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Abstract 

The oscillator strengths of several NII and NIII 

lines in the optical wavelength region are calculated 

by means of the Coulomb approximation. Atomic processes 

in a.plasma are discussed, as well as two models CLTE and 

semi-coronal) which can be used to determine the line 

intensity ratios of subsequent ionization stages of the 

sa.me element. Two derivations of line intensity ratio 

formulae are given;. valid under ,LTE ·and. semi-coronal 

conditions. Parameters necessary for the evaluation of 

collisional-radiative coefficients in the semi-coronal 

model are discussed, and an attempt is made to show that 

the theoretical values in the literature at present, are 

inadequate under the laboratory conditions of interest. 

The lines for which f-values have been calculated are 

generated in a theta pinch plasma, and an attempt is made 

to decide which of the two models accounts more accurately 

for the observed intensity ratios. 
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Introduction 

In this thesis an attempt is made to establish the 

form of the equations determining the line intensity 

ratios of subsequent ionization stages of the same 

element, valid under semi-coronal conditions (electron 

temperatures between 1 and 10 eV and densities of the 

order of io1s to 1016 per cm3). 

An important parameter in plasma spectroscopy is 

the absorption oscillator strength, f; of a transition. 

The first chapter is devoted to a discussion of a 

relatively simple atomic model, the Coulomb approximation, 

Which leads to satisfactory values of f in most cases of 

interest, 

Inside.a plasma, the state of the atoms could range 

from neutral to highly ionized. Under conditions of 

local thermal equilibrium (LTE), the ratio of the popula­

tion densities of excited levels within an atom or ion, 

and of successive ionization stages, are determined by 

the Boltzmann and Saha equations. Line intensity ratios 

can then readily be determined using oscillator strengths 

evaluated by means of the Coulomb approximation. In the 

second chapter, atomic processes are discussed and it ·is 
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snown thq.t in our case neither complete LTE nor coronal 
'";:· 

equilibrium can be expect"~d. to describe the thermody11amic 

situation accurately and that certain semi-coronal 

coefficients need to be determined before semi-~oronal 

line intensity ratios can be calculated. 

There is much uncertainty in the literature about tl)e 

~alues of these collisional-radiativ~, c9efficients (ChaJ?ter 

3.) under. semi-coronal conditions, partic,ularly for non-

hydrogenic atoms. An attempt is made to decide whether 

with the iarge uncertainties that the semi-coronal. 

approach involves, the LTE formu+a~ do not lead to line 

intensity r~tios in better agreement with the correspond­

ing measured quantitie~. 

The last two chapters are .devoted to expepimental 

considerations and results. 
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Chapter 1 : Oscillator StreI'lg~1:_s 

The type of plasma used in this project is classed 

as "optically thin", i.e. very little emitted r~diation 

is re-absorbed by the plasma, and photon densit:i,es are 

low. The exceptions to this rule are the resonance lines 

(longest wavelengths capable of exciting fluorescence) 

of the various atomic species, which are fairly strongly 

re-absorbed. However, for reasons outlined in the 

section on "Atomic Processes", these do not concern us 

here. Denoting by Apm the Einstein coefficient for a 

spontaneous transition by the radiating atom or ion from 

state m to state p with emission of a photon, the line 

intensity for this transition may be written: 

I = (1.1) 

Here N~ is the number of ions of a partic~~c:lr. species, 

charge z, in state m. 

A dimensionless quantity which is used extensively 

in spectroscopy is the oscillator strength or f-value of 

a transition. Originally introduced from classical theory, 

the absorption oscillator strength fmp is defined in terms 

of A by - pm 
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= 
2 . 

2r 0 wpmgpf mp .. 
(1.2) 

c gm 

where r
0 

is the classical electron radius. From equation 

(1.1) it follows that the line intensity is known provided 

the f-value of the transition, as well as the number of 

atoms in state m, are known. 

Related to f is the line strength S of the transition: 

= = (1.3) 

where >. is in 1\, and gp is the statistical weight of the 

lower state involved in the transition. Here Smp :Ls 

expressed in atomic units, which are, for (allowed) 

electric dipole transitions: 

= 6.459 x lo-36 cm2 esu2 

It is customary to write Smp in terms of the relative 

line strength S(L) and relative multiplet strength S(M) 

(see equation (1.7) below). Let t' and t" denote the 

initial and final orbital quantum numbers of the "jumping" 

electron, and denote the greater of the two by t · • The 
> 

symbols S, L, J represent the spin, orbital and total 
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angular momentum quantum numbers of the initial state; 

similarly S', L', J' those of_ the final state. The 

"core" (parent) is designated by its orbital angular 

momentum L1 , which is assumed not to change during the 

transition. To avoid confusion, the initial state is 

taken to be the state of lower energy measured from the 

ground state of the species. 

S(L) and S(M) are expressed in terms of so-called 

Racah coefficients. Values of the two types of Racah 

coefficients which are heeded to evaluate Smp' viz. 

W(LJL'J'; S 1) and W(1'L1"L'; L1 1) are listed in Griem's 

11 Plasma Spectroscopy"(l). One then has: 

S(L) = (2J+l)(2J'+l)W2(LJL•J 1 4~ 1) 

(28+1) 
Cl.4) 

S(M) ~ (2S+l)(2L+l)(2L'+l)1>(41~-l)W2 (1'L1"L'; L1 1) 

(1.5) 

In accordance with the selection rules, it is assumed that 

s = s'. 
Values of S(L) and S(M) calculated using the Racah 

coefficients may be checked by comparing them with the 

earlier (incomplete) tabulations of Russell (2) and 
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Goldberg (3),(4). Allen (5) reprints Russell's and 

Goldberg's tables, and incorporates the correction 

factors listed in (4). 

The atomfc model used in this thesis for calculating 

oscillator strengths is the Coulomb approximation, which 

is described in the following paragraphs. Russell-

Saunders coupling is assuined and all quantities are 

expressed in atomic units. 
Ri Rf 

Let and be the initial and final :radial r I" 

wave functions or the active electron normalize~ in atomic 

units. From the Schrodinger equation, Ri and Rf satisfy: 

- + (2v -
dr2 

R.(R.+l) 
. 2 r. 

E)R = 0 (1.6) 

where v is the potential, .e. the azimuthal quantum number 

and & th~ energy parameter. bne method of solution would 

be to integrate numerically outward from the origin, E 

being adjusted to be an eigenvalue; a disadvantage of this 

approach is that an exact knowledge of v is required. 

However, if it is assumed that v approximates closely 

to its asymptotic form before the region is reached ·which 

gives the dominant contribution to the transition integral 
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v may be replaced by C/r, C being the excess charge on 

the nucleus wben the active electron is removed. 

D.R •. aates and A~ Damg~iard (6) have justified this 

a~sunw.tion in the case of many·-tt'anslt!9ns of interest, 

and show that it readily leads to a solution of equatio.n 

(1.6). 

Then, Smp ~s given by 

S = S(M)S(L)~2 
ntP 

where 

a2 = 1 (1.8) 
(4R.2 - 1) 

> 

Soreening is taken into account by ·the intr.oquction 

of th!a';eff~stive: principal quantum number n* = C and. 
.. . . . . . ./£ 
for reasQns of presentation, a is expressed as 

(l.9) 

>< rdr 
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Referring to the no:t(ltion used in connection with the 

Racah coef f ic.ients (equation 1. 5) , 

t' = R. - 1 t" = R. 

the lower R. value pertaining to the state of lower 

energy with respect to the ground state in the transitions 

studied here (with two exceptions - see f tables). 

In the paper of Bates and Damgaard, numerical values 

of :fiand j are tabulated for R. = 1 (s-p t~ansitions), 

1 = 2 (p-d transitions) and R. = 3 (d-f transitions). This 

method, besides having the advantage of allowing f-values 

to be calculated reasonably quickly, gives accurate 

results for atoms with a single electron outside a closed 

shell; it is less accurate but still satisfactory when 

there 'are two or more outer electrons. The tables as 

compiled are most useful for s-p transitions; it has 

been 'found that a few p-d and d-f transitions fall outside 

the range of the :J' and J values given. 

In most cases listed in this thesis, the f values 

have been calculated by the present writer, and, where 

possible, the results have been compared with those listed 

in· (1) and "Atomic Transition Probabiiities", a data 

compilation by Wiese, Smith and Glennon (7). As regards 

the reliability of the above approach compared with more 
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sophistic~ted methods, it may be of interest to quote from 

the introduction to (7) : 

"On the whole the Coulomb approximation has given 

impressive results and has proved to be of great value. 

In most cases where comparisons are available - there are 

several hundred of them for the first ten elements - the 

results agree within 20 - 40 percent with those from 

advanced theoretical and experimental methods. We have 

therefore made extensive use of this approximation to 

supplement the available material". 

In this thesis, some use has been made of the older 

term value tabulations of Bacher and Goudsmit (8) besides 

those in (7). 

Example of the Calculation of Oscillator Strengths: 

· Although the Coulomb approximation has been used 

extensively by m~ny authors for the calculation of 

oscillator strengths, the following example is included 
. ::· 

in order to cl.arify the above discussion: 

NI li~e, l = 4151.46 l 

1. Look up the term values listed in (7) and write 
\ ,I,\ '. ., ' 

down a .comple1:~ specification of the angular momenta 
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of the two levels involved in the transition: 

The usual selection rules are clearly obeyed by 

the transition ((8), pp 16 - 18). 

2. Adjust the term valµes to refer to the ground state 

of the next highest stage of ionization, and reduce 

these to atomic units by dividing each by the 

factor 109679, i.e. 

2. = 0 

33848 

• 3086 

.. = 1 

9767 

.0891 

3. Denoting the orbital angular momenta of the two 

electronic levels involved by 1-1 and t, determine 

the quan~um numbers 

* c n = l = 1.800 . i~1 " ......... ,. = 
/reduced· energy of lower level ./~3086 

tc 
nl. c 1 = 3.350 = 

lreCiuc~d 
..... 

energy of upper level ./!0891 

where C excess charge on nucleus after the active 

electron has been removed. 
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5. 

6. 
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* ·~ * * Look up the factors~Cn1 , t) and vCn 
1

_1 , n
1 

, t) 

in the tables of Bates and Damgaard (6), inter­

polating where necessary. 

:f1c 3. 3SO, 1 > = 9.278 

3<1.aoo, 3.3so, 1> = -.042 

. 
a = ~1'1j = -.3897 • • a2 = .1518 

Determine the Racah coefficients, and hence S(L) 

and S(M) .. 

J = S/2 , J' = 3/2 , L = 1, L' = o, s = 3 
2 

.R.' = o, .R." = 1, R,> = 1, L1 = 1 

' 
W(LJL 'J'; 's1 > = W(l 5/2 0 3/2 . 3/2 l) .28868 

' 
W(t 'Lt"L'; L1 1) = W(O l 1 0 . 1 l) = .33333 

' 
• • S(L) = .5000 S(M) ::: 4 

[To check: identical values for S(L) and S(M) 

are found in ( 5) , pp 5 6 - 6 4 ] • 

1 : 

7. S = S(M)S(L)a2 = .3036 

Statistical weight of lower level = 2J + 1 = 6 

f 303. 75 s .0037 • . = = g1 >. 
[Cf• (1) .00301 ; (7): • 0023 ] 

It is interesting that the older term value tabulations 

in (8) lead to a value of f in better agreement with 

the literature, viz. .00295.· 



,. 

- 12 -

Chapter 2 Atomic Processes in the Plasma 

It is pointed out in the Introduction that before 

line intensity ratios can be calculated, the type of 

thermodynamic situation that prevails in the plasma must 

be ascertained. When complete thermodynamic equilibrium 

exists, the ratio of the intensities of any given pair 

of lines belonging to successive ionization stages of 

the same element is a function of electron density and 

temperature alone. Where complete thermodynamic 

equilibrium does not prevail (as is the case with most 

laboratory plasmas), atomic processes need to be consider­

ed carefully. 

Let Sz represent an atomic species, charge z. For 

the reversible reaction denoted by 

sz + e * sz-1 

the following competing processes have to be taken into 

account: 

(a) Three-body recombination, state p to state q 

szCp> + e + e ~ sz- 1 Cq) + e 

(b) Collisional ionization (inverse of (a)) 

gZ-l(q) + e ~ Sz(p) + e + e 

(c) Radiative recombination 

Sz(p) + e ~ Sz-l(q) + hv 
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(d) Photo-ionization (inverse of (c)) 

Sz-1 (q) + hv + Sz(p) + e 

(e) Collisional de-excitation 

sz-1(p) + e + sz-1(q) ·~ e 

(f) Collisional excitation (inverse of (e)) 

sz-1(q) + e + sz-1(p) + e 

(g) Spontaneous and stimulated emission 

sz-l(p) + sz~1(q) + hv 

(h) Photo~excitation (inverse of (g)) 

Sz-1(q) + hv + Sz-1(p) 

(i) Auto-ionization 
z-1 z · 

s~'c (pl + s ( q:) + e 

The excitation of an electron other _than the most 

loosely bound one or the simultaneous excitation of two 

electrons can result in a series of discrete states, some 

of which have energies greater than that required for 

normal ionization. Thus discrete lines for photon 

absorption could be observed in the midst of a continu'"'11s 

photo-ionization spectrum. A radiationless transition 

can now occur, giving rise to an ion (Sz(q)) and free 

electron which have the same energy as the original ion •. 

(Marr (9) p 168, Cooper (10) p 39) 
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(j) Di-electronic recombination (inverse of (i)) 

sz(q) + e .... s~-i (p) .... sz-i Cn) + h" 
. , 

A reversible, radiationless transition occurs between 

an ion Sz in state q and an electron giving rise to a 

doubly excited bound level of followed subsequently 

by a radiative transition to a singly-excited state n of 

sz-l below the ionization limit. It will be noticed that 

neither this process nor its inverse can occur in the case 
z-i of hydrogenic systems since S - must have at least two 

electrons. ( (10), p 57). 

Processes (i) and (j) are less important than the rest 

and are not further taken into account until the next 

chapter. 

In connection with the ionization_ processes listed 

above, it should be noted that in a plasma the formation of . - . . ....... , .. . ' . 

an ion pair occurs for energies which are lower than the 

ionization energy of the isolated atom or ion. This is as 

a result of the fact that charges of one sign tend to have 

on the average an excess of charge of the opposite sign. 

in their immediate neighbourhood. In Cl) (pp 137 - 140) 

the Debye theory of Coulomb interactions in plasmas is 

discussed, and it is shown that the reduction of the ion-

ization energy for a species of charge z-1 is given by 
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z-1 
6E = 

00 

ze2 

Whe~e Eooz-1 . . t• ~· = ioniza ion energy 

NZ 
a = 

PD = Debye length 

= r .... •okT 
I e2(Ne + I 
L 

·1 i 
i 
l 
! 

z2N~j 
' .J. 

total no. of atoms per cm3 with charge z. 

.(2 .1) 

(2.2) 

In all cases dealt with in this thesis, this corI?ection 

turns out to be a small fraction of an electron vqlt and is 

·thus ignored. 
' ·'· ,. "·· 

For example, in the case of NII , when 

aE increases from .007 eV at kT = 10 eV to .02 eV at 
.oo 

kT 1 eV whereas E= = 29.593 eV. 

Processes resulting from atom-atom, atom-ion and ion~ 

ion collisions are not included in this discussion, since 

the·relevant rates are much smaller than those for electron~ 

atom and electron-ion collisions in plasmas ~h~re the 

degr~~ of ionization is appreciable ((10) p 42, 

(1) p 130). It is clear that processes (a), ~b), (c), 

(e) and (f) depend upon the ele9tron d~nsity and energ~es 

<criaracterized by electron temperature Te).. Via 



- 16 -

collisional processes (mainly electron-electron, since 

momentum-transfer cross sections are small for paf.ticles 

of very different masses), the free electrons quickly 

attain statistical equilibrium provided three conditions 

are fulfilled (Wilson (ll)). 

These are 

where tee is the electron-electron relaxation time, 

trad is the energy decay time for bremsstrahlung, ten 

is the energy heating time and t rt is the particle pa . 
containment time. Wilson shows that the first criterion 

is completely satisfied at all feasible temperatures~ in 

laboratory plasmas. Spitzer (12) gives the following 

e'xpression for the electron-electron relaxation (equilibrf..; 

zation) time: 

= (2.3) 

where Te is in °K and R.nl\ is a slowly varying function of 

electron density Ne and electron temperature Te , usually 

of the order of 10 ((12) p 28, table 5.1). Thus in the 

case of a fully ionized Hydrogen plasma of electron density 

1012 per cm3, tee equals 2.82 x lo-a sec. at 104 °K. 
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Under the above conditio'ns, the veiocfty distributi6n 

of free electrons is Maxwellian, i.e. 

exp (-mv
2 

) 
2kTe 

v2dv (2.4) 

where dNe is the number of electrons per cm 3 with speeds 

between v and v + dv, and Te , the parameter which 

characterizes ea.c'h particular Maxwell distribution, is 

by definition the electron temperature. 

For complete thermodynatni.c equlli,briilin 11 each possible 

process must occur at the same rate ~s its inverse (this 

is the ''principle of detailed balance")~ If one type of 

prbc'ess is unbalanded ~ the plasma may ne~e~th~iess be in a 

state qtiite close to complete equilibrium. it is mentioned 
. ... 

in the first chapter that photo-ionization~ photo-excitation 

to hfgher ... iying levels and stimulated emission occur at a 

negligible rate in most 1aboratory plasmas; spontaneous 

emission is thus unbalanced. If, however~ the electron 

dehs:i.ty ahd temperatutte are high enough collisionctl 

processes will occur at a far gtteater rate th~n radi~tiv~ 
. . 

decay; and if these coliisional processes nearly balance 

amon:g themselves;· the plasma will be in a state close to 

the thermodynamic equilibrium. One them speaks of loca·l 
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thermal (or thermodynamic) equilibrium (LTE). In this 

case, population densities will be given by th~ Boltzmann 

and Saha equat:i..Ons to a high degree of accuracy (though not 

of course 100%): 

= 

= 

C Bol tzmarm) 

( mkJ \ 12 
exp (-E' /kT) 

2rrn2j n e 
(Saha) 

(2.5) 

( 2. 6) 

In the Boltzmann equation, energies are expressed with 

respect to t1'e ground state, whereas in the case of the 

Saha equation E~ is the (positive) binding energy of 

state n, charge z-1, with respect to the ground state of 

the next ionization stage. 

g = 2J + 1 

or = 2n2 (for hydrogenic levels) 

The temperature which describes the LTE is that of 

the electrons, since they dominate the reaction rates. 

The ions usually do not attain a Maxwellian velocity 

distribution within the lifetime of a laboratory plasma 
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and so one a~oids assigning an ion temperature. For 

LTE to be a good approximation, fairly stringent conditions 

apply to the electron density and electron temperature of 

the plasma. In the case where the electron density is 

far too low at a given temperature for LTE to be valid, 

the corona model (so called since this type of situation 

prevails in the solar corona) le2ds to an equation of 

state which is approximately valid (Woolley and Allen 

(13)): 

The three-body recombination rate is proportibnal to 

the square of the electron density; whereas the radiative 

recombination rate is proportional to the electron densl.ty 

alone, at a given temperature. Thus for low electron 

densities, the latter process dominates the recombination 

rates. Orie must therefore consider the apptoximate 

balance between collisional ionization (coefficient S) 

and radiative recombination (coefficient a)• 

·z and N be the total number of ions in two sUbs'equent a 

stages of ionization of a particular species. In the 

corona state, fractional ionization is deterrid.ned by 

SN!- 1 N e = aN~ Ne 
·z .. Na s 

(2.7) 

. . -··-· -· = z-1 
Na a 
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which is independent of electron density. The evaluation 

of the rate coefficients S and a is considered in the next 

chapter. 

In 'the regime between tl1e thermal and ·coronal domains, 

th~ situation is much mo:re complicated. In this connexion 

it l.s irtiportant to no"tice that collisional cross-sections 

increa~e with increasing principal qu~ritum number, while 

radiative decay probabilities decrease (i.e. radiative 

lifetimes increase) ((1) p 130). Quantitatively, in 

the case of hydrogenic atoms, Bethe and Salpeter ((14), 

p 269) give the following expr~ssion for the reciprocal 

mean :t'\adiative lifetime R~-l 

-- l 
n '<n 

z-1 1 An'n - 1.6 x 10 O 
z4 

n '+ • 5 
sec- 1 ( 2. 8) 

where they have averaged over the ·initial R.-values accord­

ing to their statistical weights. 

Also, for most levels, cross-sections for coilisional 

ezcitation are much larger than for de...:.excitation ((1) 

p 146). The conditions for LTE are thus especially·· 

stringent for lower-lying levels. Whe.re the electron 

density at a particular temperature is too low for LTE 

to exist, another type of near-equilbrium state may 
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prevail, in which excitation and ionization from the 

ground state still occur by electron impacts, but radiative 

decay is the dominant mode of de-excitation between the 

lower-lying levels. However, the relative populations 

of the higher levels are usually still controlled by 

collisional processes, and the.re is coupling between the 

two groups of levels by collisionally induced transitions 

in both directions. 

Thus, according to this model, the thermal equilibrium 

in the continuum extends down to the upper bound levels of 

the ion due to the high collisional transition rate between 

the continuum and upper levels, imposed by the free electrons. 

One may therefore postulate some level in the ion, the 

"thermal limit 11
, above which the distribution is approximate­

ly thermal and below which it is approximately coronal. The 

Saha equation is applicable to these upper levels, and 

enables one to link their P'Opulations to the ground state 

population of the next (higher) ionization stage. 

The resonance lines result from transitions from low­

lying levels (i.e. below the thermal limit) to the ground 

state and contain far more energy than that radiated in the 

rest of the radiative transitions (cf. equation 2.8). For 

any possibility of approaching thermal equilibrium, these 
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lines, in contrast to the rest, must therefore be fairly 

strongly re-absorbed by the plasma and are not suitable 

for spectroscopic study (see also (1), Chapter 7). 

Wilson (11) discusses work published on the semi-

coronal distribution, and gives an expression for the 

domain of validity of the LTE approximation: 

Ne~ 6 x 1Ql3(E )~kT >112 cm- 3 (2.9) 
oo e 

(Here energies are expressed in eV.) For Ne far below 

this value at a particular temperature, the thermal limit 

is very close to the ionization limit and the coronal 

situation prevails. As Ne increases, the thermal limit 

drops until, at a sufficiently high density, it reaches 

the ground level and all levels have a thermal population 

i.e. the Boltzmann and Saha equations are generally valid. 

The derivation of an exact expression for the thermal limit 

is con~idered in the next chapter. 

Formulae for the relative line intensities of subsequent 

ionizatio~ stages of the same element, valid under LTE and 

semi-coronal conditions, are derived below. Thus, if it 

could be established which of these models, or combination 

of models, describes a certain plasma, the electron 

temperature may be determined by measuring the intensities 
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of suitable spectral lines. The determinatio~ of the 

absolute inte"'nsity of a spectral line calls for very 

careful and accurate measurement, but by choosing pairs 

of lines and measuring their relative intensity one can 

eliminate some of the problems. 

Line intensity ratios, LTE case: 

Consider two subsequent ionization stages, z-1 and z, 

of the same element and let the two spectral lines of 

interest result from the following transitions: 

z ~pper level m to lower level p, wavelength A' 

z-1 Upper level n to lower level q, wavelength A• 

When no other superscript is used, primed quantities refer 

to the line from the higher ionization stage. 

Boltzmann Equation: 

= exp(-E'/kT) 

where E' ~ E! - Et (excitation energy of higher level, ~ 

higher ionization stage). 
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Saha Equation: 

exp 

. . · z-1 z-1 Sub st 1tut1ng from above, and puttinK E;n · - El · = E 

(excitation energy of higher level', lower iopiza~ion s:tage) 

we obtain: 

Let I' be 

I ii 

Then, I' = 

= 

Similarly, 

. I I . . 
I 

= 

the intensity for 

Ii II :v 

NZ 
m A' pm h\)' pm 

( 

E' + 
exp _ 

E00 - E)\ 
kT 

the transition NZ + NZ 
m p 

ii ii z-1 + z-1 
Nn Nq 

N! cro>fu) gz 
h\I I _:.E__ f' pm gz mp 

m 

I· = Nz-1 
Aqn h\lqn n 

( 2r w2 j z-1 

= Nz-1 o. gn h i f n c ) \) qn z-1 nq 
gn 

(equations 1.1, 1.2) 

NZ \) I 3 z z-1 
f ~p gp gn m = z-1 3 Z-1 gz f N \) gq n m nq 
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Hence, substituting for from above, 

I 
(

1 E' 
exp -!' = 

Introduce the Bohr radius a
0 

and ionization energy of 

Hydrogen, 

. . . 

ao 

EH 

= 

. . 
41T {2 

m e2 

e:o 
= 

m et+ 

(MKS units) 

= 
(

' 7' 3/2 2 m 
21T fi 2 

Hence, substituting in the equation for I'/r, we obtain 

I' = 
f I g ' A 3 3 / 2 3 - 1 ( kT )3 / 2 

- (4ir a 0 Ne) I EH · exp 
f g A 1 ~ \ 

(_ E 9 + E00 -El 
\ kT . ) I 

(2,10) 

in agreement with the relation stated without proof on 

p 2 72 of ( 1). In (2.10), g' and g are the statistical 

weights of the lower levels involved in the transitions, 

while E' and E are the (positive) excitation energies of 

the upper levels, referred to the ground states. 



I 
I 
I 

i . 
I 

I 
I 

1 

- 26 -

Line intensity ratios, semi-corona case: 

Consider three subsequent ionization stages, z-1, 

z and z+l of the same element (unprimed, primed and 

doubly primed respectively). 

Let I' be the intensity for the transition z NZ Nm -+ p 

I H II ii 11 I! 11 Nz-1 Nz-1 
n -+ q 

( 2r0 
' 2 \ gz 

As before, I' = NZ WJ2m 
)h 

~ :.£ f z 
m "pm z mp 

' c gm 

' 2 ) 
z-1 

I z-1 ( 2r 0 wql!. 
h "qn 1- f~~l = N n z-1 

' c gn 

Assume that the upper level involved in each transition 

is in Boltzmann-Saha equilibrium with the ground state of 

the following ionization stage (i.e. that m and n are above 

their respective thermal limits). Then, from the Saha 

equation, 

Nz-1 = 
n 

Similarly, 

( 
2n {2~ 12 (Eco -. exp 

mkT 

z-1 E 
n 

( 
'· ·;12 ( 2n b·2 

- exp 
mkT 

E' - Ez 
co m 

kT 
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A note on the Debye length: 

Equation (2.2) is derived on the assumption tha_t 

the ions have a Maxwellian distribution of speeds~ at the 

same temperature as the electrons. In our case it would 

be more correct to assume a stationary ion background; 

the Debye length is then estimated by: 

= 
[ 

e: 0 kT J ~ 
e 2 N e 

(2.12) 

Equations (2.1) and (2.12) are used in the next chapter 

to give an indication of the highest bound level in a NII 

ion under labor.;itory qnd solar coronal conditions. 
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Chapter 3~~-M_athematical Treatment of Rate Coefficients 

§1 Method of denot~ng energy levels: In the Boltzmann 

and Saha equations, the subscript n is used to distinguish 

between ionic energy levels (equations (2.5) and (2.6)). 

In the case of hydrogenic ions, where the electron states 

with the same principle quantum number are degenerate, 

a convenient way to indicate any level would thus be by 

the principle quantum number of the single bound electron. 

In the case of non-hydrogenic ions, the subscript n would 

no longer be a quantum number in the true sense, but merely 

a way of 11 counting 11 the levels fr::i.m the ground state upward. 

The following derivation of the thermal limit applies 

primarily to hydrogenic ions; a method of employing the 

result in the case of non-hydrogenic ions is considered 

further on. 

§2 Derivation of the thermal limit for hydrogenic ions: 

As stated in Chapter 2, the average radiative decay 

rate of a state with principal quantum number n is given 

by: 

, z-1 10 
l An'n ~ 1.6 x 10 

n 9 <n 

z4 

n4.5 
(3.1) 
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According to Griem (1) (p·l47), the collisional transition 

rate per atom or ion in state n to state n' is estimated 

by 

exp 
/ 2z2EH) i i 

\ n' 3kT 
' e 

(3.2) 

Let the principal quantum number nt be chosen in such a way 

that for the corresponding level (the thermal limit), 

radiative decay is as likely as excitation into higher 

excited levels. 

Since L fn'n = 0.5 n 
n '>n 

((1) pl60), 

l z-1 c 
n>nt nnt 

With z-1 
R n 

n ~ 126 
t 

~ 

= 

9 x io-s 
4 

l 
n>nt 

11+/17 z 

( )' ( 2z2E ) nl+ z2E 2 
t 

Ne ~TH exp -
H . 

3 ni kTe z , e I \ 

( 3. 3) 

cz-1 
nnt ' we find: 

(3.4) 

This definition of the thermal limit is by no means 

the only valid one. 

obtained ~y putting 

For example, a different nt would be 
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+ z-1 c 
f nt 

z-1 where Cf denotes the collisional ionization rate per 
nt 

ion in state nt. This would also give a good indication 

of the lower limit of the collision-dominated regime .. 

Wilson (11) adopts a third approach. (Note that in 

equation 6, (11), N; 1 should be read for Ne). 

§3 The thermal limit for non-hydrogenic ions: 

In Chapter 1, the effective principal quantum~number 
,,~ 

n of a level E~- 1 (meaning of n as in §1) is defined as 

z n = 

Thus, 

= z-1 E - (3.5) 
CO 

This may be compared with the corresponding hydrogenic 

expression, where one merely has n in place of 
~': 

n • 

In the case of highly excited levels, the outer 

electron moves in a potential due to charge z, i.e. we 

assume that the screening due to the other bound electrons 
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is completely effective (the Coulomb approximation). 
. .. 

These highly ·excited levels are thus hydrog~nic, and n· 

may be identified with the hydrogenic principal quantum 
z2E 

number. Thus, provided that ~ is small compared 
nt 

with E"" ., the express ion for the thermal limit in § 2 

a~ove is applicable, and in order to test whether the 

population of a given level is collision-dominated, ohe 

* has merely to show that n - nt ~ O. 

§4 Collisional~Radiative Coefficients: 

When an electron is excited into a state for which 

the corresponding ionic level n > nt , it is most likely 

to become a free electron before cascading down again 

(definition of thermal limit). Thus the effective ion-

ization rate equals the sum of collisional rates for 

transitions from levels n < nt to n ~ nt and collisional 

ionization rates _from levels n < nt • The effective 

recombination rate may be expressed as the sum of collision..;, 

al and. radiative rates from levels n > nt into levels n ~ nt 

and radiative recombination rates into levels n i nt. 

Let R 11 re.present the rate at which collisional-induced en n · · 
transitions between n and n'' occur and Rrnn" the rate of 

spontaneous (radiative) transitions from n" to n. 

Denote the rates for collisional ionization from level n, 
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three-body recombination into level n and 

radiative recombination into level n by Rcfn , Rcnf 

and Rrnf respectively! Then in equilibrium, one has: 

R f + c n r 
n")n t 

= 

+ ! 
n">n t 

(3.6) 

Representing the summations on the left hand side of 

equation (3.6) by R
0 

, and the sum of the collisional terms 

and radiative terms on the right by R~ and ~r respectively, 

the effective depopulation rate of the ground state 

becomes 

z-1\ 
dNl t 

dt /depopulation 
= -R :: c 

-S N Nz-l 
er e a (3.7) 

while the rate at which the ground state is populated is 

given by 

= R' + R c r (3.8) 
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In equilibrium, ( 3. 7) and ( 3. 8) must baL.:mce, i.e. 

= (3.9) 

where Ser and acr may be called the collisional-radiative 

ionization and recombination coefficients, respectively. 

In the limiting low-density (corona) case, where radiative 

de-excitation predominates over collisional de-excitation 

at all levels (i.e. the thermal limit merges with the 

continuum), Ser and acr may be replaced by Sand a 

(equation (2.7)). 

It should be noted that the number of bound levels 

considered in equation (3.5) remains finite owing to the 

reduction of the ionization potential in a plasma. Where. 

·other processes such as auto-ionization and di-electronic. 

recombination play a part, equation (3.9) should be 

replaced by 

N! 8tot (3.10) = z-1 
Na atot 

where 8tot = 8cr + qauto 

a tot = acr + ad 

Now the evaluation of these coefficients for a given 
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electron density and temperature presents great 

difficulties: the rate coefficient for each competing 

process is;: complicated function of such parameters as 

temperature, density, ionization potential, ionic charge, . 
initial and final quantum numbers. These functional forms 

are seldom well known over a wide range of conditions and 

generally present problems of extrapolation. Furthermore, 

in order to simplify the mathematical treatment, certain 

assumptions are introduced which, though perhaps reason-

able under certain conditions, lead to fairly large 

inaccuracies in.other cases. Significant disagreement is 

quite often found between formulae presented by different 

authors. Another difficulty is the rather misleading 

term "low density plasma 11
: the density range is seldom 

specified although conclusions drawn for certain "low 

density" conditions are invalid for others. 

In the rest of this chapter, some recent papers on 

the subject are discussed. It should be borne in mind 

that in our case the collisional-radiative coefficients 

necessary for the determination of line intensity ratios 

by means of equation (2.11), are required to be valid 

under the following conditions: 
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1015 < N < 1016 cm- 3 
e 

1 < kT < 10 eV e 

These criteria are justified in a later chapter. 

In Wilson's paper (11) we find the following c1:..itcria 

for the thermal, coronal and semi-coronal domains: 

Thermal Domain: 

(3.11) 

Coronal Domain: 

+ (3.12) 

Semi-Coronal Domain: 

+ (3.13) 

The faGt that three independent authors are in reasonable 

agreement on equation (3.11) (McWhirter (15)) provi-'2s fair 

confidence in the selection of a lower limit to the thermal 

domain. The above three relations are graphed (fig.3.1) 

for the energy interval 1 eV to 100 eV for both NII and 

NIII; the curves suggest that since the domain we are 

considering fies on the periphery of the semi-coronal 

regime, equation (2.11) with appropriate collisional-

radiative coefficients would give more realistic intensity 
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incident electron by the Coulomb field of the nucleus. 

According to (19), Seaton's approximation is a good one 

for many cases, although there are a number of specific 

instances where it overestimates the rate coefficient by 

a factor of two or more. 

The collisional ionization rate via bound levels 

was derived by Wilson in two later papers on the assumption 

that excitation to all levels above nt is equivalent to 

ionization and that the levels above nt are hydrogenic: 

(3.15) 

where xt' the ionization energy of level nt,is given by 

= 
I. 

1 (3.16) 
kTe 

and the effective charge z equals m+l. These two equations 

are employed in (16). 

Unfortunately, the more recent papers of Wilson(l964, 

1967) could not be consulted as these were published in 

reports. not generally available. Thus it is not clear 

how the above two equations were derived. In (11), 

however, we find the same expression for xt , except that 

the m,imerica.l factor is half as large (equation ?., (11}). 
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Now the latter equation was derived from Wilson's express­

z-1 ion for the thermal limit, on the assumption that E , 
00 

= z 2EH, which is certainly not true in general. 

Thus equati•:.>n 7, ( 11) should read: 

= 2.1s x 10-28 

However, since Jordan obtains nt from equation (3.4), 

it seems more consistent to use a value of Xt derived 

directly from the calculated value of the thermal limit, 

i. e, 

= (3.17) 

For order-of-magnitude calculations, these considerations 

are not particularly important. 

Jordan has found that for electron densities and 

temperatures in the solar corona and chromosphere, the 

collisional ionization rate via bound levels is negligible 

compared with direct collisional ionization, and has 

apparently neglected the former in both sets of calculations. 

This conclusion is examined below: 
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For the ion NII at an electron temperature of 2 eV, 

we find that the rate coefficient for direct collisional 

ionization 

q = 2.62 x lo- 15 cm3 -1 sec 

Allow the electron density to decrease from a typical 

laboratory value of 3 x 10i 5 cm-3 to a typical (solar) 

coronal value of 3 x 10 19 cm- 3 , while keeping the temper~ 

ature constant. The Debye length then increases from 

1.92 x 10-7 m to 6.07 x 10- 5 m, and as a result the lower­

ing of the ionization potential decreases from 1.50 x 10-7 

eV to 4.74 x io- 5 eV. The effective quantum number of 

the highest bound level changes from about 60 to 1071, 

while nt increases from roughly 3 to 10.7. 

With Xt given by (3.17) the collisional ionization 

rate via bound levels changes from 1.6 x 10-16 to 

The slow variation in S is 

probably due to the fact that as nt increases, the number 

of bound levels also increases owing to the corresponding 

change in the Debye length. Thus it appears that although 

S is certainly smaller than q, neglecting it completely 

leads to less accurate results than would otherwise be 

obtained. 
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§6 Auto-ionization: 

Several simplifying assumptions are introduced in 

Jordan's evaluation of the auto-ionization rate, this 

process being most important in the case of atoms where 

there are a large number of electrons in the firs·t inner 

shell compared with the number in the outer shell (e.g . 
• 

NaI, MgI, CaI, KI, BI, CI). Cox and Tucker (19) neglect 

auto-ionization entirely in their calculations (H, He, c, 

N, O, Ne, Mg, Si and S) - in contradiction to Jordan as far 

as the elements Mg and C are concerned~ However, since 

this process is relatively unimportant for the lighter 

elements, any inaccuracy in the assumed auto-ionization 

formulae for the element N should make little diffef>ence 

to the final result. 

§7 Radiative Recombination: 

For temperatures less than Te = 6 x ios °K, the 

radiative recombination rate of Elwert is used by Jordan 

(3.18) 

where n
0 

is the ground state principal quantum number; 

g !I 3 for lighter atoms and I is the· ionization energy. m 
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Assuming the levels above nt to be hydrogenic, Wilson (1967) 

derived the following expression for the radiative recombina­

tion. rate via bound levels (i.e. radiative decay rate from 

bound levels above the thermal limit): 

(3.19) 

C.z is the charge on the recombining ion). Jordan has 

apparently neglected the latter process in the second 

set of calculations. 

Consider again the imaginary experiment in §5 above. 

While 

a = 7.665 x lo-13, 

the radiative decay rate changes from 

ab = 3.71 x 10-11 at the higher density 

to ab = 6.445 x 10-13 at the lower density • 

. Jordan finds that 11 in low ions, such as CII, OII, Si II, 

this process is comparable with the direct recombination 

rate" (i.e. under solar conditions). 

Under laboratory cqnditions, it appears to. be the 

dominant mode of radiatjve recombination. 
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§8 Collisional de-excitation and 3-body recombination: 

In (16), the recombination rate resulting from 

collisional de-excitation of levels above the thermal 

limit (acoll.b) and the three-body recombination from the 

continuum into levels below the thermal limit (a 11 ) co .c 

were calculated using expressions given by Wilson (1967): 

(3.20) 

(3.21) 

11 It was found that both processes can be neglected in 

solar conditions 11
• 

Let the density decrease at 2 eV as in §5 above. We 

find that a.coll.b changes from 

6.34 x io- 14 to 3.088 x 10- 21 

while the three-body rate varies from 

.a coll. c = 8.353 x io- 15 to 8.353 x io- 20 

Thus although both coefficients are much larger under 
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our conditions, they still appear to be relatively 

unimportant. 

§9 .. . Di-'electron.ic. recombination: 

Simplified expressions for this rate coefficient have 

been developed by A. Burgess (20), (21) who first poin~ed 

out its importance. These expressions are valid to ,Jithin 

20 per cent under coronal conditions where N < 10 9 cm-3 ; e 

at higher densities, however, there are no reliable 

formulae which can be applied~ Burgess argues that since 

the highly excited states above nt effectively become part 

of the continuum, these states should not be included in 

the summation in the di-·electronic rate• He considers 

the ion CaII and suggests an effective reduction in the 

di-electronic rate at higher densities: 

00 

(3.22) 

where ad(n) = l ad(i,j,ni), i being the initial state 
~ 

of the recombining ion. His values of D for different 

nt are tabulated below: 
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nt D 

200 0.91 

100 0.62 

60 0.43 

20 0.15 

10 0.06 

8 0.04 

6 0.02 

In view of the lack of accurate calculations for each ion, 

Jordan used these CaII values for all ions, as very 

approximate reduction factors. 

effective rate 

Thus, in our case the 

(3.23) 

since nt is typically small compared with 200. In their 

general treatment of recombination in a low-density plasma, 

neither Jordan nor Cox and Tucker find it necessary to 

allow for this reduction. In their case, although di-

electronic recombination is negligible at low energies 

(about l eV) , it. could become the dominant recombination 

mode by 10 eV; in our case, if Burgess is correct, it 

probably remains unimportant over the whole energy range 

of interest. 
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§10 Conclusion: 

The above discussion shows clearly that calculated 

values of Sia. in the literature are not applicable under 

our conditions. It was therefore decided to use the H
8 

line profile to ascertain electron densities, measure 

relative line intensities for NIII and NII lines, and 

determine Sia by means of equation {2.11) by allowing 

the temperature to be a running variable in the range 

of 1to·10 eV. Large variations in the value of S/a 

at all t.emperatures for the line ratios selected, would 

then presumably indicate that the semi-coronal model 

used to derive equation c2.1i) is not applicable under 

the conditions studied. The results of such an experi-

ment are tabulated in Chapter 5. 
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Chapter 4 Experimental Method 

§1 Experimental arrangement: 

Two separate investigations were carried out; the 

circuitry for the first of these is illustrated in fig. 4.1. 

Two 8.5 µf capacitors were charged in parallel to 16 KV 

through the 500 Kn resistors as shown, by means of an H.T. 

supply. A trigger pulse from the thyratron then closed 

switches A and B, and the capacitors discharged in series 

in a circuit which included a theta pinch (copper coil 

wound around a cylindrical.glass tube of length 60 cm and 
. r.·. 

outer diameter 3.4 cm, containing the hydrogen and nitrogen 

mixture at a pressure of 100 millitorr). 

In the s.econd investigation, roughly the same arrange-

ment was used. The bank consisted of pairs of capacitors 

ch?-rged in parallel and discharged in series. There were 

7 of these pairs, of which 6 were used for the main discharge 

and 1 for the preheater discharge: A larg~r theta pinch 

(length 74 cm, outer diameter 10 cm) was employed. A crow-

bar switch ensured that the discharge current started decay­

ing exponentially after the first quarter period. 

Details of the apparatus are summarized below: 

tBecause the preheater gave rise to impurities in the plasma, 

all 7 pairs were later used for the main discharge and only 

rf preheating was used. 
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Bank Voltage (KV). 

Bank Ene~gy (KJ) 

Peak Current (KA) 

Total Inductance (nH) 

CO'il Inductance (nH) 

Discharge Period (~ sec) 

Preheat er 

Preheat er Energy ()<J) 

Crow-barred 

Co~l Length (cm) 

Tube Length (cm) 

Expt.l 

16 

2.18 

212 

263 

12 

6.7 

rf 

No 

9.5 

60 

Ex;;,-'t• 2 

12 

8.57 

828 

68 

31 

·9 (not' 
crow-barred) 

rf 

Yes 

32 

74 

Nitrogen gas constituted a small (5%) impurity i~ a 

fully ionized hydrogen plasma. The light intensity radiated 

at a particular wavelength was recorded by means of a photo­

multiplier connected to the exit slit of a Heath Scanning 
0 

Monochromator with dispersion 20 A/mm. The entrance and 

exit slits were usually set at 3 microns and 4 X, respect­

ively, for the first experiment; for the second experiment, 

an entrance slit setting of 7 microns was found to be ~0~3 

suitable. 

The following NII and NIII lines were selected for 

study on the basis of 
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a) oscillator strength above 0.1 
' 

b) observed intensity 

c) wavelength above 3800 .a. and below 6200 i (range 

determined by characteristics of photo-multiplier) 

d) chosen line at l~~st 4 i away from nearest.line 

in wavelength tables: 

NII (A in X> NIII (;>. in ll> 
3838.39 4003.64 

3919.01 4097.31 

3995.00 4103.37 

4026.08 4195.70 

4133.67 4200.02 

4176.16 

4227.75 

4447.03 

4530.40 

4552.54 

4630.54 

Determination· o·f electron density: 

This was achieved by scanning the profile of He 
(486i. 32 Jb from ·about· 4840 R to 4880 R with entrance and 

. . . 

exit slits of the monochromator set at a fixed value 
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(about 5 microns). The continuum (background) radiation 
0 0 

was measured at 4880 A and 4950 A and the average subtract-

ed from the height of the profile, in order to determine 

the full width at half maximum (the so-called "half-

width"). 

W.L. Wiese (22) has plotted the half~width of H
8 

against electron density from detailed Stark-broadening 

calculations. The graph,is valid for a temperature 

range of 5000 °K to 40,000 °K, the variation of half-width 

with temperature being negligible. ..According to the 

author, ivthe very good agreement between theory and 

experiment indicates that the resulting electron densities 

are accurate to about 7 per cent, provided that the 

experimental errors can be kept srnall 11
• 

In our case, the major source of error was the 

sketching of the outline of the profile through experiment­

ally determined points, which could have led to an 

estimated 10 per cent error in electron density. However, 

this uncertainty in Ne was found to be negligible.in 

comparison with the percentage variation in S/a (see 

Chapter 5). 

This method of determining Ne is highly satisfactory, 

since Stark broadening is principally a density effect and 
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does not depend on either electron temperature or electron 

velocity distribution, i.e. it is essentially independent 

of the assumption of LTE. nHence Stark broadening 

measurements will give reliable electron densities even 

in cases where the existence of LTE is doubtful, whereas 

some other methods would then become invalid" (22). 

§3 Determination of electron temperature: 

Using formulae for recombination radiation and 

bremsstrahlung combined with the Saha equation, Griem 

~(l) p 279) calculates the ratio of total integrated line 

intensity to continuum intensity (in a 100 i band centred 

at the line) as a function of temperature. The results 

are plotted for several HeI, HeII and B~lmer lines. 

According to Griem, "dev:'..2.tions from LTE cause no great 

errors as long as electron densities are above 10 14 cm~ 3 

(in the case of H13 ) 11
• 

By means of the monochromator, the line to continuum 

ratio could be fairly accurately determined. Since Te 

enters in the exponential only, in equations (2.10) and 

(2.11), larger percentage errors could be tolerated than 

with Ne (in equation (2.11)). It was difficult to 
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determine the error, the main source of which was 

probably the theoretical curve. 

§4 ...... Reproducibility of data: 

The major limitation in these experiments was the 

reproducibility of the spectral lines observed. The 

reproducibility was found to be better for NII lines 

than for NIII lines. In the case of the larger crow­

barred theta pinch, the reproducibility was found to 

be excellent. 
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Chapter 5 Discussion of Results 

§1 Calculated f-values: For purposes of comparison, 

the values given by Griem (1) and Wiese, Smith and Glennon 

(7) are also tabulated below. 
,., 

Here n is the effective 

principal quantum number of the higher level involved in 

the transition. 

Ion Wavelength 

NIII 400 3. 64 

NIII 4097.31 

NIII 4103.37 

NIII 4195.70 

NIII 4200.02 

NII 3838.39(e) 

NII 3919.01 

NII 3995.00 

NII 

NII 

NII 

NII 

NII 

NII 

NII 

NII 

4026.08 

4133.67 

4176.16 

4227.75(e) 

4447.03 

4530.40 

4552.54 

4630. 54 

,~ 

n This work 

4.98 .677 

2.68 .484 

2.68 .241 
ti 

4.00 .948 (a) 

~·~ 
4.00 .852 (a) 

3.23 .114 

3.00 .229 

* 2.61 .613 

4.01 

7.02 

3.98 

3.28 

2.92 

4.01 

4.01 

2.54 

(d) 

(b) 

.7~ (b) 

.170 

.59 (c) 

* .903 

;'; 

.240 

(d) 

Griem 

.677 

.484 

.242 

.442 

.398 

.114 

.229 

.613 

* .818 

.171 
it 

.587 

.909 

• 2 39 

w.s.G. 
.674 

.486 

.244 

.442 

.398 

.116 

. 2 31 

.63 

.280 

.117 

.80 

.171 

.642 

.67 

• 305 

.269 
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* f-value used in calculations 

(a) all values quoted in (1) and (7) for this 

multiplet, are too small by a constant 

factor 2.14 

(b) extrapolation nece'ssal'y~,;E;:r.·~.'6ut'·~lde range of 

tables in (6) 

(c) minor extrapolation necessary 

(d) selection rule violated; hence not suitable 

for calculation by Coulomb approximation 

(e) p-s transition. 

§2 Density and Temperature Measurements: 

From measurements of the half-width of H
8 

, the 

electron density in the small theta pinch was found to be 

This value did not vary appreciabl~/ 

over the whole time interval of interest (2 µsec to 18 µsec 

after the start of the discharge) and Ne was therefore taken 

to be a constant in the calculations. In the case of the 

small theta pinch, the discharge current was not crow-barred 

and the line to continuum ratio for H8 was ~ound to be 

completely unreliable. This was probably due to plasma 

contamination. 

The following values were obtained with the large (crow·~ 

barred) theta pinch: 
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Time (µsec) Ne(cm- 3 ) kTe (from H
8 

iine 

to continuum) 

2 8 x 1015 4.5 

4 8 x 1015 3.6 

6 1.3 x 1016 3.0 

8 1.1 x 1016 2.6 

10 9.5 x 10 15 2.4 

12 8 x 1015 2.0 

14 7 x 1015 1.6 

16 6 x 1015 1.4 

18 4.5 x 101 5 1.1 

§3 Temperatu}'.)e predictions by LTE formula: 

A large amount of data was obtained from computer 
;.: 

calculations, for the lines selected. Only the important 

results can be briefly .summarized here. 

It was found that for times later than about 4 µsec 

after the current had been crow-barred, equation (2.10) 

predicted temperatures of the correct order of magnitude. 

These predicted. temperatures were obtained from calculations 

of I'/I over the range 1 ~·kTe ~ 10 eV in steps of 1 eV and 

then over the range 1 ~ kTe ~ 3 eV in steps of .2 eV. The 

temperature that fitted the experimental observations the 
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closest, however, remained very nearly constant throughout 

the time interval, whereas line to continuum measurements 

for the large theta pinch indicate that by l8 µsec after.the 

bank has started discharging, the ·electron temperature 

has dropped to about half of its value at 6 µsec. 

Consider, for e~ample, the line pairs 4003.64/4447.03, 

4103.37/4630.54, 4200.02/3838.39. The following intensity 

ratios were measured with the large theta pinch: 

I'/I 
Time (µsec> 400 3. 64 4103.'37 4200.02 

4447.03 4026.08 3838. 39 

2 0.45 4.02 2.93 

4 0.61 1.83 4.03 

6 0. 39 0.98 1. 38 

8 0.27 0.78 1.11 

10 0.17 0.61 1.25 

12 0.07 0.51 1.66 

14 0.02 0.54 1.83 

The LTE programme, with a constant electron density 

of 1016 cm-3 , gave: 



- 58 -
I'/I 

kTe 4003.64 4103.37 4200.02 
4447 .03 4026.08 3838.39 

1.2 .220 x lo-6 .297 x 10-i+ -.110 x 10-s 

1.4 .203 x lo-i+ . 9 38 x 10-3 .853 x 10-4 

1.6 .622 x 10-3 .128 )( io-1 .229 x 10-2 

1.8 .909 x 10-2 .100 • 301 x 10-1 

2.0 .790 x 10-1 .528 .241 

2.2 • 4 70 .208 x 10 .134 x 10 

2.4 . 210 )( 10 .662 x 10 .565 x 10 

2.6 .753 x 10 .178 x 102 .193 )( 10 2 

2.8 .227 x 10 2 .418 )( 10 2 .558 x 10 2 

3.0 .593 x 102 .882 x 102 .141 x 103 

Predicted temperatures: (kTe in eV). 

,.. Time Citsec) 

2 2.2 2.3 2.3 

4 2.2 2.2 2.4 

6 2.2 2.1 2.2 

8 2.2 2.0 2.2 

10 2.1 2.0 2.2 

12 2.0 2.0 2.2 

14 2.0 2.0 2.2 

A value of kTe between 2.0 and 2.2 eV is thus predicted 

over most of the time range. 
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Equation (2.10) is thus rather insensitive to changes 

in I' /I, and seems to provide a measure of the mean "elect.ron 

temperature rather than its behaviour against time. 

Another important result is that the variation of the 

temperatures predicted by most of the line intensity ratios 

is .not greater than about 0.4 eV at any time. It is 

interesting to note that pairs of lines with lower values 

* of n provide consistently low temperatur~ estimates, 

whereas the reverse is true for pairs with higher valµ~s 
~~ 

of n , e.g. 

Time (}.!sec) 4103.37 4097.31 400 3. 64 
. ''c::1!' 

45 30 .40 4630.54 3995.00 

2 1.7 1. 8 2.7 

4 1.6 1.7 2.7 

6 1.6 1.7 2.6 

8 1. 6 1.6 2.5 

10 1.6 1.6 2.4 

12 1.5 1.6 2.3 

14 1.5 1.5 2.2 

The temperatures in the third column above should be more 
,': 

reliable; the lower n , the less accurate the assumption 
-.': 

that the particular level is thermally popula·ted (see n 

vqlues in §1 above). 
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4 Calculated values of S/a. : 

By means of equation (2.11) with measured I'/I values, 

the coefficient S/a was obtained for 

in steps of .5 eV, and times 2 to 18 µsec in steps of 2 µsec. 

At each time, variations of over 100 per cent about the mean 

were found. for the line ratios selected, instead of the 

constant values expected at least one temperature (the value. 

nearest the correct one). 

This may perhaps be explained as follows. Typical 

value.s for the thermal limits of NII and NIII, respectively, 

under the conditions described in §2 above, are 

(from equation (3.4)) 

In Chapter 2, equation (2.11) is derived on the assumption 

that the upper level involved in each transition lies above 

the themal limit for tnat particular ion. No attempt is 

. . * . made to predict the inaccuracies involved if n is .less 

in general, however, it may be stated that 

calculated £-values as well as S/a values improve the 
'le • • • • • closer n is to the ionization l1m1t. 

Thus, 11 best 11 values of S/a. would be expected for the 
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NIII lirie 4003.64 l, and theiNI! lines 4026.-0$, 4133:67, 
0 

4552.54 and 4530.40{\. Unfortunately, -the 413 3. 6 7 ~ 

NII line was far less intense than the rest, and measure-

ments were considere_d unreliable because of the comparative--

ly large background intensity in the vicinity. 11 Worst" 

values would be expected for 4097.31/3995.00, 4103.37/4630.54 

for example. 

The following values were obtained with the large 

theta pinch. The temperatures given are those in the 

computer programme nearest the H8 line-to-continuum results 

in §2 above. An asterisk indicates an unreliable result, 

which is not included in the mean. 
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NI II/NII Time Cµsec) kTe(eV) S/CJ. mean Sia 

lf003.64/4026.08 2 4.5 0.10 
4003.64/4530.40 0.20 0.12 
4003.64/4552.54 0.01 ... 
4097.31/3995.00 0 .06" ... 
4103.37/4630.54 0.05" 

~ 4003.64/4026.08 4 3.5 0.08 
4003.64/4530.1.fO 0.13 0.09 
4003.64/4552.54 0. 06 ... 
4097.31/3995.00 0.02" 
4103.37/4630.54 0. 021

: 

4003.64/4026.08 6 3.0 0.03 
4003.64/4530.40 o.os 0.04 
4003.64/4552,54 0 .03, 
4097.31/3995.00 0. 01:: 
4103.37/4630.54 0. Ol~t 

4003.64/4026.08 8 2.5 0.02 
4003.64/4530.40 0 .03 0.023 
4003.64/4552.54 0.02 
4097.31/3995.00 0. 01 1: 

4103.37/4630.54 0. 00 ~·: 
-~ 

4003. 64/4026 .08 10 2.5 O.Ql 
4003.64/4530.40 0.02 0.017 
4003.64/4552.54 0.02 
4097.31/3995.00 o.oo~ 
4103.37/4630.54 o.oo .. 

400 3. 64 /402 6. 08 12 2.0 0.01 
4003.64/4530.40 0.01 0.010 
4003.64/4552.54 0.01 
409 7 •. 31/ 399 5 •, 00 0. 00 1: 
4103.37/4630.54 0. 00 ~·: 

400 3. 64 /4026. 08 14 1.5 o.oo 
400 3. 64/45 30. 40 0.00 0.00 
400 3. 64 /4 5 5 2. 54 o.oo 
4097.31/3995.00 0.00 
4103.37/4630.54 0.00 ... 
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In (16), the second set of calculations (i.e. for a general 

"low density" plasma) gives: 
! 

S/a = 2.1 x 10-4 at 3.4 eV 

and = 2.1 x 10-3 at 4.3 eV. 

The folJowing are estimates of NIV/NIII from the Saha 

equation, where the partition functions are appvoximated 

by the statistical weights of the respective ground states: 

kTe(eV) 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

§5 Conclusion: 

N (cm-3) 
e NIV/NIII 

25.2 

10l6(constant) 5.7 

0.85 

0.07 

0.00 

o.oo 

The ratios of NIV/NIII obtained lie between the values 

predicted for LTE and near-coronal conditions (apart from 

the small discrepancy at lower temperatures, where the 

experimental values appear to be very slightly too high). 

When the density is kept nearly constant, the observed 

values approach the coronal at higher temperatures. This 
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is in agreement with fig. 3.1 and is indeed what one 

would expect: the mean free path of the free electrons 

increases with Te ~t a constant density~ Thus the 

rate coefficients for collisional processes should increase 

more slowly than in the LTE case, with the result that 

Nz/Nz-l should be smaller than the values obtained from a a · 

the Saha equ.ation. (The inequality in 2b of (11) appears 

to be a misprint] • 

A disadvantage of our approach is that formulae 

derived for a time-independent homogeneous plasma are 

being applied to a transient one which cannot be expected 

to be cdmpletely homogeneous (although, however, no NI or 

NIV were observed under our conditions) •. Since electron 

densities were known to be below these required for LTE, 

the equilibrization times for the various processes were 

greater than in the LTE case. Thus a possible explanation 

of the observation that equation (2.10) gave temperatures 

that were too high at the end, is that the decrease in the 

NIII/NII ratio was slower than that expected under LTE 

conditions •. 
. .. 

The role of the effective principal quantum numbe.r n" 

in relation to the calculated value of the thermal limit 

nt is seen to be very important. 
'tl'c. 

Where n is too close 
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to or less than nt , values obtained for SI a must be 

expected to b,e too small (i.e. closer to coronal, at a 

given temperature) since the assumptions used in deriving 

(2.11) are no longer accurately satisfied. For lines 

resulting from transitions from levels near the ionization 

limit, the assumption that these levels are thermally 

populated would be .better fulfilled with the result that 

improved values of S/a could be expected (below 3.5 eV 

however the values obtained seem to be of the correct 

order of magnitude). Unfortunately, our careful 

scanning of the Nitrogen spectrum indicated that the 

lines examined were the only satisfactory ones from an 

experimental point of view, in the optical wavelength 

region. 

In view of the remarks above, our values of S/a must 

be regarded as tentative, until further work has been 

carried out to improve upon their accuracy or determine 

the probable errors involved. Because of the present la:ek 

of knowledge of the rate coefficients necessary for a 

theoretical determination of S/a it was hoped to obtain 

values that would enable accurate temperature determinations 

to be carried out from measured line intensity ratios. 

However for an order of magnitude.temperature estimate 

the present values could be considered reasonably satisfactory. 
, 
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