\0 1 J=i.tl 
ti = '.·~ + II 
trlrl.<iT.l!I GO TO '2 
C0'1T I:!'.!( 

7.M:P~l 

3 11 = rn-1 l I 2 
q ~ i Tl = ti - , .• 

r. n 7 I =I .t J!~ 
nt. !'l : I + ti 
LAVny : A!'.'PAYtOLD> 
'lt..\Y'iY = :1A:<rAYIOLl:ll 
,.,,, s J=l • J ,., 

:rr.'"' :: OLf' - :1 
IrlLAYGY.t.E~ARRAYl~E~)) GO TO 6 
f1: '~A Y I n L f' I = ii P !'.'A Y (t IC \'I I 
llA:'HUY I OUl I = i·li\RRAY I NE\'! I 
OL "I = 11 f:".' 

c::; ct':rr I r;u£ 
6 Ar"~Y1nt.r1 = LAYRY 

' Jt .. ·• " .', y I 0 l ~' 1 · = . l L ,\ Y r- Y 
7 C0 11T I Ill.If'. 

tr 1:i.r:r.11 Go To 3 
:~rr11rri 

CI 11' 
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appendix 

Lr ST r 'lti A!'" I ::srr• . .tcT 101:s f"(lf' !'~r)G~AM I rir:r.x. 

----------·-----------------~---------~---

r I' 0 (j :-: 4. 'I r ;J !' r: y T s 'J s En T 0 p llO :1 tic r. LI 5 Ts 0 f" LI TEP. AT u RE p E f" ER£ N c Es s 0 RTE D I N 
CH~O[': (')f" Ill Jn~lf?'ll\L !JAfff5, 12·1 r .. l.JT 110R llA~~Es· 131 KEY~'!ORDSt (lj) DATE ANO 
( 13 I c ! Ir::' T ct L Ar 5 T ~ "c T f HH' 3 c p • TH r. I ~Ir ll T c 0 r: s I s Ts 0 f" THE AL pH A rw MER I c 
';TRI::.-;s ,.,,,T\.H srrc.lf"V C1,t'."1I A•JT1:nP., ,JOll~!IAL• r:oor. AtlD r.EHO~D AS 1\ELL AS THE 

SET nr rr.rrrEricrs It; CODf.D fn~·:. THIS cn.DrtJG ELIMINATES STORAGE 1';ASTE BY 
MI II Ii~ I Z I 'lG ALPllf,fl'l!IE.~ IC fHJl'L IC/, TI 'l!·I OF 1\llTHOP. f,!ID JOV!'.?llAL ti AMES •'!Ht::N THEY APPL y 
.To PnRE THfdl t'H!t. 11EFEPEl~CE. EACH AUTHOR. JOlJHflALt P.OOK• TITLE Al~O KEYVIORD ls 
ASSl\.'lf'.r, i\ c;rr.11r:1•cr:: ~!:.rr:iH·R. THF'.SE Nl.Jt:r.!-".RS ARE PLACED IN FRONT OF EACH 
EIJT~y • THI: LISTS THUS Ac;sr.w~Lr.r. FOP ( 11 AUTHOR. ( 21 'JOURNAL. ( 3 l BOOK 
TJTt.r II'•" l'H ITY'"t'1R!";t; C'1:1rrts:. T'![ FIP.<;T SF.CTICi'l OF THE DATA. EACH LIST 
: w s T r-. i: 11 E Afl ro rY I\ c Ar. D sf' r. c Ir y Ill c; \'!II I c II LI s T I s T 0 F 0 LL 0 ~. • Tit E LI s Ts ARE 
f'l[Ltr·Ur."'. f'Y 

0

A t.Ulf!( CART:I. THr. 5rriun1cr. NUMBERS ARE STARTED AFRESH F'OR EACH LIST 
F'l'R rrM·~1.r, 

AtiTllf'\P .LIST 
00 I 511[ Tll 11,K • 
no?. CHARLE!': M, 
'H!3 f'lALLY P,L,O,tl, 

••• 
' .. 
• • • 
122 1:Asor-i lt,H, 

JOURt:AL LJ'.:;T 
00 l r. 001'.S 
n'.12 J. c:1r:·1 soc. 
".!")3 ,J • r.~·!?~· 
rioq J. C :1 r: I! 
105 "1 • c:1:..:1 
IJ I) 6 J. CHEri 
007 J. CtlEM 
OOA .J • CllF:r: . . ,, 
••• . ' . 
.,., 5 TALANTA 

BOOK LIST 

SOC, OAL TOii 
SOC. A 
St'lC. • ~ 
SOC, PC:RK IN 
SOC. FARADAY 
El'HICATIO~i 

00 l. TllE CHEMISTRY Or THE TRACE ME
0

TALS IN VI VO, 
002 TllE Ol!:r:ISTRY OF COMPl.EX E:~tril.IBRIA, 
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.. • . 
• • • 
• • • 
02'1 T'lf. '1!".Tf\L.Ci or LIF"F:, 

K r Y , .. C ~ () LI '.: T 
01.11 cnrrrn 
'J02 CALCfll'' ... . . . 
• • • 
l:J'I 7t'IC 

RErrrcicr.5 

Hi r. "'. '"c ("!'!~ r A~ T nr T w: n AT f\ ('0 ''.<;ts to:; OF THE c 0fJ r:o P.f f"ERE MC( s. THESE ARE A 
COLLfCTI0!1 OF i·lU!1'.lE11S FOR 11) THt Sr'.QUEllCf. lllJ11i,F.R or THE r<E.FERF:trci::. ' 
C2l T!lf. <:llt::~t!CAL Af'STRACT rruw1r:r. 13) THE SEQUL:ilCE Nl)t1BER or THE JOURNAL. 
I'll T!tf. YF:Al1e lt;I h1E VOLU:·1f., 161 TltE P~:';E• 171 AN ·f\LrHAIJUtiERIC SET OF FOUR 
CHA~At:Tr:~<.; AS A f.'!:RSO!lAL FILirl.G LAE'f:L f\f!D 18) SUCCESIVE AUTHOR NUMBERS, 
TH r. '." '. ',, :. ~ ': " ;> c [ : i T [ :~ r r. I N T: I"'. ') r j, f ~ : I A;'::: i) A:! r:. 1\ !( E F c ~ r: AT Tr D As s 110 ~v N B [ L 0 ·~ • 
THE sr.cntm CARO OEARS THE stRillG Of KEY\'/ORD NUMBERS. THE THIRD AND 
5Uf<5".1U!':'iT CA~'",': CAW~V TllE TITU: or Tll( :'?f:ff.P.f'.11CE AS ALPHANUMERIC STRllJGS OF 
IH! CHl\i't.r:Trr..:; rt.C'I• rAcli rr:rr:PEllCF ·Is Df.Lirnrrn 6Y A BLAiiK CARO. 

, r'LEf\SC. !!OH: 

Ill THE FIRST J'Ot1RIJAL Mu5T AL E!ITitLED •1300r,s•. BOOKS AR.E REFFRENcEo By 
J'll)JCATJ:iG ,JOllP.llf\L ono1. THE VOLIJME tlUMAER IS THEN TAKEN TO BE THE 
SE')ttl::NCE NUMf>ER OF THE BOOK. 

12) THE SI.X JOIJR~lALS FOLLO\'/JNG 1BOOKS1 ARE ASSUtlED• BY THE PROGRA11t TO BE 
1:nn1ouT VOLlntE NUMBERS (EoGt J.c.s., 

' 131 Ir THE yEAR Is CODED AS 9999 THEN THIS l,S OMITTED wHENEvER THE REFERENCE 
JS PRttlTED OUT, 

llfl Trn: ~r>,~.cr FOR THE Cl·ir'.IHCAL Ar'iT~ACT MUM8ER ~1AY or. LEFT BLANK, 

( s, r r THE PAGE r1u11sER OF A RErr:r.EilcE TO A aool< Is zERO' THE TITLE .CARO 
f)f" T!IE rr.rEr.EtJCE IS ''OT PilPJTED our. A DUMMY CARO IS NEVERTHELESS 
RE:QUIRE0 0 

f6) LISTS Of REFCREf~CESe AUTHORS• JOURNALS• OOOKS Al~O KEYl'IOROS CAN ALL BE 
ACCUMULATED JN A RANDON ORDER, 

EXAl!rLES or RErr.r?F:NCES, 

0001 12Jlf567A 0123 1975 0001 1234 FILE 0987 0678 
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rJ97 t .?.?. nnr; 
TllE TI TU'.' GOES !IE!tE, 

::inot t967 00113 '1fPJO aooK 01116 02'+'1 0123 0067 
nD7 11'\? 

T 111 '.:i 7 E p: R 5 T fl A n 0 0 K , T 'if. ('.A fW VI 0 IJ L fl N 0 T BE: p R 1 NT [ C O'U T , 

~nc1 11sr1n~6'1 ono? 1975 tooa 1652 Jes. oa6s 
:")()"; 

Tlll5 !'!Erl':RS TO Ml ARTICLf'. IN J.c.s. 

l"PO(.r.,r· trircx r.t.f.)tJll~F:s T·::O TEiir1~Af;y \\•ORKINc; FILF:S, 
AsSJr,'!1=!'> L'i\ilCAL UfJIT llUfltH.:::-s 11 & 12.· 

THESE MUST BE 

·----- ----- --.--

c T11tr. f'f?OGPAr1 SETS !JP A~IO OPERATES A LlTRATUR[ l!IDEx ANO cATALOc;UEt. 
c 
c IT '"'AS r·E'.·,rr.uirr:n AT THE lt!llVE~SITY or CAPE TO~!N DURING 1975. 

11:ruc1T IflTCGC::RCA-Z> 
p A!'? Alt ET ER rm= 8 0 a ' MA= 1 0 0 ("] ' M J = 2 0 0 ' MK= 2 0 u ' H B.= l 0 0 ' HR s T =MA l( 'MA d1 K ) 

F'A1'A'H:1'Er. MrA = 1e.oo.r•RK = 3000.tlRT = tlR•2 
PARA11ETER MAZ=7•M/\, MBZ=2 l •11B • MJZ= l 2•MJ, MKZ= l2•MK 
COMMON /Ol!E/ REFl9•MR>• REF'Al2•MRAlt REF'Kl21MRKJ 
COIH1011 /T':JO/ E\OOl".C2l•MBI• .JURNALU21MJ) 
c 0fl11()11 I nm EE I Au HI 0 r1 ( 7 '" ,\ I ' I( E y I l 2. ti I( I 
COl1110tJ /F'OUIV RCMRSTI• S(flRSTJt TIMRSTJ 
co:1~1011 /f"IVF./ LIME3013011 MU!rnf'.P.120), LJllES1 NUNES 
cot~rl()!j /5IX/ LAGS, u:r.y, LTIT 
corn•".'l!l /Sr.VEii/ NP. .. NA t tlJ i m:' Nn' ~RA. uRj( t NRT 
COMIHH! /f.!Glnt llJ, OUT• REFT• Sf'.Qf• OUTf, SWIF'T 
t'I AT A A IJ T 110 ~ I Ii AZ• • ' I B 0 0 K I M 0 Z • ' ' I JU RN AL I M J Z • ' ' I 
DATA KEY I HKZ•' t/ 
(') /\ T .A. •JU 11 ::-. F. R I • 1 ' t • 2 ' t I 3 • t i 'I • • ' s • I ' 6 • t ' 7 ' ' ' 8 • t ' 9 • ' ' l 0 ' • 

•11•1•12•,•13•,•1'1•1•lS•1•16'•'l7'•'18•,~19'•'20'1 

LOGICAL LAOS, LKEY, LTIT, SWJFT 

HI II 8 
OUT • S 
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r.crr = 12 
sr:,.,r = 11 
OIJTF' :: 13 
LJ'lf:~ ,. 7 
Li''"·<; = .r:,t.:,r:. 
U'.f.Y = ,rt.Lsr. 
LTIT :: .TRUE, 
SI' r !O'"T = • r '·L·e.r:. 
C•[!"'J'![ nu: rErTt!HITdlOtEtV) 
Cf1LL C~EATE 
·;pt Tr. I 'Jl'T, Q'>??) 

c ,, LL. I. J 'j T ( '·I J THO I") • 7 i NA • 0 u T ) 
I :f' IT!: ('JUT. 99991 
C ,\LL I. I S T I ,I'. i r U ~. L • 1 ;> • tJ,J • 0 U T I 
''i: t Tr: I 0UT, q,,o9 I 
Ci\LL L.IST!f''J0r.1211'lfl•('IUT·1 
: r: t Tr: I 01!T,",,q9 I 
".fll.L LISTln-:v.1?.rJr-1<H'TI 
.·:r I Tr.< '.WT 1 qe,99 I 
Jf(':'"IFT) ';')'To 100 
CALL 5ELECT(3,LlllESI 
',"::IT[ (('II.IT 1 9'199) 

CALI. S!:U:cTl21l.fr!ESI 
""!' r :: 1•'.1llT1 ~?Q9 > 

100 Li'IC';: 7 
I.TIT :: ,Tr'llt., 
l rl ~ .. ,I FT I LT I T = , F' AL SF:., 
CALL ~r.:u:cT (I.LI rirs I 
\:p I Tr: I OUT, 'M99 I 
I F I <; "rfF' T I S T 0 f' 0 K 

CALL SELECTC•1LINESI 
·:1r.: I Tr.< our., 99991 
CALL SELECT(S1LINESI 
"If! I TC !'OUT 1 9?991 

9?9? fO"'li\ T ('I' I 
trrn 

, Sll!"'1f'JllT I llE CREATE 

c TH I c; sun ROUT I NE SETS IJP THE HloEx SySTEH FROM THE DA TA ON (:ARDS. 

. . 

rMrLtCIT JHTEGtR(A-ZI 
rAl"1Ai1ETER 11r?=8001MA•IC1001 liJ=2001 Ml<'.=2001 MB=1001 HRST:HAXCHAtHKI 
PARAMETER MRA = 18001 HRK :: 3000 
corn-1011 /011[/ REft9.r-tR) i RF.FAC21MRAI I REF'l<C2•MRKI 
CO'.ll!<H! /H•O/ !>OOK 1211 '1A I• JUF?t~AL ( 12 o MJ I 
cortrlON /THREE/ /lllTHOR(71MAl.1 KEYl12oMKI 
COMMOfJ 1roUR/ RIMRST>. SCMRSTI I T(MRSTI 
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CO!H~1rl /FIVE/ LINE301301t rHJ:1RF.Rl201, LH!ESt NLINES 
CO!!'IMI /SF.Vf.ll/ ~rn.·NA1 rtJ. :u:. Me, !IRA. !lRK1 !IRT 
CotntOtJ /EIGIH/ HJ. OUT• REFT• SEQF• ourr. SWIFT 
LOGICAL S~IFT . 
ill:lf.:151011 Ll1JE2012fjl t Ll1Jr1 111 t'll 
~l'WJ'!ALf':itCF. llltJE:?-0111 t Ll'.IF."?('l( l I• LltlEl'll 111 

1181 f'\1~'1AT(A'll 
I 2 I') I F n '.' '' ,\ T I I 'I , I ? , 'I I 5 , l X • A 'I • l 215 I 
!'.?:'! F0';'1ATl2:Jtifl 
12'H ror:~r~AT ( 2:JA 1+1 
32!'".l FO""'.'.',Tl/// 1 t'1 1 o 1 !1 TITLF. ~11\V MOT BE LONGER THAN FIVE LINES,•) 
3 2 7 l r n.., II ,q ( / / / • 0 • ' I T 0 0 H !\ ll y R r: FF.pr. r~ c Es •• I 
3 2 q .-, F 0 ,., " \ T I 1 l • 1. 
7.31·- Fn':"HI JC,21"i1'tl'?t 1XoA'lo3( lX• 1'111 
'.''\lt·FO"'!'H(2ntr;I . 
J!;3t rnR!~llT(fll1ITtlE FOLLOF1 lllG PEFCP.EtlCEISI Ht;VE 6EE~l DtJPL1CATEDtlt///) 
3532 ro~:~\T(t0 1 •1QA'll 

353'.\ FOP.111\TI' '•2Y.o31J5o 1 •'l•IS•/'0 1 1'SORTEO pl)SlTIOllS'•2X12151/ 1 1 1 
1 t11•1sn::~Tr.r ros IT' 01.15 1; 2 I':» 111111 

3"i'll ro~:•.\T(/// 1 J 1 1•TH[ ORJ(jtr:AL HEFEP.ENCE LIST HAS P.EEN SORTED AS FOLL 
10•"<;:•1///l 

35 112 F'0:":'.t.\T( 1 0 1 • l!JISI 
356't F0"'!1.\T!•0 • • 1JolJPMAL'1 I 'It t IS '·IEVER Rf.FEP.ENCEO,' 1 ////I 
357'! FO'"'ftT( •01. •AuTirnR• 1 l'I•' JS i:F.VF'.P. P.f.FERf1lCED,. 1////). 
3 s r. it f n ;· • · r, T <' o • • • r F v ... o rt~ • " '' , • I 5 m: v r: P r~ r. Fr::;- r: '! c E" • • , 1111 1 
3nori' F01'1!1i\T( •c• ••THF: F'ROGRA11 Ll!11TS HAVE fH.Ell EXCEEN:o ltl SUARl)UT.JllE CR 

lEATF:• 1 . 

3610 ror.rlAT(IO•·•EHROR ON cfino Mu1:rEl1 1 .IS1////I 
362C rorr11\T(IQ.•••DELIMITER ERROR, STRl!lt.;5 OF [ILANKS IN TITLES ARE UNACC 

lEPTAtlLE,•t 
3 b {, G r 0 :-' : t !; T ( I 0 I •• r P, 0 n L E :., • ' :\ A 'I • I ' I • I E x E <: u T I 0 ti T E R M I n A TE 0 •• I 
3661 ro"n '· T (. 0I.•11unnER I. 114. t 1 s MEVF.R REFEREr1cED •• "// /) 
3701·ronr1ATI'1 1 •'.INDEX SYSTE~ cr.EATEO,• •I' '•.201llt•l1///•0• tT25• 'NUMBER 

1 Of DATA CARDS = 1 ol5o/' 1,T?S1•NUMBER OF REFERENCES =1 1151/ 1 . '• 

2 T2So•Nurrnf.R or AUTHORS =•'151/ 1 •·T2S1•riUMBER OF KEYWORDS=·· 
3 Jt;,/t '•T2S••~lllf1RER OF JOUPllALS =•.I<t1/• '•T251•NUl·1BER OF BOOKS s: 

q •ol'4t/ 1 '•T25•'NUMBER OF AUTHOR ENTRIES ~ 1 1151/t •1T251 
5 •ll!Hil'E~ or r-rY"'ORO .. Et.tTr>JF.S =•·151/• ••TZS• 
n PllHH'.ER nf' TITLE LHiES :•iJS,/////I 

rrn = 1 
R r A!' I t •·1 , I l D I I I X A 
IFIIXA,Ec.·s~JF 1 1 ShirT 
trc~~IFTI READl1N•ll01) 
1FllXA,NE,•AUTH•) GO TO 
I a MA 

"' ,TRUE, 
IXA 

610 

c. ALL I JUL I c:; T I AU TH 0 R • t • 7 • ti A , N fl • I N , 0 lJ T 1 L IM E 2 0 1 R 1 S 1 T I· 
IFUIA,EQ,01 GO TO 610 
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R[Arl(I'l1llOll IXA 
:111 = rrn + 1 
1 r 1 r x " , 1 ir • • Jou 111 1 G ri T n b 1 o 
I = '•J 
c ALL nu 1. J s T 1 Ju rm AL. l • 12,11J , tHJ, l 11 • ou T •LI ME 2 o, R, s, TI 
l r ( ~I ,J • r. ~ • fl I G 0 T 0 b I n 

r.r:~ri1rn.i1c11 rxA 
rrn = rn1 + 1 
Jr<IXA,

0

JE, 1 "!00~:'I GO Tfl t-.10 

r " ''.F 
CALI. !:llf.l<"f(['001<•l•211r!'2.'1!!1!,Jr.J10UT1Llt1E201R1S1Tl 
Irl'l'','.:·';,QI G'"l TO bin 

R r .\ !"I ( I 1·1 ; l 1 0 1 I I X A 
;·tri = ~;~1 + 1 
I r < Tl'. h , r: E • ' r. F: Y ''J 1 I G 0 T 0 b 1 I) 
I = ·:r 
CALL t ! UL 1 ~ T I K E Y t l t 1 2 • flt.: t : JM • I l·l , 0 UT • L I II E 2 0 • R • S • T I 
Irt'!~'..!":::l,'.)I r,("I TO 610 

Ir~. = a 
IRK = 0 
IRT = 1 
F'l'ln(PEF'Tt IRTl 
RE~OIIN111011 IXA 
WI = tlr.J + 1 
Ir< IXA,IJE.•REFE• I .GO TO 610 
DO 270 NR= l, tlR 
READl!Ntl2011 REf191NRl1 LINElq 
fHJ = l!fJ + 1 
ItlLitJEl'H21.E'.}.01 'iO TO 280 
Irl"CF'191!!RJ.1~E.MRI CiO .TO /,80 
f'[r I I ,t!!"1 I = L ltlC I 'I I II 
RErl21tJP.I = LINE1'112l 
Ir(t?[F'(2•11fll.GT.tlJI c;o TO t.30 
REF(31NRI= LINE1'113l 
lFILINEl'll'll,EQ.OeAND.LlNEl'll21•GT.71 LINEl'l('fl = LINE1'113J 
RFTl 11.tnl = ILl~l[l'H'fl • 100001 + LINEl'ICSI 
PEr1n.NRl = Ll~E1'1161 
IF'IS~IFfl REF'l8•N~J = t 
RErC61Nl'n = IRA 
oo 210 I :a 7ollt 
lFILINEl'flil.EQ,01 GO TO 220 
IPA = IRA + 1 
REFAll1JRAl • LlNEl'ICIJ 
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Ir ( "! r. r" (1 • t r:?" I • ~ T • i: A I f, ::i T 0 6 q 0 
21C C:O'ITlf!UE 
220 1r11nA 0 EO.REFl6ollRll GO Tr'I 6 1.0 

f?fTl6oHRI = lllRA • REFl6;1Hlll • 100001 + REf16oNRI + l 

nr: ~ !"! I 11! , I :' 2 1 I I. lfl E 2 0 
IP' = l'.:J • I 
r.r:r11,:J~I = IRK 
f"I) /.)(' t = 1•2f'l 
1r11.1r:c2n1t1.K\l.DI GO TO zqo 
!RI'. = IRK + 1 
,, '.: r I'. ( I • I r? I' I = L r r :r :' () I I I 
I r I "' r: n· I 1 ' r r r I • r, T ~ : j K I ('1 ') T I') 6 s a 

/.3~ Ch'lT 1 l'UE 
;'! 11 ~ t r ( I ri t'. • r: (; • r Er ( 1 ; I IR I I (, 0 T 0 6 5 0 

;'fTl71::~1 :'(lt'?I'. - Rr~Fl71•!rn1. 1onod1 + 9f.fl7oMRI +I 

.. P.[r«"•llrl :: IRT 
fl() 2"»0 !=1•6 
rq" "~ I I ! I • 1 '." 11 1 l LI r If. 2 0 
If1Ll11E201ll.EQ,• 1 1 .GO TO 260 
Ir!I~~.r.1.• 1 1 GO TO h20 
','r.• I Tr I R[fT. Irr' 12'111 I. I tit.?.!) 
irr = rrn + 1 
Fl!IOlrEFPl~T). 
I X I\ = L I Mt:?. r1 I l 1 I 

250 MM = llN + l 
·Ir? I Tr. I our·, 3~511 
GO Tl'l 600 

260 rm = 1rn + 
IXA = 1 

270 RCrl5otlRI = I llRT - REFIS1.llRll • 100001 • REF(StNRI 

''.'P. I TE' OIJT I 327 l I 
GO TO 600 

20r: W~ = llR .. 
NRA = IP.A 
'lr.r: = I P.K 
'.lr.T = IRT 

r•r. r TE I Ot•T. 3290 l 
D 0 2 9 1 I R = 1 I I~ R 

291 CALL CATOUTI IRobtoFALSE, •' I) 

DO 310 IR=lotlR 
J = rr.r12.tr:>1 
RllRt = IREFl31IRI • 10000) + JURNALll•J) 
SClRI • REFllf1IRl 
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3tr. r11r1 :t r~ 
CALL o;i;.rr>f~•StTtlll?I 
[1 0 3 :? I) I I~ = 1 • I! R 
J = TIIRI 
CALL SPLITIREFl6•Jl91RA1IXAI 
If. = IXA - IRA 

. C~LL ~~LITl~[Ff71Jl1Irr..tnT1 
I f'. = I R T - I '? K 
~n1rr1sc~r·231Dl (REr!ItJ)• I=l•9li IAt IK 
'.'~JTr!SE~F•2311 I l~EFAll ollt l=IRA•IXAI 

3 .2 :i ," r- I T r. ( s E (' r • 2 3 1 1 I ( p E F f'. ( 1 ti I • r = 1 n k ti R T I 
[rl"'r I u: Sf.f.lF 
i7r:··1 t ·10 sr:nr 
I.rt. = 1 
l ~~- = I 
r'.10 3c,:; IF:: I• llR 
rr,~l~F.(F.23101 (PCFll•l11• I=lt9l. !At I~ 
!):/, = l"A +IA 
rr~~r~r~r.231 I I IREFA(I ,,,, t:JPA1IXAI 
r•o 33CJ l=IPAtlXA 

33~ ~~~~l?1J I = IH 
rr.rlb1IRI = lllA + 11 • 100001 + IRA 
1~r, = 1:-r. + 1 
TX~ = nr + lK 
rrnncrF~F,23111 IRF.FK!ltll• J::IP~1IXAI 
i. \I .) 'I r1 I = I r. f'. • I :\ A 

31p1 PP"!fl/.1ll =IR 
r~rr11.rp1 = 11rr. + 11 • lnonn1 +IRK 
t r· I' = .J i'. A · + I 
f'.T"' I 'H' Sr:QF' 

soo r = 2 
5JC fH) S20 IP.=!1llR 

.J=IR-1 
Ir<nEF(q1IRl,NE,REF(q1Jll 
IFl~E~l~•IRl,EQ.REF'l21Jll 

520 COtlTJllUE . 
r,o TO SlJO 

GO TO 520 
GO T0.530 

SJO IFHHl,GT.nl WRrTEIOUT135311 
MN = .J 
IJ = rEFl2t!Ri 
J = ,1l1R11ALl21IJI + 2 
''!"!"!"[('.)UT,3SJ21 (,IURllALltolJli 1=31JI 
I = ~[f(lJ,JRI I 10000 
J = ~Ercq,IRI - II • 100001 
•·: P I T f. I 0 UT • 3 S 3 3 I I J • REF' I 3 tl R I 1 I , J • t!" 1 IR • T I N N I • T II R l 

IHI = - l 
. I = IP + I 
GO Tn 510 

5't0 IF'lrl:t.GT,OI GO TO 560 
··:rrrr:101JT,3S 1H I 
(') o S :. Cl I = I • r.1 r~ • I lJ 
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J = I + ? 
I f' I J • G T , f I f! I J = fl R 

SSC ·:r.r.Tr:101JT,3S'+21 ITllJJ; IJ=loJI 
STOP C~E3 

56:" no 5i>6 I .J= I. :IJ 
r: o s 6 1 r '' = i , 1 ! R 
rr1~r.r1211R1.r1.1J1 r,o TO 566 

5/,3 CO'IT I nut 
t;IJ = -1 
": r J T '": I l"l !I T , 3 S 6 '+ I I J 

566 CO'lTillUE 
r,(l S7A J,\-:l,:JA 
f'l() '"•7:\ 11.\=lolFIA 
rr1"rrtdloli1AJ,E0.IAI GO TO r;.76 

573 co;1r1::uc 
Irl'"'.<;T.'":I 
IF!rlil.f.l).•11 

rn1 = ... 2 
ll'4 = -1 n 

1 1n1-rr11111T,357'il IA 
57/.. CO'lT T 1 1Ur:'. 

110 t;!l6 If<=! ollK 
r; n r, :, 1 UT = 1 • i< Pf'. 
IF"ll'l[f'KlloIRK1,r.o.rK1 GO TO 586 

583 co:JT r r:uc:: 
rrl'11:.c:T.'.l> 1J'l = .. 3 
Irl'J!•.E'1.-l,0R,rHl,f.Q,-2l WI = -~o 
\!fllT(IOUTo3SEl'il IK 

5!16 COtlT I :JUE 
lFl'l'l.GT,£11 GO TO 700 

590 

I= •ONLY:' 
IFl~1'1+21 S9(lt 
IFIJ.ltl,E0 •. -3> 
IXA = •c;f.•JE• 
J = .' RAL ' 
I = ' ., 
GO TO 670 

''1'+0. 630 
GO TO 650 

6nr: '.1P IT' I Ol!T • .) ~(l(j, 
61!"' '!rtrr1ouT,31.lOI Htl 

sror CP.Elf 

620 ~rITCIOUTo36201 
GO TO 610 

638 DA= •JOLtR• 
J = 1 llAL ' 
GO TO 660 

6 .. n' Ix A = 'AU nt' 
,J = •OR ' 
GO rn 660 

650 IXA = •KEYl'/i 
J = •ORO t 
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6l,o 1r1•ir1.c;r.01 1 = • 
67C mnrr:101JT13b601 IXA• J, I 

1r1w1.Gr.n1 GO TO 610 
STl'lr' CPF.5 

r,r1" I~\ = •rrt1::• 
J = •nE:JC• 
I = 'E 
GCl T"l 67n 

70~ ,. .. fdTFIOIJTo'.17::Jll tl!l1 t!P.1 1JA1 !~K• IJJ, N81 :.JflAo NRK1 NRT 
rETWHI 
Ell~ 

";I I I"\ '"'·"l 11 T I 11 F: 5 [ L!': C T I 'JC .\ T 1 L I' l t: c; I 

c THIS sunROuTINE SELEcTS ANO SETS Up THE AppROpRIATE CATALOGUE 
C OIJT!"ilT ~~OCEDllRESo 

ll'."LICIT 1:;T[Gro::'IA-ZI 
PARAt~ETER !lf':=8001 MA=tnoo· MJ=200• MK:o2QO• MB•IOO 
rA'1fl''ETF.:R Mr::I\ = 180i"Jo ::r::i.:·= 30'.ln 
cn· 1""'1 1n:1r1 ~fFl9.r1r1. rr:r:..<2•!'P.Alo ~F.rK12.~:RKI 

CO'lW;:1 /T'.''0/ noo1:1211!~[\)t JURllALl121MJ) 
COlll!i".ltl /THrlE(/ AUTHOKl71MAl 1 KEYl121MKI 
co:mrJtl /SIX/ l.flPSt LKF.:Yt LTIT. 
co~1nnt1 /SEVEll/ rm. NAo NJ1 NKt MB. NRA1 !IRK• NRT· 
COMl1011 /E'IGflT/ IHo OUT• HF.:f"T1 SEf.'lr• O!JTF 
LO~ICAL PAGE1 LABS1 LKEY1 lTIT · 

3 S 0 I F 0 R II AT I • 1 ' I 
3700 FO~MA~l//•O•••EXECUTION TER"INATEO, 

100 Lrr.v = ,FALSE. 
Lfl~S =.FALSE, 
PAGE = ,TP.UE. 
D 0 I 1 0 I R = 1 , I~ R 
tr1rr.r13•!Rl,GT.OI GO TO i20 

110 COtlT!f.JUE 
GO TO 700 

•20 CALL CATOl•T!IRtl•PAGf.oREFlltlRll 
N m IR + 1 . 

ERROR IN DATA ARRAYS,•t////I 
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['1(1 130 I P.=N t flR 
JF(r[r(3•JFll,CiT.Ol GO JO llfO 

130 c:oiir I !JUE 

llfG •J = rr + 1 
rr; I r-,iJ J=:!J • tl~ 

llrXT = RErl3tJI 
Jrl'!f".;(T,[.T,")) r;o TO 150 
CM.I. CATl'tJT(IRtl•P-'GCelJt:XTI 
Ir = .J 

1 s.: r,ri'IT 1 llLIF: 

CALL C1\TC1 1JTC.ll<•6•PAGE1IH''.XTI 
1r1rio.T,["'.'.96) (,(1 TO bOn 
r.r:Tn~r1 

2n~ LTTT = ,rru~. 

LA~"i = ,rALSE, 
Lrr:v = ,Ft.LS[, 
LIMf.c; = 7 
:::,~f_L sc,\qlAUTHOr'>17.tNA1PF'.rA'•!lP1\t21!1CAT10liTI . . . 

3G8 LTIT = ,T"llF:, 
l..t:':.Y = .·.T'"'-U~. 

l.fl"'S: _,T~llE, 

LI'IF:<; = 11 
CALL SCAll(JURNAL• l2ellJ•REF•llRi9tflCAT•OUTI · 
11rr1Jr11 

'+DO LTIT = ,tr.UE, 
u:cv· = .F'ALSE. 
LMlS = ,f"ALSE, 
LI'IE'.; = 1· 
CALL SCA!l!Y.EYel2•N!<:eREF"KtHRK•2tllCAT10UTI 
~F:Tll!"lrJ 

50C" LAST = 0 
PAGE '* ,rALSE, 
"'•r.rrr.1our,35011 
HEXT = 99999999 
LTIT = ,rALSE, 
LAOS = ,TRUE, 
Lt~EV = ,F"ALSE, 
LI!lr.'.S = S 
DO 57.0 IR=l tNR 
rr1~tr111IRl,NE.Ol GO TO s~o 
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U.":T = Ll\:OT + l 
GO TO 520 

·510 lrl"'Ull•IRl,G!C.MFXTI GOTO 520 
llEXT .12 !'IEF"ll•IRI 
rr.r.r .. tr. 

s:>o r.0·1r i ;1ur 
:>n r;.10 IP.=ltilR 
rr1rrr11~1n1.NE,n) 00 To 530 
LA$T c: Lil'.';T - l 
IrlLAST.Lr.01 GO TO sqb 

·ct.LL CATOllT(lR•61PAGEeHEXTI 
5.3::-: c0:1r I t•ur. 

GO TO s~o . 
sqo CALL CAT01iTllR1'1CATtPAGEe•1rxT1 
s:;.- L.~:.T = nE:i:T 

1 r = n:r.r 
!!r:XT = "1°".'Q9?9c; 
r-'n ·~td1 '!= 1 • Nr 
I r I ,., ~ r I I I lJ I • GE • !! [ r. T i 0 ~ • RE r I l "11 • LE • LA s T I G 0 T 0 s 6 0 
llEXT = ~ErlltNI 
n:r.r = n 

56:. Ctl~H J llUf 
Irlll[XT.r;T,Ll\STI GO TO t,qQ 
CA LI. Cf, T '1' ~ T I I r, • /, • r ,\Gr: , I•';:: X T I 

RETurHI 

60CJ ClO 610 IR:sl ,!IR 
1r1~rr11•IRJ.LT.O~ REFl3olRI ~ -REFl3tIRI 

61 O C011T TtlUE 
r. E TLlr II 

700 WRlTECour •. i1001 
ST Op 
EMD 

sunROllTPlE S.CAf~(AJY.1\"IAJKtMAJKtRtNR•"'Rtr.lC/\T•OllTI 

C T!!IS SU::',!"!OllTitlE SC ... NS THE P.F.FFREllCES FOR EACH JOURNAL, AUTHOR OR 
C Kf.Vl''ORO A:IO .THEl'I HAS THEM PRlrHED RY CALLING THE. OUTPUT ROUTJNE •. 

1'1rLICIT ttlTEGERIA-ZI 
Pl\RA' 1f.TEP. t1A :1 101101 MK :1 200• MJ = 2001 MB:: 100 
COl1'1otl /T''IQ/ hOOl<'.(211Mlne, JURNAt.c12.MJ1 
COIHIOll /THREE/ AUTHORC7tMAJ, KEYll21MKI 
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cnr111n11 /FIVE/ LifJC30(3Cllt IJllMrER<20)t LillESt ~!I.INES 
01•1rq:,rorJ A.IK("fA,J!<tfJAJV-.1, R( 1':RtMR)t LINEIO<IOI 
routVALtMcr <LfNE3011lt LIME!Ollll 
l.0<.1CAL PAC.E 

r:r = I 
rr1··1n,r0,'11 CR= 2 
r AGF: = • Tr.trE. 
f10 11 0 X= 1 t'JAJK 

rr1A.fl'.<t•'<l.U1,11 co. ro ?.no 
11 r: CO'.IT r nuE 

STl')r 5CAfll 

c x J 'i THt SWISC~ !PT or THt: CURP.EllT AIJTHOR I JOUr.NAL OR KEY110RO. 
C !IEXT IS THE SIJBSCRPlT OF' THE F'OLLO~.'ftlG AliTHOHt JOURNAL O~ KEY'.'iOROt 

2on :1 = '.IAJI<'. + I 
no 600 r r1cr.=2, ri 
'.' 0 ? I '." r ! r ": T = I , ~Ji', ,J!-'. . 
IFIAJKll•flEXTJ,EQ.tNCRI <iO TO 300 

?.!'.'.'. (()'ITl!llJf'.. 

:!r:-Y.T = ric:.r 
fl<:J\T = 6 

c rr 'l(:AT = "· TllJ'i 5HOIJLO "r. THE LAST REtEREflCE, 
C THE ROl!TlllE CATOUT WIL.L PAGE BUT NOT OUTPUT A HEADING, 

3r:JrJ Jr = I 
DO 310 IR:HRJl••I 
!Fi~ICRtI~l.EQ,Xl GO TO 320 

310 CQtlT I IJUE 
STOP SCAN2 

320 LAST = IR 

4L1C !'0 'I I 0 t ~=.I~• IJR 
tr(~((~tIRl.EQ,Xl GO TO 500 

'fJQ CflrlTiilUF.: 
sror scMJ3 

500 JR = IR + I 
I r I , ~I 0 T , P AG E • Ml 0 , I R , E Cl , L A S T I X = NE X T 
IFINCAT,EO,JI GO TO 520 
IrtrlCAT,Er.1.2.oR,llCAT.r:o.41 GO TO 510 

1F(llEXT,E'1,ll GO TO 520 
510 IR= R!?.tlRJ 
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S2::; <:ALL 1".AT011T( Iflo'ICATtf'Al'if".oXI 
IFIJr.LE.LA5TI GO To qrjo 
X = ~!EXT 
Irt:•u,T.r:0.bl (jQ TO 700 
rr1·1t!!:ts.1.r.21 GO to t.oo 
~} n "; 1 8 I = I • I n 

5~n lJ'IF.IOIII = '••••' 
'I = :? 
trl~!C".'.T-31 • 570, S':>O 
:11 = r111T1:0r12.x1 + 2 

Ll'IF:!017.I = t 

r. n s 11 n r = 3 • n I 
:1 = !I + I 

5 11,'": Ll'!F'..'FH'!l = AUTHORll•XI 
r;n r::i c;qo 

ss~ ~I = ~EYl?•Xl • 2 
Ir<:11.(;T.!Ol 11 = 12·- ~II 
IFf"l.r.F. l l LJ:tEIOllll = t 

()Qr;/,') 1=3•!11 
'I = 'l + I 

Sb:J LI!IEIIJl'H = KEYft,XI 
r;:-, T:J 5?0 

s1r 'll = JlfRf'~L12,x1 • 2 
trl'IJ.r;T.!Ol 11 = 12 - 1·11 
1 r1 : '.cc • 11 L 1 f 1 c 10 1 tn = • 
Ml c;~ri 1=1•111 
:1 = :1 + I 

5 0 ~; L I : I !:: I C I ! I I = ~I U r. f I A L I I • X I 
. _59C fl = f1 + 1 

l.JllF:IOl'-11 r:a • 

~RITCIOUT135711 LlNEIO 
:11.HIE.S II J.JLlllES + 2 

600 CO~lTillUE 
5TOr SCAIJll . 

70r:J fie!\ T = NE'.xT 
Ir I l!!Cr?.r:n,!11\JK+l I RETUrrn 
STIJP SCAllS 
f. !ID 

. . 

5 l' !'I RflU T I n f. L 1 ST I AP.RAY 1 N~·: t N N, OUT I 

c THIS su3ROuTJNE pRINTS our THE AuJHORt JOuRNAL• BOOK ANO KEvwORO 
C LISTS l~ ROTH THEln EflTERED ANO ALPHABETICALLY SORTED ORDER; 

Ir1PLICI T JtlTEGER I A-Z I 
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nr·n-:':'.>JO?l AP.H/\Y.(tJ'!;'t?Hll 

3 I 3 r: f 0 ~:',\TI ' ; • 1 r, t S lC • SA 'I ; 'Ji+ Y. , JS, 5 X t S ,\II l 
3 I 11 -, r f1 ., 1 ~ :. T 1 • • • t ~·. , s x • 1 n 11 11 , q Y. • t c; , r::. x • l '1 ~- 'I 1 
31SG ro-:11AT1• '•21StSX120A41 

no l /, n I"' o S = I • N'I 
l'lO l IC' J=l dHl 
lFIA~P.AYll•Jl,EQ,POSI GO TO 120 

118 CC'ITl'JUf:' 
ST"lf' L!ST 

12~ r = ~PR~Yl2~JI + 2 
I r (' : .. , - 1 2 I 1 :rn t I q 0 • I s 0 

l :; ,.., · 'r I T :- 1 o 11. T • 3 1 :; n 1 r o s • <Ar PA v II , Po s Jt I = 3 , 7 1 • J , Ud<ffll Y 1 I , J 1 • I = 3 , K 1 
GO T'1 160 

1 ij 0 :. r-~ I T [ I 0 L! T t 3 l 'I G I r (') s • ( Ar. n A y ( I • r 0 s I t I = 3 • I 2 I • J t I Ar. r A y ( I • J I t I = 3 • K I 

'1.0 Tl') 160 
l ~) ;: ' : r· I Tr ( ,, I l,. t ;l l:. n I p 0 s • . J t ( A !'!R A y ( .J t J I • I= 3 • K >. 

l b ~ C (1 ! I T I 11 ll r: 

cr1ri 

sunROUTI~E NULISTIARRAY•HARR•HARR~•NARRtNH•lNtOUTtLINE20tR•StTJ 

c THIS SupJ<Olltir:JE Jlipi.JTs !HE AUTHOR• JOuP.tlllL• eOOK MIO KEv~10RD_LISTS 
c rrl')n f'ATA cArns. 

IllF'LICIT il·ITF:GER1A-Z1 . 
DJr'.E!lSIOll ARf.:llYlfiARR•'•''AF:~J t LltlE20(20) t RcMARRI. S(MARR). Tc MARR I 
OJ 1 1EllSIO~I VllOli llllOlt '-''ClOl 

1011 ro"':'.ATIJ3.IX'tll1A'+tll31. 
1121 ro~t~ATIA'+l 
3122 ron1~T111~0•·•THE PROGRAM LIMIT~ HAVE BEE~ EXCEEDED.•> 

00 120 NAPR=l1HARR 
REAOlltl.10111 UNE20 
Nt! = tlN + I 
lrlLillF.:2C11lloECl,Ol GO TO 14+0 
lf"ILirlC20tl),NE.NARRl GO r·o 130 
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flO 110 I AP.P.=.1 o !IARR\" 
J = IARR - I . 
M = ,J 
trlJ.LE,1°1 M = M + 1 
I r ( l. ! r : !':: 2 :1 ( ,J l • '- ".') • • • • A.': n • L I !·! E /. 0 ( M J •· F. Q •• 

l!C AC'l'.YIIA!'::'•:JAR~l = Lll-lf'.2CIJI 

J = .I + I 
.1 2 :, f, r ·~ A y I ?. , ; l ~ r '? l = J - 7 

Fr:~.n(Ili.11/.ll J 
t f" ( ,I • f I'.) • ' . ' l G 0 T 0 2 !l 0 
''.'.' t Tr: I I) !J T , 3 1 72 I 

l 3:J u~."'!" = 1 

11\0 flAr::r. = 'JAP.R -

. C Cr: r; I 'l S () fH 0 ~I T l!f:. f I P. ST E l GI-IT CH AP ACT~ P. S , 

200 DO 21 (l I A"f'::::l, !IARl1 
~ltt .. ~r1 = A'?rt.Vl3oIAr1Pl 
SllARP.I = AR~AYll\1IARRI 

:no T(lll~P.) =.TARR 
CALL OR!'lEPl~•S•TtHARRI 

22r AP.~AY(j,Jl::... IAR.R 

•I GO TO 120 

c T:~": r;rr.T ts r;n·: c<;'!Tlt?r;f'.;:; , .. ITp T11osr El;Tr:IES ,HOSE flRSl: EIGHT 

c c:u.~.~C.TEllS ,\RE JDCHICAL, 

11 = 0 
fl 0 3 7 n I AP P = 2 , I I ARR 
lflJt.r.R,Lf.,Ml GO TO 370 

11 = r r.nP.. 
J:::: IARR. - 1. . 
It!SI IA'?RI .rJF:.,,g(JJ l. GO Hl 37Cl 
IFIRIIARRJ,NE.RCJ~l GO .TO 370 

DO 310 K=IARR,NARR 
IrlSIIARRl,!JE,SIKll GO TO 320 

·· 310 CO!HlllUE 

1: = K + 1 

C Pl"lS IT I Q!JS J TO K APE utJSQt:?TED, 

320 K = t'. - I 
lf"IK,GT,IARRJ GO TO 31\0 

C J AHO !ARR ARE AOJAC[NT ••~• 

I :: TI JI 
1: = TI I AP~ l 
lFIA~RAYIS•Il,LT,A1RAY(51Kll 

IrCA~rAYIS•tl.GT,ARRAYIS~Kl·J 

IFIAR~AYl6•Il.LE~ARR~Yl6•Kll 

· GO TO 370 

GO TO 330 
GO TO 370 
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c , ••• , A'lr· I ~1cor.rH-:cTLY ros·rr 1 onro. s~10P THfM, 

~38 ArrAYll1II = IArR 
Al-TA~'IJ..f:1 :: J 
Gn rr. 370 

c T!!E"r: i\Rr: THh'r:E o" '·10Rr •1•1sr.r.-rrn SE(~lJ[fJT I AL VALUES. 

3'+~ L = C 
[,r; JC:.:J I :i:J • K 
L = l. + I 
ll = T II l 
ll(L) = AR'',\Y(S•'ll 
Vil.I = Ar.:-:-AYlb•MI 

JSn ·.·11.1 = n 
CALL 0R~E~l0•V•~•Ll 
,J = -I - I 
no Jon I=t •L 
11 = r:1J1 

3brl ARl"?AYIJ,111 =I+ J 
it =. ·~. 

37C CO'ITI r1ur. 

· r.11rr 

SIJIJROtlTnlE" ORDER.( R •So T t N l 

c TH ts ROuTIIJF: SORTS THF: VALUES IN THE TJH~E.E AR,;uMENT ARRAys. THE 
C PRl~lARV SORT IS rlASED OtJ THE FIRST ARRAY \IALUf. BUT WHENEVER TWO OR 
C flO!"?t OF THESE AP.E IL>EfHICJl.L THE ORD£R 15 BASED Oil THE. VALUE IN THE 
C S EC 0 ~ Hl A f? R A Y , TH E TH I RD A R R A Y S I M P L Y TAG S A L oJJ G A ND I S USE 0 T 0 
C HOLD THE ORIGINAL POSITIOll OF THE SORTED NUMBER PA.IRS, 

I Mf"L IC IT I tlTF'.GE'l 1 h-Z I 
D T ~~CI S I 0 t! R I n I 1 S I N I • T (tJ l 

II :a 2 
0 0 1 j"' I I ll 
H = 11 + M 
IFl:!,GT,tll GO TO 2 

I CO tlT ltJllE 
2 M = M • I 
3 ~· = I 11 - I I I 2 

rrn ,. N - ti 
DO 8 I :s l • ~lN 
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-.. 

'1 
5 

Qt_r') = I + M 
U1 = r.IOLr?I 
LS = ~I OUll 
LT = TtnUil. 
f'O 6 J=l•Itrl 
fl r.··· = dLD .. M 
Ir IL~ -RI JJ[I': I I s • '' • 7 
Ir I L::-s ( !:r··· I I 5,7,7 
l~t'1L"ll = ~1:.!E•'·: I 
SI '1U' I = ~I '·IE,·:.> 
TI Ol_r' I = TI r!Ev I 
OL" = ~IE~·: 

b C0 1!'r T llUf: 
7 f( I Cll n I = LI'' 

SI "llf' I = LS 
T(t'lL~I = LT 

~ C('l'.JT T nur. 
trt··.cr.11 GQ TO 3 
tl[T1Jr.11 
E:IO 

f't.:'ICT I or1' L(llGTI! I AR;,N I 

c T!lt5 ru"ICTIO!l P.r.T•JIW<; TH,C rflli!~E!i .Cf' DIGITS RL·,:lJIRED BY THC .VARiABLE 
c f'MH!f,T t;TAT'f.ME!IT T'1 onTPlJT n1F: flJ?GllMEtH IN QUESTION• 

100 

200 

IHPLICIT INTEGER~A-ZJ 

NUii!' f.P. = ARGU 
DO 130 I= I • I 1 
r r I ti 1.H1 Fl ER • Lt: • 0 I GO TO 
tHJ!!"IER = . IWMBER I 10 
STOP LENGTH 
LEt!GTH = I - 1 
trtLEllGTH.LE,01 LF:t~GTH 
RETIJR!I 
EIH'' 

SllrPOUT t rir. SPL i T ( l. J'tlr:'J 

K = · 1 / 1 aooo 
J • I - CK • 100001 
K a J + K -· 1 
R(TIJRN 
EilD 

2CO 

=· l 
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C T!-!IS SIJ"R0UTl!~E OUTf'IJTS Rf.rf.R!".NCES FOH Tt:r: YEA~; AUTHORt JOURNAL• 
c KEY 1~'0RD A:ID CttEMICAL lll3srnr.cT tJ!JMBEP. CATt.LOGue:s. 

IMPLICIT IMTEGER!A-Zl 
rA~A.'lf:TCP. '.1'?=8C1Gt Mll=IC:1.1•.l·~J=2Cl0• MK=200• Mfl.=100 
P,,~,\•:.r:r;cr; •qA = Jf'O:-~ •. !H:r = 111".'0 
f'll"A'•fTF:I' Ol!l = St i<EFf = 12e i~LPICS = r,7 _ 
cn•1• ... i~1 1n 1!r./ r:'[Fl9•r·~I.• PF:rr.(2•t''Hl. REFKl2tMRKl 
cn·1·•n1• ;T·•fl/ rMJl'.12l•:IL)t Jlll'~lf1Ll.12.t'JI -
(O'.'.r~~ti /T!lf'Ef:_/ f\UT 1 i01~(7ti-J.l\I, "'.EY! l2eMKl 
torrnnrJ /FIVE/ Llt-1E30(301 t rw11aER120l t LllJESt tJLlr~ES 
cor1110:J /SIX/ Lll8S, LKF:Yt LTIT 
n1·1~~JSI.OIJ Llr~F:201201. 1.1•1c101101. VOfU!ATI l'tl 
f.()111\'llLEliCE ILitlE30( l lt Llt1E201111, ILltJElOI 11, LINE30C2l I I 
L () '; I u. L r fl (j E • Lf,T, s • l. T lT • u: r y 
PATA VORHAT 1'11H '•'•S*i'•' '•'A't•'•'2Xt'•'l't•'•'lH~•'•'2*•l'• 

1 • •,•,1:1••·•·2x,•,•1•,·•·•,•1•1 

3 2 112 r or. : ~ ,\ T 1 • • • 1 ii , q x • 3 n 11 •n 
230C f".0'1'1.\TC20A'tl 
.3310 f".ORIJ,\TP ·;,A't,qXt20A't) 
3 6 0 ".) r n ~ !~ ,\T ' q x •• c 1l EM I c AL II B s TR Ac T' ti 't ' ' :e ti 6 ti 0 x • ' r I.LI NG c 0 0 E - •• A 't I 

}610 ro~.anc• •> 
3720 FO~r!ATC.'l'·•Tll0el61 
3,801 FORMATC'1 1 •Tll01.l31•:•et6> 
3330 FORMATC•'i••T90tl0A'tl .. 

lrCrAG~) ~o TO 710 . 
"llC IF<~rrl3tTRl.Lt.Ol "HCTU!W 

tr< ,t!OT.LTITI GO TO 200 
CALL .srLncru1s.1r::>1.1RT.rlRT> 
nuo11?Ef".T•IRT1 

c OIJTr>l!T AUTHORS• 11,.;r~ES 

.200 CAlL SPLj+1~EF(6•IRl•IRA1NRA·r 
fl = . l 
00 22n J=IRAtNRA 
1A = rErAll.JJ 
L = AUTHORC21IAI + 2. 
00 210 H=3•L 
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LP!E'.\01 111 = AUTHOR!MtfA> 
21 n II = ~! + 1 

tr<!l,f.Q,301 GO TO 2'f0 
LI 'IE 3 o I ~H .. ' 

27.:."l ti a 'I + l 
lrU1,tri,J'JI GO TO 2'Hl 
[l 0 2 3 (1 !·l = r: ' 3 0 

2:1~ L.I'H::J"ll:•I = t 

2 'tS '"! r. r r ~ < o : 1 r , 3 2 4 o 1 R E F < 9 • rn 1 • LI u E 3 o 
flLiflE5 = !~LillE5 + l 

LI= "!:Fl2tlr\I 
IR = ~fF(qotRI I 10000 
,I = :~ r. F' I 'f , IR I - I I l'I • l 0 0 0 0 > 
I r< .r J • E l'l • 1 .• "ll D • J • Er:: • 0 I G n T 0 '+ 10 
Jrl .~lOT,LTlTI GO TO 'fOO 

C OllT!"UT Hlf. TITLE 

IF'R = t 

Irt.llOT.LAC1SI IFR = PEFli'l•.1111 
300 REA~<rr.rT•IRT.23001 LINE20 

. Ir< trT,r;C,llRTI (jO TO 310 

tr.T = IRT + l 
fl'l'"'l~r:;TtT;?Tl 

~·1 r. I Tc ( I) I JT • 3 3 l 0 , 
'IL I ·~r:c; = :11. I llES 

Ir~ = ' 
rj{l TO 3J!J 
''Ir: IT r: I OUT, 3 3 1 0 I 
1rn = • 
ULINES a Ill.INES 

IFR• LillC20 
+ l 

IF'R• Ll~lr::20 

+ I 

c 011Tpt1T Jo11P•IAL RErERENCE 

'foa IF'IJJ.tO,ll GO TO 'f20 
K = JURllALl2t1JI 
VORl!AT I 3 I = MUMDER(IO 
lFIREF'13tlf'l.hGE,3000t GO TO 1150 
IF'IIO.EQ,OI .. GO TO 'f30 
M = LEl~GTHIIBI 
vcrn:~AT(91 = f!U!H3ERIM) 
vn"•lflTllOI = •t1Hot 
r1 = L(!lfrTfl( JI ... 
VO~l'AT(l.'.\I ::r NlJMBERCll'( 

K = K + 2 
'flO WRITECOUTtVORMATI (JURNALCL•IJI• l.=~•K>•. REFC3t1Rlt lBt J 

GO TO 'f 60 
<+20 K .. noo1'12t1B> 

VORMATC3> = IIUIHIERCK.) 
IF'CREFC3•IRl,GEo30001 GO TO 'f5~ 

'f30 K ... K + 2 
I! "' LErtGTHCJI 
vor.aAT(q) • IJUMflE'P.CMI 
VORM,\T( 101 '• ' 



Univ
ers

ity
 of

 C
ap

e T
ow

n 

llOR'P' TI I 31 = tJlWOER I I 0) 
1r11~.EO.OI Gn TO '1'10 
IFIJ,EQ.Dl GO TO '135 
~ntTEIOUT.VORHATI IDOOrtL•tB>• L=31KI• REFIJ,IRlt J 

(JO TO '160 
'!Jc; Vo~·~,\i 171 = • t 

1, Ir. I Tr: I 0 u t 'v 0 rm AT I ( a 0 OK ( L • I I\ I • L = 3 • I< ) • REF ( 3 ' IR ) 
\ln~·~t.T(71 = •tHe•• 
GO Ti' 1\60 

11'10 \'RITttOUT,VORl1ATI IJU!'HlALIL~lJI• L=3•Klt REF13tlRI• J 
(,0 T'l 1160 

'l!iCi r. ·= v + 2 
lFllJ·E~~ll ~RlTECOOT•VORMATJ 
I r ( t J • t!F.: • I I I'd( l T E ( 0 ll T • v 0 Rn A T I 

'lb[) Ill T trt.S = PL l !IE5 + I 
Irt.llOT,L!<EY> GO TO saO' 

IJ "' l 
CALL SPLlTIREF17•l~>•~•Kl 
r•n sin 112=1•20 

511. LI'lf.2'.Jltl21 = • 
:'O '".7'.' L=.l•K 

It:= nc:rn11.L1 
!11 = l'EYl~tll<J 
trc·1+::1.u:,/C) GO TO 550 
n = 1 ro 

538 ITIT[l0l1Te33101 IFR• LlllE20 

t800K(Ltl61• L=3•K> 
(JIJRNALILelJI• L=l•K> 

:11. 1 ~1r:. = :1u nEc; + 1 
IFIL.EQ.K~AHD.N.Nr.1001 GO To .sso 
on r;•1n r~2= 1. 20 

s 'I o L in r. 2 n p.1 2 1 "' • · 
I~ = I 

. 5!iO IJl c ll l + 2 
DO 560 .M=3 t IH 
LIHE201NI ~ KEY(~,tKI 

560 r~ .. r~ + l 
IFIL,EQ,Y.1 GO TO 530 
IFIN,GE,201 GO TO 570 
Lltlf.20Pll = ' 
II :: "I + I 

s1r conn r:uE 
sao lFl.!IOT,LAf•SI GO TO 610 

C OUTPUT CHEHlCAL ABSTRACT NU~sEd 

J .. rH::r n .1R1 1· i'oo.oooQ. , 
K • REFllolRI " IJ • 10000001 
~PlT[IOUTe3600l J• ~· REFl8•1Rl 
llLUli=:S • NLINES + l 

618 llLl'lCS = HLIMES + I 
J = MLINtS ~ NLINES' 
IFCJ1LE.LINESI GO. T0..).·10· 

.'·. 
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1·1p trr: (OUT, 36 l 0 I 
RCTtll'.r! 

C OUTPUT PAGE HEADING 

7dr rAGt = .FftLSE. 
r,o TO 110 

710 flltMCS :i 0 

Lt'lr:l!"Jlll =' 
L PIF'.Hll 21 = ' ' 

. :;n Tr'l1720o73!Jo7!:.0o780;AC!Ot!'~301 t !JCAT 
720 :.'rllT(IOIJT,37201 tlEXT 

GO TO tl'fO 
1 3 ci '11 = f, UT II 0 !H 2 , ll r. X T I + 2 

r•n 1 1+0 .J=3.•!ll 

:1 = i! + l 
7'1r" Lt!JC::l(''l!JI = AuTHOPIJt!lf'.XTI 

GO T(l CllO 
1~"'.') 1r1•1r:xr.r.11.11 r,n To 110 

flt = JURIJl1LC2.tJEXTI + 2 
Ir I'll , GT, l 0 l N = l 2 • Ml 
DO 7/,0 J=J•~ll 
'! = ., + l 

76'.': LI!lf'.l'.Jl'JI = ,IU'.'.:'.!ALIJd!EXTI 
GO TQ RlO 

77 f'. IJ = 'f 
1.1·1r1()1.11 = • r.o• 
LJ'.IElOl:il = 'OKS ' 
GO .TO S 1.0 

7 8 8 : l l = I( E Y I ?. • '.JEX T I + 2 
JFl!lt.GT.101 N :a 12 - Nl 
oo 790 J=l • rn 
M=tl+l. 

790 LI'IElOllll = KEYIJ,tlEXT1 
GO TO 810 

800 J = t!EXT I 1000000 
K = llEXT - CJ • 10000001. 
WRITEIOUT,380li ji K 
GO TO S'iO 

810 N ::1 M + 1 . 
Ir<:J,GT.101 GO T0.830 
C\0 n2n J=n. ta 

A/.l"l Ll'lr:lOIJI = ' 
830 nRITEIOUT.~8301 LINElO 
AqQ trlPAGEI GO To 700 . 

Rf.TURN . 
r: l ll'' 
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appendix 5·5 

LI 5 TI 'l ('; ,\ r: r> I :·I<"; T ~ ll CT I 011 S F 0 r r> ". 0 Gr. A '·l M I X • 

--------·-------------------------------

T" t :. r "('Ir.;~ .~J· c; [ T <; l 1 p T ti f I i Ir II T r 0 R f' r. n G p A! 1 F: cc u:: s • t T RE A 0 s IN DA TA r R 0 M THREE 
rILrc;. T'H: rlrST U 11 1Tf1lllS TtiE. TITLE CARDS; OTiJE'.R ;:01.JTROL CARDS ANO THE 
L I <; T 0 r r: ')"~')?!CIT t; THAT f. RF. T n r E: t r l C 0 HP ('l PAT r fl t ll T 1 l E M 0 DEL 1 'II I.TH THE IR 
c (') ti c r . I Tr: A T I () : ! ;, • T fl I s I s T 'I r: C: • IL y r I L E .. H I c H I s s p E c I r I c A L L y p R £ p A R E D F 0 R 
11:nt•/I[11!f..L c;t:ni1.ATJ0:15, THE OTHCP. n··o COIHAHI GEMERAL IHfORMl\TlON PERTAINING 
TO co~1r1.::r. SPECIES fOR!lATtOll COrlSTA 11TS. T11E VALUES \",'HlCH ARE RErwtRED. 
f R 0 M n n T II THE r.; E r I LF: s An E s r. L f c TE f'\ Ry T II E p R 0GflA11 • I NA pp LI c AR LE DA t A 
.\nr: J'jllOrr.n. THE flr>ST fCJi-'i·'.ATIO!I COllST.6r!T rILE' COtJTAillS ALL THE CONSTA:HS 
l)Tllr.r: TIP.'! THf'J~[ COllCEnr:CD F'IT:1 TER~·tAPY COMPLEX FOHi!ATIONt THlJSo 
Tiil'.': .. !"It~!" :10trs r11r: f'"l~f.'Tlf''I C:"''<;Tr .. 11.Ts "f Ti:r: nIMAPy C0'1Pl.EXES1· THE PROTONATED 
srtcir:s. HY[)ROXY SPECIES ETC, THE OTHER f IL.E CONTAlflS DATA ON TERNARY COMPLEX 
r n 1~ q ~ r J n ! 1 , 

THf. r Pll.ry r0rr:r.TJ(Hl r.onc:TA'!T rILE TS rORl!ATTF:ri AS OESCRIRED roR PROGRAM 
ECCLF:S, THE lr~HARY roRHl\T)OH CONSTAHT DATA cAN BE FORMATTED IN A NUMBER OF 
''.'IAYSt AS FOLLO~··'.::·, EACH E!lTRY IS (';ELltlEATEO f!Y A BLANK CARO, 

11 DIRECT V~LUES CAN BE INSE~TFD• AS DCSCRinto FOR PROGRAM ECCLES. 

21 If TH[ TEP.rJAr.y FOP.HAT l ON corisTArHs ARE F'RECEDED BY A SET OF' AppUCAeLE 
BINARY CONSTArlTS FOR THE ML2 OR HlLH12 COMPLEXES• PROGRAM MIX SCALES 
TilE VALUES ny COHPARIHG THE BINARY CONSTANTS SUPPLIED WITH THOSE FOUND 
ltl THE RHIARY f'(iRMATION COllSTMJT FILE, 

31 ~TAnlLISATIO'I FACTors FOP A SET or SIHILAP LIGANOS ~HICH roRH A MIXED 
".:Ol!!"Lf.X ··~THI O~IE l~ETAL A'ID ~"ITll A COIHIOtJ p!'?IMARY LIGAND CAN BE INSERTED, 
Ttff LI5T or SYM£l0LS FOP. THF.: SECONDARY LIGANDS rn QUESTiON AND THE 
lilOIVIDUAL STMILIZATIMJ fAcror.s FOi.LO•~ THE lllMARY ML2 FORMATION CONSTANT 
ror. TltE PP.IMARY LIGAND, 

PROGRAM lllX !!UST ALSO BE PROVIDE!'> WITH A LIST Of THE ~•ETAL ION•S SYMBOLS · 
AHO THE CORRESPONDING GENERAL STABILISATAION FACTORS, THESE ARE INPUT 

AS CAPn ~ATAo RATHER THA~ rPOM A Flt.Ee THE CO~PONENT DATA FILE IS ASSIGNED 
LOCiICl\L lHIIT MUttnER 2'1• THE BtlURy f'ORllATIOI~ CONSTMJT FILE NUMBER 25 
AN f\ T II E 11 I X F: 0 L I Ci Ml D C 0 MP L F: X F I LE, 1-J UM 13 ER 2 6 • 
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c nt.11EL<1p[C· /\T rm: U'llvF.:RSITY or c~.rr. TOr:'J r'lLIRPIG 1975. 
c 
r: TllTS r'.HlG"ll'I p~nr;ucESt O'J FILE• THF: EQUILlf\RlliM DATA REQUIREO AS INPUT 
c rnr rr.oGrr.n Eccu:s •. 
c 
c ro"" f, r.tvrn SF:T nr M0l"f.L cn•.1r0tl[llT5. IT snEcTs THf. APPROPRIATE COMPLEX 
c r;rrcrrs r?O'·I A STA!Jf)Ar'I" rrH'ilATIOIJ cot~STAl:T DATA .FILE AND OUTPUTS THESE 
r: A:; "';LL A'; !' r 0 Jr c Tr: D v f.r_ t1 r: <; F [' p AL l. Th f I : I : I MI x ED LI GAN D c 0 N s T I Tu ENT s 
c or T'I( ,, Ix T11rr.. . f, usr.r ~PF.:C IF' t Er: Dff AIJL T VALUE Is USED AS A 
c '.) T t r I !.I :, 1\ T! ,.., I! r !. c T,., R II n U"'. '1 s " IA (1 n E :. t' r. c I fl c v AL lJ E c Ar I BE TAKEN D IRE CT Ly 
c (1 r c ,, L c 1 J l I\ Tr: r, r R 0"' DAT A s 1J r p L I E 0 I ,:, A r I LE 0 N M I x ED L I G A I~ 0 c (JM p LE x Es • 
c 1TIIIS FILF. tlAY ALSO cn:irr.1;1 srF.:CIES To nc OUTPUT '.VITHOUT ALTERATIOI~>.· 

c srr.c1r.s \"'HlCH HAVE C0~'P<111f'.t-ITS THAT oo llOT APPEAR IN THE COMPONENT LIST 
c APr': IC';~!OPEI". THI'> rt."ctLITATF.:S l'AllIPllLATJON or THE UlpUT TO ECCLES. 

c 

rr,,,fi.•:rrrR 
PAr.Al!ETER 
Pll"Ar~F:TER 

I llTEr.Er> 
r, I nC'!"::; I Oil 
!) I !·'Et: S I 0 II 
!) rnE::s I Oil 
D l 11E!IS J or1 
QIMEftSIOll 

. . . 

STORAr."'. Al.LOCATIOtl AllD FORMAT STATEMENTS, 

!1')::<)(10. Mx::i;o. MxX=IO• NrEYc:5 
rmo .. NKEY • 2. r1xr1 .. llX + 1. NSPl .• NS + l 
fJXXX = tJx + lh'.X• llMIX"' lllX••2~NX)/2 + 2S 
OUTt OUTFt Hco~r. OUP• OHIT 
coNsT 1ris 1 , !1('onr 11Jxxx,. rwu11 1iJ:m,, KEYcNKEv.1~s.21 

tHJMllflSlo riUM2114SJ 
CO MS TM 1 llXXX > • !1C011P I NXXX > • CONS TH I f~lU • HCOHP I NX, 
Cl1iXllH1IX>• STAfllllMIX>• CBUFCllXXX> 
DUPltlXt2)• OHITCtlX,2, . 

tn::lnt rn"'•1r,r12r. 11• 12A6> 
1nqo1 fOPMATIG9.q.1x.a1AqtlX•l2t2X>> 
l 0 5 i1 ( F' 0:. !1 i\ T I A 11 ,1 X • G I 0, q I 
2oqo1 F'ORHATIG9.q,1x.s1Aq.•c•.12••)•1IX>> 
20999 F'0Rt1ATI •AnORT THIS RUil, ERROR IN THE MIXED LIGAND CONSTANT CALCU 

lLATIOtJS, • > 
30301 FOPHATI.' '•2Aq•l2A~I 
30302 ror:1ATl//•O•' •Erm OF COMPONENT DATA. CARD IMAGES READ ... 113,///) 
3oqo1 F'Or?flATI ••• •OMIT.'.. '.1rG10.q, JXt8CA 1+.. I •• 12 •• ) '•IX>, 
3oqo2 FORMATC//•O•t•THE SPECIE ON CARD NUMBER ,,,q,• IS lN ERROR'•////, 
3aqn3 rnr11ATl//•D•t•EUD OF BASIC STABILITY CONSTANT DATA, CARD IMAGES 

IREAn =•.1q.sX.•N~HnER OF SPECIES"' '•Iqt////) 
30501 FO~Hl\Tl•O••Aq,• IS NOT I~ T~E COMPONENT LIST,••/' PLEASE RETypE, 
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-rvrr r.rm TO EXTT.•J 
3 r. s Cl 2 F n r ! • ,\T I' c • • • • • • • • c 11 r. c r: s r> E c I c: mi rm E P. • .r s , 11 1 
3060J Fnr't'1\TC •o• • •r:xECUTIOl·l Tf:r:r1INllTED. MIXED SPECIE ARRAYS TOO SMALL' I 
30602 Fo~r~flTl'O'•'OtnT THE PR[[1JCTION roR••SXtJl"GlO.'itSX•Alf.•( JI '• 

I i\ 'I , ' C 2 I It + I C I I ' , 1i X • I 6 I 
3':1683 ror 1'.t,T1 •G•. •cu·:~11.r: rrr:'.f.l!CTIO':S ror.> l!JEt!TTCAL r-:IXEO SPECIES·•. 

1 I' '1lPG!l1.'l15X13CA'I;'( JI 'l1 1 H +JI ll•,SX121lPGJ0.'1113161 
Jilt.:''il.f rnr"t,Tc • • •l'.'l1SX1JrG10. 1•1 
3n1,nr; Fo~:.1AT(//IO•·•THE roLL.0\'.'lr!G CCl!·:POl'ftlTS lll:E usEr:•,///) 
3:Jo:J6 rori:PTc11•rJ•, •T0TAL ;11rnrr.r ='ti'~•/' •. •rh1r.1r1ER oF SARE LIGANDS ,. •• , 

l I•t•I' '•''lllMr\Er ',"JTll o:;r: PR::JTOfl ='ii'+•/////) 
3 o 7 J 1 F 0 "P ,, T 1 • r' u T r u r r o .F' t L ~: • , J :J x .i r r, J o , '+ .J x , n I A '+ , ' I' ti 2 • • 1 ' tl x II 
3 a 7 q 1. F' o" r: fl T c • c n 11 rot l c rt T Mu T I r 1 L I s T , • 1 
3 'J 7 q ~ r (! f'. • ' 1'. T ( I ·~I • I ' ~ rl I T T H E " ;> r:: ( I F.: ('\ , J c A R I' N IJ M f.l E R I • J q • 11 I 
3 ::i 7 .. r; r ~, .... '. :. T ( I I I I :1 •• '; r p n?. n II (.\ R fl t' [; ,, r. E p t el 'I ' I I I 
3 0 7 1! (,. f fl ~~ • I .'. T ( I .. n '."• c: c CJ n: = • • I 11· I I I I 
3'17 117 f'"0"~~\i(///''J11•EPfMR T[r~·Pl!ITJO!I. FOr•·t.T EP.~OR ON CAR0 1 1IS1i//I 
'.HJ767 Fnr"·t·Tc•~:•tt;•Rr'1JCTIO'!S ['f.SF::n O~! SrE.clr:s !!OT AprEARING [tj TUE BASI 

IC ~ATA A~f ILL[GAL.•J 
3 n 1 b 3 r o "r, r. r c • u • • • f' RE p 1 c T 1 o M r Q ~ • tfl 1 A 11 , ' 1 • o1 2 , • 1 • t1 x 1 1 

3 0 7 b 'I F 0 I" i·1" T I t ' • T 'I Cl • 'f I I P.G l (') • '! I I 
Jo 1 6 1 For:·' r. r 111 • o • • • ~. ri 1 • i 11 r: v c ~ ·'-:: r A 'Ir r o ~ 111 x r o LI c; A 1.1 o s TAB I L l r v c AL cu LA 

1rrn~1 I'.> !•JSSir:G. 1 1 
~r771 F"n"",',Tt• '•'f.\;JllST T1 1f:' ST.\~. FACTl"r. 1 tlOx,:lCA'+•'I 11 1 t1Xlt.•H +ll't 

I l2•'1'1'iX12CIPGJOe 1111 
3 "l 7 R 1 r o ~ • ~ .~ r 1 • :: r; r r L "c r. D ~PE c I i:.:. • , 1 '1 x·, J F' c; 1 o •. i+ , 1 x , a c A'+ • • 1 • , l 2. • •. 1 • • 1 x 1 1 
3rJBnl fn~!'.H(•::J•tT:-.,1 CO'ISTAl!TS fOR TlfE MIXE.C· LlGAtlO COMPLEXES OF' '•A'h 

l' •1r.·1r r rr:1J rPO'.'tJCfD. I I 
30FHl7. F'O\~:r1T(•'.J•••t:u11;:;F.R Of' ArrLlCllRLE cu•os lt1THE tilXEC-OATA FILE .... 

J IS•////J 
3090J F'ORMATll/•0~•15~' CONSTIT~ENTS FOR ECCLESJ'I 
3!l9D2 F'O:\rlflT(l/'0'•'HIO !·~lx.•./'1'1 

30999 f()f'!lf\ T (/I/ 10' • 'AAOr?T f.Ct:LES RUN•' I 

c 

c 

SECT I ON T\'!O 

. 200 IN II 8 
1:i1 = 2'f 
1:12 = 25 
ltJl = 26 
OUT = S 
OllTf = 21 
111 = UXPl 
fl2 = tlXX + 
tl3 II NSPl 
rlll!I = 0 

SECT I Ml T11REE 

I tU TI AL l SAT I 0 N t 

C0f1PONEllJ oATA IMPUT AN.O OUTPUT t 
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3n;::: r.c:.~n1rn1.103011 ll<At IXBt IJDUM• It J 
IHlll ::: ~!Mil + I 
i:R1Tr:1011Tr•1031'1ll IXAt IX'i• llDUM• r. J 
'"'!"ITr.l(llfT1:l:1:'.0ll IXA• rxn. tl[JUMt I• J 
Ir(t~A.0r:~•rnrA•) GO TO 300 

o o 3 '11 tit= I , r·i l 
RCA~ITN1•1030ll IXAt IXAt t, Jt K 
fl'l!I :: N'.HI + 1 
•:·rt'T'C(l)tJTr•lU30ll fxA, IX!'.1• I, Jt K 
~PITrcouT.303011 TXA• rxa. I• J• K 
IrttXA.rn.•rREE'l GO TD jo2. 

3!:11 llC"'!'r>l'!ll = lXA. 
srnP· 

30?. IJJ. = tll - .I 

fl = MI 
DO 303 III I=l •M2 
RtAnlf~l•i03011 IXAt IXR• It Jt K 
1lWI = ftl·lll + l 
1:1 P t TE 1 o 11 Tr • 1 n 3 o l 1 u A • t x ~ • I • J • IC 
'''rlT!':lritiT.3n30ll IXA• JXf\1 I• Jt K 
Irtt~A.E~.·~~EC'I ~o TO 3C'f 
!I = ti + 1 

303 NCOMP(NJ • IXA 
STOP 

30't NII • Hit ~ 1 
Ill I I a N t + N l 1 
\'.1RITC:IOttt,30l021 NNN 
NI JI.I = . 0 . 

"sEcTION roUR RASI~ sTABlLITY coNsTANT oATA INPUT ANo OUTPUT. 

'fOO on 'tl2 ~J•l1N3 
'tOl READ( ?112t lD'fffl tEll[\s:'fl'tl CNlST(NJJ, NDUH 

!UHi ·,. NtlN + l 

NUH 1 (NJ I • 0 
IHJM2CN.J) • 0 

'f02 NPH • 1 
no 'f07 N=l•NND12 
If"INOUM(Nl.E~.~ 1 ) GO TO 'f08 

403 DO 'f.D't H•IJPM. NI I l 
IFINDUM(N),EQ,NCOMPCMJl GO TO 'fOS 

'fO'f C04TJNUE . 
IF'CNPM,EQ, l J IWMl (NJ) • D· 
IF'fNPH,EQ.ll GO TO 'fO~ 
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r:rrr = 1 
•in r:i 'f:13 · 

11 nr; rir·~ = M 
rr1n.r.T.rl!) GO TO '106 
L :: 'lllll I I 'lJ l + 1 
flll'l!lrl.JI = L 
K EV I L , IJ .J • 1 l = M 
G n T 0 't 'l 7 

'fOb L = rll'.EY - ;.JlJM2!1JJ) 
flll':2!f!J) = ~lUM2111J) + 1 

n:Y1L.n~rt11 = 11 - n1 
1H17 r.F:Y(L,F·l,J•2>. = Mf"IUMl.H+l I 
'108 IrllHJl'11tl.Jl+llU1'21tlJl,LE.1J GO TO '113 
'HJ~ T)O '+10 n=:>-,WlDti' 

rr1r1"l1ir11r11.r,1,01 GO TO '111 
'111 C0'1T 111\J( 

r1 = .n + 2 
'I I 1 ' I ' l : 'l - ;i 

trft.111'.'.l{rl,l).GT,n> r,o TO '+12 
~1r1Tr.1ouT~Jo<+o1.1 .cn1~sT1:1J1• 11101.n:1•11. 11=1,1ir11 
GO T!l 'ffl 1 

'+IJ. '•l'ITr1ourr.2ai+n11 co1;sr1r~J1, rnournrn. n=l•NNJ 

srnr 
1111 ···ro ! rr: I OIJT. '.11 1f0:> I rl'IN . 

C.O TO 9?9'7 
•t1tl llJ = r~J - I 

\:':I TC i n1JT t 3~'f_03 I :1 1HI t JIJ 
'lT0T = !!J 
;i = nt 
n n 'II 5 tI = 1 , in I 
N :o II + l 
IF'ltJCOrH'llJl,EQ,_'tl +1 1 1 GO TO SOO 

'+ l r, CO'JT ItJLIS:: 
STOP 

SECTIOI~ fIVE SELECTION OF' T!IE MIXED cOMf'LE:x COMPONENTS, 

".i rn RE 1\ n I I r I , l -:; <; !J 1 , E 'H'> "'9 0 U I Mr.TA L ' ST An F' 
tr111rTAL.F:Cl.•Etm •.oR.tiETAL.EI),• ,, GO TO 900 
no SOI Ill=l•NIII 
Ir lllt:O:·l" (It 11. en, !IETALI GO TO 502 

SO I corn I llUE 
untTEIOUT.305011 METAL 
GO T:"I 50!l . 

502 METAL • III 
rm • o 
UH • 0 
UT • 0 
illll~ • 0 
ttETALF' • 0 
IF'CHETALoGToNJI METALF •METAL•~· 
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.1"'1 Sl/. .J=J d~J 
Irl~CTALF.GT,01 GO TO 51• 
JJL = l!Wl 1 I JI 
no r;;i3 L= 1 • :1L 
1Flftl.YIL•·''11.r.n.r:tTALI !;I) TO 506 

5(J3 Cl"ITT'Inuc: ' 

Gn T0 516 
s r:' LI I r I • , , ! r ~ 2 I ,I I • E ;") • '11 G !'.' T 0 s l 6 

I! t = rl f: E Y - ti lJ: 1 2 I J I + 1 
[H1 r;::-i:. L='!L, IJJ< EY 
1r1vrYIL•J•ll.En.~ETALFI GO TO 506 

sn~. CC111T I riuE 
110 T0 516 

lj:":f. Irl•'rY(L•..1•21.:Jr:.11 G(l To 516 

K(Yll.1J1:!I '" 2 
'.P! :: ·:p~• 1 (.I) 

ill. = :it: CY • !IU:' ~I JI + 1 
ri n c; :~ 7 " = 1 • • 1 n: v 
Irlr.r,T.'l'!,t\flD.•1.LT.llLl c;O TO 507 
I f I !'. [ Y I !·' • J • 2 I • ! J F' • 2 I ii 0 T (i · '.. 1 S 

507 Cnl!T r 'JUE 
llrl : i!~I + f.!!li~2(.J) 

lf"(!!'!.r,T.21 GO TO SOA 
11•1 = flM + I 
CO'l!;Tlil'Li! = C011STIJI I 2,0 
Mr:n11~n1·•1 = YEYlitJtll 
tF"11..rr.11 :1cn~1T'l!Jt1l = K[YlflKfY•Jtll +NI 
.:;r, T"· SI r-. 

5o." trp::i,\,T.31 GO TO 51S 
f'IL = tlKEY • l 
IFIKF'.YlNL1J1ll 1 NE1ll,ANO,KEYtNKEi1J1ll,NE,Ill GO TO SI~ 
nH = tlft + I . 
trPllll12(Jl,F'.Otll GO TO 513 
IFIL,(T.'l"f111Jll <;:'l TOS12 
11co•1rn11n = t'.FYIML•J•ll + 111 
ltlr.rvc:~L.Jtll.EQ.Ill ~ICOMF'lllHI = KF.YIUKEY•J•ll +NJ 

5 l l C 0115 TH PHI I = C 0 n S T I J I I 2 1. 0 
GO TO 515 

512 flCl)Plf'CMHI = KE.Yll1Jtll 
GO TO Sll 

SD 
1
HCOMr1tH1l = f(EYll,Jdl 
IFIL.F.Q.11 HCOt!PCNHI = i<EYl2•Jtll 
GO TO 51 l 

5ltt :-:r1Tr.10'-'T,3C1Sn21 J 
515 KEYCL1J121 = I 
S 16 COtlT ItWE 

srcrron srx CALCULATION or TuE UNSTAr,lLlSEo MlxEo LIGANo CONST.ANTS, 

600 llMll = 1-1:1 + !JH 
NHX = ((NMH •• 21 • NMHI I 2 
IF"ltlMX.GT.WllXI ·GO TO 605 
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DO 6r.1 '·~:J tfl!'X 
6r11 sr,~Plf'I = STAE.lr 

1"10 6::17 I=J•Mll 
n = !1r1 + r 
'IC'1"f' I :1 I = llC0 11!"' I 11 

6'.J?. C0!1'~Tf' I '11 = CCt'lSTH I JI 

J = c 
Oo b:-1'1 1!=7 • !ll1H 

f J = '.~ - 1 
DO t.Cl'I I= 1 tfJ 

J = J + 1 
{,Jq ci.lJi(IJI = C:'.\'.lST'H'·ll + co:;c;TrHtl 

r,n TO l>Jr1 
6 Ci S •,·, !"' T Tr I 0 'l T , 3,!J b 0 I I 

r.o rn 9"><:J? 

61 ~ •:rt rr. 1our,3at.o5 l 
no 611 ·•=1•t!f1H 
:1r•1 = r1co:·rcri1 
:!r"l'"' 1 !'I = •1co·1:-> 1r1rr11 

6 1 1 ''! r. I Tr I 0 ~' T • 3 0" 0 "I I n c 011 f' ( !-i I • c 0 N.S T IH tll 
1•1 i; r Tr ro•1r, 3'.Jt,otd 'lMH, n;1, ~'H 

on /, 1 ~ '.'= 1 .:111 
:tr"l = 1ico•1r' 1 ;; .I 

· 612 llC'1''"1t~I :: ~ICO!lf'(tlrMJ. 

6:?'": il["I .. 0 
no n.23 I=l•'lll 
['IO /,?..J '.'=l•:.111 . 
IFlllCOflP<IlltQ,MC0~1PIMll GO TO 622 

621 cor1r I rJllE: 
GO TO 623 

622 ND = llD + 
DlJ!''CJDoll = + IH-1 
l"l 11 P I 'I() , ?. l = .H 

621 CO'.ITJflllE 
Or1ITl!tll = 0 
IJ7. = 0 
IFlll".f.O.nl GO TO 700 
DO 626 I=l•IJD 
l"lO b26 L=t•tlD 
n = Dur1i.11 - 1 
IFIJ,rJE~LI Gb ·TO 6~11 
M = 11111 •• 21 •Ml I 21 + DUPCt•2) 
J .. 0 
IJ 3 = n ll f' I L • 2 I 
XA .,; CMIX Ctll + STARHll 
WRITEIOllT1306021 XA1.NCOHPIHETALI• MCOHP(N31 1 M 
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c: 

".ifJ Fl 6~5 
62'1 J = !!Pl•• 21 - Ml I ?.I + DUPIL•21 

(; 21, 

11 = r. Ur t L , I I -
M = ( I !fl • • 2 I - MI I ?. I + DUI" I I • 2 l 
Xi\= l((ltIXIJI + C''lXtt~ll I 2,01 + STAP.F' 
r.J 1 = J · - I 
tl3 = DUP 11 •I I 
1J2 = L'll:'fi.•?.I 
·:mtTr1ouT.3"J6C31 XA• !ICV·lf"(liETALI• MCOnt•(N3), l·:COMPllJ21· CMIXIJlt 

1 c r • r x 1 i., 1 , J • :1 • r i 1 
Cl:IX!JI = XI\ - STAflF 
'IZ = !17. + 1 
IH1 X c '1M X - 1 
0 ! ' I T t .! : z 1 ~ > = J 

SECTTOll Sr.VE!J 

70!"1 K5"1 = 0 
7i.I rr\r·.1 !"1e lrl'l'.'l err.r.:7'lb•!::J"l=l\OrJl Y.At MDllM 

11:1'1 = ililtJ + l 
rr1•11•11:1111,r.n.• 'I GO TO 770 
Ir I '.:'"'l"'l (I,. ·1r.. 'ICOMf' 111ETAL 11 c;o TO 700 
r r 11":. .: • r. r: • I '.) 0 , Ks'·" = !J 
ilT = llT + l 
I = I 
DO 70~ Ncq1NN012 
IFP'!"UMPJl,Et:.01 GO TO 706 

:J 1 • M - l 
702 112 = I 
7 n 3 L) 0 7 n 11 t =.I 2 tlH I I 

1 r c nco11r c I>, EQ. rmuM 11111 > Go TO 10s 
70'f COMTINUE 

lFCN2.EQ,ll GO TO 7qo 
112 .. l 
GO TO 703 

10s co:1T r rwt: 
rt = :; + 2 

1n1, 11 r.! = t1 - 2 

710 1ro::;··· .• ~~E.OI GO TO 720 
lflfl()llMl2l,NE,ll GO TO 730 
IrCNDUMC'fl,E0.21 GO TO 711 
KS'"' = 87 
lFIHDUMl'fl,NE.loOR,NDUMl6),NEoll GO TO 730 
t F' c tJ NJ M { 3 ) • E Q • 0. AND. rm l! ,, I 7 , • r. Q • • • I G 0 . T 0 7 8 0 
I F' I tlfH 1 M C 7 I. NE , t t , Alm • ND UM I 7 I , II E • ' It + 1' I G 0 T 0 7 3 0 
l F PIO II M C 8 I , L E ~ 2 , A N 0 , !·ID U tlC 7 I . , E Q , ' H + 1' ) G 0 T 0 7 8 0 
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r;o rn 730 
711 IrP1rur111>1,E~.O.Arlr'l,:JDIH'.l81.E!'.l,01 GO TO 750 

IF"('!:"llll11bl,E!l.2.AtJD,IH'lU'11Sl,EQ, 1 H +l'I GO TO 750 
GO T(l 73rl 

720 IF(KSr,EC.311 c;o TO 723 
I rl m: I! IH 2 l , tl E , I l G 0 T 0 7 3 0 
I r ( f'. s ''.' • 'If. • 5 ;n . (j 0 T 0 7 2 2 
IF(!lnttr1('i),!IE.21 GO Tn 721 
IF(llC'Ul!P3l,!IE,QI GO TO 7'+5 
lf(rl~'ll:!!6l ,EG,QI GO TO 7t;2 
I r ( '',-,I H~ ( I>) , C !' , 2 , A I JI) , ! ! I' I I !1( 5 ) , E 0 , ' Ii + I' ) G 0 T 0 7 5 2 

(,,"I T:"I 7q:, 

1 ~ 1 1 r er "' ' • ! • c 'f 1 • '1-E • 1 : M: " • • 1 rH '11 11. 1 • I If • t 1 G o T o 1 " s 
1r1~:~1!1:1;,1.u·.n1 r;r, T" 76'1 
IrP!f"!111(?),Lr.2.M1n,r1('lllll(7),E(:),•M +l'I c;O To 760 

7 2 2 J F' I I~ r; •:• , 'IE , rJ 7 I r, 0 T 0 7 2 i; 
7 2 J Ir I !l!'t lrl! 11 l, 'JC .I. M:, f.IDIJ:: !<,),'IE .1 I (j(I TO 7 30 

72 ., 
~'.S"' = 87 
1r1""1 1::1:-1.rr·.01 r;o Tn 1~:i 
Ir ( n r,' I H ( A I • LE • i • At lD • iWU M ( 7 I • E ~ •• II + 1 • ) . 

.. 'I 

'.il'J T"' 730 
Ir!l''."'.l',tl[,l>ll r,o TO 7qr; 
I r ( . ! ; u :·? ( 'I I • ~ ! r: • I • A~ I ri Iii nu !1 ( 6 ) • 1n:: • l ) 
GO TO 72'1 

7Jr.: K<;•·r = 31 
731 Irl~'.!:;';,Gr:.!'iO,AIJD,rsv1.LT.F;::ll GO Tr) 7'11 

·:: ~ I Tr: I 0 UT , 3 :J 7 :n l X ·A • C If[) fJ 1 ! I i I l • N = I • N N I 
ii R I TE I 0 U Tr • 2 0 'f 0 I l · · X A·• . C 110 U ft:( H l t N = l t N N I 
lJTOT = NTOT +' 1 . 

GO TO 701. 

71+~ ~RITFIOUT,307'111 
7 1H '."! r. I TE I 0 U T , J 0 7 'i 2 I rHI N 

Irc~s~.NE.Ol GO TO 701. 
I F PI C 'Jl1 I 'f I , tJ E • 2 I G 0 T 0 7 0 I 

GO TO 700 

IF'(NDUM(6J,[Q.o.~R.<NDUM(51.EQ,'H +1•.ANQ,NDUMl61oEQ,2ll KS~~ 100 
GO TO 70 .1 

, .. s ~RITrcouT.301•SI NNN 
RRITCIOUT.307'1~1 Xsn 
GO TO 9999 · 

7'f6 NNN = NNN + 1 
~RITEIOUT1307•71 NNN 
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7':;r; r)il 7SI I=l•'!l~H 
7SJ cr.UF!fl = -1001.0 

V.5t'! = s 2 

7 5 2 r r ( f·I :") u M ( 5 ) • F.: () •• H + r • ) G 0 T 0 7 s 3 

'.ll = I 
:i2 = :ir-: 
~n Tn 75'+ 

753 :-11 = 11:1 + 
~ i :' = . · 1 j.', ~~ 

75'! r:n 7SS t =: 1 1, ~12 
rrc!1!"1J:;(31.t."1.'l("0'lr.IIll r;O TO 75/, 

7SS u1:1T I ~lLJ( 
r r ( ,. ''. , ... r: 0 • 7 I I r, 0 T 0 7 7 5 

G.n TO 7'11 
756 tr1c~urc11.Gr.~1no.01. ~a ro ~'+S 

I r ( I'. S ··1 • E Cl , 7 I l r; 0 T 0 7 7 1 
rir:. = I 
".:'"rill = Xf\ I 2.G' 
GO TO 701 

7bC trtr.sn.nE.521 GO T0,7'15 
~: $''! : 61 , 
GO TO 780 

7 h I I r ( c (;II F ( L x I • G T • - I o.o • 0 • A 'HJ • ca u r ( Ly ) • GT • - 1 Q 0 • 0 I G 0 T 0 7 6 6 

1rc1!1.rli~.01. ~.0; H> 763 
7 6 2 . WR IT E I 0 UT , 3~1 b.U 

Go ro·1qs 
763 NI = 0 

N2 = 0 
o o 1 6 '+ 1 = 1 • rm 
1rcnur11·1l.EQ,LX) NI • DUPllt21 
1r1n~1r11.11.r<,,1.vi r~,. = nupc1.2> 

7b'I co~JT !IJUE 
IFllll.EQ,'.1,nR .•. ll2~Eq,Q) GO TO 7·65 
LX = Ml 
LY a U2 
1r1r.~IJFILXl1G·r;-100.o.·AMC',C!WF'H.Yl,t.t.-100.01 GO to 766' 

7b~ ~RITECOUT,307621 

GO TO 762 
766 X~ ~ XA - CCOUFCLXl + C~llFILYll 

1·1 R I TE I 0 ti T , 3 0 7 6 3 l · . I N 0 U.M I N I t N = 1 1 N N I 
~PtTrcouT.3076•) CBUFILX>i CRUFILYI• XBt XA 
ST AIJ I J I • X 13 • I I C 0 NS TM I L X ) • + C 0 t·I S TtlC LY )) I I CB U f' I L X ) + CB U f' I LY I 1J 
XB • CMIXCJI + STABCJI · 
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·::rrrr:1ouT,3:)7b'I) co:1sT~l(LXI• cot•ST~1CLYl• STAFHJlo XB 
r.0 rri 101 

77C I r11:1 ti'.! ( 3) • C'.1. 1 ') GO TO 700 
I r ( t'. '' ,., • E ~ • I 1 D I 11 T = I·! T + I 
IrtY~~.~r.8,nR.rs~.E~~1nG1 GO TO 701 
I r ( .... r, .. , •. ' r. • s 2 • " r I '.') • I'. <; :11 • -~ i.C • 7 I • la. r J "> • r s •.:: • ~I E • 7 2 , G 0 T 0 7 'I s 
l!T = •:r + I 
I·'. S ,., = Tl 
LY. = •:11 
xr. = co:1srn1Lx1 / caur1Lx1 
Gn T'1 7S2 

771 LY ::: t · 
C'" •,II'" ( I l = Y. ,I\ 

1-: C:"1 = 7 2 
GO Tl'l '795. 

77, STA"IJI ='KA • xn 
11 1 = 0 
I r I L Y. • G T , I! I! I 'I 1 = fl 1 + 
rr11.v,r,T.qn1 n1 = Nl + 
. ; r Irr: ( '..'\UT' 3 :J 7 7 11 . tlC 0 I·~ p 11: r-.: T AL l 't1 c n·-~ (" IL x l ,::.1c0 i·i ., (Ly , 'tJ 1 'x A • s TA 0 I J , 
l';l"I TO 7•Jl 

77!'.r'ln 776 I=ltrl!II 
IflfWUlltJl,EQ,llCPMP'Clll _GO TO 1'tl 

776 C(l.~IT!r!Ur. 

GO T0·7'10 .. 

780 IrCNnUMl3l,EQ.NDUMl51l GO ·TO 7'15 
LX = 0 
lv = 0 
1rniDllM(8) ,EQ,OI Gci TO 782 
fll =rm.+ 1 
D 0 7 A I I = t!I , MM H 
rrctir11)11(3) .EO.ilCO~~rc I) I LX = 
Ir (!!;I.' M I s ) • E (" • 11 c.or: p I I ) l LY = 

7Rt co•1r1truE . 
IF"ft~!llJMC81,E:'1.2l GO .. TO 735 
IFILX.EQ,Q,AHO,LY.EQ,Ol GO TO 731 
112 = 0 
HJ = n . 
IfCLXeEQ,Q,OR,LY,EQeDl GO TO 782 
NI = HINCLXelYJ . 
112 .. l x 
NJ = LY 
LX .. 0 
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LY = 8 
1n2 no 7:'.3 t=l •'H' 

I r ( '- :". • Er. • ·1 • A! ID • l·I Du r1 I 3 I • r ~ • Mc 0 r~ p ( I I I L x = 
I f I L Y , r ~ , 0 , A 'I D , t J fl U M ( 5 I , E O , M C 0 ~: P I I l I L Y = 

7r.3 cr.i1rrnur. 
1r1•1··111:1:'.1.~ 1::.D1 r;o ro 713S 
ItlLX.Ec.o.or.Lv.t~.81 GO TO 7qq 
Jrf~!t.rr: •. !J2J LX::: N2 
It!~JJ,fr;,•:31 LY= tJ3 
Gr, Tn 7 3.5 

7 n 'I I F ( L ~'. • r 'Z· • n • Al Ill • Ly • [ 0 • f'l I r; r. T 11 7 3 l 
If IL~ , Er; , ~ I L X = '1.2 
lflLY,f~,QI LY = N3 

7RS JrlL~.rn.~.ri~.~Y.f0.G) ~o T0 731 
L:: ''f·i~fl.~.LV>· 

11 = I. - I 
I = I. X 
IF!f,[0,Ll ·f =LY 
L = ·~ - I 
,I = I ! M • l. I I 2 I + 
Tr!!l:'.r:r,'JI . G1 T.O 7r.7 

DO 7<>6 l=totlZ 
I r I .i • r r • 0 ~ ~ I T ( r ' I I I J = 0 Ml T ( r ' 2 , 

7<;.~ Cf\'IT l 'lUF: 
7:17 IF!,1,1.r:.ci1. GO Tll 7't~ 

Ir II'.'."..''' , r. :': , 7 2 I G 0 T 0 7 7 2 
Irlr~n.~n.6L) ~o TO 761 
lflKSa,NE~i7) GO TO 7~S 
C fl l.X ! J I .= X A - STA n I JI 
\'IF?ITEl·OUT1307Bl.) XA• INOUMCNI• NaJ,NN) 
GO Tei 701 

SECTION EIGHT 

so:: rr:·!J r:n 1113 
r1 (') n 0 I I = I ' ~1 M x 

a 0 I c II Ix I r I . - c 11 Ix ( I. I + s TA ll ( I I 
flr•t1!1,l I I = flCOMl"P1ETA·LJ 
tJnllt! I 2 l = I 
IWLIMl31 = l!COHPCll 
fJDIH!('ll a 1 
fJr1t.1M 15 I = l!COMP I 2 I 
r:ou1.11t:.1 = 1 
Nl'lllM·C 7 I = 1 H +l' 
J = 0 
{')O anq M=2 •.NMH 

N II 11 - I 
DO 80'+ l"'l•N 
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,) = ,) + 
fir"'" ( 31 - tlCOMP I I I 
rlf'Hlf~I~) = PCOMP(f1) 

tllJ = 6 
Jf'"lll,LE,:J:1) GO TO 0Qj 

f J!; = fl 

tl[l.lt~IC) = 1 
I rl !. CT. ~J::) :1nw11 8) 
IFIO:\JTll, JI ,EQ.01 
r, o no 2 1: = 1 ·1 t J z 

= 2 
GO TO S03 

JFl0"1TO'.tll,EQ,JI r;o TO OO'f 
80;> Cl'l~!T I flllf: 

80'.'1 !JTOT = t·JTOT + 1 
"'-"'ITr:(QuTr.2ntto11 CMix1.J1, c:Jour•nn. tJ=ltt1N1 

a 2 'f cc · ~ T ' • 111 r. 
l"i-: I TE I OUT·; 3~301) 
iTTTr:10r1T,3'.l?021 
(;('I T:"I SC'O 

SECTIOfJ fl!llE 

900 llTOT = NTOT + NJ I I 

IJ~IX1 !ICOf~F'l:·lETAll 
IJT 

Flf!ISll! 

".T I T C ( O l.J T , 3 () 9 0 1 I fH 0 T 
Gn TO 9rJI 

99?Q \'~FI Tr. I OllT, 3:)999) 
Ef;~r I l[ . Ot1Tr 
Rr··· I trf'I nu Tr 
WRITrcourr~20999t 

901 ~PJTr1ouT,Ja902t 

EIJOF'ILE OIJTF' 
E: fl Ci 
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appendix 5·6 

f"!'lP.•H.Tln': cow;Ti\riT or.TA t!Str. rnr> TME: i'ILOOn pLASMA HQC'f.Lo 
ITA~ULAT'.:D AS l'!PUT lii\TA FOR F'f\-JC:-\'A7·1 ECCLESI 

-------------·-----------------------------------------

"? •. 't D :,flAll+ll H +11+11 E 

11. 7b ',,\A 11 +I l H + 11 +2) E .. ~~ ,\,•f..11+1) Cl\+21+11 E 

I • «; R ,HA I I+;>) cr.+21+1> E 
7,"Hi t, f, A 1 I+ I l cu+21+11 E 

1 'I, bb AAAJC+2) cu+2c+11 E 

1 '.1. (i9 1'.A A 11 +I I CIJ+2C+ll ll +Jl+ll E 

3 • 2A A fl A I I+ 1 I f(+21+11 E 

/) • :'C ~/I r- I I +?) Fr:+.:>C+ll E 

? • '.>3 1' ,\A I C +I I FE+Ji+ll E 
I'>•'.\ q f./11\!(+?) FE+3C+ll E 

'I. 1 7 r,flAJC'-d) .PB+21+11 E 
b. l 7 Af,t.1(+2) PR+21+1) E 

a, no :1AA11+2l Pf\+21+11 o·~-11+1i E 
t.no ~Afdl+l). Mr.+2C+ll E 

2,30 AAAlC+21 MG+2C+ll E 
2. 59· l\AA l I+ 11 Ml.1+2 ( + 11 E 
tt,60 AAA11+21 MM+21+ll E 

s. '17 AAA11+3l ~!1+21+11 E 
10.00 AAAll+ll M!J+21+11 fl + 1 I+ 1 I .E 
12,so ,\AA11+21 MIH2I+11 H +lC+ll E 

'f,56 AAAlC+ll zr~+21+11 E 
a.so AAA11+21 ZN+21+11 E 

10,117 AAA1C+31 ZN+21+11 E 

9,502 AL A 1 I+ l I H +ll+ll () 158 98 

11,ll79. Al.A!l+ll H. + l ( + 2 l .o 158 98 

1. 2.0 f\1.Alf+ll CA+2C+ll E 668 

1 t RO ALA1C+21 CA+21+11 F 
R, 0 l. ALJ\11+1) CU+21+11 D 158 83 

83 
83 

279 

14,64 ALA1C+21 CU+2C+ll 0 158 279 83 

10,57 ALAI l+l I CU+2C+ll H +1(+11 D 158 

3,so ALAll+ll FE+21+U· E 53 

6090 ALAlC+21 FE+2C+ll E STAB 

10.00 ALAJl+ll .FE+3C+ll E STAB 52 

't.20 ALAIC+ll PB+2l+ll E STAB 

6,90 ALA1(+21 PB+21+ll E STAB 
9.10 ALAIC+.21 PB+2C+ll Oli-ll+ll E STAR 

1. 70 ALAll+ll HG+~l+ll E STAB 
2,20 ALA1C+21 MG+2C+lt F 

. 2, 40 ALAll+ll Mt1~2(+11 D ·62 

62 
62 
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lf.2P f\Lll!(+?I MN+.2(+11 0 62 
5 • 7('j M.All+J) Mll+ll+ll D 62 

lo. on ALA 11+11 MN+21+11 H +11+11 F 
12.ll'i Al.Ail+?! Mll+21+11 II +11+11 D 62 
If. r; 1 .\LA I I+ 1 I ZM+21+11 D 158 62 98 
I.' • r; b :,u1.1 c +21 Z!l+ 2I+11 fl 158 62 98 

10.1,5 ALAll+.31 Zll + 21 + 1 I D 156 98 
3.96 f..l.All+ll Zll+21+11 H + 11-11 D 158 

16 • 110 f\LA I I +21 FE+31+11 f 
9. 21* APAll+ll H + 1 I+ 1 I (• 369 83 53 518 

11 • 69 t.rAtl+ll ti + 1 ( +21 E STAS 518 83 
I , 1 !J .~.rAtl+ll CA+21+ll f 

1 • If o .-\r.AJl+?.I CA+21+ll F 
1. 6r; llr>Ail+ll CU+21+11 ii 369 519 83 

l q. 10 A!' II I ( +21 CU+21+11 E STAB 369 518 83 

3 o If D !,'"A I I+ I I FE+21+11 E 53 

c;.n~ fd"'A11+21 FE+21+11 F 
9 .10 .\ r.111 I+ I I FE+31+11 [ 52 

If. no ArAll+ll Pi1+21+1J F 
6 •:.JC ;',r,\11+21 Pi1+21+11 r 
e,oo AOAll+ll PR+21+11 OH•l (+11 F 

1 • 6:'1 fl.r1111+1f ~G+21+1J F 
·2,2c· Ar·All+7.> MG+21+11 F 

~.25 A:'All+ll M!l+2(+1) F 

If • n r> I.; i\ 1 I • 7. I hr)+J.1+11 f 

'+.If 2 'Af',All+ll Ztl+2C+ll 0 369 518 

1,1s ,~I". II I I+?. I Z11+21+1J Li 369 518 

1 6. nr 1.rA11+n Ff:+H+ll F 

g .n2 Ar'Gll+ll H + 1 I+ 1 I D 158 51 333 
10,6'f AP.Gll+ll t:t + 1 I +2 J [J 158 51 

t ·, 'f O Af.Gll+ll CA+21+11 f: STAB 668 333 

l. 80 . APGll+21 CA+21+ll F 

7,38 Af\'Gll+ll CU+2(+1J D 158 333 

13 .66 A!'.'.Gll+21 cu+21+1i D 158 333 

3. l 7. Af?Glf+i.!l CU+21+21 H • ac -2 > 0 158 
J,oo AP.Cill+ll FE+21+11 E STAB 53 

If, 'fO Ar.Gtl+2l FE+21+11 F 
a.oo AP.Gll+ll F.E+31+11 E STAB SI 

15.00. AP.Gll+21 .FE+31+11 F 

3,so Ar.Gll+ll P0+21+11 E STAB 

s.oo Ar>Gll+2l PR+21+11 F 
9 .• oo AP.Gll+ll PB+21+11 OH-11+11 f". 

l,Bb AP.Gll+ll r1G+21+11 .E STAB 333 

2.30 .Af?Gll+:?I MG+21+11 F 
2,35 AP.GI 1+11 MN+21+11 E STAB 333 

3,90 ArlG11+21 MN+21+11 E STAB 

... 03 ARGll+ll ZN+21+11 0 ass 333 
7o56 M?Gll+21 Z ~I+ 2 I+ I > D 158 333 
... 2s M~Gl l+l I Zt1+21+11 H +I r-11 0 158 
8068 ASNl 1+11 H +J( +ll 0 369 68 SJ S2 50 .. 

10. 9 i 'AS!Jl I+ 11 H + 1 ( +2, 0 369 66 51 52 SO'f 

. l ~ 10 AS!lll+ll CA+2r+l 1 F 

l • 'fO ASrUl+21 CA+2I+1 I F 
7,6? ASIH I+ 11 CU+21'+11 0 369 312 SO'+ 
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13.ob ,\'.i'l 1 I +21 Cll+i>l+ll r 3b9 312 soc+ 
3. 5 '.1 ic;•111+21 cu+21+11 H +11-11 [ SO'i 
3 • ,, ;1 ~. ~ 'l 1 I+ 1 I FF.+21+ll E 53 312 

6.nc /1S'lll+21 FE+21+11 f. STAB 312 

a,02 :. S ~I I I+ 3 l FE+21+1l E 312 

n' '-1-:. :,S'! I I+ 1 I f[+J(+l) E 52 

".no i\SN I I+ 1 l pR+21+11 E STAEi 3 1 l 

6.0'l .".S'.! I I +21 PR+21+ll f STAB 311 

1.00 f, .-, r: 1 I+ 3 1 Pf1+21+ll E 3 11 

9.20 f. S ~I 1 I +? I Pf\+21+11 OH-11+1) E STAB 

1 , !\Cl ,\St! 1I+1 I MG+2t+ll f' 
2.30 1.s~i11+21 M<i+21+11 E STAB 

2. c+c t.SN 1I+1 I 11:1+21+11 E 312 

". ~c :,$'ill+.'.?) l"'l+2t+l) E STAB 312 

If." 5 f,S!Jl(+ll zll+21+11 il 369 312 

7.95 v:;rn1+:>.1 z11+-21+11 i'.' 369 312 

lD.!JC' ~.<;'!11+3) 7M+21+11 [ 312 

1 'I, 7 i; :. S 'I 1 I + ?. I F[+31+11 r 
? • 2r:J i\Sr21+11 H +11+1) E STAB 68 377 53 

12.60 1,sr21+11 H + 1 I +21 E STA£ 377 267 

llf,20 /\51"2I+1) l;I + 1 ( +3, E STAB 377 

1,6C ,\ '.': !"'? ( + ~) cr.+21+11 f STAB 668 

2. 10 ,,~r21+7.l CA+2C+ll f' 

·" • c; :""' •,"....,?I+ I I (IJ+2 I+ l I E STAB 377 267 

·15,2fj A5i'21+21 C\11:21+11 f. ST At'. 377 267 

l'J,:!O "':> r>.' I+ I l (ll+21+11 H +l(+J) E 267 
11, 2~ r,c;p?t+ll FF'.+2(+Jl £ SJ 
7,75 l~~p;?.(+21 f(+21+1l f'. STAB 

ll,'10 At;P21+11 FE+31+1l [ 53 

S •A() ASr2C+ll PB+2(+.l) t: STAB 311 

e.20 ASP2(+21 P6+2C+ll E. STAS 3 11 

A,on ASr21+ll P0+2(+l) OH•l(+l l f' 

2.20 ASP21+11 MG+2(+l) E STAB 

2,9C J\51"21+21 MG+2(+1 I r 
3,7C Jl.Sr2t+ll MM+21+1) E STAB 

s.20 J\SP2(+21 HN+2(+l I f' 

s.ao ASP21+lt Ztl+2 C + l l E STAB 311 

9,30 ASP2C+2) ZN+2(+11 E STAB 

17.l Ci ASP21+2) f'E+31+1l F 

~.70 CITll+l) H +11+1) E STAB 333 2 .. 9 

10,lfO CITll+ll H +l (+2) E STAB 2'f9 

1 , 20 ClTlC+ll CA+21+\I E 333 

1.so CIT 1 c.+2 t CA+21+lt E 333 
1,oc CIT JI+ 11 Cll.+ 2 I + 1 ; E 333 21f9 

13.00 CJT1C+2) CU+2C+ll E 333 2'f9 

3,00 ·c IT 1 (+..JI FE+2C+ll f' 
... so CITll+:n F'f.+21+1) f' 

.. ·s·-.oo · .·CJTIC+ll FE+3(+1) r 
'l,'l,'f2 ·CIT11+21 f'C:+31+1) F 

'f.OO CJTll+l) Pf\+21+1) E 2't9. 

6,00 CITIC+2J PB+21+ll f 
11.oc CITll+ll Pl1+21+1l OH-11+1 i F 
1.60 CJTlC+ll MG+21+1) E 333 
2.10 C1TlC+2l MG+2(+'1t f' 
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1.1n l.ITI l+l I M~l+21+!1 E 333 
2. 6('1 CTTll+21 ~rn+21+11 F 
tf. 0 Cl CITll+ll Z ~I+ 2 I+ l ) £ 333 2tf9 16.Cf 

1.00 CIT11+21 Z'l,.21+11 t 2't9 16tf 

1Co23 ".'.YS21+11 H + 11+1 I D 158 68 337 67R 

I A, 31J <::YS.71+11 H +!(+21 L) !SR 6B 337 676 

20.20 CYS.21+11 H +I I +3 I [' 1ss 68 678 

:! • :rn CYS2 I• I I CA+2(+11 E 273 

2,1n CYS21+21 C.&.+21+11 F 

6, or.: CY$21+11 FE+21+ll E STAS . 27 3 

11,oc (YS21+21 n:+21+11 E STAR 213 

1,1.70 CYS21+11 pE\+21+11 £ S TAO .· 273 311 

16.00 CYS21+21 Pf\+21+11 E STAB .27 3 311 

IP,. 'tO CV521+ll P!H21+11 r 273 3 i 1 

2.b~ 1".YS21+11 •!G+21+11 E 273 

3. '+8 CYS?.l+:'I 'M1j+21·•ll F' 

... l ~ CY~";21+11 11:1+21+11 E STAB 273 

7. 1,; (Y'..21+?1 1~·1+21+11 F: 273 

q. qq C':YS?l+ll Z ~I+ 2 I+ I I E STAP 273 678 

1?,98 CYS21+21 Zr~+ 2 I+ 1 I D STAB 158 273 678 

2ri.so CY521+31 n1+21+11 E 273 

21f. 3.'.\ CYS21+21 zrJ+21+11 rt +!I+ 11 r. 1sa 

2<?.ll6 CYS.21+21 z:·t• 21+11 H + 11 +2) D 158 

·'• ~. ~!.; ':Y S ;>I + 111 7~1+21+.31 f 

't8,60 CYS21+'tl Z 1l+21+31 H +1(+11 ('I 158 

. n • '' 9 
CIS71+1l H +lH·ll D . i 58 

1 b. (, lj l".I<;;:>l+ll H +11+21 r• 158 

i ~ • :l 11 c: 152 .1 + l l ti +1(+3) (1 1sa 

10.00 C IS 2 I +.l I CA+2C+il H +ll+ll F 
1? ~~Cl CTS21+2) CA+21+1) H + l ( +21 F 

6,80 C I s'?. i + l I · CU+21+11 D 1sa 

. 16. 2r.: Cl521+11 ClJ+2C+ll H +i C+I I D ISA 

20.01 C1S21+2) ClJ+2l+21 D 158 

27,SO ClS21+2l CU+21+11 H +II +2 I 0 158 

17,7C Ct521+11 FE+31+11 H +I C+l I F 
2s.ao CtS21+21 FE+31+11 H +l (+11 F 

31,28 CI521+21 F'E+3l+ll H +1(+21 F 
16.20 CI S2 I+ l I P8+2t+ll H +1(+11 F 

22.oc CIS21+2l ·p P. + 2 ( + l I H + 1 I +2 l F 
10.70 CI«:i2C+ll MG+.21+11 H +1(+1) F 

20.0Cl CI521+2l f'i.+2{+11 H + l ( +2; F 
1 l • 0 ('1 CIS21+11 M ti+ 2 I + l I H +1 (+1) F 

23,!10 CIS21+21 MN+21+11 H +l (+21 f 
13,33 Cl52l+ll Z'H2C+ll H +J(+ll 0 369 

u .. 00 CIS21+2) ZN+2C+ll H +1(+21 D 369 
9,39 GLU2l+ll H +11+11 0 158 267 Sl 

l:\.514 <",Ut1(+11 H +1(+21 D 1sa 267 

H>.67 GLU21+ll H +1(+31 D ass 267 51 

l t so GLU2C+l> CA+2C+ll E STAB 668 
1. qo (jlt121+21 CA+2C+ll F 
a.1,. GLU2(+1) CU+21+1) 0 158 267 

l'J. Q l GLU21+21 cu+i1+11 0 158 267 

12,79 r.LU21+ll Cll+2l+ll H +1(+11 0 158 267 
3,'10 GLU21+11 FE+2C+ll E 53 
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I>. n ::r ":l.IJ'.'.!+21 rr.+21+11 F' 
11 • ?'." r.u12 r + 11 rE+31+ll E SJ 
18.;7'1 r,1.1121+21 rt+J1+11 F' 
'I. r; 0 lilll?!+ll P0+"21+11 E STAB 

6. (1: ·":LLl 2 C +2 I pr-+2!+11 E STAB 

n ' .:; :J 'illl;>l+ll Pt'l+2!+11 OH•ll+ll F' 
1. 80 '.ill!?l+ll MG+21+1) E STAB 
?..1~ ".l.ll?l+:"I ~:G+21+ll F' 
3,05 r, Lll?. I + 1 I f';ll+2I+1) ( STAS 

'+. 90 GLU21+2l M~l+21+11 r 

'+. 7 b rt. •_!7 I + 1 I zn+21+11 D 158 
(\. 5 'I (jl.\121+2) zt1+21+11 r. 158 

8,B3 GLllll+ll H + l ( + 11 D lS8 69 379 sis 5U't 

1 0. 9" SL '11 I + 1 I H + 1 ( +2) [1 1ss 69 319 51S SU't 

1. nr 1~L 'I I I+ I I (f\+2(+11 F' 

I • 'I 'J ·~L '11 ! +?. l (/,+21+11 r 
7. 2 'I ';L '! l I+ I I cu+J<+ll 0 IS 6 69 379 SIS SQ't 

l '.' . .'I::- ~L '.! 1 I+!' I (11+2!+11 fl !SR 69 '.379 515 SO't 

3.:, ;') r;L •11 I+ I I rr.+?1+11 £ 69 

6,00 (;L'.111+21 f.E+21+ll E 69 

l'.I, 00 · <,UI 1 I +3.1 f'E+21 + l) E 69 

Cl •. 1; ·~ L. ~I I I + I I rr.+31+11 r 
I 'f. 7q :a.:111+21 FE+31+ll r 

If• rj '°'. ~.L 'IJ ! +I I pn+2l+ll r: 3 I l 

1.00 r.L1:11+21 Pn+2(+11 E 31 l 

r. • n~ r:t.1111+'.\I P1"+21+U f 311 

r.. no r,vi1 l+l l PF\+21+11. Ofi·ll+ll F' 

1. 7\1 \ii. :11 I+ I I :1G+ 21+11 r 
Z • :!C GL;Jll+21 :~G+21+11 F' 
1. M:l tiUll l+l l .rHJ+2 I +11 E 69 515 

'+.oo GLN11+2) MN+21+ll E 69 

'+ .• 27· lil!lll+ll Z I~+ 2 ( + l ) 0 158 69 515 
7,qq GUI 1 I +21 Ztl+2 I +11 D 158 69 515 

10.00 Gltlll+31 zN+21+l) E 69. 

9. 3 p. C. LY 1 (. + 1 ) H +l(+ll. D 1sa 83 26,7 

11.76 GLYl(+ll H + l ( +2) D 158 83 267 

1.30 Ill Y 1 I+ I I CA+21+11 E STAB 668 

1, 70 GLY.11+21 cA+2C+ll f' 
s.02 GLYll+ll CIJ+21+11 D !SS 83 

I 'I, 6 7 CiLY11+21 CU+21+11 D 1se 83 

lCl.l l l.LYll+ll CU+21+ll ti +I C+l l D 158 

3.n1 ~LYl,1+11 FE+21+11 E STAB SJ 

·s.so l'.iLY11+21 F'E+21+ll r 
?,lfC tjl.Yll+ll FE+31+1l ( 51 

16.50 GLY11+21 FE+31+ll F 
it.so GLYll+ll Pa+2(+11 E STAR 

6.00 (;LY11+2l P(!.+21+11 E STAB 
2. 10 GLYll+ll MG+2C+l) f' 

2.1c GLY1C+2l MG+2C+IJ D 62 

2.11 GLYIC+IJ MN+21+ll D 62 
&J.76 GLY11+2J MN+2(+l·l 0 162 

s.s2 GLY1(+3l Mtl+2C+ll D 62 

10.02 GL YI I+ 1 I MM+2.I + l l H +lC•ll D 62 
12,89 GLY l (+21 HIH21+11 H +1(+11 0 62 
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... ,,~15 ".il. YI I+ 11 Ztl+21+1J D 62 
9.Gi1 GL YI I +21 tr1+21+1> IJ 1se 668 317 

I 1 • 3 1 Gl.Y11+3l Zfl+21+1i D 1sa 668 317 
9. ttri .'iLY!l+ll 1. r1+2<+11 H +1(+11 D 1se 668 317 

3. 7 ':~: "':L.Yll+ll z:1+21+11 H + l I• l i fl 158 
10.0:-i CLY I I+ 1 I P!3+21+ll ll +11+11 E 317. 

3 • ":'G liLYll+ll PF1+21+ll H +11-11 f. 317 

A.9!b 1: IS 1I+1 I H +ll+ll D 158 311 679 

ttt.;1:7?. l!TSl(+ll H + 1 I +21 () 1se 311 679 

I 7. I 1 :\ :• 1s1 I+ I I H + l ( +31 [I 1Ss 311 679 

I• q C ! : IS I I+ I l CA+21+11 F 
l .• r.::, •:1s1 <•n CA+21+11 f 

c;i • "~ !ITSll+ll Ct1+21+ll 0 158 66 306 679 

1 7. '.jf.1 !IJSJl+2l C!.1+21+11 D 158 66 306 679 

13. 0 2 !1 l SI I+ I I ~tJ+21+ll H + l I+ 1 I D 1S8 66 306 679 

2.ttb !11511+11 cu+21+11 H +1<-11 [J 1ss 66 306 

2:\.lr; 'I JS I I +21. Cll+21+11 fl + 1 ( + 1 l fl l ;[', 66 ·306 679 

7. 311 111S1I+2 I cu+21+21 H +.1 <-21 CJ 1 5 tl 66 306 

26.n::i I!' s I I +.21 CU+21+11 II +11+21 [ 66 306 

5. 20 HISll+ll FE+21+1J E STAB 63 

9. !';n ·· !!ISJl+JI rE+21+11 E STAEl 63 

1t.2c II IS 1 I+ 1 I .. FE+31+ll E STAR 52 

7. br:. !tTSJl+~I FF'.+31+1) F 

s. "6 1i!S1(+f) ?1+21+11 (; 311 57 

~. nr.i llJSll+.7.1 PA+21+:11 0 311 57 

B • 01"J II I!: I I+ I l f'fl+2(+11 on-1'+1 I F 
?. • 7 r: !!!SIC-ill Ml';+2 (+JI F 
2.?:i :11s11+n MG+2l+ll f 

3.2tt 11151(+11 Mr~+ 2l+11 0 57 63 

6,16 111511 +21 .111+21+11 D 63 57 
6,3, 111s1<+11 Zll+2 I +1 I D 5.7 63 

11, 6A llISlc+21 ztl+ 21 +I I D 63 57 

11.12 il Jc; 1 I+ I I zri+21+11 H +1 l+l) D 1se 

9,30 11vr11+11 .H +ll+ll E 680 288 51 

11.20 11vr1<+11 H + 11 +2 I .E 53 
lo 00 ilY P I C + 1 I CA+21+11 E STAB 

1. 30 llYP11+21 CA+21+11 F 
a. 1 n llYPll+ll CU+2C+11 E STAB 680 

1 it ;so HYP11+21 CU+2 l + l t E SUB 680 

3.80 HYPll+ll FE+21+1t E 53 

6.no HYP11+21 FF.:+21+11 F 
B, SG :rvr11+11 FE+3C+l) f 

1s.nr. 11vr 11 +21 FF:+31+11 E 51 
3.so llYPll+ll P3+21+11 f 
it.so llYP 11 +;p PB+21+11 ·F 
a,oo llYPll+ll PR+21+11 OH-11+11 F 
1.1c llYr 1 I+ I l MG+21+11 F 

2.30 flYPll+:n MG+21+ll F 
2.10 llYP11+1) MN+21+1) F 
q,9Q llYP11+2l ~11-1+21+1) F' 
it.~c !IYPll+ll ZM+2(+ll r· 
a,so !IYP 11 +2 l ZU+21+11 E STAB 

9,36 ILEll+ll H +ll+il D 158 
11. 7 2 ILEll+ll H +1(+21 D 158 
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1 • IC ILF:ll+ll CA+21+11 ( 668 
1 •II G ILf.11+~1 CA+21+11 f 
7.95 ILF:ll+ll CU+21+1l 0 1ss 

1'4.6A ILC11+2l CU+21+11 0 158 

0.32 ILEll+ll cu•21+11 H +11-1) [) 15e 

3 •Oil ILF:ll+ll fE+21+ll f 
r;.r.:: IL r: l I • .?.! rr.+21+11 f 
? • 0!1 ILEll+ll rr.+31+11 f 

15.l!!"l IL!".ll+?l fE+31+11 r 
3 • f.G IL~ 11 + l I Pn+21+11 r 
5, '.\O JLr-11,.;21 Pn+21+11 f 
.,.(i('l Tl.Ell+ll p[;+21+1) 0 !:1 .. 1 ( + l I f 

1 • r, :J ILC:ll+ll 11Cl+21+ll f 
2. 11n ILEll+21 MG+21+ll F 

~.bO Il.f.ll+ll !1!J+21+11 F 
q. 7 t; Il.!':Jl+2l t1'f+2 I+ I I F 

'I. 11.i ILF.Jl+ll Z 1!+2 I+ I l il 158 
rt.(lq 11.r.11+21 zri+21+11 (> 15e 

3,b? ru: 11+1 I 1t!+2 I + 1. l II + 11 •I I D 158 

1 S, .?.5 ILE11+21 zri+21+11 Ii +1(+11 D 15s 

?,36 LF:llll+ll H .+ 11+11 fl 158 251 

11.7?. LEUJl+l) H +11+2) D 15e 251 

l • l;; t.r 1111 +I I ci1.+21+1, r. 668 
l. q 0 Lr.u 11 +21 CA+21+11 f 
q. (')'+ t.rtitl+ll C\J+21+1) 0 !SA 

111. b? I. r U I I+ 2 I cu+2.1.+ 11 c, !SS 

I I • qq 1_r1111+11 cu+21+11 H +ll+IJ p 158 

!9,113 1.ru11+21 (11+21+11 H +I I+ I l D 1s8 

3. j ;> Lflll t +II FF'.+21+11 t: .SJ 
r;,or, tru11+21 FE+21+ll f 

q;,qq Lf.IJll+l"l FE+J.1+11 E SI 
1s,sc u:u11+21 f"E+ll+ll F 

... 0('1 LrUl(+l) PA+21+ll f 

s.so LEU11+2l PA+21+ll r 
·?,QC Lru11+11 PB+2i+ll 0 1~-1 I +11 f 

1.80 LEUll+ll MG+21+11 f 

2.30 Lru11+2t, MG+2(+1J f 

2,60 u:u.11 + n Ht1+2C+ll E STAB .253 

11,ao u:u1t+21 MN+21+l I E STAB 

... s 1 l.EUll+ll ZI~+ 2I+11 D 1·58 

8,56 u:u11+21 ZN+2C+U 0 1sa 
... 2c; LCU 1 I+ I I Zl~+21+1l H +11-11 0 158 

15 .17 ·t.ru11+21 2N+21+11 H +ll+ll 0 158 

10,3? LYSll+ll H +1(+11 fl 369 681 

1 9. 35 L"Sil+ll H +11+2) 0 369 6fll 692 

21. 55 LYSI 1+11 H + l I +31 D 369 682 

l l • 60 LYSll+ll CA+21+ll H +l(+ll E 668 
21.ln LYSll+21 CA+21+ll H +11+21 F 
7,30 LYSll+ll cU+21+1 l E 682 

l '1o60 LYS11+21 CU+21+11 0 369 

.17,91 LY S. l I+ l I CU+2C+ll H +11+11 0 369 
25,87 LYS1"1+21 cu+.21+11 Ii +11+11 D 369 

3'+. 77 LVSll+:n CU+21+11 H +IC +2 l 0 369 

13,80 LYSll+ll FE+2C+ll H +ll•ll E STAS 
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25,0Q LVS!l+?.I FE+21+ll II + l ( +21 F 
1$,'tl) L vs I I+ I I rr.+31+11 11 +IC+ll F 
3~,A7 L VS I I+?. I FE+31+11 H +11+21 F 
1 i+.1 n LVStl+ll PG+21+11 H +I I+ 1 I F 

J.5.fl6 LYS11+21 f'u+21+11 H + 1 I +21 F 
1 2. l 0 LYSll+ll ~::;+21+11 H + 1 I+ 1 I F 

22.10 LYS11+21 MG+21+11 H +I I +2 I F 
12,?.G LVS I I+ 11 M!l+?.1+11 H +11+11 E STA8 

'''·Jr; LYSll+?.I Mil+2t+l I H +11+7.I r 
3,Sn LYSll+ll zn+21+11 [I 369 

7,(ll). l.YS!l+?.I Z t·J+2 I+ I I 0 369 

l't.5l> LYSll+ll Z!l+21+11 H +l 1+11 D 3b9 

7.0,01 LYStl+21 ZN+21+11 H +I 1+11 0 369 

2A,A:J LYS!l+ZI Zll+Zl+ll !i + 1 I +21 D 369 

11'.3) LYS!1+21 rr+21+11 H +I I+ I I F 
zn.AR LYS!l+ZI FE+31+11 H +I I+ 1 I F 

I 11 • ?::-1 LY<:;t(+;>I P<I +2I+1 I I~ +11+1) F 
I?• S:'J LYS11+21 : 1 !!+2 I+ 11 I! + 1 I+ I I F 

S,.., I :•rr 11+1 i 11 +I I+ 1 I D 158 253 

11 • 1 7 ilrT l I +.1 I H +11+21 0 158 253 

l • :' 1 rirr 11 +I I CA+ 2 I+ 1. l E 668 

l. 6~ nrr11+21· CA+21+11 f 

7, 1,7 'l[T I I+ l l CU+21+11 0 158· 

l 'I• 'j ": 1·rr11+n c 1 ~+21+11 (J I c; A 

3. 15 r1r.r11+1> re:+21+11 E 53 

't, 9.C l'ET11+21 FE+21+11 r 
p. •. (, ri ·~r:Tll+ll FE+Jl+ll· E 51 

l'+e9't '1 ET I I+ 7. I f'F.:+31+1) F 

'+~30 :1ET 1 C.+1 l PB+21+ll E STAB 

7. !:':_(') ~:CTtl+:?l pr.+21+1L E S'l:AB 

a.20 METll+ll PR+21+ll on-1c+1t F 
1, a·o m.:r11+11 MG+21+ll F 

2,'tQ '!ETll+?.I MG+21+lt· F 

2.10 11ET11+11 MIH21+1 I E STAB 253 

,.2s t1F:T1(+21 Mfl+21+1l E STAB 

'to22 11 f. Tl I+ I I Z fl+2 I+ l I D 158 

6,93 flET11+21 ZN+21+ll 0 158 

10.22 ORNll+ll H +11+11 D 158 333 

18.77 OP.1111+1) H +11+21 D 158 333 

20,69 OFHll I+ 1 I H +11+31 D 158 

11.'+0 Ol'Hlt 1+1 I. CA+21+11 II +I I+ 1 I E 333 
21,3:) l'PMJl+21 CA+21+11 H + 11 +2) F' 
9,7~ nrrn 1+1 > cu+21+11 D 158 

l't,77. 011:111+21 C\J+21+ll D 158 

17.lf2 t'lRMl (+l) .cu+21+11 H +1 l+l) 0 158 333 

2'+.73. ORN11+21 CU+2C+ll H +11+1» D .158 

33.6'1 nr:111+21 Cll+21+11 Ii + 11 +21 0 158 333 

0.89 orrn1 <+l > CU+21+1) H +11-11 D 158 

12,76 ORNl l+l) FE+21+l> H +11+1) E 53 
21fo25 l'lRIJ.11+21 F£+2C+fl H + 1 I +21 F 

15,47 Of'1Ml<+21 FE+21+ll H +l l+l l F 
18,28 OR ti I I+ 1 .I F'E+31+11 H +i (+J) E 51 

35,34 t)P.N1f+21 f'F.+31+1) Ii + 1 I +21 F 
28,S2 ORNll+21 FE+31+ll H +1(+1) F' 
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I 1 • Q('l 1""~111+11 P!"+21+11 !-l +l(+ll f 
I "l • r. ':i '.'lr.1111+21 rn+21+11 II +I I+ l I f 
2s,r:;0 o.P. ti l I + 2 I p[;+21+11 fl +IC +21 F 

Q.OO 0r.r111+11 pf1+2(+11 01~" I I + l l f 

I 1 • ":"' ,..,rr111 +I l 1·1(j+2 ( + 11 H + 1I+11 E 333 
22. 20 nr>:111+21 r1G+2 I+ 11 H +11+?.> f 

1?.. n 2 i1f'r; I I+ 11 MfJ+2(+1) H +I I+ 11 E 333 
1~.nc n~•! I I +21 ~111+2(+11 H +I I+ l l F 
23.7r: /'\r, ti! ( +21 ~1•1+2 I+ I l H + 1 ( +21 F 

5.96 N't! 1 I+ I l 711+21+11 D 158 

I '+. o e. nil ti I I+ I I Zf1+21+ll H +I 1·+ 1 I D isa 333 

l?. 31 '11HJ 1 I+ 21 Z ti+ 2 I+ I I H +I I+ 1 > D 158 

27.62 CRrJ11+21 111+21+11 H +I I +21 0 1s8 
2.~q "11tii 1+11 zr1+71+11 H +11-11 f 
(>. ~<;' r11r.11+11 H +11+11 r. 158 253 83 

I '1 • q q r111::H+ll H +Ii +21 .[ 253 68 83 

I • Cl n rHEll+ll CA+21+11 f 
I • b r~ r11c 11+2 > CA+21+11 r 
7 • "r:; PHE!l+ll CU+21+11 E STAB b7 

I <f • 'I I rilf:ll+21 Cll+21+ll E STA~ 67 

3. 15 !'llE!(+ll FE+21+11 E 67• 53 

i;. 36 rm:11+7.l Ff+21+11 f. STA.6 67 

~. r. ~ PllEll+ll FE+31+ll E o7 .51 

I b. :'.'::' r11r:11+21 fE+31+11 E 67 

't.,., c f'!'f:ll+ll pf1+21+11 E. 3 1 l 

· 7 • 2r PIH'.11+21 Pfl+21+11 E 311 

3.no r11r11+11 p!;+'}(+ll OH;.l(+ll f 
l .... r: r1.•r.11+11 i·' (; + 2 I + l I F 

2. 36 r11c11+21 MG+21+ll· f 
2.65 riff I I+ I I IHl+2I+1 I E 253 

'+. 30 PllE1!+21 H!l+21+tl ·f 
1f.50 rHF: LI+ l .I z11+21+11 0 369 

8,36 Pt1Ell+21 ZN+21+11 D 369 Ulf 
10.336 rr-011+11 H +(1+11 D ls a 288 680 

12.35 PROll+ll H + 11 +21 0 1sa 288 680 
1 • 30 PF'IOl(+ll CA+2C+ll f 
I, 70 rno11+21 CA+2.(+11 f 
a.68 PROll+ll cu+21+11 0 158 288 680 

16.00 rR011+21 cu+21+11 ·O 158 288 680 

I0,61f PROll+ll CUt21+ll H +11+1> 0 158 

q.f'l() PF'Oll+ll FE+2C+ll E 53 

1.00 PROll+21 FC:+2C+ll ( STAB 

9.69 rROIC+ll FE+31+11 E 51 

17. 9i'J rR011+21 FE+Jl+ll F 
.... 00 PROll+ll PB+21+11 f 
6.00 rR011+21 P13+21+11 f 
s.oo rr.011+11 PA+21+1 I OH-ll+ll r 
1. C')Q rr<o 1.1+11 MG+21+11 f 

2.'lQ PR01(+21 MG+21+11 E STAB 

2.8'+ PROll+l) 11N+il+ll 0 62 

5~53 PR011+21 MN+21+11 0 62 
6.7q pno11+3> t1N+21+ll D 62 

11.sq Pr-Oll+ll MU+2(+11 Ii +11+11 D 62 
l 1 .. 92 PR011+2j t111+2(+1 I H +11+11 D 62 
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s. 1 3 rr.011+11 Zfl+2(+11 [) 158 

~.69 prrn11+21 Zfl+21+11 D 1se 

I 1 • 1 b l"P~ll+31 z ~~ + 2 ( + 1 l 0 158 

3. 2 2 P r?O 1 I+ 1 I zri+21+11 H +1 (-11 D 158 

n. ·01. rro11+21 zri+21+11 H + 1 ( -1 l D 158 

s. f\ 'I '.:[r111+11 H +I I+ 11 D 156 

1 1 • I') 2 SF.IHl+ll H + 11 +21 0 158 

I •. Hi ":EP.11+11 cr.+21+11 £ STAB 668 

I. 70 SEi? 1 I +.21 CA+7.(+ll F 
7.c;1,r:; SF'Rl(+ll cu+21+11 0 !SB 69 

1 •+ • n 1 <;(f'1(+2) CIJ+21+1l D i5e 69 

3.3S SCP.11+11 FF.:+21+11 E STAB 51 69 

6.l'JC 5€·1'? 1 I + 2 I FF.+21+11 E STAB 

A• n0 SEP.11+31 fE+21+11 r 
l'.7i1 :or.<? l I +.l I fE+31+11 E 53 

15.9(1 ';[f.?1(+21 f"C+Jl+ll F 

'I • '.\ i" ':f"?ll+ll P"+21+11 E 3 l 1 

1,2r. ":CRll+21 Pn+21+11 f 

f.I. '.\~ S(:-111+31 PR+21+11 F 
a,oo SERl(+ll PA+21+11 01~-11+11 r 
1.nr SERll+ll MG+21+1> F 
:?.ttJ SErn 1 +21 ~G+21+11 r 
7.. q F1 !';f !'l 1 I+ 1 I r·1•1+21 + l l r. STAB 69 

. 'I • :-: :-' -:-r:ntl+JI :1: I+ 2 I+ I I r 5 TAti. 69 

q,•n SE!lll+ll Z!J+21+1l 0 158 

a,31 srn11+21 l!J+21 +1 I D 1s0 

1n.~1. '..":ER11+31 Z!1+21+11 0 158 

a• 11 TllR 11 +I I H +I I+ 11 D 158 

10.111 THRl 1+11 ti +11+21 D 158 

l • I~ TllRll+ll C/\+7.l+ll r. 668 

l • lf 0 TllR1(+21 CA+21+11 F 
1.~s TllRl 1'+11 cu+21+11 D 158 

l 't. ':11 rwn1+21 cu+21+11 D 158 

3.31 THR l I+ 11 f'E+21+11 E STAB 53 

6,no Tt!Rll+21 FE+21+ll E STAB. 

.a.'+ o .THR l I+ l I f'E+31+ll E 51 

15,'tD THR11+21 f'E+31+11 f' 
lf. 't 0. THRll+ll PD+21+11 F 
7, 'f O nrn11+21 P0+21+11 r 
a.oo THRl 1+1 I PB+21+11 OH·il+ll r 
1.10 rn 1~ l I + .1 I MG+21+11 r 
?. • 30 TH111 I +21 MG+21+ll. f' 

2. !';,I, TltRf(+ll Mtl+2('+11 E STAB 
3,90 Tlli?11+21 i1fl+21+11 E STAB 

... l!3 TlllH l+l I zr1+21+11 0 158 

81l'f TllRll+21 ZN+21+11 0 158 

10. !'\9 THRll.f.31 ZN+21+11 0 158 
9,09 TRPll+ll H +lC+ll 0 158 63 

11,ss TRPll+ll H + l I +21 0 lSB 63 

1,20 TP.P 1 I+ 1 I CA+21+11 F 
l • 6!) TPP11+21 CA+2 C +11 F 
s,os TP~l(+ll CU+21+11 D 158 63 

15,32 TRPl(+21 CU+21+11 0 158 63 
3,45 TRPll+ll f'E+21+11 E 63 53 
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6. 2(; Tr>rll+21 FE.+21+11 ( STAB 63 
g, 'IC rrr11+11 fE+31+11 E 51 

lb .1:, rrr11+21 rr.:+31+11 f 
!f • 'IG rrr11+11 pf:\+21+11 E 311 

n ':.0 Trr11+21 pf\+2i+ll E 31 l 

a.oc rrr11+11 Pf:\+21+11 OH-11+11 F 
I • n 'J ;rr11+11 11G +2 I+ I I r 
2. Jr' rrr11+21 r1G +2I+1 I F 
2, 6LJ Tl"rll+ll ;,, !I+ 2 I+ 1 I r. bl 
l.j. 3 j'") Tl<Pll+21 tHl+2 I+ I I E bl 

l.j. ~Cl Trr 11+11 Vl+2I+11 E 158 6.3 

a,76 TRP11+21 zrr+2c+11 0 158 63 

11 , b I Tf'Pll.+31 Zll+21+11 0 158 

1n.r..:. TY~.?1+11 H + 1 I+ 1 I 0 369 

19, l')Q TYi12!+11 ti +11+21 fl 369 

7. I • :l ~ TV'.' 71 +I I tl +I I +31 (1 . 369 

11 , :' 8 TV~/. I+ I I CA+71+JI !I +I I+ I I [ STA" 66fl 

2 n. t, r TVR.7.1+21 CA+2C+ll H +IC +21 [l 369 

9.32 TYR21+11 CU+2C+11 D 31>9 
15.09 TVR?.1+21 CU+2C+ll 0 l69 
1 7 • {,, TYR21+11 CIJ+.2I+11 H + 1 I+ 1 I [.• J/,9 

2s,r.11 TVR~l+21 cu+21+11 H +ll+ll [I l69 

J 'f. '1 'i TY':?l+:71 C'l+7f+JI " +I I +2 I ti 3b9 

3. r, 0 TYR2!+11 n:+21+11 f 
13.~,:-. TVR21+11 r:r.+21+11 II + 1 I+ 1 I r 
19. n :-: TY~2!+21 n:+2.c+11 H +1(+11 F 
21,r.,- TY';:'l+?l Fl:+2C+ll II +ll+21 r. .STAB 
1, or. TV~21+11 n:+ll'+11 f' 

18,G:'."t Ty~ 'll. + 11 rr.+31+11 H +ll+il f' 
2A, 2'1 TYR21+21. FC+3(+ll H +1(+11 F 
lS,07 TYR21+21 rC+ll+ll M +11+21 f' 
3. r.1 TYR21+11 Pl\+21+11 f' 

.llf.16 TYR21+11 PA+21+11 II +11+11 F 
29.17 TVR21+21 Pfl+2C+ll H +I l +21 F 
21.00 TVR21+21 Pf\+21+11 H +lC+ll F 
11.60 1'YR21+11 MG+il+ll H +11+11 F 

22.10 T.YR2 I +21 HG+21+11 H +1(+21 f' 
1.20 TYR21+ll Mf~+2 I+ .11 f 

12.l6 TYR21+11 MN+21+11 H +l (+11 F 
19,2(< TYR21+21 MtJ+2C+ll H + l I+ i I F' 
23.9(': iYR21+21 MTJ+2I+11 II +11+21 E STAB 
·6.08 TVR21+11 V1+21+1 I f' 
llJ,27 TYR21+11 ZN+21+11 fl + 1 I+ 1 I f' 
.:n,9a TYR21+21 ZN+2(+11 H +11+21 F' 
21 ,oo . TYR21+21 ZN+21+11 H +lC+ll F 
9. 3'- \'ALll+ll H +l C+l I .D 158 

11•66 VALll+ll H +l.C+2J D 158 
1. 10 'JAL! 1+11 CA+2I+1 J E 668 

1 • 'f O VAL11+21 CA+2C+ll F 
7,qo VALll+ll CU+2(+11 D 158 

1'+.55 \IAL11+21 CU+21+1J D 1sa 
3.25 VALi 1+11 FE+Zl+ll E SJ 
s,20 VAL11+2J FE+2(+1) F 
9e20 VALll+ll FE+3C+l) E 51 
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16.;>[i "J\L I I +2 I ff.+31+1 I f 
3. s; 0 '·' J\ l. I I +I I Pf\+21+11 f. STAA 

S.60 VALll+21 rn+21+11 E STAB 

A.AO VAL11+21 rn+21+11 OH-1!+11 £ STAB 

I • 7 fl 11 AL 11+11 M<i+21+ll f' 

2. :>c \!AL i I·+ 7) MG+21+11 F 

2,337 \IALll+ll IHJ+2 I+ l I D 62 

3.'>7 \IAL.11+21 M11+2 I+ I I D 62 

s. l? 'Jf\L.11+31 Mll+21+11 (; 62 

l :>. 7 3 \!AL 1 ( + 1 I Mll+2 I +11 H + 1 I+ I I D 62 

I 3. 'I 0 llf1Lll+21 Mil+2 I+ I I H +I I+ I I .. D 62 

'I • 'I 'I VALll+ll Z1'1+21+ll (.• !SB 

1. 2 11 VALJl+21 Zll+21+'11 D 158 

10.1.2 VAL!1+31 Z~·l+21+1 I 0 !58 

". 1 8 '!AL 1-1 + 1 I Zll+21+11 H + 1 I - I I [) 158 

1 Q.?" (0321+11 H +I I+ I I E STAB 68'1 270 

1 b. r. ,, C0321+11 H +I I +21 E sue 68'+ 270 

7. <> r ((')3~1+11 (,\+21+11 E STAB 2'+6 "3" 

llJ,'?C (0321+11 CA+21+11 H + 1 ( + 11 E. ST Ar 2'+b '13'+ 

fj.~o Cf'.13?.l+ll CU+21+11 E S TAEl "3" 

e.3b Cl"l321+ll cu+21+11· E STAB 

I 3 , {1 '."\ (:0321+11 cu+21.+11·H + 1 I+ 11 F "3" 

I 'I • ?. 0 C0321+21 Cll+21+11 H +11 +21 F '12'1 

'f. r1r cr.:12i+11 FE+21+11 F 't 3 '+ 

b.;;: (0J,,1+71 n:+21+11 r •t 1't 

1 2. no C0321+11 FE+21+11 H + 1 I+ 1 I r '13'+ 

13.tir"i co3:>1+21 ff.+21+11 ll + 1I+21 r '13'+ 

f:. .• a r .. rn '.\/I+ I 1. rr:+:it+ll F 
·" 3'+ 

~.oc C0321+21 fE+Jl+ll f ~l'+ 

13,00 C0321+JI FE+31+11 .H +11+11 F '+3'+ 

I'+, ~C <;0321+21 fE:+.31+11 H + 11 +2 I f "3 If 

3,30 C037.l+ll PA+21+ll F 

6, 'tO COJ.21+21 PB+21+11 E STAB 

11, no C03?1+11 rn+.21+11 H +11+11 F 

13 •. so C0.321+21 PR+21+11 H + 11 +21 E STAB 

I 't ,·20 C0321+31 PB+21+ll .. +11+31 E STAB 

2,90 C0321+11 MG+21+1J E - LOWENTHAL .R' ' PRIVATE COHH, 

10, 90 C0321+11 MG+21+11 H +ll+ll E- STAB LOWENTHAL R, 

3. 1 0 C0321+11 MN+21+11 f' 

. 11,so C0321+11 Mll+21+11 H +1(+11 E ST.AB 

·3. 30 C0321+11 ZM+21+ll f' 

11.80 C0321+11 Zll+21+11 H +lC+ll F 

I 1 • 7 H + 11 -1 I CA+21+ll 0 bl 
7.b M +11-11 CIJ+Z.I +I I D 62 

10, q9 II + 11-21 cu+21+21 D 62 

a.1 H +I I -1 I FE+21+11 E STAB '+ j,. 

2.9 H +I I• l I f'E+31+ll E STAB If jq 

7,7 It +I I -1 I p£1+2·1 +I I E STAB "3 '+ 

11 • s H + l 1-1 I MG+21+11 D 

I 0 .t H +11-11 MN+21+1J D 62 

9,Q3 ti + 1 1-1 I ZM+21+11 D 62 

. ~. !!) H + 11-l I FE+31 +.1 I F 1134 

11.30 PO!t31+ll H +·1 ( + 1 I 0 39 If 

18.00 PO!i31+11 H +I( +2 I 0 39'+ 
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... ..... 

19•n2 
3C?.r)J 
36,72 
?.9,6~ 

12.1.a 
lfl.l>:'. 
16.3(} 
-'~.:\~ 

7.S,::IC 

1 'f • "I"' 
1".32 
3'1,0C 
3 1 • q 0 
27,n;} 
J3,Sn 
2/.:.. r.~; 
J 7 •Ci'.' 
2 I • '1 :-: 

20.nc 
l '•. ~ ~· 
26,30 

3. '+ '1 

13 .Ir: 
l~.7!i 

3 2. 3 ;, 
27.60 
2S. 311 
l'.\,311 
25,bll 
13.70 
1?,2(1 
33,30 
31, 00 
2i>. 30 
11 • 11 n 
20.sn 

3,00 
ll.79 
25,69 
20,qo 
. '1.l 7 
12.oq 
26ob2 

l oM1 
1. 20 
2.20 
l. 00 
2150 
1.50 
2.60 
2.20 
l , Sn 
2.00 
2,20 

ro'l3 I• I I H + 11 +31 
ro1131+?.1 H + 11 +SI 
l"O'l31+21 H + 11 + '11 
rO't31+21 I; +JI +31 
rcl'+3<+11 Cfl+21+11 
rrt.131+11 CA+/.1+11 
rO'l31+?.I CA+21+21 
rn1131+21 CA·+ 2 t +JI 
r·01131+21 (/1+21+11 
r!'l'l31+11 c11+21+11 
f' 0 11 3 I + I I C\1+21+11 
rn'l31+21 cu+21+11 
r 0 '+ 3 I + 2 l c11+21+21 
rt·'l31+21 cu+'/1+11 
!'ii'+'.\ I+ JI FE+21+Jl 
ro•131+21 n:+21+11 
J"f''tJl+ll fE+31+JI 
rn'!.1I+11 FE+31+11 
r>O'l31+21 FE+31+11 

. rn•131+11 f'[\+21+11 
r>O'D I +21 PE\+21+11 
rO't31+11 Mi,+21+11· 
I' 0 '13 I + 1 I M~+21+11 

PO'l31+11 l~(,+21+11 

rr.'131+21 ,,.~ + 21 +I I 
P0'+31+2) MG+21+2l 
P0'13 I+?. I !Vi+ 21+11 
f'(H31+1l 1-111+21 +11 
Pr1'13 ( •21 !!il+2(+11 
P0'+31+11 Zll + 2 I+ 1 I 
P0'+31+11 z:~+21+11 

P0'+31+21 zu+21+11 
P0'13C+21 ZN+21+21 
ro1131+21 ZN+2(+1l 
51L2f+ll H +lt+l l 
SlL2l+ll H + 11 +2 I 
SIL2t+ll CA+2f+ll 
51L2C+ll CA+2C+ll 
SIL?.1+21 CA+2C.+ll 
51L2l+ll FE+3f+ll 
SIL2C+ll MG+2C+ll 
Sll21+1l MG+21+11 
SIL21+21 MG+21+11 
50'1?.l+ll H +lC+ll 
50'121+11 .CA+21+ll 
50'+21+11 Cll+2C+ll 
SC"'t21+ll fE+21+11 
sni+2c+11 FE+J_(+ll 
50'121•11 FE+3C+ll 
50'121+2) FE+JC.+11 
50'121+1) PB+21+11 
S 0'+ 2 I +.l l ~1c;+2t+II 

SO't21+11 MN+2(+11 
SO't21+ll ZN+2(+ll 

0 3?'1 
[J 39'1 
D 39 'I 
0 39'+ 

H + 1.1+1 I D 321 
H • 1 I+ 2 I D 321 
H +JI +2 I D 321 
H +JI +31 D 321 
H +JI +21 f 
H + 1 ( + 11 0 321 
II + 1 ( +21 0 321 
H +JI +31 (J 32J 
I! +I I +21 (I 321 
H +1(+21 F 
H +I I+ 11 f 
1-1 • +JI +2 I f 
H + 1 ( + 11 f 
II +1(+21 E STAR 

H + 1 ( +21 f 
H + 1 I+ 1 I E 337 
H +I I +21 F 

:D 321 

H + 11+1 I [l 321 
H +1'+21 0 32l_ 
II + 11 +31 [) 3Jl 
H +11+21 u 321 

II + 1 I +2 l f 
It +.J.1+11 f' 
It +11+2) F 
H + 1 ( + 1 I D 321 

II +1'+2) D 3?. l 
Ii + l c :t' 3 I 0 321 
H +I 1+21 0 321 
H • 1 ( +21 F 

E STAB 
.E STAB 

F 
H +1(+11 F 
H •1(+21 F' 
H +I C+l 1 F' 

F 
Ii + 1 ( • l ) f' 
H +I I +21 r 

E STAB 
( STAB 'l3'1 H6 525 

-E 52'l 

E STAB 
E: STAB 

u +IC+ll E STAB 
E STAB 
E STAB 
E STAB 't 3'+ 2'16 

E STAB 719 
E STAB 
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0. 5(') sr.ri11+11 H +1!+11 .E STAB· 

.?. • n n sr.:11c+11 CU+21+1l E STAR 

2. tf Cl SCN11+2l CU+21+ll E STAB 

o.i+c SC !J 1 I + 1 l FE:+21+1l E STAB 

2,3G scrn 1 +l l FE+31+1l E STAB 

3. 3r S(tl I I +?I FE+31+1) F 

i.no SC:llll+ll P0+21+ll c STAS 

1.so :,cMll+21 PB+21+1l E STAB 

I • ('Ir; 5Cf! I I+ I I M!l+21+1l c: STAS 2'0 7 

1.2n 5Cflll+ll zn+21+11 E STAB 

1 • 6 (1 r.c:n11+21 Z'l+21+11 E STAB 

7. • ,, r SC!I I I +3 I Z!l+21+11 E STAB· 

21 'Hl ';C:flll+'+l Ztl+21+'11 E STAB 

R,95 11113'.) I+ I I H +11+11 E STAB 98 

3. 9(') 11H.3:!1+11 CU+21+1l E STAB 

7 •. 1 3 1!!13JI +21 Cll+21+11 E STAR 

9190 !!1'3('1(+3) ClJ+21+ll. E STAB 
11 I 'H' "!!3~(+'+1 CIJ+21+1l' ( SHB 

1 I 3C; ':H3<J I+ I l FE+21+11 E. STAS 

l I 9 !J ':H3S!+:>I n:+21+11 r STAB 

3100 '1H30(+'!) FE+21+ll E STAB 

01 5() till3'11+1) MN+21+ll" E STAB 

2 I ;>5 ::H3Q I+ I l z:1+21+11 E STAB 98 

q,c;r: : !fl 3 l'J I + l) ·ZN+21.+ll E· STAB 98 

6 • C~:. !il'.\.~(+31 Z'i+21+11 r 5 Tfi" 98 

9.01 lilt 3 r'J I +'I) zr,+21+11 E STA.B 98 

1 ~. ~:-: ')11.)')t+ll CU+21+11 nH-11+3) E STAB 

1r..or 'ill :q ( + 21 cu+21+11 O!l-11+2) E STAB 

l'l1SC' 11!13J I +3) Cll+21+1l OH-11+1). E sue 
1 'I I OQ fllDOl+ll ZIH21+11 O!l-11+31 E STAR 

13,10 !llt3Jl+21 zri+~1,+11 Ofl-11+2) E STAB 

11 I so tlll30 I +31 Zll+21+ll OH•ll+ll E ST.AB 

10,30 llH301+21 ZN+21+11 OH-Jl+ll E STAB 

a.on !ffl301+11 ZN+21+ll OH-I 1+11 · E STAB 
5,53 CTA31+11 H + 1I+11 (') '+60 26 516 691 lfS7 

9 I 7'1 CTA31+11 H + 1 I +21 D '160 26 5 .16 691 '157 

12. '19 CTA31+11 H +II +3 I D '+60 26 619 512 '157 

3126 CTA31+11 CA+2l+ll D '160 25'1 255 256 2'Pl &92 1125 

'loOO CTA:\1+21 CA+2C+ll E STAB 692 

7153 CTA31+ll CA+2C+ll H +11+11 0 SHB lf60 5'+ 7 

l0,95 CTA31+ll CA+21+ll H +IC +2 I E STAB 

16100 CTA31+21 CA+21+11 H + 1 I +21 E STAB 

If I 75 CTJ\31+11 CU+21+11 E STAB S2'+ 691 

1. nr, CTA31+21 Cll+21+11 E STAB 52'1 691 

a.no CTA31+ll CU+21+11 •t +11+11 £ STAB 691 

9130 CTA31+21 Cll +2C+1 I H +11+1 I £ 691 

11100 CTA31+11 FE+2C+ll E STAB ,. 'I 0 

BI 30 CTA31+ll Ff.+21+11 H +11+11 E: STAB If '+0 

610i~ CTA31+21 FE'.+21+1 I r 
10190 CTA31+1 I FE+3 I +·11 E STAB If If 0 512 

11. ao CTA31+11 F'F.:+31+11 H +1l•l1 E STAB 'I itO 
lt.1nr: C:TA31+21 Ff.:+31+11 E 512 

11.00 CTA31+21 F'E+3C+ll H +11+11· F 
19100 CTA31+21 FE:+31+11 H +11+21 F" 
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o. nc C".TA 3I+11 F E+3 I +.11 H + 1 I -1 I E '+ '+0 
'+. ,, J C".TA31+11 Pf'\+21+11 E STAR 516 

B. OiJ CTl\31+11 p~+21+11 H +lt+ll E STAB 516 

s. 5'.:> CTA31+21 pq+21+ll E S TAE! 516 

b • ("l;J CTA31+31 Pf1+21+11 E STAS 

In. '.1G CTA31+ll P0+21+11 H + 1 ( +2 I E 516 

3.3G t".:H.31+11 ·~ ~ + 2 ( + 1 ) 0 '160 '157 

'I. 1 t! CTA31+21 t~G+21+11 r STAB 

7.32 CTA31+1.I Ml;+21+11 H +I ( + 11 D '11.0 '157 

3. 2 ;" 1'.:Tl\31+11 :~ :1+2 I+ 11 E s T'Afl 720 

~.n0 CT/131+11 ~n1+21 +.11 H +1(+11 E STAB 720 

'I. 3 iJ CTA31+2l ~Hl+21+11 f' 

't • . b (i CTA31+ll Zil+21+11 r STAP. 'f57 

P .• '"'1': C"Tll31+11 Z'l+2 I+ l l H +l(+ll E STAB '+57 

ir..Qc; CTA3i+ll Z!l+21+'ll H + 1 ( +21 E STAS 

,., • b: CT,\31+21 Z ~I+ 2.1 +I I F 

3. 711 L TA 1I+11 H +I I+ 11 E STAP. 

I • SS LTA!l+ll CA+21+1.1 F. STAB 695 

2, no LTA11+2l CA+21+11 E STAB 

2.2::i l.TAll+ll CU+21+11. E STAB 69'1 695 696 697 

3.nu LTA11+21 CU+21+1) t STAB 69'1 695 696 

3,03 LT/111+31 ClJ+21+11 E. STAB 69i+ 

1 ". • L "'II 1 I+ I I fr"+21+11 F .. ' . 

'i. oo LT/111+11 FF.:+'31+11 E STAB 

6. ~'.·: LT 1111 +21 rr+31+11 f 
1 • 7 c; LTAll+ll PP.+21+11 F 

2 • S.i:; ·LTr,11+21 P!\+21+11 E STAO 727 

· 1. an l T 111I+11 MG+2(+11 E STAB 

1 • "("l LU.11+21 M(,+21+11 E STAB 

I, 00 LTAIC+ll MN+21+lJ E STAB 

I , If :J LT11il+21 .~tl+21+11 E STAB 

1. 75 LTAlC+ll Z~l+21+1) E STAB 

2.75 LTAIC+21 Z'l+2C+l 1 t: STAB 

If, 8 I l!LA21+11 H +J(+l l E STAB 

a.as t!LA21+il H + 1 ( +2, E STAB 

2.00 llLA21+11 CA+21+1J E STAB 698 

5,so 11LA21+ll CA+21+11 H +ll+J) E STAB 

a.so llL/121+11 CA+21+ll H + 11 +21 E STAB 

.'l.00 l'LA21+11 CIJ+21+ll E STAR 698 

5. 'ill 11LA21+21 CU+21+11 E STAB 

s.nc "LA21+1l CIJ+21+1l H +1 l+l I E STAl\ 698 

9,80 !!LA21+11 Cl.l+2C+ll H +l( +2) E STAB 

10~60 nLA21+21 CU+21+ll H + 11 +2) E: STAB 

2.40 llLA2C+ll FE+21+11 E STAB 

6.70 11LA21+11 FE+JC+lJ E STAB 

2. l (1 MLA21+ll Pi3+21+1) E 728 

2.60 llLA2t+21 PB+2C+J) E 728 
2o90 11LA21+31 PB+21+11 E 728 

1. 20 llLA21+1 I MG+21+1) E STAB 

5.90 llLA 2I+11 Mt;+21+1) H +IC+l l E STAB 
8.40 llLA21+11 t.tG+21+ll If +l (+2) E STAB 

2.00 MLA21+1l MIH2 I+ l J E STAB 

2.60 llLA2 I+ l I ZN+2(+JJ E STAB 
7,40 llLA21+ll ZN+21+1J H +ll+ll E STAB 
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3-. r.s ftXl\21+11 H + 1 I+ 1 I E STAB 700 

~. l 0 OXt.21+11 H + 11 +21 £ STAl3 699 

1. so C'XA7.l+ll CA+21+ll E STAB 703 

2 • "(') nx A7. I +2 I CA+21+11 E STAB 

'f • b :J (;Yf,.71+11 Cll+21+11 E STAB 

t\. 2 J "V.?.1+21 cu+ 21_ + 11 E STAB 

s.ni; nXA21+11 CIJ+21+ll ll + 11+11 E STAB 

3 • 1 ~ <' Y. A:? I+ 1 I fE+.2(+1 I E STAS 

6 • O!: <'Y.A?.1+21 fE+21+11 E STAB 

s.nn nx A 2 < + 11 f'E+31+11 E SH.13 701 

l'f.2C (1)'./121+21 FE+31+11 E STAB 

lQ.nr_: (') ;: 1\21 ·-~I fF.+31+1> E STAB 

r. • :1 r: n;:A:?l+ll FE+31+11 H +I I+ l I E STAB 

3. "~ f')'. A? I+ t 1· Pr.+?. ·I+ 1 I E STAEi 707 

s. 7 r. C'XA21·~?.I P!'1+21+11 E STAB 707 

2. tio nr. A2 I+ I I ttG+2 I+ I I E STAB 

3.~.(l '.1"/.A21+21 r1 (i + 2 ( + 1 ) E STAB 
,, • ~·r-. l' )'A?. I+ I I :.iJ+21+11 r. STAR 708 

"+.fl c l'll:A21+21 Mll+21+11 ( STAJ3 

If."[" 0U.21+l I zn+21+11 E STAB 

1.00 C1Y.A2 I +21 211+21+11 E. STAB 
7. ~;:: n::A~l+31 7.!1+21+11· F. STAB 

5 • 1 r; ti:~A?.1+11 7.11+21+11 " +.!( + 11 r · STAO 
7' r,r ny 11? I +l I 711+21+11 H + 1 I +21 E STAA 

2. :i r: rv Alt+ 11 Ii + 11+11 E 5TA~ 710 
'l.7r; ·r11A1<+11 CA+?.1+11 E STAD 

:?.2c f'\lfo,l(+l) C!J+21+ll r. s Tl. Cl 7 11 2so 
11 • 28 ~'.11\11+21 Cll+21+ll £ STAR. 250 

l. :rn PVAll+ll F'E+21+11 r 
1.90 PVA11+21 f'E+21+1) F 
If. 00 rVAll+ll F'E+31+11 F' 
b,OO P\!All+21 f'E+JC+ll r 
l t SO f'VAll+ll PR+2(+11 E 2so 
2,AO f'VA11+21 PfH21+ll E 250 

0. 7!'. 1'\l.A 11 + U Mt1+21+ll r 
l. oc f"Vl\11+11 Mfl+21+11 E STAB 

l. so PVAlC+ll ZU+21-+1 I E 710 
2.20 rVAl(+21 211+2(+1) E STAB 710 

13.bon Sl.A2C+ll H +1 (+l) D STAB 
15.Alif SLA21+1) H +l (+21 D STAB 

a• ui 5LA21+11 CA+2C+ll E STAB 
0 •. 30 !'iLA2( +21 CA+2(+l) r 

llelCi 5LA21+1) CA+2(+11 If +IC+l) f 
in.DJ !':L.A21-i-ll CIJ+2f+lJ 0 STAB 

1a.20 5LA21+21 CU+2C+ll 0 STAB 

6.oo 5LA21+11 FE+2C+I) E STAB 

Io. OC" :.Lt-.21+21 f'E:+21+ll E STAI! 
16.0G SLA21+11 F'E+31+11 E STAB 512 

21.00 SLA21+:?l f'E+Jl+ll E STAB 512 
Jlf.00 ~LA21+31 F'E+3f+l) E STAB 
17,00 5LA21+ll F'E+31+11 H +1 (+11 E STAB 
i;.so 5LA2't+ll PFl+2I+11 , F 
9,00 5LA2C+2) PB+2(+1) F 
o.2s SLA21+11 MG+2C+ll F' 
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i:i. J~ ~LA21+21 t1G+2I+1 I F 
s.~u ~LA21+ll 1~!1+21+1) E STAB 
q.oo 'iLA21+2°1 Ml~+ 2 I+ 1) E STAB 
6,r;r, 5LA21+11 zn+21+11 E STAB 

10.t;~ 5Ll\11+2l 7.~1+2.1+11 F 
c;. l? --:(1,21+1) I! +l(+ll E 512 
<) • l 3 5Cl\?.l+ll H +1(+2) E 512 316 
1 • r:i r. ~0.?.1+11 CA+21+ll E STAR 

le5G SCA21+2l Cl\+21+11 F 
!l.l>C !":CA21+ll c~+21+1t H +ll+ll t STA6 

2. 'IC 51'.'!\?1+11 Cli+21+ll E STAB 
3.'IC ~Cf;21+21 CU+21+il r 
b.bt '.>CA21+11 Cll+21+11 H +lf+ll E STAA 

l •II J t;CA?l+l I Ff+2C+J I E 316 
? • <) 2 'iCfi21+21 ff.+21+11 E 316 
7. 1:i ':Ci\21+11 ff.+31+11 E STAR 512 

12. Jr, 'lCJ\21+71 ff.+31+11 E 512 
I • If:"' r.rA21+11 p(l+21+11 E S TAe. 
,,Jc 5Cl\21+21 pn+21+11 F 
1.on 5CA21+11 11G+21+11 E STAR 
1 • 511 !:CA21+21 HG+21+11 F 
!=.. 5r. ~CA? I+ 11 MC+]l+ll H +l(+ll .E STAB 

1. 30 !'iC 1\21+11 Mtl+21+11 E STAB 
I, 5n r;o,21+11 ?M+2.1 +I I E STAB 
2,3h :.Ci\:?1+21 Z~l+21+11 f 

. r; , 9.n 5CA.?.l+ll Zll+2C+ll H +I (+i I E STAB 

10~35 /1Cl\Zl+ll H + 11+11 E 316 
I If. 11 t.r.1\21+11. H +l I +21 £ 316 ' 
tn,'15 ACA?.C+ll Cl\+21+11 It + l ( + 1-1 E STAB 233 23'1 2.Js 713 
11.35 ACl\2.l+ll CU+21+1) H +lf+ll' E STAB 

1.10 ACA21+11 FE+21+1) f 
11. 00 ACA2I,+11 PFi+21+11 H +1'+1t E 713 714 

10.'I~ ACA21+l) MG+·21+lt u +IC+I) F 
I 0, 8•J l\Cl\21+11 Mll+21+11 H +l C+I l F 
11.no l\Cl\21+1 I Zll+2C+ll H +1(+11 F 

-------~---~-------~-------------------~---------------------

TIH: fO-RllATfON COt1STANTS ARE GIVEN AS LOGS. THE SYMBOLS USED ARE 
OEFINE"D' 'Itl APPEtlDIX s.7. THE COLUHN OF ALPHAoETic CHARACTERS• THE 
~ORO •STA~.• AND THE NUMBERS ON THE RIGHT HAND SIDE SERVE ONLY 
To W!lICATt THE SOURCE or TtiE f"OF:HATIOn COUSTANT. ' THEY, DO NOT APPEAR 
rn TllE ECCLES DATA nu:. •STAa.• r1EANS THAT A VALLIE' FOR THE 
,~RHATION .C6NSTANT OF THE COHPLEX SPECIES IN QUESTION APPEARS IN THE 
CHEH 0 SOC. SP~CtAL PU~LfCATIONS NOS. 17 OR 25 oN 'STABILITY CONSTANTS', 
THE IH.:FCl'IE~ICr: lltll1RERS ARE mos£: LISTEO FOR THIS THESIS. 

71'+ 
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Tllf: Al.f'llf.rrTJC CHARACTERS l!ll:IICATE tHr. FOLLOWlt1G: 

'": f'\ I rf:cr tlF. f1Sll~~r.11r:~JT: TllE f0f;!1AT I ON CONST ANT HAS B([N 
OETF:P.111 nco lltl['IE~ F'l-IYS l OLOG lCAL CONo IT IONS or TEMPERATURE 
Aflf'\ IOtllC STPt 1:GTll. 

r. E S T I : I A T E D : T H E F 0 r. !1 A T I 0 ~' C 0 N S T A N T H A S. BEE N ME AS U R E 0 
ExPERlll(flTALLV n•JT HAS oErn AOJUSTEO TO sun THE .MODEL. 

r ~ r,1,1[5<;Err: tlO FOP.t1ATION COtJSTfllH HAS BEEN FOUNOIN 
THr LITERATllRF·. T•!E VflLllE HAS BEE!< ESTIMATED USING 
VA r 1 OIJS TYi' F:S OF CHF.M IC AL T RE!lo • 

-----------------------------------------~----------------~-------------

---~-------~----------------~------------~---

9.06 z ti+ 7. ( + l , AAA11+21 FROM R£:F 98 
8. 5'1 7'11+21+1) ALA11+21 
9,06 ir1+21+11 GLY11+21 
't. so !ll+21+11 NH301+21 
7. 1 7 ZN+21+11 ALAll+ll NH301+1J 
7.5~ Ztl+21+11 AAAll+ll NH3Ql+ll 
1.s2 Zt1+2C+ll GLYIC+ll NH301+1J 

n • q:! ~t 1 +2l+ll l\LAll+ll 1-11-130 I +21 FROH REF 98 
10.2[1 7.11+2(+11 ALAll;t-21 flH30l+ll 
9. 1 't Z!!+21+11 GLY11+11 IJ1!30(+21 

10.s2 Ztl+21+11 GLY11+21 NH30C+ll 
9. l't ZN+21+11 AAAl<+ll tlfi30(+21 

10.r;2 Ztl+ 2 I+ l I AAA11+21 NH301+11 

IJ,ao !fl+21+11 NH301+21 
Q,'fQ ·A.I.Al 
0,4Q ABAI 
O.'IO APGl 
O,IJQ ASNI 
a.lo ASP2 
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n, 11 ~ CI Tl 
0, 'I 0 cvc;2 
0 ··'1!:1 CI (;2 
n. lfo GLIJ2 
n, lfO GL 'I I 
f),'l:J HISl 
0. '10 HYPl 
[J. If '.1 ILr.l 
t') • If t') LElll 
0. '10 LYSl 
0. "!J METl 
f),'1:1 ORNl 
0. '111 PH( l 
0. If'.') P!'H'.11 

'J. 31 srn1 
0 • 'I ;i T II'~ l 
f1, 'LJ ·T~f'I 

c. lf ~ TY'-: 2 

0. 'Hi VALi 

8. 09 . CU+21+11 CTA31+21 FROM REF' lf86 
16•30 CP+2(+ll pr-?01(+21 
I If, ?.C CU+21+11 ·.C.TA31+1 I P'lOl 1.+11 

3,20 CU+21+ll LTA11+21 
I') • 'I 'i A AA l 
0 , 11 'l ALAI 
0. 'l'.i ii. :I" 1 
O, 'IS II R.G l 

.o • ''"' 
ASN 1 

o,3s ASP2 
o. 'Vi CI Tl 
0. 14!'; CY52 
0 1 'IS CIS2 
0 • '15 GLU2 
a·. 11s GLNl 
a·, 'fS GLYl 
a.Ifs H l.S 1 
0, 'IS HYPl 
0, 'tS IL El 
o; 'Is L F:l.l 1 
I)',,~ LY5l 
o. i+s METl 
0. '15 ORtll 
0, 'IS PHEl 
Q,'fS PRO! 
o.~5 SERl 
o.'ls TiiR 1 .. 
o.'fs TRPl 
Q,'fS TYR2 
Q,'fS VALi 

11.so ZN+21+11 PV Al I +.1 I GLY1C+21 IN 1 5TA61Ll~Y CONSTANTS• 
l If. 20 ZN+2f+ll PVAlC+21 GLY1'+21. 
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9.01 7. 'I+ 2 I+ I I PVAll+ll ILEJl+21 

11~7'1 :'.II+ 2I+11 PVAll+21 1u:11+21 

9.90 Zn+ 2 I+ 11 PVAll+ll ALA11+21 

10.00 711+7. I+ I I PVA11+21 ALA11+21 

1 • 95 i' ~I+ 2 I+ I I PVA11+21 I ll ' ST AB I L I TY C 0 NS t A IH S • 

9.01 ~!1+2(+11 GLYll.+21 
~. !i? :".tl+21+11 AU\11+21 

fl • 'I 9 7r:+ 2 I+ I l ILr:ll+21 

1.sa :!!'+?l+li PVAll+ll GLYll+ll 

6.79 zr;+,;>(+ll Pl!Alt+ll ALldl+ll 

6.76 7.fl+21+1) PVl\11+11 ILEll+ll 

l • ':I:\ !:1+7.1+11 PVA11+2) 

a.10 AAA 1 

!J • ?.O AR A·l 

r:i. 70 A!Hi 1 
I"!. 1 CJ A S!l I 

0. b'.'.' ASP2 

0.10 CIT! 
0.10 CYS2 

'.). 7C1 CIS.2 

0.10 GLIJ2 
~. 7'1 (, l. '11 

Ot 7:1 Ii J s 1 
O,<lf1 u:u I 
0. 7rl LYSl 

n. 7 :1 MF'.T I 

11.10 OR'~ i 
0.10 PHF.l 

0.10 PROI 
0,60 SERI 

0~70 THR 1 
0.;71) .rnP I 

0.10 TYR2 
Q,90 VALi 

9,09 . CU+21+l I CTA31+21 

1. no AAAI 
l. 00 ALA I 

I • !10 A[\ A I 

I. 00 ARGl 

l. 00 ASNI 
·o. 90 ASP2 

1.00 CIT I 
· 1 •. 00 CVS2 

I, 00 C!S2 
1.00 GL02 

l. 00 c; L ti l 

i .oo GLVl 
1,00 HISI 

1.00 HVP I 

1 .oo JLEl 
I .oo t. EU 1 
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I• nn ·LYS I 

I • 0 Cl l"ET 1 
1.nn OR!ll 
1 • 0 tJ P!-IE l 

0. 9'1 SE" I 
l • ') 1 THf? 1 

1.oc TRI' l 
I • n :i TYR2 

1 • 0 'J VALl 

· l!;,76 Cll+21+11 ASPi1+21 

·o • "r; HA l 
0. '15 ARAI 
IJ. '15 A R(j 1 

n •'I c; ~ c; :.! I 
0. 'IS CITI 
o.'lr; CYS2 
0. ,, ... , ct'.; 7. 
·Q. 'l'i GLrll 
0, 'IS HJSI 
o,'lr; HYPl 
0 ... .., 11. t I 
('). 'I c; u:u 1 
n ....... t.Y<;t 

. 0. '15 M'.TI 
ri. 'I c Ol'Pl I 

0. 'I c; PHE 1 
0. 'i r; PROJ 

o.zs SF:l1 l 
O. 'IS TH~I 

0. '15 TRP I 
. Oe'IS TY!l2 

Oo'IS VAL I. 

1'1.61 C:t•+2(+11 GLlJ21+21 F'ROH REF' 379 

18,'15 CU.+21+11 HIS11+21 

26,R5 CU+ 2 I+ I I . HIS 1 I+ 2 I H + l 1+2 I 
1'1.59 CIJ+2C+ll SERIC+21 

l'f. 69 CU+il+ll THR1C+21 
l 7. 67. CIJ+7.l+ll HlSll+ll GLll2f+ll 

21.65 Cll+21+11 Hlc;l 1+11 GLU2f+ll H +11+1) 

17.5'1 Cll+21+11 HlSIC+ll SF:Rl(+ll 

21.10 CU+21+11 HISJC+JI SERll+ll H +1 (+11 

17,5!\ CU+7.(+11 1-'ISll+ll TMR H+ 11 

21.no CU+2f+ll HISl 1+11 THRlf+ll H +11+11 

1s.01 Cll+21+ll AAA11+21 F110H REF' 83 
lc+.99 CU+21+11 ALA11+21 
lc+.C)3 ClJ+21+ll ABAIC+21 
ls. l l CU+il+ll GLY11+21 

.... 11 CU+21+11 PHEJl+21 
1'1,57 Cll+21+11 SEP.11+21 

1 't. 77 CU+21+1l, THR 1 f +21 · 
3'1,B'I CU+2C+ll TYR21+2l H +11+21 
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1r;.32 Cit+ 21+I1 Al\f\11+11 GLYll+ll. 
15.25 CU+21+1l Al\All+ll f"Htll+ll 
15.09 (11+21+ll AAA11+11 SERll+ll 
1 5. 1 A Cl'+21+ll AAA11+11 TH r. 1 I.+ 1 I 

?«; • 2 1 CIJ+21+11 A /1 ii 1 I+ l l TYR21+ll H +1(+11 

1'>.27 CU+?.1+11 AL.lill+ll Af\/\11+11 

15.2'1 Cl!+21+11 ALl\ll+li PHEll+ll 
15.23 CU+21+11 l\LAll+il THl'!l+ll 

?.S.23 (11+21+11 Al.All+ll TYn21+11 H +11+1 l 

1S.2R CU+?.l+ll ABllil+ll GLYll+ll 

l'i.21 CU+21+ll flr.1\11+11 PHF.1 I+ l l 
1~.06 (11+21+11 At~/\11+11 5ER11+11 
)t;.16 Clt+2 I +·11 ABllil+ll THrn I+ 1 l 
2 i; • 1 ii CU+21+11 I\!'; A I I+ 1 I TY!\21+11 H + 1 I+ l I 

1 5 • .'.\::, CU+2.I +I l GLYll+ll P 11 r. I I + l l 

15.? 'I I': ll +?.I+ 1 l r.LYll+ll THl\11+11 

:'S. 2'1 crt+ ·'I+ 11 c.LYll+ll TYi~ 2 I+ I l II + 1 I+ I I 

1 '> • o:: Cl:+2 I+ I l •' ! t E 1 I+ 1 l SErnl+IJ 

1 s. Cl<;' C.!1+?1+11 Pllrll+ll TH" 11 +I I 

25.09 .ClJ+2C+11 PHF'..11+11 TYR2C+ll ll +IC+i I 
l'l.()S Ci•+?.1+11 srn11+11 . T HR 1 I+ 1 l 
2'1.c;t. (.1!+21+11 sr:Rll+ll TYF21+11 It +lt+JI 

2c;.ot1. Cll+21+1l TllRll+ll TYl\21+11 H +1(+11 

15 .• 7 b (11+21+11 ASP2C+21 F'ROM REF' 335 
1'1.7'1 \.1!+71+11 Gl.U21+21 
l 'I • :\'I Cll+?.1+11 l~LYl1+21 

1s.1n CU+?.1+11 A51"21+11 (iLYll+ll 

15.63 CU+21+11 AS1'21+11 GLU2C+11 
1s.10 CU+21+11 GLl.!21+11 GL YI C + 1 I 

l If. 82 CU+21+.ll ALA11+21 F'ROM REF' 81 
1s.n2 Cll+21+ll GL.Yl'C+21 
1'4. 57 CU+2 (+I I SERIC+21 

1«t.79 ClJ+?.1+11 VALll+21 
IS.OS CU+2C+ll ALAll+ll GLv1c+11 

l'fo9l CU+21.+l I ALAlc+ll SERlC+lt 
15.20 Cll+21+11 ALAll+ll VAl.ll+ll. 

l't. 66 CU+21+ll GLYll+ll SERlC+ll 

!S.06 CU+21+1l GLYlC+ll VALll+ll 

1lf.u'+ CU+21+11 SERll+l) VALll+li 

11.'1(1 Pr'+.21+11 CYS21+2) f"ROM REF' 337 

:n. on rr.+21+11 P0'131+21 H +11+21 
A• 5 r; rr.+21+11 tTA3C+2l 

2.7.53 rB+21+ll CYS21+11 POlf31+1J H + 11 +ll 

lll.27 rn+:?C+ll CVS21+1l CT/\31+11 
20.95 f'l'+21+l) P0'+31+1J CTA31+1> H +11+1) 

19030 ZU+21+11 CYS21+21 F'ROM REF 337 
29.00 Ztt+ 2 l+ l > P0'+31+21 H + 11 +2 I 

B 0 70 zr1+21+11 CTA31+21 

25. l If ZfH2( + 1 t CYS21+ll P0'13C+l> H +1t+1> 
16,59 ZN+21+11 CYS21+11 CTA3C+ll 
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21. 7 2 rn+21+11 PO'l31+11 CTA31+11 Ii +11+1) 

I a, 51 cu+21+1t CIS21+11 HISl I+! I rR011 R£F' I.SS 
2s.nn CU+21+11 CIS21+11 HIS!l+ll H + 1I+11 

30. b9 cu+21+11 ClS.21+11 HtSJf+JI H +I I +2 l 

:39. 15 CU+~l+21 Cl521+1l 111511+21 II +li+ll 

11 • 62 1.11+.7.(+ll CIS21+ll HISl f+1 I FROM REF' 158 

1?.55 Zll+21+11 CIS21+11 HISif+ll II +l(+ll 

26135 7.!!+21+!1 Cl521+11 HtSl l+l I H +11+2) 

15.23 Zll+~l+ll CY52l+ll HISll+ll 

2116\l Zfl+21+ll CY521+ll HIS!.1+11 Ii +1<+1) 

2b.SO ZN+21+ll CYS21+.1l HIS11+21 H +lC+ll 

10.75 zr1+2l+ll HISlf+ll GlU2i+ll 

11.12 7.tl+11+1l HtSll+ll GLVll+ll H +11+1) 

23110 ~rl+2'1+11 HISll+ll GLYll+2l H + 11+11 

22.79 7rJ+2(+11 li1Sll+21 GLYl 1+11 H +ll+ll 

Jl+.29 cn+2c+11 AS~ll 1 +21 F'ROM REF. SO'f 

I 'I. 00 CIJ+21+1 I GLlll.1+21 
l'1 1 B3 CIJ+21+ll GLY11+21 
lif,:\'j <:11+21+11 SER1f+2l. 

.l'*•"I CU+2l+l) ASllll+ll GLYI 1+1 i 
I 1h /,? :C" + :' I + I I. A'i'l I l+I I 5!!:'.~il+lt 

1'1,7:.J CU+21+U GLNll+I) GLY I I+ 11 
I tJ , !' 3 C:U+21+ll GLflll+ll sr.1111 + u 

I r:i, 9 n r r: +.3I+1 I CT.\3f+2l 
1I,,0 Li" A 1 
1 I sn MLA2 
1 o60 OXA2 
1•30 PVAl 
l. so SLA2 
r•so SCA2 
0,90 AA'1 
0,90 ALAI 
o. 9.0 ABAl 
6,90 ARGl 
Q,90 · AS~H 
Q,90 ASP2 
o.90 CIT I 
0.90 CYS2 
Q,90 CIS2 
0.90 GLU2 
Q,90 GLNI 
Q,90 GLYI 
o.9n HIS! 
Q,90 HYPI 
Q,90 ILEl 
o,90 LEUl 
o.90 LYSl 
o.9o METl 
0.90 ORNl 
o,9o PHEl 
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0~9C SE:? I 
fl. 9il_ THPI 
0. q Cl TR!' I 
0.9.0 TY~2 

0. 90 Vl\Ll 

6.50 n:+3<+11 OXA21+21 
1 • ('),~ LTAI 
1.no HLA2 
ChqO PVAi 
I • n :'.' SCA2 
1 • a '1 SLA2 

9. 9 ;i Ct1+7.(+ll OXA21+21 f"RuM REf 630 
'I• n:-: .CU+?.(+!.) SC"21+21 
7 • Rr .• CtJ+2°<+11 OXA21+11 SCA21+11 

9,93 CU+21+11 nx 112.1 +21 
1.20 CT/13 
o,no LTAl 
1 ~no MLA2 
o. n D P'JA 1 
1 • t1 n Sl.A2 
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(lppendix · 5·7 

EXAt1PLE nr !"\LOOI" PLASMA MOOF:L COMF'OMEIH CONCF."NTRAT IONS 
~ '.JD 0 r T 'I:; c n" r: F. <; r 0 N :'.) I 1-1 G I : l r ti T "A T A f" 0 R p ~ 0 GR A I! E cc LE 5 • 

----------~-----------·-----------~----~-------------· 

";InuU.T!~''. "F T11f. ~1E!At IOll I Llr,A!Jn DISTP.I,wTION HI BLOOD. pLASMA• 
~.f4. 'Ll\Y 
!'J[Cr::·~r..r. I "75 
Th.llf. CU+2 CA+2 1:~+2 :llJ+2 FE+3 ZIJ+2 
r :-: 11 r ct 1 + 7 1 •J cm o • o o • a o 1 
r!ULTIF'LY 
S!JPPFSS OUTPUT 
TOTAL Cl1'.l(f.tJT':AT Ions 

. 41\Al 1.a:iri7A6 I AVF:RAGr. At11:41) ACID cnr1PONE!JT) . 
.•.. ,\,] 1 .• -""- -:-::, 

ASilI .IJ.Or.IOil5S . 
.... , r;r-) :i •. n :;r, :· 1.1 s 
".: I T 1 1 • ::; ~., ~i ~ 7 
C Y S ;> rJ • '1 'i ('l ~I:' 3 
c:1s2 t'l,oon.:1'1o· 
'iLU7. a, nnr.r,'l <! 
GUil o. nooi;21 
GLY 1 r.I ~ 1100?'13 
~11 S l 0. O'.'lC:"\l\S 
'!VP 1 0 • Of')OIJ07 
L.YSl n,00017A 
1-1 F: T 1 0 • 0 0 0 0 2 9 
ORtlI l'J,000058 
PHEI n.o00!16c+ 
PP.01 0 0 000211 
SERI 0,000122 
Tf!fll 'J.OOOlSiJ 
P~P1 ri.n:i".)c10 
rvR2 1.o::ioosa 
C032 . fJ • 02'1500 
f'0'+3 'h C!ODJA 1 
SIL2 0,000138 
sa 1n 'J. (lf'.i0211 
SCILI o.00001c+ 
Ntr30 0,000021 
CTA.3 O,CH'l0113 
LTAl n,orJ1Al8 
t1 I. A.?. 'J, 01Cln35 
OXA7. 0,000(109 
PVAI 0,000095 

I ASP AR AG Irl_E) 
I A Sr Arr rr ACI''l) 
IC I Tf'ULL I 'IE'. I 
I CY5Tf. I 'IE> 
ICY ST I i~E t 

'<GLUTA!i t.C AC I!'l I 
IGLUTAMJME> 

IGLYClrJE> 
I H I 5 T I f\ I I~ F. I 
I HYl'ROXYPROLI tlE) 
ILYSJNE> 
I METHIONINE> 
I ORM I TH JtJE > 
I PHENYL ALAIJ INE) 
I PHOLI NE> 
!SERINE> 
I THP.EOil J !JE > 
I Tf~YPTDr~IAtl) 
!TYROSt!IE> 
I CAP.£\OfJATE I 
!PHOSPHATE> 

.!SILICATE> 
tSL'l.PHATEI 
ITHIOCYMATEI 
I AMMO'N I A I 
!CITRATE> 
I LACTATE) 
IMALATEJ 
(OXALATE I 
IPYRUVATE) 
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<;t_A;> rJ • n"l!l"!C15 
SCA2 '.1.on110 1n 
ACA2 "1.Clf.J011'13 
r r c: r r: n r 1 r: f' 1 T i' A T 1 o '' s 
II + i "'• f1'1f"l'll'C1 'I 
0:1-1 '1. n'11"Jnoo6o 
Ct.+7 ri.'.1'.'.'11'1 
Cl!+:> 1.oc-1n 
rr+J 1.nr:-23 
l'fi+?. i.r.r--111 
"i.+2 '"! • G::JtiS?. 
t1'!+2 1.'.'.:r-12 
i~:+:! 1 .1nr-., 
Sr Ee T ~ (l'lfl<;T A!JT<;. 

ISALlCYLATEI 
I SU CC I ti ATE I . 
I ASCORFl1HE I 

tH"tf'IPOc;rt; t~HlSI 

IHYt'IHOXYL IC'INSI 
!CALCIUM !ONSI 
I CUP~('l115 t CHIS I 
lfEPRIC JOl·JSJ 
IPLlll1!10U5 toNSI 
IMAr;r!ESI!HI 10~1s1 

I "1 Ml G A r ! o II S I 0 HS I 
IZil'C tOMSI 

---~-~----~-~------------------~----------------~~------~~~-----~ 

TH!: ",\·~r~ I ~I pt1::r·1r11r.sr:s Ul•LY ~r-rcvc TO I tiF:ilT Ir.., Tiff SynbOLS. THt.y DO IJ()T 

11:-rrr, ... Pl Ttif'. Ec:r1.r.s r.ATA rrt.F:. ALL CO!ICE14TRATIONS ARE IN MOL.ES/LITRE. 

. . 

rl(lST nr TJH'. cnrlcF:tlTRATION. D"TA IS TA,KF:N 
~ANDBOO~S lp6R EXAMPLE• 577t'.6•7~ 61181, 
• S A • ~ 6 ~ • 6 6 6 • I II 5 • '+ 1 6 .• .7 7. 2 • 7 2 3 t 7 2 II t 

,RO~ STANDARD elOLOGICAL DATA 
OTH[h RErCRENCEs USED lNCtUDE 

12s, 73p 732, 133, 1311, 13s, t9~· 2•1, 




