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This research project investigated the selective removal of Co2+ and Ni2+ from a Co-Ni-Mn 

system through sulphide precipitation. The Co2+ and Ni2+ ions have adverse effects on the 

purity of the manganese product, thus, have to be removed via precipitation in a purification 

step. The main objective of this research was to understand the influence of local 

supersaturation on the purification process. This was important for controlling such a process 

to achieve residual ion concentrations of 0.3 ppm and 1.0 ppm for Co2+ and Ni2+ ions 

respectively, with minimum loss of the Mn2+ ions. 

 

Preliminary work evaluated the effect of mixing on selective removal of these metal 

impurities. This was achieved by comparing a semi batch stirred tank reactor (STR) with a 

double jet parallel reactant addition method and a T-premixed reactor (TPR). The residual 

concentrations of Ni2+, Co2+ and Mn2+ were measured using ICP-OES and particle 

characterisation was obtained using a Malvern Mastersizer 2000, X-Ray Diffraction (XRD) 

and Scanning Electron Microscopy (SEM). It was found that at low supersaturation levels, 

removal of impurities was the same in both mixing configurations. However at high 

supersaturations, the TPR configuration achieved greater removal of Co2+ and Ni2+ from a 

system of Co-Ni-Mn. Additionally, the resulting particles had a much larger average modal 

particle size of about 32 μm.  

 

The TPR was then adopted for investigating the effects of operating conditions on removal of 

these impurities. The two main variables were pH and batch residence time. Experiments 

were conducted under inert conditions, at a constant temperature of 35⁰C, using a synthetic 

solution with a typical industrial composition of 10 mgL-1 Co2+, 100 mgL-1 Ni2+
 and 32 gL-1 

Mn2+. This was reacted with ammonium sulphide of equi-molar concentration to that of both 

the metal impurities. The pH levels investigated were 4.8, 6.5, 7.0 and 7.8. Collected samples 

were analysed for residual concentrations of Ni2+, Co2+ and Mn2+ using ICP-OES, in order to 

determine the precipitated amounts. The mechanism of co-precipitation of MnS was 

determined by analysing residual ion concentrations, at a pH level of 7.0 for batch residence 

times of 10 mins, 30 mins and 45 mins.  

 

A comparison of the thermodynamic equilibrium concentration of metal sulphides to those 

obtained experimentally indicated no significant influence of pH on the extent of impurity 

removal. The maximum CoS removed was only 49.2% and that of NiS was 86.6%, at pH 7.8. 

However, the co-precipitation with Mn2+ significantly increased within pH levels of 4.8-6.5. 
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A maximum loss of 9.12% of Mn2+ was obtained. It was further demonstrated that at a pH 

level of 7.0 and batch residence times of 10, 30 and 45 minutes, this co-precipitation was 

temporal, the concentration of Mn2+ ions increased with an increase in batch residence time. 

The extent of this mechanism was limited by the batch times investigated.   
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1 INTRODUCTION 
 

1.1 Background 
 

The purification of hydrometallurgical streams is usually practised in most mining extraction 

processes to remove metal impurities prior to recovery of valuable mineral. In the manganese 

ore refining process, the sulphuric acid used in the leaching stage is rarely, if ever completely 

selective. The resulting aqueous manganese (II) sulphate electrolyte contains very small 

amounts of metal impurities such as iron, zinc, cobalt and nickel ions, compared to that of the 

valuable manganese metal ions. Of these metal impurities, cobalt has an adverse effect on the 

electric current efficiency in the subsequent electro winning stage and thus compromises the 

purity of the final manganese product (Bryson & Bijsterveld, 1991).  

 

According to Harris and co-workers (1977), the maximum levels of impurities that can be 

tolerated in the cell feed of the electro-winning cell should be less than 1ppm and 0.3ppm for 

Ni2+ and Co2+ ions respectively. The presence of these impurities is practically evidenced by 

the re-dissolution of deposited manganese product and by formation of black borders around 

the deposition area. In some cases, very brittle, pin holed nodular deposits are formed which 

are difficult to remove from the cathode. Complete flaking of deposited manganese solids is 

also observed on the cathode electrodes (Harris, Meyer & Auerswald, 1977). 

 

Precipitation of these metal impurities using ammonium sulphide, through a sulphide 

precipitation technique has been commercially accepted for the purification of manganese (II) 

electrolyte streams (Wanamaker & Morgan, 1943; Jacobs, 1946; Bryson & Bijsterveld, 

1991). There are several advantages that have made this technique a preferred choice to 

purify and recover metals from multi-metal ionic streams. These include feasibility for 

selective sequential separation due to differences in metal sulphide solubility products, over a 

broad pH range (Bryson & Bijsterveld, 1991; Mishra & Das, 1992; Veeken & Rulkens, 2003; 

McGeorge, Gaylard & Lewis, 2009), fast reaction kinetics (Rickard, 1989), high degree of 

metal removal (Peters, Young & Bhattacharyya, 1985) to low residual concentrations below 

0.00001 mg/L (Lewis, 2010) and formation of relatively low sludge volumes (Bhagat et al., 

2004) of good solid-liquid settling properties.  
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However, sulphide precipitation is not widely practiced due to poor control of sulphide 

dosing and handling concerns posed by toxicity and corrosiveness of excess sulphide 

(Veeken & Rulkens, 2003). Alternative precipitation processes use biogenic sulphide (Bhagat 

et al., 2004; Sahinkaya E. et al., 2009; Reis et al., 2013) as this can be produced on demand at 

site and has significant cost savings. There is also the additional benefit of improved safety 

due to the elimination of the transportation, handling and storage required for chemical 

sulphide reagents.  

 

Selectivity of metal impurities during purification depends significantly on their metal 

sulphides’ solubility products and control of supersaturation (Jandová et al., 2005). This is 

directly affected by mixing, concentration of sulphide ions and precision in the pH value at 

which precipitation takes place (Veeken & Rulkens, 2003; Sampaio et al., 2009; Villa-Gomez 

et al., 2012).  

 

The selective removal of impurities from a manganese (II) sulphate electrolyte is usually 

compromised by the fact that the operating pH required to achieve the desired residual 

concentrations of impurities also promote co-precipitation with manganese ions. In order to 

address this challenge, an understanding of the influence of local supersaturation on the 

selective removal of impurities has to be exploited, to explain the necessity of co-

precipitation of valuable metal ions. This is important for process design and optimisation of 

purification systems. 

 

1.2 Scope of Research 

 

For precipitation purification processes, the operating conditions, the quality of the bulk 

concentrate stream (for example, residual impurity concentration) and the properties of the 

precipitate (for example, chemical composition, co-precipitation, particle size distribution 

(PSD), morphology and density) are important aspects of controlling this process (Ntuli & 

Lewis, 2009). 

 

Thus, this research study was limited to the effects of pH on selective removal of metal 

impurities as sulphides from a Co-Ni-Mn stream, using either a semi batch stirred tank 

reactor (STR) or a T-premixed reactor (TPR). The choice of the best mixing configuration 
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was based on a comparison of selectivity, PSD and morphology based on the SEM images. 

The multi-metal ionic electrolyte used was typical of industrial compositions, rich in 

manganese ion concentration and orders of magnitudes lower in Co2+ and Ni2+ ion 

concentrations. This stream comprised of 32 g/L Mn2+, 100 mg/L Ni2+ and 10 mg/L Co2+. 

The pH levels tested were obtained from a thermodynamic model. These were limited to 

those that significantly favour minimal Mn2+ ion co-precipitation and promote high removal 

degree for Co2+ and Ni2+ ions to levels below 1 ppm. The operating temperature was kept 

constant at 35 ⁰C for all experimental investigations. However, it is appreciated that other 

factors may affect the purification process of this stream such as sulphide ion concentration, 

temperature, pressure, and precipitate recycle. 

 

1.3 Structure of Dissertation 

 

This dissertation is structured into six chapters. Chapter 2 gives a detailed introduction to 

precipitation theory that includes supersaturation and kinetic processes. A comprehensive 

literature review in Chapter 3 summarises the findings and discussions in the field related to 

selective removal of impurities, factors affecting this purification and the kinetics studies 

during purification of hydrometallurgical streams. Chapter 4 gives a detailed description of 

the thermodynamic model used, apparatus, experimental procedures and the analytical 

techniques used in the study. The obtained results and associated discussions are in Chapter 

5. The conclusions and recommendations from this research are stated in Chapter 6. The 

appendices include raw data, sample calculations and the faculty ethics form. 

 

 



   Chapter 2: THEORY  

4 
 

2 THEORY 
 

An introduction to important aspects of metal sulphide precipitation theory is described in 

this chapter. The definition and concept of supersaturation and solubility on precipitation is 

given. The kinetic processes of nucleation, growth, agglomeration and aggregation are also 

highlighted. A brief description of the mixing and mixing scales commonly associated with 

these precipitation processes concludes this section. 

 

2.1 Introduction to precipitation 

 

Sohnel and Garside (1992) refer to precipitation as a relatively fast crystallisation process 

characterised by the formation of a sparingly soluble solid phase of solubility in the range of 

0.001-1 kg/cm⁻3. The high supersaturation and rapid kinetics render precipitation processes 

susceptible to primary nucleation over growth. This results in formation of a large number of 

particles typically within the ranges of 1011 -1016  particles per cm3, with relatively small 

particle size ranges of 0.10 -10 µm (Sohnel & Garside, 1992). The quality of the shapes of 

the precipitated particles is very poor hence, are usually amorphous and polymorphs. This is 

also governed by the extent of secondary processes such as agglomeration, aggregation, 

Ostwald ripening and ageing.  

 

Precipitation is employed in hydrometallurgical systems for the potential of formation of  

solids with specified particulate properties usually of high yield and /or efficiency in metal 

separation and high degree of removal of metal impurities and minor metal constituents 

(Jackson, 1986). Precipitation is largely used to recover dissolved valuable metal ions from 

industrial waste water prior to discharge. The technique is also fast gaining popularity in 

micro-nano particle technology. 

 

2.2 Supersaturation 

 

Supersaturation rules the thermodynamic driving force behind all precipitation processes. 

Equation 1.0 represents a typical reaction of precipitation of a solid from dissolved ionic 

species. 
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 𝑥𝐴𝑧+ + 𝑦𝐵𝑧− ↔  𝐴𝑥𝐵𝑦  1.0 

 

Considering this equation, Mersmann (2001) described supersaturation as the difference, ∆μ, 

between the chemical potential of the solute in solution, μ, and the chemical potential of the 

solution in equilibrium with the solid phase, μ*, as defined by the Equation 1.1. 

 

 ∆μ = RT ln(
𝑎

𝑎∗
) 1.1 

 

Where a is the activity of the reacting species in solution and a* is the activity of the reacting 

species at equilibrium. This equilibrium activity is described by as the solubility product (Ksp) 

which is commonly expressed by Equation 1.2. Thus, for metal sulphide precipitation from 

dissolved ionic species.  

 

 𝐾𝑠𝑝 = 𝑎𝑀𝑒2+
∗ . 𝑎𝑆2-

∗  1.2 

 

Supersaturation can also be expressed as the product of the activities of the reacting species 

to the solubility product as described in Equation 1.3 (Sohnel & Garside, 1992; Mersmann, 

2001). 

 
  S = (

(𝑎𝑀𝑒 2+)1(𝑎𝑆2- )
1

𝐾𝑠𝑝
)

1

2

       
1.3 

 

Accordingly, saturation ratio, S, in aqueous solutions of sparingly soluble electrolytes may be 

expressed in terms of the ionic activity  product (IAP), of the lattice ions in solution, the 

solubility product (Ksp) and the number of ions in a formula unit of the salt (v), as indicated in 

Equation 1.4 (Mullin, 2001). This relationship makes it possible to predict whether the 

sparingly soluble salt will dissolve or precipitate. 

 
𝑆 = (

IAP

𝐾𝑠𝑝
)

1
𝑣

 
1.4 

 

The saturation ratio, S, is determined from relations with the saturation indices (SI), that are 

easily obtained from thermodynamic models. Equation 1.5 and 1.6 summarises this relation. 
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 SI =  log (IAP) – log Ksp 1.5 

 

 

At saturation, SI is equal to zero. A value close to zero could indicate that the concentrations 

of reacting species are controlled by the presence of sparingly soluble salt. A negative SI 

means that the solution is undersaturated with respect to the metal salt (IAP < Ksp). Any 

metal salt present in the solid phase is thermodynamically unstable and could be expected to 

dissolve. If SI is greater than zero, the solution is oversaturated and precipitation of metal salt 

is favoured. In the same way, if S value is below zero the system is undersaturated, if S is 

equal to 1 the system is saturated and if S > 1 then the system is oversaturated. 

 
 

2.2.1 Solubility of Metal Sulphides 
 

The amount of solute required to make a saturated solution at a given condition of  pH, 

temperature, pressure and concentration is defined as solubility of a particular substance 

(Myerson, 2002). When this solute concentration in the solvent exceeds its solubility the 

solution becomes supersaturated. Precipitation only occurs when a solution is supersaturated. 

This supersaturation may be created when a very insoluble product is formed from a reaction 

between two or more soluble reactants.  

 

Figure 1 is an equilibrium solubility diagram which illustrates the relationship between 

solubility and different regions of saturation. Precipitation does not occur in the regions 

marked under-saturated as the particles formed in this usually dissolve. Although, the 

metastable region is a supersaturated region, spontaneous crystallization is highly unlikely 

(Mullin, 2001), nucleation and particle growth may only be promoted through seeding. A 

number of factors determine the width of this metastable region. These include the degree of 

agitation, concentration of crystalline solids and solutes that are present in solution. 

Spontaneous nucleation is only probable, but not inevitable in the labile region. 

 

 log S2 =  log (IAP) – log Ksp 1.6 
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Temperature 
 

Figure 1: Relationship between supersaturation and solubility 
 

Solubilities of metal sulphides are usually represented as solubility products from which the 

concentration of individual reacting ionic species in a saturated solution can be determined. 

 

Table 1 provides the typical solubility products for various metal sulphides at room 

temperature. The low Ksp suggests that precipitation forms sparingly soluble solids and even 

at low reagent concentrations, the level of supersaturation remains high. Ideally, copper 

sulphide being the least soluble, precipitates out first, followed by zinc sulphide, cobalt 

sulphide, nickel sulphides, iron sulphide then finally manganese sulphide. 
 

Table 1: Solubility Products for Metal sulphides at 25⁰C (Jackson, 1986) 

 

 

 

 
 

 

 

 
 

Metal sulphides Formula Solubility Product  

Manganese sulphide MnS 3.16x10-11 

Iron (II) sulphide FeS 7.94x10-19 

Nickel sulphide NiS 3.98x10-20 

Cobalt sulphide CoS 3.98x 10-22 

Zinc sulphide ZnS 2.00x10-25 

Copper (II) sulphide CuS 7.94x10-37 

C
on

ce
nt

ra
tio

n 
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2.3 Kinetic Processes 
 

Precipitation of soluble and sparingly soluble solids occurs by a number of kinetic processes. 

The reactants mix to form the first stable precipitated nuclei through a nucleation process. 

These grow under supersaturated condition, the particle characteristics and purity of the 

residual solution is governed by secondary processes of aggregation and agglomeration.  

 

2.3.1  Nucleation  
 

Nucleation is commonly defined as the formation of the first thermodynamically stable solid 

from a supersaturated solution (Sohnel & Garside, 1992). Nucleation occurs through two 

main mechanisms namely primary and secondary nucleation as shown in Figure 2.  

 

Primary nucleation is the spontaneously new phase formation from clear solution. This can be 

subdivided into homogenous and heterogeneous nucleation. Homogenous nucleation 

describes new phase formation by statistical fluctuations of solute entities clustering together 

and heterogeneous is by presence of tiny foreign substrates. Secondary nucleation on the 

contrary, is induced at the interface of parent crystals at low to moderate supersaturations. 

The different types of secondary nucleation are named after their origin such as, initial/dust; 

dendritic, attrition and fluid shear breeding’s. The creation of small nuclei requires extra free 

energy associated with the interfacial energy and the creation of surface (Lewis et al., 2012). 

 
Figure 2: Nucleation Mechanisms (Lewis et al., 2012) 
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The relationship of the interfacial energy, γ, between the nucleating phase, surface area 

created by clusters, σ(i), and the solution is given in Equation 1.7. The symbol, ΔG(i), 

represents the work of formation of a mole of clusters consisting of i molecules from a 

solution at supersaturation S.  

 

 Δ𝐺(𝑖) =  −𝑖𝑅𝑇ln(𝑆) +  𝛾. 𝜎(𝑖) 1.7 

 

2.3.2 Growth 
 

Crystal growth is when the thermodynamically stable nuclei grows into larger particles by 

deposition of solute from the supersaturated solution (Myerson, 2002). The shape, surface 

structure and purity of the crystals are determined by the growth rate and mechanism. 

Figure 3 illustrates the growth mechanism of the surface of a growing crystal. Firstly, the 

growth units of molecules, ions, clusters or monomers, are transported from the bulk solution 

to the solution-crystal interface by bulk diffusion. These are then incorporated into the crystal 

lattice through surface integration. The mechanism of crystal growth involves several steps 

which can be summarised as follows: 

a) Transport of ions from the bulk solution to the solution immediately adjacent to the 

crystal surface, 

b) Transfer of ions from the solution to an adsorption layer, 

c) Transfer of ions from the solution or adsorption layer to a growth step, 

d) Transfer of ions from the solution, adsorption layer or growth step to a growth site, 

for example, a lattice position at a kink. 

 
Figure 3: Diffusion and integration of growth units into crystal surface (Lewis et al., 2012) 



   Chapter 2: THEORY  

10 
 

Figure 4 illustrates the concentration profile perpendicular to the crystal surface during 

diffusion and integration. Where Cb is the bulk concentration, Ci, the concentration at the 

crystal solution interface and C*, the equilibrium is the concentration at the growth site. 

Growth rate for highly soluble compounds is defined by the diffusion through the stagnant 

film or diffusion layer with thickness, sigma at the interface. The driving force for this 

process is given by Cb-Ci. However, for poorly soluble compounds, the rate limiting step is 

surface integration and the associated driving force is given by Ci-C*. 

 

Growth rate for a diffusion limited process may also be expressed as in Equation 1.8 and 1.9. 

Where, i represents conditions at the interface, * represents conditions at equilibrium, kd is 

the diffusion mass transfer coefficient, kr is the reaction rate constant for surface integration, r 

is the order of integration and C is concentration. Temperature dependence of the reaction 

rate constant is generally defined by the Arrhenius equation (Mullin, 2001). 

 

 
Figure 4: Concentration during crystal growth (Mullin, 2001) 

 

 

Moreover, Mullin (2001) describes the mechanisms of surface integration growth to be 

greatly influenced by the levels of supersaturation. At low supersaturation, growth tends to be 

smooth and spiral, the ‘birth and spread’ models apply. The two dimensional nucleation 

 𝐺 = 𝑘𝑑(𝐶 − 𝐶𝑖) 

𝐺 = 𝑘𝑟(𝐶𝐼 − 𝐶∗)  

1.8 

1.9 
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processes are promoted at moderate supersaturation levels whereas linear rough surface 

growth dominates at higher levels. This is summarized in Figure 5.  

 

 
Figure 5: Effect of supersaturation on crystal growth mechanisms (Lewis et al., 2012)  

 

Figure 6 illustrates the dynamic relationship between supersaturation and these kinetic 

processes of precipitation. Generally, at low supersaturation levels, growth rate dominates 

nucleation processes and consequently, the particle size is relatively large. Increasing the 

supersaturation promotes nucleation rate and produces very fine particles. This also results in 

a significant agglomeration rate promoting an increase in particle size due to agglomeration 

and aggregation. 

  

Figure 6: Relationship between supersaturation and kinetic rate processes (O’ Grady, 2011). 
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2.3.3 Aggregation 
 

This is defined as a process by which particles collide and adhere to be eventually cemented 

together to form stable particles (Sohnel & Garside, 1992).  The theoretical mechanism of 

aggregation involves a number of steps including collision of particles, particle-particle 

interaction, repulsion and cementation. 

The following is a detailed summary of the aggregation mechanisms: 

 

1. The collision of particles 

Particles collide through Brownian motion and/or diffusion also referred to as peri-kinetic 

aggregation. Ortho-kinetic aggregation is the collision due to hydrodynamic motions, such as 

convective currents and mechanical stirring. The most common type of collision of particles 

is inertial collision where particles settle due to the influence of a gravitational field. 

 

2. Particle –particle interaction 

Particles are attracted to one another through weak Van der Waals forces. These become 

weaker with separation distance. The collision efficiency and disruption of these aggregates, 

is also governed by the degree of repulsive and attractive interactions when particles come 

together. The shape and orientation of particles may dictate the collision efficiency of 

particles. 

 

3. Cementation of the particles by growth to form agglomerates 

 

2.3.4 Agglomeration 

 

Agglomeration is defined as the phenomena in which particles are loosely bound together 

(Randolph & Larson, 1988), and involves the cementing together of particles by the 

formation of inter-particle crystalline bridges. This is a reversible process with the rate of 

aggregation and break-up  being dependent on the control of a number of parameters such as 

mixing, supersaturation, solids concentration, pH and ionic strength (Grulietti et al., 2001). 
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2.4 Mixing in Precipitation Processes 

 

2.4.1 Macro-mixing 
 

This is the bulk dispersion of a liquid throughout reaction volume. it has been developed that 

for a well baffled tank, and fully developed turbulence, the macro-mixing time, tmacro [s],is 

between three to five times the circulating time, tc[s],yielding:   

 

 𝑡macro =  4 𝑡c 2.0 

 

For a vessel with an impeller and four pitched blades, the circulation time is expressed as: 

 

 
𝑡c =

V

qc
 

2.1 

  

Where V,is the volume of the reactor [m3] and  qc is the pumping capacity of the impeller 

[m3.s-1],which can be expressed as: 

 

 𝑡c =   NqND3 stir 2.2 

 

Where Nq= flow number (taken as 0.73 for a pitched blade turbine) 

    N= impeller speed (rps) 

 D=impeller diameter (m) 

Macro-mixing is ideal for residence times greater than 10s. 

 

2.4.2 Meso-mixing 
 

This is the convective exchange of fluids at the reactor inlets and occurs at a scale 

comparable to the size of the reagent feed pipe. 

Two meso-mixing mechanisms have been identified: 

 Inertial-convective disintegration of large eddies in the course of dispersion. 

 Turbulent dispersion in the, feed stream spreads out transverse to its local streamline. 
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𝑡meso =

𝑄

𝑢𝐷meso
 

2.3 

  

Where Q=volumetric reactant flow rate [m3.s-1], u is the feed flow velocity [m.s-1], and Dmeso 

is the turbulent diffusivity [m2s-1]. 

The time constant for meso-mixing due to inertial convective disintegration of large eddies, is 

determined from (Torbacke & Rasmuson, 2001). 

 

 
𝑡meso = 𝑎. √(

Λ2

𝜀
)

3
 

2.4 

  

Where a = 1-2 (2 for fully developed turbulence) 

 Λ = macroscale turbulence [m] 

 𝜀 = local energy dissipation rate 

(Torbacke & Rasmuson, 2001) also estimated the macro scale turbulence as: 

 

 
Λ =

√𝑄b

𝜋𝑢
 

2.5 

Where Qb= reactant flow rate [m3/s] 

 u=fluid velocity [m/s] 

The local dispersion rate is also estimated as: 

 

 
ε =

𝑁p𝑁3𝐷5 

𝑉
 

2.6 

 

Where Np=power number (taken as 1.5 for pitched blade). 

 

 
Np =

𝑃𝑔

𝜌𝑁3𝐷5
 

2.7 

 

Where P = power [W], g =acceleration by gravity [9.81ms-2] and 𝜌 = liquid density [kgm-3] 

The time constant for meso-mixing, due to turbulent dispersion is determined by the Equation 

2.8. 

 
td =

𝑄f

𝑢𝐷
 

2.8 
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In either macro-mixing or meso-mixing, of slow to medium residence times scales, the 

concentration of metal ions is monitored by in-situ- optical absorption, polarimetry, ion-

selective electrodes and conductivity. The sample is collected at intervals and the reaction is 

quenched. Quenching is done through freezing and neutralization techniques.  

2.4.3 Micro-mixing 
 

This is homogenization on the molecular scale through diffusion, laminar deformation of 

striations below the Kolmogorov scale and by mutual engulfment of regions having different 

compositions. This directly influences the chemical reaction, nucleation and crystal 

growth,(Myerson, 2002). The micro-mixing time is expressed from the local specific energy 

dissipation rate, (Baldga & Bourne, 1989). 

 

 tmicro = 17.24 (
𝜈

𝜀
) 0.5 2.9 

 

Where 𝜈 is the kinematic viscosity and 𝜀 , is the average energy dissipation rate estimated in 

Equation 3.0 as: 

 

 
𝜀 =

𝑄∆𝑃

𝜌𝑉
=

2𝑓𝑈3

𝐷
 

3.0 

  

Q is the flow rate, V, volume of outlet tube and f, Darcy friction factor for the tube walls, U, 

average flow velocity, D, internal diameter of tubing, 𝜌, density of fluid and ∆𝑃, is the 

pressure drop. 

The Blasius Equation 3.1 is the most simple equation for solving the Darcy friction factor for 

smooth pipes. It is valid for up to the Reynolds number of 105.  

 

 f = 0.316 Re-0.25   3.1 

 

Flow experiments are common for study of reactions of fast kinetics where micro-mixing and 

diffusion dominates. Spectroscopic detection along the length of the tube, or mass 

spectrometry at the end of the flow tube, using a moveable injector to vary the flow distance, 

is the most popular detection method. 
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2.4.4 Mixing Configurations 
 

Different mixing configurations have been studied by Mullin (2001). Figure 7 illustrates two 

reactant addition methods commonly used applied to reaction systems, namely, ‘single jet’ 

and ‘double jet’. In single jet mode, reactant B is already in a vessel and reactant A is either 

fed on the surface or into agitated zone near the impeller. The latter being preferred for 

formation of larger precipitates as better mixing reduces the level of local supersaturation and 

minimise nucleation rate. In double jet mode, reactant A and B are simultaneously added on 

surface, at impeller tip or premixed and fed into reactor as a single stream. 

 

Figure 7: Reactant addition Methods 

The choice of the best mixing configuration is based how well the reactants are mixed and the 

quality of the products to be formed. The method and sequence of mixing reactants into the 

reactor determines the particle size distribution, crystal habit, polymorphic modification, 

crystallinity, purity and degree of agglomeration of precipitates during purification processes.
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3 LITERATURE REVIEW 
 

Many factors have been proposed to affect the feasibility of selective metal sulphide 

precipitation from multi-metal ionic systems. Although literature covers a wide variety of 

these, this review focusses on the importance of controlling pH, concentration and addition of 

sulphide ions, seeding and influence of different mixing configurations on selectivity, particle 

size and morphology. Although the literature presents these factors in different contexts, the 

primary focus is on their applicability to purification of hydrometallurgical streams. 

 

3.1 Metal Sulphide Purification Chemistry 

 

The general reaction for purification of hydrometallurgical streams using metal sulphide 

precipitation involves the pH dependent sulphide speciation and the reaction of the dominant 

sulphide species with the metal ions to form a sparingly soluble metal sulphide precipitate. 

According to Jackson (1986), the aqueous speciation of sulphide is shown by the dissociation 

reaction Equations 3.2 and 3.3. Equation 3.4 summarizes the interaction of the metal impurity 

with the sulphide source for the formation of a metal sulphide precipitate. 

  

 

 

 Me2+
(aq) + HS−

(aq) ↔  MeS(s) +H+
(aq) 3.4 

 

This is only achievable when the ionic product of the target metal sulphide exceeds the 

solubility product constant. Thus, a control of the concentration of sulphide ions to metal ions 

and the operating pH are of paramount importance during the purification process.  

 

 

 

 H2S(aq) ↔ HS-
(aq) + H+

(aq) 3.2 

 HS-
(aq) + H+

(aq) ↔ S2-
(aq) + 2H+

(aq) 3.3 
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3.1.1 pH control 
 

The pH of the reacting solution is very significant for selective metal sulphide precipitation. 

As indicated in Equation 3.2 and 3.3, the speciation of the sulphide (HS- and S2) is highly 

dependent on the pH of the solution. According to Jackson (1986), for a gaseous hydrogen 

sulphide of saturation concentration 0.09 mol L-1 in water under a partial pressure of one 

atmosphere at 25⁰C, the pH of the solution is directly related to the sulphide ion 

concentration by Equation 3.5 below. Increasing pH by one level increases the ion sulphide 

concentration by two orders of magnitude.  

 

 

Migdisov (2002) explored pH-dependency of aqueous sulphide speciation and summarized 

finding as illustrated in Figure 8.   

 
Figure 8: pH dependency of hydrogen sulphide speciation 

 

Accordingly, Hammack et al (1994) observed that at low acidic conditions the rate of 

dissolution of H2S was low, limiting the concentration of HS- ions available for precipitation. 

At neutral to alkaline conditions, Rickard’s (1995) studies on identifying the reaction 

pathway for iron (II) sulphide reported a bisulphide mechanism where the formation of 

Fe(HS)2
  was dominant. Since hydrogen ions which are continuously formed in this critical 

region, lower the pH to levels that promote the dominant speciation of H2S in solution over 
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that of the HS- and S2- ions, an alkaline source has to be continually added to raise the pH and 

maintain optimal HS- speciation. Also, the sulphide ions rarely exist at significant 

concentrations in aqueous solutions (Stumm & Morgan, 1996).  

 

Evidence that the pH changes during sulphide precipitation was supported by the dominant 

reaction pathway. This was first proposed by Kolthoff and Moltzau (1935) who reported a 

two-step mechanism which involved the reaction of bisulfide ions to initially form the metal 

hydrosulphide which, by secondary loss of protons, (H+ ions), resulted in the formation of the 

metal sulphide itself. According to Joris’ (1969) studies on rates of precipitation, after 

induction time intermediate, compounds of Ni (HS)2 and Co (HS)2 were formed which later 

transformed to precipitates of NiS and Co9S8. This conception was later confirmed by 

Hammack et al (1994), Lewis and van Hille (2006) and Karbanee et al (2008) and can be 

summarized by Equation 3.6 and 3.7 below. 

 

 

 

Early studies on purification of manganese (II) sulphate electrolyte in an ammoniacal solution 

proposed that an intermediate compound, Mn (HS-) was initially formed. This subsequently 

proceeded to either form MnS or further reacted with the metal impurities, Me2+ ,to form 

sulphides of MeS (Harris, Meyer & Auerswald, 1977). The analogous reaction using 

ammonium sulphide instead of gaseous hydrogen sulphide would then proceed according to 

Equation 3.8-4.1. 

 

 

 

 

 Me2+ (aq) + 2HS-
(aq) ↔  Me(HS)2 (aq) 3.6 

 Me(HS)(aq)  ↔MeS(s) + H+ 
(aq) 3.7 

 (NH4) 2S(aq)   ↔  2NH3 (aq) + H2S(aq)  3.8 

   2NH3 (aq) + H2S(aq) ↔  2 NH3(aq)  +  HS-
 (aq) + H+

(aq) 3.9 

 2Mn2+ (aq) + 4HS-
(aq) ↔  2Mn(HS) 2 (aq) 4.0 

 Mn(HS) 2 (aq)  + 2Me 2+ ↔ 2MeS(s) + Mn2+
(aq) + 2H+ 

(aq) 4.1 
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The aqueous ammonia produced in Equation 3.8-3.9 would possibly act as a buffer against 

the increase in acidity of the precipitating solution, permitting the formation of metal 

sulphides to proceed to completion unlike a case where only hydrogen sulphide is used.  

 

The competitive precipitation reactions described in Equation 4.0-4.1 may proceed by 

heterogeneous cationic substitution where the formed Mn(HS)2 formed may further release 

the bisulphide ion to promote precipitation of the most soluble metal sulphide at that 

particular pH level mainly due to difference in sulphide solubilities. 

 

Figure 9 illustrates the relationship between pH and the solubility of metal sulphides (Lewis, 

2010).  

 
Figure 9: pH dependency of metal sulphide solubility ((Lewis, 2010) 

 

These thermodynamic curves have been exploited to predict the potential for selectivity, 

predict the operating pH and extent of precipitation of metal ions during purification of 

simple and complex hydrometallurgical streams. Generally metal ions such as copper, lead 

and arsenate would readily precipitate to form insoluble metal sulphides at low pH conditions 

while manganese and magnesium form at higher alkaline pH levels. Selective separation of 

cadmium, nickel and zinc ions may be difficult as they exhibit similar solubilities throughout 

the critical pH levels. This data also proves that sulphide precipitation achieves extremely 
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low residual concentrations which tie with the necessary limits required in hydrometallurgical 

processes.  For instance, Figure 10 illustrates the chemical equilibrium diagram obtained with 

the OLI Analyser Studio 9.0 Software for a typical manganese (II) sulphate electrolyte.   

 
Figure 10: pH dependency of CoS, NiS and MnS (OLI stream analyser) 

 

Briefly, selective removal of each of the impurities of CoS and NiS is nearly impossible as 

the solubilities are closely similar for each pH level. These can only be successfully removed 

from this system as mixed sulphide. Although operating at pH levels between 6.8-7.5 is 

commonly used in industrial practices (Wanamaker & Morgan, 1943; Bryson & Bijsterveld, 

1991; Lewis, Nathoo & Gluck, 2006; Karbanee, van Hille & Lewis, 2008), there is a 

compromise between  losing desired manganese ions, through co-precipitation ,and achieving 

ideal residual concentration of impurities to levels below 1ppm. 

 

Adjusting the initial pH of the solution to between 1.7-3.9 and operating at elevated 

pressures, selectively removes NiS from such a multi-metal ionic system (Jha, Wicker & 

Meyer, 1978). This observation was recently supported by Cibati et al (2013) who validated a 

thermodynamic prediction obtained with Medusa Software 32. The model was developed for 

a system of Co-Ni-V-Mo in biogenic H2S and NaOH. They selectively formed mixed Co-Ni 

sulphides at pH levels as low as 3.5.  
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Although operating at low pH achieves selectivity, the speciation of gaseous H2S is limited.  

Hence, precipitation can only be facilitated by altering its solubility by either increasing 

temperature, pressure or in some cases including a catalyst. Huggin et al’s (1978) 

investigation into the precipitation of filterable nickel and cobalt sulphides proposed that at 

low pH levels gaseous H2S can achieve a maximum efficiency of 77% at a temperature of 

75⁰C. Although higher temperatures achieved an advantage of producing fine precipitates of 

satisfactory bulk density and settling rate, the efficiency of H2S dropped considerably with 

excessive evaporation of corrosive liquids and limitations of open, temperature sensitive 

reaction vessels. Crundwell and co-workers (2011) reported that this theory was later adopted 

by a number of companies such as Murrin Murrin, Coral Bay and Ravens Thorpe BHP 

Billiton who achieved + 99.99% removal efficiency for CoS and NiS by operating between 

pH levels of 1.5-3.5. Their purification process was conducted in autoclaves and the toxic 

gaseous hydrogen sulphide’s solubility was altered by operating at elevated temperatures of 

80-120 ⁰C, pressures of 2-10 bars, residence times of 1-2 hours and seeding through a recycle 

stream. However this renders this process economically unviable due to the associated high 

capital and operating costs.  

 

Numerous other studies dating back to 1970s have successfully used the pH dependent 

solubility of different metal sulphides to selectively remove metal ions from multi-metal ionic 

systems. No literature on these studies was found for the period 1980-1990. Early work by 

Jha et al (1978) selectively precipitated nickel and cobalt sulphides from solutions of the 

leached laterite ores. Their observations indicated that the higher the initial pH, the lower the 

residual metal ion concentration and the lower the reaction time for achieving approximately 

99% precipitation efficiency.  

 

In recent years, problems associated with the treatment of acid mine drainage have triggered 

the interest of most researchers resulting in many publications on the subject topic. Tabak et 

al (2003) successfully precipitated CoS, ZnS, FeS and MnS selectively and sequentially from 

an AMD stream using biologically produced H2S. Although this process was able to 

demonstrate very high precipitation efficiency of CoS (99.1%), ZnS (100%), FeS (97.1%) 

and MnS (87.4%) and precipitate purities above 70%, this was achievable through six staged 

units. Similarly, conclusions by Cibati et al (2013) promoted the use of biogenic H2S for 

selective precipitation from a Mo-Ni-Co-V system. However, at pH 3.5, the average recovery 

for a mixed nickel and cobalt sulphide was only 18.5% with an equally poor purity index. 
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Likewise, despite the use of the generic sodium sulphide reactant, Fukuta et al (2004) asserts 

that selectivity is feasible for a Cu-Ni-Zn system. Selectivity was achieved at 94% for CuS at 

a pH range of 1.4-1.5, 75 % for ZnS at pH range of 2.4- 2.5 and 65% for NiS at pH range 5.5-

6.0. These relatively compare to findings by Kondo et al (2006) and Tokuda et al (2008), who 

additionally reported an increase in selectivity, owing to more a precise control of pH for 

precipitation of each metal sulphide. 

 

However, a pH cascade suggests that the separation for each metal ion can only be achievable 

in separate units. This may be difficult in practice due to the cost associated with setting up a 

number of process units and the associated control of different fluctuations on the initial 

operating conditions.  

 

 

3.1.2 Sulphide Concentration 

 

Sulphide precipitation is commonly effected using either aqueous, (Na2S, NH4S and NaS) or 

solid (FeS and CaS) or gaseous H2S or through degeneration of sodium thiosulphate. 

Although early studies showed that the application of Na2S for sulphide precipitation was 

highly effective for lowering concentrations of Cd2+,Cu2+ and Zn2+ to less than 0.1mgL-1 

(Bhattacharyya et al., 1981), ammonium sulphide is widely used in hydrometallurgical 

process for its additional buffering properties. Recent studies prefer the use of gaseous 

hydrogen sulphide in an attempt to reduces the rate of generation of supersaturation by 

exploiting the mass transfer limitation of its dissolution (Lewis & van Hille, 2006). 

 

Chemical equilibrium diagrams are usually used to determine the precipitating order of metal 

ions according to the suphide ion concentration and the pH. Figure 11 illustrates a typical 

sulphide solubility diagram. It can be noted that the solubility line for Mn2+  is extremely far 

to the right side of the diagram ,indicating that MnS is more soluble than CoS and NiS. This 

offers a theoretical basis for separation of Co2+ and Ni2+ from a system of Co-Ni-Mn. 

Furthermore, it was observed that the exchange rates correspond to the value of the solubility 

products of fresh, amorphous metal sulphides(Wu & Yang, 1976). Accordingly an increase in 

concentration of sulphide ions results in rapid increase of metal removal rate in the 

precipitation order of Cu > Pb > Cd > Zn, thus the order of solubility of metal sulphides. This 
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selectivity is attributed to differences in metal sulphide solubilities (Villa-Gomez et al., 

2012). 

 

 

Figure 11: Sulphide solubility diagram at 25 oC 

 

Studies on effect of sulphide concentration on multi-metal ionic systems have proven that an 

amount of H2S equi-molar to that of the metal ion is sufficient to achieve complete 

precipitation. Lewis and van Hille (2006) studied the effect of a reagent ratio on precipitation 

efficiency and conversion for a Co-Ni system, the result indicated that a stoichiometric ratio 

of 1:1 for metal ion to sulphide concentration, immediately precipitated NiS and CoS and 

achieved metal removal efficiency of 99.8% for Co2+ and 99.9% for Ni2+. However, these 

sulphides re-dissolved into solution as polysulphide complexes, despite the continued 

decrease of free sulphide in solution.  

 

Figure 12 shows the changes in concentration of Co2+ and Ni2+ ions with time. This graph 

indicated that decreasing the reagent ratio compromised the metal removal efficiency. Excess 

sulphide ions concentrations, promoted the formation of soluble polysulphide complexes 

(Karbanee, van Hille & Lewis, 2008; Mokone, van Hille & Lewis, 2009) and inhibited 

precipitation to very low levels by purely solubility considerations. This was also consistent 

with the observation that no significant quantities of aqueous sulphide species were recorded 
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after precipitation, despite the initial stoichiometric excess. These complexes were also found 

to be stable at low HS- ion concentrations less than 10-6 M (Shea & Helz, 1988). 

Figure 12: Nickel and cobalt concentrations in the batch experiments using aqueous sulphide source 

Furthermore, the reagent ratio strongly influences the characteristics of precipitates formed in 

terms of particle size and morphology. At high sulphide concentration, a significant amount 

of fine amorphous metal sulphide particles are formed.  

 

3.2 Mechanisms of Co-precipitation Purification 
 

Literature on mechanisms of purification of hydrometallurgical systems is very limited to 

before 1970s, particularly that specific to the Co-Ni-Mn sulphide co-precipitation system. 

Although many kinetic studies have been performed on similar systems, information on the 

mechanisms is yet to be confirmed. 

 

The main mechanisms of purification from multi-metal ionic systems include the classic, 

ionic precipitation, adsorption precipitation and heterogenous cationic substitution. 

 

3.2.1 Adsorption Precipitation 
 

Kolthoff (1931) proposed a theory of co-precipitation and argued that metal sulphide 

precipitates are always contaminated by adsorbed ions. He later confirmed that this ‘induced 
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co-precipitation’ was because of the strong adsorbent properties of colloidal metal sulphides 

towards H2S, HS- and S2- (Kolthoff & Moltzau, 1935).  

 

This mechanism promotes the simultaneous removal of both the least and most soluble metal 

ion from solution under conditions where the most soluble would not precipitate or where the 

concentration of metal ions is insufficient to exceed the solubility product of the other. This is 

supported by the Paneth Fajans Hahns’ adsorption rule which on application suggests that if 

copper sulphide is in contact with a solution in excess of sulphide ions it would adsorb ions in 

the order of Zn > Co > Ni > Fe > Mn. This reflects the order of solubility of respective metal 

sulphides ZnS < CoS < NiS < FeS < MnS.  

 

The induced precipitation processes is achieved when the cations replace the hydrogen ions 

in the H2S that is adsorbed on the metal sulphide, releasing a corresponding amount of acid.  

Thus, the precipitation rate on the surface would increase due to domination of crystal growth 

over primary nucleation. In support of this, an observation by Salutsky et al (1959)  suggested 

that if cobalt sulphide is precipitated from a solution containing excess sulphide ions and 

metal ions, sulphide ions will be adsorbed during growth of the precipitate and drag cations to 

the surface. On the other, hand if excess cobalt ions are in excess during growth, anions will 

be adsorbed and co-precipitate with cobalt sulphide, unless mixed precipitates are formed. 

 

Since, surfaces of metal sulphides are active; ions are incompletely coordinated and are free 

to attract other ions of opposite charge from the solution. The ionic charge and ion size 

determines the effectiveness of electrostatic attractions on the surface of a precipitate. For 

example, for an ionic charge of (+2), at a low spin, the ionic radii is 74 pm, 79 pm and 81 pm 

for cobalt, nickel and manganese ions respectively. Hence, these can easily co-precipitate by 

adsorption.   

 

A number of factors affect co-precipitation by surface adsorption. A high concentration of 

impurity increases probability of solute interaction at the precipitate surface and promote 

adsorption. Adsorption is also controlled by altering the concentrations during precipitation 

or aging the precipitates to promote particle growth and reduce surface area. Furthermore, 

altering the pH level of the solution reduces the effects of this mechanism.  
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Although studies in the 1970s and before, acknowledge that while adsorption is necessary for 

the precipitation processes of multi-metal ionic systems, it is not the only process responsible 

for the removal of cations during precipitation. This was confirmed by Lewis et al (2006) 

who concluded that the removal mechanism of cobalt and nickel from an electrolyte occurs 

by a combination of precipitation reaction and adsorption. In their study, adsorption accounts 

for approximately 30% of the nickel ions and 58% of cobalt ions that are removed from 

solution.  

 

Other possible mechanisms include occlusion and inclusion. Occlusion is when the impurity 

within a precipitate is mechanically entrapped by subsequent crystalline layers. This is more 

prevalent in freshly prepared colloidal metal sulphides and hydroxides precipitates due to 

their large surface areas. Mechanical entrapment is promoted at high localized 

supersaturation and spontaneous nucleation processes. However, some of the metal ions are 

involved in the interior of the crystal and form part of the crystalline structure or form 

between layers. These are difficult to remove by most of the mentioned methods above due to 

passivation of metal sulphides. 

 

3.2.2 Cationic substitution 
 

McGeorge et al. (2009) identified heterogenous cationic substitution as an alternative co-

precipitation. The basis of this investigation was that both thermodynamic and kinetic effects 

dominate selective purification when the difference in the metal ion concentrations is very 

high. 

 

In an attempt to selectively precipitate Rh3+, of a concentration two orders of magnitude 

lower than that of the least soluble Cu2+ ions in the system, the metal ions initially competed 

for the sulphide ions through ionic precipitation. The formation of CuS is favoured due to the 

faster reaction rate compared to that of the Rh2S3. The large difference in the solubility 

products later provides a chemical driving force that promotes the removal of Rh3+ ions via 

cationic substitutions. Again, the extent of precipitation of Rh3+ may be due to passivation of 

CuS (McGeorge, Gaylard & Lewis, 2009). Recent studies have taken advantage of this 

mechanism and have successfully used amorphous MnS to selectively remove copper ions 

from a nickel electrolysis anolyte at an industrial scale (Li et al., 2014). Similarly, if 
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manganese (II) sulphate electrolyte was purified to remove cobalt and nickel ions through 

cationic substitution mechanism, the MnS would initially be precipitated out then exchange 

cations with Co2+ and Ni2+, in the order of their differences in solubility product  

 

3.3 Reaction Kinetics for the Purification Process 

 

Numerous studies have been performed on reaction kinetics for multi-metal ionic systems. 

The difference in reaction rates for precipitation of each metal sulphide usually forms a basis 

for selective separation through ionic precipitation.  

 

Bryson and Bijsterveld (1991) investigated the reaction kinetics during purification of 

manganese (II) sulphate electrolyte containing cobalt ions as the main impurity. The 

concentration of the manganese ions in the stream was three orders of magnitude lower than 

that of the cobalt ions. Findings showed that the precipitation of CoS exhibited three kinetic 

regions, an induction period that was followed by rapid reaction rates then a slow approach 

towards equilibrium. The induction period was eliminated completely by catalysis using 

combined manganese and cobalt sulphides; this is illustrated in Figure 13.  

 
Figure 13: Concentration changes of Co2+ ions during purification of a Co-Mn system 

 

However, the rate of reaction for MnS co-precipitation was first order, of which, the 

corresponding change in concentration with time is given in Figure 14. This was in 
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accordance with the findings of Mishra and Das (1992) during the purification of zinc 

electrolyte.  

 

On the contrary, Lewis and Swartbooi (2006) found that, using a batch reactor, the  kinetics 

of  nickel and cobalt sulphides ,from a Co-Ni system were first order with respect to both 

metal and sulphide concentrations. The nickel sulphide precipitation reaction was reported to 

be twice as fast as that of the cobalt sulphide reaction, (kni= 5.8 M-1s-1 and kco=2.2 M-1s-1). No 

induction period for cobalt sulphide kinetics was noted. The lack of an induction time for the 

cobalt was attributed to the presence of the nickel sulphide precipitates, which acted as 

heterogeneous nuclei. However, the concentrations levels investigated were not for a typical 

industrial electrolyte, relatively similar concentrations of metal ions were used to make the 

Co-Ni system. 

 
Figure 14: Concentration changes of Mn2+ ions during purification of a Co-Mn system 

 

Tokuda et al (2008) also studied the reaction kinetics for a single metal system and a multi-

metal ionic system of Cu-Zn-Ni system using gaseous hydrogen sulphide. They additionally 

reported that the reaction rate constants obtained from precipitating a single metal stream 

with sulphide ions were similar to those from a multi-metal ionic of Cu-Zn-Ni stream. For 

instance, direct precipitation of NiS from a single metal ion stream had a reaction rate 

constant of 6.23 x10-4 s-1 compared to 5.63 x 10-4 s-1 attained from the precipitation of the 

same metal sulphide from a Cu-Zn-Ni system.  Therefore, this suggested that the influence of 

metal ion interaction does not have a significant effect on the precipitation kinetics of nickel 
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sulphides. These reaction rates constant suggest that these precipitation reactions are very 

fast. 

 

3.4 Hydrodynamics 

 

The rate of precipitation of cluster complexes of metal sulphides of Cu, Zn, Ag and Pb ions 

was calculated and it was concluded that their reaction rate constants were greater than 108 

M-1s-1 (Luther & Rickard, 2005). This suggests that, to obtain an accurate measurement of the 

reaction kinetics for such a sparingly soluble sulphide, there is need to use a highly sensitive 

detection method and the precipitating apparatus should achieve a mixing time that is less 

than the reaction time for any of the metal ions to be precipitated. A case study is illustrated 

in Figure 15. 

 

It shows that the nucleation time is faster than any of the mixing times, thus reaction kinetics 

measured for such a precipitation process is mixing limited (Baldyga & Pohorecki, 1995). 

Complete mixing for fast kinetics is ideally achieved within milliseconds, shorter than the 

reaction time or appearance of first nuclei. 

 

 

Figure 15: Reaction time and mixing times scales  
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3.4.1 Mixing 

 

Metal sulphide precipitation reactions are commonly conducted in classic stirred reactors or 

Mixed Suspension, Mixed Product Removal reactors (MSMPR). The level of supersaturation 

produced at different locations within such reactors varies due to the non-symmetry of the 

turbulent velocity field necessary for bulk convective mixing for solid-liquid phase systems, 

(Vicum et al., 2004).  This affects the characteristics of the precipitates and their product 

quality. Over the years, a number of alternative reactor technologies have been proposed for 

precipitation of sparingly solid precipitates. These include fluidised bed reactors and bubble 

column reactors (Lewis & Swartbooi, 2006). However, the hydrodynamics of these systems 

are very complex. 

 

Lewis and Swartbooi (2006) compared properties of metal sulphide precipitates at various 

supersaturations using different batch stirred reactor, seeded fluidized bed and semi batch 

bubble column reactors. They reported significant quantities of fines of sulphide precipitates 

from all the  three reactors at both low and high supersaturations (Bryson & Bijsterveld, 

1991). This is proposed to be due to homogenous nucleation and attrition.   

 

Developing work (Rickard, 1989; Roelands et al., 2003; Chiang, Nathoo & Lewis, 2007; 

Kugler, Doyle & Kind, 2014) has confirmed that the Y and T-mixers are preferred choices 

for better mixing and good product quality. The use of micro-mixers has been largely adopted 

for investigating precipitation kinetics, (Rickard, 1989; Roelands et al., 2003), nanoparticle 

precipitation, (Gradl & Peukert, 2010), and reactive polymerization precipitation. 

Furthermore ,these technologies ensure reproducibility and stability in continuous mode 

compared to stirred tank reactors which are difficult to scale up as small changes in internal 

geometry may lead to large variations in mean crystal sizes. There is also control over initial 

supersaturation and complete mixing is achieved within milliseconds (Benet et al., 2002). 

However, one main disadvantage is that it usually requires use of lots of reactants. 

 

Chiang et al (2007) studied the effect of using various mixing configurations on control of 

particle size distribution during manganese sulphide precipitation. They reported that at low 

supersaturation levels, the T-mixers are more effective in forming small particles of 

manganese sulphide precipitates of a narrower size distribution compared to the different 

angled Y-mixers and stirred tank reactors. It was also noted that aggregation mechanism 



   Chapter 3: LITERATURE REVIEW  

32 
 

dominates these kinds of micro-mixing processes. The geometry of these  systems also 

resulted in a steady state being established in the  apparatus making it more suitable for 

monitoring a detailed progress of a reaction and at high  measurement precision and accuracy 

(Rickard, 1989).  

 

Micro-mixing affects the course of rapid and  instantaneous chemical reaction, changing their 

conversion and selectivity (Baldyga & Pohorecki, 1995). Performing precipitation at low 

supersaturation and feeding reactants at a point of intense mixing, near the impeller as far 

apart as possible promotes good dispersion of reactants in the reactor vessel. This also obtains 

large particle sizes of narrow distribution and high crystallinity (Grulietti et al., 2001). 

Additionally, Nienow and Inove (1993) studied the selectivity for a by-product at different 

feed points in the reactor using different types of impellers. Findings indicated that for all 

cases, high selectivity was achieved when reactants were fed parallel to each other, at the tip 

of the impeller. Poor selectivity was reported when feeding was done at the top or bottom of 

the reactor away from this impeller.  

 

3.5 Industrial Applications of Metal Sulphide Precipitation 

 

Commercially, metal sulphide precipitation is employed for selective removal of metal ions 

from multi-metal ionic streams during purification of hydrometallurgical streams. Amongst 

many, these include purification of manganese (II) sulphate electrolyte from impurities of 

cobalt, nickel and iron ions (Wanamaker & Morgan, 1943; Jacobs, 1946; Bryson & 

Bijsterveld, 1991) ,separation of cobalt ions from an ammoniacal stream of zinc (II) sulphate 

(Mishra & Das, 1992), competitive removal of rhodium (III) ions (McGeorge, Gaylard & 

Lewis, 2009) and recently, that of selenium ions (Mokmeli, Wassink & Dreisinger, 2013) 

from acidic copper sulphate electrolyte. Most commonly, selective sulphide precipitation is 

applied for separation of platinum group metals (Siame & Kasaini, 2013) and for economic 

recovery, reuse of valuable metals and for minimization of toxicity in waste streams prior to 

disposal into the environment (Sahinkaya E. et al., 2009; Kamal et al., 2011; Gharabaghi, 

Irannajad & Azadmehr, 2012; Cibati et al., 2013; Reis et al., 2013). 
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3.6 Research Motivation 
 

Previous research work acknowledges the effect of supersaturation, sulphide dosing and pH 

on selective removal of metal ions from multi-metal ion systems. However, these were 

largely studied for systems with relatively equal and small concentrations of metal ions in the 

multi-metal ionic stream. The focus was also on removal of only one metal impurity at one 

given stage, each operated at different conditions. Hence, the conclusions of these findings 

may not directly relate to a typical hydrometallurgical system where the concentrations of 

impurities are not only several orders of magnitudes lower than that of the target metal but 

the solubility products of the metal impurities are also closely related challenging the 

sequential separation. This would be due to competitive interaction of metal ions during the 

purification process. Although purification of systems of Co-Mn, Co-Ni and Ni-Mn have 

been reported, these also do not further acknowledge the possible influence of operating 

factors on removal of two or more impurities from a multi-metal ion stream. The separation 

through a number of stages in economical unviable and is not an option for industrial 

processes. 

 

This research seeks to contribute towards bridging the gap between fundamentals and 

practical aspects in metal sulphide based purification of hydrometallurgical systems. This is 

important in developing an understanding into the relationship between mixing 

configurations, operating conditions and selective removal of impurities. The main objective 

was to understand the influence of local supersaturation on simultaneous selective removal of 

two impurities, extending the approach of using a T-premixed reactor to achieve perfect 

mixing, control levels of supersaturation and produce particles of a narrower PSD.  

 

The outcome of this research would go a long way towards modelling, designing and 

developing efficient processes of minimal operating costs. Existing operations can also use 

this knowledge to optimize their processes and improve productivity. Moreover, this can also 

be adopted for selective recovery of metals in extremely low concentrations. 

 

3.7 Research Hypothesis 

 

The following hypotheses were tested in this study: 
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1. A decrease in the micro-mixing time for sulphide precipitation results in an increase in 

selective removal of Co2+ and Ni2+ ions from a Co-Ni-Mn system. This is due to 

increased precipitation rate of these metal impurities as mixing time approaches their 

reaction time.  

2. Increasing the pH of the reacting solution improves selective removal of Co2+ and Ni2+ 

ions from a Co-Ni-Mn system by altering the reactivities of metal ions. However, this 

increase is limited to pH levels of up to 7.1, beyond which, sulphide precipitation of these 

metal ions co-precipitates with Mn2+ ions. 

 

3.8 Research Objectives  

 

This research project seeks to understand the influence of local supersaturation on selective 

removal of NiS and CoS during purification of manganese sulphate electrolyte, using an 

ideally mixed system. 

Therefore, the research objectives of this study are as follows: 

1. To investigate the effect of mixing configuration on PSD, morphology and on selective 

removal of CoS and NiS from Co-Ni-Mn system.  

2. To investigate the effect of pH on selectivity for CoS and NiS from a Co-Ni-Mn system, 

using a suitable mixing configuration identified in (1) above. 

3. Investigate the possible mechanism for selective removal of CoS and NiS from a Co-Ni-

Mn system. 

 

3.9 Key Research Questions 

 

The following key questions have been formulated: 

a) Does mixing in a semi-batch stirred tank reactor and T- premixed affect selectivity for 

CoS and NiS in any way? 

b) How does the control of supersaturation in relation to mixing configuration affect the 

size and morphology of precipitated particles? 

c) At what operating pH levels can you achieve residual impurity levels below 1 ppm? 

d) What is the batch time necessary for achieving high selectivity for impurities with 

minimum co-precipitation of manganese ions? 
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4 MATERIAL AND METHODS 
 

This chapter gives a detailed description on thermodynamic models, reagents and equipment, 

experimental procedures and analysis techniques used in this study.  

 

4.1 Experimental Design 

 

The investigation was divided into three main sections. Firstly, a thermodynamic model was 

done to confirm the feasibility to selectively remove metal impurities of CoS and NiS from a 

system of Co-Ni-Mn and thus, identify the operating pH boundaries for this study. Secondly, 

preliminary work was conducted to identify a suitable mixing configuration, offering better 

selectivity for removal of impurities, to be adopted for the  investigation into the effect of 

varying pH and batch time, on removal of NiS and CoS.  

 

4.2 Thermodynamic Modelling 
 

Thermodynamic modelling in the chemical equilibrium programme, OLI Stream Analyser 

Studio 9.0.9 was preliminarily done to investigate the feasibility for sequential and selective 

removal of metal ions, Co2+ and Ni2+ from a manganese (II) sulphate electrolyte with a typical 

industrial composition, at varying pH levels. This was important to define the operating 

conditions for the semi batch experimental work on a stream comprised of all major ions, 5 

mg/L Co2+, 50 mg/L Ni2+, 16000 mg/L Mn2+, 16 mg/L NH4
+, 9.4 x10-4 mg/L S2- and 2.8 x104 

mg/L SO4
2-. The model was allowed to equilibrate at each fixed pH and at a temperature of 

35 ⁰C. The sensitivity of the system for precipitation of CoS, NiS and MnS was tested for pH 

variations between 1 and 10. Thus, the model assumed that the only metal sulphides with 

ionic products exceeding solubility products precipitate out of the mixed solution at each pH 

level. 

This modelling was carried out to later compare the predicted thermodynamic result with 

those obtained experimentally.  
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4.3 Solution Preparations 
 

Synthetic solutions were prepared for Co2+, Ni2+
 and Mn2+ using Merck chemicals, 

CoSO4.7H2O, NiSO4.6H2O and MnSO4.H2O respectively. A 20% ammonium sulphide 

solution was diluted and adjusted to equivalent molar concentrations to that of metal ions 

impurities. De-ionized water was used for all solutions. The actual solution compositions 

used in the different experimental design phases is summarized in Table 2 below. The 

concentration of the system was expected to halve when they mix due to the configurations 

used in this study. 

 

All reagents were bubbled with nitrogen gas of high purity above 99.9% and 0.35 ppm 

oxygen content, to eliminated possible oxidation of metal sulphides after precipitation by air 

or oxygen. The temperature of the reactants and that of the reactor contents was maintained at 

35⁰C for all investigations. The pH of the reacting contents was maintained by dosing 0.1M 

ammonia/0.1M sulphuric acid solution. A 5% solution of sodium hexa-meta-phosphate was 

added to samples to disperse agglomerates for efficient PSD characterization. 

 

Table 2: Experimental Solution Composition 
 

Experimental Design 

Solution Compositions, mg/L 

Mn2+            Ni2+                  Co2+                     S2- 

Phase One 1000 1000 1000 1159/2317 

Phase  Two 32000 100 10 128 

Phase Three 32000 100 10 128 

 

4.4 Investigation into the Application of Different Mixing Configurations  

 

4.4.1 Experimental Set up 

 

The aim of this preliminary work was to compare the influence of different mixing 

configurations on selectivity for NiS and CoS from a system of Ni-Co-Mn. The experiments 

were carried out in two different semi batch mixing configurations, the double jet stirred tank 
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reactor (STR) and the T-premixed reactor (TPR), which are schematically illustrated in 

Figure 16 and Figure 17 respectively. The STR configuration consists of a 1 L jacketed glass 

STR with a working volume of 0.9 L (0.11 m in diameter), equipped with four baffles. 

Mixing was achieved by a standard 45⁰ pitched four blade impeller, connected to an overhead 

variable speed motor which was operated at over 900 rpm. 
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Metal Sulphate 
Solution

Ammonium 
sulphide Solution

Magnetic Gear Pumps

Flow 
controller

Jacketed continuous stirred 
tank reactor

Temperature 
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Baffles

A

B

 
 

Figure 16: Stirred tank reactor set up 
 

The semi batch STR was fitted with a lid that was used to seal the vessel and hold the 

sulphide resistant pH probe, temperature probe, overhead stirrer, and two reagents feed tubes 

parallel to each other, a stainless steel nitrogen injectors and an acid/base dosing port.  

 

The second configuration consisted of a T-premixer, a precipitation tube and a baffled glass 

jacketed vessel with a working volume of 0.9 L. Mixing was achieved by a standard 45⁰ 

pitched four blade impeller, connected to an overhead variable speed motor which was 

operated at over 900 rpm. Design specifications are given in Appendix A. 
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Figure 17: T-premixed reactor set up 

 

The inner diameter of the tubing (D), was 0.004m and the length of the precipitation tube was 

adjustable to 0.30m. The design specifications of this system were to achieve a fully turbulent 

flow with a Reynolds number of 6369, mean dissipated rate of 71.4m2s-3 and micro-mixing 

time of 0.002s. At the end of the precipitating tube, the precipitate was collected in a jacketed 

stirred vessel which was also fitted with a lid to seal the vessel and hold the sulphide resistant 

pH probe, temperature probe, overhead stirrer, and two reagents feed tubes parallel to each 

other, a stainless steel nitrogen injectors and an acid/base dosing port.  

 

In both cases, the feed flows were generated using the calibrated pulseless magnetic gear 

pumps (Micro pumps). The calibrated sulphide resistant pH probe used was from Metrohm 

AG (Switzerland). This was also calibrated using Merck Chemicals’ standard buffer solutions 

at pH 4 and 7 before the start of each experiment. The pH was measured every two minutes 

using a Microprocessor pH meter. The 1 L glass jacketed containers were used to store 

reactants achieving and maintaining the temperature throughout the experiments. 
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4.4.2  Experimental Procedure 
 

Both experiments were conducted in a semi-batch system and at a pH level of 7.8. Nitrogen 

gas was sparged through the reactants for 30 minutes before being pumped into the reactor 

via the magnetic gear pumps. The flow rate for each reactant was kept constant at 10mL/s for 

the parallel double jet feed into the STR. Feeding was at a point of intense mixing, near the 

tip of the impeller as far apart as possible to promote turbulence and good dispersion of 

reactants in the reactor vessel. On attaining a total volume of 0.9 L, feeding was stopped. 

 

In the same way, one gear pump was used to simultaneously draw the reactants at the same 

rate, through a T-premixer at 20 mL/s. The reacted metal sulphides were discharged through 

a tube into the receiving vessel of working volume of 0.9 L.  

In both mixing configurations, the time it took to fill 0.9 L batch volume was approximately 

45secs. The systems were allowed to equilibrate for one minute after which samples of 25mL 

were collected after 1,5 and 10 minutes and filtered through a 0.2 μm filter. The filtrate was 

analysed for free metal ion concentration of Co2+, Ni2+, and Mn2+ using the ICP-OES. Part of 

the sample was analysed for particle size distribution through the Malvern Mastersizer 2000. 

The filtered solids were washed with a saturated solution of manganese (II) sulphate, dried at 

75⁰C. The dry solid was analysed for morphology through the Scanning Electron 

Microscopy, and the mineral phase using the XRD analysis. Oxygen contamination of the 

collected metal sulphide suspension was avoided by sparging nitrogen in the collection 

vessel. 

 

4.5 Investigation into the Influence of pH on the Purification Process 

 

4.5.1 Experimental Procedure 
 

The pH was measured every two minutes and maintained by addition of 0.1 M ammonia/ 0.1 

M sulphuric acid.  Table 1 below shows conditions for this investigation, experimental runs 

were conducted in random, in the order of pH level of 7.8, 4.8, 7.0 and 6.5, to eliminate errors 

due to uncontrollable deviations.  20mL samples were then collected from the region close to 

the impeller, at batch residence times of 45minutes. The samples were filtered through a 
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0.22 𝜇𝑚 syringe filter. The filtrate was analysed for free metal ion concentrations of Ni2+, 

Co2+ and Mn2+ using the ICP-OES analysis.   

 

Table 1.0: Experimental run conditions  

 

Parameters 

Flow rate 

(mL/s) 

 

pH 

Temp 

⁰C 

[Ni2+] 

(mg/L) 

[Mn2+] 

(mg/L) 

[Co2+] 

(mg/L) 

 20.0  35.0 100.0 32000.0 10.0 

Run 1   7.8         

Run 2   4.8         

Run 3   7.0         

Run 4   6.5         

 

 

4.6 Determination of the Mechanism of Purification 

 

4.6.1 Experimental Procedure 
 

Using the best mixing configuration identified in  Section 4.4 above, this investigation was 

performed at pH level that were predicted to have minimal co-precipitation with Mn2+ ions. 

The other operating conditions are as described above. Both reactants were heated to achieve 

a temperature of 35⁰C before being simultaneously pumped by the magnetic gear pumps 

through a T-premixer at 20 mL/s and discharged into a batch receiving vessel of 0.9 L.  

The reacted metal sulphides were then discharged through a precipitating tube into the 

continuously stirred receiving vessel. On attaining a total volume of 0.9 L, feeding was 

stopped. 20 mL samples were then collected from the region close to the impeller, at batch 

residence times of 45 mins. The samples were filtered through a 0.22 μm syringe filter. The 

filtrate was analysed for free metal ion concentrations of Ni2+, Co2+ and Mn2+ using the ICP-

OES analysis.   
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4.7 Measurements and Analysis Methods 

 

4.7.1 Dissolved Metal Ion Concentration 
 

The inductively coupled plasma optical emission spectrometry analysis (ICP-OES) was used 

to determine the dissolved metal ion concentration. The difference between the initial molar 

concentrations of metal ions available for reaction, subtract that of the residual metal ions 

gives a direct indication of the amount of metal sulphide precipitate formed.  

 

4.7.2 pH Measurement 
 

The pH was measured every two minutes using a Microprocessor pH meter. The pH 

electrodes were calibrated using Merck Chemicals’ standard buffer solutions of pH 4 and 7. 

 

4.7.3 Particle Size and Morphology Analysis 
 

4.7.3.1 Scanning Electron Microscopy 
 

Images of mixed metal sulphide were taken using a Scanning Electron Microscopy (Nova 

NanoSEM 230, FEI). These were obtained using a voltage of 5.0keV, ETD detector (SE 

mode) with a magnification of between 1000 and 10 000x. These images were used to 

identify the crystallinity, morphology and particle size distribution of each of the metal 

sulphides of NiS, CoS and MnS from the mixed precipitate. The images would also help to 

confirm any possible aggregation associated with the interaction of formed sulphides.  

 

4.7.3.2 Malvern Mastersizer 
 

The precipitates and suspended fine particles were characterised for particle size distribution 

using laser diffraction Malvern Mastersizer 2000. A few drops of surfactant were added to 

each sample to avoid possible agglomeration of individual particles and all measurements 

were conducted within 5 minutes of sampling. The resulting particle size distribution was 

given as a percentage volume distribution. 



  Chapter 4: MATERIALS AND METHODS 

42 
 

4.7.3.3 X-Ray Diffraction (XRD) 
 

Part of the formed precipitate was analysed using XRD. The XRD patterns would then be 

used to confirm the mineral phase of the precipitated metal sulphides.  

 

4.7.4 Calculation of Precipitated Metal Sulphides 
 

A computation of the concentration of metal sulphides of CoS, NiS and MnS formed at each 

pH level investigated was performed using Equation 3.7. The initial concentration of each 

metal ion, Me2+
 (initial), was the composition of these in the Co-Ni-Mn system before reacting 

with sulphide ions. The residual metal ion concentration, Me2+
 (residual), was tabulated from the 

ICP-OES analysis of the free metal ion remaining in solution after the precipitation process. 

 

 [𝑀𝑒𝑆] = 𝑀𝑒(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
2+ − 𝑀𝑒(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)

2+  3.7 
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5 RESULTS AND DISCUSSION 
 

5.1 Effect of Mixing Configuration on Selective Removal of CoS and NiS 

 

The mixing configuration suitable for this study was selected from preliminary work on 

comparison of selective removal of impurities through a (STR) and a (TPR). The best option 

was chosen based on the optimal removal of impurities and less co-precipitation with Mn2+ 

ions. 

  

The residual concentrations of Co2+, Ni2+ and Mn2+ ions that were obtained from both the 

mixing configurations are presented in Figure 18. The dotted line on each of the graphs, 

Figure 18 and Figure 19, represents the initial concentration of metal ions on mixing. 

 
Figure 18: Effect of Mixing Configuration on Removal of CoS and NiS from a Co-Ni-Mn system. 

Initial concentrations of 580 ppm S2-, 500 ppm Ni2+, 500 ppm Co2+ and 500 ppm Mn2+ 

 

Immediately one minute after achieving a batch volume of 0.9 L, the data points 

corresponding to the concentration of Co2+, Ni2+ and Mn2+ ions in the STR were the same as 

those in the TPR. An average of 426 ppm of each of the metal ions of Co2+ and Ni2+ remained 

in solution, in both the STR and the TPR. That of the Mn2+ ions was 500 ppm and 495 ppm 
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for the TPR and STR respectively. The concentration of the Mn2+ did not change of any level 

of significant from the initial concentration achieved on mixing the two reactants. Therefore, 

in both cases, the amount of impurities removed and the loss of Mn2+ was equally the same, 

after a batch time of one minute.  

 

On the contrary, Figure 19 shows that on doubling the sulphide concentrations, the average 

measured residual concentrations of Co2+ and Ni2+ in a STR was nearly double that in the 

TPR. The associated loss of Mn2+ ions was also higher by 38 ppm compared to that of the 

TPR. This suggested that the precipitation rate of CoS and NiS was higher for the TPR 

compared to the STR. This could be due to a micro-mixing time that is faster than that 

achieved in a STR.  

 
Figure 19: Effect of Mixing Configuration on Removal of CoS and NiS from a Co-Ni-Mn 

system. Initial concentrations of 1159 ppm S2-, 500 ppm Ni2+, 500 ppm Co2+ and 500 ppm 

Mn2+ 

 

A comparison of the data in Figure 18 and Figure 19 showed that the addition of more 

sulphide ions resulted in a significant increase in the removal of metal ions of Co2+, Ni2+ and 

Mn2+ ions from the system. The difference in the removal rates of Co2+ and Ni2+ for a TPR 

was approximately 384 ppm per minute for both metal ions. This was relatively higher than 

the average 347 ppm per minute achieved by the STR. However, the removal of Mn2+ was 
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not that pronounced, the observed difference was 64 ppm and 97 ppm for a TPR and a STR 

respectively. 

This investigation observed that at lower supersaturation (sulphide concentration equal to that 

of one metal ion) the mixing scale achieved in a STR and TPR are relatively similar. Feeding 

reactants parallel to each other, at the tip of the impeller exerts a point of high turbulence 

ensuring better mixing of the two reactants. Similar results were reported in a previous study 

performed using a semi batch STR (Nienow & Inove 1993). 

 

Increasing the supersaturation level in the system (sulphide concentration equal to that of two 

metal ions) significantly limited the selectivity of metal ions of Co2+ and Ni2+ from the 

electrolyte. In the STR, this difference may be attributed to a creation of different regions of 

localised supersaturation within the reactor promoting co-precipitation with the Mn2+ ions. 

This is caused by poor dispersion of reactant throughout the reactor volume. This also, may 

have occurred due to limitations on the impeller speed versus the reactants addition flow 

rates.  

However, for a TPR, the selective removal of Co2+ and Ni2+ ions was possibly promoted by 

the difference in the reaction rates for the precipitation of CoS, NiS  and MnS. The obtained 

data suggested that at higher supersaturation levels, the system is mixing limited. The micro-

mixing time of 0.002 s used for this investigation was not adequate to match the reaction 

times necessary for selective precipitation of impurities hence, the co-precipitation with Mn2+ 

ions. It is also important to also acknowledge that these differences may be due to a 

combination of the equipment, sampling and analytical errors. 

 

5.1.1 Effect of Mixing Configuration on PSD and Morphology 

 

Particle size distribution measurements were taken for both mixing configurations for 

sulphide concentrations equi-molar to two of the metal ions. Figure 20 shows the percentage 

volume distribution for the resulting particles from both the STR and the TPR configuration. 

See Appendix 1B for the raw data obtained from the Malvern Mastersizer. 
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Figure 20: Effect of Mixing Configuration on PSD 

The significant percentage volumes of particles were observed for a particle size range 2 -52 

μm for a STR and 2-170 μm for that of a TPR. There was a marked difference in the modal 

particle diameter of the two configurations, on an average of 32.25 μm and 13.97 μm for the 

TPR and STR respectively. The average d (0.1), d (0.5) and d (0.9) for a TPR were 10.67 μm, 

32.25 μm and 76.67 μm and that of the STR was 6.10 μm, 13.97 μm and 29.23 μm 

respectively. The peak height of the volume distribution obtained for a STR corresponded to 

a percentage volume of 9.8% for a particles size of 12.4 μm. However that of the TPR was 

about 1.9% lower and corresponding to a particle size of 29.6 μm. Thus, the STR generated a 

higher volume of smaller particles compared to the TPR. 

 

The discrepancy between the particle size ranges and the modal particle diameter for the two 

mixing configurations was possibly due to particle aggregation. Particles between 20 and 100 

μm were most likely clumps of smaller particles that adhere to each other through 

agglomeration. The larger particles in the TPR may also indicate considerable sensitivity to 

the hydraulic conditions applied promoting particle enlargement due to a domination of 

aggregation. The precipitation tube used for this investigation had a very small internal 

diameter of only 0.004 m, thus, the formed particles had a greater probability of colliding 

with one another within the confined space. Although, it was assumed that there is high 

turbulence in a TPR, the probability that some reactants did not mix very well is very high. 
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These would proceed to the receiving vessel, where they create supersaturation and promote 

growth and aggregation of precipitated particles.  

 

Furthermore, an unexpected narrower particle size distribution resulted from investigations 

conducted using a STR compared to that of the TPR. However, both of these findings are in 

contradiction with the results reported by Chiang et al (2007), who observed formation of 

smaller particles for a TPR compared to those of a STR. This was attributed to the 

spontaneous nucleation achieved in a TPR compared to a STR. This observation was made 

for precipitation of a single metal ion stream. Therefore, this contradiction may explain the 

difference in PSD formed during precipitation from a single metal ion and a multi- metal 

ionic stream.  

 

It is important to note that all the particles of metal sulphides that were smaller than the filter 

paper pore size of 0.22 μm were not reported in these PSD as they contributed to the soluble 

metal fraction (Veeken & Rulkens, 2003; Lewis, Nathoo & Gluck, 2006). 

 

Particles of the precipitates from both mixing configuration were also analysed using SEM, 

with the objective to identify the morphology of each of the metal sulphides in the mixed 

precipitate. SEM images were taken for both washed and unwashed precipitates, see 

Appendix 2B. Images of unwashed precipitates were very poor, they only, distinctly showed 

the morphology of crystallised ammonium sulphate particles. This was formed when the 

solvent from the suspension was evaporated with the objective of drying the precipitated 

particles. Images of washed precipitates showed clustered particles of poor crystallinity. It 

was also not possible to distinguish the individual sulphides from each other. The XRD 

analysis confirmed that the particles produced were fine and of amorphous nature. A 

diffraction pattern of these precipitates could not be produced to ascertain the composition of 

these precipitates. 

 

5.2 OLI Modelling Results 

 

The expected amount of metal sulphides to be precipitated  from a Co-Ni-Mn system of 

16000 mg/L Mn2+, 50 mg/L  Ni2+ ,5 mg/L Co2+ and 231 mg/L S2- at varying pH levels of 1 to 

10 and temperature of 35 ⁰C, were determined using the OLI Analyser 9.0 software. The 
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model assumed that the only metal sulphides with ionic products exceeding solubility 

products precipitate out of the mixed solution at each pH level. 

 

Figure 21 shows the model results on the effect of pH variation on the amount of metal 

sulphides precipitated. The addition of sulphide ions at pH as low as 1, precipitated about 

0.000306 M of NiS. As the operating pH was adjusted to 2, a rapid increase to 0.000816 M of 

NiS formed was noted. This then gradually increases to reach a maximum of 0.00085 M of 

NiS between a pH level of 3 and 9. Subsequent increases of pH beyond this point lead to a 

slight decrease of 0.000017 M of the formed NiS. 

 

Precipitation of CoS also exhibited the same trend; a rapid increase by 0.000082 M of CoS 

was formed between pH levels of 3 and 5. A further increase in pH by more than one level 

resulted in the precipitation of the entire CoS in the system. A very rapid decrease in the 

formation of CoS was noted beyond pH levels of 9. The graph also showed that the trend for 

the precipitation of MnS is different from that of CoS and NiS. Very small amounts of MnS 

were initially formed at neutral pH levels. These fluctuate between pH 7 and 9 before 

significantly increasing to considerable amounts above 0.000001 M. 

 

 
Figure 21: pH dependency of precipitation of CoS, NiS and MnS 

Generally, the graph of Figure 21, illustrated that there was an increase in the amount of 

metal sulphide precipitated with an increase in pH levels. The model illustrated that the 
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system selectively precipitates NiS only at pH level below 3. Although there was complete 

precipitation of NiS beyond this pH level, there was also co-precipitation with the CoS. 

Complete precipitation of both CoS and NiS was only achievable at pH levels between 6 and 

9. However, above pH 7, there was a possibility for formation of mixed metal sulphides of 

Cox-Niy-Mnz-Sa. Thus, selective precipitation of metal impurities would be ideally controlled 

at pH level between 6 and 7. Increasing pH beyond this level would also not be a viable 

strategy for minimizing significant co-precipitation with MnS during the purification process. 

This may also explain the choice in industrial processes to operate and control pH between 

6.8 and 7.2. Purification of this system above pH level of 9 would also be avoided as it 

significantly favours the precipitation of MnS; this is shown by the tripling in magnitude on 

the amount of MnS precipitated and reciprocating decrease of NiS and CoS formed. MnS 

precipitation may be mainly because of the formation of hydroxides of cobalt and nickel, 

leaving excess sulphide ions to react with Mn2+ ions. 

 

The model also confirmed the feasibility to selectively purify the system of Co-Ni-Mn to 

desired limits below 1 ppm. To test the validity of this model experiments were conducted at 

pH levels of 4 to 9. At less than pH 4, the speciation of H2S is limited and may compromise 

the complete removal of impurities. Four pH levels were chosen and tested, pH 4.8, pH 6.5, 

pH 7 and pH 7.8.  The selection was intended to satisfy the following conditions: pH 4.8 tests 

complete removal of NiS, pH 6.5 complete removal for both NiS and CoS, pH 7 marks the 

limit for selective removal of impurities and pH 7.8 tests co-precipitation with MnS. 

 

5.3 Effect of pH on Selective Removal of CoS and NiS 

 

The TPR configuration was adopted to conduct investigations on the effect of pH and batch 

residence times on selective removal of impurities. The choice of this configuration was 

based on the fast precipitation rate and optimal selective removal of impurities from a Co-Ni-

Mn system. The TPR was also chosen for the additional advantage of promoting the 

formation of bigger particles of precipitates. 

 

Figure 22 shows the effect of solution pH on the formation of CoS and NiS after a batch time 

of 45 minutes using a TPR. The standard errors for this data was very small, the error bars 

could not show on the graph. 
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Figure 22: Effect of pH on NiS and CoS precipitation 

At pH levels of 4.8, only 0.000013M of CoS precipitated from the system. A further 

adjustment in the pH level beyond 6.5, promoted simultaneous formation of both CoS and 

NiS precipitates. The amount of both these precipitates increased significantly on raising pH 

from 7.0 to 7.8 resulting in the maximum formation 0.0004 M and 0.00007 M of NiS and 

CoS respectively. The maximum CoS removed was only 49.2% and that of NiS was 86.6 %, 

at the highest pH investigated.  

 

The corresponding metal sulphide of MnS formed at each pH could not be calculated for this 

experimental work. An attempt to determine this concentration indicated that the amount of 

Mn2+ ions that was removed from the multi-metal ionic system exceeded the initial amount of 

sulphide ions available for precipitation. Thus, Mn2+ ions were removed from this system by 

other mechanisms other than the possible formation of MnS. 

 

Therefore, Figure 23 represents the effect of pH on the residual concentration of Mn2+ ions.  

It was observed that this concentration of Mn2+ ions decreased considerably between pH 4.8 

and 6.5. The point at pH 6.5 corresponding to a residual concentration of 14125 ppm Mn2+ 

ions marked the minimum concentrations recorded for this investigation. A further increase 

in the pH resulted in a rapid increase in the residual concentration of Mn2+ ions. The highest 
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concentration of 15386 ppm, for this metal ion was recorded at pH of 7.8. Thus, co-

precipitation of Mn2+ with CoS and NiS decreased with an increase in pH.  

 

 
Figure 23: Effect of pH on co-precipitation of Mn2+ ions 

Interestingly, the percentage loss of these Mn2+ ions after 45mins at pH 7.0 is about 9.12%, 

which is much higher than the 2.63% obtained by Bryson and Bijsterveld (1991). This 

suggests that the single jet mixing configuration has a less influence on this co-preciptation 

compared to the TPR configuration. However, the residual concentration of Co2+ ions 

obtained were the same in both experiments. 

 

A comparison on the amounts of impurities and Mn2+ ions removed during precipitation, at 

each pH, suggested that most of the sulphides ions were consumed by the Mn2+ ions. The 

poor formation of NiS and CoS indicated that, at one point, during the precipitation process, 

there are free sulphide ions present in the system. The influence of local supersaturation 

possibly promoted instantaneous precipitation of these Mn2+ ions. Thus, consuming most of 

the sulphide ions and limiting the complete precipitation of metal impurities. This 

precipitation process may have proceeded to form MnS precipitates or metal bisulphides of 

the form Mn(HS)2 or hydroxides of Mn(OH).SH. This would then limit the amount of 

sulphide available for precipitating the metal impurities. Assuming Mn2+ ions does precipitate 

to form MnS, this would only constitutes a small percentage of the amount of these ions that 

is removed from the solution. The fate of the bulk concentration of these metal ions is 

unknown. Another possible explanation would be attributed to the formation of high order 
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soluble complex polysulphides of either CoxSy or NixSy or MnxSy instead of the CoS, NiS and 

MnS assumed in this study (Shea & Helz, 1988; Lewis, Nathoo & Gluck, 2006; Karbanee, 

van Hille & Lewis, 2008; Mokone, van Hille & Lewis, 2009).  

 

Generally, the effect of pH on formation of CoS and NiS seemed to slightly increase with an 

increase in pH level. However, the experimentally precipitated amounts were less than those 

predicted by the OLI thermodynamic model despite the use of an equi-molar concentration of 

sulphide ions to that of impurities. The trend of this pH effect also, does not follow the 

thermodynamic pattern, suggesting that the extent of precipitation, at batch times 

investigated, was influenced by kinetics rather than thermodynamics. Longer batch residence 

times greater than 45 minutes would be necessary for attempting to fit the model. The desired 

limits of metal impurities were not achievable at any of the pH levels investigated. 

 

Other observations made during the investigation indicate that the system was able to 

maintain the pH levels throughout the experiment. There was no need to continuously add a 

buffer. The different pH levels investigated were achieved by adding a few drops of 0.1 M of 

sulphuric acid to the mixed metal ion solution. 

 

Immediately after mixing the reactants and during the entire duration of the experiments 

performed at pH 4.8, the solution remained pink with no visible colour changes or indication 

of formation of any suspended particles. The collected sample continued to give a pungent 

smell of hydrogen sulphide suggesting the availability of free sulphide ions for a further 

reaction. However, the absence of visible suspended particles does not explain the 947 ppm 

of Mn2+ ion calculated to have been removed from the solution. At pH 6.5, few fine black 

suspended particles of the precipitates were observed under a light source. This observation 

became more apparent at pH levels of 7.0 and 7.8. However, the amount of particles formed 

in all three cases was not enough to do further analysis to determine the PSD and composition 

of the mixed metal sulphide precipitate. 
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5.4 Effect of batch time on co-precipitation of Mn2+ with CoS and NiS 

 

The main objective of this investigation was to identify the mechanism of co-precipitation of 

Mn2+ during selective removal of Co2+ and Ni2+ ions. Thus, the investigation was conducted 

at pH level of 7 at maximum limit for this selective removal of impurities. 

 

Figure 24 shows the measure of the residual metal ion concentration of Co2+, Ni2+ and Mn2+ 

ions at batch times of 10 min, 30 mins and 45 mins. The concentration of the metal impurities 

remained virtually constant for the batch times investigated. The concentration of Co2+ ions 

recorded was an average of 3.8 ppm and that of Ni2+ ions was 38.8 ppm, 40.8 ppm and 41.5 

ppm for the batch times of 10mins, 30mins and 45mins respectively. The slight increase 

observed on the latter may be related to error associated with sampling, dilution and analysis 

method used in this study.  The concentrations of Co2+ and Ni2+ achieved were not close to 

the expected equilibrium concentrations of 0.000001 mg/L and 0.00036 mg/L at this pH 

level. That of the Mn2+ ions increased at an average of 14129 ppm, 14239 ppm and 14540 

ppm from 10 mins, 30 mins and 45 mins respectively. 

 

 

Figure 24: Effect of batch residence time on MnS co-precipitation with CoS and NiS 
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Assuming that the changes in the concentrations of Ni2+ and Mn2+ ions suggested dissolution 

of formed metal sulphides releasing free sulphide ions into solution, the concentration of the 

Co2+ was expected to decrease accordingly. This rules out the possibility for cationic 

substitution as reported in previous studies for similar systems (McGeorge, Gaylard & Lewis, 

2009; Li et al., 2014).  

 

A mass balance on the sulphide ions was difficult to do as the actually amount of these 

associated with the formation of MnS was unknown. However, the total precipitated metal 

ions of Co2+, Ni2+ and Mn2+ exceeded the amount of sulphide ions that were initially 

available for the reacting with only two impurities of Co2+ and Ni2+. This suggests that the 

bulk of the Mn2+ ions are removed from the solution by other mechanisms other than ionic 

sulphide precipitation. The continuous release of Mn2+ ions back into solution would be an 

indication of a temporary weak physical interaction such as adsorption of ions onto already 

formed metal sulphides’ surfaces. Previous studies suggested that selective sulphide 

precipitation takes place through both ionic and adsorption processes (Bryson & Bijsterveld, 

1991; Veeken & Rulkens, 2003; Lewis, Nathoo & Gluck, 2006). Another logical explanation 

is the possible formation of complex compounds, with strong bonds of ammonium related 

ligands, hydroxides or with any other anions is solution. 

 

Due to the fast kinetics of the process, the system was expected to have reached equilibrium 

at batch time of 10 mins. At shorter batch times than 10 mins, the competitive precipitation of 

the metal sulphides was expected to be largely influenced by both local supersaturation and 

reaction kinetics. At longer batch times the difference in solubility products was expected to 

govern the separation of these metal sulphides. Local supersaturation initially favours the 

precipitation of Mn2+ ions in the bulk solution, whereas the difference in Ksp would promote 

the formation of insoluble CoS and NiS. The latter being more influential as the precipitation 

approaches equilibrium concentration. 
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6 CONCLUSIONS AND RECOMMENDATIONS 
 

The main objectives of this study was to understand the effect of pH on selective sulphide 

removal of Co2+ and Ni2+ ions from a system of Co-Ni-Mn using a suitable mixing 

configuration. Furthermore, the research aimed to identify the mechanism of co-precipitation 

of Mn2+ during the purification process. 

The following conclusions were drawn from this research work: 

 At low supersaturation levels (sulphide concentration equi-molar to one of the metal 

ion), both the STR and TPR achieved the same selectivity for removal of CoS and 

NiS. This is due to similar mixing scales in both mixing configurations. Increasing the 

supersaturation increases the removal rate of impurities through both a STR and a 

TPR. However, that of the latter is greatest due to faster mixing times achieved by the 

high reactant flow rate used in this research work. 

 The STR produces smaller, fine particles of a narrower PSD compared to those in the 

TPR. SEM images of the particles formed through TPR indicate that this is possibly 

due to aggregation which is common with products formed through micro-mixing 

processes. Industrial application may prefer this method to minimise poor purification 

due to finer particles. Fine particles of precipitates usually fail to settle, they usually 

re-dissolve into the bulk electrolyte, increasing the concentration of impurities into the 

subsequent process.  

 Adjusting the pH of a reacting solution does not have a significant effect on the 

removal of CoS and NiS, to desired residual metal ion concentrations below 1ppm. 

The concentration of metal impurities remains very high, despite addition of enough 

sulphide ions to completely remove these impurities. This suggests that sulphide ions 

are consumed either by the Mn2+ ions, or forms complex polysulphides with impurity 

metal ions or forms strong bonds with other anions in the electrolyte.  

 Contrary to thermodynamic predictions, Mn2+ ions co-precipitate with CoS and NiS 

for all the pH levels between 4.8 and 7.8. This decreases with an increase in batch 

residence time. The possible mechanism of this co-precipitation could not be 

established due to shorter batch times investigated in this study.  

 Few precipitates were produced at 6.5, 7.0 and 7.8 in that order, these were not 

enough to do PSD, morphology and composition analysis. 
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The general implication of the above conclusions, on hydrometallurgical systems, is that the 

purification process is not largely influenced by the operating pH. Further studies are 

necessary to identify other operating conditions that may significantly reduce the residual 

concentration of metal impurities to below 1 ppm. These may include seeding and sulphide 

ion concentration. 

 

Findings also suggest that this process should ideally be conducted at longer batch residence 

time beyond 45 minutes to minimise loss of Mn2+ ions through co-precipitation. However, 

methods of characterising the solid phase composition of the formed precipitates should be 

identified to conclusively ascertain the fate of Mn2+ ions and confirm complexes of metal 

sulphides that form during this process. TPR may be preferred for improved production rates 

and formation of bigger particles, the process may be difficult to monitor and control 

especially in systems that use pH modifiers. 

 

In conclusion, the influence of local supersaturation on the purification on this purification 

process may only be understood when the effects of all these aspects are integrated. This is 

important knowledge for understanding the kinetics of this process for optimisation 

considerations. 
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8 APPENDICES 
 

 

APPENDIX A - Design Specifications of T-premixed reactor (TPR) 

 

1. d< D where d is inner diameter and D is the outer diameter 

Inner diameter of outlet pipe should be significantly smaller than injector inner 

diameter.(Rice & Baud, 1990) 

Injector Outer Diameter   6.0mm    

Injector Inner Diameter 4.0mm    

 

2. Inlet tube length (L) 

L/D should be greater than 10 for fully developed turbulent flows. 

Thus length of inlet pipes should be 4mm X 20 = 80mm 

 

3. Calculating Average flow velocity, U 

𝑈 =
𝑇𝑜𝑡𝑎𝑙 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝐴𝑟𝑒𝑎
 

𝑈 =
4 𝑄

𝜋𝐷2 
 

 

The combined maximum output for the two magnetic drive gear pumps is 20ml/s. 

Therefore:          

𝑈 =
4 𝑥 0.000020𝑚3/𝑠

𝜋(0.004𝑚)2
 

 

𝑈 = 1.59𝑚/𝑠 

 

4. Calculating Reynolds Number 

Lamina flow: Re < 2300 

Transition flow: 2300 < Re < 4000 

Turbulent flow Re > 4000 

𝑅𝑒𝑦𝑛𝑜𝑙𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 =
𝑈𝐷

𝑣
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Where: U = average flow velocity, ms-1 

   D = hydraulic diameter, m 

   v = kinematic viscosity, m2s-1   Q = flow rate, m3/s 

 

𝑅𝑒 =
1.59𝑚/𝑠 (0.004𝑚)

10−6𝑚2𝑠−1
 

𝑅𝑒 = 6369.4 

 

5. Calculating the mean dissipated rate: 

𝜀 =
𝑄∆𝑃

𝜌𝑉
=

2𝑓𝑈3

𝐷
 

 

f = 0.316 Re-0.25   

The Blasius equation is the most simple equation for solving the Darcy friction factor. 

Blasius equation is valid only to smooth pipes. The Blasius equation is valid up to the 

Reynolds number 105 .  

𝜀 =71.409m2s—3 

 

6. Calculating the micro-mixing time: 

The Kolmogorov’s turbulence theory of smallest eddies suggest the micro-mixing 

time can be calculated as: 

   𝜏 = 17.24√(𝑣/𝜀)          (J.Baldga & J.R.Bourne) 

𝜏 = 0.0020s 
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APPENDIX 1B – Mastersizer Particle Size Distribution Data 

 

Table 3: Percentage volume distribution for particle sizes in a TPR 
  Run 1 Run 2 

Size μm % Volume % Volume 

1.0 - 2.0 0.00 0.00 

2.0 - 3.0 0.20 0.12 

3.0 - 5.0 1.21 0.96 

5.0 - 7.0 2.27 1.52 

7.0 - 10.0 4.89 2.64 

10.0 - 13.0 5.79 2.67 

13.0 - 19.0 12.06 5.67 

25.0 - 38.0 11.37 6.93 

38.0 - 53.0 20.57 18.69 

53.0 - 75.0 16.76 21.34 

75.0 - 106.0 14.17 21.81 

106.0 - 150.0 8.04 13.59 

150.0 - 212.0 2.52 4.05 
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Table 4: Percentage volume distribution for particle sizes from a STR 
  Run 1 Run 2 

Size μm % Volume % Volume 

1.0 - 2.0 0.92 . 

2.0 - 3.0 0.69 97 

3.0 - 5.0 3.52 0.86 

5.0 - 7.0 7.71 4.05 

7.0 - 10.0 15.92 7.99 

10.0 - 13.0 16.26 15.67 

13.0 - 19.0 25.03 15.67 

25.0 - 38.0 14.66 24.09 

38.0 - 53.0 12.31 14.41 

53.0 - 75.0 2.68 12.77 

75.0 - 106.0 0.17 3.12 

106.0 - 150.0 0.00 0.23 

150.0 - 212.0 0.00 0 
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APPENDIX 2B – SEM Images 

 

         

Figure 25: SEM images of unwashed metal sulphide precipitates 

 

       

Figure 26: SEM images of washed mixed metal sulphides from a STR and TPR configuration 
respectively 

 

       

Figure 27: SEM images for washed mixed metal sulphides 
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APPENDIX C – Calculation of Precipitated Metal Sulphides 

 

Residual Metal Ion Concentrations 

The concentration of metal ions that remained after precipitating the metal sulphides was 

determined using the ICP-OES analysis. The results are given below: 

Table 5: Residual Metal Ion Concentrations as obtained from ICP-OES analysis for Run 1A 
1B and 1C 

 Run 1A Co2+ Ni2+ Mn2+ 

pH (ppm) (ppm) (ppm) 

4.8 4.98 49.88 15136.00 

6.5 4.76 47.79 15034.00 

7.0 3.78 40.87 14857.00 

7.8 0.67 24.84 14950.00 

     Run 1B Co2+ Ni2+ Mn2+ 

pH (ppm) (ppm) (ppm) 

4.8 4.89 49.60 14971.00 

6.5 4.29 43.62 13216.00 

7.0 4.08 39.96 14246.00 

7.8 0.67 25.86 15823.00 

     Run 1C Co2+ Ni2+ Mn2+ 

pH (ppm) (ppm) (ppm) 

4.8 4.94 49.74 15053.50 

6.5 4.53 45.71 14125.00 

7.0 3.93 40.42 14551.50 

7.8 0.67 25.35 15386.50 
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Metal Sulphides Calculations 

The precipitated metal sulphides were calculated using Equation 3.7 in Section 4.7. The 

molar masses of Co2+ ,Ni2+ and Mn2+ used for the conversion of ICP-OES concentrations 

from ppm to molarity were 58.93 g/mol, 58.70g/mol and 54.93 g/mol respectively. The MnS 

calculated is related to the concentration of metal ions that is not in solution. This was done to 

compare this value to the sulphide ion concentration, initially available for precipitation. 

 

Table 6: Calculated Metal sulphides formed at each pH level for Run 1A, 1B and 1C 

Run 1A CoS MnS NiS 

pH - Aqueous M M M 

4.8 5.0.E-07 1.6.E-02 2.9.E-07 

6.5 4.2.E-06 1.8.E-02 3.6.E-05 

7.0 2.1.E-05 2.1.E-02 1.5.E-04 

7.8 7.4.E-05 1.9.E-02 4.3.E-04 

 

Run 1B CoS MnS NiS 

pH - Aqueous M M M 

4.8 2.0.E-06 1.9.E-02 5.0.E-06 

6.5 1.2.E-05 5.1.E-02 1.1.E-04 

7.0 1.6.E-05 3.2.E-02 1.7.E-04 

7.8 7.4.E-05 3.2.E-03 4.1.E-04 

 

Run 1C CoS MnS NiS 

pH - Aqueous M M M 

4.8 1.3.E-06 1.7.E-02 2.7.E-06 

6.5 8.2.E-06 3.4.E-02 7.1.E-05 

7.0 1.8.E-05 2.6.E-02 1.6.E-04 

7.8 7.4.E-05 1.1.E-02 4.2.E-04 
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