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Abstract
An understanding of past and current weather conditions can aid in identifying trends
and changes that have occurred in weather patterns. This is particularly important as
certain weather conditions can have both a positive and a negative impact on various
activities in any region. Together with an ever-changing climate it has become markedly
noticeable that there is an upward trend in extreme weather conditions.

The aim of this study is to evaluate the efficacy of univariate and multivariate extreme
value theory models on climate data in the Western Cape province of South Africa. Data
collected since 1965 from five weather stations viz. Cape Town International Airport,
George Airport, Langebaanweg, Plettenberg Bay and Vredendal was modelled and anal-
ysed. In the multivariate analysis, multiple variables are modelled at a single location.

Block maxima, threshold excess and point process approaches are used on the weather
data, specifically on rainfall, wind speed and temperature maxima. For the block max-
ima approach, the data is grouped in n-length blocks and the maxima of each block
form the dataset to be modelled. The threshold excess and point process approaches use
a suitably chosen threshold whereby observations above the threshold are considered as
extreme and therefore form the dataset used in the models. Under the threshold excess
approach, only observations that exceed the threshold in all components are able to be
modelled, whereas exceedances in one and all components simultaneously can be han-
dled by the point process approach.

While the probability of experiencing high levels of rainfall, wind speed and temper-
ature individually and jointly are low, a few conclusions were drawn based on the com-
parison of the performance of the models. It was found that models under the block
maxima approach did not perform well in modelling the weather variables at the five
stations in both the univariate and multivariate case as many useful observations are
discarded. The threshold excess and point process approaches performed better in mod-
elling the weather extremes. Similar results are achieved between these two approaches
in the univariate analysis and there is no outright distinction that favours one approach
over the other. In terms of the multivariate case, which is restricted to two variables,
the point process approach was able to provide estimates with increased accuracy as
in many cases there are more extremes in one component individually than in both
components. Specifically, the negative logistic and negative bilogistic models suitably
capture the dependence structure between maximum wind speed versus maximum rain-
fall and maximum wind speed versus maximum temperature at the five weather stations.

The results from the point process models showed very weak dependence between wind
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speed and rainfall maxima as well as between wind speed and temperature maxima
which may warrant the inclusion of additional variables into the analysis and even a
spatial component which is not included in this study.

Keywords: Multivariate extreme value theory; Generalised extreme value distribution;
Weather variables; Dependence; Maxima; Fréchet margins; Component-wise; Threshold
excess; Point Process.
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Chapter 1

Introduction

1.1 Background

Traditional and popular uses of statistics focuses on the averages of distributions and con-
siders the extreme observations as outliers therefore excluding these observations from
the analysis. However, there is much information about the data that can be extracted
from these extreme observations that are often disregarded. Extreme observations follow
certain distributions which allows for inference about the tails of the distributions. This
is where the theory on extreme values comes to light.

Extreme Value Theory (EVT) is a method for the mathematical modelling of extreme
events. A distinguishing factor of EVT is that the focus of the analysis is on the tails
of a distribution. It allows one to make inference about extreme events occurring over a
time period into the future. Accounting for multiple variables working together as pre-
dictors of extreme events provides a more accurate representation of how extreme events
are ultimately caused from a statistical perspective in what is termed as Multivariate
Extreme Value Theory (MEVT).

MEVT can be used to jointly model multiple variables in different scenarios. For in-
stance, MEVT models can be used to model multiple variables at a single location. It
can be used to model one variable at different time periods and it can be used to model
a single variable at multiple locations (Kotz and Nadarajah, 2000).

1.2 Background to the Study

The climate in the Western Cape province can be classified as dry and hot in summer
and wet and cold in winter with wind all year round, formally known as a Mediterranean
climate. The weather variables of interest in such a climate would be rainfall, tempera-
ture and wind speed maxima. In respect of experiencing extreme heat or cold climatic
conditions - these are occurrences that happen on rare occasions. However, over the
recent years, there have been an increase in these rare weather conditions. Most notice-
ably, there have been prolonged periods of droughts over the past few decades occurring
when there are lower than average levels of rainfall together with higher temperatures
(Araujo et al., 2016). To summarise this, the Southern African Development Community
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(SADC) noted that “in the coming decades the SADC is expected to experience higher
land and ocean surface temperatures than in the past, which will affect rainfall, winds
and the timing and intensity of weather events” (Southern African Development Com-
munity, 2012).

Extreme weather events in the Western Cape province include storm surges, flooding
and fires. These extreme weather events, in some instances, are a culmination of extreme
levels of certain weather variables working together. For example, extended periods of
drought together with high levels of wind speed aid in the occurrence in fires (Ziervogel
et al., 2014). Thus, increased temperature readings with higher rainfall levels and wind
speed makes MEVT an ideal candidate for modelling and analysing the occurrences of
the extremes weather events.

1.3 Problem Description

While there have been several studies on extremes of climate data, the applicability and
efficacy of EVT and MEVT approaches has not been gauged in a South African context
and specifically the Western Cape province. Several different approaches are proposed
in MEVT but how well do the approaches perform compared to each other and what
causes the differences in the performance of the models under the various approaches.

In particular, which MEVT approaches provide reliable results and how well are the
MEVT models in assessing the occurrence of extreme weather events in the province.
What are the similarities and differences of the approaches and how suitable are the
approaches under a Mediterranean climate.

1.4 Aim of Study

The aim of the study is to assess the efficacy of MEVT as a modelling tool on his-
toric climate data. The climate data is from weather stations across the Western Cape
province in South Africa. Two different approaches of univariate EVT and for MEVT,
three different approaches, were used to model and analyse extreme weather conditions
experienced in the province, a region in the South West of South Africa. Specifically, to
apply MEVT models to pairwise combinations of rainfall, temperature and wind speed
maxima from five weather stations across the Western Cape province.

Component-wise maxima, threshold excess and point process models are explored and
applied to climate data. The efficacy of these models are evaluated in this study in
univariate and multivariate analyses. The univariate analysis provides a foundation for
the multivariate case in terms of theory and application.

1.5 Scope and Limitations

This study is restricted to the region of South Africa and is specific to the climate ex-
perienced in the Western Cape province.
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The data is from five weather stations across the Western Cape and the analysis is
restricted to a specific period from 1965 to 2015. Three weather variables are used in
the models of the different approaches viz. rainfall, temperature and wind speed maxima
to look at the efficacy of the approaches in modelling extreme weather events.

While the multivariate methodology extends to two or more variables, the application
of the methods is restricted to a bivariate case. Furthermore, a spatial component is not
included in the analysis as this would add in another dimension to the study.

1.6 Computation

The software program, R is used to analyse the data. It is freely available for download
on https://cran.r-project.org/bin/windows/base/. It is widely used in statistical appli-
cations and has packages that perform various statistical routines.

The package evd is used extensively in the data analyses as it has both univariate and
bivariate capabilities. There are a few extensions to the multivariate case in some of the
functions within this package.

1.7 Layout of the Dissertation

Chapter 2 contains a literature review of work published in this area. It solidifies the
applicability and viability of MEVT especially in the context of this study and also con-
tains the details of EVT and MEVT methodologies.

Chapter 3 is about the specifics of the data which covers how the data was cleaned,
missing values handled, period of the data per station and other finer details. Findings
and results of the fitted models are also presented in this chapter.

Finally, Chapter 4 presents the conclusions of the models fitted under the three ap-
proaches as well as recommendations and future work.
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Chapter 2

Literature Review &
Methodology

This chapter describes the origins of EVT and MEVT. It presents a foundation of ex-
isting EVT methodologies and explains the differences between the various modelling
approaches. Specifically, the details of the block maxima, threshold excess and point
process approaches are explained. An overview of applications and studies that have al-
ready been conducted within the EVT realm are also explored. There is a differentiation
between the univariate EVT and MEVT, each with its own methodologies as MEVT
builds onto the univariate approaches.

The methodology is described at a basic level to provide an understanding of the three
approaches and thus does not include rigorous proofs.

2.1 History of Extreme Value Theory

EVT concerns the mathematical modelling of extreme events with the focus of the
analysis being on the tails of the distribution. The data that generates the tails of
the distribution can be considered as extreme observations. The modelling of extreme
observations can be helpful in predicting extreme weather events that might occur dur-
ing a certain period in the future. Therefore, from a statistical perspective, modelling
multiple variables together as predictors of extreme events provides a more accurate
representation of the occurrence of extreme events. There is also an increased accuracy
in prediction with multiple variables as opposed to modelling a single variable as a pre-
dictor of extreme events. Modelling extremes of multiple variables together is possible
through the use of MEVT methods.

In the first part of this section, explanations of the methodologies relate to univariate
cases and is followed by explanations of the multivariate case. The MEVT approaches
are an extension to the univariate EVT approaches which takes additional variables into
account.

While the earliest recorded works on the asymptotic distributions for largest values
can be in found in Fréchet (1927), further developments about the generalised extreme

4



value limiting distributions were first realised by Ronald Fisher and Leonard Tippet in
1928. In particular, Fisher and Tippett discovered that three types of extreme limit
distributions could be used on the sequence of maxima of a random sample. While
Richard von Mises (1936) provided sufficient conditions to limiting distributions realised
by Fisher and Tippett, it was Gnedenko (1943) who presented a complete characteri-
sation to the non-degenerate limit laws to a sequence of maxima. In 1943, Gnedenko
built onto the work of Fisher and Tippett by providing the necessary and sufficient
conditions for convergence of extreme order statistics. These results have been captured
in what is widely known as the Fisher-Tippett-Gnedenko Theorem (Beirlant et al., 2004).

EVT applications to do with meteorology, hydrology and engineering date back to the
1950’s with a few of the earliest studies found in Gumbel (1958). Further contributions to
the theory can be seen in the work of de Haan during the 1970s who developed complete
characterisations for the domains of attraction for limit laws of the maxima. Contribu-
tions to the field include the development of the limiting distributions for largest order
statistics and stationary random sequences found in Leadbetter et al. (1983). The work
of the aforementioned authors have contributed to the theory behind the generalised
extreme value (GEV) family of distributions.

MEVT characterisations of asymptotic dependence and independence of variables is
documented in Sibuya (1960). Joint tail characterisations of component-wise maxima
are based on the work by Resnick (1987). The multivariate extension of the point process
is due to the findings of de Haan and Resnick (1977) and de Haan (1985).

The Generalised Extreme Value Family of Distributions

The focus is on the statistical behaviour of

Mn = max{X1, X2, ...., Xn}

X1, X2, ...., Xn is a sequence of independent and identically distributed (i.i.d) random
variables having a common distribution function F . Mn is standardised for a sequence
of constants an > 0 and bn to increase the stability of Mn as n increases.

Pr{Mn ≤ x} = F (x)n (2.1)

If there exist sequences of constants {an > 0} and {bn} such that

Pr

{
(Mn − bn)

an
≤ x

}
= F (anx+ bn)n → G(x) as n→∞

where G is a non-degenerate distribution function and G belongs to one of the following
types of distributions according to the Fisher-Tippett-Gnedenko Theorem (Finkenstadt
and Rootzen, 2003):

i. The Gumbel distribution

G(x) = exp(−exp(−x)) −∞ < x <∞
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ii. The Fréchet distribution

G(x) =

{
0 x < 0
exp(−x−α) x > 0

iii. The Weibull distribution

G(x) =

{
exp(−|x|α) x < 0
1 x > 0

where a > 0, b and α > 0.

Thus, the GEV distribution is formed from the above-mentioned distributions which
is as follows

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ}
(2.2)

for −∞ < µ <∞, −∞ < ξ <∞, σ > 0

and is defined on the set {x : 1 + ξ(x−µ)
σ > 0} (Finkenstadt and Rootzen, 2003). G

is a member of the GEV family of distributions where σ is the scale parameter, µ is the
location parameter, ξ is the shape parameter.

The corresponding GEV distributions can be obtained by varying the values of ξ,
ξ = 0 corresponds to the Gumbel distribution
ξ > 0 corresponds to the Fréchet distribution
ξ < 0 corresponds to the Weibull distribution.

The work on the GEV distributions forms a foundation for the classical EVT mod-
els that are widely used in numerous applications and studies.

In addition to the characterisation of extremes under the GEV family, methods for
modelling maxima that exceed a threshold has relevance. The works of Balkema and
de Haan (1974) and Pickands (1975) showed that the limiting distribution for scaled
excesses (over a threshold) can be approximated by a generalised Pareto distribution
(GPD). Developments of the asymptotic joint distributions of extreme order statistics
can be attributed to Weissman (1978) and Smith (1987). Poisson point process charac-
terisations to excesses above a threshold were given by Smith (1989) and Davison and
Smith (1990).

The Generalised Pareto Famiy of Distributions

Considering the random variables of X to have a common distribution function F where
the behaviour of Y = (X − u) > 0 is described by (Finkenstadt and Rootzen, 2003)
conditionally as
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F (y) = Pr{Y ≤ y|Y > 0} =
F (u+ y)− F (u)

1− F (u)
(2.3)

For a large value of u, F (y) ≈ H(y) and the GPD is defined by

H(y) = 1−
(

1 +
ξy

σ

)−1/ξ
(2.4)

The upper limits of ξ for different values are as follows (Coles, 2001)

i. ξ = 0:

H(y) = 1− exp

(
−y
σ

)
, y > 0 as ξ → 0 (2.5)

which corresponds to the exponential distribution with mean σ.

ii. ξ > 0: does not exist.

iii. ξ < 0: −σ
ξ (finite).

The GPD has links to both the threshold excess and point process approaches, details
of which are provided later on in this chapter.

2.2 Extreme Value Theory

Three classical approaches viz. the block maxima, threshold excess and point process
approaches are expanded on in this section. An important aspect of EVT is the return
levels. While the equations of the return levels are given, it is helpful to provide a
conceptual example. For instance, in the analysis of rainfall maxima for a certain region
and a particular station, the five year return level was calculated to be 32 mm. This
means that on average, the level of 32 mm is expected to be exceeded once over the
five years. Moreover, the calculations for the parameter estimates are performed using
MLE and in order to use this method an independence assumption must be satisfied.
This is discussed in the next section. MRL plots and declustering that are applicable to
the threshold excess and point process approaches are expanded on under the threshold
excess section. Lastly, diagnostic measures for model fit are provided and are suitable
for all of the approaches.

2.2.1 Stationarity

Rainfall data does not exhibit large variation and thus many simplifying assumptions can
be made which makes statistical analysis that much easier. The small variation points
to the conclusion of the series being a stationary one. Through further analysis, it is
found that rainfall has a more complicated structure and instead has a near stationary
distribution (Coles, 2001). According to Khuluse (2010), stationarity can be assumed
for the rainfall in the Western Cape. It is worth testing the data to ensure the series
is stationary (all the random variables have the same probability distribution as each
other). To counter the problem of stationarity, the data can be separated into the four
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different seasons, namely Summer, Autumn, Winter and Spring. Alternatively, the data
can also be divided even further into months, but care needs to be taken to prevent
over-fitting of models (Finkenstadt and Rootzen, 2003). While a popular method for
testing stationarity is through Mann-Kendall tests (Hasan et al., 2012; Tawn, 1988), the
various tests of stationarity are examining the same concept even if the hypotheses differ.
Therefore, the Phillips-Perron test was used to determine stationarity in this study.

2.2.2 Block Maxima

The data used in the block maxima approach consists of a series of independent obser-
vations that are blocked into sequences of length n. The blocks are made to correspond
to time periods (usually of one year duration) (Coles, 2001). In other words, the block
maxima can be viewed as the annual maxima where n is the number of observations.

The estimation of parameters can be calculated using probability weighted moments
(PWM), method of moments (MOM) (Hosking and Wallis, 1987), elemental percentile
method (EPM) (Castillo et al., 2005; Beirlant et al., 2004), Bayesian methods (Beirlant
et al., 2004; Katz et al., 2002) maximum likelihood estimation (MLE) (Beirlant et al.,
2004; Finkenstadt and Rootzen, 2003; Katz et al., 2002; Coles, 2001). Maximum likeli-
hood is used for all the approaches as it is a flexible method for estimating parameters
(Coles, 2001).

The return levels provide a measure that helps with the prediction of the next extreme
event. Details of parameter estimation using the MLE and return levels are given below.

Maximum Likelihood Estimation

Estimates for the parameters are found using MLE method. The details of this estima-
tion method are explained in this section.

The log-likelihood of independent variables X1, X2, ...., Xm which come from a GEV
distribution (Finkenstadt and Rootzen, 2003), is provided as in equation 2.6, when

ξ 6= 0

l(µ, σ, ξ) = −mlogσ−
(

1+
1

ξ

) m∑
i=1

log

[
1+ξ

(
xi − µ
σ

)]
−

m∑
i=1

[
1+ξ

(
xi − µ
σ

)]−1/ξ
(2.6)

subject to 1 + ξ(xi−µσ ) > 0.

For ξ = 0

l(µ, σ) = −mlogσ −
m∑
i=1

(
xi − µ
σ

)
−

m∑
i=1

exp

[
−
(
xi − µ
σ

)]
(2.7)

Maximising the above equations with respect to the parameters µ, σ and ξ, results in
the maximum likelihood estimates for the whole GEV family of distributions.
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Return Levels

The return level zq can be described as the level that is expected to be exceeded on
average once every 1

q years where 1
q is referred to as the return period. The return level

is exceeded by the annual maximum with a probability q (Coles, 2001). The return level
when ξ 6= 0 is calculated as follows:

zq = µ− σ

ξ
[1− {−log(1− q)}−ξ] (2.8)

and when ξ = 0
zq = µ− σlog{−log(1− q)} (2.9)

which is valid for 0 < q < 1.

Estimates for the return level are calculated when the maximum likelihood estimates
from section 2.2.2 are substituted into equations (2.8) and (2.9). When the return level
estimates (ẑq) are plotted, a return level plot is formed (Coles, 2001). Return level plots
are a useful tool for model validation as well as presentation as it is simple to understand
and interpret.

2.2.3 Threshold Excess

The threshold excess approach can be modelled using the generalised Pareto family of
distributions and the interest under this approach is also in the shape parameter ξ.

The underlying principle of this method is to find a suitably high threshold u whereby
any observation Xi (from an i.i.d sequence X) that exceeds it, is considered as a max-
imum observation. The threshold cannot be too low or too high. A threshold that is
too low means that the asymptotic properties of the model are not satisfied while a too
high threshold leaves too few observations to model (Coles, 2001) and will result in large
variances. Tawn and Heffernan (2004) note that an appropriate threshold is one that
does not produce significant shifts in estimates (excluding the increased variability) if
the threshold was changed to a higher one. There are numerous ways to find a suit-
able threshold which include parameter stability plots, mean residual life (MRL) plots
and Hill estimator. The parameter stability plots model the data using different values
of threshold and assesses the stability of the parameter estimates. MRL plots will be
used to determine the threshold values for this study. A detailed explanation of the
Hill estimator can be found in Beirlant et al. (2004, pp.101-107). Similarly, see Scarrott
and MacDonald (2012) for a comprehensive review of EVT threshold methods as well
as mixture models.

An explanation of MRL plots, parameter estimation through MLE and details of the
return levels which is similar to that of block maxima follows. There is an additional
topic which is called declustering that relates to dependence with the excess observations
(those observations above the chosen threshold).
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MRL Plots

A way to visualise exceedances above a threshold is through the use of a mean residual
life plot. A MRL plot according to Davison and Smith (1990) can be described as
plotting the threshold, u, versus the mean observed excess over u. Formally put,

E(Y − u|Y > u) =
σ − ξu
1 + ξ

(2.10)

provided ξ > −1, u > 0 and σ − ξu > 0.

The MRL plot has a slope of −ξ1+ξ with an intercept of σ
1+ξ (Davison and Smith, 1990).

The plot should follow a straight line with the previously mentioned slope and intercept.
The threshold value is chosen at a point where there is a deviation in linearity in the
plot which leaves room for subjectivity.

Maximum Likelihood Estimation

Suppose that the j excess values for a specific threshold u are y1, y2, ..., yj (Coles, 2001),
then

When ξ 6= 0 the log-likelihood is:

l(σ, ξ) = −jlogσ −
(

1 +
1

ξ

) j∑
i=1

log

(
1 +

ξyi
σ

)
(2.11)

for (1 + ξyi
σ ) > 0, i = 1, 2, ..., j; otherwise l(σ, ξ) = −∞.

When ξ = 0, the log-likelihood is

l(σ) = −jlogσ − 1

σ

j∑
i=1

yi. (2.12)

Return Levels

The p-observation return level zp is the level exceeded on average once every p years
Finkenstadt and Rootzen (2003) and is as follows for ξ 6= 0,

zp = u+
σ

ξ
[(pζu)ξ − 1] (2.13)

and when ξ = 0
zp = u+ σ(pζu) (2.14)

which is valid for 0 < p < 1 and where ζ̂ = j
n .

In order to estimate the return levels, the estimates of ξ, σ and ζu are needed. The
estimates for ξ and σ are found using the maximum likelihood method by equations
(2.11) and (2.12). ζ is the proportion of observations that are greater than u and is
useful in estimating when extreme events will occur in the future.
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Declustering

Within a stationary sequence, there is a tendency for excess observations to cluster to-
gether. This is especially applicable to environmental datasets. For instance, rainfall
tends to exhibit a pattern where there is rainfall for a few consecutive days until it stops.
These consecutive days of rainfall cause the extreme observations to be dependent and
needs to be taken into consideration before being modelled. This is where declustering
fits in - it segregates the independent excesses from the dependent excesses.

Declustering uses a threshold value to sort the data into clusters with minimum gaps,
r, between the clusters. From these clusters, the maximum excesses within the different
clusters are found and are assumed to be independent, thus the excesses are fitted to the
GPD (Coles, 2001). In order to carry out the declustering analysis, the following terms
need to also be defined:

The p-observation return level

zp = u+
σ

ξ
[(pζuθ)

ξ − 1]

with
ζ̂u =

nu
n

(2.15)

and
θ̂ =

nc
nu

(2.16)

where nu is the number of exceedances above the threshold u and nc is the number of
clusters obtained above the threshold (Coles, 2001).

2.2.4 Point Process

The point process approach also requires a suitable threshold value when modelling the
data as the excesses follow a non-homogeneous Poisson process. However, this approach
handles exceedances of times and values simultaneously instead of separately as in the
threshold excess approach (Finkenstadt and Rootzen, 2003). The Poisson process han-
dles randomly scattered excesses well and naturally contains points that are independent
of each other (Coles, 2001). This approach is particularly applicable in the multivariate
case. The block maxima and threshold excess approaches are a derivation from this
approach.

Taking a random sample Z1, Z2, ..., Zn with a distribution function F (Smith, 1989),
a point process can be defined as

Nn =

(
i

(n+ 1)
, Yn,i

)
(2.17)

for all i and where Yn,i = (Zi−bn)
an

. Nn is defined on R2
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Defining a set A = (t1, t2) x (z,∞) provided t1 < t2, then when z ≥ u, the intensity
measure is

Λ(A) = (t2 − t1)
(

1 + ξ
z − µ
σ

)1/ξ

(2.18)

valid for 1 + ξ(z−µ)
σ > 0.

When u is sufficiently large on (0,1) x [u,∞], Nn is said to follow a Poisson process.

Poisson processes can be classified as homogeneous and non-homogeneous where a ho-
mogeneous Poisson process has parameters µ, σ, ξ that are constant. Non-homogeneous
processes allow for these parameters to vary (Finkenstadt and Rootzen, 2003).

Maximum Likelihood Estimation

The likelihood for the point process takes on the form of the GEV distribution,

Λ(A) = nz(t2− t1)

[
1 + ξ

(
z − µ
σ

)]
(2.19)

where nz represents the number of years of the data.

The general form of the Poisson process is obtained when [t1, t2] = [0, 1] is substituted
into equation (2.19) (Coles, 2001),

LA(µ, σ, ξ; z1, z2, ..., zn) = exp{−Λ(A)}
N(A)∏
i=1

λ(ti, xi)

∝ exp

{
− ny

[
1 + ξ

(
u− µ
σ

)]−1/ξ}N(A)∏
i=1

1

σ

[
1 + ξ

(
zi − µ
σ

)]−1/ξ−1
(2.20)

For a detailed description and derivation of the point process, see Coles (2001, pp.124 -
141).

Return Levels

The v -observation return level zv is the level exceeded on average once every v years

(Coles, 2001). It can be written by first defining pi, when 1 + ξi

(
zv−µi
σi

)
> 0

pi = 1− 1

n

[
1 + ξi

(
zv − µi
σi

)] 1
ξi

(2.21)

and when

(
zv−µi
σi

)
< 0 then pi = 1.
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It follows that zv satisfies,

1− 1

v
= Pr{max(Z1, Z2, ..., Zn ≤ zv)} ≈

n∏
i=1

pi (2.22)

thus using a log form of equation (2.22) gives

n∑
i=1

logpi = log

(
1− 1

v

)
. (2.23)

2.2.5 Diagnostics

Validating the model and checking the model fit can be done through graphical meth-
ods such as probability-probability and quantile-quantile plots. Anderson-Darling and
Kolmogorov-Smirnov (Davison and Smith, 1990; Chikobvu and Chifurira, 2015) statis-
tics can be used as well.

2.3 Studies on EVT

To illustrate the use of the generalised distributions, several studies are described in this
section. EVT spans many fields and is especially popular in the insurance and finance
industry, hydrology and environmental studies. EVT is also applicable in engineering
applications.

Insurance claims for an oil company were modelled using the threshold excess and point
process approaches in a study by Smith (2004). The data spans over 15 years with 393
observations being used in the analysis. Varying thresholds are used in both approaches
with the parameters in the point process approach held constant. The models from the
threshold excess and point process approaches yield similar results. However, the point
process model may be favoured because the parameters are unlikely to change with vary-
ing thresholds. Furthermore, inference on insurance data can be made on examination
of the characteristics of the data and on the shape parameters. Insurance data is as-
sociated with long-tailed and skewed distributions which can be seen by looking at the
shape parameter estimates which are close to 1 under both approaches (Smith, 2004).
Furthermore, vehicle claim sizes from a reinsurance company are modelled and compared
using various approaches in a study by Beirlant et al. (2001). The data consists of 371
observations and spans from 1988 - 2001. The thresholds are found through the Hill
estimator instead of MRL plots but caution has to be exercised with this estimator. It
is sometimes referred to as the horror plot as it does not reveal much at times (Mikosch
et al., 2006).

Value at Risk (VaR) is modelled using the block maxima and threshold excess ap-
proaches in a study by Singh et al. (2013). The period of the data ranges from 1973 -
2010 and consists of daily returns from the USA’s Standard & Poors 500 and Australians
Securities Exchange All Ordinaries indices. In addition to fitting the above two classical
approaches, a version of the (dynamic) threshold excess approach which incorporates
ARCH/GARCH methods is also used to include volatility of the returns. The threshold
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excess fared better in modelling VaR with the dynamic approach providing results that
adequately account for changes in market conditions. Similarly, daily returns for 3 com-
panies - Citibank, General Electric and Pfizer for the period 1982 - 2001 are modelled to
analyse VaR. A traditional point process and one with GARCH models to incorporate
dependence are applied with a constant threshold to the returns. The study found that
the inclusion of a GARCH process produces models with a better fit compared to when
the GARCH is excluded from the analysis. The reason for this is because the volatility
of the stocks are now captured in the models (Smith, 2004).

Continuing on the topic of VaR, Altun and Tatlidil (2015) model financial returns using
GARCH-EVT models as at times such a series exhibit heavy tails which violates the
normality assumption. However, McNeil and Frey (2000) noted that there are instances
when the conditional distribution of returns can be light-tailed. A consequence of not
taking the heavy tails into consideration when modelling is that the predications of VaR
are often underestimated. The data used in the study returns from the Standard & Poors
500, Istanbul Stock Exchange - 100 and the Nikkei - 225 indices to compare the per-
formance of GARCH-EVT model against four other GARCH models (GARCH-normal,
GARCH-student-t, GARCH-GED and GARCH-SGED). Although the GARCH-EVT
model can handle non-normal data, the model is outperformed by the other models
tested.

In another instance, Davison and Smith (1990) modelled two different types of datasets
in a study. The first was modelling of 3524 observations of high exposures of nuclear
data. The threshold excess approach is used where varying thresholds are used, as co-
variates are included in the models. The data was split into a training set and a cross
validation set. Results of the modelling showed that improved fit at higher threshold val-
ues as the shape parameter tends to display homogeneity among the models. The second
study was on the exceedances from the River Nidd, a dataset that exhibited seasonality
and dependence. The data spans the years 1934 - 1969 and varying thresholds are used
with MRL plots to choose the suitable thresholds. Furthermore, graphical methods as
well as formal tests were used to assess model fit. There diagnostic methods include
quantile-quantile plots (graphical) and formal statistics namely Anderson-Darling and
Kolmogorov-Smirnov tests. The GPD did not provide a good fit of the data with the
chosen thresholds as the largest two observations deviated from linearity to a greater
extent than the other excesses (based on looking at the quantile-quantile plot). Bayesian
methods are also employed to construct confidence intervals for the return levels owing
to a small sample size.

Reiss and Thomas (2007) analysed river data over a period of 31 years. The data
is collected from the Moselle River which flows through Luxembourg, Germany and
France. The threshold excess approach was used in this study and there is some notable
dependence within the clusters of excesses. A constant threshold is used and the excesses
are declustered with r=7 (expectation that flood levels can reach above a threshold for 7
consecutive days). This approach was found to be suitable for modelling the flood levels
at the Moselle River.
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Hourly reading of ozone levels were analysed as in an attempt to look at ways of con-
trolling air pollution in Houston, Texas in the USA from 1973 - 1986. Non-homogeneous
Poisson process models were fitted with a constant threshold as well as with varying
thresholds as part of a sensitivity analysis. The idea here was to model the trend within
the data which is a form of covariate (Reiss and Thomas, 2007).

A South African EVT study compared the performance of a Generalised Pareo-type
model with a GPD model in modelling the extreme daily peak electricity demand. The
daily peak demand data for years 2000 to 2009 was used while restricting the period
to only the winter months as this is when electricity demand is at its peak. The study
found that while the Generalised Pareto-type model had a simpler structure, the GPD
model provided an improved fit for this dataset (Chikobvu et al., 2012).

Moreover, a popular area in EVT is on climate modelling. For instance, in a study
by Nadarajah and Choi (2007), the block maxima approach was used in the analysis of
annual maxima of daily rainfall in South Korea. The Gumbel distribution was found to
be suitable in modelling the rainfall maxima. The data covered the period from 1961 to
2001 for five locations in South Korea to provide a fairly accurate representation of the
country. While these estimates are a sufficient measure for predicting the probability of
future flood damage for this particular study, the structure and climate of South Korea
may differ from the Western Cape. This could lead to different distributions being used
to describe the behaviour of the tails.

Rainfall maxima in Germany are fitted to models under the non-homogeneous point
process (with a constant threshold) and threshold excess approaches (with covariates to
account for non-stationarity). Friederichs (2010) compared the performance of these two
approaches with constant and varying shape parameters. The data used for this study
consisted of daily rainfall in mm recorded at 2000 stations from the German National
Meteorological service for the period from 1958 to 2001. The models where the shape
parameter remained constant provided results with less uncertainty and less complexity
compared to models where the shape parameter varied.

In a further study, the daily temperatures in Malaysia were analysed by using mod-
els from the block maxima approach. The dataset spans from 1981 to 2012 and two
types of models are applied. In the first model - referred to as the classical EVT model
- all parameters are kept constant. In the second model, covariates are included. The
rationale behind the difference in models is to handle any non-stationarity within the
data (Hasan et al., 2013). Similarly, Finkenstadt and Rootzen (2003) suggest removing
the seasonal trend before modelling the data as a method for handling non-stationarity.
Another method proposed by (Finkenstadt and Rootzen, 2003; Coles, 2001; Smith, 1989)
is to use separate season models and with varying thresholds in case of the threshold
excess and point process approaches. Overall, only once an exploratory analysis of the
data is performed, can the appropriate model(s) be selected.

In another study examining daily maxima of temperature, both the GPD and point
process distributions suitably modelled the data. Three sites are used in the California
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Central Valley during summer for the years from 1951 to 2005 (Katz and Grotjahn,
2011). There was no spatial analysis performed in the study, thus the distances between
the stations are irrelevant. However, it was concluded that the temperature maxima were
similar across the Valley (Katz and Grotjahn, 2011), perhaps because the sites exhibited
similar characteristics to each other. Against this background, a spatial analysis of the
data is not performed in this study. Accordingly, the distances between the stations is
not factored into the analysis. Instead, the weather stations are analysed individually.

While EVT does not strictly apply to maxima, only maxima is modelled and anal-
ysed in this study. The minima are also included as extremes and although there are
far less studies on minima than there are on maxima, it can be useful in the modelling
of extreme events. For instance, the effect of warmer temperatures due to urbanisation
is looked at by analysing a series of daily minimum temperatures in Pheonix, Arizona
in the USA. The block minima approach is fitted to the data which ranges from 1948
to 1990 and is restricted to the summer months. In this example, the trend component
is fitted using the block maxima method. It is concluded that the best fitting model is
achieved when trend is modelled in the location parameter µ. Reiss and Thomas (2007)
who fitted the models, also noted that similar results would be achieved under the point
process approach. Just as trend is a form of covariate, cycles within data can also be
considered as a covariate (Reiss and Thomas, 2007).

Coles and Walshaw (1994), modelled wind speeds together with direction as it has an
impact on buildings. Hourly maximum wind gust speeds in the United Kingdom are
used. A period of six years (1975-1980) was analysed by modelling the data to a GEV
distribution. Furthermore, modelling extreme wind speeds and the sea level extremes
are of importance for environment control and disaster management. Wind speeds can
help clear up the air by clearing out the pollution, whereas the high sea levels can cause
floods to occur (Coles, 2001). In this case the flood would be the extreme event and the
return levels help in estimating the next occurrence.

A disadvantage of the block maxima approach is that it requires the data to be split
into blocks of equal length when applying it to the data. The problem that arises is that
because only maxima values are being used, the blocks could be too small or too large.
These problems could cause bias in estimation and extrapolation or a large estimation
variance respectively. Coles (2001) mentions that the block maxima approach could also
lead to the distribution assumptions being violated such as the data all having a common
distribution. The aforementioned challenge with the block maxima was encountered in a
previous Honours research project which focused on a univariate analysis of rainfall over
a 20 year period (1980 - 2014) in the Western Cape. It was found that the block maxima
approach does not fare well in modelling extremes as it also does not effectively make
use of the available data. Therefore, it may be concluded the use of threshold excess
and point process approaches are more effective and accurate ways of modelling extremes.

One of the challenges with the threshold excess and point process approaches is that
the manner in which the threshold values are chosen comes with a degree of subjectiv-
ity. So the choice of a suitable threshold for a dataset may vary from investigator to
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investigator. However, from the classical EVT approaches the drawbacks from the block
maxima approach pose more of an issue than from the point process and threshold. An
advantage of the point process approach is that it characterises the exceedances under
a Poisson rate with the parameters being independent of the threshold (Ledford and
Tawn, 1996; Scarrott and MacDonald, 2012). For this reason, the point process models
can incorporate non-stationarity and random effects.

Moreover, a univariate analysis often may not accurately reflect the reality of condi-
tions being modelled, therefore employing techniques of a multivariate nature are better
suited. In other words, using multiple variables together in the analysis can provide
results that are more accurate.

2.4 Multivariate Extreme Value Theory

MEVT involves two or more dependent random variables where the interest is in mod-
elling the joint distribution of these variables as noted by R.L Smith (Galambos et al.,
1993, p.232). The shift away from the univariate analysis to a multidimensional space
comes with an increased complexity that needs to be taken into account. An important
determination is deciphering the term multivariate in an EVT context. The term mul-
tivariate can refer to a single variable at different locations; a single variable at different
times or multiple (different) variables at the same location. The focus of this study is
on multiple variables at a single location.

The next question is how to capture any dependence among the variables and how
to incorporate it into the analysis. Building onto the aforementioned subject, Beirlant
et al. (2004) and Tawn (1988) reinforce the fact that a finite set of parametric distribu-
tions does not exist to characterise the dependence structure within MEVT.

In terms of modelling multivariate extremes, Beirlant et al. (2004) and Coles (2001)
suggest splitting the analysis into two parts which look at the marginal distributions
and dependence structure separately. The first part concerning the marginal distribu-
tions can be handled using the univariate techniques that have been explained in the
previous section. The dependence structure is modelled using a range of models de-
scribed further in this section. Alternatively, the marginal and dependence structure
can be estimated simultaneously which is an efficient method but with the added down-
side of a more complicated likelihood (Stephenson et al., 2005). In the case where
the marginals and dependence structure is estimated separately, the marginal distribu-
tion will be known. Whereas on the other hand, unlike the case where the marginals
and dependence structure are estimated simultaneously, the marginal distribution is un-
known. The approaches to modelling the data extend from the univariate case, namely
component-wise maxima, point process and threshold excess approaches. As seen in
the univariate section, the component-wise approach consists of the data being parti-
tioned in different blocks of equal length whereby the maxima/minima for each block
becomes the series of data. As with the univariate cases, the methodology explained can
be applied for minima as well, although there is mention of maxima only. Coles et al.
(1999) mentions that a component-wise approach is applicable when the data consists
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of annual maxima only. There is also a choice between using parametric methods or
non-parametric methods for the modelling of the data.

For example, in a study by Zhang and Singh (2007) copulas are used to model hourly
rainfall in Louisiana in the United States of America specifically from Amite River basin
over the period 1960-2001. Copulas can be used to model extremes without requiring
the assumptions that the parametric methods need. However, Coles et al. (1999) noted
non-parametric methods do not always fulfil the asymptotic characterisations required
in the extreme value models as a reason to prefer parametric methods. The parametric
methods are also less complicated than the non-parametric methods and were used in
this study. Similarly, Smith et al. (1990) noted that a primary use of non-parametric
methods is to indicate which appropriate parametric dependence models to use in the
analysis.

On inspection of parameter estimation, as in the univariate case, there are a variety
of techniques for parameter estimation in these models such as method of moments,
probability of weighted moments, Bayesian methods and maximum likelihood estima-
tion. In an earlier study by Gumbel and Goldstein (1964), the method of moments
was used for parameter estimation of two different sets of data. MEVT was applied to
the first dataset which consisted of the oldest ages at death among males and females
from Sweden during 1905 to 1958. The second dataset has to do with flood data at the
Ocmulgee River in Georgia. This data of annual discharges was from two stations - one
upstream and the other downstream from 1910 to 1948. The most common approach,
however, is to use the maximum likelihood method (Khuluse, 2010; Nadarajah and Choi,
2007; Coles, 2001; Kotz and Nadarajah, 2000 ; Tawn, 1988; Prescott and Walden, 1980).
This method is popular and the most applicable as it produces estimators that are in-
variant to the marginal distribution (Tawn, 1988). The point process approach is able
to handle situations where there are exceedances of a threshold in one variable and both
variable, hence the use of a Poisson likelihood. The threshold excess model is only able to
handle situation when there is exceedance in both variables only. Therefore, a censored
likelihood can be used Beirlant et al. (2004). This means there are more observations
that can be modelled under the point process approach.

Consequently, there are significant disadvantages to the component-wise maxima ap-
proach as Coles et al. (1999) mentions that the component-wise approach is appropriate
when only the annual maxima are available. Thus, when there is a full dataset available,
the threshold excess and point process approaches should be favoured. Firstly, the data
is reduced to only one set of observations per block which means discarding valuable
data from the analysis. Secondly, there is no way of telling whether the set of maxima
occurs simultaneously or not (Beirlant et al., 2004). The uncertainty of when the max-
ima occurs presents some difficulty in accurate depiction of extreme events.

The applicability of MEVT as opposed to univariate EVT provides deeper insight and
improved realities of the environmental processes. Thus, the main focus of this study is
on the multivariate aspect of EVT. The multivariate theory section starts with the details
of the marginal transformations and is followed by explanations of the component-wise,
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threshold excess and point process approaches. There is a dedicated category for depen-
dence as it is the essence of a multivariate EVT analysis. This section concludes with
studies on MEVT.

Details of the marginal transformation to standard Fréchet margins are explained in
the next section as it forms part of the first step of fitting MEVT models to a dataset.

2.4.1 Marginal Transformation

To achieve unit Fréchet margins Xi,j for random vectors (X̃i,1, X̃i,2, ..., X̃i,d), the follow-
ing transformation defined by Coles and Tawn (1994) is used,

when x̃j > uj

Xi,j = −
(

log

[
1− {1− Fj(uj)}

{
1− ξj

(
X̃i,j − uj

σj

)} 1
ξj

])−1
(2.24)

and when x̃j ≤ uj

Xi,j =
−1

logFj(X̃i,j)
(2.25)

for i = 1, 2, ..., n and j = 1, 2, ..., d.

Fj is estimated by the empirical transformation for X̃j which is defined as Fj =
R(X̃j)
(n+1)

where R(X̃j) is the rank of X̃j (Coles and Tawn, 1991). The estimates for the remaining
parameters are calculated through MLE. The standardised Fréchet margins are used in
the component-wise, threshold excess and point process sections that follow.

An important note about the transformations is that the marginals can take on the
form of a variety of distributions, it does not have to be from the Fréchet distribution.

2.4.2 Component-Wise

Similar to the univariate approach of block maxima, the observations are split in blocks
where the maxima taken from each block form the dataset to be modelled. In a mul-
tivariate case, the maxima of the number of variables are taken per year to create the
component-wise dataset.

Defining (X1, Y1), (X2, Y2), ..., (Xn, Yn) as an independent sequence of random vectors
which have standard Fréchet margins with a distribution function F (x, y), the limiting
joint distribution is

Mn =

(
max{Xi}

n
,
max{Yi}

n

)
for i=1, 2,..,n

(Mn is the renormalised vector).

Pr{Mx,n ≤ x,Mx,n ≤ y} → G(x, y) (2.26)
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G(x, y) = exp{−V (x, y)} (2.27)

where

V {x, y} = 2

∫ 1

0
max

(
w

x
,
1− w
y

)
dH(w) (2.28)

for x, y > 0.

G is a non-degenerate distribution function and H is a distribution function on [0,1]
which satisfies the following mean constraint∫ 1

0
wdH(w) =

1

2
(2.29)

H in equation (2.28) can be differentiable or non-differentiable. More detail can be
found in Coles (2001).

Maximum Likelihood Estimation

Coles (2001) considers a sequence of independent maxima with standard Fréchet margins
(empirical transformation in section 2.4.1 (x1, y1), (x2, y2), ..., (xm, ym) that have been
sorted into the desired blocks, where the probability density function is defined as

g(x, y) = {Vx(x, y)Vy(x, y)− Vxy(x, y)} exp{−V (x, y)} (2.30)

provided x > 0, y > 0 and where Vx Vy are partial derivatives with Vxy as the mixed
derivative of V .

The likelihood is written as

L(θ; (x1, y1), (x2, y2), ..., (xm, ym)) =
m∏
i=1

g(xi, yi) (2.31)

where the series are considered as independent sequences that follow the GEV
distribution.

2.4.3 Threshold Excess

A multivariate threshold excess approach requires a suitable threshold for each of the
variables. The threshold can be chosen using the univariate techniques mentioned in
section 2.2.3. Another technique for finding the threshold in a bivariate case is to use a
bivariate threshold choice plot, details of which can be found in Beirlant et al. (2004).

Defining (x1, y1), (x2, y2), ..., (xn, yn) as an independent sequence of random observations
with a distribution function F (x, y) with standard Fréchet margins as defined in section
2.4.1. The marginals are valid for when X > ux and Y > uy. Coles (2001) states that
under the homogeneity property of V from equation (2.27), for large n, it follows that

F (x, y) =

{
Fn(x, y)

} 1
n

≈
[
exp

{
− V

(
x

n
,
y

n

)}] 1
n

= exp{−V (x, y)} (2.32)
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thus

F (x, y) ≈ G(x, y) = exp{−V (x, y)} (2.33)

for x > ux and y > uy as per equation (2.27).

Maximum Likelihood Estimation

The likelihood for observations x1, x2, ..., xd that the components j1, j2, ..., jn exceed the
thresholds according to Ledford and Tawn (1996) can be shown as

∂nF (y1, y2, ..., yd)

∂yj1 , yj2 , ..., yjn

∣∣∣∣
yj={max(uj ,xj), j=1,2,...,d}

(2.34)

In the bivariate case, the marginal observations which do not exceed the relevant thresh-
olds, are censored. Thus the contribution from these observations to the censored like-
lihood is an indication that it falls below the respective thresholds (Ledford and Tawn,
1996). The thresholds for each of the variables enable the outcome space to be broken
up into 4 regions which is shown in Figure 2.1 (reproduced using the wavesurge dataset
in the ismev package in the program R). Since the focus is on joint exceedances, region
R1,1 is of interest.
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Figure 2.1: Regions contributing to the likelihood.

The likelihood with the unknown parameter θ is

L(θ; (x1, y1), (x2, y2), ..., (xn, yn)) =

n∏
k=1

ψ(θ; (xk, yk)) (2.35)

where equation (2.34) would be applied to the specific region.

2.4.4 Point Process

The point process approach uses a threshold as described in section 2.2.3. The threshold
values for this approach and the threshold excess approach intersect the x and y axes at
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the same points. This is to allow for comparison of models across approaches. One of the
differences between the point process approach is that there is change to pseudo-polar
coordinates which enables a curved threshold boundary to be formed. The threshold
excess approach has a linear threshold boundary. Figures 3.23 - 3.30 in Chapter 3 show
the difference in threshold boundaries for the two approaches.

Defining (x1, y1), (x2, y2), ..., (xn, yn) as an independent sequence of random observations
(standard Fréchet margins as seen in section 2.4.1) with a distribution function F (x, y),
the marginals have a distribution that follows on from equation (2.26).

The point process sequence Nn, as defined by Coles et al. (1999), is of the form

Nn =

{(
x1
n
,
y1
n

)
,

(
x2
n
,
y2
n

)
, ...,

(
xn
n
,
yn
n

)}
for i = 1, 2, ..., n as n→∞ and Nn → a Poisson process, N on R2

+.

Transformation to pseudo-polar coordinates allows for a simpler representation of the
limiting process. The measure of distance from the origin r and the measure of angle w
on a [0,1] scale (Coles, 2001) is defined as

r = x+ y and w =
x

r
(2.36)

the intensity function of N is represented as

v(dr x dw) =
dr

r2
x 2dH(w). (2.37)

The H in the intensity measure is related to equation (2.27).

The use of the Poisson process is assumed to be an approximation to Nn in a suitable

region. For instance, for a suitable choice of r0, in the region A =

{
(x, y) : xn + y

n > r0

}
,

the following result is achieved

Λ(A) = 2

∫
A

dr

r2
dH(w) = 2

∫ ∞
r=r0

dr

r2

∫ 1

w=0
dH(w) =

2

r0
(2.38)

For the details limiting distribution of the component-wise derivation from the point
process, refer to Coles (2001, p.157).

Maximum Likelihood Estimation

A non-homogeneous Poisson process of Nn which is in a region A, the likelihood over A
is

LA

(
θ;

{
Xj

n

})
= exp{−µ(A)}

nA∏
j=1

µ(drj x dwj) (2.39)
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provided H is differentiable and where rj and wj are shown in equation (2.36).

The region A is bounded from 0 by a distance that is determined by the rate of con-
vergence and θ defines the measure parameters (Coles and Tawn, 1991). The curved
threshold is shown in Figure 2.2 (reproduced using the wavesurge dataset in the ismev
package in the program, R).

0.1 1.0 10.0 100.0 1000.0

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

x

y

Figure 2.2: Regions contributing to the Possion likelihood.

The observations above the curved threshold in Figure 2.2 contribute to the Poisson
likelihood.

2.5 Dependence Structure and Diagnostics

2.5.1 Dependence

There are numerous parametric models available to capture the dependence structure
with the MEVT models however only a few of these models are used in this study. MEVT
models cannot account for dependence in any other way besides classifying the structure
as asymptotically dependent or perfectly independent (Coles et al., 1999). Symmetric
and asymmetric models are included and according to Coles and Tawn (1991) cover the
different possible dependence structures encountered in datasets. The models presented
in this section are chosen based on what has been widely used in studies (Beirlant et al.,
2004; Coles, 2001; Bortot et al., 2000; Coles and Tawn, 1994; Joe et al., 1992; Coles
and Tawn, 1991; Joe, 1987). Morton and Bowers (1996) also noted that accuracy of the
estimates are not affected critically and that dependence structure is described equally
well using any model. For further dependence models, refer to the aforementioned cited
studies as explaining all existing models would require a few chapters on its own.

For the family of models given below, α and β are a measure of the dependence strength.

i. Logistic model introduced by Gumbel (1960):

G(x, y) = exp{−(x−1/α + y−1/α)α} x > 0, y > 0 (2.40)
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for α ∈ (0, 1),

with a density function (when H is differentiable),

h1(w) =
1

2
(α−1 − 1){w(1− w)}−1−

1
α {w

−1
α + (1− w)

−1
α }α−2. (2.41)

ii. Negative logistic model introduced by Galambos (1975):

G(x, y) = exp

{
1

x
+

1

y
− (xα + yα)

1
α

}
x > 0, y > 0 (2.42)

for α > 0,

with a density function

h2(w) = (1 + α){w(1− w)−α−2}{w−α + (1− w)−α}−
1
α
−2 (2.43)

iii. Bilogistic (asymmetric) model introduced by Joe et al. (1992):

G(x, y) = exp{−xq1−α − y(1− q)1−β} (2.44)

with a density function

h3(w) =
1

2
(1− α)(1− w)−1w−2(1− q)q1−α{α(1− q) + βq}−1 (2.45)

for 0 ≤ w < 1, 0 ≤ α < 1, 0 ≤ β < 1 where q = q(w;α, β) is a solution to equation

(1− α)(1− w)(1− q)β − (1− β)wqα = 0. (2.46)

The term (α − β) provides a measure of asymmetry in the dependence because the lo-
gistic model is formed when α = β.

iv. Negative bilogistic introduced by Coles and Tawn (1994):

G(x, y) = exp{−x− y + xq1+α + y(1− q)1+β} (2.47)

for α > 0 and β > 0,

with a density function

h4(w) = − (1− α)(1− q)q1−α

(1− w)w2{(1− q)α+ qβ}
(2.48)

with q = q(w;α, β) as per equation (2.46).

v. Dirichlet (asymmetric) model introduced by Coles and Tawn (1991)

G(x, y) = exp{−x[1− Γ(q;α+ 1, β)]− y[1− Γ(q;α, β + 1)]} (2.49)
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for α > 0, β > 0 where q = αy
αy+βx and Γ(q;α+ 1, β) is evaluated at q.

The corresponding density function is

h5(w) =
αβΓ(α+ β + 1)(αw)α−1{β(1− w)}β−1

2Γ(α)Γ(β){αw + β(1− w)}α+β+1
. (2.50)

The strength of dependence for each model (according the parameter) is summarised
in Table 2.1.

Table 2.1: Strength of Dependence

Model Dependence Independence

Logistic α→ 0 α→ 1
Negative logistic α→ 0 α→∞

Bilogistic α = β → 0 α = β → 1
Negative bilogistic α = β → 0 α = β →∞

Dirichlet α = β →∞ α = β → 0

2.5.2 Diagnostics

When the decision relates to model selection of dependence structure, then for nested
models, standard likelihood ratio tests can be employed. For non-nested models, a good-
ness of fit statistic such as the Akaike Information Criterion (AIC) can be used (Vuong,
1989; Coles and Tawn, 1991).

AIC is based on the log-likelihood function and adjusts for the number of parameters
that are estimated Dobson and Barnett (2008) which is as follows

AIC = −2log(L) + 2p (2.51)

where p represents the number of estimated parameters and L denotes the likelihood.

2.6 Studies on MEVT

There are many studies on MEVT that span numerous different fields and is widely used
in environmental applications. A majority of the publications are limited to bivariate
studies with a few extending the study to a trivariate study. The difference between the
bivariate and trivariate estimates is seen by narrower profile likelihood intervals for the
shape and scale parameters. For a comprehensive list of dependence models see Coles
and Tawn (1991).

There are very few studies on trivariate studies as the increase in complexity in compu-
tation of MLE and dependence models is to a greater extent compared to the bivariate
models. In an oceanographic application, the hourly surge levels at three coastal sites
(Lowestoft, Immingham and Sheerness) in Britain for the periods 1970 - 1976 and 1980 -
1988 are modelled using the point process approach. Bivariate and trivariate models are
applied to the data. The choice of the dependence models are ‘informally’ determined
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through a plot of r and w using equation (2.36), thus the logistic, negative logistic and,
symmetric Dirichlet and Dirichlet models are used to capture the dependence structure.
In the trivariate case, the time series logistic model results in adequately fitting model as
the “structure of this model closely resembles the dynamic process of surge propagation”
(Coles and Tawn, 1991).

In addition, Tawn (1990) used a logistic model to capture the dependence structure
among the maximum sea levels at three sites on the coast of England. Bivariate ex-
treme value distributions were fitted to pairwise combinations of data from the sites,
namely Southend, Kings Lynn and Sheerness. The data was for a forty year period
and extensions to trivariate models was also performed in this study. It was noted
that the extremes did not always occur from the same particular extreme weather event
e.g. storm, because of the location of the sites. This means that there were instances
where extremes recorded during a weather event could be traced at two of the stations
that were closer to each other. Hence, a spatial component plays a role in the depen-
dence structure as sites that are closer to each other would exhibit stronger dependence
compared to sites that are further away from each other.

A further study of surge levels at a different port i.e. Newlyn in Cornwall was con-
ducted by Coles and Tawn (1994). Bivariate models are fitted to wave height (recorded
every three hours) and surge levels (hour records) from 1971 - 1977 to assess the struc-
ture design of sea walls. MRL plots are utilised for marginal threshold selection with
six different dependence models being used which are the logistic, negative logistic, bil-
ogistic, negative bilogistic (proposed in the study), symmetric Dirichlet and Dirichlet
models. Model selection is executed by looking at the negative log-likelihood values for
nested models and AIC for non-nested models. The negative bilogistic model provided
the best fit for this dataset. Even though the surge levels are analysed in two different
studies, the difference in the manner in which the variables were modelled plays a role.
The aforementioned wave and surge dataset was used in the study by Dixon and Tawn
(1995) who wanted to improve on the classical threshold excess models by proposing
a semi-parametric approach where more conservative thresholds lead to improved esti-
mates. MRL plots are also used in this study to determine a suitable threshold.

For instance, Coles and Tawn (1991) model the same variable at different sites, while
Coles and Tawn (1994) model two different variables at one site. Both studies are mul-
tivariate in character and such disparities should be taken into account when analysing
results. In a similar instance, Tawn (1988) analyse the annual maxima of sea levels at
the Lowestoft and Sheerness ports in Britain for the assessment of flood detection. The
data is standardised to Gumbel margins as there are claims in the study that there is
more stability in this transformation compared to exponential margins. Mixed, asym-
metric mixed, logistic and asymmetric logistic models are applied to characterise the
dependence structure. In this case the selected model is the asymmetric logistic model.

Studies on multivariate datasets using the component-wise approach are few and in-
frequent. The reason for the lack of studies can be attributed to the inefficient use of
the data and disaccord of grouping of the maxima during any block. Stephenson et al.
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(2005) offers an improvement to the traditional component-wise approach by incorpo-
rating the dates of the occurrence of the maxima into the models. The dates for annual
maxima of sea levels at three sites - Dover, Newlyn and Harwich - in England for a
period of 1912 - 1992 are incorporated into the analysis. The sites are fairly far from
each other between 90km and 500km apart and no spatial analysis is performed. The
data is standardised to have Gumbel margins. Based on pairwise plots of the data at
each site, the logistic model is chosen to represent the dependence structure with a lin-
ear trend model for the location parameters to account for the trend in the sea level
maxima. The inclusion of dates into the component-wise models allows for inference on
whether the occurrence of a particular extreme event was captured by recorded maxima
at the sites at the same time. This of course presents an advantage over the somewhat
wasteful traditional component-wise models. In addition to the bivariate model fitted,
a logistic trivariate model as defined by Coles and Tawn (1990) is also fitted to the data
which allows for increased inference on the dependence between the sites. Overall the
inclusion of dates in the component-wise models is a simple step that provides increased
inferential capabilities.

In a similar instance, the maxima wind speed and wave heights were analysed from
1990 - 1994. The study looked at the two variables to assess the mooring forces at the
Shell UK Exploration and Production North Cormorant Platform in the northern North
sea under extreme conditions. Bivariate extreme value distributions were used, specifi-
cally the point process approach using only the logistic model to capture the dependence
structure between the variables (Morton and Bowers, 1996). The interest of the study
was to determine the impact of the dependence between the variables as extreme levels
of wind speeds and wave heights contribute to mooring forces. Thus, the same model
was applied to two other sites. In particular, Shell UK Exploration and Auk Cormorant
Platform and on a databuoy at West Shetland in the United Kingdom for the years 1990
- 1994 and 1984 - 1988, respectively. The outcome showed the dependence between the
variables remained the at a constant level at all the sites even though there were different
time periods used in one case.

Furthermore, in a technical report by Joe (1989), two different air pollutant datasets
were examined. The first dataset consisted of extreme ozone concentrations from 1983
to 1987. The data was collected from five monitoring sites in the San Francisco Bay
Area. To counter the seasonality problem, certain months were excluded from the anal-
ysis. The second dataset consisted of nitrogen dioxide, sulphur dioxide and extreme
ozone concentrations collected from four stations in the Great Vancouver district and
the data ranged from 1984 - 1987. The multivariate analysis of the air pollutants was
conducted by modelling the marginals and dependence structure separately through the
use of copulas to fit multivariate non-normal data.

Moreover, a new conditional method proposed by Tawn and Heffernan (2004), the effects
of air pollution on health are investigated by modelling different pollutants together. A
conditional method is proposed in this study to model extreme levels of air pollutants
as this method can be readily applied to problems where there are more than three
variables as opposed to the existing methods. This entails fitting a MEVT model where
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the pollutants are conditional on a particular pollutant exceeding a certain level. The
data that is used consists of the maxima of hourly means for oxides, nitrogen dioxide,
nitrogen oxide, sulphur dioxide and particulate matter in Leeds in the United Kingdom.
To deal with seasonality in the data, it is split into summer and winter seasons with
separate models being fit to each period. Whether the conditional method outweighs
the classical methods remains to be determined.

In another study by Zheng et al. (2014) which compared the performance of the point
process, threshold excess and conditional methods for risk analysis - the results showed
an underestimation of the return levels. An advantage of the conditional method over
the classical threshold excess approach is that conditional models are able to handle
situations where there is exceedance is at least one margin.

In a similar area, sulphate and nitrate concentrations were measured at single wet de-
position monitoring station in the USA. The data consists of 504 pairwise sulphate and
nitrate concentrations. In this study, Joe et al. (1992) modelled the data to compare
parametric point process models using log-likelihoods and non-parametric methods of
polar coordinates. Two parametric dependence models were used, namely the logistic
and bilogistic models. In this case both the parametric and non-parametric methods
showed that the sulphate and nitrate data are best modelled with a bilogistic model
capturing the dependence structure.

Certain multivariate datasets exhibit near independence between the variables. Led-
ford and Tawn (1996) provide a foundation for characterising cases like this through
techniques explained in section 2.5.2. The dataset of wave and surge levels from Coles
and Tawn (1994) contrasted with rainfall and wind data at Eskdalemuir Observatory
in Scotland which has first been analysed by Anderson and Nadarajah (1993). Logistic
bivariate models are fitted to both sets of data, one with varying thresholds. The re-
sults show a stronger bias for the rainfall and wind data suggesting that asymptotically
dependent models were not appropriate for that dataset. On the other hand, the wave
and surge data showed a good fit with the asymptotic dependence models.

In contrast, bivariate extreme value models were used to monitor the vital signs of
patients by using a heart rate and breathing dataset. This data was collected at the
University of Pittsburgh Medical Center using 332 high-risk adult patients. The focus
on modelling the extremes of the vital signs is that when abnormally high levels are
reached, it would serve as an indication of the occurrence of an imminent adverse event.
Both a bivariate guassian extreme value and classical threshold models were used in this
study to determine which performs better in detecting the possibility of an adverse event
occurring (Hugueny et al., 2009). In this study, the bivariate guassian model outper-
formed the classical threshold model.

From our research of the literature, there have been no studies on the MEVT with
an application to climate data in the Western Cape province.
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Chapter 3

Application of MEVT to Climate
Data in the Western Cape
Province

3.1 Data

The weather datasets analysed in this study are daily readings of maximum rainfall, daily
maximum temperature and daily maximum wind speed for stations across the Western
Cape from 1965 to 2015. These stations include Plettenberg Bay, Vredendaal, Lange-
baanweg Cape Town International Airport and George Airport. The weather data was
provided by the South African Weather Services (SAWS). Table 3.1 shows the character-
istics of the stations. The temperature was recorded in degrees Celsius (0C), rainfall in
millimetres (mm) and wind speed in metres per second (m/s) where 1 m/s is equivalent
to 1.944 knots or 3.6 km/h. Wind speed was recorded at either of the times 08:00, 14:00
or 20:00.

The data is provided in an Excel spreadsheet with the following symbols and expla-
nations summarised in Table 3.1.

Table 3.1: Summary of data symbols with explanations

Symbol Explanation

— Data is not yet available

(empty) No rainfall for that day

0.0 Calm conditions for wind speed

*** Missing data

= Values are unreliable due to missing daily values

“A” or “B” No rainfall recorded for that day but if there was rainfall,

it is incorporated into the total amount for that period.

C Rainfall reading for that day was accumulated over

a number of days.

Rainfall is only recorded if the amount of rain was greater than 0.1 mm. The blank cells
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for rainfall are recoded to a zero which means that no rainfall fell that day. The cells
with ”A”, ”B” and ”C” are also recoded and left as a blank cell indicating that the data
for that day is missing and therefore unreliable.

In order to satisfy the stationary criteria mentioned in section 2.2.1 of Chapter 2, the
data is broken up into the four seasons namely, Summer (December - February), Autumn
(March - May), Winter (June - August) and Spring (September - November).

3.1.1 Missing Values

If data for a day was missing then the average of the day before and after was taken
as the value for that missing day. Moreover, if data for two or more consecutive days
missing then the moving averages were used for the missing days. If however, data over
a month or thirty one consecutive days were missing then the data is excluded from the
analysis. Three of the stations only have data that starts later than 1965, therefore not
much can be done about those missing years worth of data.

The data is rearranged so that the daily dates are put into the first column with the
observations of all the subsequent stations in the columns next to it. The monthly and
annual maxima for each the different stations are also found. A summary of the char-
acteristics of the five stations is shown in Table 3.2 and a map of the Western Cape
province with the locations of the stations is shown in Appendix A.

Table 3.2: Characteristics of the five weather stations

Longitude (0C) Latitude (0C) Altitude (m) Period

CT Airport 18.597 -33.969 44 01/01/1965 - 18/05/2015

George Airport 22.381 -34.004 193 01/01/1966 - 18/05/2015

Langebaanweg 18.157 -32.972 31 01/01/1980 - 12/08/2014

Plettenberg Bay 23.325 -34.089 138 01/01/1988 - 18/05/2015

Vredendal 18.496 -31.673 42 01/01/1965 - 18/05/2015
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3.2 Findings

The results of modelling the data are shown below. It begins with an exploratory analysis
of the data per variable per station and is then categorised further into the seasons per
variable per station for the univariate analyses. The Phillips-Perron test for stationarity
is also mentioned. The results for the models fitted using the threshold excess and point
process approaches are shown in the univariate section. Specifically, the MRL plots,
threshold choices and extremal indices for each variable during the different seasons at
each station is presented. Since the threshold choice remains the same for the threshold
excess and point process approaches, the aforementioned is only shown once for rainfall,
temperature and wind speed maxima. Subsequently, the threshold excess parameter es-
timates, return level estimates and plots as well as quantile-quantile plots are shown for
each variable. Following on from there, the point process parameter estimates, return
level estimates and plots as well as quantile-quantile plots are presented. The univariate
section ends off with a comparison of the approaches.

Furthermore, the multivariate section begins with the results for component-wise max-
ima approach for maximum wind speed and maximum rainfall as well as for maximum
wind speed and maximum temperature using the log dependence model. Following that
are the bivariate exploratory plots that have been transformed to standard Fréchet mar-
gins and shown on log axes. The plots include the thresholds of the threshold excess and
point process approaches, followed by the dependence estimates of the pairwise com-
binations using the log model. Subsequently, the dependence estimates for the point
process approach are shown using the log, negative logistic, bilogistic, negative bilogistic
and dirichlet dependence models. Finally, the section ends of with a comparison of the
three approaches.

3.2.1 Exploratory Analysis

The exploratory plots of the data are useful for a visual inspection of how the data is
distributed. It allows for missing values, maxima and minima among other things to be
seen. The exploratory analysis is split according to each variable and then split further
into each season per variable. These plots also assist in informally assessing the thresh-
old choice used in the threshold excess approach.

The recorded daily rainfall across the different stations are shown in Figure 3.1.
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Figure 3.1: Recorded daily rainfall across the different stations (1 January 1965 - 18 May 2015).

From the above exploratory analysis of rainfall, it is evident that over the 50 year period
there have been higher rainfall figures recorded at George Airport compared to the other
stations. Similarly, for Plettenberg Bay, there is also higher rainfall experienced when
comparing the last 20 years of data i.e. 1995 - 2015. These two stations are located in
the south-east of the Western Cape province compared to the other three stations which
are along the west coast of the province. Overall the rainfall plots seem to suggest that
the Western Cape has certain areas that can be classified as drier than others (West
Coast) as well as areas that are more lush with greater amounts of greenery compared
to the other stations, which are situated in the east of the province. It also indicates
that because Vredendal is in the latitude band of the Northern Cape province, that it
may experience more of the climatic conditions characteristic of that province. Likewise,
since Plettenberg Bay and George Airport are in close proximity to the Eastern Cape,
those stations may capture the climate that is more characteristic of that province than
it is with the Western Cape.
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The recorded daily maximum temperatures across the different stations are shown in
Figure 3.2.
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Figure 3.2: Recorded daily maximum temperatures across the different stations (1 January 1965 - 18
May 2015).

In terms of maximum temperature as can be seen in Figure 3.2, Vredendal experienced
higher temperatures overall compared to the other four stations. Langebaanweg also
recorded higher temperatures on average compared to Cape Town International Air-
port, George Airport and Plettenberg Bay.
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The recorded daily wind speed across only four different stations are shown in Figure
3.3. Langebaanweg is excluded from the wind analysis as there is no wind speed data
available for analysis in this study.
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Figure 3.3: Recorded wind speeds versus wind direction across the different stations (1 January 1965 -
18 May 2015).

Figure 3.3 shows the wind speed levels reached above 20 m/s at only Cape Town In-
ternational Airport in a east-south and north-west direction. Higher wind speeds are
recorded for George Airport and Vredendal in comparison to Plettenberg Bay. While
the direction is shown on the exploratory plots, this variable is not part of the modelling
analysis.
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Exploratory Analysis of the data broken up into the four seasons

Maximum Rainfall

Figure 3.4 and Figures A.2 - A.5 (Appendix A) are plots of the daily rainfall for Cape
Town International Airport and the four other stations divided into seasons, respectively.
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Figure 3.4: Daily rainfall broken up into seasons for Cape Town International Airport

From the exploratory plots shown Figure 3.4, there are higher average rainfall levels
recorded during winter and spring at Cape Town International Airport. There are
several days with zero rainfall recorded with the average rainfall being below 50 mm
for all the seasons. Figure A.2 shows that high levels of rainfall are recorded during
the autumn and spring seasons at George Airport with a reading above 200 mm during
winter. Summer data at Langebaanweg shows lower levels of rainfall compared to any
of the other seasons (Figure A.3). Rainfall levels in all the seasons at Plettenberg Bay
shown in Figure A.4 are relatively high with a few observations almost reaching 100 mm
and others that are above 100 mm. For Vredendal (Figure A.5) with the exception of
summer, the other three seasons display rainfall levels that are below 50 mm. Summer
noticeably has two observations that are higher than the rest of the observations with
one above 50 mm.
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Maximum Temperature

Figure 3.5 and Figures A.6 - A.9 in Appendix A are plots of the daily maximum temper-
ature for Cape Town International Airport and the other four stations broken up into
seasons, respectively.
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Figure 3.5: Daily maximum temperature broken up into seasons for Cape Town International Airport

The maximum temperatures for the winter season at Cape Town International Airport
shown in Figure 3.5 is contained in a lower interval compared to the other three seasons.
George Airport is the only weather station that recorded temperatures below 10 (0C).
Figure A.6 shows that the recorded maximum temperatures for the winter season also fall
within a lower interval compared to the other seasons. For the maximum temperatures
recorded at Langebaanweg shown in Figure A.7, the gap in the autumn plot represents
some missing data at this station during this season. Winter has a narrower and lower
interval for the recorded temperatures compared to the other three seasons. The missing
data across the seasons for Plettenberg Bay is clearly seen in the plots in Figure A.8.
The interval for summer does not spread as wide as the intervals of autumn, winter and
spring. Looking at Figure A.9, summer at Vredendal has a noticeably higher interval
than other three seasons. The recorded temperatures for winter is contained in a lower
interval compared to the other three stations.
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Maximum Wind Speed

Figure 3.6 (shown below) and Figures A.10 - A.12 in Appendix A are plots of the
daily maximum wind speed for Cape Town International Airport and other four stations
broken up into season, respectively.
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Figure 3.6: Daily wind speed broken up into seasons for Cape Town International Airport

Wind speeds recorded at Cape Town International Airport show that in a few instances
speeds reached approximately 20 m/s during the winter and spring seasons. The ob-
servations recorded during autumn are consistently below 15 m/s. Wind speed levels
during summer at George Airport (Figure A.10) shows the recorded observations to be
lower than 15 m/s with a few noticeably high observations recorded during autumn and
winter at this station. Wind speed levels were below 15 m/s for all seasons at Plettenberg
Bay (Figure A.11). The wind speed plots for Vredendal (Figure A.12) shows that with
the exception of the spring season, a few of the recorded observations reach above 15 m/s.

Table 3.3 shows the maximum temperature, maximum rainfall and maximum wind speed
recorded at each station.
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Table 3.3: Maxima of the weather variables

Station Maximum Maximum Maximum

Temperature (0C) Rainfall (mm) Wind Speed (m/s)

CT Airport 41.3 93.7 20.4

George Airport 40.1 230.1 18.1

Langebaanweg 43.2 20.4 -

Plettenberg Bay* 40.5 142.0 13.2

Vredendal 46.5 60.2 18.0

*over 20 years

Table 3.3 shows that the maximum temperature of 46.5 0C was recorded at Vredendal
followed by Langebaanweg with a high of 43.2 0C. George Airport, Plettenberg Bay and
Cape Town International Airport all recorded maximum temperatures around the 40 0C
mark.

The rainfall recorded at the stations show that George Airport and Plettenberg Bay
experienced rainfall of over 100 mm, while there were lower amounts of rainfall recorded
at the stations in the north i.e. Langebaanweg and Vredendal. The ‘centrally’ located
station viz Cape Town International Airport, experienced in-between levels of rainfall of
all the other stations.

Cape Town International Airport experiences higher wind speeds as measured over the
50 year period with a maximum speed of 20.4 m/s. Following this is George Airport and
Vredendal with maximum wind speeds of 18.1 m/s and 18 m/s, respectively.

3.2.2 Stationarity Testing

Stationarity in the data is assessed using the Phillips-Perron test as the data is used as a
time-series. The Phillips-Perron tests for unit roots with more relaxed error distribution
assumptions than the Dickey-Fuller test (Enders, 2004). Specifically, the hypotheses for
the test are as follows

H0: The series contains a unit root
H1: The series is stationary

Tables A.1, A.2 and A.3 in Appendix A show that the p-values are very small (<<
0.01) which indicates strong evidence against the null hypothesis. Thus, the series can
be accepted as stationary as the hypothesis of the series having a unit root is rejected.

3.3 Univariate Analysis: Threshold Excess

A univariate analysis of the data is useful as the threshold value for each variable can
be determined and subsequently used in the multivariate analysis. Another reason for
performing a univariate analysis first is that it assists in model validity (Coles and Tawn,
1991). Dependence within each variable dataset can also be checked and declustered if

38



needed.

The threshold excess section is structured according to maximum rainfall, maximum
temperature and maximum wind speed. Each variable follows the same procedure which
includes threshold (u) choice through MRL plots, declustering, parameter estimates, re-
turn level estimates and plots followed by quantile-quantile plots.

3.3.1 Maximum Rainfall

This subsection contains detailed explanations of the techniques used as it is the first
time that these terms are being used in this study. The same techniques are used for the
subsequent variables. The following sections show and explain MRL plots, declustering
of the data at the chosen thresholds, parameter estimates, return level estimates with
plots and quantile-quantile plots for rainfall.

Mean Residual Life Plots

A method for finding a threshold value for this approach is to use mean residual life
plots. To choose a suitable u value, it is of interest to see where the plots deviate from
a linear pattern (Coles, 2001). The dashed line indicates the 95% confidence interval.

Figure 3.7 shows the mean residual life plots for each season for Cape Town Inter-
national Airport. The MRL plots for the other four stations are shown in Appendix A
(Figures A.13 - A.16) as the same process is followed to find the threshold value.
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Figure 3.7: Mean residual life plots for rainfall at Cape Town International Airport
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In order to look for a suitable u for each variable, the exploratory plots in Figure 3.7 for
Cape Town International Airport and Figures A.13 - A.16 for the four other stations are
examined. From the MRL plots and exploratory plots, the thresholds can be found so
that inferences can be made about the data. Since there is some subjectivity in choosing
the threshold just by looking at plots, it is important to keep in mind that the threshold
should not be a too high or a too low value (Beirlant et al., 2004).

Starting with Cape Town International Airport, the summer plot is linear from u =
0 mm up to u ≈ 10 mm. Only 45 observations are greater than 10 mm, thus u = 5.20
mm will be used as the confidence intervals are still fairly narrow at these values. For the
remaining three seasons, an appropriate threshold for autumn is chosen at 10.60 mm,
22.32 mm for winter and 9.65 mm for spring.

Following the same process for the George Airport, an appropriate threshold for summer
is 17.43 mm with threshold values of 19.69 mm, 12.78 mm and 17.40 mm for autumn,
winter and spring respectively. Summer, autumn, winter and spring for Langebaanweg
have thresholds of 3.60 mm, 11.27 mm, 15.10 mm and 7.78 mm respectively. Pletten-
berg Bay has a threshold for summer of 11.80 mm and for autumn a value of 20.20 mm
and 22.29 mm for winter with 23.20 mm for spring. Lastly, Vredendal has relatively
low threshold values across all seasons with 1.60 mm for summer, 3 mm for autumn,
9.30 mm for Winter and 2.54 mm for spring. These threshold values and corresponding
quantiles are summarised in Table 3.4 below. The respective quantiles are useful when
fitting the multivariate models.

Table 3.4: Threshold values for rainfall

Season Threshold Quantile

CT Airport Summer 5.20 97.2

Autumn 10.60 95.4

Winter 22.32 97.7

Spring 9.65 97.0

George Airport Summer 17.43 97.4

Autumn 19.69 97.7

Winter 12.78 96.7

Spring 17.40 97.1

Langebaanweg Summer 3.60 98.2

Autumn 11.27 98.5

Winter 15.10 98.3

Spring 7.78 98.4

Plettenberg Bay Summer 11.80 96.5

Autumn 20.20 97.5

Winter 22.29 97.5

Spring 23.20 98.0

Vredendal Summer 1.60 97.8

Autumn 3.00 96.2

Winter 2.70 91.2

Spring 2.54 96.8

The aforementioned thresholds are used when fitting these models using the threshold
excess and point process approaches.
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Declustering

It is expected that if heavy rainfall is experienced, it does not occur just on one day
but rather over a period of days. This makes a few of the observations dependent and
the temporal dependence has to be examined. A way to deal with the dependence is to
decluster the data at a suitable u with different values of r where r is the run length
(Coles, 2001). For example, the values of r could be 1 and 3 as heavy rainfall experi-
enced on a given day could affect rainfall into the future, up to 3 days ahead. A longer
period than 3 days may not be a viable length of time as it is too long a period to make
inferences based on rainfall experienced at present.

To determine which stations require declustering, a sensitivity analysis is performed.
Specifically, the extremal index (θ̂) for each station is calculated for the selected thresh-
olds and varying values of r. When θ̂=1, it means that there is no dependence in the
excesses so therefore choosing values θ̂ that fall far below 0.8 (Khuluse, 2010) are re-
quired to be declustered. The reason for this is that extremal index estimates of 0.8 and
greater show weak dependence among the excesses, hence they do not need to be declus-
tered. The results are summarised in Table 3.5 below for rainfall with the estimates for
temperature and wind speed shown in Tables A.4 and A.5.

Table 3.5: Extremal index estimates for maximum rainfall

Season Threshold r=1 r=2 r=3

CT Airport Summer 5.20 0.995 1.000 1.000

Autumn 10.60 1.000 1.000 1.000

Winter 22.32 1.000 1.000 1.000

Spring 9.65 0.990 1.000 1.000

George Airport Summer 17.43 0.954 1.000 1.000

Autumn 19.69 0.880 0.890 0.912

Winter 12.78 1.000 1.000 1.000

Spring 17.40 0.969 1.000 1.000

Langebaanweg Summer 3.60 1.000 1.000 1.000

Autumn 11.27 1.000 1.000 1.000

Winter 15.10 1.000 1.000 1.000

Spring 7.78 1.000 1.000 1.000

Plettenberg Bay Summer 11.80 0.954 0.996 1.000

Autumn 20.20 1.000 1.000 1.000

Winter 22.29 1.000 1.000 1.000

Spring 23.20 1.000 1.000 1.000

Vredendal Summer 1.60 1.000 1.000 1.000

Autumn 3.00 1.000 1.000 1.000

Winter 2.70 1.000 1.000 1.000

Spring 2.54 0.941 0.991 1.000

The results from Tables 3.5 for rainfall as well as in Tables A.4 and A.5 in Appendix
A for temperature and wind speed, respectively suggest that declustering any of the
stations is not necessary. The extremal indices for all seasons across the stations are
close to 1 (greater than 0.8) and thus satisfy the assumption of independence.
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The next step is to fit the data to the Generalised Pareto Distribution (GPD) for a
suitable value of u and r. Since there is trade-off between independent observations and
exceedances that are not too high or too low, the number of clusters nc and number of
exceedances nu are taken into consideration. Table 3.6 shows the estimates of the fitted
models according to the different thresholds with the standard errors of the estimates
shown in parentheses.

Parameter Estimation

The estimates for σ and ξ of rainfall at each station are summarised in Table 3.6 together
with the respective 95% confidence intervals - shown in brackets - and the proportion of
exceedance ζu. Standard errors are shown in parentheses.

Table 3.6: Threshold excess parameter estimates for rainfall (mm).

u ζu σ ξ

CT Summer 5.20 128/4571 = 0.028 4.21 (0.55) 0.15 (0.10)
Airport 95% CI [3.13; 5.28] [-0.03; 0.35]

Autumn 10.60 214/4679 = 0.046 6.25 (0.65) 0.20 (0.08)
95% CI [4.96; 7.53] [0.04; 0.36]
Winter 22.32 106/4600 = 0.023 11.16 (1.72) -0.10 (0.12)
95% CI [7.79; 14.52] [-0.34; 0.13]
Spring 9.65 137/4550 = 0.030 6.03 (0.83) 0.20 (0.11)
95% CI [4.40; 7.66] [-0.01; 0.42]

George Summer 17.43 115/4391 = 0.026 12.47 (1.79) 0.05 (0.11)
Airport 95% CI [8.96; 15.97] [-0.16; 0.27]

Autumn 19.69 105/4562 = 0.023 11.35 (1.95) 0.35 (0.15)
95% CI [7.52; 15.18] [0.06; 0.63]
Winter 12.78 149/4508 = 0.033 12.25 (1.69) 0.25 (0.11)
95% CI [8.94; 15.57] [0.03; 0.47]
Spring 17.40 126/4369 = 0.029 15.69 (2.10) 0.21 (0.10)
95% CI [11.57; 19.81] [0.01; 0.41]

Langebaan- Summer 3.60 64/3609 = 0.018 4.45 (0.93) -0.04 (0.17)
weg 95% CI [2.62; 6.28] [-0.37; 0.29]

Autumn 11.27 57/3757 = 0.015 6.27 (1.25) 0.04 (0.15)
95% CI [3.82; 8.73] [-0.26; 0.33]
Winter 15.10 64/3735 = 0.017 4.70 (0.93) 0.24 (0.15)
95% CI [2.89; 6.52] [-0.07; 0.54]
Spring 7.78 60/3701 = 0.016 5.22 (0.91) 0.03 (0.12)
95% CI [3.43; 7.00] [-0.21; 0.26]

Plettenberg Summer 11.80 69/1985 = 0.035 8.07 (1.63) 0.30 (0.17)
Bay 95% CI [4.87; 11.26] [-0.02; 0.63]

Autumn 20.20 50/2100 = 0.024 12.42 (2.68) 0.06 (0.17)
95% CI [7.17; 17.67] [-0.27; 0.38]
Winter 22.29 51/2024 = 0.025 14.19 (3.08) 0.09 (0.16)
95% CI [8.16; 20.22] [-0.23; 0.42]
Spring 23.20 39/1996 = 0.020 13.76 (3.10) 0.18 (0.16)
95% CI [7.68; 19.85] [-0.14; 0.50]

Vredendal Summer 1.60 98/4571 = 0.018 2.10 (0.35) 0.56 (0.15)
95% CI [1.40; 2.79] [0.27; 0.85]
Autumn 3.00 174/4679 = 0.037 5.25 (0.64) 0.07 (0.10)
95% CI [3.99; 6.51] [-0.12; 0.26]
Winter 9.30 96/4600 = 0.021 4.19 (0.32) 0.04 (0.12)
95% CI [3.56; 4.81] [-0.20; 0.29]
Spring 2.54 146/4550 = 0.032 3.26 (0.42) 0.19 (0.10)
95% CI [2.43; 4.09] [-0.01; 0.39]
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At all the stations there are positive estimates for the shape parameter ξ across all the
seasons except for the winter season at Cape Town International Airport and the sum-
mer season at Langebaanweg station. The positive estimates corresponds to the Pareto
distribution which is characterised by the polynomial tail behaviour. Hence the rainfall
extremes with these positive shape estimates can be described as following a Pareto
distribution. The exceptions with the negative shape parameter estimate can better be
described by the Weibull distribution instead as it is characterised as being a bounded
distribution.

Furthermore, the proportions of exceedances are also not too high or too low given
the size of the data at each station. It can be seen ζ̂u values for all the stations are not
high at all. This means that the probability of exceedance of a specific level of rainfall
is not high.

Return Levels

The estimates of the various return levels are summarised in Table 3.7 where the confi-
dence intervals are shown in brackets.
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Table 3.7: Threshold excess return level estimates for rainfall (mm)

u 2-year 5-year 10-year 20-year

CT Summer 5.20 21.42 28.05 33.75 40.09
Airport 95% CI [17.39; 25.45] [20.76; 35.45] [22.76; 44.73] [24.14; 56.03]

Autumn 10.60 42.27 54.87 66.04 78.85
95% CI [34.72; 49.83] [41.05; 68.68] [45.23; 86.84] [48.60; 109.10]
Winter 22.32 49.58 56.83 61.87 66.55
95% CI [43.87; 55.29] [48.17; 65.49] [50.04; 73.69] [50.92; 82.18]
Spring 9.65 35.48 46.77 56.79 68.32
95% CI [28.49; 42.47] [33.28; 60.26] [35.75; 77.84] [36.84; 99.81]

George Summer 17.43 57.27 70.97 81.79 93.01
Airport 95% CI [48.07; 66.48] [55.69; 86.81] [58.69; 104.89] [60.63; 125.40]

Autumn 19.69 74.41 107.21 139.98 181.69
95% CI [55.25; 93.57] [64.19; 150.23] [65.53; 214.43] [58.91; 304.48]
Winter 12.78 72.47 100.49 126.40 157.22
95% CI [55.07; 89.87] [65.58; 135.41] [70.60; 182.21] [71.77; 242.68]
Spring 17.40 84.07 113.84 140.43 171.13
95% CI [65.94; 102.19] [79.60; 148.07] [87.47; 193.39] [92.23; 250.03]

Langebaan- Summer 3.60 14.38 17.95 20.56 23.09
weg 95% CI [11.46; 17.29] [13.16; 22.74] [13.59; 27.52] [13.36; 32.81]

Autumn 11.27 27.04 33.342 38.39 43.49
95% CI [22.40; 31.68] [25.71; 41.14] [27.02; 49.76] [27.25; 59.73]
Winter 15.10 31.35 40.07 48.05 57.43
95% CI [25.71; 36.99] [28.67; 51.48] [29.39; 66.70] [28.23; 86.64]
Spring 7.78 21.08 26.22 30.19 34.23
95% CI [17.32; 24.84] [20.35; 32.10] [21.94; 38.44] [22.88; 45.58]

Plettenberg Summer 11.80 56.15 78.89 100.82 127.89
Bay 95% CI [35.57; 76.73] [36.48; 121.31] [31.57; 170.08] [19.36; 236.42]

Autumn 20.20 59.77 72.46 82.06 93.07
95% CI [46.96; 72.57] [51.84; 93.07] [51.96; 112.16] [50.48; 132.85]
Winter 22.29 69.75 87.54 102.04 117.50
95% CI [52.59; 86.91] [56.97; 118.11] [56.48; 147.60] [52.30; 182.71]
Spring 23.20 70.20 92.40 111.82 133.84
95% CI [50.37; 90.02] [56.07; 128.73] [56.13; 167.52] [51.28; 216.40]

Vredendal Summer 1.60 15.32 27.03 40.87 61.27
95% CI [9.39; 21.26] [11.77; 42.29] [11.49; 70.25] [7.05; 115.48]
Autumn 3.00 22.56 28.86 33.91 39.22
95% CI [18.31; 26.80] [21.41; 36.31] [23.08; 44.74] [24.10; 54.34]
Winter 9.30 23.79 29.58 34.29 39.30
95% CI [20.01; 27.58] [23.42; 35.74] [25.76; 42.82] [27.85; 50.75]
Spring 2.54 16.57 22.46 27.64 33.55
95% CI [12.92; 20.21] [15.60; 29.32] [17.09; 38.19] [17.97; 49.12]

At Vredendal in autumn for instance, the 2-year return level estimate shows that the
daily maximum rainfall is expected to exceed approximately 23 mm on average once
every 2 years. Also, the daily rainfall is expected to exceed (on average) approximately
29 mm once every 5 years, 34 mm once every 10 years and 39 mm once every 50 years.

From Table 3.7, it can be seen that there is a noticeable difference in the return level
estimates for Plettenberg Bay and George Airport. The estimates are much higher com-
pared to the other stations. This is expected since the exploratory plots in Figure 3.1
showed that the highest levels of rain were recorded at these two stations. The confi-
dence intervals for these two stations are also wider than the other three stations which
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can be attributed to the high levels of rain recorded. The overall trend in estimates as
the return level increases is that the confidence intervals get wider which suggests the
uncertainty of prediction for long periods of time.

To be able to see the prediction capabilities of the fitted models, the return level plots
are shown in Figure 3.8 for Cape Town International Airport and Figures A.24 - A.27
(Appendix A) for the other four stations.
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Figure 3.8: Return level plots for rainfall at Cape Town International Airport

The plots shown in Figures 3.8 and A.25 show that the shapes of the plots for winter at
Cape Town international Airport and summer at Langebaanwag season are convex and
different from the other three respective seasons. This convex shape mirrors the nega-
tive estimates of the shape parameter whereas the positive shape estimates for remaining
seasons of the each station are concave. George Airport, Plettenberg Bay and Vreden-
dal have return level plots that are concave as these extremes follow a Pareto distribution.

In terms of predictive ability, estimates for the 20-year return period are subject to
large variability and inaccuracy as the confidence intervals are wide at the 20-year and
above return period. Moreover, the estimates of the return levels across all stations
should go up to at most 5 years ahead to have accurate estimates. The 5-year return pe-
riod is sufficient with the exception of Plettenberg Bay across all seasons. The reason for
this is that at a return period of 5 years, the confidence interval is wide (much wider than
the other stations at this return period). This suggests that increased accuracy in esti-
mates can be obtained by having a shorter return period of about 3 years for this station.
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Overall, the predictive power of the fitted model is not powerful for long return pe-
riods which brings in the uncertainty of attempting to predict future events.

Diagnostic Plots

The quantile-quantile plots show a plot of the ranked observations xk against F−1
(
k− 1

4

n+ 1
2

)
where the inverse distribution function is defined as F−1(u). The interest is to see if the
plots produce a straight line through the origin for a good model fit.

The quantile-quantile plots for Cape Town International Airport are shown in Figure
3.9 and in Figures A.28 - A.31 for the other four stations, respectively.
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Figure 3.9: Quantile-quantile plots for rainfall at Cape Town International Airport

From the quantile-quantile plots in Figure 3.9 and Figures A.28 - A.31, there are slight
deviations from linearity for George Airport and Plettenberg Bay with a slighter larger
deviation for the Summer seasons at Vredendal and Langebaanweg and does not impact
on the validity of the fitted models.
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3.3.2 Maximum Temperature

This subsection contains explanations of the techniques being used as it is the first time
that these terms are used in this study. The same techniques are used for the subsequent
variables. The following sections show and explain MRL plots, declustering of the data
at the chosen thresholds, parameter estimates, return level estimates with plots and
quantile-quantile plots for temperature.

Mean Residual Life Plots

The MRL plots for maximum temperatures at Cape Town International Airport are
shown in Figure 3.10. Figures A.17 - A.20 (Appendix A) show the MRL plots of tem-
perature for the other four stations.
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Figure 3.10: Mean residual life plots for temperature at Cape Town International Airport

Table 3.8 summarises the chosen thresholds for temperature with the corresponding
quantiles.
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Table 3.8: Threshold values for temperature

Season Threshold Quantile (%)

CT Airport Summer 32.00 93.6

Autumn 30.00 93.0

Winter 25.00 95.2

Spring 26.90 89.4

George Airport Summer 32.00 97.3

Autumn 33.00 97.7

Winter 27.00 94.3

Spring 30.99 97.3

Langebaanweg Summer 34.00 90.8

Autumn 30.00 84.0

Winter 25.00 91.7

Spring 29.00 88.6

Plettenberg Bay Summer 28.00 94.7

Autumn 30.00 95.0

Winter 25.00 90.0

Spring 26.68 95.6

Vredendal Summer 39.10 95.4

Autumn 37.00 94.1

Winter 30.90 96.4

Spring 34.00 91.9

It can be seen that the MRL plots in Figures 3.10 and A.17 - A.20 for temperature
are different to the plots seen in the rainfall analysis. There are narrower confidence
intervals and are smoother than the rainfall MRL plots.

Extremal Indices

The extremal indices calculated in Table A.4 (Appendix A) show that the temperature
data need not be declustered at the chosen thresholds. Table 3.9 shows the parameter
estimates for maximum temperature.
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Parameter Estimation

The estimates for σ and ξ of temperature at each station are summarised in Table 3.9
together with the respective 95% confidence intervals - shown in brackets - and the
proportion of exceedance ζu. Standard errors are shown in parentheses.

Table 3.9: Threshold excess parameter estimates for temperature (0C)

u ζu σ ξ

CT Summer 32.00 283/4571 = 0.062 2.28 (0.16) -0.19 (0.04)
Airport 95% CI [1.96; 2.59] [-0.27; -0.11]

Autumn 30.00 322/4679 = 0.069 2.57 (0.17) -0.13 (0.05)
95% CI [2.20; 2.94] [-0.22; -0.03]
Winter 25.00 214/4600 = 0.047 2.53 (0.20) -0.33 (0.05)
95% CI [2.14; 2.92] [-0.41; -0.24]
Spring 26.90 478/4550 = 0.011 3.27 (0.18) -0.20 (0.03)
95% CI [2.92; 3.62] [-0.27; -0.14]

George Summer 32.00 116/4391 = 0.026 2.25 (0.30) -0.03 (0.10)
Airport 95% CI [1.66; 2.84] [-0.22; 0.16]

Autumn 33.00 104/4540 = 0.023 2.60 (0.33) -0.24 (0.09)
95% CI [1.95; 3.26] [-0.41; -0.08]
Winter 27.00 255/4508 = 0.057 1.92 (0.14) -0.23 (0.04)
95% CI [1.64; 2.21] [-0.32; -0.15]
Spring 30.99 120/4411 = 0.0.027 3.29 (0.46) -0.29 (0.11)
95% CI [2.38; 4.20] [-0.51; -0.08]

Langebaan- Summer 34.00 343/3762 = 0.091 3.13 (0.21) -0.30 (0.04)
weg 95% CI [2.73; 3.54] [-0.38; -0.21]

Autumn 30.00 609/3882 = 0.157 3.79 (0.17) -0.28 (0.02)
95% CI [3.45; 4.13] [-0.32; -0.23]
Winter 25.00 319/3864 = 0.083 2.21 (0.15) -0.25 (0.04)
95% CI [1.92; 2.50] [-0.33; -0.17]
Spring 29.00 472/4411 = 0.123 3.83 (0.22) -0.25 (0.04)
95% CI [3.41; 4.26] [-0.32; -0.18]

Plettenberg Summer 28.00 116/2227 = 0.052 2.73 (0.37) -0.08 (0.10)
Bay 95% CI [2.01; 3.45] [-0.27; 0.11]

Autumn 30.00 113/2227 = 0.049 3.02 (0.41) -0.23 (0.10)
95% CI [2.22; 3.82] [-0.43, -0.04]
Winter 25.00 222/2246 = 0.099 3.29 (0.24) -0.35 (0.03)
95% CI [2.83; 3.75] [-0.41; -0.28]
Spring 26.68 100/2253 = 0.044 3.74 (0.53) -0.14 (0.10)
95% CI [2.69; 4.78] [-0.34; 0.06]

Vredendal Summer 39.10 197/4571 = 0.043 2.89 (0.24) -0.35 (0.05)
95% CI [2.42; 3.36] [-0.45; -0.24]
Autumn 37.00 267/4679 = 0.057 2.57 (0.19) -0.24 (0.04)
95% CI [2.21; 2.94] [-0.32; -0.15]
Winter 30.90 163/4600 = 0.035 1.83 (0.19) -0.25 (0.07)
95% CI [1.45; 2.20] [-0.40; -0.11]
Spring 34.00 485/4549 = 0.107 3.28 (0.19) -0.23 (0.04)
95% CI [2.92; 3.65] [-0.30; -0.16]

All stations for all seasons have estimates for the shape parameter that are negative which
corresponds to the bounded Weibull distribution. Also the proportions of exceedances
are slightly higher than that of rain which may translate to higher temperatures.
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Return Levels

The estimates of the various return levels are shown in Table 3.10 with the confidence
intervals shown in brackets.

Table 3.10: Threshold excess return level estimates for temperature (0C)

u 2-year 5-year 10-year 20-year

CT Summer 32.00 38.14 39.05 39.64 40.16
Airport 95% CI [37.35; 38.93] [38.07; 40.03] [38.50; 40.79] [38.83; 41.49]

Autumn 30.00 37.93 39.28 40.21 41.05
95% CI [36.92; 38.93] [37.93; 40.64] [38.53; 41.88] [39.02; 43.09]
Winter 25.00 30.311 30.95 31.32 31.61
95% CI [28.19; 31.44] [29.46; 32.44] [29.48; 33.16] [29.32; 33.91]
Spring 26.90 36.33 37.45 38.16 38.78
95% CI [35.36; 37.29] [36.25; 38.64] [36.77; 39.55] [37.17; 40.38]

George Summer 32.00 38.38 40.25 41.63 42.99
Airport 95% CI [37.06; 39.70] [38.20; 42.30] [38.81; 44.46] [39.21; 46.76]

Autumn 33.00 38.30 39.37 40.04 40.60
95% CI [37.07; 39.53] [37.81; 40.93] [38.15; 41.93] [38.33; 42.87]
Winter 27.00 31.90 32.50 32.85 33.14
95% CI [30.99; 32.81] [31.33; 33.66] [31.43; 34.27] [31.41; 34.86]
Spring 30.99 37.54 38.63 39.29 39.82
95% CI [35.91; 39.16] [36.45; 40.82] [36.55; 42.02] [36.45; 43.19]

Langebaan- Summer 34.00 41.54 42.26 42.70 43.05
weg 95% CI [40.31; 42.76] [40.68; 43.85] [40.77; 44.63] [40.71; 45.39]

Autumn 30.00 39.97 40.79 41.28 41.69
95% CI [38.82; 41.13] [39.33; 42.25] [39.53; 43.03] [39.60; 43.79]
Winter 25.00 30.67 31.32 31.72 32.06
95% CI [29.88; 31.46] [30.33; 32.31] [30.55; 32.89] [30.69; 33.43]
Spring 29.00 39.39 40.42 41.06 41.60
95% CI [38.14; 40.64] [38.85; 42.00] [39.20; 42.92] [39.42; 43.77]

Plettenberg Summer 28.00 36.61 38.42 39.69 40.90
Bay 95% CI [34.69; 38.54] [35.59; 41.26] [35.97; 43.42] [36.18; 45.63]

Autumn 30.00 37.34 38.42 39.10 39.67
95% CI [35.64; 39.03] [36.17; 40.67] [36.35; 41.85] [36.38; 42.96]
Winter 25.00 32.35 32.94 33.28 33.54
95% CI [30.49; 34.21] [30.42; 35.46] [30.10; 36.46] [29.52; 37.57]
Spring 26.68 37.00 38.98 40.33 41.55
95% CI [34.68; 39.31] [35.73; 42.24] [36.18; 44.47] [36.41; 46.69]

Vredendal Summer 39.10 45.01 45.66 46.04 46.32
95% CI [43.65; 46.38] [43.81; 47.52] [43.69; 48.38] [43.37; 49.29]
Autumn 37.00 43.38 44.26 44.81 45.28
95% CI [42.47; 44.29] [43.13; 45.39] [43.48; 46.14] [43.72; 46.84]
Winter 30.90 34.94 35.59 35.99 36.32
95% CI [34.16; 35.72] [34.59; 36.60] [34.78; 37.21] [34.87; 37.79]
Spring 34.00 42.99 43.97 44.59 45.11
95% CI [41.97; 44.01] [42.68; 45.26] [43.07; 46.11] [43.34; 46.89]

For all seasons, Langebaanweg and Vredendal have higher return levels for the different
return periods compared to the rest of the stations. Langebaanweg and Vredendal are
situated closer to each other (approximately 197 km) than any other station in this study
and experience drier conditions as seen in the exploratory plots.
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Figures 3.11 and A.32 - A.35 show the return level plots for temperature.
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Figure 3.11: Return level plots for temperature at Cape Town International Airport

The negative estimates for the shape parameters in Table 3.10 is reflected by the convex
shape of the return level plots (Figure 3.11 for Cape Town International Airport and
Figures A.32 - A.35 for the other four stations). The general trend of the confidence
intervals for all the stations is that is starts off fairly wide and continues to get even
wider which indicates the uncertainty in prediction power as the return period increases.
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Diagnostic Plots

Figure 3.12 and Figures A.36 - A.39 show the quantile-quantile plots for Cape Town
International Airport and the other stations, respectively.

32 34 36 38 40

32
34

36
38

40

Summer

Model Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

30 32 34 36 38 40

30
32

34
36

38
40

42

Autumn

Model Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

25 26 27 28 29 30 31

25
26

27
28

29
30

31
32

Winter

Model Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

28 30 32 34 36 38

28
30

32
34

36
38

40

Spring

Model Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

Figure 3.12: Quantile-quantile plots for temperature at Cape Town International Airport

From the above plots, the models fit the data well as the plots are close to linearity.

3.3.3 Maximum Wind Speed

The following sections show and explain MRL plots, declustering of the data at the
chosen thresholds, parameter estimates, return level estimates with plots and quantile-
quantile plots for wind speed. The wind speed data for the Langebaanweg station is not
available and is excluded in the analysis below.
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Figure 3.13 shows the MRL plot for Cape Town International Airport. Figures A.21 -
A.23 show the wind speed mean residual life plots for other three stations.
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Figure 3.13: Mean residual life plots for wind speed at Cape Town International Airport

These MRL plots for wind speed are not as smooth as the temperature MRL plots, in
particular the wind speed data for Vredendal station deviates from linearity in several
instances. Table 3.11 shows the chosen thresholds with the corresponding quantiles.

Table 3.11: Threshold values for wind speed

Season Threshold Quantile (%)

CT Airport Summer 10.20 95.8

Autumn 9.00 96.2

Winter 10.00 96.5

Spring 9.30 93.9

George Airport Summer 5.20 93.0

Autumn 6.00 95.6

Winter 7.00 94.7

Spring 6.00 93.4

Plettenberg Bay Summer 5.00 93.0

Autumn 6.00 96.8

Winter 6.00 93.1

Spring 6.00 94.6

Vredendal Summer 5.10 96.4

Autumn 2.70 94.2

Winter 1.90 87.2

Spring 3.00 90.0
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Extremal Indices

The extremal indices calculated in Table A.5 Appendix A show that the wind speed
data need not be declustered at the chosen thresholds. Table 3.12 shows the parameter
estimates for maximum wind speed.

Parameter Estimation

The estimates for σ and ξ of wind speed at each station are summarised in Table 3.12
together with the respective 95% confidence intervals - shown in brackets - and the
proportion of exceedance ζu. Standard errors are shown in parentheses.

Table 3.12: Threshold excess parameter estimates for wind speed (m/s)

u ζu σ ξ

CT Summer 10.20 183/4571 = 0.040 1.52 (0.14) -0.09 (0.06)
Airport 95% CI [1.24; 1.81] [-0.21; 0.02]

Autumn 9.00 147/4679 = 0.031 2.10 (0.21) -0.36 (0.07)
95% CI [1.68; 2.51] [-0.49; -0.23]
Winter 10.00 153/4600 = 0.033 2.20 (0.22) -0.11 (0.06)
95% CI [1.76; 2.64] [-0.23; 0.01]
Spring 11.00 107/4550 = 0.024 1.38 (0.16) -0.03 (0.07)
95% CI [1.06; 1.70] [-0.17, 0.10]

George Summer 5.20 224/3339 = 0.067 1.53 (0.13) -0.11 (0.05)
Airport 95% CI [1.27; 1.78] [-0.22; -0.01]

Autumn 6.00 144/3436 = 0.042 2.06 (0.22) -0.05 (0.07)
95% CI [1.62; 2.49] [-0.19; 0.08]
Winter 7.00 182/3496 = 0.041 2.27 (0.22) -0.10 (0.06)
95% CI [1.84; 2.71] [-0.23; 0.02]
Spring 6.00 213/3410 = 0.062 1.57 (0.16) 0.03 (0.08)
95% CI [1.25; 1.90] [-0.13; 0.18]

Plettenberg Summer 5.00 147/2168 = 0.068 1.39 (0.14) -0.22 (0.06)
Bay 95% CI [1.12; 1.66] [-0.34; -0.10]

Autumn 6.00 69/2253 = 0.031 1.60 (0.24) -0.09 (0.10)
95% CI [1.08; 2.03] [-0.29; 0.10]
Winter 6.00 111/2300 = 0.048 1.51 (0.21) -0.02 (0.10)
95% CI [1.10; 1.92] [-0.22; 0.17]
Spring 6.00 123/2315 = 0.053 1.32 (0.16) -0.06 (0.08)
95% CI [1.00; 1.64] [-0.22; 0.11]

Vredendal Summer 5.10 113/4567 = 0.025 2.69 (0.29) -0.15 (0.06)
95% CI [2.12; 3.27] [-0.27; -0.04]
Autumn 2.70 270/4672 = 0.058 1.99 (0.15) -0.05 (0.05)
95% CI [1.69; 2.30] [-0.14; 0.05]
Winter 1.90 583/4584 = 0.127 1.28 (0.10) 0.30 (0.07)
95% CI [1.08; 1.48] [0.17; 0.44]
Spring 3.00 437/4545 = 0.096 2.61 (0.15) -0.19 (0.03)
95% CI [2.32; 2.90] [-0.25; -0.12]

The probability of exceedances is much higher than what is seen in the rainfall and
temperature analysis. The shape parameter estimates calculated are negative which
means that the Weibull distribution can be used to describe the wind speed extremes
found at these stations.
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Return Levels

The estimates of the various return levels are summarised in Table 3.13 where the con-
fidence intervals are shown in brackets.

Table 3.13: Threshold excess return level estimates for wind speed (m/s)

u 2-year 5-year 10-year 20-year

CT Summer 10.20 14.61 15.58 16.27 16.91
Airport 95% CI [13.92; 15.30] [14.64; 16.53] [15.08; 17.45] [15.44; 18.38]

Autumn 9.00 12.94 13.47 13.77 14.01
95% CI [11.85; 14.04] [11.87; 15.68] [11.87; 15.68] [11.58; 16.43]
Winter 10.00 15.91 17.25 18.18 19.04
95% CI [14.92; 16.90] [15.94; 18.57] [16.55; 19.82] [17.03; 21.05]
Spring 11.00 14.75 15.88 16.71 17.52
95% CI [13.99; 15.51] [14.81; 16.94] [15.33; 18.08] [15.77; 19.27]

George Summer 5.20 10.03 10.90 11.50 12.05
Airport 95% CI [9.31; 10.75] [9.93; 11.87] [10.30; 12.70] [10.59; 13.52]

Autumn 6.00 12.42 13.95 15.06 16.13
95% CI [11.25; 13.60] [12.28; 15.63] [12.89; 17.22] [13.38; 18.87]
Winter 7.00 13.879 15.25 16.20 17.08
95% CI [12.77; 15.01] [13.70; 16.80] [14.24; 18.15] [14.67; 19.49]
Spring 6.00 12.35 13.97 15.23 16.51
95% CI [11.05; 13.65] [11.88; 16.06] [12.36; 18.10] [12.71; 20.31]

Plettenberg Summer 5.00 8.63 9.12 9.42 9.69
Bay 95% CI [7.94; 9.32] [8.25; 9.98] [8.41; 10.44] [8.50, 10.88]

Autumn 6.00 10.19 11.21 11.93 12.60
95% CI [9.13; 11.24] [9.75; 12.67] [10.07; 13.78] [10.27; 14.93]
Winter 6.00 11.15 12.40 13.33 14.24
95% CI [9.92; 12.38] [10.50; 14.30] [10.77; 15.89] [10.91; 17.58]
Spring 6.00 10.37 11.34 12.03 12.70
95% CI [9.45; 11.30] [9.98; 12.69] [10.26; 13.80] [10.46; 14.94]

Vredendal Summer 5.10 11.40 12.87 13.86 14.75
95% CI [10.18; 12.62] [11.37; 14.38] [12.10; 15.62] [12.68; 16.81]
Autumn 2.70 9.55 11.05 12.15 13.21
95% CI [8.60; 10.50] [9.70; 12.41] [10.42; 13.88] [11.04; 15.38]
Winter 1.90 14.26 19.54 24.63 30.89
95% CI [10.84; 17.69] [13.15; 25.94] [14.82; 34.43] [16.30; 45.47]
Spring 3.00 10.66 11.66 12.31 12.88
95% CI [9.87; 11.46] [10.68; 12.64] [11.16; 13.45] [11.55, 14.20]

Higher return levels are seen at Cape Town International Airport compared to the other
four stations with Vredendal and George Airport having similar return levels and lower
return levels seen at Plettenberg Bay.
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Figure 3.14 and Figures A.40 - A.42 show the return level plots for wind speed at Cape
Town International Airport and the other four stations, respectively.
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Figure 3.14: Return level plots for wind speed at Cape Town International Airport

Figure 3.14 and Figures A.40 - A.42 show convex shaped return level plots with wide
confidence intervals that get wider as the return period increases. The negative estimates
for the shape parameters in Table 3.10 is seen by the convex shape of the return level
plots (Figure 3.14 for Cape Town International Airport and Figures A.40 - A.42 for the
other four stations).

56



Diagnostic Plots

The quantile-quantile plots of the stations are show in Figures 3.15, A.43 - A.45.
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Figure 3.15: Quantile-quantile plots for wind speed at Cape Town International Airport

Figures 3.15 and A.43 - A.44 show a fairly straight line through the origin for Cape
Town International Airport, George Airport and Plettenberg Bay, respectively. The
quantile-quantile plot for Vredendal shown in Figure A.45 shows a line that deviates
from linearity which indicates a poorly fitting model.

3.4 Univariate Analysis: Point Process

The point process approach also requires a threshold whereby observations which fall
above the threshold are considered as extreme. Therefore, the same threshold values
used in the threshold excess models are used for the point process models to enable
comparison of the two approaches. Hence, the thresholds have already been declustered
and all that remains is parameter estimation and assessing model fit.

3.4.1 Maximum Rainfall

Parameter Estimation

The estimates for µ, σ and ξ of rainfall at each station are summarised in Table 3.14
together with the respective 95% confidence intervals.
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Table 3.14: Point process parameter estimates for maximum rainfall (mm)
u µ σ ξ

CT Summer 5.20 16.99 (1.38) 6.05 (1.06) 0.15 (0.10)
Airport 95% CI [14.29; 19.69] [3.97; 8.12] [-0.03; 0.35]

Autumn 10.60 34.16 (2.45) 10.92 (1.96) 0.20 (0.08)
95% CI [29.36; 38.96] [7.07; 14.77] [0.04; 0.36]
Winter 22.32 43.61 (2.04) 8.92 (1.38) -0.10 (0.12)
95% CI [39.62; 47.62] [6.21; 11.63] [-0.34; 0.13]
Spring 9.65 28.22 (2.25) 9.76 (1.93) 0.20 (0.11)
95% CI [23.82; 32.63] [5.97; 13.55] [-0.01; 0.42]

George Summer 17.43 47.34 (3.27) 14.06 (2.43) 0.05 (0.11)
Airport 95% CI [40.92; 53.77] [9.31; 18.82] [-0.16; 0.27]

Autumn 19.69 55.61 (5.56) 23.80 (5.60) 0.35 (0.15)
95% CI [44.72; 66.51] [12.82; 34.79] [0.06; 0.63]
Winter 12.78 55.34 (5.34) 22.88 (4.89) 0.25 (0.11)
95% CI [44.72; 65.63] [13.30; 32.47] [0.03; 0.47]
Spring 17.40 64.99 (5.95) 25.54 (4.86) 0.21 (0.10)
95% CI [53.31; 76.67] [16.01; 35.06] [0.01; 0.41]

Langebaan- Summer 3.60 11.58 (1.09) 4.10 (0.76) -0.04 (0.17)
weg 95% CI [9.44, 13.72] [2.61; 5.59] [-0.37; 0.29]

Autumn 11.27 22.36 (1.77) 6.68 (1.18) 0.04 (0.15)
95% CI [18.89; 25.82] [4.37; 8.99] [-0.26; 0.33]
Winter 15.10 25.89 (1.89) 7.25 (1.60) 0.24 (0.15)
95% CI [22.18; 29.60] [4.10; 10.39] [-0.07; 0.54]
Spring 7.78 17.27 (1.44) 5.45 (0.89) 0.03 (0.12)
95% CI [14.44; 20.09] [3.71; 7.20] [-0.21, 0.26]

Plettenberg Summer 11.80 42.67 (6.11) 17.42 (5.74) 0.30 (0.17)
Bay 95% CI [30.69; 54.64] [6.16; 28.67] [-0.02; 0.63]

Autumn 20.20 49.63 (4.75) 14.07 (3.63) 0.06 (0.17)
95% CI [40.32; 58.94] [6.96; 21.17] [-0.27; 0.38]
Winter 22.29 57.27 (6.01) 17.44 (4.60) 0.09 (0.17)
95% CI [45.50; 69.04] [8.42; 26.44] [-0.23; 0.42]
Spring 23.20 55.73 (6.96) 19.68 (5.28) 0.18 (0.16)
95% CI [42.08; 69.38] [9.33; 30.03] [-0.14; 0.50]

Vredendal Summer 2.00 9.71 (1.55) 6.63 (1.77) 0.56 (0.15)
95% CI [6.66; 12.75] [3.17; 10.10] [0.27; 0.85]
Autumn 3.00 18.06 (1.43) 6.33 (1.34) 0.07 (0.10)
95% CI [15.25; 20.86] [21.04; 35.13] [-0.12; 0.26]
Winter 9.30 19.69 (1.24) 5.35 (0.91) 0.04 (0.12)
95% CI [17.26; 22.11] [3.57; 7.12] [-0.20; 0.29]
Spring 2.54 12.74 (1.19) 5.17 (0.95) 0.19 (0.10)
95% CI [10.41; 15.06] [3.24; 7.11] [-0.01; 0.39]

Table 3.14 shows that negative estimates for the shape parameter at three stations. In
particular, winter at Cape Town International Airport, summer at Langebaanweg and
autumn at Plettenberg Bay. The negative shape parameter estimate is indicative of the
maxima following a Weibull distribution. The remaining stations show positive non-zero
estimates across the seasons which indicates a Fréchet distribution.
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Return Levels

The estimates of the various return levels are shown in Table 3.15 with the confidence
intervals shown in brackets.

Table 3.15: Point process return level estimates for maximum rainfall (mm)

u 2-year 5-year 10-year 20-year

CT Summer 5.20 19.27 27.21 33.30 39.84
Airport 95% CI [15.88; 22.66] [20.28; 34.14] [22.53; 44.06] [24.02; 55.66]

Autumn 10.60 38.31 53.24 65.14 78.35
95% CI [32.13; 44.49] [40.19; 66.29] [44.81; 85.47] [48.33; 108.33]
Winter 22.32 46.82 56.00 61.49 66.38
95% CI [42.29; 51.36] [48.23; 63.76] [50.35; 72.65] [51.28; 81.49]
Spring 9.65 31.94 45.31 56.00 67.87
95% CI [26.23; 37.64] [32.60; 58.02] [35.45; 76.54] [36.68; 99.07]

George Summer 17.43 52.55 69.31 80.98 92.62
Airport 95% CI [44.75; 60.35] [54.26; 84.35] [58.34; 103.61] [60.46; 124.78]

Autumn 19.69 64.92 102.44 136.75 176.20
95% CI [50.02; 79.81] [62.83; 142.04] [65.26; 208.23] [59.26; 299.13]
Winter 12.78 63.96 96.85 124.37 156.11
95% CI [50.05; 77.87] [64.08; 129.62] [69.93; 178.82] [71.40; 240.83]
Spring 17.40 74.71 109.91 138.18 169.77
95% CI [59.74; 89.69] [77.59; 142.22] [86.52; 189.85] [91.75; 247.79]

Langebaan- Summer 3.60 13.07 17.53 20.36 22.99
weg 95% CI [10.63; 15.51] [13.12; 21.96] [13.65; 27.08] [13.44; 32.55]

Autumn 11.27 24.82 32.65 38.01 43.30
95% CI [20.76; 28.88] [25.32; 39.98] [26.90; 49.14] [27.21; 59.39]
Winter 15.10 28.66 38.93 47.40 57.06
95% CI [23.92; 33.41] [28.13; 49.73] [29.15; 65.65] [28.10; 86.03]
Spring 7.78 19.27 25.60 29.89 34.08
95% CI [15.97; 22.58] [19.98; 31.22] [21.80; 37.98] [22.82; 45.35]

Plettenberg Summer 11.80 49.42 75.73 98.85 126.54
Bay 95% CI [33.24; 65.59] [36.29; 115.18] [31.83; 165.87] [19.78; 233.30]

Autumn 20.20 55.33 70.42 80.20 89.42
95% CI [44.85; 65.82] [52.24; 88.61] [54.07; 106.32] [53.64; 125.19]
Winter 22.29 63.77 85.33 100.90 116.88
95% CI [49.28; 78.26] [56.36; 114.30] [56.35; 145.44] [52.30; 181.46]
Spring 23.20 63.19 89.67 110.46 133.25
95% CI [46.12; 80.26] [54.73; 124.61] [55.35; 165.56] [50.60; 215.89]

Vredendal Summer 2.00 12.40 25.30 39.63 60.37
95% CI [7.95; 16.85] [11.27; 39.33] [11.25; 68.01] [6.89; 113.84]
Autumn 3.00 20.41 28.08 33.52 39.02
95% CI [16.89; 23.92] [21.04; 35.13] [22.93; 44.11] [24.04; 54.00]
Winter 9.30 21.66 29.98 32.34 36.65
95% CI [18.76; 24.56] [22.40; 33.56] [23.81; 40.86] [24.38; 48.93]
Spring 2.54 14.70 21.70 27.23 33.31
95% CI [11.71; 17.69] [15.22; 28.18] [16.92; 37.53] [17.88; 48.75]

George Airport and Plettenberg Bay have higher return levels across all the seasons for
the respective years compared to the other stations. These two stations have had higher
recorded rainfall across the seasons compared to the other stations. As seen with the
return level estimates under the threshold excess approach in Table 3.7, the confidence
intervals become increasingly wider as the return period increases. The wider intervals
reflect the uncertainty associated with the prediction levels far into the future.
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Figure 3.16 and Figures A.46 - A.49 show the return level plots for rainfall at Cape
Town International Airport and the other three stations, respectively.

1 2 5 10 20

20
30

40
50

Summer

Return Period (years)

R
et

ur
n 

Le
ve

l

1 2 5 10 20

40
60

80
10

0

Autumn

Return Period (years)

R
et

ur
n 

Le
ve

l

1 2 5 10 20

40
50

60
70

80

Winter

Return Period (years)

R
et

ur
n 

Le
ve

l

1 2 5 10 20

40
60

80
10

0

Spring

Return Period (years)

R
et

ur
n 

Le
ve

l

Figure 3.16: Return level plots for rainfall at Cape Town International Airport

The aforementioned plots show concave shaped return level plots with the exception of
winter at Cape Town International Airport and summer at Langebaanweg which have
negative shape parameter estimates. There is a general trend of confidence intervals that
get wider as the return period increases.
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Diagnostic Plots

The quantile-quantile plots of the stations are show in Figures 3.17 for Cape Town
International Airport and A.50 - A.53 for the other stations.
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Figure 3.17: Quantile-quantile plots for rainfall at Cape Town International Airport

The fit of the models to the data for Cape Town International Airport show deviations
from linearity at the higher quantiles as seen in Figure 3.17. Figures A.50 - A.52 show
the similar patterns of model fit. The plots in Figure A.53 shows that there is deviations
from a straight line for all quantile levels and indicates not a good fit.
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3.4.2 Maximum Temperature

Parameter Estimation

The estimates for µ, σ and ξ of temperature at each station are summarised in Table
3.16 together with the respective 95% confidence intervals.

Table 3.16: Point process parameter estimates for temperature (0C)

u µ σ ξ

CT Summer 32.00 37.33 (0.26) 1.24 (0.12) -0.19 (0.04)
Airport 95% CI [36.83; 37.83] [1.03; 1.45] [-0.27; -0.11]

Autumn 30.00 36.80 (0.36) 1.71 (0.19) -0.13 (0.05)
95% CI [36.09; 37.51] [1.33; 2.08] [-0.22; -0.03]
Winter 25.00 29.69 (0.21) 1.01 (0.08) -0.33 (0.05)
95% CI [29.27; 30.10] [0.86; 1.16] [-0.41; -0.24]
Spring 26.90 35.33 (0.31) 1.56 (0.13) -0.20 (0.03)
95% CI [34.71; 35.94] [1.30; 1.71] [-0.27; -0.14]

George Summer 32.00 36.93 (0.49) 2.11 (0.31) -0.03 (0.10)
Airport 95% CI [35.98; 37.89] [1.49; 2.72] [-0.22; 0.16]

Autumn 33.00 37.31 (0.36) 1.55 (0.16) -0.24 (0.09)
95% CI [36.61; 38.01] [1.22; 1.87] [-0.41; -0.08]
Winter 27.00 31.17 (0.20) 0.95 (0.08) -0.23 (0.04)
95% CI [30.79; 31.56] [0.78; 1.11] [-0.32; -0.15]
Spring 30.99 36.49 (0.38) 1.68 (0.24) -0.29 (0.11)
95% CI [35.74; 37.24] [1.20; 2.15] [-0.51; -0.08]

Langebaan- Summer 34.00 40.84 (0.25) 1.11 (0.11) -0.30 (0.04)
weg 95% CI [40.35; 41.33] [0.90; 1.32] [-0.38; -0.21]

Autumn 30.00 39.20 (0.24) 1.23 (0.08) -0.28 (0.02)
95% CI [38.73; 39.67] [1.08; 1.38] [-0.32; -0.23]
Winter 25.00 30.07 (0.21) 0.94 (0.08) -0.25 (0.04)
95% CI [29.66; 30.47] [0.78; 1.11] [-0.33; -0.17]
Spring 29.00 38.44 (0.33) 1.49 (0.14) -0.25 (0.04)
95% CI [37.80; 39.09] [1.25; 1.77] [-0.32; -0.18]

Plettenberg Summer 28.00 35.16 (0.69) 2.15 (0.44) -0.08 (0.10)
Bay 95% CI [33.81; 36.51] [1.30; 3.01] [-0.27; 0.11]

Autumn 30.00 36.35 (0.48) 1.54 (0.29) -0.23 (0.10)
95% CI [35.41; 37.28] [0.97; 2.11] [-0.43; -0.04]
Winter 25.00 31.76 (0.25) 0.95 (0.07) -0.35 (0.03)
95% CI [31.28; 32.25] [0.82; 1.09] [-0.41; -0.28]
Spring 26.68 35.32 (0.80) 2.54 (0.49) -0.14 (0.10)
95% CI [33.75; 36.88] [1.58; 3.50] [-0.34; 0.06]

Vredendal Summer 39.10 42.58 (0.26) 1.26 (0.10) -0.35 (0.05)
95% CI [43.93; 44.80] [0.86; 1.25] [-0.45; -0.24]
Autumn 37.00 42.58 (0.26) 1.26 (0.10) -0.24 (0.04)
95% CI [42.07; 43.08] [1.05; 1.46] [-0.32; -0.15]
Winter 30.90 34.34 (0.21) 0.95 (0.11) -0.25 (0.07)
95% CI [33.93; 34.74] [0.74; 1.16] [-0.40; -0.11]
Spring 34.00 42.09 (0.29) 1.40 (0.13) -0.23 (0.04)
95% CI [41.52; 42.66] [1.14; 1.66] [-0.30; -0.16]

Table 3.16 shows that the estimates for the shape parameter estimates are negative
for all the stations across the seasons. Thus, the maxima at the 5 stations follow a
Weibull distribution. This negative shape parameters agree to what was found with the
threshold excess approach in Table 3.10. In particular, the shape parameter estimates
and corresponding confidence intervals are the same.
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Return Levels

The estimates of the various return levels are shown in Table 3.17 with the confidence
intervals shown in brackets.

Table 3.17: Point process return level estimates for temperature (0C)

u 2-year 5-year 10-year 20-year

CT Summer 32.00 37.77 38.95 39.60 40.14
Airport 95% CI [37.23; 38.32] [38.23; 39.67] [38.73; 40.47] [39.11; 41.17]

Autumn 30.00 37.41 39.13 40.14 41.02
95% CI [36.60; 38.22] [37.91; 40.35] [38.58; 41.71] [39.09; 42.96]
Winter 25.00 30.03 30.88 31.29 31.60
95% CI [29.61; 30.46] [30.40; 31.36] [30.75; 31.84] [30.99; 32.22]
Spring 26.90 35.88 37.34 38.14 38.80
95% CI [35.21; 36.55] [36.44; 38.24] [37.06; 39.21] [37.54; 40.05]

George Summer 32.00 37.70 40.02 41.52 42.93
Airport 95% CI [36.58; 38.81] [38.10; 41.94] [38.79; 41.94] [39.22; 46.63]

Autumn 33.00 37.85 39.26 39.99 40.58
95% CI [37.12; 38.59] [38.30; 40.21] [38.80; 41.18] [39.12; 42.05]
Winter 27.00 31.74 32.49 32.86 33.13
95% CI [31.42; 32.07] [32.15; 32.84] [32.49; 33.23] [32.73; 33.53]
Spring 30.99 37.07 38.52 39.24 39.80
95% CI [36.28; 37.86] [37.36; 39.67] [37.71; 40.77] [37.87; 41.73]

Langebaan- Summer 34.00 41.23 42.19 42.67 43.04
weg 95% CI [40.70; 41.75] [41.51; 42.86] [41.88; 43.46] [42.13; 43.95]

Autumn 30.00 39.63 40.70 41.25 41.68
95% CI [39.13; 40.12] [40.12; 41.29] [40.59; 41.91] [40.95; 42.41]
Winter 25.00 30.40 31.25 31.69 32.05
95% CI [29.96; 30.83] [30.69; 31.81] [31.03; 32.35] [31.29; 32.81]
Spring 29.00 38.97 40.31 41.01 41.48
95% CI [38.26; 39.68] [39.36; 41.26] [39.89; 42.14] [40.28; 42.87]

Plettenberg Summer 28.00 35.94 38.21 39.60 40.86
Bay 95% CI [34.35; 37.53] [35.55; 40.86] [36.01; 43.19] [36.23; 45.48]

Autumn 30.00 36.89 38.30 39.05 39.66
95% CI [35.84; 37.94] [36.71; 39.89] [37.01; 41.09] [37.15; 42.16]
Winter 25.00 32.09 32.88 33.26 33.54
95% CI [31.60; 34.58] [32.38; 33.39] [32.73; 33.79] [32.97; 34.10]
Spring 26.68 36.22 38.76 40.23 41.51
95% CI [34.43; 38.02] [35.88; 41.64] [36.40; 44.06] [36.64; 46.37]

Vredendal Summer 39.10 44.73 45.60 46.01 46.32
95% CI [44.28; 45.18] [45.05; 46.15] [45.33; 46.66] [45.57; 47.07]
Autumn 37.00 43.02 44.17 44.77 45.26
95% CI [42.48; 43.56] [43.48; 44.85] [43.96; 45.58] [44.32; 46.21]
Winter 30.90 42.59 43.87 44.55 45.10
95% CI [41.96; 43.21] [43.01; 44.73] [43.51; 45.58] [43.89; 46.30]
Spring 34.00 41.96 43.21 43.01 45.58
95% CI [41.96; 43.21] [43.01; 44.73] [43.51; 45.58] [43.89; 46.30]

Table 3.17 shows that there is not one specific station that exhibits much greater return
levels that the other stations compared to what is seen in the rainfall case. Confidence
intervals get wider as the return period increases but to great extent e.g. the 20-year
return level confidence interval width at Vredendal for winter is less than 2.
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Figure 3.18 and Figures A.54 - A.57 show the return level plots for temperature for
Cape Town International Airport and the other four stations, respectively.
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Figure 3.18: Return level plots for temperature at Cape Town International Airport

The above plots show convex shaped return levels which mirror the negative estimates
of the shape parameter in Table 3.16.

64



Diagnostic Plots

The quantile-quantile plots of the stations are show in Figure 3.19 and Figures A.58 -
A.61.
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Figure 3.19: Quantile-quantile plots for temperature at Cape Town International Airport

The quantile-quantile plots for Cape Town International Airport in Figures 3.19 and the
other 4 stations in A.58 - A.61 show a general good fit as there not much deviation from
linearity.
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3.4.3 Maximum Wind Speed

Parameter Estimation

The estimates for µ, σ and ξ for wind speed at each station are summarised in Table
3.18 together with the respective 95% confidence intervals.

Table 3.18: Point process return parameter estimates for wind speed (m/s)

u µ σ ξ

CT Summer 10.20 13.81 (0.26) 1.19 (0.13) -0.09 (0.06)
Airport 95% CI [13.31; 14.32] [0.92; 1.45] [-0.21, 0.02]

Autumn 9.00 12.41 (0.19) 0.87 (0.08) -0.36 (0.07)
95% CI [12.04; 12.78] [0.72; 1.03] [-0.49; -0.23]
Winter 10.00 14.80 (0.37) 1.67 (0.18) -0.11 (0.06)
95% CI [14.08; 15.52] [1.31; 3.02] [-0.23; 0.01]
Spring 11.00 13.87 (0.29) 1.28 (0.15) -0.03 (0.07)
95% CI [13.29; 14.44] [0.98; 1.58] [-0.17; 0.10]

George Summer 5.20 9.32 (0.27) 1.07 (0.14) -0.11 (0.05)
Airport 95% CI [8.80; 9.84] [0.81; 1.34] [-0.22; -0.01]

Autumn 6.00 11.22 (0.45) 1.77 (0.24) -0.05 (0.07)
95% CI [10.34; 12.09] [1.30; 2.25] [-0.19; 0.08]
Winter 7.00 12.77 (0.41) 1.67 (0.22) -0.10 (0.06)
95% CI [11.96; 13.58] [1.24; 2.11] [-0.23; 0.02]
Spring 6.00 11.14 (0.45) 1.72 (0.31) 0.03 (0.08)
95% CI [10.26; 12.03] [1.10; 2.33] [-0.13; 0.18]

Plettenberg Summer 5.00 8.19 (0.20) 0.68 (0.09) -0.22 (0.06)
Bay 95% CI [7.79; 8.60] [0.51; 0.86] [-0.34; -0.10]

Autumn 6.00 9.36 (0.39) 1.24 (0.21) -0.09 (0.10)
95% CI [8.59; 10.13] [0.83; 1.65] [-0.29; 0.10]
Winter 6.00 10.18 (0.44) 1.41 (0.29) -0.02 (0.10)
95% CI [9.32; 11.05] [0.84; 1.97] [-0.22; 0.17]
Spring 6.00 9.61 (0.34) 1.12 (0.20) -0.06 (0.08)
95% CI [0.94; 10.28] [0.72; 1.52] [-0.22; 0.11]

Vredendal Summer 5.10 10.13 (0.44) 1.92 (0.18) -0.15 (0.06)
95% CI [9.28; 10.99] [1.57; 2.27] [-0.27; -0.04]
Autumn 2.70 8.37 (0.36) 1.73 (0.19) -0.05 (0.05)
95% CI [7.66; 9.08] [1.35; 2.11] [-0.14; 0.05]
Winter 1.90 11.13 (1.04) 4.06 (0.85) 0.30 (0.07)
95% CI [9.11; 13.16] [2.38; 5.73] [0.17; 0.44]
Spring 3.00 9.79 (0.27) 1.34 (0.11) -0.19 (0.03)
95% CI [9.27; 10.31] [1.14; 1.55] [-0.25; -0.12]

The point process estimates for wind speed in Table 3.18 show agreement with the
threshold excess estimates of the shape parameter. The same shape parameter estimates
and confidence intervals are found from both approaches. The shape parameter estimates
are all negative with the exception of winter at Vredendal where ξ̂ > 0 and is better
described to follow a Fréchet family of distributions instead of a Weibull distribution as
in the other stations.
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Return Levels

The estimates of the various return levels for maximum wind speed are shown in Table
3.19 with the confidence intervals shown in brackets.

Table 3.19: Point process return level estimates for maximum wind speed (m/s)

u 2-year 5-year 10-year 20-year

CT Summer 10.20 14.28 15.50 16.22 16.86
Airport 95% CI [13.71; 14.86] [14.68; 16.32] [15.18; 17.26] [15.56; 18.16]

Autumn 9.00 12.71 13.42 13.75 14.00
95% CI [12.33; 13.08] [12.99; 13.85] [13.26; 14.25] [13.43; 14.57]
Winter 10.00 15.40 17.10 18.12 19.01
95% CI [14.59; 16.20] [15.93; 18.27] [16.60; 19.63] [17.11; 20.91]
Spring 11.00 14.33 15.74 16.65 17.49
95% CI [13.67; 14.99] [14.74; 16.75] [15.31; 17.98] [15.77; 19.21]

George Summer 5.20 9.69 11.02 11.89 12.71
Airport 95% CI [8.96; 10.43] [9.72; 12.33] [10.04; 13.74] [10.23; 15.19]

Autumn 6.00 11.86 13.77 14.98 16.09
95% CI [10.86; 12.87] [12.20; 15.35] [12.88; 17.08] [13.39; 18.78]
Winter 7.00 13.34 15.10 16.16 17.12
95% CI [12.40; 14.28] [13.64; 16.55] [14.28; 18.04] [14.77; 19.46]
Spring 6.00 11.87 13.42 14.34 15.14
95% CI [11.87; 12.73] [12.15; 14.69] [12.68; 16.00] [13.04; 17.24]

Plettenberg Summer 5.00 8.43 9.06 9.40 9.68
Bay 95% CI [8.00; 8.87] [8.49; 9.64] [8.70; 10.10] [8.86; 10.50]

Autumn 6.00 9.80 11.09 11.87 12.57
95% CI [8.93; 10.68] [9.77; 12.42] [10.12; 13.63] [10.33; 14.82]
Winter 6.00 10.70 12.25 13.26 14.21
95% CI [9.66; 11.73] [10.45; 14.05] [10.76; 15.76] [10.91; 17.51]
Spring 6.00 10.02 11.22 11.98 12.68
95% CI [9.23; 10.80] [9.94; 12.50] [10.26; 13.70] [10.47; 14.88]

Vredendal Summer 5.10 10.81 12.71 13.79 14.72
95% CI [9.89; 11.75] [11.49; 13.92] [12.32; 15.26] [12.96; 16.47]
Autumn 2.70 9.00 10.88 12.07 13.17
95% CI [8.18; 9.82] [9.59; 12.16] [10.38; 13.75] [11.03; 15.30]
Winter 1.90 12.71 18.83 24.20 30.63
95% CI [10.01; 15.40] [12.89; 24.77] [14.74; 33.67] [16.32; 33.67]
Spring 2.00 10.27 11.55 12.26 12.86
95% CI [9.70; 10.84] [10.79; 12.31] [11.36; 13.17] [11.80; 13.92]

Cape Town International Airport has slightly higher return level estimates over the
various return periods compared to the other 3 stations as seen in Table 3.13. Again the
same pattern emerges i.e. increasing confidence intervals is seen for wind speed at these
stations as the return period increases.
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Figure 3.20 and Figures A.62 - A.64 show the return level plots for wind speed at Cape
Town International Airport and the other three stations, respectively.
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Figure 3.20: Return level plots for wind speed at Cape Town International Airport

Figure 3.20 and Figures A.62 - A.64 show convex shaped return level plots with confi-
dence intervals that get wider as the return period increases. Estimates that are outside
the confidence interval indicates that the prediction of return levels for a future period
is poor.
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Diagnostic Plots

The quantile-quantile plots of the stations are show in Figure 3.21 and Figures A.65 -
A.67.
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Figure 3.21: Quantile-quantile plots for wind speed at Cape Town International Airport

The quantile-quantile plots of Cape Town International Airport in Figure 3.21, George
Airport and Plettenberg Bay in Figures A.65 - A.66, respectively, show a fairly good
fit of the models to the wind speed data. Figure A.67 shows there is deviations from
linearity for wind speed at Vredendal and the models are not a good fit for the models.

3.5 Multivariate Analysis

In this section, bivariate models are fitted to the climate data. Specifically, two different
combinations of the variables are modelled - rainfall maxima with wind speed maxima
and wind speed maxima with temperature maxima. Maximum rainfall with maximum
temperature is not modelled because in the Western Cape province the combination of
those two variables does not form part of the weather patterns.

3.5.1 Component-Wise Maxima

Parameter estimates are shown in Table 3.20 as well as negative log-likelihood (N-LL)
which aids in model selection. Standard errors are shown in parentheses.
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Table 3.20: Parameter estimates of the component-wise approach using the log
model.

Station Season Wind Speed and Rainfall Temperature and Wind Speed

α N-LL α N-LL
CT Summer 0.9652 (0.067) 209.20 0.9993 (2 x 10−6) 209.94

Airport Autumn 0.8027 (0.101) 207.82 0.9996 (2 x 10−6) 209.81
Winter 0.9692 (0.101) 205.26 0.9992 (2 x 10−6) 205.94
Spring 0.9996 (2 x 10−6) 205.44 0.9742 (0.071) 205.18

George Summer 0.9739 (0.079) 149.89 0.9998 (2 x 10−6) 150.17
Airport Autumn 0.9993 (2 x 10−6) 208.89 0.9391 (0.117) 149.65

Winter 0.9991 (2 x 10−6) 205.46 0.9992 (2 x 10−6) 150.28
Spring 0.8862 (0.110) 149.50 0.9999 (2 x 10−6) 150.08

Plettenberg Summer 0.9992 (2 x 10−6) 170.77 0.9991 (2 x 10−6) 90.28
Bay Autumn 0.9992 (2 x 10−6) 78.24 0.9991 (2 x 10−6) 90.70

Winter 0.9997 (2 x 10−6) 86.73 0.8991 (0.125) 94.58
Spring 0.8129 (0.158) 68.86 0.8601 (0.136) 90.00

Vredendal Summer 0.9997 (2 x 10−6) 201.56 0.9998 (2 x 10−6) 201.44
Autumn 0.9882 (0.097) 196.25 0.9994 (2 x 10−6) 197.09
Winter 0.9999 (2 x 10−6) 184.20 0.9992 (2 x 10−6) 184.19
Spring 0.9993 (2 x 10−6) 197.04 0.9999 (2 x 10−6) 193.03

Table 3.20 shows that wind speed and rainfall exhibit weak dependence as the estimates
are close to 1 (α̂ ≥ 0.9652) at the weather stations across all the seasons with a few ex-
ceptions. These exceptions include autumn at Cape Town International Airport, spring
at George Airport and spring at Plettenberg Bay which have dependence estimates that
are < 0.9. While the dependence estimates at the 3 aforementioned instances tend fur-
ther away from compared to the other estimates, it is still a form of weak dependence.
The standard errors associated with α̂ ≥ 0.9991 (almost 1) are extremely small which
brings in to question the accuracy of these estimates. The N-LL vary according for the
different seasons for any station. This may be attributed to fewer observations being
modelled due to missing observations. For example, Plettenberg Bay had consecutive
months of missing data and has noticeably lower N-LL values than the other stations.

The estimates for temperature and wind speed for winter and spring at Plettenberg
Bay of 0.8991 and 0.8601 indicate less independence compared to the other stations
which have estimates of α̂ ≥ 0.9391. Overall, there is still weak dependence exhibited
by these stations under the component-wise approach. The standard errors again are
extremely small (2 x 10−6) .

Moreover, it should be noted that component-wise maxima do not provide information
about the time structure of the data (Rakonczai, 2009). In other words, the maximum
observations per block may not have occurred on the same day or even the same month
for instance. The set-up of this approach therefore makes it difficult to provide accurate
results for forecasting the occurrence of extreme events. Analysis of this approach in a
univariate case is also not a reliable way to model extremes and so the results in Table
3.20 are not unexpected. Not knowing if the maxima have been observed at the same
time makes the analysis of extreme events a difficult one, thus modelling the data under
this approach is not pursued any further.
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Bivariate Plots

Figure 3.22 shows the transformation (as mentioned in section 2.4.1) of maximum wind
speed and maximum temperature from the raw data to standard Fréchet margins to the
transformed data on a log scale.
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(b) Transformed data
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(c) Transformed data on log axes

Figure 3.22: Wind Speed versus Maximum Temperature during Summer at Plettenberg Bay.

Figure 3.22 is included here to illustrate the transition of the data when transforming
to standard Fréchet margins. The same process applies to all the stations for all the
seasons with the two different pairwise combinations although the figures showing all
the transformations are not included. In the case of the component-wise approach, the
maxima from each block is transformed.

Maximum Wind Speed and Maximum Rainfall

For the component-wise approach, there are only 51 pairwise extreme observations with
which to model. The interest in the threshold excess approach is in the top right quad-
rant (Figures 3.23 - 3.26) where x and y are extreme simultaneously. In terms of the
point process approach, the change from Cartesian coordinates to angular and radial
(pseudo-polar) coordinates is required as the structure of intensity function of the pois-
son process is easily stated in this form. This means that the the curved threshold allows
for a greater number of observations to be incorporated into the analyses.

Figures 3.23 - 3.26 show the transformed wind speed and rainfall maxima on log scale
with point process (- - -) and threshold excess thresholds (—) . To be able to compare
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the results of the different approaches, the point process threshold is chosen to intersect
the x and y axes at the same points that the threshold excess thresholds intersect the
axes. The gaps between the data that are on some of the figures above are due to the
zero observations.
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Figure 3.23: Maximum wind speed and maximum rainfall broken up into seasons for Cape Town Inter-
national Airport.

In terms of the linear threshold, Figure 3.23 shows that for summer at Cape Town Inter-
national Airport there are very few observations in the interested upper right quadrant
i.e. 5 during summer, 27, 24 and 7 during autumn, winter and spring respectively. The
small number of observations may lead to inaccuracy in the dependence estimates and
standard errors. A reason for this is that in the summer season there are not many days
which experience high levels of rainfall with wind speed. Autumn and spring have more
observations although not to a great degree, with winter showing the most extremes for
the given threshold for wind speed and rainfall. The curve threshold (- - -) allows for
more observations to be taken into analyses, i.e. maxima from one and both margins
are modelled. This is in comparison to the threshold excess approach which can only
handle situations where there is exceedance in both margins as seen by the linearity of
the threshold (—). There is some evidence of symmetry around the line x = y which
may allude to a logistic model to describe the dependence structure and is a starting
point when deciding on which dependence model to use.
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Figure 3.24: Maximum wind speed and maximum rainfall broken up into seasons for George Airport.

The exploratory plots for George Airport in Figure 3.24 show that there are few ob-
servations in the interested quadrant. In particular, there are 12, 7, 16 and 14 joint
exceedances for summer, autumn, winter and spring respectively. The curved threshold
shows many more observations that are able to be taken into the analysis.
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Figure 3.25: Maximum wind speed and maximum rainfall broken up into seasons for Plettenberg Bay.

Figure 3.25 shows that there are very few observations recorded in the interested quad-
rant for spring at Plettenberg Bay when looking at the linear threshold. There are 9
joint exceedances during summer, 4 during autumn, 6 during winter and 2 during spring.
This may suggest that it is unlikely to observe extreme levels of wind speed and rainfall
during spring at this station. More observations are above the threshold during summer,
autumn and winter, but an even better option would be to use all the observations above
the curved threshold.
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Figure 3.26: Maximum wind speed and maximum rainfall broken up into seasons for Vredendal.

Summer at Vredendal, in Figure 3.26, shows that most of the observations for wind speed
and rainfall are zero with 3 joint exceedances. A similar pattern is seen during autumn
and spring (32 and 27 joint exceedances, respectively) but more noticeably during the
summer season. There are few observations during summer and spring above the linear
threshold with many more wind speed and rainfall observations recorded during winter
(37 joint exceedances) and autumn. Again the curved threshold enables the maxima of
wind speed and rainfall from both and individual components to be incorporated into
the analysis for improved estimates.
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Maximum Temperature and Maximum Wind Speed

Figures 3.27 - 3.30 show the transformed wind speed and temperature maxima on log
scale with point process (- - -) and threshold excess thresholds (—).
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Figure 3.27: Maximum temperature and maximum wind speed broken up into seasons for Cape Town
International Airport.

It can be seen from Figure 3.27 that the winter season at Cape Town International
Airport has no observations in the interested quadrant which is characteristic of the
climate conditions at this station. Spring has 12 joint exceedances with only a few (2
and 5 respectively during the summer and autumn seasons). The extreme levels of wind
speed and temperature that have occurred, can be captured by the point process models
by using the curved threshold.
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Figure 3.28: Maximum temperature and maximum wind speed broken up into seasons for George Airport.

There are no observations in the quadrant of interest during summer with marginally
more during autumn with 5 observations and spring with 5 observations as shown in Fig-
ure 3.28. Winter has the most - 27 - observations above the linear thresholds compared
to the other 3 seasons at George Airport. Summer exhibits high readings of temperature
for low levels of wind speed and high wind speed observations for low values of temper-
ature which can be modelled by the point process approach and not by the threshold
excess approach.
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Figure 3.29: Maximum temperature and maximum wind speed broken up into seasons for Plettenberg
Bay.

There are 9, 7 and 5 joint exceedances above the linear threshold for summer, autumn
and spring with relatively more, i.e. 35, during winter as seen in Figure 3.29. By using
the curved threshold, the maxima that are considered extreme in both and individual
components can also be taken into the analysis.
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Figure 3.30: Maximum temperature and maximum wind speed broken up into seasons for Vredendal.

Figure 3.30 shows that there are 6 joint exceedances during summer, 13 during autumn,
28 during winter and 39 during spring for Vredendal. A better estimation of the occur-
rence of extreme events can be found using an increased number of observations which
is provided by the curved threshold.

3.5.2 Threshold Excess

Parameter estimates using the threshold excess approach are shown in for Table 3.21
as well as negative log-likelihood (N-LL) which aids in models selection for nested and
non-nested models, respectively. Standard errors are shown in parentheses.
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Table 3.21: Parameter estimates of the threshold excess approach using the log
model.

Station Season Wind Speed and Rainfall Wind Speed and Temperature

α N-LL α N-LL
CT Summer 0.9865 (0.009) 3010.68 0.9996 (2 x 10−6) 4136.17

Airport Autumn 0.9248 (0.018) 3660.60 0.9993 (2 x 10−6) 4406.24
Winter 0.8772 (0.025) 2574.53 0.9992 (2 x 10−6) 3448.48
Spring 0.9997 (2 x 10−6) 2484.75 0.9992 (2 x 10−6) 4681.41

George Summer 0.9738 (0.017) 2764.50 0.9995 (2 x 10−6) 2774.09
Airport Autumn 0.9713 (0.017) 2147.08 0.9948 (0.015) 2143.80

Winter 0.9532 (0.019) 2733.62 0.9497 (0.019) 3340.43
Spring 0.9667 (0.018) 2782.95 0.9947 (0.009) 2752.16

Plettenberg Summer 0.9661 (0.022) 1765.27 0.9991 (2 x 10−6) 2212.12
Bay Autumn 0.9687 (0.024) 1166.84 0.9698 (0.021) 1679.68

Winter 0.9845 (0.021) 1659.23 0.9237 (0.022) 2953.31
Spring 0.9997 (2 x 10−6) 1315.75 0.9957 (0.012) 1974.20

Vredendal Summer 0.9996 (2 x 10−6) 2217.60 0.9991 (2 x 10−6) 3010.26
Autumn 0.9262 (0.018) 3980.06 0.9992 (2 x 10−6) 4657.56
Winter 0.9055 (0.021) 5114.58 0.9992 (2 x 10−6) 5682.05
Spring 0.9721 (0.015) 4793.15 0.9939 (0.009) 6197.13

Rainfall and wind speed maxima parameter estimates show very weak dependence for
the stations across all seasons with the exception of winter at Cape Town International
Airport and winter at Vredendal under this threshold excess approach. While the esti-
mates in these two instances have dependence estimates that are smaller compared to
the other stations, the dependence between the variables is weak. Winter at these two
stations showed more observations above the chosen threshold (top right quadrant) of
the winter plot in Figures 3.23 and 3.26. The cases where α̂ ≥ 0.9996 demonstrates
extremely weak dependence as in the respective plots for spring at Plettenberg Bay and
Vredendal shown in Figures 3.25 and 3.26 there are very few observations above the
thresholds. Attached to the dependence estimates of 0.9996 and above are extremely
small standard errors (2 x 10−6) which may indicate some biased estimates.

The dependence estimates for wind speed and temperature during all the seasons at
Cape Town International Airport and 0.9992 and above with extremely small standard
errors (2 x 10−6) . Summer, winter and autumn at Vredendal as exhibit extremely weak
dependence with less weak dependence during spring. Summer at George Airport and
at Plettenberg Bay show the same result viz. very weak dependence. Overall, the α
estimates for wind speed and temperature for the remaining seasons at George Airport
and Plettenberg Bay show very weak dependence between variables.

Figures 3.23 - 3.30 provided a glimpse into the dependence of the structure between
the variables across the seasons for the different stations and is confirmed by the pa-
rameter estimates in Table 3.21. These plots suggest that the threshold excess approach
may not be an appropriate choice to model wind speed versus rainfall maxima and wind
speed versus temperature maxima. The reasoning being that in many of the cases, there
were very few observations in the interested quadrant and many more observations that
are extreme in the top left and bottom right quadrants. The threshold excess approach
used in this study is not able to handle the extreme observations that are not in the top
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right quadrant and as a result, inference based on these observations cannot be made. In
some instances the information matrix is near-singular when including other dependence
models into the analysis and thus the estimates are unreliable. Hence, the analysis using
threshold excess approach is fitted using only the logistic dependence model.

The point process approach on the other hand is able to handle scenarios where there is
exceedance in one component only. Since a larger bounded region is used in the point
process models (top left and bottom right quadrants), further analyses is performed us-
ing this approach with an extension to the negative logistic, bilogistic, negative bilogistic
and dirichlet dependence models.

3.5.3 Point Process

Maximum Wind Speed and Maximum Rainfall

The models used here are the common and most used dependence models in MEVT
studies. The parameter estimates with standard errors in parentheses, N-LL and AIC
using the point process approach for wind speed and rainfall are shown in Tables 3.22
- 3.25. The - under the β heading indicates that this parameter does not form part of
the logistic and negative logistic models.

Table 3.22: Point process dependence estimates for wind speed & rainfall at CT
Airport.

Model Season α β N-LL AIC
Logistic Summer 0.7846 (0.010) - 3523.79 7057.59

Autumn 0.7426 (0.010) - 4275.20 8560.40
Winter 0.7025 (0.014) - 3085.43 6180.87
Spring 0.7831 (0.011) - 2919.21 5848.41

Negative Summer 0.4657 (0.015) - 3449.06 6908.11
logistic Autumn 0.546 (0.017) - 4221.58 8453.16

Winter 0.6337 (0.027) - 3062.66 6135.31
Spring 0.4641 (0.017) - 2869.31 5748.62

Bilogistic Summer 0.8429 (0.025) 0.7335 (0.027) 3521.21 7054.42
Autumn 0.6838 (0.024) 0.7906 (0.018) 4270.78 8553.55
Winter 0.7667 (0.026) 0.6381 (0.030) 3082.30 6176.60
Spring 0.7014 (0.028) 0.8475 (0.019) 2912.81 5837.61

Negative Summer 1.4700 (0.186) 3.3200 (0.489) 3443.74 6899.48
bilogistic Autumn 2.2040 (0.207) 1.5040 (0.146) 4219.36 8450.72

Winter 1.2930 (0.149) 1.9570 (0.244) 3060.99 6133.99
Spring 2.9350 (0.348) 1.5620 (0.183) 2865.42 5742.85

Dirichlet Summer 0.5233 (0.125) 0.171 (0.047) 3501.42 7014.84
Autumn 0.3096 (0.036) 0.5568 (0.072) 4253.31 8518.62
Winter 0.6737 (0.103) 0.3799 (0.060) 3072.34 6156.68
Spring 0.1993 (0.030) 0.5187 (0.082) 2901.15 5814.30

Since all the dependence models are not nested, model selection based on the N-LL is
not appropriate. Looking at the AIC values, the best fitting model (lowest AIC) for
all the seasons is the negative bilogistic model followed by the negative logistic model.
Complete dependence is reached as α and β tend to 0 while independence is reached
when α and β tend to ∞. The estimates using the negative bilogistic model show that
α and β tend further away from 0 than towards 0.
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Table 3.23: Point process dependence estimates for wind speed & rainfall at George
Airport.

Model Season α β N-LL AIC
Logistic Summer 0.7331 (0.012) - 3314.46 6638.91

Autumn 0.7512 (0.013) - 2587.02 5184.05
Winter 0.7427 (0.012) - 3228.34 6466.68
Spring 0.7430 (0.011) - 3293.61 6597.23

Negative Summer 0.5664 (0.020) - 3275.51 6561.02
logistic Autumn 0.5300 (0.022) - 2553.70 5117.40

Winter 0.5460 (0.020) - 3187.52 6385.04
Spring 0.5490 (0.020) - 3249.57 6509.14

Bilogistic Summer 0.8683 (0.016) 0.5829 (0.028) 3290.36 6592.71
Autumn 0.8574 (0.020) 0.6298 (0.032) 2575.29 5162.58
Winter 0.8169 (0.021) 0.6634 (0.027) 3221.83 6455.65
Spring 0.8753 (0.018) 0.5900 (0.033) 3275.13 6562.27

Negative Summer 0.9851 (0.104) 3.4117 (0.414) 3258.21 6528.42
bilogistic Autumn 1.2060 (0.146) 3.0610 (0.414) 2546.21 5104.42

Winter 1.3280 (0.146) 2.5690 (0.305) 3182.73 6377.47
Spring 1.0180 (0.118) 3.5190 (0.461) 3234.44 6480.88

Dirichlet Summer 0.9782 (0.157) 0.1758 (0.025) 3277.69 6567.37
Autumn 0.7336 (0.124) 0.1946 (0.032) 2565.68 5143.36
Winter 0.6366 (0.096) 0.2560 (0.038) 3208.21 6428.43
Spring 0.9979 (0.193) 0.1610 (0.025) 3259.30 6530.61

Table 3.23 shows that the best fitting model is the negative bilogistic model followed by
the negative logistic model based on AIC. Complete dependence is reached as α and β
tend to 0 while independence is reached when α and β tend to ∞. The estimates using
the negative bilogistic model show that α and β tend further away from 0 than towards
0 (perhaps with an exception during summer).

Table 3.24: Point process dependence estimates for wind speed & rainfall at Plet-
tenberg Bay.

Model Season α β N-LL AIC
Logistic Summer 0.7392 (0.014) - 2084.34 4178.67

Autumn 0.7676 (0.017) - 1392.52 2795.03
Winter 0.7302 (0.015) - 2014.21 4038.42
Spring 0.7513 (0.017) - 1610.78 3231.56

Negative Summer 0.5551 (0.025) - 2056.33 4122.66
logistic Autumn 0.4956 (0.027) - 1372.42 2754.84

Winter 0.5743 (0.027) - 1990.90 3991.79
Spring 0.5286 (0.028) - 1589.41 3188.81

Bilogistic Summer 0.8668 (0.023) 0.5851 (0.043) 2072.77 4157.54
Autumn 0.8185 (0.032) 0.7154 (0.038) 1391.35 2794.27
Winter 0.8606 (0.023) 0.5912 (0.039) 2003.34 4018.67
Spring 0.8686 (0.025) 0.6300 (0.039) 1602.50 3217.00

Negative Summer 1.0120 (0.146) 3.3390 (0.525) 2047.09 4106.17
bilogistic Autumn 1.6311 (0.273) 2.5269 (0.457) 1371.53 2755.05

Winter 1.0100 (0.145) 3.2480 (0.534) 1982.50 3977.00
Spring 1.1508 (0.177) 3.3831 (0.624) 1583.50 3179.01

Dirichlet Summer 0.9991 (0.234) 0.1783 (0.033) 2062.56 4137.12
Autumn 0.4697 (0.102) 0.2537 (0.058) 1385.70 2783.39
Winter 0.9611 (0.215) 0.1863 (0.036) 1994.72 4001.44
Spring 0.7793 (0.176) 0.1681 (0.039) 1596.09 3204.18

The best fitting model is the negative bilogistic model at Plettenberg Bay as seen in
Table 3.24 with the exception of autumn where the negative logistic model shows an
improved model fit over the negative bilogistic model.
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Table 3.25: Point process dependence estimates for wind speed & rainfall at Vre-
dendal.

Model Season α β N-LL AIC
Logistic Summer 0.7967 (0.011) - 2614.97 5239.95

Autumn 0.7507 (0.010) - 4567.26 9144.52
Winter 0.6878 (0.009) - 6110.14 12230.27
Spring 0.7691 (0.010) - 3779.51 7569.02

Negative Summer 0.4393 (0.017) - 2560.75 5131.51
logistic Autumn 0.5317 (0.016) - 4495.34 9000.68

Winter 0.6724 (0.018) - 6048.20 12106.39
Spring 0.4932 (0.016) - 3715.45 7438.89

Bilogistic Summer 0.8041 (0.026) 0.7905 (0.024) 2614.93 5241.87
Autumn 0.8405 (0.021) 0.6635 (0.027) 4557.78 9127.56
Winter 0.9085 (0.005) 0.3657 (0.024) 5979.69 11971.38
Spring 0.7436 (0.022) 0.7977 (0.021) 3778.57 7569.13

Negative Summer 1.9903 (0.264) 2.6369 (0.389) 2560.19 5132.38
bilogistic Autumn 1.2090 (0.127) 3.0840 (0.366) 4484.90 8981.81

Winter 0.5023 (0.046) 5.0275 (0.422) 5955.16 11922.33
Spring 1.6260 (0.180) 2.5760 (0.318) 3712.25 7436.50

Dirichlet Summer 0.3137 (0.052) 0.2645 (0.050) 2603.69 5219.37
Autumn 0.7545 (0.135) 0.1897 (0.032) 4532.03 9076.05
Winter 2.8185 (0.538) 0.1444 (0.011) 5970.79 11953.59
Spring 0.4355 (0.063) 0.2704 (0.043) 3760.36 7532.71

Table 3.25 shows that the best fitting model for summer is the negative logistic model
while for autumn, winter and spring, the negative bilogistic model provides the best fit.

Maximum Wind Speed and Maximum Temperature

The parameter estimates with standard errors in parentheses, N-LL and AIC using the
point process approach for wind speed and rainfall are shown in Tables 3.26 - 3.29.

Table 3.26: Point process dependence estimates for wind speed & temperature at
CT Airport.

Model Season α β N-LL AIC
Logistic Summer 0.7839 (0.008) - 4766.11 9542.22

Autumn 0.7796 (0.008) - 5097.06 10204.12
Winter 0.8013 (0.008) - 3946.61 7903.22
Spring 0.7606 (0.008) - 5364.72 10739.45

Negative Summer 0.4668 (0.012) - 4658.85 9327.69
logistic Autumn 0.4754 (0.012) - 4983.38 9976.75

Winter 0.4327 (0.012) - 3843.74 7697.48
Spring 0.5146 (0.013) - 5256.79 10523.57

Bilogistic Summer 0.7036 (0.025) 0.8665 (0.018) 4756.96 9525.92
Autumn 0.5581 (0.041) 0.9283 (0.012) 5062.95 10137.91
Winter 0.6865 (0.031) 0.8931 (0.017) 3933.35 7878.71
Spring 0.3466 (0.025) 0.9583 (0.003) 5174.22 10360.44

Negative Summer 3.2630 (0.355) 1.4860 (0.138) 4650.22 9312.43
bilogistic Autumn 4.2220 (0.472) 1.1310 (0.111) 4959.51 9931.03

Winter 3.6650 (0.423) 1.4900 (0.157) 3834.29 7680.58
Spring 3.3070 (0.305) 1.1490 (0.095) 5139.81 10291.63

Dirichlet Summer 0.1613 (0.027) 0.5507 (0.082) 4729.44 9470.87
Autumn 0.0890 (0.013) 1.2376 (0.289) 5031.13 10074.25
Winter 0.1215 (0.022) 0.6315 (0.118) 3910.62 7833.24
Spring 0.0584 (0.004) 4.1089 (1.161) 5165.81 10343.63

The negative bilogistic model provides the best fitting model across the all the seasons
for wind speed and temperature as shown in Table 3.26.
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Table 3.27: Point process dependence estimates for wind speed & temperature at
George Airport.

Model Season α β N-LL AIC
Logistic Summer 0.7960 (0.009) - 3152.43 6314.85

Autumn 0.7960 (0.011) - 2474.33 4958.66
Winter 0.7588 (0.010) - 3790.69 7591.38
Spring 0.7856 (0.010) - 3156.45 6322.90

Negative Summer 0.4409 (0.013) - 3075.98 6161.96
logistic Autumn 0.4364 (0.017) - 2427.16 4864.32

Winter 0.5114 (0.016) - 3736.47 7482.94
Spring 0.4611 (0.015) - 3088.43 6186.87

Bilogistic Summer 0.9485 (0.008) 0.5935 (0.034) 3118.23 6248.47
Autumn 0.8422 (0.023) 0.7625 (0.022) 2472.33 4956.66
Winter 0.7090 (0.023) 0.7992 (0.017) 3787.29 7596.58
Spring 0.9310 (0.012) 0.6073 (0.035) 3130.95 6273.90

Negative Summer 1.2038 (0.128) 5.0764 (0.701) 3055.68 6123.36
bilogistic Autumn 1.8500 (0.203) 3.0080 (0.424) 2425.08 4862.16

Winter 2.3920 (0.224) 1.5730 (0.153) 3733.75 7479.50
Spring 1.2130 (0.133) 4.4400 (0.610) 3072.45 6156.90

Dirichlet Summer 0.8867 (0.160) 0.0652 (0.011) 3103.42 6218.83
Autumn 0.3588 (0.048) 0.2035 (0.039) 2462.93 4937.86
Winter 0.2824 (0.032) 0.4969 (0.065) 3771.11 7554.21
Spring 0.8253 (0.148) 0.0889 (0.016) 3115.81 6243.63

The best fitting dependence model is the negative bilogistic model for summer, autumn,
winter and spring at George Airport.

Table 3.28: Point process dependence estimates for wind speed & temperature at
Plettenberg Bay.

Model Season α β N-LL AIC
Logistic Summer 0.7642 (0.012) - 2541.39 5092.77

Autumn 0.7653 (0.014) - 1967.43 3944.86
Winter 0.7098 (0.012) - 3359.54 6729.08
Spring 0.7753 (0.012) - 2285.05 4580.10

Negative Summer 0.5040 (0.019) - 2496.88 5003.76
logistic Autumn 0.4974 (0.022) - 1940.03 3890.07

Winter 0.6136 (0.022) - 3327.73 6665.46
Spring 0.4817 (0.019) - 2240.31 4490.61

Bilogistic Summer 0.8020 (0.025) 0.7290 (0.026) 2540.09 5092.19
Autumn 0.6064 (0.035) 0.8711 (0.017) 1951.82 3915.65
Winter 0.5653 (0.028) 0.7977 (0.015) 3341.06 6694.11
Spring 0.796 (0.026) 0.7559 (0.027) 2284.70 4581.39

Negative Summer 1.7800 (0.204) 2.2360 (0.282) 2496.39 5004.77
bilogistic Autumn 3.6070 (0.492) 1.0800 (0.144) 1928.46 3868.91

Winter 2.2480 (0.220) 1.0020 (0.103) 3315.96 6643.73
Spring 1.9310 (0.246) 2.2430 (0.306) 2240.12 4492.24

Dirichlet Summer 0.4267 (0.063) 0.2921 (0.049) 2527.49 5066.97
Autumn 0.1665 (0.027) 0.8604 (0.173) 1944.61 3901.22
Winter 0.3033 (0.031) 0.9771 (0.145) 3330.44 6672.88
Spring 0.3727 (0.061) 0.2969 (0.053) 2273.11 4558.21

The dependence structure during summer and spring at Plettenberg Bay can best be
described by the negative logistic model. Autumn and winter is better described by the
negative bilogistic model as seen in Table 3.28.

84



Table 3.29: Point process dependence estimates for wind speed & temperature at
Vredendal.

Model Season α β N-LL AIC
Logistic Summer 0.7830 (0.010) - 3529.36 7068.72

Autumn 0.7606 (0.009) - 5436.53 10875.07
Winter 0.7296 (0.008) - 6623.21 13256.41
Spring 0.7373 (0.007) - 7068.82 14147.65

Negative Summer 0.4643 (0.015) - 3466.16 6942.32
logistic Autumn 0.5135 (0.013) - 5333.48 10676.97

Winter 0.5751 (0.014) - 6536.14 13082.28
Spring 0.5624 (0.013) - 6946.75 13909.49

Bilogistic Summer 0.6323 (0.032) 0.8970 (0.014) 3507.74 7027.48
Autumn 0.7262 (0.021) 0.7909 (0.018) 5430.81 10873.62
Winter 0.8821 (0.010) 0.5768 (0.018) 6561.75 13135.50
Spring 0.7795 (0.016) 0.6956 (0.018) 7065.13 14142.26

Negative Summer 4.1683 (0.515) 1.1467 (0.128) 3447.80 6907.61
bilogistic Autumn 2.4010 (0.220) 1.5650 (0.147) 5330.51 10673.02

Winter 0.9850 (0.066) 3.5360 (0.291) 6494.73 13001.46
Spring 1.5710 (0.118) 2.0290 (0.162) 6948.26 13908.52

Dirichlet Summer 0.1191 (0.020) 0.8537 (0.169) 3490.38 6992.77
Autumn 0.2851 (0.034) 0.4952 (0.066) 5399.31 10810.63
Winter 0.9707 (0.098) 0.1598 (0.015) 6534.97 13081.93
Spring 0.5254 (0.052) 0.3418 (0.035) 7021.96 14055.91

Table 3.29 shows that out of the 5 fitted models, the negative bilogistic model best de-
scribes the dependence structure between wind speed and temperature at Vredendal.

Tables 3.22 - 3.29 show that in most instances, the negative bilogistic fit best describes
the dependence structure between wind speed and rainfall and wind speed and temper-
ature extreme maxima. If it is not the negative bilogisitic model then the best fitting
model is negative logistic model. All of the five different dependence models relay similar
information about the dependence structure.

The use of radial and angular components allow for analysis and inference to be made
on a greater number of observations because of the curved threshold. The point pro-
cess approach also has the ability to simultaneously model exceedances in both and one
margin which is a pattern seen in the bivariate plots in Figures 3.23 - 3.30. While there
were not many joint exceedances at certain stations during specific seasons, there were
substantially more exceedances individually from each of the variables. There is a nega-
tive associated asymptotic independence between the variables especially between wind
speed and temperature maxima where there 0 joint exceedances.
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Chapter 4

Concluding Remarks

The same thresholds are used across the different approaches in both the univariate and
multivariate analyses to allow for comparability between the models. In the univariate
section, Tables 3.6 and 3.14 show that the shape parameters with corresponding inter-
vals for rainfall under the threshold excess and point process approaches are the same.
This is not an unexpected result as the shape parameters provide information about the
tails of the distributions and both approaches are relaying the same details about the
extremes of the maxima. Furthermore, the scale parameter estimates for rainfall under
the threshold excess approach are smaller than those under the point process approach
when the shape parameter estimates are greater than zero. The exception in this case is
when the estimate for the shape parameter is less than zero i.e. during winter at Cape
Town International Airport, summer at Langebaanweg and autumn at Plettenberg Bay.

Similarly, the threshold excess estimates for the shape parameter (and confidence in-
tervals) for temperature and wind speed extreme maxima match to the corresponding
estimates from the point process approach as information about the tails is provided by
the shape parameter. The maxima extremes of the temperature data follow a Weibull
distribution. The extreme of the maxima for wind speed also follow a Weibull dis-
tribution with the exception of winter at Vredendal which is described by a Fr’echet
distribution. For temperature maxima, the scale parameter estimates under the point
process approach in Table 3.16 are smaller than those under the threshold excess ap-
proach in Table 3.9 for all stations across all seasons. Comparing wind speed scale
estimates, Tables 3.12 and 3.18 show that the estimates are larger for threshold excess
approach than the point process approach except for when the shape parameter estimate
is positive i.e. winter at Plettenberg Bay. Overall, the threshold excess and point process
approaches provide the same estimates for ξ with the same confidence intervals. Smaller
estimates for σ are obtained for the threshold excess approach when the shape param-
eter estimates are greater than zero for all the variables, unless the shape parameter
estimates are less than zero.

The return levels tend to be overestimated when the threshold excess models are used,
while underestimated when using point process models for maximum rainfall, maximum
temperature and maximum wind speed at the five stations. The probabilities of ex-
periencing extreme levels of rainfall, temperature and wind speed at the five stations
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within the next 20 years are very small. The confidence intervals with the point process
approach are also slightly narrower compared to the threshold excess approach. Based
on the shape estimates and return levels, there is no compelling reason to favour the
threshold excess approach over the point process approach and vice versa.

The quantile-quantile plots show the same fit of the models for each season and sta-
tions using both the threshold excess and point process approaches. Wind speed at
Vredendal showed many deviations from the linearity suggesting that the models from
the two approaches did not fit the data well. Moreover, there may be a problem of
over-fitting the data at certain stations where there are chunks of missing data. In such
cases, it would be worth investigating covariates in the parameters in future work.

For the bivariate analysis, comparing the component-wise dependence estimates for wind
speed and rainfall in Table 3.20 to that of the threshold excess approach in Table 3.21,
there are differences in the results. These differences can attributed to the varying num-
ber of observations used for each method. With the exception of autumn at Cape Town
International Airport and winter at Vredendal, the component-wise approach uses more
observations than the threshold excess approach. The near independence estimates with
extremely small standard errors for the component-wise approach could be attributed to
the maxima occurring far apart (in terms of time) from each other or even asymmetry
in the data. The near independence structure coupled with extremely small standard
errors for threshold excess models of wind speed and rainfall are seen when there are
less than 5 observations in the interested region.

In the same tables, the estimates for wind speed and temperature again show vary-
ing dependence strength between the variables for the weather stations. This can be
attributed to the difference in number of observations used in the models under the
two approaches. The component-wise approach has more observations compared to the
threshold excess approach for the stations with the only exception being winter at Plet-
tenberg Bay. The standard errors of the near independence estimates for the threshold
excess and component-wise fitted models are the same for summer, autumn and winter
at Cape Town International Airport, summer at George Airport and Plettenberg Bay
and all seasons at Vredendal.

While the thresholds chosen in the univariate case were deemed sufficient for each vari-
able, the bivariate case of the threshold excess approach only handles situations where
both components are extreme. Thus, leading to the small number of observations in the
interested quadrant R11 as shown in Figures 3.23 - 3.30. The component-wise and thresh-
old excess approaches provide a trade-off between the uncertainty in time-structure with
a sufficient amount of observations versus certainty in time-structure and fewer obser-
vations, respectively. An issue with the component-wise maxima stems from how the
dataset is formed for this approach. Since the maxima is partitioned into blocks for each
variable, it can occur that corresponding maxima values for the variables do not occur
simultaneously. For instance, when looking at daily maximum wind speed together with
daily maximum rainfall, the wind speed maxima for that block may have occurred in
June while the maximum rainfall may have occurred in August.
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Comparison of the dependence estimates using the logistic model with the point pro-
cess in Tables 3.22 - 3.29 to the component-wise and threshold excess approaches in
Tables 3.20 and 3.21, respectively, shows a noticeable change. The estimates for point
process logistic models show α tends further away from 1 compared to those seen in
the other two approaches. Weak dependence is still exhibited even though these point
process estimates tend further away from 1. A reason for the substantial difference
in the dependence estimates in the point process models can be attributed to the in-
creased number of observations used in the analysis. Similarly, the negative associated
asymptotic independence between the variables displayed in Figures 3.23 - 3.30 is better
captured by the point process approach compared to the other two approaches. The
standard errors of α̂ are small and are below 0.020 for both wind speed versus rainfall
and wind speed versus temperature.

Furthermore, the point process approach is able to adequately capture the dependence
structure between wind speed versus rainfall and wind speed versus temperature by
extending to asymmetric models. The point process approach found that the negative
bilogistic model fits that data the best in most seasons at the weather stations compared
to the logistic, bilogistic, negative logistic and dirichlet models as there is asymmetry in
the maxima.

To summarise, the component-wise and threshold excess models do not perform well
in capturing the dependence between the weather extremes. The point process models
are better performing models for jointly capturing the relationship between the maxima
of different weather variables at a single location. In terms of estimations of parameters,
there will always be uncertainty surrounding the models and results that contain some
degree of inaccuracy. However, there are some merits to using the threshold excess and
point process approaches over the component-wise approach.

The results of the MEVT approaches are in agreement with the existing studies on cli-
mate data. In particular, the component-wise maxima approach should be used in cases
where the dataset consists only of maxima. The exclusion of vast amounts of data does
not provide an accurate representation of the reality of the process of extreme weather
events. The threshold excess approach provided an improvement in the component-wise
approach as indicated by the literature. However, for the weather variables used at the
five stations, there is a further improvement on the estimates using the point process
approach which may differ slightly from some of the studies examined in the literature
review. The component-wise approach reduced a series of approximately 4500 observa-
tions per season per station to only 51 pairwise observations. This is definitely not an
efficient use of data with estimates that indicate near independence between the vari-
ables. Further benefits are seen when using the point process approach over the threshold
excess and component-wise approaches. For instance, summer at Cape Town Interna-
tional Airport which has a total of 128 exceedances for wind speed and 183 for rainfall,
reduces to just 5 joint exceedances modelled using the threshold excess approach. The
5 excesses compared to the 311 exceedances modelled using the point process models,
provides better insights and estimates of the occurrence of extreme events.
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The threshold excess models may provide unreliable estimates in cases where there are
extremely few joint exceedances. In cases, where there are no joint exceedances i.e. win-
ter at Cape Town International Airport and summer at George Airport, excluding these
from the analysis would be appropriate. The bivariate extreme value distributions are
not suitable in these two cases. In such cases, where there is asymptotic independence
within the data, applying asymptotic dependent models can produce inaccurate results
and should be excluded from the analysis or instead asymptotic independent models
should be used.

What is more, the threshold excess and point process approaches both come with sub-
jectivity in that there is no concrete way to choose a suitable threshold for the models.
Therefore, there could be disagreements in terms of the chosen suitable threshold. How-
ever, the uncertainty associated with threshold choice is a reasonable trade-off to favour
compared to modelling maxima that have not occurred within a reasonable period of
each other as seen with the component-wise maxima.

Moreover, the benefits of the bivariate analysis over the univariate case are seen when
the joint region R11 of the threshold excess and point process approaches. Although, in
some cases, there were not many joint exceedances, it is important to note that the pos-
sibility of observing those extreme maxima does exist. In the same sense, an extension
to an analysis of more than 2 variables may provide further improvement on model fit
and dependence structure.

Future work includes an extension to three or more variables in the models or even
analysing one variable at different stations with a spatial component added into the
analysis. For instance, stations such as George Airport and Plettenberg Bay showed
higher levels of rainfall compared to the other stations which may indicate that these
two stations experience more of the climate from the neighbouring province and not
the Mediterranean climate experienced by the Western Cape. Thus, adding in a spatial
component may enhance the value of the estimates and models as it can incorporate
more of the conditions surrounding an extreme event.

Additionally, utilising the wind direction data can be useful for inference especially
since this type of data is readily available with extracting wind speed data. Regarding
all three approaches, there is increased complexity as the number of variables increase
which makes the likelihood more difficult to compute. The use of copulas may also prove
to be a valuable method of estimating extremes.
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Appendix A

A.1 Map of the location of the weather stations in Western
Cape province

Figure A.1: Map of the five weather stations across the Western Cape province, South Africa.
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A.2 Exploratory Plots

A.2.1 Maximum Rainfall
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Figure A.2: Daily rainfall broken up into seasons for George Airport
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Figure A.3: Daily rainfall broken up into seasons for Langebaanweg
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Figure A.4: Daily rainfall broken up into seasons for Plettenberg Bay
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Figure A.5: Daily rainfall broken up into seasons for Vredendal
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A.2.2 Maximum Temperature
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Figure A.6: Daily temperature broken up into seasons for George Airport
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Figure A.7: Daily temperature broken up into seasons for Langebaanweg
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Figure A.8: Daily temperature broken up into seasons for Plettenberg Bay

0 1000 2000 3000 4000

0
10

20
30

40

Summer

Day

D
ai

ly
 M

ax
im

um
 T

em
pe

ra
tu

re
 (

°C
) 

(m
m

)

0 1000 2000 3000 4000

0
10

20
30

40

Autumn

Day

D
ai

ly
 M

ax
im

um
 T

em
pe

ra
tu

re
 (

°C
) 

(m
m

)

0 1000 2000 3000 4000

0
10

20
30

40

Winter

Day

D
ai

ly
 M

ax
im

um
 T

em
pe

ra
tu

re
 (

°C
) 

(m
m

)

0 1000 2000 3000 4000

0
10

20
30

40

Spring

Day

D
ai

ly
 M

ax
im

um
 T

em
pe

ra
tu

re
 (

°C
) 

(m
m

)

Figure A.9: Daily temperature broken up into seasons for Vredendal
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A.2.3 Maximum Wind Speed
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Figure A.10: Daily wind speed broken up into seasons for George Airport
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Figure A.11: Daily wind speed broken up into seasons for Plettenberg Bay
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Figure A.12: Daily wind speed broken up into seasons for Vredendal

A.3 Stationarity tests

Table A.1: Phillips-Perron Test: Rainfall

Station Season Test Statistic P-value

CT Summer -57.561 << 0.01
Airport Autumn -55.376 << 0.01

Winter -55.634 << 0.01
Spring -56.237 << 0.01

George Summer -54.167 << 0.01
Airport Autumn -53.328 << 0.01

Winter -50.490 << 0.01
Spring -50.636 << 0.01

Langebaan Summer -51.937 << 0.01
weg Autumn -51.522 << 0.01

Winter -50.641 << 0.01
Spring -48.246 << 0.01

Plettenberg Summer -38.986 << 0.01
Bay Autumn -36.410 << 0.01

Winter -36.218 << 0.01
Spring -34.997 << 0.01

Vredendal Summer -55.752 << 0.01
Autumn -53.605 << 0.01
Winter -55.265 << 0.01
Spring -59.890 << 0.01
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Table A.2: Phillips-Perron Test: Maximum Temperature

Station Season Test Statistic P-value

CT Summer -42.660 << 0.01
Airport Autumn -34.364 << 0.01

Winter -37.957 << 0.01
Spring -37.971 << 0.01

George Summer -50.256 << 0.01
Airport Autumn -42.576 << 0.01

Winter -43.300 << 0.01
Spring -45.915 << 0.01

Langebaan Summer -32.505 << 0.01
weg Autumn -27.179 << 0.01

Winter -32.869 << 0.01
Spring -33.260 << 0.01

Plettenberg Summer -31.752 << 0.01
Bay Autumn -29.295 << 0.01

Winter -30.943 << 0.01
Spring -30.910 << 0.01

Vredendal Summer -39.509 << 0.01
Autumn -32.148 << 0.01
Winter -37.435 << 0.01
Spring -39.491 << 0.01Table A.3: Phillips-Perron Test: Wind Speed

Station Season Test Statistic P-value

CT Summer -60.695 << 0.01
Airport Autumn -60.800 << 0.01

Winter -55.156 << 0.01
Spring -62.657 << 0.01

George Summer -53.028 << 0.01
Airport Autumn -49.306 << 0.01

Winter -51.152 << 0.01
Spring -54.364 << 0.01

Plettenberg Summer -42.423 << 0.01
Bay Autumn -41.732 << 0.01

Winter -43.618 << 0.01
Spring -45.789 << 0.01

Vredendal Summer -58.908 << 0.01
Autumn -58.577 << 0.01
Winter -59.792 << 0.01
Spring -59.677 << 0.01
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A.4 MRL Plots

A.4.1 Maximum Rainfall
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Figure A.13: Mean residual life plots for rainfall at George Airport
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Figure A.14: Mean residual life plots for rainfall at Langebaanweg
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Figure A.15: Mean residual life plots for rainfall at Plettenberg Bay
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Figure A.16: Mean residual life plots for rainfall at Vredendal
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A.4.2 Maximum Temperature
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Figure A.17: Mean residual life plots for temperature at George Airport
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Figure A.18: Mean residual life plots for temperature at Langebaanweg
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Figure A.19: Mean residual life plots for temperature at Plettenberg Bay
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Figure A.20: Mean residual life plots for temperature at Vredendal

103



A.4.3 Maximum Wind Speed
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Figure A.21: Mean residual life plots for wind speed at George Airport
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Figure A.22: Mean residual life plots for wind speed at Plettenberg Bay
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Figure A.23: Mean residual life plots for wind speed at Vredendal

A.5 Extremal Indices

Table A.4: Extremal index estimates for maximum temperature

Season Threshold r=1 r=2 r=3

CT Airport Summer 32.00 1.000 1.000 1.000
Autumn 30.00 0.940 1.000 1.000
Winter 25.00 1.000 1.000 1.000
Spring 26.90 1.000 1.000 1.000

George Airport Summer 32.00 1.000 1.000 1.000
Autumn 33.00 0.883 0.913 0.968
Winter 27.00 0.937 0.999 1.000
Spring 30.99 0.907 0.957 0.967

Langebaanweg Summer 34.00 0.931 0.976 1.000
Autumn 30.00 1.000 1.000 1.000
Winter 25.00 0.925 0.979 1.000
Spring 29.00 1.000 1.000 1.000

Plettenberg Bay Summer 28.00 0.954 0.996 1.000
Autumn 30.00 1.000 1.000 1.000
Winter 25.00 0.925 0.979 1.000
Spring 26.68 1.000 1.000 1.000

Vredendal Summer 39.10 0.839 0.885 0.903
Autumn 37.00 0.878 0.960 1.000
Winter 30.90 0.904 0.977 1.000
Spring 34.00 1.000 1.000 1.000
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Table A.5: Extremal index estimates for maximum wind speed

Season Threshold r=1 r=2 r=3

CT Airport Summer 10.20 0.823 0.906 0.925
Autumn 9.00 1.000 1.000 1.000
Winter 10.00 0.940 1.000 1.000
Spring 11.00 0.876 0.924 0.933

George Airport Summer 5.20 0.847 0.931 1.000
Autumn 6.00 1.000 1.000 1.000
Winter 7.00 0.980 0.999 1.000
Spring 6.00 0.937 0.993 1.000

Plettenberg Bay Summer 5.00 1.000 1.000 1.000
Autumn 6.00 0.937 0.968 1.000
Winter 6.00 0.801 0.834 0.886
Spring 6.00 0.976 1.000 1.000

Vredendal Summer 5.10 0.819 0.856 0.988
Autumn 2.70 0.802 0.884 0.985
Winter 1.90 0.988 1.000 1.000
Spring 3.00 0.841 0.986 1.000

A.6 Threshold Excess

A.6.1 Maximum Rainfall
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Figure A.24: Return level plots for rainfall at George Airport
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Figure A.25: Return level plots for rainfall at Langebaanweg
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Figure A.26: Return level plots for rainfall at Plettenberg Bay
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Figure A.27: Return level plots for rainfall at Vredendal
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Quantile-Quantile Plots
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Figure A.28: Quantile-quantile plots for rainfall at George Airport
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Figure A.29: Quantile-quantile plots for rainfall at Langebaanweg
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Figure A.30: Quantile-quantile plots for rainfall at Plettenberg Bay
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Figure A.31: Quantile-quantile plots for rainfall at Vredendal

111



A.6.2 Maximum Temperature

Return Level Plots
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Figure A.32: Return level plots for temperature at George
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Figure A.33: Return level plots for temperature at Langebaanweg
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Figure A.34: Return level plots for temperature at Plettenberg Bay
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Figure A.35: Return level plots for temperature at Vredendal
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Quantile-Quantile Plots
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Figure A.36: Quantile-quantile plots for temperature at George Airport
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Figure A.37: Quantile-quantile plots for temperature at Langebaanweg
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Figure A.38: Quantile-quantile plots for temperature at Plettenberg Bay
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Figure A.39: Quantile-quantile plots for temperature at Vredendal
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A.6.3 Maximum Wind Speed

Return Level Plots
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Figure A.40: Return level plots for wind speed at George Airport
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Figure A.41: Return level plots for wind speed at Plettenberg Bay
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Figure A.42: Return level plots for wind speed at Vredendal
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Quantile-Quantile Plots
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Figure A.43: Quantile-quantile plots for wind speed at George Airport
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Figure A.44: Quantile-quantile plots for wind speed at Plettenberg Bay
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Figure A.45: Quantile-quantile plots for wind speed at Vredendal
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A.7 Point Process

A.7.1 Maximum Rainfall

Return Level Plots
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Figure A.46: Return level plots for rainfall at George Airport
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Figure A.47: Return level plots for rainfall at Langebaanweg
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Figure A.48: Return level plots for rainfall at Plettenberg Bay
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Figure A.49: Return level plots for rainfall at Vredendal
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Quantile-Quantile Plots
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Figure A.50: Quantile-quantile plots for rainfall at George Airport
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Figure A.51: Quantile-quantile plots for rainfall at Langebaanweg
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Figure A.52: Quantile-quantile plots for rainfall at Plettenberg Bay
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Figure A.53: Quantile-quantile plots for rainfall at Vredendal
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A.7.2 Maximum Temperature

Return Level Plots
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Figure A.54: Return level plots for temperature at George Airport
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Figure A.55: Return level plots for temperature at Langebaanweg
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Figure A.56: Return level plots for temperature at Plettenberg Bay
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Figure A.57: Return level plots for temperature at Vredendal
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Quantile-Quantile Plots
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Figure A.58: Quantile-quantile plots for temperature at George Airport
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Figure A.59: Quantile-quantile plots for temperature at Langebaanweg
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Figure A.60: Quantile-quantile plots for temperature at Plettenberg Bay
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Figure A.61: Quantile-quantile plots for temperature at Vredendal
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A.7.3 Maximum Wind Speed

Return Level Plots
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Figure A.62: Return level plots for wind speed at George Airport

133



1 2 5 10 20

8.
0

8.
5

9.
0

9.
5

10
.0

Summer

Return Period (years)

R
et

ur
n 

Le
ve

l

1 2 5 10 20

9
10

11
12

13
14

15

Autumn

Return Period (years)

R
et

ur
n 

Le
ve

l

1 2 5 10 20

10
12

14
16

Winter

Return Period (years)

R
et

ur
n 

Le
ve

l

1 2 5 10 20

9
10

11
12

13
14

15

Spring

Return Period (years)

R
et

ur
n 

Le
ve

l

Figure A.63: Return level plots for wind speed at Plettenberg Bay
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Figure A.64: Return level plots for wind speed at Vredendal
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Quantile-Quantile Plots
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Figure A.65: Quantile-quantile plots for wind speed at George Airport
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Figure A.66: Quantile-quantile plots for wind speed at Plettenberg Bay
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Figure A.67: Quantile-quantile plots for wind speed at Vredendal
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