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Abstract

The oscillafor strengths of several NII and NIII
lines in the optical wavelength region are calculated
by means of the Coulomb approximation. Atomic processes
in a plasma aie discussed, as well as twd models (LTE and
semi-corénal) which can ‘be used to determine the line
intensity ratios of subsequent ionization stages of the
saﬁe-element; Two derivations of line intensity ratio
fbrﬁulae»arngiven;.valid.undéﬁwLTEfand.semi-coronal
conditions. Parameters necessary for thétevaluatiOn of
eollisional-radiative coefficients in the semi-coronal
model are discussed, and‘aniatfehpt ié.made to show that
the theoretical values in the literature at present, are
inadequate under the laboratory conditions of interest.
The lines for which f-values have been calculated are
generated in a theta pinch plasma, and an attempt is made
to decide which of the two models accounts more accurately

for the observed intensity ratios.
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Introduction

In‘this thesis an_ettempt is made to establish the
form of the equations determining the line intensity
ratieé of subsequent ionization stages of the same |
elemeht, Qalid under semi-coronal conditibns (electron
temperatures between 1 and 10 eV and densities of the
order of 1015 to 10!6 per cm?).

An important parameter in plasma‘spectroscopy is
the absorption oseillator strength, f;lof a transition.
The first chapter 1s devoted to a discussion of a
relatlvely 51mp1e atomlc model the Coulomb approxlmation,
which leads to satlsfactory vaIUes of f 1n mOSt cases of
interest. o | |

Insideda plasma; the etate of the etoms could range
from neutrai to'highly ionized. Under‘conditions of
local thermal equilibrium (LTE), the ratio of.the popula-~
tion densities of excited levelevwithin an atom or’ion,
and of Successive ioniiatioh stages, are determined by
tﬁe Boltzmann and Saha equations. Line intensity ratios‘
can then readily be determined using oscillator strengths
evaluated by means of the Coulomb approximation. In the

second chapter, atomic processes are discussed and it ‘is



shown that in our case neither complete LTE nor coronal
equiiibridm>can‘be expected to describg_the_thermodynémic
situation accurately and that certain semi-coronal
coefficients need to be determined before semi-coronal
line intensity ratios can be calculated.

There is much uncertainty in the literature about the
valueé of these collisional-radiative coefficients (Chapter
3) under semi-coronal conditions, particularly for non-
hydrogenic atoms,. An attempt is made to decide whether
with the large uncertainties that the semi-coronal.
approach ianIVes, the LTE formulae do not lead to line
ihtensity ratios in better agreement with the correspond-
ing measured quantities.

The last two chapters are devoted to experimental

considerations and results.



Chapter 1 : Qséillator Strengths

The type of plasma used in this project is classed
as "optically thin", i.e. very little emitted radiation
is_re—absorbed by the plésma, and photon densities éne
low. The exceptions to this rule are the resonance lines
(longest wavelengths capable of exciting fluonescencei
of the various atomic species, which are fairly.s;rongly
re~absorbed. However, for reasons outlined in the |
section on "Atomic Processes'", these do not concern us

here. Denoting by A__ the Einstein coefficient for a

pm
spontaneous transition by the radiating atom or ion from
state m to state p with emission of a photon, the line

intensity for this transition may be written:

I = NpAhvon (1.1,)

Here N; is the number of ions of a particular species,
charge z, in state m. N

A dimensionless quantity which is used extensively
in spectroscopy is the oscillator strength or f-value of
a transition. Originally introduced from classiéal theory,
the absorption oscillatof strength fmp is defined in terms

of A

‘om by
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A = OPrP NP, (1.2)

pm
P c g,

where r_ is the classical electron radius. From equation
(1.1) it follows that the line intensity is known provided
the f-value of the transition, as well as the number of
atoms in state m, are known. |

Related to f is the line strength S of the transition:

872 m ¢ 303.75
2 ——— g = — S (1.3)
mp 3he2gpk TP gpx mp

- o - . [ d .
where A is in A, and gp 1s the statistical weight of the
lower state involved in the transition. Here Smp is
expressed in atomic units, which are, for (allowed)

electric dipole transitions:

age2 = 6,459 x 1036 com2 egu?

It is customary to write Smp in terms of the relative
line strength S(L) and relative multiplet strength S(M)
(see equation (1.7) below). Let &' and ¢" denote the
initial and final orbital quantum numbers of the "jumping"
electron, and denote the greater of the two by 2. The

symbols S, L, J represent the spin, orbital and total



angular momentum quantum numbérs of the initial state;
similarly S', L', J' those of the final state. 'The
"core" (parent) is designated by its orbital angular
momentum L,, which is assumé& not to change during the
transition. To avoid confusion, the initial state is
taken to be the state of lower energy measured from the
ground state of the species.

S(L) and S(M) are expresséd in terms of so-called
Racah coefficients. Values of the twovtypes of Raéah
ééefficients which are needed to évaluate Smp5 viz.
W(LJL'J'; S 1) and W(e'Le"L'; L; 1) are listed in Griem's

"Plasma Spectroscopy"(1l). One then has:

sy = L20+1)(2J'+1)W2(LJL'I'3S 1) (1.1)
' (2S+1)
S(M) = (28+l)(2L+l)(2L'+l)2>(4£§-1)W2(2'L2"L'; L 1)

(1.5)

In accordance with the selection rules, it is assumed that
S=s'.

Values of S(L) and.S(ﬁ) calculated usingwfhe Récah
coefficients may'bé checked b§ comparing them with the

earlier (incomplete) tabulations of Russell (2) and



Goldberg (3),(4). Allen (5) reprints Russell's and
Goldberg's tables, and incorporates the correction
factbrs listed in (#).

The atomi¢ model used in this thesis for calculating
oscillator strengths is the Coulomb approximation, which
is described in the following paragraphs. Russell-
Saunders coupling is asspmed and all quantities are

expressed in atomic units.

Ri Rf S . .
Let -+ and — be the initial and final radial

wave functions ot the active electron normalized in atomic

units. From the Schrodinger equation, R, and Rf satisfy:

2
SR, (v - ) . oHr=o (1.6)
dr? r? ' '

where v is the potential, ¢ the azimuthal quantum number
and ¢ the energy parameter. One method of solution would
be to integrate numerically outward from the origin, e
being adjusted to be an eigenvalue; a disadvantage of this
apbrdach is that an exact knowledge of v is required.
However, if it is assumed that v approximates closely
to its asymptotic form before the region is reached which

gives the dominant contribution to the transition integral

| R:R. rdr
o 1 f i



v may be replaced by C/r, C being the excess charge on

the nucleus when the active electron is removed.

D.R. Bates and A. Damgaard (6) have justified this

assumption in the case of many tran51t10ns of 1nterest,

and show that it readlly *eads to a solution of equatlon

(1.6).
Then, Smp is given by
- : 2
Smpa = S(M)S(L)q‘
where
, w \2
92 = S S ( ] Ry R rdr)
(422 - 1) o /

(1.7)

Screenlng is taken 1nto account by the introduction

*
of the effectlve principal quantum number n

. C

- e

and ..
/e :

for reascns of presentation, ¢ is expressed as

* % % * %
o(nz_l s 2-1; n, 5 &3 C) = %-jh(n ,2)3(n2_1, n, o, £2)
(1.9)
- & ‘\;'-1
3n (n ¥2 22)
%
where '34(n2 s ) = 2 (
' 2 (422 - 1)
-
and }
NS ) = 2C IR(* ., 2-1,0Rn" ,2,C
- - x rdr




Referring to the notation used in connection with the
Racah coefficients (equation 1.5),

' = g -1 2" o= g
the lower g value perfainihg to the state of lower
energy with respect to the ground state in the transitions
studied here (with two exceptions - see f tables).

In the paper of Bates and Damgaard, numerical values
of 3kand J are tabulated for g = 1 (s-p transitions),
g = 2 (p-d transitions) and g = 3.(d-f traﬁsitions). This
method,.besides having the advantage of allowing f-values
to be calculateq reasonably quickly, gives accurate |
results for atoms with a single electron outside a closed
shell; it is less accurate but still satisfactory when
there &are two or more outer electrons.. The tables as
compiléd_are most useful for s-p transitions; it has
been found that a few p-d and d-f transitioné fall outside
the range of the 7 and J values given.

In most cases listed in this thesis, the f values
‘have been calculated by the present writer, and, where
possible, the results have been compared with those listed
in- (1) and "Atomic Transition Probabilities", a dafa
compilétibn by Wiese, Smith and Glennon (7). As regards

the reliability of the above approach compared with more . - -



sophisticated methods, it may be of interest to quote from
the introdﬁction to (7) :

"On the whole the Coulomb approximation has given
impressive results and has provéd to‘bé of great value.
In mést cases where comparisons‘afé éVaiiabié - there are
several hundred of them for the first ten elements - the
results agree within 20 - 40 percent with those from
advanced theoretical and experimentalf;étﬁods. We have
therefore made extensive Qse of this approximation to
supplement the available materialf. -

In this thesis, some use has been made of the older
term value tabulations of Bacher and Goudsmit (8) besides

those in (7).

Example of the Calculatiqn of Oécillator Strengths:

* Although the Coulomb approximation has been used
extensively by many authors for the calculation of
oscillator strengths, the following example is included

in order to clarify the above discussion:

NI line, A = 4151.46 A

1. Look up the term values listed in (7) and write

down a_complété Sbééifidation of the angular momenta



3.
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of the two levels involved in the transition:

22p2(3 4 v o
2s22p2(3P) 3s( Ps/z) - 2522p2(3P)4p(“53/2)

The usual selection rules are clearly obeyed by

the transition ((8), pp 16 - 18).

Adjust the term values to refer to the ground state
of the next highest stage of ionization, and reduce
these to atomic units by dividing each by the

factor 109679, i.e.

g =0 g =1
33848 9767
. 3086 .0891

Denoting the orbital angular momenta of the two

electronic levels involved by 2-1 and %, determine

the quantum numbers

nz_l s — :C . . - l = lo 800
~ J/veduced energy of lower level V.3086
ﬁ . .
n, = C - 1l = 3,350

/reduced energy Of upper Tavel  /,0891

where C = excess charge on nucleus after the active

electron has been removed.
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‘ ., p % ,
Look up the factorsf?(ﬁf s 2) and j(nﬁz_l, n,o L)

in the tables of Bates and Damgaard (6), inter-

polating where necessary.

Fi(3.350, 1) = 9.278
Jc1.800, 3.350, 1) = -.0u2
¢ = é5“3 = -.3897 . . o2 = ,1518

Determine the Racah coefficients, and hence S(L)

and S(M)

J= §/p ,J" = 3/2,1.:1,1,':0,”3':_2.

' =0, 2" =1,8 =1,L; =1

W(LJL'J;é,gi)'é W(1 5/2 0 3/2 3 3/2 1) = .28868

W(e'Le"L'; Ly 1) = W(0O 1103 11) = .33333

.. S(L) = .5000 S(M) =y
Ero check: identical values for S(L) and S(M)

are found in (5), pp 56 - 64 1.

S = S(M)S(L)e2 = .3036

Statistical weight of lower level = 2J + 1 = 6
y - 303.75 S a - |
.+ £ = —— = ,0037
g1

[ ef. 1) : .00301 ;3 ¢7): .0023]

It is interesting that the older term value tabulations
in (8) lead to a value of f in better agreement with
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Chapter 2 : Atomic Processes in the Plasma

It is pointed out in the Introduction that before
line intensity ratios can be calculated, the type of
thermodynamic situation that prevails in the plasma must
be ascertained. When complete thermodynamic equilibrium
exists, the ratio of the intensities of any given pair
of lines belonging to successive ionization stages of
the same elemeht is a function of electron density and
temperatubé alone. Where complete thermodynamic
equilibrium does not prevail (as is the case with most
labdratory plasmas), atomic processes need to be consider-
ed carefuliy.

Let s2 represent an atomic species, charge z. For
the reversible reaction denoted by

zZ Z=~1

S“ + e S
the following competing proquses have to be taken into
accouht:
(a) Three-body recombination, state p to state q
| S%(p) + e+ e+ 8% (g + e
(b) Collisional ionization (inverse of (a))

s%71(q) + e » 5%(p) + e + e

(c) Radiative recombination

s%2(p) + e +» 8271(q) + hv
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(d) Photo-ionization (inverse of (c¢))
SZ271(q) + hy » S%(p) + e

(e) Collisional de—excitatibh
SZ°1(p) + e » S%l(g) + e

() Collisionai excitation (inverse of (e))
S?—;(q) + ev+ Sz-1(p) + e

(g) Spéntaheous and‘stimulafédvemission
Sz-lfp) > Sz‘l(q) + hv

(h) Photofeﬁcifation (inverse of (g))
s271(q) ¥ hv +‘sz‘1(p)

(1) Auto—ionizaiion |

Si_l (p) » Sz(q:)‘ + e

The excitation of an electrpn other,than‘thevmost
loosely bound one or the simultaneous excitation of two
electrons can result in a series of discrete states, some
of which have energies greater than that required for
hormal ionization. Thus discrete lines for photon
absorption could be observed in the midst of a continu~ns
photo-ionization spectrum. A radiationless transition
can now occur, giving fise'to an ion (s%(q)) and free
electrdh which havé the same energy as the original ion,.

(Marr (9) p 168, Cooper (10) p 39)
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(j) Di-electronic recomblnatlon (1nverse of (1))

$%(q) + e » S*_ (p) » 8% 1(n) + hy

A reyersible, radiationless transition occurs between
an ion S? in state q and an electron giving rise to a
doubly excited bound level of S 3 , followed subsequently
by a radiative trans1tlon to a s1ng1y—exc1ted state n of
s%” ? helow the ionization llmlt. It will be noticed that
neither th;s process nor 1ts 1nyerSe can occur in the case
of hydrogenic systems since SZ"§ must have at least two

electrons. ((lO), p S7).

Processes (i) and (j) are less 1mportant than the rest
and are not further taken 1nto account until the next
chaDter. o | |

| In connectlon w1th the 1onlzatlon processes llsted
above,vlt should be noted that 1n a plasma the formatlon of
an 1on palr occurs for energles whlch are lower than the
1onlzatlon energy of the 1solated atom or jon. Thls is as
a result of the fact that charges of one sign tend to have
on the average an excess of charge of the opposite s1gn
in thelr 1mmed1ate neighbourhood. In (1) (pp 137 - 140)
the Debye theory of Coulomb 1nteractions in plasmas is

discussed, and it is shown that the reductlon of the 1on—

1zat10n energy for a spe01es of charge z—l is glven by
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N (2.1)
uﬂeo °D
where 2 -1 = ionization energy
pD = Debye length
| T 73
€ kT P
= — 2 - ; (2.2)
te (N, + z A N?l
NZ = total no. of atoms per cm? with charge Z.

In all cases dealt w1th in thls the51s, thls correction
turns out po be a small fraqtlon of an electron volt and is

‘thus ignored. For example, in the case of NIT , when

2n2 = : 15 3
(Ng + ) 22N = 3.1 x 101%/cm

AE increases from .007 eV at kT = 10 eV to .02 eV at

kT”; 1 eV whereas E_ = 29.593 eV.

Processes resulting from atom-atom, atom-ion and ion-
ion collisions are ﬁot included in this discussion, since
the'releQant rates are mucﬁ smaller than those for electron-
atom gnd'electron—ion coilisions in plasmas where the |
degrgg of ionization is appreciable ((10) p 42,

(i) p 130). It is clear that processes (a), (b), (e),
(e) and (f) depend upon the electron density and energies

(characterized by electron temperature T.). Via
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collisional processes (mainly electron-electroﬁ, éince
momentum-transfer cross sections are smali for pé?fibles
of very different masses), the free electrons quickly
attain statistical equilibrium providéd three conditions
ave fulfilled (Wilson (11)).

These are

t << t

ee rad ? ten > t

part

where toe is the electron-electron relaxation time,

t is the energy decay time for bremsstrahlung, tan

rad
is the energy heating time and thart is the particle

containment time. Wilson shows that the first criterion
is completely satisfied at all feasible temperatures, in

laboratory plasmas. Spitzer (12) gives the fellbwiﬁg

@xpression. for the electron-electron relaxation (equilibbié

zation) time:
0.266 T /2
t : e (2.3),

ee
Ne LnA

where Te is in °K and nA is a slowly varying functiofi of
electron density Ne and electron temperature Te" usually
of the order of 10 ((12) p 28, table 5.1). Thus intthe
Acase of a fully ionized Hydrogen plasma of electron density

1012 per cm3, toe €quals 2.82 x 10~8 sec. at 10% °K.
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‘Under the above conditions, the velocity distribution
of free electrons is Maxwellian, i.e.

| 3/2 |

. . : -my2 o

N (V) = baN_ [ —— exp | = v2dv  (2.4)
2m kT 2kT,

where dN_ is the number of electrons per cm3 with speeds
between v and v + dv, and Te , the parameter which
characterizes each particular Maxwell distribution, is
by definition the electron temperature.

For complete thermodynamic eQuilibrium, each pbssibie
process must occur ét the same rate as its ihvefse (this
is the "principle of detailed balance"). If one type of
process is unbalanced, the plasma may nevertheless be in a
state quite close to complete equlllbrlum It is mentloned
in the flrst chapter that photo 1onlzatlon, photo-excitatlon
to hlgher~1y1ng levels and stlmulated em1591on occur at a
negllgible rate in most laboratory plasmas, sbﬁnfenébﬁe
emission is thus unbalanced. If hOWever, the electron
déﬁéity and tempefatufe are hlgh enough colllslonal
processés will occur at a far greater rate than rediafice
decay; &nd if thesé collisional processes neeriy Bé£55ce
among themselves; the plasma will be in a state close to

the thermodynamic éduilibfium. Onevthén sﬁeaks of local
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thermal (or thermodynamic) equilibrium (LTE). In this
case, population densities will be given by the Boltzmann
and Saha equations to a high degree of accuracy (though not

of course 100%):

z-1 z-1
N g exp(-E_/kT
= ° 25 n/<% (Boltzmann)  (2.5)
N En exp(-Em/kgg

A Z
N N1 2g1 3/2
S B e (ka exp €-E!/KT)  (Saha)  (2.6)
Nn g 1 211’#;2‘

In the Boltzmann equation, energies are expressed with
respect to tie ground state; whereas in the case of the
Saha equation E% is the (positive) binding energy of
state n, charge z-1, with respect to the ground state of

the next ionization stage.

g 20 + 1

or

2n? (for hydrogenic levels)

The temperature which describes the LTE is that of
the electrons, since they dominate the reaction rates.
The ions usually do not attain a Maxwellian velocity

distribution within the lifetime of a laboratory plasma
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and so one avoids assigning an ion témperature. For

LTE to be a good approximation, fairly stringent conditions
apply to the eléctron density and electron temperature of
the plasma. In the case where the electron density is

far too low at a given temperature for LTE to be valid,

the corona model (so called since this type of situation
prevails in the solar corona) lecds to an équation of

state which is approximately valid (Woolley and Allen
(13)):

The three-body recombination rate is proportional to
the square of the electron density; whereas the radiatiVe
recombination rate is proportional to the electron density
alone, at a given temperature. Thus for low electroh
densifies, the latter process dominates the fecombination
ratés. One must therefore consider thé ap?ﬁékimate
balance between collisional ionization (ceefficient S)

Z~1

and radiative recombination (coefficient a): Let Na

and N: be the total number of ions in two subsequent

stages of ionization of a particular species. In the

corona state, fractional ionization is determined by
L - zZ 4
SNa N = aNa N

e

e
N2
‘ Na

2.7)
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which is indepéndent of electron density. The evaluation
of the rate coefficients S and ¢ is considered in the next
chapter.

In the régime between the: thermal and ‘coronal domains,
the situation is much mo$évéomﬁiicated. fIn this coﬁnexion
it is important tbindtice that collisibndl crosé-sectiohé
increase with:iﬁcreasing principal qugﬁtﬁm,numbef, while
radiative decéy probabilities decrease (i;ég'radiafive
lifetimes increase) ((1) p 130). Qﬁaﬁtitaﬁively, in
the case of hydfogenic atoms, Bethe and Salﬁeter (aw), -

p 269) give the following'expréSSionifor the reciprocal

zZ-1

mean radiative l'ifetimevRn

5= - e T ey
RE7L = 7 AETl e 1.8 x 1010 2 sec”! (2.8)
" n'<n no n'*3

where they have averaged over the initiél‘z-valUEé‘accord-
‘ing.tQ‘their statistical weights.

.Aléo, for most levelé, cross—sédfﬁdnsvfor Eolligional
erxcitation are much larger than for deJexcitafibn ’((l)
P 1#65; The conditions for LTE are thus espéciallyli
stringent for lower-~lying levels. Where the electréﬁ
dénéity at a particular temperature is too low for LTE 

to exist, another type of near-equilbrium state may
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prevail, in which excitation and ionization from the

ground state still occur by electron impacts, but radiative
decay is the dominant mode of de-excitation between the
lower-lying levels. However, the relative populations

of the higher levels are usually still controlled by
collisional processes, and there is coupling between the
two groups of levels by collisionally induced transitions
in both directions.

Thus, according to this model, the thermal equilibrium
in the continuum extends down to the upper bound levels of
the ion due to the high collisional transition rate between
the continuum and upper levels, imposed by the free electrons.
One may therefore postulate some level in the ion,the
"thermal 1imit”, above which the distribution is approximate-
ly thermal and below which it is approximately coronal. The
Saha equation is applicable to these upper levels, and
enables one to link their populations to the ground state
population of the next (higher) ionization stage.

The resonance lines result from transitions from low-
lying levels (i.e. below the thermal limit) to the ground
state and contain far more energy than that radiated in the
rest of the radiative transitions (cf. eduation 2.8). TFor

any possibility of approaching thermal equilibrium, these
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lines, in contrast to the rest, must therefore be fairly
. strongly re-absorbed by the plasma and are not suitable
for spectroscopic study (see also (1), Chapter 7).
Wilson (11) discusses work published on the semi-
coronal distribution, and gives an expression for the

domain of validity of the LTE approximation:

N, » 6 x 1013(Em)3(kTe)1/2 cm™? (2.9)

¢

(Here energies are expressed in eV.) For N_ far below
this value at a particular temperature, the thermal limit
is very close to the ionization limit and the coronal
situation prevails.  As Ng increases, the thermal limit
drops until, at a sufficiently high density, it reaches

the ground level and all levels have a thermal population
i.e. the Boltzmann and Saha equations are generally valid.
The derivation of an exact expression for the thermal limit
is considered in the next chapter.

Formulae for the relative line intensities of suBsequent
ionization stages of the same element, valid under LTE and
semi-coronal conditions, are derived below. Thus, if it
could be established which of these models, or combination
of models, describes a certain plasma, the electron

temperature may be determined by measuring the intensities
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of suitable spectral lines. The determination of the
absolute inténsity of a spectral line calls for very

careful and accurate measurement, but by choosing pairs
of lines and measuring their relative intensity one can

eliminate some of the problems.

Line intensity ratios, LTE case:

Consider two subsequent ionization stages, z-1l and z, -
of the same element and let the two spectral lines of

interest result from the following transitions:

z : Upper level m to lower level p, wavelength '

z-1 : Upper level n to lower level g, wavelength 2.

When no other superscript is used, primed quantities refer

to the line from the higher ionization stage.

Boltzmann Equation:

exp(-E'/kT)

ZIZ
~N[3 N
1
GQlUQ
—~ NS N

where E' = E; - Ef (excitation energy of higher level,

higher ionization stage).
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Saha Equation:

’ "\3/2 Z-1 ”r'z-1 z~1
N NZ 2g% [/ E271 - E + E?
€1 . ! ( ka.i exp («- - 1’1 - -
2

z= .
N2 \ XT

—
0q
N
'
—
L
N
=2
-
N~
t:

Substituting from above, and ﬁutting,Ei’l - Bf-1'= E
(excitation energy of higher level, lgwenfiénization stage)

we obtain:

z z 3/2 \
NNm 28y ka‘\ E' + E, -~ E
R BT i ‘52) - KT

n &n i : :

Let I' be the intensity for the transition N; -> N;

I @ " t b i it NZ"'I > NZ"I
n q

2 AY hy?l

1
Then, I m pm pm

N

2
'ANm
c

21,' '2 Z
(M) TR T

Similarly, I = NZ7' A hy

i
=
N
|
—
/’—"\
N
0'3
e
N
o]
—
o g
<
fgn
N
!
-
H

A 1 z z-1 t
1, Mm v & fmp

z=1 _3.2~1 .2 e
I No© v gq g fnq
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5
N
Hence, substituting for —g;l from above,
Na
\ 3 v 3 ' / t -
1 _ 2N_1 mkT A;/Z fmp A gp -E + Em E
IR WY Y F s ® KT
I
ng A “g,

Introduce the Bohr radius a, and ionization energy of

Hydrogen, EH :

2
. _ un’ﬁ € . : _ m ot
© m e? , H 32 Eg‘ﬁz m2
"~ (MKS units)
’ \3/2
3 3 -1
(4m /zag Ey /2, = of W
| om H2

Hence, substituting in the equation for I'/I, we obtain

N

I _ f'g'A3 (L|,173/2 aa N )__1 /kT 3/2 exp (— E' ¢ Em "E\
I £g 'l ° e Ey \ KT

(2,10)

in agreement with the relation stated without proof on

P 272 of (1). In‘(2.10), g' and g are the statistical
weights of the lower levels involved in the transitions,
while E' and E are thel(positive) excitation energies of

the upper levels, referred to the ground states.
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Line intensity ratios, semi-corona case:

Consider three subsequent ionization stages, z-1,

z and z+l of the same element (unprimed,

doubly primed respectively).

Let I' be the intensity for the

I H ] 1 13 " 14
2
2r ! \
As before, I' = NZ (——EL—JEE—)In v

m - pm
' 2

- 2r w

=z Zotan g

\ c

Assume that the upper level involved

primed and

, . z 2
transition Nm - Np
" Z—I TZ-I
Nn > hq
2
EE £2
Z m
& P
Z=1
gg fz—l
Z-1 "nq
€n -

in each transition

is in Boltzmann~Saha equilibrium with the ground state of

the following ionization stage (i.e. that m and n are above

their respective thermal limits).

equation,
z z-1 3/2
NZ71 - NeN1 &n , 27 'ﬁ-z
n 'z ' exp
2g3 mkT
Similarly,
z+1 _Z . /2
NZ NN g 271 h2
m " Z+1 ‘ ‘ exp
2g mkT

Then, from the Saha
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A note on the Debye length:

Equation (2.2) is derived on the assumption that
the ions have a Maxwellian distribution of speeds, at the
same temperature as the electronsf In our case it would
be more correct to assume a stationary ion background;

the Debye length is then estimated by:

1
F

€5 kT

P :

-

Equations (2.1) and (2.12) are used in the next chapter
to give an indication of the highest bound level in a NII

ion under laboratory and solar coronal conditions.
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Chapter 3 : Mathematical Treatment of Rate Coefficients

§1 : Method of denoting energy levels: In the Boltzmann

and Saha equations, the subscript n is used to distinguish
between ionic energy levels (equations (2.5) and (2.6)).

In the case of hydrogenic ions, where the electron states
with the same principle quantum number are degenerate,

a convenient way to indicate any level would thus be by

the principle quantum number of the single bound electron.
In the case of non-hydrogenic ions, the subscript n would
no longer be a quantum number in the true sense, but merely
a way of "counting” the levels from the ground state upward.
The following derivation of the thermal limit applies
primarily to hydrogenic ionsi; a method of employing the
result in the case of non-hydrogenic ions is considered

further on.

§2 : Derivation of the thermal limit for hydrogenic ions:

As stated in Chapter 2, the average radiative decay

rate of a state with principal quantum number n is given

- - b -
RZ7 = ] AET) = 1.6 x 1010 E— sec”!  (3.1)
n L]
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According to Griem (1) (p-147), the collisional transition

rate per atom or ion in state n to state n' is estimated

by

b .
N2 \ 2 I3 2
1 31f2¢E 2z2¢E
N /E__ﬁ H exp {- H
"3
\ - 'kTe /

(3.2)
Let the principal quantum number n, be chosen in such a way
that for the corresponding level (the thermal limit),
radiative decay is as likely as excitation into higher

excited levels.

Since Z fion = 0.5n ((1) pl60),
n'>n
N 2 H 2
n z<E 2z¢E
y Cinl = 3 x 108 —E; N, B exp(: —;——E—
n>n, t 4 z s kTe, \ ng kTe
(3.3)
With RZ°1 = ] cZ-! , we find:
n>n t
t *
1/17 L,
. 14/17 *2/17(k*e \ 42°Ey
n, = 126 =z N G exp { ——
=
\ e

2 3
z EH} 17 nd KT

(3.L+)
This definition of the thermal limit is by no means
the only valid one. For example, a different n, would be

obtained by putting
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z=-1 _ z-1 , zZ-1
R = ] ¢ N Cfnt

where C?-l
Ny

ion in state . This would also give a good indicatdion

denotes the collisional ionization rate per

of the lower limit of the collision-dominated régime. .
Wilson (11) adopts a third approach. (Note that in

equation 6, (11), N;l should be read for Ne).

§3 : The thermal limit .for non-hydrogenic iohst

In Chapter 1, the effective principal quantum ‘number

n of a level Eﬁ_l (meaning of n as in §l) is defined as

Z

n =

/Ei“‘ pZ~!

A EH

Thus,
225,
27l . g27l . _H (3.5)

n m niiz

This may be compared with the corresponding hydrogenic'
expression, where one merely has n in place of n*. o

In the case of highly excited levels, the outer
electrqn moves in a potential due to charge z, i.e. we

assume that the screening due to the other bound electrons
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is completely effective (the Coulomb approximation).

These highly excited levels are thus hydrogenic, and n

may be identified with the hydrogenic principél quantum
2

‘number. Thus, provided that Zn%H is small compared
with E_ , the expression for the thermal limit in §2
above is applicable, and in order to test whéther the
population of a given level is collision-dominated, one

has merely to show that n - n, 3 0.

54 - Collisional-Radiative Coefficients:

When an electron is excited into a state for which
the corresponding ionic level n > ng it is most Iikely
to become a free electron before cascading down again
(definition of thermal limit). Thus the effective ion-
ization rate equals the sum of collisional rates for
transitions from levels n < n_ to n 2 ng and collisional
ionization rates from levels n < n, « The éffective
recombination rate may be expressed as the sum of ¢ollisioﬁ4
al and radiative rates from levels n > ng into levels n s'nt
and radiative recombination rates into levels n ¢ ng.

Let R represent the rate at which collisionql-induced

cn''n

transitions between n and n" occur and an . the rate of

n
spontaneous (radiative) transitions from n" to n.

Denote the rates for collisional ionization from level n,
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three-body recombination into level n and

radiative recombination into level n by R o » chf

and anf respectively. Then in equilibrium, one has:

] R + ) ) R _w. = ] (R + R _2)
n<n, cfn n";nt n<n, cn''n nen, cenf rnf

+ ) (R

enn” * ann")

(3.6)
Representing the summations on the left hand side of
equation (3.6) by R, » and the sum of the collisional terms
and radiative terms on the right by Ré and R, respectively,

the effective depopulation rate of the ground'state

becomes
z-1
il = ~-R_ = -§__N N271 (3.7)
c - cr e a *
dt

/depopulation

while the rate at which the ground state is populated is

'population
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In equilibrium, (3.7) and (3.8) must balance, i.e.

N S

a = <L (3.9)
Nz'--1 o

a cr

may be called the collisional-radiative

where Scr and %ap

ionization and recombination coefficients, respectively.
In the limiting low-density (corona) case, where radiative
de-excitation predominates over collisional de-excitation
at all levels (i.e. the thermal limit merges with the

continuum), Sep and a_ , may be replaced by S and «

cr
(equation (2.7)).

It should be noted that the number of bound levels
considered in equation (3.6) remains finite owing to the

reduction of the ionization potential in a plasma. Where.

other processes such as auto-ionization and di-electronic

recombination play a part, equation (3.9) should be

replaced by

N? S
a__ . tot (3.10)
NZ-1 o
a tot
where Stdt = Scr qautc
%ot - %er t 99

Now the evaluation of these coefficients for a given
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electron density and temperature presents great
difficulties: the rate coefficient for each competing
process 1is o complicated function of such parameters as
temperature, density, ionization potential, ionic charge,
initial and final guantum numbers. These functional forms
are seldom well known over a wide range of conditions and
generally present problems of extrapolation. Furthermore,
in order to simplify the mathematical treatment, certain
assumptions are introduced which, fhough'perhaps reason-
able under certain conditions, lead to fairly large
inaccuracies in, other cages. Significant disagreément is
quite often found between formulae presented by different
authors. Another difficulty is the rather misleading
term "low density plasma’: the density range is seldom
specified although conclusions drawn for certain "low
density” conditions are invalid for others.

In the rest of this chapter, some recent papers on
the subject are discussed. It should be borne in mind
that in our cése the collisional-radiative coefficients
necessary for the determination of line intensity ratios
by means of equation (2.11), are required to be valid

under the following conditions:
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1013 < N, < 1016 cm—3

1 < kTe < 10 eV

These criteria are justified in a later chapter.
In Wilson's paper (11) we find the following criteria
for the thermal, coronal and semi~-coronal domains:

Thermal Domain:

logyoNg » 13.7782 + 3 log;q E, + 3 logyy kT,  (3.11)

Coronal Domain:

Semi-Coronal Domain:

logyoN, ¢ 11 + g logig E, + 2 logjy kT, (3.13)

The fact that three independent authors are in reasonable
agreement on equation (3.11) (McWhirter (15)) ?rovi”es fair
confidence in the selection of a lower limit to the thermal
domain. The above three relations are graphed (fig.3.1)
for the energy interval 1 eV to 100 eV for both NII and
NIII; the curves suggest that since the domain we are
considering Iies on the periphery of the semi-coronal
régime, equation (2.11) with appropriate collisional-

vadiative coefficients would give more realistic intensity
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incident electron by the Coulomb field of the nucleus.
According to (19), Seaton's approximation is a good one
for many cases, although there are a number of specific
instances where it overestimates the rate coefficienf by
a factor of two or more.

The collisional ionization rate via bound levels
was derived by Wilson in two later papers on the assumption
that excitation to all levels above n, is equivaleht‘to

ionization and that the levels above n, are hydrogenic:

s(xt™) = y.8x10-5 z"z'r;”-2 e 1i/KTe ny? /%o (3.15)

where x., the ionization energy of level nt,is given by

I .
x{ = 6 x 10728 I N2 (3.18)
kT .
e
and the effective charge z equals m+l. These two equations

are employed in (16).

Unfortunately, the more recent papers of Wilsontlgsu,
1867) could ﬁot be consulted as thése were published in
reports not generally available. Thus it is not clear
how the above two equations were deriQed. In (11),
however, we find the same expression for Xy » except that

the nymerical factor is half as large (equatioen 7., (11)).
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Now the latter equation was derived from Wilson's express-
z-1

[+ ]

ion for the thermal limit, on the assumption that E
= ZZEH, which is certainly not true in general.

Thus equation 7, (11) should read:
2
z EH 9

kTe

x¢ = 2.78 x 10728
However, since Jordan obtains n, from equation (3.4),
it seems more consistent to use a value of X+ derived
directly from the calculated value of the thermal limit,

i.e.

2
2°By

1}

(3.17)

2
Ny

For order-of-magnitude calculations, these considerations
are not particularly important.

Jordan has found that for electron densities and
temberatures in the solar corona and chromosphere, the
collisional ionization rate via bound levels is negligible
compared with direct collisional ionization, and has
apparently neglected the former in both sets of calculations.

This conclusion is examined below:
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For the ion NII at an electron temperature of 2 eV,
we find that the rate coefficient for direct collisional
jonization

~15 -1

qQ = 2.62 x 10 cm3  sec

Allow the electron density to decrease from a typical
laboratory value of 3 x 10'% cm™3 to a typical (solar)
coronal value of 3 «x 1019 cm™3, while keeping the temper-
ature constant. The Debye length then increases from
1.92 x 107 m to 6.07 x 10~° m, and as a result the lower-
ing of the ionization potential decreases from 1.50 x 10~7
eV to 4.7% x 10™° eV. The effective quantum number of
the highest bound level changes from about 60 to 1071,
while n, increases from roughly 3 to 10.7.

With Xt given by (3.17) the collisional ionization
rate'via bound leQels changes from 1.6 x 10716 +to
1

2.0 x 1071% cm® sec” The slow variation in S is

probably due to the fact that as n, increases, the number

t
of bound levels also increases owing to the corresponding
change in the Debye length. Thus it appears that although
S is certainly smaller than q, neglecting it completely

leads to less accurate results than would otherwise be

obtained.
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§6 : Auto-ionization:

Several simplifying assumptions are introduced in
Jordan's evaluation of the auto-ionization rate, this
process being most important in the case of atoms where
there are a large number of electrons in the first inner
shell compared with the number in the outer shell (e.g.
NaI, MgI, Cal, KI, BI, CI). Cox and Tucker (19) neglect
auto-ionization entirely in their calculations (H, He, C,
N, 0, Ne, Mg, Si and S) - in contradiction to Jordan as far
as the elements Mg and C are concerned: However, since
this process is relatively unimportant for the lighter
elements, any inaccuracy in the assumed auto-ionization
formulae for the element N should make little difference

to the final result.

§7 : Radiative Recombination:

For temperatures less than T, = 6 x 105 °K, the

radiative recombination rate of Elwert is used by Jordan_

a(Xx™) = 0.97 x 10712 Inn, & T;"2 cm3 sec™! (3.18)

where n is the ground state principal quantum number;

g = 3 for lighter atoms and Im_is the ionization energy.
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Assuming the levels above n, to be hydrogenic, Wilson (1967)
derived the following expression for the radiative recombina-
tion.rate via bound levels (i.e. radiative decay rate from

bound levels above the thermal limit):

[}

ap = 1.2 x 1078 z* T;3/2 n;l exp (x4 /kT) cem3 sec™! (3.19)
(z is the charge on the recombining ion). Jordan has
apparently neglected the latter process in the second
set of calculations.

Consider again the imaginary experiment in §5 above.
While

o = 7.665 x 10713,

the radiative decay rate changes from

oy, 3.71 x 10711 at the higher density

to

ay 6.445 x 10713 at the lower density.

" Jordan finds that "in low ions, such as CII, OII, SiIlT,
this process is comparable with the direct recombination
rate” (i.e. under solar conditions).

Under laboratory conditions, it appears to. be the

dominant mode of radiatjve recombination.
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§8 Collisional de-excitation and 3-body recombination:

In (16), the recombination rate resulting from
collisional de-excitation of levels above the thermal
limit <acoll.b) and the three-body recombination from the
continuum into levels below the thermal limit (acoll.c)

were calculated using expressions given by Wilson (1967):

3 -1

%co11.b - 2+ x 1072° Ng 272 ng exP(xt/kT)nE2 cm”® sec
(3.20)
- -21 -2 a2 3 -1
®o11.c - 8 * 10 Ne 277 TZ" com® sec (3.21)

"It was found that both processes can be neglected in

solar conditions®.

Let the density decrease at 2 eV as in §5 above. We

find that ®011.b changes from

= ~14 -21
%011.b - 6.34 x 10 to 2.088 x 10

while the three-body rate varies from

- ~15 ~20
®.i11.¢ 8.353 x 10 to 8.353 x 10

Thus although both coefficients are much larger under
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our conditions, they still appear¥£o be relatively

unimportant.

§9 : Di-electronic.-recombination:

Simplified expressions for this rate coefficient have
been developed by A. Burgess (20), (21) whb first poiﬁ%ed
out its importance. These expressions are valid to within
20 per cent under coronal conditions where Ne < 10° em~3
at higher densities, however, there are no reliable
formulae which can be applied. Burgess argues that since

the highly excited states above n, effectively become part

t

of the continuum, these stafes should not be included-in
the sumﬁation in the di-electronic rate. He considers
the ion Call and suggests an effective reduction in the
di-electronic rate at higher densities:

Nt
D = [ agln)/ [ ayln) (3.22)
n=U n=Y

where a . (n) = 0:(i,j,ne), i being the initial state
a L %q f
of the recombining ion. His values of D for different

n, are tabulated below:

t
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n, D
200 0.91
100 0.62

60 0.43

20 0.15

10 0.06

8 0.04
6 0.02

In view of the lack of accurate calculations for each ion,
Jordan used these Call values for all ions, as very
approximate reduction factors. Thus, in our case the

effective rate

ad(eff) 2 Da (3.23)

<< Q

d d

since n_ is typically small compared with 200. In their

t
general treatment of recombination in a low-density plasma,
neither Jordan nor Cox and Tucker find it necessary to
allow for this reduction. In their case, although di-
electronic recombination is negligible at low energies
(about 1 eV), it could become the dominant recombination
mode by 10 eV; in our case, if Burgess is correct, it

probably remains unimportant over the whole energy range

of interest.
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§l0 : Conclusion:

The above discussion shows clearly that caléuiated
values of S/a in the literature are not appliéable under
our conditions. It was therefore decided to use the Hy
line profile to ascertain electron densities, measure
relative line intensities for NIII and NII lines, and
determine S/a by means of equation (2.11) by allowing
the temperature to be a running variable in the range
of 1 to 10 aV. Large variations in the value of S/«
at all témpératures for the line ratios selected, would
then presumably indicate that the semi-coronal model
‘used to derlve equatlon (2. 11) is not appllcable under

the condltJOns studled The results of such an experi-

ment are tabulated in Chapter 5.

V]
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Chapter 4 : Experimental Method

§1 : Experimental arrangement:

Two sepabate investigations were carried out; the
circuitry for the first of these is illustrated in fig. 4.1,
‘Two 8.5 uf capacitors were charged in parallel to IG:KV
through the 500 K@ resistors as shown, by means of an H.T.
supply. A trigger pulse from the thyratron then closed
switches A and B, and the capacitors discharged in series
;p a circuit which included a theta pinch (copper coil
wound around a cylindrical glass tube of length 60 cm and
outer diameter 3.4 cm, containing the hydrogen and nitrogen
mixture at a pressure of 100 millitorr). | |

In the second 1nvest1gatlon, roughly the same arrange-
ment was used. The bank con51sted of palrs of capac1tors
charged in parallel and dlscharged in serles. There were
7 of these pairs, of which 6 were used for the maln dlscharge
and 1 for the preheater dlscharge. A larger theta plnch |
(length 74 cm, outer diameter 10 cm) was employed. A crow-
bar switch ensured that the discharge current started decay-
ing exponentially after the first quarter period.

Details of the apparatus are summarized below:

1-Because the preheater gave rise to impurities in the plasma,
all 7 pairs were later used for the main discharge and only

rf preheating was used.
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Exgt.l v ‘EXit;2
Bank Voltage (KV) 16 | 12
Bank Energy (KJ) 2.18 8.57
Peak Current (KA) 212 828
Total Inductance (nH) 263 68
Coil Inductance (nH) 12 31
‘Discharge Period (u sec) 6.7 -9 (not
) crow-barred).
Preheater rf rf
Preheater Energy (KJ) - -
Crow-barred No Yes
Coil Length (cm) 9.5 32
Tube Length (cm) 60 74

Nitrogen gas constituted a small (5%) impurity in a
fully ionized hydrogen plasma. The light intensity radiated
at a particular wavelength was recorded by means of a photo-
multiplier connected to the exit slit of a Heath Scanning
Monochromator with dispersion 20 K/mm. The entrance and
exit slits were usually set at 3 microns and 4 X, reépect—
ively, for the first experiment; for the second experiment,
an entrance slit setting of 7 microns was found to be rorz
suitable.

The following NII and NIII lines were selected for

study on the basis of



a)
b)

c)

d)

§2
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oscillator strengﬁh above 0.1

observed intensity

wavelength above 3800 A and below 6200 & (range
determined by chéracferistiés of photOGmeltiplief)
chosen line at ieest L X away from nearest line

in wavelength tables:

NII (3 in R) NIII () in R)
3838.39 4003 . 64
3919.01 4097.31
3995.00 4103.37
4026.08 4195.70
4133.67 4200.02
4176.16
4227.75
4447.03
4530.40
4552, 54
4630.54

Determination of electron density:

This was achleved by scannlng the proflle of H

B

(uBBl 32 8) from about 4840 A to 4880 K with entrance and

exit sl

1ts of the monochromator set at a fixed value
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(about 5 microns). The continuum (background) radiation
was measured ét 4880 A and.u950_g and the average subtract-
ed from the height of the profilé, in order to determine
the full width at half maximum (the so-called "half-
width"). |
W.L. Wiese (22) has plotted the half~width of HB

against electron density'frdm detailed Stark-broadening
calculations. The graph-'is valid for a temperature . -
range of 5000 °K to 40,000 °K, the variation of half-width
with temperature being_négligibie. ,According to the
author, “the very good agreement between theory and
experiment indicates that the resulting electron densities
are accurate to about 7 per cent, provided that the
experimghtal’errors can be kept small®.

| In our case, the méjor source of error was the
sketching of the outline of the profile through experiment-
ally dgtermined points, which could have led to an
estimated 10 per cent error in electron density. However,
this uncertainty in N, was found to be negligibleAih
comparison with the percenfagé'variation in S/a (see
Chapter 5). |

This method of determining N_ is highly satisfactory,

e

since Stark broadening is principally a density effect and



- 52 -

does not depend on either electron temperature or electron
velocity distribution, i.e. it is essentially independent
of the assumption of LTE. '"Hence Stark broadening
measurements will give reliable electron densities even

in cases where the existence of LTE is donbtful, whereas

some other methods would then become invalid” (22).

§3 Determination of electron temperature:

Using formulae for recombination radiation and
_bremsstrahlung comblned with the Saha equatlon, Grlem
:((l) P 279) calculates the ratio of total 1ntegrated line
1nten51ty to continuum intensity (in a lOO 2 band centred
at the line) as a function of temperature. The results
are plotted for several HeI, HeII and Balmer lines.Lﬁ |
Accordlng to Griem, "deviations ‘from LTE cause no.great
errors as long as electron den31t1es are above 101"'$ﬁ?3
(in the case of H ). | -

By means of the monochromator, the line to continuum
ratio could.be‘fairly aceurately determined. Since Tl
enters in the exponéntial only, in equatlons (2.10) and

(2.11), larger percentage errors could be tolerated than

with Ne (in equation (2.11)). It was d1fflcult to
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determine the error, the main source of which was

probably the theoretical curve.

§4 :  Reproducibility of data:

The major limitation in these experiments was the
reproducibility of the spectral lines observed. The
reproducibility was found to be better for NII lines
than for NIII lines. In the case of the larger crow-
barred theta pinch, the reproducibility was found to

be excellent.
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Chapter 5 : Discussion of Results

§1 : Calculated f-values: For purposes of comparison,

the values given by Griem (1) and Wiese, Smith and Glennon

3

(7) are also tabulated below. Here n is the effective
principal quantum number of the higher level involved in

the transition.

Ion Wavelength | gi This work Griem W.S.G.
NIII 4003.64 4.98  .677 677 674
NIIT 4097.31 2.68  .u8Y4 g 486
NIII 4103.37 2.68  .2u1 242 . 241
NIII 4195.70 4,00 .ous”(a) 442 442
NIII 4200.02 4.00 .852 (a) .398 . 398
NII  3838.39(e) 3.23 .1l .11y .118
NII  3919.01 3,00 .229 .229 .231
NII  3995.00 2.61  .613" .613 .63
NII  4026.08 4.01 - (D) - .280
NIT  4133.67 7.02 - (D 18" 117
NII  4176.16 3.98 .74 (b) 818" .80
NII  4227.75(e) 3.28  .170 171 171
NIT  4447.03 2.92 .59 (o) 587" .642
NII  4530.40 .01 .903" .909 .67
NII  4552.54 4,01 - (@) - 305

NIT  4630.54 2,54  .240" 239 .2869
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* f-value used in calculations

(a) : all values quoted in (1) and (7) for this
multiplet, are too small by a constant
factor 2.14

(b) : extrapolation neceSsa%ﬁ*fif?Bﬁfjide range of
tables in (6)

(¢) : minor extrapolation necessary

(d) : selection rule violated; hence not suitable
for calculation by Coulomb approximation

(e) : p-s transition.

§2 : Density and Temperature Measurements:

From measurements of the half-width of HB , the
electron density in the small theta pinch was found to be
close to 3 x 105 em™3., This value did not vary appreciably
over the whole time interval of interest (2 psec to 18 usec
after the start of therdischarge) and Ne was therefore taken
to be a constant in the calculations. In the case of the
small theta pinch, the discharge current was not crow-barred
and the line to continuum ratio for HB was “ound to be
compietely unreliable. This was probably due to plasma
contamination.

The following values were obtained with the large (crow-

barred) theta pinch:
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Time (usec) - N (em™3) ‘kTe:(from-HB iine.
to continuum)
2 8 x 1015 4.5
4 8 x 1015 3.6
6 1.3 x 1016 3.0
8 1.1 x 1016 2.6
16 9.5 x 1015 2.4
12 8 x 1015 2.0
1Y 7 x 1015 1.6
16 6 x'1'015 1.4
18 4.5 x 1015 1.1
§3 : Temperature predictions by LTE'formula:

A 1arge'amounf of data was obtained froﬁ computer
‘calculations;.for the lines selected.' Only the imﬁértant
results can be briefly‘éummarized here.

It was found that for times later than about 4 usec
after the current had been crow-barred, equatidn‘(2.10)
predicted temperatures of the correct order of magnitude.
These predicted temperatures were obtained'from caléulations
of I'/I over thé.range lms:kfe £ 10 eV in steps of 1 eV and
then over the range 1 kT, & 3 eV in steps.of .2 eV. The

temperature that fitted the experimental observations the



- 57 =

closest, however, remained very nearly constant throughout
the time interval, whereas line to continuum measurements
for the large theta pinch indicate that by 18 usec¢ after the
bank has started discharging, the electron temperature
has dropped to about half of ité value at 6 usec.

Consider, for example, the line pairs 4003.64/4447.03,
¥103.37/4630,54, 4200.02/3838.39. The following intensity

ratios were measured with the large theta pinch:

Time (usec) 4003.64 41%%%%7 - 4200.02
T 4447.03 4026.08 3838. 39

2 O.u45 4.02 2.93

y 0.61 1.83 4.03

6 0.39 0.98 1.38

8 ‘ 0.27 0.78 1.11

10 0.17 0.61 1.25

12 0.07 0.51 1.66

14 0.02 0.54 1.83

The LTE programme, with a constant electron density

of 1016 cm™3 |, gave:



kT, 4003. 64
— BuL7.03
1.2 .220 x 10-6
1.4 .203 x 10~
1.6 .622 x 10-3
1.8 .909 x 10-2
2.0 .790 x 10-1
2.2 .470

2.4 .210 x 10
2.6 .753 x 10
2.8 .227 x 102
3.0 .593 x 102

Predicted temperatures:

Time (usec)
2
m
6
8
10
12

14

I'/1
4103. 37
4026.08

.297 x 20-%.
.938 x 1073
.128 x 10-1
.100
.528
.208 x 10
.662 x 10
.178 x 102
.418 x 102
.882 x 102
(kTe in
2.3
2.2
2.1
2.0
2.0
2.0
2.0
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4200.02
3838.39

.853
.229
. 301
.241
.134
.565
.193
.558

141

eV).

A value of kTe between 2.0 and 2.2 eV is

over most of the time range.

x 10~3

x 102

thus predicted
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Equation (2.10) is thus rather insensitive to changes
in I'/I, and seems to provide a measure of the meanrelectron
temperature rather than its behaviour against time.

Another important result is that the variation of the
temperatures predicted by most of the linevintensity ratios
is not greater than about O.4% eV at any time. It is
interesting to note that pairs of lines with lower values
of n* provide consistently low temperature estimates,
whereas the reverse is true for pairs with higher values

%
of n , e.g.

Time (psec) 4103.37 - 4097.31 4003.64
§630.5% ~ 3995.00 = §530.80
2 1.7 1.8 2.7
¥ 1.6 17 ‘_ 2.7
6 1.6 1.7 P
8 1.6 1.6 2.5
10 1.6 1.6 2.4
12 1.5 1.6 | 2.3
14 1.5 1.5 2.2

The temperatures in the third column above should be more
reliable; the lower nh, the less accurate the assumption
that the particular level is thermally populated (see n

values in §1 above).
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4 : Calculated values of S/qu

By means of equatlon (2.11) with measured I'/I values,

the coefflclent S/a was obtalned for
1.0 S,kTe ¢ 10

in steps ef .5 eV, and times 2 to 18 usec in steps of 2 usec.
At each time, variations of‘ever 100 per cent about the mean
were:feund‘for the line ratios selected, instead 6f.the |
constant values expected at 1east one temperature (the value
nearest “the correct one). | | \

| This may perhaps be explained as follows. Typical
values for. the thermal limits of NII and NIII, respectlvely,

under the condltlons descrlbed in §2 above, are

n, = 3 and nt = Y

. (from equation (3.4))
In Chapter 2, equation (2.11) is derived on the assumption
that the upper_level involved in each transition lies above
the themal liﬁit,for that particular ion. No attempt is -
made to predict the inaccuracies involved if n* is less
than n, ; inlgeneral;vhowever,'it uay be stated that
calculated f-values as well as S/a values improve the
closer n* is to the ionization limit.

Thus, "best™ values of S/a would be expected for the
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NIII line 4003.64 X, and the NII lines 4026.08, 4133.67, .
4552.54 and HSSO.W)R. Unfortunately, -the 4133.67 2
NII line was far less intense than the rest, and measure-
ments were considered unreliable because of the cOmparative-
ly large background intensity in the vicinity. "Worst"
values would be expected for 4097.31/3995.00, 4103.37/4630.54
for example.

The following values were obtained with the large
theta pinch. The temperatures given are those in the
computer programme nearest the HB line-to~continuum results
in §2 above. An asterisk indicates an unreliable result,

which is not included in the mean.



NIII/NII

4003.64/4026,08
4003, 64/4530.40
4003,64/4552, 54
4097.31/3995,00
4103.37/4630.54

4003.64/4026.08

4003.64/4530.40

4003.64/4552.54
4097.31/3995.00
4103.37/4630.54

4003.64/4026.08
4003.64/4530,40
4003.64 /4552, 54
4097.31/3995.00
4103,37/4630.54

4003,.64/4026,08
4003.64/4530.40
4003.64/4552.54
4097.31/3995.00
4103.37/4630.54

4003.64/4026.08
4003.64/4530.40
4003.64/4552, 54
4097.31/3995.00
4103.37/4630.54

4003.64/4026.08
4003.64/4530.40
4003.64/4552.54
4097.31/3995.00
4103.37/4630.54

4003. 64 /4026.08
4003, 64/4530.40
4003, 64 /4552, 54
4097.31/3995.00
4103.37/4630. 5
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Time (psec)

2

10

12

14

kTe(eV)

4.5

3.5

3.0

2.0

S/a

mean S/a

0.10
0.20
0.07,
0.06"
0.05"

0.08
0.13

0,06,
0.02"
0.02"

0.03
0.05
0.03,
0.01;
0.01%

0.02
0.03
0.02

0,01%

0.00%

0.01
0.02
0.02
0.00%
0.00%

0.01
0.01
0.01
0.00%
0.00*

0.00
0.00

0.00

0.00
0.00

0.12

0.089

0.04

0.023

0.017

0.010

0.00
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In (16), the second set of calculations (i.e. for a general
"low density" plasma) gives:

S/a = 2.1 x 10™% at 3.4 eV

2.1 x 1073 at 4.3 eV.

and
The following are estimates of NIV/NIII from the Saha
equation, where the partition functions are approximated

by the statistical weights of the respective ground states:

kTe(eV) Ne(cm‘3) NIV/NIIT
4,5 25,2
4,0 1016 (constant) 5,7
3.5 0.85
3.0 0.07
2.5 0.00
2.0 » 0.00
§5 Cbnclusion:

The ratios of NIV/NIII obtained lie between the values
prédicted fof LTE and near-coronal conditions (apart from
the small discrepancy at lower temperatures, where the
experiméntal values appear to be very slightly too high).

- When the density is kept nearly constant, the observed

values approach the coronal at higher temperatures. This
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is in agreement with fig. 3.1 and is indeed what one

would expect: the mean free path of the free electrons
increases with Te at a constant density. Thus the

rate coefficients for collisional processes should indrease
more sléwly than in the LTE case, with the result that
N:/Ng-l should be smaller than the values obtained from
the Saha equation. EThe inequality in 2b of (11) appears
to be a misprint] .

A disadvantage of our approach is that formulae
derived for a time-independent homogeneous plasma are
being applied to a transient one which cannot be expected
to be completely homogeneous (although, however, no NI or
NIV were observed under our conditions). Since electron
densities were known to be below these required for LTE,
the equilibrization times for the various processes were
greater than in the LTE case. Thus a possible explanation
of the observation that equatian (2.10) gave temperatures
that were too high at the end, is that the decrease in the
NIII/NII ratio was slower than that expected under LTE
conditions.

The role of the effective principal quantum number n*
in relation to the calculated value of the thermal limif

n, is seen to be very important. Where n is too close

t



3]
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to orless than ng , values obtained for S/4 must be
expected to be too smail (i.e. closer to coronal, at a
given tempefature) since the assumptions used in deriving
(2.11)‘are no longer accurately satisfied. For lines
resulting from transitions from levels near the ionization
limit, the assumption that these levels are thermally
populated would be better fulfilled with the result that
improved values of S/a could be expected (below 3.5 eV
however the values obtained seem to be of the correct
order of magnitude). Unfortunately, our careful
scanning of the Nitrogen spectrum indicated that the
lines examined were the only satisfactory ones from an
experimental point of view, in the optical wavelength
region.

In view of the remarks above, our values of S/a must
be regarded as tentative, until further work has been
carried out to improve upon their accuracy or determine
the probable errors involved. Because of the present latk
of knowledge of the rate coefficients necessary for a
theoretical determination of S/a it was hoped to obtain
values that would enable accurate temperature determinations
to be carried out from measured line intensity ratios.

However for an order of magnitude temperature estimate

the present values could be considered reasonably satisfactory.

’
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