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ABSTRACT

The general field of physical geodesy 1s
described in outline and the application
of the basic theories to the calculation
of deflections of the wvertical are
discusgsed and analysed in detail. The
results of the calculation of the
deflections of the‘vertiéal at three
points in South Africa are given and
discussed. Some applications of physical
geodesy are described and proposals are
made for +the continuation of work in

this field in South Africa.
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CHAPTER 1 1
INTRODUCTION

1.0C Geodesy in general.

Geodesy, literally "dividing the carth'", isg the science of
determining the size and shape of the earth and the provision
of an accurate control point system on the earth. Geodetic
gcience includes the observations, computations and adjustments
for achieving the above. Geodesy overlaps into other.earth
sciences in the study of the gravity fisld and the internal
structure of the earth.

We can say that the main problem in geodesy 1s to determine
the space co-~ordinates of any point on the physiéal surface of
the earth by carrying out geodetid operations on this physical
surface. These geodetic operations can be divided into
three broad interdependent sections :-

A. Geometrical Geodesgy.(Including triangulation, trilateration,
traversing and electro-magnetic distance measurements)

B. Astronomical Geodesy.(Including the determination of
latitude, longitude and azimuth, and satellite orbits.)

C. Physical Geodesy.(Including gravity measurements and

spirit levelling)

Geometrical geodesy yeilds differences in the horizontal
co-ordinates of points ; astronomical geodesy determines
the direction of gravity and physical geodesy supplies
the abgolute and relative values of gravity, the differences
of the potential of gravity and differences in height
between points.

Gravity 1is the physical quantity which affects most
geodetic operations and 1t is the chief characteristic
of physical geodesy.

(- BOMFORD 1962 , DE JONG 1963 , HEISKANEN 1958a and
1964b , HIRVONIN 1960 )



1.01 Definition of terms in physical geodesy.

The following terms are frequently used in physlcal
geodesy and the definitions currently accepted by geodesists
are given. ( BOMFORD 1962., HEISKANZEN 1958a and 1967 ,
MUELLER 1966 )

Rather than give the terms in alphabetical order , they
are given in a more or less logical sequence.

Gravitation.

The attraction of the earth's mass.
Gravity.

The resultant of the gravitation and the centrifugal
force caused by the rotation of the earth. Gravity , g ,
is gravitation minus the effect of the centrifugai force
and has the dimension of the accelerstion. The value of
g varies between 978 cm/sec® and 983 cm/sec? over the
surface of the earth. In physical geodesy , the units used
are the gzal ( ﬁamed after Galileo ) and the milligal (mgal).

1 gal = 1 cm/sec”
1 mgal = 1 x 10~ cm/sec?

gggehtial. 4

A scalar function whose gradient is the force.

!

Geopotential.

The gravity potential of the earth. It ig the sum of
the gravitational potential and the potential of the
centrifugal force.

Equipotential ( or level ) surface.

This is a sufface in a field of force on which *%e
potential is constant. That is , it is a surface about
which an object can be moved without expenditure of work.
The force is everywhere perpendicular to this surface.

Geop or geopotehtial gurface.

An equipotential surface in the gravity field of the

earth. Gravity is everywhere perpendicular to the geop.



The geoid 1s the geop which co-1inoides with mean sea
level. The fact that mean sea level is not fixed in an
absolute sense means that each country's mean sea level
datum gives rise to a different geoid.

Geopotential number.

This is the geopotential difference between the geoid
and the geop through an observation pointi The number 1is
given in geopotential units ( g.p.u. ).

1 g.p.u = 1 kilogal metre ( 10°cm2sec™2 ).

Normal earth.

The normal earth is a mass such that its external
bounding equipotential surface is the earth spharop , and

1ts gravity ( called normal gravity ) is given by the

gravity formula -
N s ue (4Bt @ € 5in?2)
where ¥z = normal gravity at the equator obtained
empirically,
QP = latitude of station.
[ = gravitational flattening obtained empirically.
& = a theoretically derived co-efficient.
For practical purposes we can regard the normal earth as
being the same as the Iﬁternational Reference Spheroid.
Spherop.
An equipotential surface in the normal gravity field
of the earth.

Spheropotential.

The potential of the normal zravity.

Disturbing potential.

The difference between the geopotential and the
spheropotential at a given point.

Gravity anomaly.

The difference between the gravity on a geop and the

normal gravity on the corresponding spherop.



Plumb line.

A continuous curve which 1s afline of force in thé
geopotential fileld. The direction of gravity 1is everywhere
tangential to the plumb line.

Normal.

A normal is a gtraight line perpendicular to a particular

_ surface.
Vertical.

The direction of gravity at a point.
Isostasy.

A hypothesis of equilibrium where the crustal elements
at a certaln depth below the geold are under equal
pressure or equal mass regardless of whether they are
under mountaine , lowlands or oceans. Isostasy has
been dealt with in greater detail in LOON 1955.

Undulation of the geoid or geoidal heights.

The distance between the geoid and the earth-spherop

( or reference spheroid ).



1.02 Physical geodesy.

The mathematical basis of physical geodesy was laid
down by STCOKES 1849. He developed a formula for calculating
the geoidal heights if gravity observations all over the
earth's surface ( land and sea ) were available. In 1849
there did not seem to be any prospect of ever obtaining
these measurements. Stokes commented "....These points of
the theory are noted more for the sake of the ideas than
on account of any application which is likely to be made
of them....."

VENING MEINZSZ 1229 developedAa pendulum apparatus
which could be used for gravity observations at sea.
Recently ( THOMPSON 1966 ) gravity observations have been
made from aircraft and it i1s now becoming possible to
partially fulfil Stokes' reqﬁirements. But it will still
be many years before the gravity information is complete.

The basis of physical geodesy 1g the fact that gravity
anomalies ( or gravity disturbances ) , the undulations of
the geoid and the deflections of the vertical are all
caused by surface and sub~crustal disturbing masses of
high or low density. The chief characteristic of physical
geodesy 1s the gravimetric method and the basic
requirement ( or tool ) of the gravimetric method is the
gravity anomaly. The undulations of the geoid and the
deflections of thé vertical can be computed from these
anomalies. The great advantage of the gravimetric
method lies in the fact that these computed values are
independent of the local reference spheroid. They depend
only on the gravity formula used for computing the
theoretical value of gravity. This theorstical value 1is
based on the International Sphefoid which is the closest
mathematical representation of the earth for pure
geodetic purposes. ( HIRVONEN 1960 )

HEZISKANEN 1958b says that "we are not very far from



the truth when we gay that the most important and actual
prob%em of geodesy at the present time is the ﬁetermination
of the gfavimetric undulations of the geoid and the
deflection of the vertical components'.

Included in the field of physical geodesy are heights

above gea level. See chapter 5.

1.03 Reference surfaces.

The practice of determining the size and shape of the
earth involves choosing a mathematical figure which best
fits the figufe of the earth and then determining the
details of the lack of fit. In order to do this , the
geodesist is concerned mainly with three reference surfaces.
These are the actual surface of the earth , the geoild and
the reference spheroid. |

A. The actual surface of the earth is the physical
surface on which the geodesist sets his instruments and
makes his measurements. The shape of thils surface 1s
approximately an oblate sﬁheroid ( BOMFORD 1962 ) with
local departures of up to 8 Km from this shape.

B+ The geoid can be regarded as the fundamental surface
of geodesy. The term "geoid" was first used by J.B.Listing
in about 1872. (OXFORD 1933. But NAGY 1963 gives the date
of Listing's article as 1873 ). The shape of the geold is
a smoother oblate spheroid than the actual surface of the
earth with local departures of less than 100 metres.

( HELMZRT 1884 and HIRVONZN 1962 give a figure of about
50 metres. ) The geoid can be regarded as a physical
reality ( BOMFORD 1962 ) when we 'consider that , at sea
lefel » the vertical axig of a level theodolite is
perpendicular to it. The process of spirit levelling

measures heights above the geoid. See chapter 5,



C» The Reference Spheroid.

In order to compute co-ordinates for a geodetic control
system , we need a point from which to compute , a direction
in which to compute and a surface along which to compute.
This surface is called the reference spherocid. The actual
surface of the earth and the geold cannot be defined
mathematically and therefore cannot be used as surfaces
along which to compute.

The reference spheroid is an arbitrarily defined
geométrical figure on which the co~ordinates of points
are computed. It is defined by seven constants :-

Two constants to define the ghape and size of the
gpheroid. Tither the major axis and the flattening or the
ma jor and minor axes are glven;

Two constants to define the position of the apheroid
axis. This is usually defined to be parallel to the earth's
axls of rotation;

Three constants to define the position of the centre
of the spheroid. This is usuaily done indirectly by
'choosing an initial ( or datum ) point on the actual
surface of the earth and defining the geodetic latitude
of this point , the geodetic azimuth from this point to
another point and the height of the initial point above
the spheroid. Instead of the azimuth the geodetic
longitude of the initial point could be defined. Or the
three constants could be the geoidal height and the two
components of the deflection of the vertical.

The reference surface usually chosen is the oblate
spheroid. In geodetic literature the words "ellipsoid"
and "spheroiad" are used but the concept meant is oblate
spheroid. That is , a surface of revolution defined by

two parameters.



Note on ellipsoid and spheroid.

Any surface represented by an algebraic equation of the
gsecond degree in three variables , is a quadric surface. Zg.
AXC+By 24022 425Xy +2Fx 242Gy 2+2Px+23y+2R2+D = O . 1If this
surface is symmetric about the co-ordinate system 1t is
called a centrallquadric and has the eguation

Ax2+By2+Cz2 = 1 + An ellipsoid is a spedial case of a

central quadric surface and has the equation
—5 +—x5 +—= =1 An ellipsoid , therefore ,

is a tpi-axial figure. There is a special case of an
ellipsoid called a spheroid which is a surface obtained
whén two of the axesg of the ellipsoid are equal. If the
two equal axes are each longer than the third axis , then

we have an oblate spheroid whose equation is

%2 Y2 2,2
— +— =1 . ( In the other case a prolate
02 a2 o2 - |

spheroid is obtained. ) The oblate spheroid can also be
regarded as the surface obtained by revolving an ellipse
about its minor axis, i.e. an "ellipse of revolution" is
obtained. Some mathematical text books use the term

' and some authors of geodetic

"ellipsoid of revolution'
literature have adopted this expréssion and the abbreviated
term "ellipsoid"”. An ellipsoid is not a surface of
revolution. The term "oblate spheroid" or its
abbreviation "spheroid" is to be preferred. This note
could be summarised by using bioclogical expressions:-

the family 1s the quadric surface ;

the genus 1s the ellipsoid ;

the species is the oblate spheroid.

( FRAMI 1960 , VAN NORSTRAND 1958 )



In South Africa the reference spheroid is the "modified"
Clarke 1880 Spheroid with
semi-ma jor axis = 20 926 202 S.A.Geodetic feet
semi-minor axis = 20 854 895 3.A.Zeodetic feet.
( See GILL 18926 where the above axes are given as Tnglish
feet and HENDRIKZ 1956 where the S.A. Geodetic foot is
explained ).
The flattening given by Clarke is f = 1/293.465. As
Hendrikz points out , using the above axes the flattening
works out to be f = 1/293.466 307 656 which figure has
been used in the geodetic survey of South Africa.
(Correction tables have been given in HINDRIKZ 1943 ).
vThe datum point for the South African Geodetic System
is the trigonometrical station No. 130 Bﬁffelsfontein s
height 926 feet above mean sea level , with co-ordinates
latitude = 33° 59" 32700 South
longitude = 25° 30' 449622 Tast
and the initial direction ( azimﬁth ) is Buffelsfontein to
Zuurberg = 183° 58' 15Y50 . ( GILL 1896 ).
( In 1653/54 the latitude and longitude at Buffelsfontein
were re-observed in connection with the 30th Aré of
¥eridian Froject and values differihg from the above were
obtained. In view of the interesting remarks made by
THCMAS 1965 about this discrepancy it appears that further

investigation is needed ).
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The figure below shows an east-west section through the
topography.rl is the east-west component of the deflection
of the vertical and N is the geoidal height.The relationship

between the gpheroid and the geoid as well as the effect

T T
- - mountain
geold e
| P T -
- N {868 . _~

reference
spheroid

«//

I’l \\
O!

of topography on the geoid is shown. PC is perpendicular to

0

the reference surface and PO' is perpendicular to the geoid.
The same relationship between the geoid and the gpheroid
would be obtained if the mountain were replaced by a
sub~crustal mass surplus and the sea by a sub-crustal
mass deficiency, OR if the area to the right of PO has
a gravity anomaly greater than zefo and the area to the left
of PO has a gravity anomaly of less than zero. It can be
seen that the geoid is fixed and determined by the surface
and sub-crustal masses and the reference spheroid is
arbitrarily chosen.

Base lineg are measured on the actual surface of the earth.
The computation of the geodetic control system requires
that these base line measurements should be reduced to the
reference spheroid. But in the initial stages of a
triangulation system of a country , the position of the
reference spheroid in relation to the geoid ( and therefore
also to the actual surface of the earth ) is only assumed
at the initial point. As the height above mean sea level
of the base line is usually known , the base line
measurements are reduced to the geolid. But in the
computations it 1s assumed that they have been reduced to

the reference spheroid and this gives rise to diStortions

in the triangulation.
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A knowledge of the deflections of the vertical can show
whether the chosen reference spheroid is the best onerfob
a particular country and a knowledge of the geoidal heights
enable base lines to be reduced to the computation
gurface..- The methods of.physical geodesy can provide us

with these geoldal heights and deflections of the vertical.



CHAPTER 2

GRAVITY HMIASURIMENTS.

2.0C General.

The value of gravity , g , can be measu_red on the earth'

surface , on the sea , underwater or in the air. The
apparatus used is either the dynamic type ( eg. the
pendulum method or the falling body method ) or the static
type ( eg. the spring balance principle ). These gravity
measurements are either absolute or relative.

2.01 Absolute gravity measurements.

In the absolute determination of g ,'measurements are
ma.de at some point without reference to any other point.
Most absolute determinations have been made by the pendulum
method using a multiple pendulum apparatus. Great care is
required in these measurements and a number of effeéts
which produce systematic errors must be studied. The
accuracy of this method is 1 mgal ( GARLAND 1965 ) or
| perhaps even 0.4 mgal (HIISKANZN 1960 ). Fendulum
observations made at Potsdam at the turn of the century
gave a value of g = 981.274 gal which today still serves
as the basis of the world gravity network. Today it
appearg that this Potsdam value 1s between 10 and 14 mgal
too high. But this does not affect work done in physical
geodesy where the variation of gravity over the earth's
gurface is used and not go much the absolute values.

Falling body methods ( first used by Galileo ) for the
determination of g have been used in recent years.
Accuracies of better than 1 mgal are claimed for these
methods. ( HIISKANIN 196C )

2.02 Relative gravity measurements.

This type of measurement 19 most often uged in physical
geodesy. In this case the ratlio between the gravity

measured at a bage station and the gravity measured at

12

S

a field station is determined. Relative gravity obsevations
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can be made by the time-consuming pendulum method but
mostly the gpring balance system ( and variations of this
gystem ) is used. In this system a weight hangs from a
spring and the 1eﬁgth of the spring depends on g at-
aﬁy point. The instrument using this gystem is very
light and portable. It can detect very small differences
in g‘ and can be read very quickly.

For local surveys the range of the gravimeter need not
be large but the geodetid gravimeter needs a range of about
50C0 mgals to be able to be used anywhere on the earth.

The fact that such gravimeters are available and have .-

proved their ability of measurihg differences in g of

0.01 mgal and better , has contributed to the tremendous
progregs in physical geodesy in the 1ast.two decades.

2,03 lkeasurements from a moving platform.

Physical geodesy requires gravity obser#ations over the
whole earth. But a large portion of this surface is sea
and much of the remainder is not easily accesible by land.
In recent years much progress has been made with seaborne-
and airborne gravimeter. .

Vening Meinesz is regarded as the pioneer in the field
of gravity observations at sea and since his initial
work in the 1920's many reliable gravity observations
have been made from submarines and surface ships. In one
of Ehe latest reports , BCWIR 1967 gives a standarad
deviation between a series of observations of a ship's
traverse run as 3.9 mgal for‘a laCoste gravimeter and
2.7 mgal for a Graf-Askania gravimater. wORZZL 1965 says ,

" gifferences

in connection with gravimeters at sea ,
between values at the same point made on different
profiles may be as large as 20 mgals , although usually
smaller." Part of this difference could be due to the
uncertainty of the ship's position.

In South Africa we can look forward to increased activity

in this field when the Decca navigation system isg fully
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operational around the coast and when the GraffAskania

gravimeter is installed in the S.A.S. Natal.

Becauss of the speed of an aircraft , 1t geems that
airborne measurements can only provide a generalised
picture of the gravitational field. This type of gravity

measurement is still in the experimental and testing stage.

2.04 Gravity measurements ‘in South Africa.

Gravity measurements in South Africa have been mentioned
briefly before in LOON 1967

Pendulum observations were made as far back as 1818.
( MENZIZS 1967 ). 1In 1948 and 1949 pendulum observations
were carried out at 53 stations in Southern Africa. '
( HALZIS 1950 ). These formed the base stations for
gravimeter connections ﬁone during 1949 to 1957. Some
6000 obsgervations were made during this period.( SMIT 1962).
A few pendulum observations aboard a submarine were made
by Vening Meinesz in 1©35.

Details of published gravity measurements in Soutthfrica
are to be found in HALT3 1950 , SMIT 1962 and UCTILA 196C.

In addition to the above , local gravity surveys
( results unpublished ) have been made by oil prospecting
companies , government departments and private geophysical
consultants.

HALES 1950 used the value g(Cambridge) = 981.265 gals
as the basis for his survey. This gave the values
g(Mowbray) = 979.644 sals anﬁ g(Johannesburg) = 978.546 gals.
The values used by Smit were g(¥owbray) = 979.6468 gals.
( This is incorrectly printed as 978.6468 on page 9 of
~ SMIT 1962 ). Smit's value for g(Johannesburs) = 978.5491
gals. Bmit has corrected Hales' values by +3.3 mgal so as
" to adjust them to the accepted value of g at the
Museum pendulum station in Pretoria.'" The value
g(Teddington) = 981.1563 gals was accepted by Smit who

gives probable accuracies of the South African bases
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relative to0 this value. ( Thege ranze from + 0.1l mgal to
+ 0.5 mgal.)
UOTILA 1860 gives a 1list of world national reference
stétions adjusted on to the Potsdam system. The differences

between his and the above mentioned valucs are given in

the following table. g(Potasdam) = 981.27400 gals.
Hales Smit Uotila
(Fotsdam)
gals gals gals
g(Teddington) ©81.1963 | 981.1963
g (Mowbray) 979 .644 | S79.6468 | 97%.6475
g(Johannesburg) | 978.546 | $78.5491 | 978.5514
g(Cambridge) 981.265 981.2688

From the above table it can be seen that Smit's values
are closer to the Potsdam system and he was therefore

justified in correcting Halesg' values.

The geodesiét must work on a World System. This has
been stregsed many times by HZISKANZN 1951 , 1952 , .1958a
etc. When using the results of previous gravity surveys ,
the South African geodesist will have to make adjustmentg

to bring everything onto the internationally accepted

Potsdam System.
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CHAPTER 3

THE REIDUCTICN OF GRAVITY MIASURIMINTS

.3.,00 General.

The gravity measurements obtained at different points on
the earth's surface are not directly comparable one to the
other. This is due mainly to the fact that thesge observaﬁions
are made at different heights above gea level. All other
factors being equal , the observations made at a high
point ( far from the centre of gravity ) will be too small
and the observations made at a low point ( nearer the
centre of gravity ) will be larger. In the gravimetric
method we have to compare measurements made at different
points and these observations therefore have to be reduced
to the same level , usually sea level ( i.e. the geold ).

The reductions can be conveniently classified as follows:-
A. Non-isostatic reductions:

Free air reductions
Bouguer reductions
Condensation and inversion reductions
B. 1Isostatic reductions
Based on the hypotheses of
Pratt-Hayford or
Airy-Heiskanen or
Vening Meinesz.
( HIISKANEN 1958a ) |

3,01 The free air reduction.

This reduction is the one most commonly used in physical
geodesy and 1t takes account only of the elevation of the
station where the gravity observation has been made. No
account i1s taken of the mass between the station and sea
level. This is sometimes called Fayes' refuction after the
man who first drew attention to it. ( LAMBERT 1930 ,

NAGY 1963 ).
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HZISKANZEN 1958a and GARLAND 1965 , among others , gilve

an approximate formula for the variation in gravity due to

a change in distance from the earth's centre as

5 23 |
085 _ e, (3-1)

Or r

where g = mean gravity on earth's surface = 981 gais
r = mean radius of earth = 6370 Km
This equation is known as the vertical gradient of gravity
at sea level and using the numerical values

o 8
D r

= 0.3086 mgal/metre
= (.09406 mzal/foot ‘
Equation (3-1) can be used at most parts of the earth and
the frezs alr reduction is therefore
gp = + C.3086 h maal R & )

where h is the height of the station in metres above mean
gea level.
Note: A positive sign is used here because we are reducing
from an observation point ( above sea level ) down to gea
level. ( For stations below sea level (3-2) would be
negative ).

More rigorcus formulae are given

by HIISKANZN 1958a as

2ah 3n |
?;f =V "‘_“( l - + e )
r 2r
= +( 0.3086 h - 0.00C 000 072 h® +..) mgal

Ceereernenes (323)

and by LAMBIRT 1930 ag
g = + ( 0.30857 + 0.00021 cos 2<?)h - C.,000 000 072h2 mgal

| Ceeerreennan (3-4)
( The actual formula given in LAMBERT 1930 is for
gr in gals );
GARLAND 1965 gives
g = -0.3085 - 0.00022 cos 2§> + 0.0C0 144nh
which is clearly incorrect as each term must be a function
of the height. Note —Garland makes his comparisons at the
observation station and not at sea level , therefore his

%S¢ 1s negative.
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3.02 The Bouguer reduction.

The formula for this reduction was derived by Bouguer
in 1749. He used this reduction for comparing observed
gravity values in South America.’

This reduction takes into account the attraction of the
material between the geoid and the observation station.
The effect of the attraction of this mass must be subtracted
from the observed gravity values.

The simplified Bouguer reduction is

3ah ,
gp = - —— mgal ceessseneaess (3-5)
2 fmr
where f = density of regional mass
£, = mean density of earth
g = mean gravity
h = height above sea level in metres
r = mean radius of ‘the earth
From equation (3-1) it can be seen that
3 F
4 6r

HEZIISKANIN 1958a gives the following corresponding valueg:-

gb = - &f

T r Ty
50576 2067 - 001108 h
5.52 2.8C - 0.1912 h
5.53 2.67 - 0.,1118 hn
HALES 1962 used %y = - 0.1118 h for South Africa.

The drawback of the Bouguer reduction for geodetic
purposes is that it changes the geop passing through the

obgervation point and also changes the shape of the geoid.

3.03 Condensation and inversion reductions.

The condensation reduction was introduced to avoid the
drawback of the Bouguer reduction for geodetic purposes.
In this reduction the masses above the geoid are transferred

inside the geoid or as near to it ag possible. After
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applying the condensation reduction a so called " ideal

geoid " is obtained. The differences between the actual
and ideal geoids is less than 3 metres. ( HEISKANZEN 1958a )

The inversion reduction is applied in such a way ( by
manipulation of the masses ) so as not to change the
surface of the actual geoid.

3.04 Igsosgstatic reductions

In gravimetric studies only three isostatic assumptions
have been uéed. They are The Pratt-Hayford system
The Airy-Heiskanen system
The Vening Meinesz Regional
system
In the Pratt-Hayford system it is assumed that the
dengsity of the earth's crust ig smaller as the elevation
increases. In the Airy-Helskanen system the mountains are
assumed to be floating in the heavier substratum. The
hisher the mountaing the deeper they are sunk into the -

substratum. In the same way it is assumed that under the

t "

oceans there agre antiroots of heavy material. Using
this system HALES 1950 found a depth of compensation ( T )
of 30 Km in South Africa. The Vening Meinesz Regilonal
gystem is a modification of the Airy-Heiskanen system
where the .tompensating:masses-of* the mountains and ther :-
oceans are assumed to be broadly. distributed horizontally.
In this system the load of thevtopographic mass causes
the earth's crust to bend until equilibrium prevails.-
The Airy-Helskanen system can be called a local floating
system and the Vening lMeinesz system a regional floating
system. (HZISKANZIN 1960)

‘The isostatlc reductions therefore depend on the
surface and sub-surface earth structures and various

tables have been used for carrying out these reductions.

( See HTZISKANEN 1958a ).
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3.05 Summary and analysis.

The free air reduction.

The following table summarises some of the numerical
valueg to be expected from equations
(3-3) viz. g¢ =+ ( 0.3086 h - 0.C00 000 072 h? )' and
(3-4) viz. gp = + (0.30857 + C.0C02lcos 2¢)) h
- 0.000 000 072h?

h A B C

~metres mgal mgal mgal
100C 0.07 0.16 0.09
2000 0.3 0.32 | 0©.15
3000 0.7; 0.48 0.22
40C0 1.2 0.64 - 0.56
50C0 1.8 0.8C 1.00

2

where A = the h" term of equations (3-3) and (3-4)
B = the maximum value of the cos 2§3term of

(3-4) for South Africa.

Q

= the maximum value of the sum of the second and
third terms of (3-4) in South Africa. f
From the above table we see'that i

for h = 1000 metresg

gp = 0.3086 h - 0.07 mgal using (3-3) |
g¢ = 0.30857Th - C.09 mgal ~using (3-4) _
and for h = 2000 metres _ ?
8¢ :_0.3686 h -~ 0.3 mgal uéing (3-3) ;
g = 0.30857h - 0.15 mgal using (3-4) -!

I

Considering the accuracy of a geodetic'graviméter s [
like the Worden gravimeter , of 0.2 mgal (HEISKANZN 1958a:)
and the field procedure normally used ( HEISKANZIN 1956 )
where discrepancies between two measurements at the same
point of less than 0.3 mgal are acceptable , we can say
that the formula (3-2) gz = + 0.3086 h mgal can be used
for stations whose altitudes do not excéed 2000 metres

( 6562 feet ).



HALZS 1062 used gp = + 0.3086 ( 1 + 0.0007L cos 24 )h
mgal for the South African gravity survey. Multiplying out
we get 3y = + 0.3086 h + C.000 22 cos 2?7h which 1s
almost identical with the first two terms of equation
(3-4). In this survey only a few points were higher than
600C feet ( 183C metres ) above ¥.3.L.

The free air reduction is the simplest and ié of ten

used in physical geodesy. For example , RICI 1952 ,

KAULA 1954 , the Columbus Group ( HTISKANEIN 12964z) and
others have calculated geoidal undulations and deflections
of the vertical making use of the free air reduction to

obtain the free air anomalies.

The disadvantage of using the free air reduction is that

free air anomalies are not sufficiently representative

without any correction. ( HIISKANIN 1958a ).

The Bouguer reduction

From HALE3 1960 we can deduce that for South Africa ,
Hales has used g, = - .36 gr 1.e. the Bouguer reduction
diminishes the effect of the free air reduction by about
one-third. |

The agsumption made for theJBouguer reduction is that
the topography around the station is level. In order to
take account of topographic irregularities around the
station , a " terrain correction " ( Geléndereduktion ) is
applied. This 1s always positive and can be as much as
123 mgals. ( At Mont Blanc where h = 4807 metres.)

The Bouguer reduction is not used for geodetlc purposes
ag it changes the shape of the geold and the geop through
the observation point. ( BOMFORD 1962 and others ). This

change can be as much as 500 metres. ( HEIISKANEN 19583)

21
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The condensation and invergion reductions,.

These reductions are not widely used as the isostatic
reductions are preferred. ( HE2ISK4ANZIN 1958a )

Isostatic reductions

Although tables can be used to a certain extent ,
isostatic reductions are time consuming because they
involve an examination of the regional topography around
each station where a gravity observation has been taken.

HZISKANEN 1964asays that the use of isostatic
reductions will give the most accurate values for

zeoidal undulations.

General
The reduction of gfavity measurements has oécupied the
attention of geodesists for a long time. Manylmethods
have been suggested and to date there 1s no agreement
( in fact there is much argument ) as to which method
is best sulted for any particular investigation. For
example see BOMFORD 1962 , COOK 1962 , D3I GRAAFF-HUNTER
1958 and HTIISKANIN 1959.

In July 1961 the International Association of Geodesy
held a symposium in England on the reduction of gravity
data. RICZ 1962 reports on this symposium and sums up the
proceedings as follows:-

" When the discussion session was concluded , 1t was
apparent that there remained fundamental differences of
opinion as to the best methods of reducing surface gravity
to calculate the form of level surfaces for geodetic
purposes., "

BCMFORD 1962 and others state that the particular
reduction system used must depend on the objects of the
investigation , but still there 1is no agréement. For
example , in connection with deflections of the vertical ,
Browne ( see RICT 1962 ) advocates the use of isostatic
reductions and CCOK 1962 states that free air anomalies

should be used.
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HIISKANEN 1958a says that for geodetic applications ,
the following can be applied :-

(a) the free air reduction with elevation correction
or condensation correction ;

(b) the inversion reduction ;

(c) the isostatic reduction.

In South Africa , the Geological Survey has used the
Bouguer and isostatic reductions and has published maps
ghowing Bouguer and isostatic anomalies. HALZ3 1850 and
SMIT 1962 have also worked out and tabulated the free
air anomalies.

In chapter 8,for the Souvth African calculations ,
the isostatic reductions based on the Airy .Heiskanen
hypothesis ( depth of compensation = 30 Km ) have been used

because gravity anomaly maps based on these reductions

were readily available.
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CHAPTER 4

GRAVITY ANOMALIES.

4.00 @General.

The gravity anomaly , Ag , 1s the difference between
the reduced value of g ( from observations ) and the
theoretical value of gravity ; G.

éﬁg =g + corr - & usually expressed in mgals
where g 19 the observed gravity and corr 1s the correction
ag obtained from one of the methods described in chapter 3.

The formula for the value of the theoretical ( normal )

gravity is

G = 978.049 ( 1 + ©.0052884 singfzﬁ—- 0.0000059 sinEQCP) gal

| O Vi DI
where 4?18 the latitude.

~ This equation was adopted by the International Union of
Geodesy and Geophysics in 1930 ( Stockholm ) and 1is based

on the absolute value of g of 981.274 gals measured at
Potsdam by Kilhnen and Furtwingler in 1906 . ( HZISKANEN 1958a;
JORDAN 1958 ; PARASNIS 1962. Note : Parasnis has omitted

the seventh decimal figure in the second term of (4-1)

above ). The co-efficients of (4-1) were com,uted by
Heiskanen ( in 1928 ) and Cassinis ( in 1930 ).

HEISKANEN 1958a suggests that the Potsdam value must be
corrected by between ~10 to =15 mgals. Since the eiact
correction is unknown , successive General Assembliesvof
theI.U.G.G@ ( 1954 and 1957 ) decided to await more
information before making any change. Heiskanen's
Columbus Group calculated a gravity formula using up to
date ( 1957 ) gravity anomalies. The difference between
the two formulae is gmall and Heiskanen recommends that
formula (4-1) be used until new gravity material and new
methods change it considerably. ( HEISKANEN 1958b ).

The international gravity formula (4-1)ic a function of
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the latitude and as such is a function of the International

Spheroid. The main parameters of the Internatiqnal Spheroid
are

semi-major axis = 6 378 388 metres

flattening = 1/297.00 (JORDAN 1958 )

The gravity anomaly , Ag , is required all over the
earth's surfacé to evaluate the formulae of Stokes and
Vening Meinesz. The practical application of these formulae
pregent difficulties due to the scarcity of gravity
information in large portions of the world and the fact that
very seldom are gravity observations equally numerous on
high and low ground. ( COCK 1950 )

Recent advances in gravity surveying have included
gravity measurements at sea and in the air as described in
chapter 2. At the present time the gravimetrically unsurveyed
areas of the earth are large and the main problem is to
decide what gravity anomalies to assign to these areas.

4.01 Anomalies in unsurveyed areas.

All the problems of physical geodesy can be solved if we
know the gravity anomalies all over the world. But a 1arge
part of the earth's surface consists of oceans and land
areas which are gravimetrically unsurveyed. The question
of how to fill these gaps in the gravity anomaly field arices.
The making of additional measurements in these areas will
take time and , especially in the oceans , certain technicel
difficulties will have to be overcome. But rese;rch in the
field of physical geodesy cannot wait for these additional
meagurements , so some way mudt be found to fill these gaps.

The method»used by fesearchers in this field is to fill
thegse gaps by extrapolation. This extrapolation can be
done by either statistical methods or by geophysical
methods. The results required from these methods are mostly
in the form of mean area anomalies i.e. the area means of |
squares 1° or 5° or 10° and so on. For calculations for
deflections of the vertical,point anomaly predictions are

- required.



26

Resgearchers working with statistical methods have made
much progress in-this field. The error of representation
has been evaluated , predictions have been made using
estimation techniques , least squares techniques and
using Fouriers series and spherical harmonics.

( RAPP 1966 , MATHZIR 1967 ).

The statistical method , however , cannot be used over
long distances or for very large areas and in these areas
the geophysiczl method 1s used. In this method use is
made of the fact that the earth's crust is in isostatic
equilibrium. This means that the topogrphic and bathymetric
masses are more or less balanced by compensating mas8es.

We therefore expect the gravity anomalies and the geoidal
undulations to be relatively small., Knowledge of these
topographic and bathymetric masses enable the effect of the
lgostatic compensating masses to be estimated and the
gravity anomalies caused by these compensating masses are
obtained. This method has been widelyiused especlally by
the Columbus group.(HIISKANEN 1965 and 1966).

For details of some of the above methods see ORLIN 1266.

When considering these extrapolation methods , one
must remember that a prediction remains a prediction and
that the ultimate test of whatever theory is being used
is to compare the predicted anomaly with the observed

anomaly.

4.02 Summary and analysis.

‘ depeniding on
Gravity anomalies can be of different kinds =~ '

which particular reduction méthod is used to obtain the
correction to the observed gravity. In general
gravity anomaly = observed gravity + correction obtained
from particular reduction method

+ theoretical gravity as from (4-1)
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For example , we have

Free alr anomalies = observed gravity + free air correction
-~ theoretical gravity
Bouguer anomaly = obsgerved gravity + Bouguer correction |
+ free air correction .+ terrain
correction -~ theoretical gravity
( The numerical value of the bouguer correction
is negative )
Isostatic anomaly = observed gravity + free air correction
| + Bouguer correction + terrain
correction - theoretical gravity
For South Africa , HALES 1962 used
Free air anomaly = g + 0.3086 ( 1+ 0.00071 cos 2<p) h
- G mgal ~
Bouger anomaly = g -~ ( 0.1118 h + B ) + 0.3086 ( 1 +
0.00071 cos 2<p) h -G mgal
Isostatic anomaly = g + 0.,3086 ( 1 + 0,00071 cos 279) h
- ( 0.1118 h + B ) + I, - G
where B = a curvature correction
In = isostatic correction
As mentioned in chapter 3 , Bouguer anomalies cannot

be usged in geodesy.

Figures 4/1 and 4/2 show the gravity anomaly profiles
along 26° South Latitude and 28° Zast Longitude resp.
( i.e. they are two South African profiles at right angles
to each.other ). They were compiled from the data published
in SMIT 1962 and HALES 1962. The isostatir .nomalies in
these figures are based on the Airy-Heiskanen system with
a crustél thickness of 30 Km.

In the study of these figures we note the following

interesting points :~
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4RAVITY ANOMALY FROFILE ALONG 29°SCUTH LATITUDE
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(a) The Bouguer anomaly profile takes the form of an
exaggerated mirror image of the topographic profile. |
High mountains give large negative Bouguer values.

(b) The free air anomaly profile follows the
topography more closely than the isqstatic anomaly profile.
The free air anomalies are therefore more representative
of the topography than the isostatic anomalies , while
the Biuguer anomalies are more representative of the
topography ( in a negative sense ) than the free air
anomalies.

(c) The isostatic anomalies are , in general ,'smaller
than the free air and Bouguer anomalies. This is an.
important fact , because if we use isostatic anomalies
for calculations and give the value zero to the
unsurveyed areas , then we are nearer the truth than with
free air and Bouguer anomalies. For this'reason the
isostatic anomalies will give a smoother figure of the
earth. ( i.e. geoidal heights ). SZABO 1962 says that in
most parts of the world the isostatic anomalies are smaller
because the 1sostatic compensation has a smoothing out
effect upon the geoid

'The points noted from figures 4/1 and 4/2 agree with the
data published by BOMFORD 1962 and HEISKANEN 1958a.° |

From a practical point of view , the computation and
drawing of isbstatic anomalies involves much more work
than for free air anomalies.

KAULA 1953 says that gravity anomalies must be reduced
to sea level for application of Stokes' and Venning Meinesgz
formulae and therefore recommends that free air anomalies
should be used. He also makes the point that further than
12965 from the computation station either free air or

isostatic anomalies could be used.

30



Ag far asg can be ascertained , SZABC 1962 is the only
person who has used both free air and isostatic anomalies
for the computation of defiections of the vertical at a
number of points. In his comparative studies he shows
that the deflections computed with isostatic anomalies
are in reasonably good agreement with those computed by

using free air anomalies.

31



32
CHAPTER 5

HZIGHTS ABOVE 3ZA LIVEL

5.01 General.

The general fomula for the height systems at present
being used in the field of physical geodesy can be
expresged as follows

Height =

m[ Q

where C = the geopotential number
& = the vélue of gravity
For the dynamic height system , & = thé normal gravity
at an arbitrary latitude. -
‘For the orthometric height system , G = the mean actual
gravity value along the plumb line to the geoid,
For the normal height system , G = the meaﬁ normal

gravity value along the plumb line to the reference spheroid.

( HEISKANEN 1967 )

5.02 Geopotential numbers.

The geopotential nuﬁber , C , 19 not a height in a
geoﬁetrical gsense but it is important , becausge it 1is
the most -direct result of spirit levelling. It is a natural
measure-even if it does not have the dimension of lengﬁh.
The geopotential number of a point is the differehce
between the potential at the geoid and the potential aﬁ
the point. It is expregsed in geopotential units , g.p.u.
l g.p-u. = 1 Kgal.metre = 1000 gal.metre iand ‘
C = 0.98 H approx. where H is the height above.mean sea,

level in metres.
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5.03 Dynamic heights.

Dynamic height = DH = E;:

where ¥, 18 the normal gravity at an arbitrary
latitude on the international spheroid. This latitude is
usually 45° and X, .= 980.6294 gals. |
| If N 1is the sum of the levelling increments ( i.e. the
height differences as measured by a spirit level ) - then

DH = N + DC
where DC 1s the dynamic correction.

g -0,
o

DC = N where g = mean gravity. between

the points whose dynamic height 1s being determined.
( Details and derivation of DC are given in BOMFORD 1962
and HIISKANEN 1967 ) |

Dynamic corrections are large. For example , g between
Bloemfontein and Kimberley is about 978.9 gals. ( SMIT 1962 )
If 8,= 4= 980.6 gals then the dynamic correction between
Bloemfontein and Kimberley( height differéncé = 666 feet ,
see TRIGSURVEY 1966 ) is

978.6 - 980.6.

DC = 666 = =~ 1.16 feet.
980.6

Because of the large corrections to the measured height
differences , dynémic heights are not much used for practical
purposes.

The dynamic height is the distance between the geop
through a point and the geoid measured along a plumb-
line at some chosen latitude , usually 45°. Dynamic heights
therefore have no geometrical meaning but are significant
in that points on the same geops have the same dynamic

height .



34

5.04 Orthometric height.

c
Orthometric height = OH = —

&m
where g, 18 the mean gravity value ( along the plumb
line through the point whose OH 1s being determined )
between the geoid and the point.
OH = N + CC
where OC 1is the orthometric correction.
HEISKANEN 1967 gives the following Ledersteger relation
between dynamic and orthometric heights

where A and B are points on the earth's gsurface and
A' and B' are the corresponding points on the geoid
and the dynamic corrections are as given in 5.03
TRIGSURVEY 1966 use the following relationship
0C = - 2B.N.sin 2¢ N -
where B = 0.002644
@ = mean latitude
A9 = difference in latitude.

Orthometric corrections are generally small. For example ,
the orthometric correction for the levelling route from
Bloemfontein to Kimberley ( height difference = 666 ft )
ig + 0.,1168 feet i.e. about 0,018 ft per 100 feet of
measured height distance. ( TRIGSURVEY 1966) Because
orthometric corrections are small , orthometric heights
can be obtained with great accuracy.

The orthometric height 1s the geometric distance between
the geop through a point and the geoid measured along

the plumb line through the point.
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5.05 Normal heights.

MOLODENSKY 1958 introduced the concept of normal heights
in his study of the figure of the earth.

C
Normal height = NH = —
Sp

where g, 1is the mean normal gravity along the plumb
line between the point and the reference sphefoid.

The normzl height is a geometric height above the reference
spheroid. The surface which is always a distance NH above
the reference spheroid is called the " telluroid " by
HIRVONZN 1960. The locus of points whose distances below
the actual surface of the ecrth are equal to the normal
heights , is called the quasi-geoid by Molodensky. The -
quasi-geold has no physical meaning and is not an
equipotential surface.

Normal heights , telluroid and quasi-geoid are terms.

used in the modern methods of determining the figure of

the earth. Sece HIISKANEN 1667.

5.06 Trigonometric heights.

As trigonometric heights are obtained by observing
vertical angles and as these angles are with reference to
the direction of gravity at a point , these heights fall
within the scope of physical geodesy.

If a single vertical angle is taken , then the computed
height 1is the orthometric difference of height above a
spheroid whose axes are the game ag those of the reference
spheroid. But in thils case the spherold is tangent to the
geops at the point of observation. If reciprocal vertical
angle obgervations are made , if the deflection of the
vertical 1s the same at both ends of the line and if the
geoidal section can be represented by a circle , then the
mean computed height differences give the difference of

orthometric height above the geoid. ( BOMFORD 1962 ).
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A large factor in trigonometric heights is the effect of

atmospheric refraction , which to a certain extent is

eliminated by taking reciprocal observations.

5.07 Barometric heights.

Barometric heights fall into the field of physical
geodesy in that they depeﬁd on the variation of gravity
with latitude and with altitude. But as the accuracy
obtainable is nowhere near geodetic standards , barometric

heights will not be discussed here.

5.08 Accuracy.

Dynamic and normal heights are as accurate as the
geopotential numbers. If , for the geopotential number ,
we assume a standard error of + O.1 mm per Km of distance
for geodetic levelling , then the geopotential number can
be determined with an accuracy of + 0.1 gal.metre per Km
of distance. (HZISKANEN 1967). i.e. 1074 g.p.u. per Km of
distance. |

As orthometric heights depend on the mean gravity along
the plumb line between the point and the geoid , they also
depend on factors such as the density below the point.
This information is not known exactly. BOMFORD 1962
states that the mean gravity , gn » can be estimated to
about 1 in 1C QOCQ,.

In trigonometric levelling , the uncertainty and
variations of the atmospheric refraction make an accuracy
of greater than 1 second of arc in the vertical angle
difficult to attain. Over a distance of 1C Km , the
standafd error of the elevation difference for reciprocal
observations is + 10 cm, (HEZISKANZIN 1967). If short distances
with reciprocal angles are observed , fairly accurate

orthometric heights above the geoid are obtained.
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CHAPTER 6

DEFLZCTIONS CF THE VIRTICAL

6.00 General.

earth's surface

referénce
\ spheroild
L _

//////

FIGURE 6/1

In the above figure , P is a point on the earth's surface.
The geop passing through P , the geoid and the reference
gpheroid are shown. The curved line L¥ 1isg the piumb
line passing through P. This plumb line meets the geold
at P'. PA and P'C are the normals to the reference
spheroid. PB is the vertical at P and F'D 1is the
vertical at P'. The position of P 1s given by the astronomical

;1atitude and longitude ( as observed ) and the
position P" is given by the geodetic co-ordinates of P

as computed.
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Congider PB and FP'D as gra§ity vectors and PA and
P'C as the normal gravity vectors ( I.E. perpendicular to
the normal earth or reference spheroid. ©See section 1.01.)
Then the difference in direction between PA and PB is the
ashronomidalx?deflection of the vertical and the difference
in direction between P'C and P'D is the gravimetric
deflection of the vertical. Both these deflections are
deflections as refered to P ,.the point on the earth's
surface.

As LEDEIR3TIGER 1956 points out , " deflection of the

veftical 1 is<really 4 misnomer. The vertical is defined
by the plumb line , we cannot therefore gpeak of a deflection.
A better expression would be " deflection of the normal."

Wote:~ The difference in magnitude between P'C and
P'D 1is the gravity anomaly at P. (Not at P'.)

The definition of the astronomiéideflec%ion of the vertical
given above is known as Pizetti's definition and that for
the gravimetric deflection is known as Helmert's definition.

Although the gravimetric deflection 1is regarded as the

1] n

absolute deflection , it is dependent on the parameters

of the International Spheroid. Strictly speaking there is

" absolute deflection " because there

no such thing as an
is no absolute reference surface.

If figure 6/1 is considered as a north-south section ,
then the angles APB and CP'D are the north-south
components of the respective deflections and if the
figure is considered as an sast-west section then these
angles are the east-west components,

For_astronomidﬂdeflections of the vertical

the north-south component = £>a
the east-west component = "«
For gravimetric deflections of the vertical
the north-sou&h component = %fj
the east—westf component = 1 g
z

And in general,the deflection = J &£ +n



6.01 The astronomical déflecﬁion of the vertical,

We have the following relationships
Sa= Yau - ¢
Ma = (Aa=~ A cos <§)
also Na = (= Nl)éﬁ+%0
where 4; s Aus K, = asStronomical latitude , longltude

and ézimuthék

I

4), A s geodetic latitude , longitude and
AA azimuth. |
The astronomical deflections are relative‘because they
depend oﬁ the géodetic co-ordinates 4% A, Oﬁ These
geodetic co-ordinates , in %Wurn , depend on
{a) the particular reference spheroid used.
(b) the orientation of ﬁhe reference spheroid i.e. the
‘defleétion components and azimuth adopted at the
initial point.
(¢) the accuracy of the triangulation net , which

involves many factors.

6.02 {Corrections to the astronomical deflectionssv

In.order to compare asgtronomical deflections with
gravimetric defléctidns , certain corrections have to be
applied to the former. ‘_These corrections arisevbecause of

(a) the different star catalogues which-may have been
used in the compﬁtations ; | A o

(b) the variation of the pélev;:

(c) the fact that astrondmidal'deflections are usually
referred to the earth's surface while gravimetric
’deflections'are referred to the geoid;

(d) the fact that the spheroid used when calculating
the astronomical deflections might not be the same
as the spheroid used in the International Gravity

Formula.

39
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6.63 Reduction to the same stap catalogue.

It 1s.possib1e that the astronomical latitudes and
longitudes have been observéd and computed over a large
number of years and that diffeﬁent star catalogues have
been used in the computations. These computed values ,
for the pufposes of comparison , have to be reduced to the
same star catalogue system ( usually the FK4 system).
These reductions are done by using specially prepared

tables. ( RICT 1952 )

6.04 Variation of the pole

The pole of thé earth wanders around 1its mean position
along an irregular path whish:lies inside a circle.of
about 1C metres ( or 0.3 seconds of arc ). All astrongﬁical
observations have therefore to be reduced to the same epoch.
The corrections to the latitude and longitude as
computed are
d?’? = - Y sinA + X cosA
d(ﬂj—ﬂ,) =- (Y cos;R2+ X gin \,)tan 2
+ ( Y cos A, +X sin A\, )tan @,
where,R = the longitude of the point , positive eastwards
from Greenwich.

X,X = co-ordinates of the pole in geconds of arc
referred tc its meaﬁ position. ( Published by
the International Latitude Service.)

The suhscript " 1 " refers to the observatory sénding

the time signals and the subscript " 2 " refers to

the computation point ( i.e. the field station).

6.05 Reduction to sea level.

As explained in €.CC the astronomical deflection refers
to a point on the actual surface of the earth and the
gravimetric deflection refers to a point on the geoid.

In order , therefore , to compare these deflectiéns a

sea level correction must be applied. This is done indirectly
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by applying the corrections to the astronomical latitude

and longitude.

As an approximation , the correction to the observed

latituge = 44 = < 0000171 h sin 24 g
whefe <f = latitude of computation point
h = elevationvéf point in metres
( DERENYI 1963 incorrectly dives thé co-efficient as
0.CO171 ).

The above correction is consistent with the International
Gravity Formula (4-1). As this formula has no longitude
term , no correction is needed for the astronomical
longitude.

GILL 1896 used the reduction - 0.052 h sin 2¢ where
h = height of station in Kilo-feet for the South African
Geodetic Survey. This is the same as the previously
mentioned refuction for h 1in metres,

In reducing the astronomical point to sea level , we
must also take into account the curved line of the plumb
line ( or the irregular gravity anomalies ). The further

corrections which are needed are

SAs
af = olele— h
b x
DN E
a A =(ﬂ21§ Z—h
oY

gﬂg Mg
where -= and
§ x Sy

are the north-south and east-west

gravity gradients in milligals, and h is in the same
linear units as X and Y, |

In practice , the above mentioned three corrections
are the only ones applied for reduction to sea level.

( RICE 1952 )
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6.06 Change of spheroid.

We use approximations of the VINING MIINESZ 1950
formulae by leaving out squares and products of small
gquantities. '

d% = [ sin (CP*(PO)~ 2 cos 4750 Sin ‘{9 5’."’2'21’ ()\”;(o)j A/‘%

—[4 cos @ cos L (P+ P> sim 4 (c{)-c'&;g)j JARS
(24 Rtan o sind o) sin (P PINAX (51

C;Q = — cos Qo sin (A= A) Af3

M ;1"—' SN (po.s}n 4—%6;:9 Sin ( R“RCJBD< ACS (.6"2)
where d%’ = correction to 5)q
dfl = correction to ia

N
1

o

¢,

qJ,A, = geodetic co-~ordinates of computation point
yal

geodetic co-ordinates of initial point

1S
I

( major axis International Spheroid )

1

( major axis local spheroid )

A= = ( flattening International Spheroid )

!

. ( flattening local spheroid )
AB = 224 sin”Po Ax

Notes: (1) —d§ 1s the change in the geographical latitude
and —dnscc @ 1is the change in the geographical
longitude at the computation point due to changes
in the elements a and o of the spheroid.

(2) These formulae are approximations which asgsume
(a) changes of the éemi axis of the spheroid are
not greater than 1/20C 000 th part of these

yaY=% AN =
axes. Therefore squares of — and 5~ have been

neglected. Alsoog‘€§5 and <i2£%? have
been neglectéd

(b) *Oecand «xAB have an order of magnitude of
less than 1 in 6 000 000 and therefore when
they are multiplied by terms containing squarc.
and products of O@vq%}and (A - A.)we can neglect
these terms.

If the triangulation system being investigated 1s of world

wide extent , then the above assumptions should not be made.
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For South Africa :-

&
A, = 25° 30" 449622 zast,}

Ao = ( major axis International spheroid )

33° 59' 32900 South )

i

Buffelsfontein

- ( major axis Modified Clarke 1880 spheroid )
( 6 378 388 - 6 778 249.145 326 ) metres

i

( JORDAN 1958 , HEINDRIKZ 1956 )
= 138.854 674 metres
/el = 0,0033%6 70033 67003 ~ 0,00340 75461 94953
( JORDAN 1958 , and evaluating f given
by HENDRIKZ 1956 )
= -~ 0.,00004 05428 27950
AR = + 0.00000 90982

6.07 Re-orientation of spheroid.

d5 = 2 [eos (= Po)=2sin Psin Po sin? 2 (A=) Jd o
+ No sin LP sim(A—-Ag) d’ﬂ(o

x|z

-+ }\‘/'—; l:Sl'(“] (YCP~ CPOD*Z 5;)'—7 q) Cos @C’ 5;’72% (/;\'—Ao>j d NO

Cll‘L = - Mo s o 5iﬂ(A“]o> d%o
cos (A=A dro

,
+

z|- 2|2z

oS <f)'()o sim (A= Ao) d No

where
d§ = correction to &,
dn = correction to r
Mo= radius of curvoture of weridian at initial point
M = radius of curvature of meridian at computation point
N&: radiug of curvature of prime vertical at initial point

N = radius of curvature of prime vertical at computation pt

dé;#b deflection components at initial point

(N> = geoidal height at the initial point
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For South Africa :-

Mo
No
de, = 0, assumed ( or 3V46 to North using TSO 1954 )
d .
dNgo

i

20 850 330 Eng. feet. (UCT 1965)

i

20 948 500 Eng. feet. (UCT 1965)

H

O, assumed ( or 088 to West using TS0 1954 )

1}

O , assumed.



CHAPTER 7

GRAVIMETRIC DZIFLECTIONS OF THE VERTICAL

7.01 General.

On 23rd April , 1849 G.G.Stokes read a paper " On the
variation of gravity at the surface of the earth " to the
Cambridge Philosophical Society. ( STOEKES 1849 ). Since
then the calculation of geoid undulations using gravity
data has been one of the clssical pfoblems in geodesy.

In 1928 Vening Meinesz , using Stokes' results , deriVed
formulae for calculating deflectioné of the vertical using
gravity anomalies. ( VINING MZINZSZ 1928 ). From the
theoretical point of view , not much need be added to the
Tformulae obtained by Stokes and Vening Meinesz.

These formulae presuppose compiete and comprehensive
gravity data over the whole earth. The fact is that this
complete gravity data does not exist and it does not seem
likely that such coverage will be posgsible in the near
future. In view of this , angd other considerations , the
formulae derived by Stokes and Vening Meinesz must be uéed

in a modified form.

7.02 Basic Theory.

In the following review of the basic theory , we will
use the nomenclature in general use tbday and not the
symbols used in the original papers quoted.

In article 31 of his paper , STOKES 1849 arrived at
a formula for determining the geoid from gravity

observations , namely

45



oy 2 m 46
N :‘zﬁ:gf da] Ag. f(w)sinyp. dy
o o :

CRCRCRE B B R B B (7‘—1)

where N = geoidal height
R = mean radius of the earth
& = mean gravity

ZXg = the gravity anomaly

Zlf(xi))-_- cosec Vo +)—4é5,',q\}’/1 ~Sros Y o
— 3 o= P )oqe [5,',,, \\)/2 C)+5,l/7 ]Vz_>j seee (7"‘2)

1#/0, = polar co-ordinates of the point where Aﬁ applies.
(the centre of the co-ordinate system 1s where
N applies)
Note : In the original paper , STOKES 1849 , and in some

gubsequent literature , the constant in equation
l’\

4ne

function of Y used is equal to twice. the value of

(7-1) is given as In these cases the
f(?) above .

Zquation (7-1) is called Stokes' Theorem and it enables
us to find the geoild ( or the geoidal heights ) over the
whole earth , provided the gravity anomalies over the whole
earth are known. But as f(y) is small for great distances
from the point where N 1is being computed. , distant
anomalies have a smaller effect.

Becauge of the manner in which (7-1) has been derived ,
the theorem is valid only if no masses are present outside
the geoid. Hence we have the varlous reduction methods
as described in chapter 3. HIRVONEN 1962 says , " The
conclusion can be ﬁade , however , that the errors caused
by the theoretical defects of Stokes' formula are
egsentially smaller.than the errors which still at present
and long in the future will be caused by the scantiness

of the gravity measurements actually carried out. "



The gravimetric deflection of the vertical is the slope
of N. This deflection caﬁ be expregged in terms of the
two components ,453'iﬁ the north-south direction and 1 q
in the east-west direction.

Note : The suffix g to 5 and r will be omitted
hereafter and gravimetriclcomponents will be
agsumed unless otherwisé gtated.

DN TaN
6 = e —— and n = cesencsse {T7=3)
20X ?5Y

The minus sign in (7~3)vis a convention used to
correspond with the definitions

%5 = ( astronomical latitude) - (geodetic latitude)
q‘ = ( astronomical longitude - geodetic
longitude) x ( cosine geodetic latitude)
ceevasesssss (7-32)
( HZIISKANEN 1967 )

In (7-3) X 1s taken in a north-south direction and
Y 1sg taken in an east-west direction being positive
towards the east.

In 1928 Vening Meinesz differentiated Stokes' theorem
to obtain the deflection of the vertical

, Wwhich can be

expressed as follows :-

L 27T ﬁ“{, )
4”:—*—-—— o C{ ar \.f Ad
- 2me ), =70 Qfo dy oS ¥ 7\..(7—4)
. 2T T

> | d {(y) _ | j

V= ghg ) sine C‘C‘fo WSW’MM |

SOLLINS 1947 has computed tables for %%Kyjsiniy ;
Jdﬁw l A () ke

Iﬂ\l L-\"/ C{’I’)

Notes : (A) The gravimetric defleétions calculated from
(7-4) under ideal conditions ( a knowledge of
gravity over the entire earth's surface )
represents absolute values in contrast to
astronomical deflections which represent
relative values. ( See 6.00 with regard to

" absolute " values ).

47
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(B) For the calculations of the gravimetric

deflections , the following conditions must

apply :é

(1) The gravity field observations must be
converted to the same world gravity system;

(2) The gravity formula used must give the value
zero for ‘the mean gravity anomaly of the earth;

(3) The flattening of the reference spheroid and
that of the spheroid used in the theoretical

gravity formula must be the same.

T.03 A practical computation procedure.

The literature in the field of physical geodesy shows
that the theoretical developments of the concepié'ére
usually more.advanced than the practical appli¢atiQns of
these concepts. This is mainly due to insufficient gr&#ity
material being available.

The problem , then , in the application of the theory
is to work out a practical method for performing the
computations. The gravimetric methods used to compute the
vertical deflection components will depend on the behaviour
of equation (7-4) when HJ is small.

The principles uged in working out a practical computation
procedure are |

(a) The gravity field immediately surrounding the
computation point plays a decisive part in the deflection
of the vertical ; "

(b) The effect of the distant areas ,.while‘not being
neglected , play a smaller part in the deflections ;

(¢c) At the computation point , the Vening Meinesz

formulae are indeterminate.
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~ 7.04 The square method.

if we consider a surface element to be represented by
an infinitely small square dq , we could replace

v‘ﬁn’wmhywﬁﬁ by dg in equation (7-4) and get

44 )
é = —ﬂ_é;~ —— 0% Q,ZXﬂ.Chz
ZN G i, dfw ] ceets (7”5)
v 2 ELEEEQ . A d
n'" - Zﬁ.._.G i (17}) Sima . 49 2

Note t @ , the azimuth of dq , is measured from South
through West.
If we now replace dq by a small square of finite
dimension q and evaluate the constant taking f = 206265" ,
G = 979800 mgals , we get |

g " cHECY) .
%7 = —-O-§D335 Zi erw cos O»,%L,ZSER

ceees (T=6)
rL”: — O.lb3352 QIT{(—W“S"W X (L A_Cf

a

This summation must be extended over half the earth
around the computation point.

The use of equation (7-6) is known as the "square"

method. ( The figures are actually aspherical trapezolids ) .

7.05 To calculate the area of the square , q , in (7-6)
we usge the'following formulae ( JORDAN 1958 ) e

2
beTT AA A .
a ( sqe Km ) = (A cos<?sin—§E— B cos 3<Psin 3 AP

90 < T2

Y A A
+ C cos 5Psin 5j£E -~ D cos 7@ sin 7—252

+ & cos 9<psin 9f%§1 ceetennne)

IS

sessses o e (7“7)
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where

A=1+2e%+ %e4‘+ ,—f;e6 + 8 Z%Zelo
C = ééeA + %5e6 +-§%e8-+£%%elo
D = —‘—lee6 +2—5~S<ﬂe8 +5—'%e1O
5 = z——g%z‘, 8 +%elo
F = (eézelo

e = eqcentricity of the spheroid. ( For the international
spheroid e° = 0.00676 81701 97224 ).

b = semi-minor axis of the gpheroid. ( For the international
spheroid b = 6 356 911.946 13 metres ). o

¢ = mean latitude.of square

A¢= difference ( in degrées ) between northern and so@thern
limiﬁé of Squére. |

AR

i

difference in degrees between eastern and western

limits of square.

7 .06 The azimuth , 4., and the angular digtance , ﬂy 4

required in equation (7-6) are obtained as follows :-

F
<o
P
?/ Q0 - CPO

A
%T\\ e
% NS LI>\ 4

z

N Gouth Pele

Ih the above figure

Y
i1

computation point
Qo = latitude of computation point
Ei = centre of square g

¥

7
AA = difference in longitude between f%» and }%L

{5 = Latitude of

Cos Y = sin o Sin Wy + cos Lo cos ¥y coz AL (7-8)
COSCPCL Sim A . '

S ’1%/

.‘ . -
S Q<
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7.07 The last quantity needed to compute equation (7-6)

S d £ y)
i ?I;¥—~
From equation (7-2) we get
cos Ya
—C—j——f—cw—)» = - 0125 - 2 = 1.5-008 L-\)/Z + 2.5 Sin\-})
dy sin2 Y,

+ 1.5 sin Y logo( sin™, + sin®V), )

- 0075 (

1+ 2sinY, -
! /Z)Cotf’)}/lcos'\%) cesbn e (7“9)

1+ sin¥),

and SCLLINS 1947 has given

f%ﬂ&?sinlp =3 [— cosec?&»~ 3 -8 8inY, + 32 sin2'$§
4y

~

+ 12 sinB'Vi - 32 sinA'%%

+ 3 sing’Y)loge( sin¥, + sing'%@A{j.... (7-9a)

7.08

When using equation (7-6) for computing £ and m for
any point , we divide the earth into 1° x 1° or 5° x 5°
spherical trapezoids ( "squares" ).

HEISKANEN 1959 says that expefience has shown that for
radial distances greater than 20° from the computation
point , 5° x 5° squares should be used and that for |
radial distances from 3° to 20° from the computation point |,

squares of 1° x 1° should be used.

For radial distances of less than 30 from the computation
' d{y)

A 7{)
approaches infinity as ’Q) approaches zero and therefore

point , the squares have too large an effect,as

a different method of computation will have to be used.
In this case a further sub-division is made and we use

the " circle-ring " method.
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7T.0¢ The circle~ring method

Equation (7-4) was —

e B (Tgada | AEW) giny, Ag A Y
5 277 ¢ Jo cosada |, gy |
From this equation we get

YAl - )+ ‘L)’
s —4_70.__ q(; v e e () ) WJI,AC (,3,’\7‘)
b5 ne s i

g yedy
i Y- 7[ {(s)na, — el H1) ,’n")A(: ,d'l
5 = -- - 1l Jl; Fly)sinyy Ty ﬂ 2..(7“10)

m Y —;—(.f'\a\} e - }
P f (cos a, ~ ¢cs a?_) qu {’(W}’)Sm y -AJ‘\))-C/V ‘j

where 5" and dn are the effects on the components
f;l and !L” of a circular ring compartment ( with radial
boundaries_\ﬁ_ and 7¥+d95 and azimuth boundaries «, and a, )
and the gravity anomaly Zﬁﬂqv |

The best practical procedure is that suggested and used
by RICE 1952. This is a modification and improvement on
Kasansky's method. ( SAKATOW 1957 , HEISKANEN 1958a )
Rice used circular templates having a uniform angular
aperture of 1C degrees . The tables published in SOLLINS
1947 were used and radii computed so that thé effeét of
each compartment has a radial deflection effect of
0.001 seconds of arc for a meén anomaly of one milligal.

Pl d ) sin Y.<y da=0001 always. The radit

(S —- -
276 dy :
in this case are in geometric progression with a common

ratio of 1.1864. The mean gravity anomaly of each
compartment is estimated and the effect of each compartment
ig computed. This effect 1is multiplied by cos a

and the summation gives the total effect on %5
Multiplying the effects by sin a and summing gives the.
total effect on r{_

In using Stokes' function fﬁﬁ( and its variations) as
outlined above for determining gravimetric deflections ,
finite summation cannot be applied to the area immediately
surrounding the computation point. In the region within
about 10 Km of the computation point , we must therefore

use & different method.
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7.10 The gradient method.

In order that the integration should lead to a finite
result , the gravity ahomaly of any point , in the small
region surrounding the computation point , can be expressed

as a function of position.

Regard 8 circular area with radius r around the

computation point as a plané region. Take rectangular
co-ordinates with the origin at the centre , the X-axis in

a north-south direction and the Y-axis in an east-west

direction. Agsume that

A%:A'%o +X£‘/é§+¥ SA%
§x Sy
§lg S e
—_ (7-11)

= Zﬁgo + r cos a
§ x

Congider the earth as a gphere with radius R

, r ' dr
1# = — and cjw/ = — Substitute these values
T R R
in the first two terms of equation (7-%9a) and we get
) . /1 3 ) '
d{<.u)} S;n\f/d\{) <—'—_ +‘;E‘{‘"'ﬂl" R EEERE R (7“‘12)

qu

Subgtutute (7-11) and (7-12) in (7-4) to obtain

I 2)1 ':()L\S (/lq -
/\c +r cos 4 - -{—rsu‘)q Jy cos a ‘t ZR‘JC}Q el
o

d% = 5/ (_(7)(
O
'r T . ( (7-13,
N2 e Aq -A—C—\ R - ,
Q 276—/ J[Etﬂf+rc S +rsina VLJQ”CQ¢’+2R]AG“dr'
and the integration of (7~13) gives
» " NP B WAY
dg” = 4§ {ra~+4§%r;<] T }\ |
QJL ) ()x ; s s s e 000 e (7"‘14)
., £ 3 JAJ J
c};‘{ = ‘2—{;.}\'0 + J

and rz

i.e. we now have expressions for the portions of f}

contributed by the inner zone of radius Py e
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Substitute the values 979800 for G and 6371 for R

to get

_ ng
" 2 >
ds” = 0410526 [r, + 0.00012 r | —
ceveese. (7-15)
an" n 2 SAS
R = 0110526 [ro + 0.00012 r2 | -~
<&ﬁg élﬁg
where and are the gravity " gradients "

X Y

in milligals'in the north-south and east-west directions

§x 4y

respectively and ro=—= — in Kilometres
.2 2
A\&n
//'
| ‘\
! P
i o |
Agw : | 7A) 8o
\ //
/
. \,,_;___L '—’ - -
TAY:

The figure above shows the situation near the computation
point P, . The radius of the circle is r  and the
gravity anomalies at the north , south , west and east
points of the circle are Ag, , Agg , Ag, and Age
respectively.

Formulae {(7-15) now become

dg”
drﬂ

and neglecting the small term with ry we have

i

0905263 ( 1 + 0.00012 r,)(A g Q—Agn)

0105263 ( 1 + 0.00012 ry) (A gy -Agy,)

1

ds
an’

1

0%05263 (A gy -Ag, ) (7-16)
O':05263 (Age HAgw ) '---oaot.ooo
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From the above reasoning , we note that equationg (7-15)

and (7-16) are strictly valid only if the gravity gradient
is constant ovér the area within the circle 1i.e. we should
have parallél gravity anomal& contours at a uniform
gpacing. RICE 1952 has shown that even if this condition
does not apply , d%” and drﬂ’ could be evaluated to
sufficient accuracy ( if the local gravity survey is
adequate ) by increasihg the accuracy of equations (7-16).
This is done by taking four additional gradient>lines asg

shown in the figure below.

JAY:

9 W{ N Aan.

ﬂgwé z jﬂﬂe

i.e. the circle is divided into 45° sectors and Ag.y, ,
D 8ne » A 830 and A g, are the additional anomalies
at the north-west , north-east , south-east and south-west
points on the circle. |
The gravity gradients Ag, toAgg and Ag, to Ag,
are given weight 1 and the gravity gradients [Xgnw to Zﬁgne s

A Bgw tO Zlgse ’ lﬁ%hw to zﬁgswvand Zﬁgne to A gEge are

given weight 3 . When considering gradients of half weight

it must be remembered that the distance over which the
gradient applies is (2)”% of the radius. Taking the distances
into account and using the above-mentioned welghts , we
utilise all six gradient lines to get an improvement on
equation (7-16) , namely

dé”: 09026365 (Agg - [\gy) + 0101861 ) (Agge-Agne )+ dgsw—Agan]
dn'= 09026365 (Ag ~Agy) + 0101861 [ (Agge—Aggy)*+(Aene-lony)]

cesscssseesee (T7-17)
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RICE 1952 gives the following equations ( converted to

our nomenclature ) for the north-gsouth and east-west gradients
c OnlOS(XAg)

;= Y o

J

Y
= 0105 (Agg ~Neg, ) %
= 090525 (Ngg -Nen )
and similarly 1, = 0%0525 (Ag, -Ag, )

From Rice's results and his published free air anomaly
contour sketchés , Wwe can gdeduce that for the additional
gradient lines hé used

£, = 01105 (A ggq ~Aane (272
ov0742 (Agge ~Aene )
010742 (Aggy ~Agny )

I

U
W
n

N=2.=0%0742 (Agge ~Azgw )
s = otor42 (Ag,, -Aen, )
‘ 25 +&_ +
and mean & = ) 255
A
2Q| +QZ+rL3
mean q = A

The above will give results similar to those obtained
from equations (7¥17) but (7-17) are much quicker to use

and the mean is obtained directly.



7.11 Summary and analysis.

Considering thevbasic theory and the limitatlions of
some of the computation equations , We can set out a
practlical procedure for computing the gravimetric
deflections of thes vertical at a point , based on the
methods and suggestions of HIISKANEIN 1958a and 1958b  and
RICZ 1952, A summary of part of the following has been
published elsewhere in LOON 1967.

We divide our procedure into four stages. At the end of
each stage a portion of the deflection component is

obtained , so that
& 1z & +d3 s +dag

"

=
g
4"

i

cin + 42}14—d3r1 + g
Ceesersanees  (7-18)
Stage 1.

In this stage we use Rice's gradient method for
computihg the effect of the immediate neighbourhood of. the
station.on % and 7 . i.e. we compute <% and Eiﬂl -

A fundamental circle of radius between b.B.Km and 10 Km is
usually'recommended. The nature of the gravity anomalies
aroﬁnd the computatibn point will determine the radius’
chosen,i.s. that radius which will give a uniform gravity
gradient. The circle is divided into eight sectors of 45°
c¢ach to obtain the three north-south and the three east-
west gravity gradients. df and din are found by using
equations (7-17). | ‘
Note : For r. ,Rice used various values eg. 0.279 Km ,
C.554 Km and 4.320 Km. DI VOS VAN STZENWIJK 1947 used
30 Km. HZISKANZN 1958b suggests from 0.5 Km to 5.0 Km |

depending on the accuracy of the gravity anomalies.
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Stage 2.
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The area outgide the fundamental circls is now dividedv

into circular rings up to an angular distance of about 30

from the computation point.

The length of the radii of

these rings are in geometric progression with a ratio of

1.1864 and are divided into 36 equal compartments of 10°

angular aperture each.

The following table has boeen adapted from RICE 1952

Angular/éiétahce Inner radius Angular distanée Inhéf radius |
degrees Km degrees Km
0,004 0,467 0.129 14.29
0.005 C.554 0.152 16.94
0.006 0.657 0.181 20409
0,007 0.780 0.214 23.83
0.008 0.926 0.254 28.25
0.01¢C 1,099 0.301 33.48
0.012 1.304 0.357 39 .67
0.014 1.547 0.423 47 .C0
0.017 1.836 0.501 55 .66
0.020 2.179 0.593 65.90
0.023 2.586 0,701 77 .97
0.028 3.068 0.829 92,22
0.033 3,641 0.980 109.0
0.039 4.320 1.157 128.7
0.046 5.125 1.366 151.9
0.055 6.081 1.611 179.1
0.065 7.216 1.897 210.9
0.077 8.560 2.230 248.0
0.091 10.15 2.619 291.2
0.108 12.05 3.068 341.2

Table for radial deflection effect of 0Y001 with mean

compartment anomaly of 1 mgal and angular aperture = 10
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The average gravity anomaly for each compartment is
estimated. The effect for each compartment is computed i.z.
average gravity anomaly in milligals multipl¥ed by C.001
= effect in seconds of arc. These effecfs are added up for
each 10° sactor, This sum 18 then multipﬁgd first by
cos a then by sin a . ( Where a 1is the azimuth of the

© , 15° , 25° and so on ).

median of the ssctor i.e. 5
The sum of all the cos a terms gives d25 and the sum
of all the sin a terms givgs- dz

( RICE 1952 went up to about 458 and HEISKANEN 1958a
reports that the Columbus Group wet up to 998 for this
.methbd. As reported in chapter 8 , we have gone up to
about 8° in this investigation.)
Stage 3.

From 3° to 20° away from the computation point , the
mean gravity anomalies of 1° x 1° squares are used. Zquation

(7-6) is used in this stage and can be written as follows -

for the effects of any 1° x 1° square -

" oo _ clf(“u»’) . .
AE = ~0- 0335 dqj—aﬁ a.q-Ng = C'5 Agg
Ar - - byg
LU IO Y B 2N 2 I ) (7"‘19)
, {{
where C'§ = -0.0335 AW o s 2
I d—-—-———w{(w) =/ a . <
c'fz = — 00335 d'\)l St : L
a = azimuth from computation point to centre

of gquare. Use equation (7-8).
g = area of square. Use equation (7-7).

xﬁﬂﬁ = mean gravity anomaly of the square.
df ()

dy ,
¢'§ and <'rp , called the Vening Meinesz co-

can be found from tables, eg. SOLLINS 1947.

efficlents , can be computed beforehand.
%S and din are the summations of all the squations

(7-19)
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Stage 4.

" From 20° to the antipodes , repeat stage 3 above but

use 5° x 50 squares to obtain d,% and d,n

Summing up the effects obtained in these four stages ;
we then get the components of the gravimetric deflections

of the vertical at the computation point.

7.12. Other investigations.

Since Vening Meinegz's work on gravimetric deflections ,
many others have contributed to knowledge in tﬁis field.
For example -:i-

TSUBOI 1954 has used a method of calculating deflections
gravimetrically using the Bessel Fourier serieé and
neglecting the curvature of the earth. His results agreec
in the main with those of RICE 1952.

CQOK 1950 , using Jeffreys'' spherical harmonic development
obtained the following standard deviations of the different
sources of error for the caiculation of deflections of the
vertical :- ’

A single deflection , neglecting gravity outside 20°: 1"

Difference of deflections " i 5°: o5

Calculation of the effects of gravity from 0%05 to 5°: oY1

Calculation of the effects of gfavity within 0%05: between
Oyl and 0.5

WEISFELD 1967 worked from Stokes' formula and , by
applying the theory of distributions , arrived at
" the Vening Meinesz formulas with the singularities
removed." Weisfeld and Schubert maintained that the
me thod used by Vening Meinesz ( differentiation of the
integrand of Stokes' integral ) is not valid , in that ,
~at the computation point‘the integrals of the deflection
formulae are divergent. As far as can be ascertained ,
no practical tests have besn made using Weisfeld's formulae

DE GRAAFF-HUNTER 1951 has also re-derived the Vening

Meinesz formulae.



7413 Maps of deflections,

Tests were done using the results of RICE 1952 , in an
attempt to establish whether contour deflection maps could
be drawn and interpolations carried out. These tests
showed that interpolation of % and n on deflesction contour
maps was a hazardous process and should not be attempted.
Wherecas geoidal undulations are area values , deflection
components are point values. Attention is drawn to
LUNDQUIST 1966 where contour maps for % and n are drawn
at sea level , and at elevations of 1 000 ¥Km , 10 000 Km
and 100 00C Km. These maps are based on results obtained
Iin the Satellite Geodesy Program of the Smithsonian
Institution. Because of their scale , however , these

maps can only be generalizations.,

7.14 Anomaly maps.

The gravity anomaly maps for the computation of the
deflection of the vertical should be drawn on the
stereographic projection. The usefulness of this
projection lies in the fact that great circles passing
through the centre point are projected as straight lines
and that all circles on the sgphere remain circles on the

projection. The formulae used are

cos @ sindicos A -~ sin@ cos @

X = 2r )
1 + cos@Pcos fhcos A + sinPsin o

cos Pain A

1 + cosPcosfeosA + sind sin o

y = 2r

( JORDAN 1948 ) o ceessseeenss (7-20)
where r = radius of earth |

¢

A

@, = latitude of centre point

1

latitude of point to be calculated

I

longitude difference
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Using equations (7-20) , two stereographic maps were
constructed; Annexure 1 is a 1 in 3,50C,000 map of
South Africa with centfe,at 300 South Latitude , 250 Bast
Longitude. This map will be suitable for use with the
circle ring method. Annexure 2 is a 1 in 400,000 map
with grid intervals at 10 minuﬂes of arc and can be used
for the gradient method and for the circle ring method.
Although the centre of this map used in the construction
was 31° South Latidude 1, 1t could be used in South Africa

in the latitude belt 29° to 32° South latitude.

7.15 The effect on deflections of increasing gravity

field radius.
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Figure T7/1 shows the graphs of L{{v)=»n Y  1i.e. the

]
P

Stokes' function as used for calculating geoidal heights

and ﬁjij) Sin Y i.e. the Veninz Meinesz function used
for calculating deflections of the vertical. Studies by
the Columbus Group ( HTIISKANEN 1958b ) have shown that the
effect of the gravity field on the components of the
deflection decreases with the square of the diétance from
the computation point , whereas the effect of the gravity
field on the geoidal heights decreases with the distance
from the cémputétion point. An examinétion of figure 7/1
ghows the correlation between these findings and the

relevant functions.

The table on the next page has been compiled from
results published by RICE 1952 and KAULA 1954.

The points A, B, C , D and E in column 1 are Kaula's
points Conley , Stanforth , State , Columbus and Barr
respectively.

The points £ , F and G in column 1 are Rice's points

Twin , P

W and P, respectively.

The extension of the table ( columns 9 to 14 ) has
been calculated using only the & deflection components.
In this extension we have

column 9 = column 7 divided by column 8

| 10 = differences using column 8

11 = differences using column
12 = differences'using column

i
6
13 = differences using column 5
4

14 = differences using column



W Km [14.29 | 179.1 | 600 | 836 | 1406 | Whole field
72l 0% | 1% | 5% | %5 |12%65 180°
2 3 4 5 6 7 8
Al 5 +0.19 | +2.84 +2.56 | +2.61 +3.16
. (+1.35 | +2.71 +2,10 | +1.71 +2.92
B| 2 -0.08 | +1.37 +1.15 | +1.19 +1.74
2 1=1.13 | =2.90 -3.27 | =3.70 | -2.49
C ‘Cj‘ ‘“‘0058 "'Ocol "‘Oull “0008 +0049
Q‘ —2U11 "‘6.00 "‘6024 "6070 “5!49
D| & [-0.72 [ -0.60 ~0.70 | =0.68 | -0.13
R |-2.03 -6,20 ~-6.44 | -6.90 -5.69
T & [+1.16 | +0.27 +0.57 | +0.58 | +1.13 -
n. +O.90 "‘2.18 "'2.35 "2.85 ""1065
Fi & -0.73 ~-0.58 -0.87
fL "0061 "0660 ‘“‘0014
& & ~0.53 -0.76 | -1.58
I’L +Oo68 "0007 +0093
H ;7 +O.37 “‘0070 . "‘1.08
Table showing deflection components in
geconds of arc as related to increasing
gravity field radius
1 9 10 11 12 13 14
A 0.83
+1.42 +1.42 +1.41 +1.47
B 0.68
+1.25 +1.27 +1.26 +1.38
C O.l6
+Oc62 +O.5O +Oc59 +0059
4D 5.23
. "“1026 "‘1026 "1.27 —0-87
B 0.51
| F 0.67
+0.71 +0.18 +0.20
| & 0.48
+0.,50 +0.06 -0.90
H 0.65 '

Table showing differences using £, values

only
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From column 9 , it can be seen that the deflection
component obtained using the gravity field radius up to
12965 is a large percentage of the deflection obtained
using the whole field.

Columns 10 to 14 ( especially for Kaula's points ) show

that differences between deflection components using a

gravity field radius of from only 196 compare well with

the differcences using the whole gravity field. The

comparisons are not so good with Rice's points. This is
probably due to the fact that Kaula had more and better
gravity observations over the whole fizld available.

The above obsefvation concerning the differences of the
deflection components and Szabo's good agrsement between
gravimetric and astronomical defleciions leads us to
conclude that the following is a feaslible precedure :i-

Take astronomical deflections at a number of poihtéh,
say 30 Km apart. Compute the gravimestric deflections
at these points and at intermediate points at , say ,

10 Km apart. The gravity field used in these computations
. need only extend for a limited radius. Using the

differences in the gravimetric deflection components , we

can easily arrive at the astronomical deflections of the

intermediate points. We are thus "transporting" the
astronomical deflections by means of easily computable.
gravimetric deflections. The reversge procedure could be
adopted to compute the gravimetric deflection of , say ,
Buffelsfontein , where the gravity field consists mostly
off the sea area. In this case , we would compute the
gravimetric deflection at an inland station , say ,
Kimberley , using the gravity field of the whole earth.
Now by means of -astronomical deflections , we could
transport the Kimberley gravimetric deflection to
Buffelsfontein.
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7.16  Gravimetric deflections using the electronic

computer,

Many gravimetrlc deflectlons havé been done using the
electronic computer. Gravity anomalies over thé whole
earth are stored and used as required. For examples of
these computations see UOTILA 1960 and NAGY 1963.

In this thesié , as reported in chapter 8 ,
the computations were of the "one-off" type and the

electronic computer was therefore not used.
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CHAPTER 8

COMPUTATIONS

8.01 Gradient effects for Rice's points.

With the information published in RICE 1952 , the gradient
effects of Rice's points using equation ( 7-17 ) were
calculated. The following table shows the good
agreements obtained.

Station Differences: Rice - Loon

5 g
seconds of arc
Bartley ~0.003 ~0,002
Roby +0,001 +Q,010
Brooks +0.004 +0,008
Lacagsa -0.017 ~C,003
Sears | ~0,022 ~0,032
Bynum | 0 -0.009
Little Rock -0.069 -0.018
Legion +0.,012 ~0,002
FPolk ~0.007 -0.003

Burns -0.003 . 0
Bogue +0.006 -0.006

Zcore ~C .009 -0.004

Using Rice's published results as a control , the above
table confirms the application of the method established

in chapter 7 and the use of equation (7-17).
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8.02 C(Circle ring method for Rice's points.

Again using information in RICE 1952 , the following
results were obtained for the station Twin i~
5 av
geconds of arc
Circle ring method ( Loon ) ~0.459  +1.180

Gradient effect ( Rice ) +0.011 +0.008
Total deflection compoﬁents -0.448  +1.188

The computaﬁions for the circle ring method were.from
radius 0.657 Km. to radius 65.90 Km. Using Rice's
graph to scale off the deflection components up to the
last mentioned radius , we get % = -0U5 and

n = +101 | |

The above results confirm the application of the circle
ring method , and , as mentioned in chapter 7 ,:the azimuth
must be measured from South through West ( i.e. clock-

wige ) to agree with the usual convention of

"astronomical - geodetic" for the deflections.

8.03 Deflections at Ximberley Hill and Hanover.

The gravimetric deflection of the vertical was calculated
for the trigonometrical stations Kimberley Hill ( longitude
point ) and Hanover ( station No. 20 ). The gravity
information used was that pub}ished by the Geological
- Survey of the Repablic of South Africa in their Handbook
3, 1962. ( See SMIT 1962 and HALES 1962 )

The gradient method was used with a fundamental circle
of radius 4.32 Km in each case and the circle rihg
method used from 4.32 Km to 541l.5 Km i.e. up to 498 .

A template was drawn for the circle ring method and
gravity anomalies estimated on the 1 in 2 000 000

Isostatic Anomaly ( AH 30 ) map by HALES 1962.
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NOTE : A stereographic projection map was not used for these

and subsequent calculations becausev

(a) the error of estimating the mean anomaly pius
the erfor in the drawing of the anomaly contours
would be greater than any positional error of
the grid lines ; and

(b) such a map is at present not available.

These gravimetric deflections were compared with the

astronomical deflections as obtained from the South African

Geodeti¢ Reports with the following results :-

Gravimetric Astronomical

g econdsg of arec

Kimberley Hill =~ &, = +0.03 £, = -1.56
n, =237 = -0.07
Hanover _ %M = +0,15 o .= —0.01
f‘[ = +Oc87 . Qq:' -0.45

q

8.04 Analysis of Kimberley Hill and Hanover results.

(a)

(b)

(c)
(a)

The poor comparisons obtained could be due to

the fact that corrections for variation of the pole
and ﬁo FK4 system have not been appliéd to the
astrénomical deflections. ( The_effect of change of
spheroid for tﬁese points 1is negligibie ). These
astrdnomical observations wefe ma.de about 60 years ago.
the poor gravity anomaly information available ih the
immediate viginity of the computation points. ( The
gradient effects in éach case were based on only

two gravity anomaly values ).

observational errors

the assumed astronomical deflectionsg at Buffelsfontein

may be wrong.



It is felt , howeéver , that the greatest effect in this
case 1ls contributed by the poor gravity coverage in the

vicinity of ‘the points.

8,05 Deflections at Tunnel Shaft No. 3 .

The gravimetric deflection.compoﬁents were calculated
for the ground position of Tunnel Shaft No. 3 of the
proposed Orange - Fish River Tunnel. Tunnel Shaft 3
lies about 108 Km south 6f the_Trompsberg Anomaly and about
25 Km south of Venterstad.

The following information was used i-

(é) the isostatic anomaly map ( 1 in 250 000 ) of the
Tunnel area as published in KLEYWZGT 1964 ; and
(b) the isdéstatic anomaly map (1 in 2 000 000 ) of the
Geologocal Survey. ( HALZS 1962 )
Templates were drawn for use on the above maps.

The following results were obtained :-

TUNNEL SHAFT 3

Gradient method up to »259 : rLg
Km Degrees seconds of arc

6.08 0.055 -4 .17 ~1.62

12.05 0.108 ~2.31  -1.25

23.83 0,214 ~2.24 -0.63
47 .00 0.423 -0.84 -0,05

92.22 0.829 -0.68 ~0.65
In each case the cirble ring method was used up »
to 835.9 Km ( 795 ) and the total deflection
components are given. |

TABLE 8/1
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TUNNEL SHAFT 3

5aq o

seconds of arc

Gradient method up to 6.08 Km ~1.04 +0.04

PLUS circle ring method up to

Km

12.05 ~1.95  ~0.09
23.83 | ~3.10  -0.41
47.00 ~3.20  ~0.88
92.22 ~3.95 ~1.65
835.9 | | aaar 162

TABLE 8/2

8.06 Analysis of deflection at Tunnel Shaft 3 .

The final result for the deflection components is
£, = -4117
Mg = -1162

I

baged on the gradient method with fundamental circle radius

= 6,081 Km and the circle ring method up to 835.9 Km or
T+5 degrees, | |

If this radius for the fundamental circle is increased ’
then the results are less reliable because there is not a
uniform gradient over the circle. ( i.e. the gravity
anomaly contours are not parallel ). The effects of
increasing this radius can be seen from Table 8/1. With
a radius of 6.081 Km , the gravity anomaly contours are
more or 1less parallel.

Although the accuracy depends on the size of the radius
( the gmaller the radius , the higher the accuracy ) ,
a small radius can only be used if there is a‘dense
gravity station network in the vicinity of the computation
point. In this case there were 3 gravity stations in the
6.081 Km radius but many more in the surrounding area.

HEISKANEN 1958a says that in many cases 4 to 8 gravity
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stations in a 5 Km circle are sufficient but this woulad
depend on the nature of the gravity énomaly field. As a
guilde , Heiskanen gives a figure of 30 stations in a
clrcle of 20 Km radius. In the case of Tunnel Shaft 3 ,
there were 19 stations in a radius of 20 Km:

Using results obtained by KAULA 1554 for 5 computation
points ( see 7.15 ) , we calculate that the deflections
obtained using the field up to 795 range from 60% to 88%
of the deflections obtained using the whole field , for
most of the points. But this obgervation can only be
regarded as a generalisation to indicate that the finail
result given for Turinel Shaft 3 will probably not change
by more than 30-40% if the whole field 1s available:

With regard to the effect on deflections of increasing

gravity field radius , the results shown in Table 8/2 can

be shown graphically as in Figure 8/1 below.

5
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Effect on deflections of 1lncreasing gravity fileld radius
for Tunnel Shaft 3

FIGURE 8/1




The general characteristics of figure 8/1 compare well
with the 30 graphs shown by RICE 1952. The general
conclusion one can draw is that there is a "settling down"
of the deflection component after about 350 Km from thé‘
computation point. This is significant when congidering

the method of transporting the deflection ;, a8 mentioned

in chapter 7. It means that if Wwe use a gravity field of

only 350 Km , then the differences between deflection
components of neighbouring points are fnirly accurate.

HERISKANIN 1958a says that an accuracy of the defléetion
e = fV%f‘+ n* of 0.5 seconds of arc can be obtained with
a dense gravity station net around the computation point
plus a good regional gravity survey up to 2000 Km. Not
every point with similar gravity coverage would , however ,
yield the same result. The greatest accuracy will be
obtained where the area immediately surrounding the point
has a smooth ( or uniform ) gravity anomaly fileld.

It should be mentioned here , that if the gravity
survey in the.Tunnél area was done while bearing in mind
the possible computation of gravimetric deflections , then
many more well placed gravity stations would have been

recommended by a geodesist. This would have greatly

increased the accuracy of the deflections.
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CHAPTER . 9

CONCLUSIONS AND RECOMMINDATIONS

.01 General

Very little has been done in South Africa from the

gravity-geodesy point of view. In order to make gravity

information useful in geodetic work , the geodesist should

have a hand in at least the planning stage of all grévity

surveys. This would ensure that these surveys are

properly connected to base'statiOns , that adequate‘

coverage 1s obtained around futufe computation points

and that the surveys are carried out to the required

.accuracy.

9.02 Gravimetric deflections in South Africa.

calculated in chapter 8 are the first done in South Africa.

In order to facilitate the calculation of further

gravimetric deflections , a manual for these calculatlions

could be compiled. This manual could contain the following

information :-

A. Requirements with regard to gravity fileld.

B. Détails of the calculation procedures i.e. the gradient
method , the circle ring method and the square method.

C. Tables for constructing maps on the stereographic
projection in South Africa. |

D. Tables for the calculation of G , theoretical gravity ,
in South Africa on the International Spherold.

E. Areas of 5° x 50 and 1° x 1° squares for use in the
square method.

F. Informatlon for reducing astronomical deflectlions

go that they can be compared with gravimetric
deflections. This would include correction graphs

for South Africa for change of spheroid from the
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Modified Clarke 1880 to the International Spheroid ,
tables for reduction tb the same-star catalogue system
and so on. This information will also be useful for
"transporting" the deflections as dutlined'ih:7.14 .
G+ The computations for the square me thod could’bé done
by the electronic computer and the mean gravity R
anomalieg of ﬁhe squares could be stored on puﬁched
cards and used wheﬂ.réquired; The layout of the
- programme and a suggested method of recoding on cards
is deséribed in UOTILA 1960. The proposed manual
could include the latest available mean aﬁomaiieé of
the required squares. |
Hi An ocutline of the methods of predicting gravity

anomalies in unsurveyed areas. .

9.03 The applications of physical geodesy.

In this thesis , the calculation of gravimetric
deflections of the vertical have been described in detail.
A similar procedure Can.be worked out fOrnthé caleulation’
of'gééidalvheights; With these quantities N , £ and FL

the following applications are possible.

A. Determination of thé'best fittiﬁg reference spherdids
The best fitting sbherbid for a region will make
é—(%i'”?tf>: minimum. This is the usual criterion
applied but a better determination results from making
Z [(5- 8, (na- 1]= minimum,
because we now take unknown density anomalies and any

lack of complete isostatic compensation into account.

B. Undulations of the geoid.
If N 1S known , espeécially in the regions where base
lines are measured and at the initial point , then <tic

geodetic co-ordinates can be accurately referred to the
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reference spherold and not to the geold as 1s usually done.
For every 10 metres separation between the geold and
gpheroid , the error in reducing the base line to the geold
and not to the spheroid , ik of the order of 1 in 665 000.
Various reports sive N values for South Afri@a whiéh‘.
range from +20 metres to -180 metres. ( BOMFORD 1858 ,
HTZISKANZN 1965 , UOTILA 1962 ). ( These values , however ,
are not with reference to;the Clarke 1880 spheroid ).
Reduction to the spheroid would eliminate certain
distortions in a triangulation gystem.

C. Deflections at triangulatibh stations.

A deflection of the vgﬁiical at a triangulation station
introduces an error in the observed direction similér to
that given by the inclination of the horizontal axis of a
theodolite. This error can be written as 6tan h
( HEZISKANEN 1958a ) where © is the difference between the
deflection components at both ends of a triangle side and
h 1is the vertical angle. For h =10° and © = 15" the
error is 2.9 seconds of arc. Z&ven with h = 5° fhe error
1s 1.3 seconds of arc. A knowledge of these deflections ,
which can be computed gravimetrically , will eliminate this
source of error.

D. Linking of existing geodetic systems.

In order to link existing geodetic systems onto one
World System we need the absolute values of N , & and
n at the initial points of all the local systems as well
as astronomical observations at these and other points.
Details of this type of‘cohputation are glven inv
HEISKANEZN 1958a .
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%, Control points for small sdale maps .

The formulae used in this ocase are
P =P~y
A = >\'-— Qgsec(P'
A=A -ngtand’
where ¢, A A are the'geoaétic latitude,longitude and
azimuth ; o
@, A A" are the agtronomical latitude,longltude
and azimuth
%3 , Mg are the graviméﬁfié defledﬁion cbmﬁbnéhts,

The right hand sides of the above equations are
obtained from astronomical and gravimetric obsérvatiqns
and the geodetic co-ordinates are then calculated. Using
gravimetric deflections in thils way would overcome the
effects of the deflection of thé vertical on photogrammatric
work 1n regions having no geodetic control as mentioned by
KARARA 1960. |

The above formulae can also be used for calculating
distances over large areas

HEISKANEN 1952 gives a polnt accuracy of about 40
metres and a distance accuracy of about 60 metres |
1rreépective.of the distance. For maps of 1 in 10C COO

and smaller scale thls 1s more than adequate.

©.04 Physical geodesy in South Africa.

Some of the applications of physical geodesy have been
given in 9.03. These can be used in SouthlAfrica but
perhaps moré important 1s to consider the future éf
geodesy 1n this country. At some future date the
South African Geodetic Triangulation will be re-
computed. ( This will probably necessitate the re-
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observing of some of the triangles). It will then be 8
sultable time to change the Geodeﬁic‘Datum point to some
other point which will enable & strong gravimetric
determination of £ M and N to be computed. This will
give a better connection of the South African System'to
any other system. THe chaﬁgiﬁg of the datum point 18 not
a complicated préceauré arid cé_,n be adne "by the stréke of
an administrative pen i 4 (BOMFORD 1963) ; o

Perhaps the most important task for prysical geodesy
in South Africa at present is the determihation of the
geoldal undulations. This information will be required
for any re-computation of the Geodetic Triangulation és
well as being needed for the launching and tracking of
rocketé and missiles. This 1s a project which wlll take
gome years and will have to be undertaken on a national

level.

Much work has been done in the'fielﬁ of physical
geodesgy in the U.S.A. ( the Columbus Group and oﬁhers )
Canada ( NAGY 1963 and others ) , Australia ( MATHER 1966
and 1967 ) any many other countries. It would be a pity
if South Africa were to lag behind in this field.

-
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