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AB.STRACT 

The general field of physical geodesy is 

described in outline and the application 

of the basic theories to the calculation 

of deflections of the vertical are 

discussed and analysed in detail. The 

results of the calculation of the 

deflections of the vertical at three 

points in South Africa are given and 

discussed. Some applications of physical 

geodesy are described and proposals are 

made for the continuation of work in 

this field in South Africa. 
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CHAPTER 1 1 

INTRODUCTION 

~~QQ__Ge~~esy in general. 

Geodesy, literally "dividing the earth", is the science of 

determining the size and shape of the earth and the provision 

of an accurate control point system on the earth. Geodetic 

science includes the observations, computations and adjustments 

for achieving the above. Geodesy overlaps into other earth 

sciences in the study of the gra.vi ty field and the internal 

structure of the earth. 

\'le can say that the main problem in geodesy is to determine 

the space co~ordinates of any point on the physical surface of 

the earth by carrying out geodetic operations on this physical 

surface. These geodetic operations can be divided into 

three broad interdependent sections :~ 

A. Geometrical Geodesy.(Including triangulation, trilateration, 

traversing and electro-magnetic distance measurements) 

B. Astronomical Geodesy.(Including the determination of 

latitude, longitude and azimuth, and satellite orbits.) 

c. Physical Geodesy.(Including gravity measurements and 

spirit levelling) 

Geometrical geodesy yeilds differences in the horizontal 

co-ordinates of points astronomical ·geodesy determines 

the direction of gravity and physical geodesy supplies 

tho absolute and relative values of gravity, the differences 

of the potential of gravity and differences in height 

between points. 

Gravity is the physical quantity which affects most 

geodetic operations and it is the chief characteristic 

of physical geodesy. 

( · BOJ:.,IFORD 1962 , DE JONG 1963 , HEISKANEN 1958a and 

1964b , HIRVONEN 1960 ) 



1_:. 0~-~!ini tJ:_~n of __ ter~ms __ in physical g~_~de_~_y ~ 

The following terms are frequently used. in physical 

geodesy and the definitions currently accepted by geodesists 

are e;i ven. ( BO]I;JFORD 1962 , HZISKAN2N 1958a and 1967 , 

MUELLER 1966 ) 

Rather than give the terms in alphabetical order , they 

are given in a more or less logical sequence. 

Gra vi :t.f!_!.i Oil.· 

The attraction of the earth's mass. 

Gravity. 

The resultant of the gravitation and the centrifugal 

force caused by the rotation of the earth. Gravity , g , 

is gravitation minus the effect of the centrifugal force 

and has the dimension of the accele.ra tion. The value of 

g varies betHeen 978 crn/sec2 and 983 cm/sec2 over the 

surface of the earth. In physical geodesy , the units used 

are the gal (named after Galilee ) and the milligal (mgal). 

1 gal = 1 cm/sec2 

1 mgal = 1 x l0~3cm/sec2 

Potential. 

A scalar function whose gradient is the force. 

Geopotential. 

The gravity potential of the earth. It is the sum of 

the gravitational potential and the potential of the 

centrifugal force. 

Equipotential ( or level ) surface. 

This is a surface in a field of force on which ~~e 

potential is constant. That is , it is a surface about 

which an object can be moved without expenditure of work. 

The force is everywhere perpendicular to this surface. 

Geop or geopotential surface. 

An equipotential surface in the gravity field of the 

earth. Gravity is everywhere perpendicular to the geop. 

2 



Geoid. 

The geoid is the geop which co-inoides vii th mean sea 

level. The fact that mean sea level is not fixed in an 

absolute sense means that each country's mean sea level 

datum gives rise to a different geoid. 

Geopotential number. 

This is the geop6tential difference between the geoid 

and the geop through an observation point~ The number is 

given in geopotential units ( g.p.u. ). 

1 g.p.u = 1 kilogal metre ( 1C5cm2 sec-2 ) • 

Normal earth. 

The normal earth is a mass such that its external 

bounding equipotential surface is the earth sphc;rop , ana. 

its gravity ( called normal gravity ) is given by the 

gravity formula:-

~;;here X = u ,:_ normal gravity at the equator obtained 

empirically. 

cp = latitude of station. 

3 

~ = gravitational flattening obtained empirically. 

E =a theoretically derived co-efficient. 

For practical purposes we can re,sard the normal earth as 

being the same as the International ~eference Spheroid. 

Spherop. 

An equipotential surface in the normal ::;ravi ty field 

of the earth. 

Spheropotential. 

The potential of the normal gravity. 

Disturbing potential. 

The difference bet~rJeen the geopotential and the 

spheropotential at a given point. 

Gravity anomaly. 

The difference between the gravity on a geop_and the 

normal gravity on the corresponding spherop. 



Plumb line. 

A continuous curve which is a~ine of force in the 

geopotential field. The direction of gravity is everywhere 

tangential to the plumb line. 

Normal. 

A normal is a straight line perpendicular to a particular 

surface. 

Vertical. 

The direction of gravity at a point. 

Isostasy. 

A hypothesis of equilibrium where the crustal elements 

at a certain depth below the geoid are under equal 

pressure or equal mass regardless of whether they are 

under mountains , lowlands or oceans. Isostasy has 

been dealt with in greater detail in LOON 1955. 

Undulation of the geoid or geoidal heights. 

The distance between the geoid and the earth-spherop 

or reference spheroid ). 

4 



1.02 Physical geodesy. 

The mathematical basis of physical geodesy was laid 

down by STOKSS 1849. He developed a formula for calculating 

the geoidal heights if gravity observations all over the 

earth's surface ( land and qea ) were available. In 1849 

there did not seem to be any prospect of ever obtaining 

these measurements. Stokes commented '' .••• These points of 

the theory are noted more for the sake of the ideas than 

on account of any application which is likely to be made 

of them ...•• " 

VENING JVJEINE::SZ 1929 developed a pendulum apparatus 

which could be used for gravity observations at sea. 

Recently ( THOMPSON 1966 ) gravity observations have been 

made from aircraft and it is now becoming possible to 

partially fulfil Stokes' requirements. But it will still 

be many years before the gravity information is complete. 

The basis of physical geodesy is the fact that gravity 

anomalies ( or gravity disturbances ) , the undulations of 

the geoid and the deflections of the vertical are all 

caused by surface and sub~crustal disturbing masses of 

high or low density. The chief characteristic of physical 

geodesy is the gravimetric method and the basic 

requirement ( or tool ) of the gravimetric method is the 

gravity anomaly. The undulations of the geoid and the 

deflections of the vertical can be computed from these 

anomalies. The great advantage of the gravimetric 

method lies in the fact that these computed values are 

independent of the local reference spheroid. They depend 

only on the gravity formula used for computing the 

theoretical value of gravity. This theoretical value is 

based on the International Spheroid which is the closest 

mathematical representation of the earth for pure 

geodetic purposes. ( HIRVONEN 1960 

H2::ISKANEN 1958b says that "we are not very far from 

I 
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the truth when we say that the most important and actual 

probl~m of geodesy at the present time is the determination 
• 

of the gravimetric undulations of the geoid and the 

deflection of the vertical components 11
• 

Included in the field of physical geodesy are heights 

above sea level. See chapter 5. 

1.03 Reference surfaces. 

The practice of determining the size and shape of the 

earth involves choosing a mathematical figure which best 

fits the figure of the earth and then determintng the 

details of the lack of fit. In order to do this , the 

geodesist is concerned mainly with three reference surfaces. 

These are the actual surface of the earth , the geoid and 

the reference spheroid. 

A. The actual surface of the earth is the physical 

surface on which the geodesist sets his instruments and 

makes his measurements. The shape of this surface is 

approximately an oblate sphe.roid ( BOIVlFO't:U 1962 

local departures of up to 8 Km from this shape. 

with 

B. The geoid can be regarded as the fundamental surface 

of geodesy. The term "geoid!' was first used by J .B .Listing 

in about 1872. (OXFORD 1933. But NAGY 1963 gives the date 

of Listing's article as 1873 ). The shape of the geoid is 

a smoother oblate spheroid than the actual surface of the 

earth with local departures of less than 100 metres. 

( HELIVl~RT 1884 and HIRVONZN 1962 give a figure of about 

50 metres. ) The geoid can be regarded as a physical 

reality ( Bm.woRD 1962 ) when we ··consider that , at sea 

level , the vertical axis of a level theodolite is 

perpendicular to it. The process of spirit levelling 

measures heights above the geoid. See chapter 5. 

6 



c. The Reference Spheroid. 

In order to compute co-ordinates for a geodetic control 

system , v.Je need a point from which to compute , a direction 

in which to compute and a surface along which to compute. 

This surface is called the reference spheroid. The actual 

surface of the earth and the geoid cannot be defined 

mathematically and therefore cannot be used as surfaces 

along l,o\lhich to compute. 

The reference spheroid is an arbitrarily d~fined 

~eometrical figure on which.the co-ordinates of points 

are computed. It is defih~d by seven constants :-

Two constants to define the shape and size of the 

spheroid. :I:ither the major axis and the flattening or the 

major and minor axes are given; 

Two constants to define the position of the spheroid 

axis. This is usually defined to be parallel to the earth's 

axis of rotation; 

Three constants to define the position of the centre 

of the spheroid. This is usually done indirectly by 

choosing an initial ( or datum ) point on the actual 

surface of the earth and defining the geodetic latitude 

of this point , the geodetic azimuth from this point to 

another point and the height of the initial point above 

the sp"heroid. Instead of the azimuth the geodetic 

longitude of the initial point could be defined. Or the 

three constants could be the geoidal height and the two 

components of the deflection of the vertical. 

The reference surface usual.ly chosen is the oblate 

spheroid. In geodetic literature the words "ellipsoid" 

and "spheroid" are used but the concept meant is oblate 

spheroid. That is , a surface of revolution defined by 

two parameters. 

7 



Note on ellipsoid and spheroid. 

Any surface represented by an algebraic equation of the 

second degree in three variables , is a quadr1.c surface. 

Ax2+By2+cz2+22::xy+2Fxz+2Gyz+2Px+2·1Y+2Rz+D = 0 • If this 

surface is symmetric about the co-ordirtate system it is 

called a central quadric and has the equation 

Ax2+By2+cz2 = 1 ~ An ellipsoid is a spe61al case of a 

central quadric surface ahd has the equation 

x2 y2 z2 
+-.· +- it: 1 • An ellipsoid 1 therefore 

a2 b2 c2 

is a tri-axial figure. There is a special case of an 

ellipsoid called a spheroid which is a surface obtained 
i 

when two of the axes of the ellipsoid are equal. If the 

two equal axes are each longer than the third axis , then 

we have an oblate spheroid Nhose equation is 

x2 y2 z2 
+--+- = 1 ( In the other case a prolate 

a2 a2 c2 

spheroid is obtained. The oblate spheroid can also be 

regarded as the surface obtained by revolving an ellipse 

about its minor axis, i.e. an "ellipse of revolution" is 

obtained. Some mathematical text books use the term 

"ellipsoid of revolution" and some authors of geodetic 

literature have adopted this expression and the abbreviated 

term "ellipsoid". An ellipsoid is not a surface of 

revolution. The term "oblate spheroid" or its 

abbreviation ''spheroid'~ is to be preferred. This note 

could be summarised by using biological expressions:­

the family is the quadric surface 

the genus is the ellipsoid ; 

the species is the oblate spheroid. 

( ,.,.,.;:{A Tl[j'-i' 19 60 .t' - LL"l.. -·'-' 1 VAN NORSTRAND 1958 ) 
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In South Africa the r·eference spheroid is the 11 modified 11 

Clarke 1880 Spheroid with 

semi-major axis = 20 926 202 S.A.Geodetic feet 

semi-minor axis = 20 854 895 S.A.Geodetic feet. 

( See GILL 1896 ltJhere the above axes are given as "Sngli sh 

feet and HENDR.IKZ 1956 where the S.A. Geodetic foot is 

explained ). 

The flattening given by Clarke is f = 1/293.465. As 

Hendrikz points out , using the above axes the flattening 

works out to be f = 1/293-466 307 656 which figure has 

been used in the geodetic survey of South Africa. 

(Correction tables have been given in H~NDRIKZ 1943 ). 

The datum point for the South African Geodetic System 

is the trigonometrical station No. 130 Buffelsfontein , 

hei.ght 926 feet above mean sea level , with co-ordinates 

latitude = 33° 59 i. 32'~00 South 

longitude = 25° 30' 44':622 :Sast 

and the initial direction· ( azimuth ) is Buffelsfontein to 

Zuurberg = 183° 58' 15 1~50 • GILL 1896 ) • 

( In 1953/54 the latitude and longitude at Buffelsfontein 

were re-observed in connection with the 30th Arc of 

;vreridian Project and values differing from the above were 

obtained. In view of the interesting remarks made by 

THOI<L4.8 1965 about this discrepancy it appears that further 

investigation is needed ). 

9 



The figure below shows an east-v.1est section through the 

topography. 1._ is the east-west component of the deflection 

of the vertical and N is the geoidal height.The relationship 

between the spheroid and the geoid as well as the effect 
/~ 

geoid / _____ _ ,t _ _ /mountain~ 
I P /~ ~ 

-- N --
->-~--- N_ s~~ ~ ~ ~~ /1 ............... ,, '-

, ------------ if' ----- '-~ 

I 
/ reference 

-~1 spheroid 

\0. 
0 

of topography on the geoid is shown. PO is perpendicular to 

the reference surface and PO' is perpendicular to the geoid. 

The same relationship between the geoid and the spheroid 

would be obtained if the mountain were replaced by a 

sub-crustal mass surplus and the sea by a sub-crustal 

mass deficiency, OR if the area to the right of PO has 

a gravity anomaly greater than zero and the area to the left 

of PO has a gravity anomaly of less than zero. It can be 

seen that the geoid is fixed and determined by the surface 

and sub-crustal .masses and the reference spheroid is 

arbitrarily chosen. 

10 

Base lines are measured on the actual surface of the earth. 

The computation of the geodetic control system requires 

that these base line measurements should be reduced to the 

reference spheroid. But in the initial stages of a 

triangulation system of a country , the position of the 

reference spheroid in relation to the geoid ( and therefore 

also to the actual surface of the earth ) is only assumed 

at the initial point. As the height above mean sea level 

of the base line is usually known , the base line 

measurements are reduced to the geoid. But in the 

computations it is assumed that they have been reduced to 

the reference spheroid and this gives rise to diStortions 

in the triangulation. 



A knowledge of the deflections of the vertical can show 

whether the chosen reference spheroid is the best one for 

a particular country and a knowledge of the geoidal heights 

enable base lines to be reduced to the computation 

surface •. The methods of physical geodesy can provide us 

with these geoidal heights and deflections of the vertical • 

.. 
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CHAPTER 2 

GRAVITY 1-{J:ASUR~£-ENTS. 

2.00 General. 

The value of gravity , g , ca:n be measu=red on the earth's 

surface , on the sea , underwater or in the air. The 

apparatus useo. is either the dynamic type ( eg. the 

pendulum method or the fallin~ boo.y method ) or the static 

type ( eg. the spring balance principle ). These gravity 

measurements are either absolute or relative. 

2.01 Absolute gravity measurements. 

In the absolute determination of g measurements are 

made at some point without :reference to any other point. 

Most absolute determinations have been made by tl.1e pendulum 

method using a multiple pendulum apparatus. Great care is 

required in these measurements and a number of effects 

which produce systematic errors must be studied. The 

accuracy of this method is 1 mgal ( GARLAND 1965 ) or 

perhaps even 0 .L\. mgal ( H:::::I SKA.NZN 1960 ) • Pendulum 

observations made at Potsdam at the turn of the century 

gave a value of g = 981.274 gal which today still serves 

as the basis of the world gravity network. Today it 

appears tbat this Potsdam value is between 10 and 14 mgal 

too high. But this does not affect work done in physical 

geodesy where the variation of gravity over the earth's 

surface is used and not so much the absolute values. 

Falling body methods ( first used by Galileo ) for the 

determ,ination of g have been useCl in recent years. 

Accuracies of better than 1 mgal are claimed for these 

methods. ( H:ISKAN~N 1960 

2.02 Relative gravity measurements~ 

This type of measurement is most often used in physical 

3eodesy. In this case the ratio between the gravity 

measured at a base station and the gravity measured at 

a field station is determined. Relative gravity obsevations 



can be made by the time-consuming pendulum method but 

mostly the ~prin~ balance system ( and variations of this 

system ) is used. In this system a weight hangs from a 

spring and the length of the spring depends on g at· 

any point. The instrument using this system is very 

light and portable. It can detect very small differences 

in g a-::1d can be read very quickly. 

13 

For local surveys the range of the gravimeter need not 

be large but the geodetic gravimeter needs a range of about 

5000 mgals to be able to be used any~t!here on the earth. 

The fact that such gravimeters are available and have 

proved their ability of measurin~j differences in g of 

0.01 mgal and better , has contributed to the tremendous 

progress in physical geodesy in the last two decades. 

2.03 Measurements from a moving platform. 

Physical geodesy requires gravity observations over the 

lflhole earth. But a large portion of this surface is sea 

and much of the remainder is not easily accesible by land. 

In recent years much progress has been made with seaborne 

and airborne -3ravimeter.:, 

Vening Ivleinesz is regarded as the pioneer in the field 

of gravity observations at sea and since his initial 

work in the 1920's many reliable gravity observations 

have been ma·de from submarines and surface ships. In one 

of the latest reports ~ BOWZR 1967 gives a standard 

deviation between a series of observations of a ship's 

traverse run as 3.9 mgal for a LaCoste gravimeter and 

2.7 mgal for a Graf-Askania gravimater. ·;;oRZ~::L 1965 says , 

in connection with gravimeters at sea , " differences 

between values at the same point made on different 

profiles may be as large as 20 me;als , although usually 

smaller." Part of this difference could be due to the 

uncertainty of the ship's position. 

In South Africa we can look forward to increased activity 

in this field. ~;~rhen the Decca navlga tion system is fully 



operational around the coast and when the Gra,f-;Askania 

gravimeter is installed in the S.A.S. Natal. 

Because of the speed of an aircraft , it seems that 

airborne measurements can only provide a generalised 

picture of the gravitational field. This type of gravity 

measurement is still in the experimental and testin3 stage. 

2.04 Gravity measurements in South Africa. 

Gravi t.y measurements in South Africa have been mentioned 

briefly before in LOON 1967 

Pendulum observa tiona were made as far back as. 1818. 

MENZIES 1967 ). In 1948 and 1949 pendulum observations 

were carried out at 53 stations in Southern Africa. 

( HAL;I;S 1950 ) • ·rhese formed the base stations for 

gravimeter connections done during 1949 to 1957. Some 
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6000 observations were made during this period.( SNIT 1962). 

A few pendulum observations aboard a submarine were made 

by Vening I~<1eine sz in 1935. 

Details of published gravity measurements in South Africa 

are to be found in HAL3:3 1950 , SMil' 1962 and UOTILA 1960. 

In add.ition to the above , local gravity surveys 

results unpublished ) have been made by oil prospecting 

companies , government departments and private geophysical 

consultants. 

HALES 1950 used the value g(Cambridge) = 981.265 gals 

as the basis for his survey. This gave the values 

g(IVIowbray) = 979.644 ~als and g( Johannesburg) = 978.546 gals. 

The values used by Smit were g(::v!owbray) = 979.6468 gals. 

( This is incorrectly printed as 978.6468 on page 9 of 

S~HT 1962 ) . Smi t' s value for g ( Johanne sbur~) = 978.5491 

gals. Smit has corrected Hales' values by +3.3 mgal so as 
II to ad just them to the accepted value of gat the 

Nuseum pendulum station in Pretoria. " The value 

g(Teddington) = 981.1963 gals was accepted by Smit who 

gives probable accuracies of the South African bases 
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relative to this value. ( These range from+ 0.1 mgal to 

+ 0. 5 mgal.) 

UOTILA 1960 gives a list of world national reference 

stations adjusted on to the Potsdam system. The differences 

between his and the above mentioned values are given in 

the following table. g(Potsdam) = 981.27400 gals. 

! 

Hales Smit Uotila 
(Potsdam) 

gals gals gals 

3(Teddinc;ton) 981.1963 981.1963 

s (Mowbray) 979.644 979.6468 979.6475 

g(Johannesburg) 978.546 978.5491 978.5514 

g(Cambridge) 981.265 981.2688 I 
I 

I___ - ! 

From the above table it can be seen that Smit's values 

are closer to the Potsdam system and he was therefore 

justified in correcting Hales' values. 

The geodesist must work on a lrlorld System. This has 

been stressed many times by H2ISKAN:~N 1951 , 1952 , 1958a 

etc. When using the results of previous gravity surveys , 

the South African geodesist will have to make adjustments 

to bring everything onto the internationally accepted 

Potsdam System. 
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CHAPT.SR 3 

.3.00 General. 

The gravity measurements obtained at different points on 

the earth's surface are not directly comparable ODe to the 

other. This is due mainly to the fact that these observations 

are made at different heights above sea level. All other 

factors being equal , the observations made at a high 

point ( far from the centre of gravity ) will be too small 

and the observations m:;~,de at a low point (nearer the 

centre of gravity ) will be larger. In the gravimetric 

method we have to compare measurements made at different 

points and these observations therefore have to be reduced 

to the same level , usually sea level i.e. the geoid ). 

The reductions can be conveniently classified as follows:-

A. Non-isostatic reductions: 

Free air reductions 

Bouguer reductions 

Condensation and inversion reductions 

B. Isostatic reductions : 

Based on the hypothese8 of 

Pratt-Hayford or 

Airy-Heiskanen or 

Vening Heinesz •. · 

( H~ISKANE:N 1958a ) 

3.01 The free air reduction. 

This reduction is the one most commonly used ·in physical 

geodesy and it takes account only of the elevation of the 

station where the gravity observation has been'made. No 

account is taken of the mass between the station and sea 

level. This is sometimes called Fayes' renuction after the 

man who first drew attention to it. ( LAIIIiB.ERT 1930 , 

NAGY 1963 ) . 



HSISKANJ::N 1958a and GARLAND 1965 , among others , give 

an approximate formula for the variation in gravity due to 

a change in distance from the earth's centre as 

. . . . . . . . . . . . . . . . . . ( 3-1 ) 
or r 
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where g =mean gravity on earth's surface= 981 gals 

r = mean radius of earth = 6370 Km 

This equation is known as the vertical c;raB.ient of gravity 

at sea level and usin~ the numerical value8 

as 
or 

= 0.3086 mgal/metre 

= C.09406 mgal/foot 

B::quation (3-1) can be useo. at most parts of the earth and 

the free air reduction is therefore 

gf = + C.3086 h m'3al . . . . . . . . . . . . (3-2) 

where h is the height of the station in metres above mean 

sea level. 

Note: A positive sign is used here because we are reducing 

from an observation point ( above sea level ) down to sea 

level. ( For stations below sea level (3-2) would be 

negative). 

More rigorous formulae are given 

by HZISKANE:N 1958a as 
2gh 3h 

gf =. --( 1 - - + ••• 
r 2r 

2 = +( 0.3086 h- 0.000 000 072 h + •• ) mgal 

. . . . . . . . . . . . ( 3-3) 

and by LAI\-ffiJ;RT 1930 as 

gf = + ( 0.30857 + 0.00021 cos 2f)h- 0.000 000 072h2 mgal 

. . . . . . . . . . . . 
( The actual formula given in LAlvffit:RT 19 30 is for 

gf in gals ) • 

GARLAN0 1965 gives 

Sf= -0.3085- 0.00022 cos 2Cf + 0.000 144h 

(3-4) 

which is clearly incorrect as each term must be a function 

of the height~ Note -Garland makes his comparisons at the 

observation station and not at sea level , therefore his 

3f is negative~ 



3.02 The Bouguer reduction. 

The formula for this reduction was derived by Bouguer 

in 1749. He used this reduction for comparing observed 

gravity values in South America.' 

This reduction takes into account the attraction of the 

material between the e;eoid and tre observation station. 
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The effect of the attraction of this mass must be subtracted 

from the observed gravity values. 

The simplified Bouguer reduction is 

8;b = - mgal • • • • • • • • • . . . . ( 3-5) 

'VJhere f = density of regional mass 

fm = mean density of earth 

g = mean gravity 

h = height above sea level in metres 

r = mean radius of the earth 

From equatton (3-1) it can be seen that 

Sb = - gf 
3 f 
4 fm 

HSIS~~N~N 1958a gives the following corresponding values:-

I 
I .r) f gb rrr; 

5.576 2.67 - 0.1108 h 

5.52 2.80 - 0.1912 h 

5·53 2.67 - 0.1118 h j 
HALES 1962 used ~0 = - 0.1118 h for South Africa. 

The drawback of the Bouguer reduction for geodetic 

purposes is that it changes the geop passing through the 

observation point and also changes the shape of the geoid. 

3.03 Condensation and inversion reductions. 

The condensation reduction was int.roduced to avoid the 

drawback of the Bougt.tar reduction for geodetic purposes. 

In this reduction the masses above the geoid are transferred 

inside the geoid or as near to it as possible. After 



applying the condensatio'n reduction a so called " ideal 

geoid " is obtained. The o.ifferences between the actual 

and ideal geoids is less than 3 metres. ( HEISKAN8N l958a 

The inversion reduction is applied in such a way by 

manipulation of the masses 

surface of the actual geoid. 

3.04 Isostatic reductions 

so as not to change the 

In gravimetric studies only three isostatic assumptions 

have been used. They are The Pratt-Hayford system 

The Airy-Heiskanen system 

The Vening Heinesz "Regional 

system 

In the Pratt-Hayford system it is assumed that the 

density of the earth's crust is smaller as the elevation 

increases. In the Airy-Heiskanen system the mountains are 

assumed to be floating in the heavier substratum. _The 

hisher the mountains the deeper they are sunk into the 

substratum. In thE} same way it is assumed that under the 

oceans there are" antiroots ''of heavy material. Using 

this system HALES 1950 found a depth of compensation ( T ) 

of 30 Km in South Africa. The Vening l~einesz Regional 

system is a modification of the Airy-Heiskanen system 

where the 'compensa tingi mas sees·· of· the mountains and the,,­

oceans are a~svmed to be broadly. distributed horizontally. 

In this system the load of the topographic mass causes 

the earth's crust to bend until equilibriu:rJ prevails.-

The Airy-Heiskanen system can be called a local floating 

system and the Vening Meinesz system a regional floating 

system. ( R::nsKANZN 1960) 

The isostatic reductions therefore depend on the . 

surface and sub-surface earth structures and various­

tables have been used for carrying out these re0uctions. 

( See HZISKANEN 1958a ). 
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3.05 Summary and analysis. 

The free air reduction. 

The following table summarises some of the numerical 

values to be expected from equations 

(3-3) viz. gf = + ( 0.3086 h - o.coo 000 072 h2 ) 

(3-4) viz. gf = + ( o. 30857 + C.0002lcos 2 cp ) h 

o.ooo 000 072h2 

h A B I c 

metres me;al t------mgal . mgal 

lOOC 0.07 0.16 0.09 

2000 0.3 0.32 0.15 

3000 0.7 0.48 0.22 

40CO 1.2 0.64 0.56 

5000 1.8 0.80 1.00 I L____._._ 
____ ! ____________ 

where A = the h2 term of equations (3-3) and (3-4) 

B = the maximum value of the cos 2f term of 

(3-4) for South Africa. 
,... = the maximum value of the sum of the second v 

third terms of ( 3-4) in South Africa. 

From the above table Y.Je see that 

gf = 
gf = 
and 

Sf = 
gf = 

for h = 1000 metres 

0.3086 h O.OT mgal 

0.30857h 0.09 mgal 

for h = 2000 me t.re s 

0.3086 h 0.3 mgal 

0.30857h - 0.15 mgal 

using (3-3) 

using (3-4) 

using (3-3) 

using (3-4) 

Considering the accuracy of a geodetic gravimeter , 

and 

and 

like the irlorden gravimeter , of 0.2 mgal (HEISL\NSN 1958a ) 

and the field procedure normally used ( HEISKAN.SN 1956 ) 

where discrepancies between two measurements at the same 

point of less than 0.3 mgal are acceptable we can say 

that the formula (3-2) Sf = + 0.3086 h mgal can be used 

for stations whose altitudes do not exceed 2000 metres 

( 6562 feet ). 
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HAL~3 1962 used gf = + 0.3086 ( 1 + 0.00071 cos 2{J)h 

mgal for the South African gravity survey. 1fultiplying out 

we get r;r = + 0.3086 h + 0.000 22 cos 2fh tvhich is 

almost identical with the first two terms of equation 

(3-4). In this survey only a few points were higher than 

6000 feet ( 1830 metres ) above ~'~.3 .L. 

The free air reduction is the simplest and is often 

used in physical geodesy. For example , ~IC~ 1952 , 

KAULA 1954 , the Columbus Group ( H:!::I3KAi'T"ii:l\T 1964a) and 

others have calculated geoidal undulations and oeflections 

of the vertical making use of the free air reduction to 

obtain the free air anomalies. 

The disadvanta~e of usin~ the free air reduction is that - '-

free atr anomalies are not sufficiently representative 

without any correction. ( H£ISKAN~N 1958a ) • 

~he Bouguer reduction 

From HALES 1960 we can deduce that for South Africa , 

Hales has used gb =- 0.36 gf i.e. the Bouguer reduc.tion 

diminishes the effect of the free air reduction by about 

one-third. 

The assumption made for the Bouguer reduction is that 

the topography around the station is level. In order to 

take account of topographic irregularities around the 

station , a '1 terrain correction 11 
( Gelandereduktion is 

applied. This is always positive and can be as much as 

123 mgals. (At Mont Blanc where h = 4807 metres.) 

The Bouguer reduction is not used for geodetic purposes 

as it changes the shape of the geoid and the geop through 

the observation point. ( BOJI.WORD 1962 and others ) • This 

change can be as much as 500 metres. ( HEISKANEN 1958a) 
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The condensation and inversion reductions. 

These reductions are not widely used as the isostatic 

reductions are preferred. ( H2;ISKANSN 1958a ) 

Isostatic reductions 

Although tables can be used to a certain extent , 

isostatic reductions are time consu~ing because they 

involve an examination of the regional topography around 

each station where a gravity observation has been taken. 

H:I;I3KAN2::N 1964a says that the use of isostatic 

reductions will sive the most accurate values for 

geoidal undulations. 

General 

The reduction of gravity measurements has occupied the 

attention of geodesists for a long time. l11any methods 

have been suggested and to date there is no agreement 

( in fact there is much argument ) as to which method 

is best suited for any particular investigation. For 

example see BOivlFO:=\D 1962 , COOK 1962 , n·.: '}qAAFF-HUNT~R 

1958 and H~ISKAN~N 1959. 

In July 1961 the International Association of Geodesy 

held a symposium in England on the reduction of gravity 

data. RIC::C 1962 reports on this symposium and sums up the 

proceedings as follows:~ 

11 ·\men the discussion session was concluded , it was 

apparent that there remained fundamental differences of 

opinion as to the best methods of reducing surface gravity 

to calculate the form of level surfaces for geodetic 

purposes. " 

BCFIFORD 1962 and others state that the particular 

reduction syste~ used must depend on the objects of the 

investigation , but still there is no agreement. For 

example , in connection with deflections of the vertical 

Browne ( see :tiC"S 1962 ) advocates the use of isostatic 

reductions and COOK 1962 states that free air anomalies 

should be used. 

.J. 
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H~ISKANEN 1958a says that for geodetic applications , 

tbe following can be applied :-

(a) the free air reduction with elevation correction 

or condensation correction 

(b) the inversion reduction ; 

(c) the isostatic reduction. 

In South Africa , the Geological Survey has used the 

Bouguer and isostatic reductions and has published maps 

showing Bouguer and iso.static anomalies. HAL~S 1950 and 

SlvtiT 1962 have also worked out and tabulated the free 

air anomalies. 

In chapter 8, for the f!m· th African calculations , 

the isostatic reductions based on the Airy ·Heiskanen 

hypothesis ( depth of compensation = 30 Km ) have been used 

because gravity anomaly maps based on these reductions 

were readily available. 
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CHAPTER 4 

GRAVITY ANOI'1ALIE3. 

4.00 General. 

The gravity anomaly , L\g , is the difference between 

the reduced value of g from observations ) and the 

theoretical value of gravity s G. 

/J. g = g + corr - G usually expressed in mgals 
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where 3 is the observed gravity and corr is the correction 

as obtained from one of the methods described in chapter 3· 

The formula for the value of the theoretical ( normal ) 

<:5ravity is 

G = 978.049 ( 1 + 0.0052884 sin2cf ~ 0.0000059 sin22 cp) gal 

• . . . • . . . . • . . . ( 4~ 1 ) 

where L{J is the latitude. 

' This equation was adopted by the International Union of 

Geodesy and Geophysics in 1930 ( Stockholm ) and is based 

on the absolute value of g of 981.274 gals measured at 

Potsdam by Kuhnen and Furtwa:ngler in 1906 • ( HEISKANEN 1958a; 

JORDAN 1958 ; PARASNIS 1962. Note : Parasnis has omitted 

the seventh decimal figure in the second term of (4-1) 

above ). The co-efficients of (4-1) were corr;uted by 

Heiskanen ( in 1928 ) and Cassinis ( in 1930 ). 

HZISKANEN 1958a suggests that the Potsdam value must be 

corrected by between -1·0 to ... 15 mgals. Since the exact 

correction is unknown , successive General Assemblies of 

the I .U .G .G 1954 and 1957 ) decided to await more 

information before making any change. Heiskanen's 

Columbus Group calculated a gravity formula using up to 

date ( 1957 ) gravity anomalies. The difference between 

the two formulae is small and Heiskanen recommends that 

formula (4-1) be used until new gravity material and new 

methods change it considerably. ( HEISKANEN 1958b ). 

The international gravit.y formula \4-l)ir a function of 



the latitude and as such.is a function of the International 

Spheroid. The main parameters of the International Spheroid 

are 

semi-major axis = 6 378 388 metres 

flattening = 1/297.00 (JORDAN 1958 
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The gravity anomaly , .0, g , is required all over the 

earth's surface to evaluate the formulae of Stokes and 

Vening Meinesz. The practical application of these formulae 

present difficulties due to the scarcity of gravity 

information in lare;e portions of the world and the fact that 

very seldom are gravity ob.servations equally numerous on 

high and low ground. ( COOK 1950 ) 

Recent advances in gravity surveying have included 

gravity measurements at sea and in the air as described in 

chapter 2. At the present time the gravimetrically unsurveyed 

areas of the earth are large and the main problem is to 

decide what gravity anomalies to assign to these areas. 

4.01 Anomalies in unsurveyed areas. 

All the problems of physical geodesy can be solved if we 

know the gravity anomalies all over the world. But a large 

part of the earth's surface consists of oceans and land 

areas which are gravimetrically unsurveyed. The question 

of how to fill these gaps in the gravity anomaly field arices. 

The making of additional measurements in these areas vJill 

take time and , especially in the oceans , certain technic~l 

difficulties will have to be overcome. But research in the 

field of physical geodesy "cannot wait for these additional 

measurements , so some way must be found to fill these gaps. 

The method used by researchers in this field is to fill 

these gaps by extrapolation. This extrapolation can be 

done by either statistical methods or by geophysical 

methods. The results required from these methods are mostly 

in the form of mean area anomalies i.e. the area means of 

squares 1° or 5° or 10° and so on. For calculations for 

deflections of the vertical)point anomaly predictions are 

required. 



Researchers working with statistical methods have made 

much progress in this field. The.error of representation 

has been evaluated ; predictions have been made using 

estimation techniques , least squares techniques and 

using Fouriers series and spherical harmonics. 

RAPP 1966 , f!JA TH.J;R 1967 ) • 

The statistical method , however , cannot be used over 

long distances or for very large areas and in these areas .. 
the geophysical method is used. In this method use is 

made of the fact that the earth's crust is in isostatic 
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equilibrium. This means that the topogrphic and bathymetric 

masses are more or le.ss balanced by compensating masses. 

We therefore expect the gravity anomalies and the geoidal 

undulations to be relatively small. Knowledge of these 

topographic and bathymetric masses enable the effect of the 

isostatic compensating masses to be estimated and the 

gravity anomalies caused by these compensating masses are 

obtained. This method has been widely used especially by 

the Columbus group.(H~ISKAN~N 1965 and 1966). 

For details of some of the above methods see ORLIN 1966. 

When considering these extrapolation methods , one 

must remember that a prediction remains a prediction and 

that the ultimate test of whatever theory is being used 

is to compare the predicted anomaly with the observed 

anomaly. 

4.02 Summary and analysis. 

Gravity anomalies can be of different kinds 

which particular reduction method is used to obtain the 

correction to the observed gravity. In general 

gravity anomaly = observed gravity + correction obtained 

from particular reduction method 

+ theoretical gravity as from (4-1) 
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For example , v/e have 

Free air anomalies = observed gravity +free air correction 

- theoretical gravity 

Bouguer anomaly = observed gravity +Bouguer correction 

+tree air co~ection.+ terrain 

correction - theoretical gravity 

crhe numerical value of the bouguer correction 

is negative 

Isostatic anomaly= observed gravity +free air correction 

+ Bouguer correction + terrain 

correction - theoretical gravity 

For South Africa , HALES 1962 used 

Free air anomaly = g + 0.3086 ( 1 + 0.00071 cos 2f) h 

- G mgal 
u 

Bouger anomaly = g Oolll8 h + B ) + 0.3086 ( 1 + ,..... 

0.00071 cos 29J) h ~ G mgal 

Isostatic anomaly= g + 0.3086 ( 1 + 0.00071 cos 2f) h 

- ( 0.1118 h + B 

where B = a curvature correction 

In = isostatic correction 

+ I - G n 

As mentioned in chapter 3 , Bouguer anomalies cannot 

be used in geodesy. 

Figures 4/1 and 4/2 show the gravity anomaly profiles 

along 29° South Latitude and 28° East Longitude resp. 

( i.e. they are two South African profiles at right angles 

to each other ). They were compiled from the data published 

in SMIT 1962 and HALES 1962. The isostatir nomalies in 

these figures are based on the Airy-Heiskanen system with 

a crustal thickness of 30 Km. 

In the study of these figures we note the following 

interesting points :-
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(a) The Bouguer anomaly profile takes the form of an 

exaggerated mirror image of the topographic profile. 

High mountains give large negative Bouguer values& 

(b) The free air anomaly profile follows the 

topography more closely than the isostatic anomaly profile. 

The free air anomalies are therefore more representative 

of the topography than the isostatic anomalies , while 

the B::.uguer anomalies are more representative of the 

topography ( in a negative sense ) than the free air 

anomalies. 

(c) The isostatic anomalies are s in general , smaller 

than the free air and Bouguer anomalies. This is an 

important fact , because if we use isostatic anomalies 

for calculations and give the value zero to the 

unsurveyed areas , then we are nearer the truth than with 

free air and Bouguer anomalies. For this reason the 

isostatic anomalies will give a smoother figure of the 

earth. ( i.e. geoidal heights ) • SZABO 1962 says that in 

most parts of the world the isostatic anomalies are smaller 

because the isostatic compensation has a smoothing out 

effect upon the geoid 

The points noted from figures 4/1 and 4/2 agree with the 

data published by BOIJJFORD 1962 and HEISKANEN l958a.' 

From a practical point of view , the computation and 

drawing of isostatic anomalies involves much more work 

than for free air anomalies. 

KAULA 1953 says that gravity anomalies must be reduced 

to sea level for application of Stokes' and Venning Meinesz 

formulae and therefore recommends that free air anomalies 

should be used. He also makes the point that further than 

12~65 from the computation station either free air or 

isostatic anomalies could be used. 
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As far as can be ascertained , SZABO 1962 is the only 

person who has useg_ both free air and isostatic anomalies 

for the computation of deflections of the vertical at a 

number of points. In his comparative studies he shows 

that the deflections computed with isostatic anomalies 

are in reasonably good agreement \IIJi th those computed by 

using free air anomalies. 
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CHAPTER 5 

H:::::IGHTS ABOVE SEA LZVEL 

5.01 General. 

The general fomula for the height systems at present 

being used in the field of physical geodesy can be 

expressed as follows 

Height = 
t1 
v 

G 

where C the geopotential number 

G = the value of gravity 

For the dynamic height system , 

at an arbitrarylatitude. 

n -..;r- the normal gravity 

For the orthometric height system , G = the mean actual 

gravity value along the plumb line to the geoid. 

For the normal height system , G = the mean normal 
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gravity value along the plumb line tp the reference spheroid. 

( HEISKANEN 1967 ) 

5.02 Geopotential numbers. 

The geopotential number , C , is not a height in a 

geometrical sense but it is important , because it is 

the most direct result of spirit levelling. It is a natural 

measure even if it does not have the dimension of length. 

The geopotential number of a point is the difference 

between the potential at the geoid and the potential at 

the point. It is expressed in geopotential units ·' g.p.u. 

1 g.p.u. 1 Kgalometre = 1000 gal.metre and 

C = 0.98 H approx. where H is the height above mean sea 

level in metres. 



5.03 Dynamic heights. 

c 
Dynamic height = DH = 

where 0 0 is the normal ~~avity at an arbitrary 

latitude on the international spheroid. This latitude is 

usually 45° and 1)
45

o= 980.6294 gals. 

If N is the sum of the levelling increments ( i.e. the 

height differences as measured by a spirit level ) then 

DH = N + DC 

where DC is the dynamic correction. 

DC = where g =mean gravit~.between 

the points whose dynamic height is being determined. 

( Details and derivation of DC are given in BOI>!JFORD 1962 

and H~ISKANEN 1967 ) 
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Dynamic corrections are large. For example , g between 

Bloemfontein and Kimberley is about 978.9 gals. ( SMIT 1962 ) 

If (So= 0'45"= 980.6 gals then the dynamic correction between 

Bloemfontein and Kimberley( height difference = 666 feet , 

see TRIGSuqv~Y 1966 ) is 

D r< -
.,.!-

978.6 - 980.6. 

980.6 
666 = - 1.16 feet. 

Because of the large corrections to the measured height 

differences , dynamic heights are not much used for practical 

purposes. 

The dynamic height is the distance between the geop 

through a point and the geoid measured along a plumb 
0 line at some chosen latitude , usually 45 • Dynamic heights 

therefore have no geometrical meaning but are significa~t 

in that points on the same geops have the same dynamic 

height. 



5404 Orthometric height. 

c 
Orthometric height = OH = 

gm 

where gm is the mean gravity value ( along the plumb 

line through the point whose OH is being determined ) 

between the geoid and the point. 

OH = N + OC 

where OC is the orthometric correction. 

H.EISKANEN 1967 gives the following Ledersteger relation 

between dynamic and orthometric hei3hts 

where A and Bare points on the earth's surface and 

A' and B' are the corresponding points on the geoid 

and the dynamic corrections are as given in 5.03 

TRIGSURVEY 1966 use the following relationship 

oc = 2B .N. sin 2 cp. D q:> 

where B = 0,002644 

(-P = mean latitude 

6 r = difference in latitude. 
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Orthometric corrections are generally small. For example , 

the orthometric correction for the levelling route from 

Bloemfontein to Kimberley ( height difference = 666 ft ) 

is+ 0.1168 feet i.e. about 0.018 ft per 100 feet of 

measured height distance. ( TRIGSUHVEY 1966:) Because 

orthometric corrections are small , orthometric heights 

can be obtained with great accuracy. 

The orthometric height is the geometric distance between 

the geop through a point and the geoid measured along 

the plumb line through the point. 
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5.05 Normal heights. 

MOLODENSKY 1958 introduced the concept of normal heights 

in his study of the figure of the earth. 

c 
Normal height = NH = 

gr 

where gr is the mean normal gravity along the plumb 

line between the point and the reference spheroid. 

The normal height is a geometric height above the reference 

spheroid. The surface which is always a distance NH above 

the reference spheroid is called the " telluroid 11 by 

HiqVON~N 1960. The locus of points whose distances below 

the actual surface of the e:.:.rth are equal to the normal 

heights , is called the quasi-geoid by Molodensky. The 

quasi-geoid has no physical meaning and is not an 

equipotential surface. 

Normal heights , telluroid and quasi-ge?id are terms 

used in the modern method.s of determining the figure of 

the earth. See H?::ISKANEN 1967. 

5.06 Trigonometric heights. 

As trigonometric heights are obtained by observ-ing 

vertical angles and as these angles are with reference to 

the direction of gravity at a point , these heights fall 

within the scope of physical geodesy. 

If a single vertical angle is taken , then the computed 

height is the orthometric difference of height above a 

spheroid whose axes are the same as those of the reference 

spheroid. But in this case the spheroid is tangent to the 

geops at the point of observation. If reciprocal vertical 

angle obGervations are made , if the deflection of the 

vertical is the same at both ends of the line and if the 

geoidal section can be represented by a circle , then the 

mean computed height differences give the difference of 

orthometric height above the geoid. ( BOMFORD 1962 ). 



A large factor in trigonometric heights is the effect of 

atmospheric refraction , which to a certain extent is 

eliminated by taking reciprocal observations. 

5.07 Barometric heights. 

Barometric heights fall into the field of physical 

geodesy in that they depend on the variation of gravity 

\'Ji th latitude and with altitude. But as the accuracy 

obtainable is nowhere near geodetic standards , barometric 

heights will not be discussed here. 

5.08 Accuracy. 

Dynamic and normal heights are as accurate as the 

geopotential numbers. If , for the geopotential number , 

we assume a standard error of ~ 0.1 mm per K~ of distance 

for geodetic levelling , then the geopotential number can 

be determined with an accuracy of .± 0.1 gal.metre per Km 

of distance. (IEISKANEN 1967). i.e. lo-4 g.p.u. per Km of 

distance. 

As orthometric heights depend on the mean gravity along 

the plumb line between the point and the ~eoid , they also 

depend on factors such as the density below the point. 

This information is not known exactly. BOMFOl.D 1962 

states that the mean e;ravi ty , gm , can be estimated to 

about 1 in 10 000. 

In trigonometric levellin~ , the uncertainty and 

variations of the atmospheric refraction make an accuracy 

of greater than 1 second of arc in the vertical angle 

difficult to attain. Over'a distance of 10 Km , the 
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standard error of the elevation difference for reciprocal 

observations is+ 10 em. (HZISKANZN 1967). If short distances 

with reciprocal angles are observed , ·fairly accurate 

orthometric heights above the geoid are obtained. 



CHAPT"9;R 6 

DEFLZCTIONS OF THE V~l:RTICAL 

6.00 General. 

M 

earth's surface 

\ 
/~ ~ ' ' ~'7/7·7"'7777/ 

geop 

__?! 
reference 
spheroid 
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In the above figure , Pis a point on the earth's surface. 

The geop passing through P , the geoid and the reference 

spheroid are shown. The curved line LM is the plumb 

line passing through P. This plumb line meets the geoid 

at P'. PA and P'C are the normals to the reference 

spheroid. PB is the vertical at P and F'D is the 

vertical at P'. The position of f is given by the astronomica1 

_, latitude and longitude ( as observed ) and the 

position P" is given by the geodetic co-ordinates of P 

as computed. 
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Consider PB and P'D as gravity vectors and PA and 

P'C as the normal gravity vectors ( I.E. perpendicular to 

the normal earth or· reference spheroid. See section 1.01.) 

Then the difference in direction between PA and PB is the 

astronomiaa! · deflection of the vertical and the difference 

in direction between P'C and P'J is the gravimetric 

deflection of the vertical. Both these deflections are 

deflections as refered to P , the point on the earth's 

surface. 

As LEDER3TZG:'~R 1956 points b'u t , " deflection of the 

vertical ri is. really a misnomer. The vertical is defined 

by the plumb line , we cannot therefore speak of a: deflection. 

A better expression would be 11 deflection of the normal." 

Note:- The difference in magnitude between P'C and 

P'D is the gravity anomaly at P. (Not at P' .) 
{.\\ . 

The definition of the astronomic~deflectiop of the vertical 

given above is known as Pizetti's definition and that for 

the gravimetric deflection is knovm as Helmert 1 s definition. 

Although the gravimetric deflection is regarded as the 

II abSOlUte 1l O.eflectj_on ' it iS dependent On the parameterS 

of the International Spheroid. Strictly speaking there is 

no such thing as an 11 absolute deflection 11 because there 

is no absolute reference surface. 

If figure 6/1 is considered as a north-south section 

then the angles APB and CP'D are the north-south 

components of the respective deflections and if the 

figure is considered as an east-west section then these 

angles are the east-west components. 

For astronomic~~\deflections of the vertical 

the north~sou th component = ~o .. 
the east-west component = ~q 

For gravimetric deflections of the vertical 

the north-sou_~h component c = ;::; j 

the east-west component = 1_ 3 

And in general
1 
the deflection = ,j ~---z.:-~:;-z-

~ -



6.01 The astronomical deflection of the vertical. 

live have the following relationships 

C !'1,-;c--·- - ri·,::' ''~ct = j'- -· 

rc-c{ = c /to_- A ) u; s (e 
also 'let.= (c(Q~ ':)_) c__~+ c.( 

where cfc. , )ct, Xc-_ ..... astronomical latitude , longitude 

and azimuth4 _ 

q) , ~ , 0 <_ = geode ti.c latitude , longitude and 

azimuth. 

The astronomical deflections are relative because they 

depend on the geodetic co-ordinates ~) ~' ~ 

geodetic co-ordinates , ill ·turn , depend on 

(a) the particular reference spheroid used 

These 

(b) the orientation of the reference spheroid i.e. the 

deflection components and azimuth adopted at the 

initial point. 

(G) the accuracy of the tria.ngulation net , which 

involves many factors. 

6.02 Corrections to the astronomical deflections. 

In order to compare astronomical deflections with 

gravimetric deflections , certain corrections have to be 

applied to the former. . These corrections arise because of 

(a) the different star catalogues which may· have been 

u8ed in the computations ; 

(b) the variation of the pole ; 

(c) the fact that astronomical ·deflections are usually 

referred to the earth's surface while gravimetric 

deflections are referred to the geoid; 

(d) the fact that the spheroid used when calculating 

the astronomical deflections might not be the same 

as the spheroid used in the International Gravity 

Formula. 
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6.63 Reduction to the same stat catalogue. 

It is poss~ble that the astronomical latitudes and 

longitudes have been observed and computed over a large 

number of years and that different star catalogues have 

been used in the computations. These computed values , 

for the purposes of comparison , have to be reduced to the 

same star catalogue system ( usually the FK4 system). 

These reductions are done by usine; specially prepared 

tables. ( RICE 1952 ) 

6.04 Variation of the pole 

The pole of the earth wanders around its mean position 

alons an irregular path whir~h;-lies inside a circle of 
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about lC metres ( or 0.3 seconds of arc ). All astronomical 

observations have therefore to be reduced to the same epoch" 

The corrections to the latitude and lon:gi tude as 

computed are 

df = - y sin,~ +X cos A 

d ( ).2 ;zl) ( y 
., 

X sin 7\ z_) tan cp z. = - cos /\2 + 

+ ( y cos A I + X sin 1\
1 

) tan (p 1 

where~ the. longitude of the point , positive east\vards 

from Greemlfich. 

X,Y =co-ordinates of the pole in seconds of arc 

referred tc its mean position. ( Published by 

the International Latitude Service.) 

The subscript 11 1. 11 refers to the observatory sending 

the time signals and the subscript 11 2 11 refers to 

the computation point ( i.e. the field station). 

6.05 Reduction to sea level. 

As explained in 6.00 the astronomical deflection refers 

to a point on the actual surface of the earth and the 

gravimetric deflection refers to a point on the geoid. 

In order , therefore , to compare these deflections a 

sea level correction must be applied. This is done indirectly 



by applyin3 the corrections to the astronomical latitude 

and longitude. 

As an approximation ; the correction to the observed 
I' , 

latitUde= df= ~ Oi000171 h sin 2f 

i'!here r = latitude of computation point 

h = elevation of point in metres 

( DERENYI 1963 incorrectly ,:~ives the co-efficient as 

0.00171 ). 
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The above correction is consistent with the International 

Gravity Formula (4-1). As this formula has no longitude 

term , no correction is needed for the astronomiral 

longitude. 

GILL 1896 used the reduction - 0.052 h sin 2 f where 

h = height of station in Kilo-feet for the South African 

Geodetic Survey. This is the same as the previously 

mentioned reruction for h in metres~ 

In reducing the astronomical point to sea level , we 

must also take into account the curved line of the plumb 

line ( or the irregular gravity anomalies ). The further 

corrections which are needed are 

where 

(' aDg 
S' X 

and 

h 

fag 
---are the north-south and east-y,rest (5 y 

gravity gradients in milligalsr and h is in the same 

linear units as X and Y. 

In practice , the above mentioned three corrections 

are the only ones applied for reduction to sea level. 

( RICE 1952 ) 



6.06 Change of spheroid. 

~ve use approximations of the VINING 1v1d;IWI:SZ 1950 

formulae by leaving out squares and products of small 

quantities. 

cJ ~ ~ [s;/1 ( tf- f 0)- 2 co~ fc s;11 f s;n'2.-f (A-) 0)] llj3 

-[4 cos c{'c:.osi(<fi+({Jo)sin1_ (qJ-Cfo)] /_~o( 

_ ( 2_ + i tan fa s;n 4-fo) .5 ;, ( cp- yc?) D( 4 o( 

"' - Cos qJo sin (A- Ao) b. (3 
+ /~ s:n c{)o .s;n 4-o/o S ;n (A- A 0 ) o( L1c<. 

where cis = correction to Scz 
cl rz = correction to 11 a 

( 6-1) 

("6-2) 

4>o,lto =geodetic co .... ordinates of initial point 

~.A =geodetic co~ordinates of computation point 

/J,CA- = ( major axis_ International Spheroid ) 

- ( major axis local spheroid ) 

L~v( = ( flattening International Spheroid ) 

-. ( flattening local spheroid ) 

= 
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Notes: (1) -cis is the change in the geographical latitude 

and _:_clrl_Sec f is the change in the geographical 

longitude at the computation point due to changes 

in the elements Q and o( of the spheroid. 

(2) These formulae are approximations which assume 

(a) changes of the semi axis of the spheroid are 

not greater than 1/20 000 th part of these 

axes. Therefore squares of 

neglected. Also oz"Z. L\u. 
('..L 

been neglected 

and 

6c."t 6b 
--;::;-:-·and b have been 

"2 6 b ol... · have 
b 

(b) ot..Do~..and r;:,ziJ(3 have an order of magnitude of 

less than 1 in 6 000 000 and therefore when 

they are mul tip] .::.ed by terms containing square;, 0 

and products of C f- q?o)and (/1- A 0 ) we can neglect 

these terms • 

If the triangulation system be ine; investigated is of \'!Orld 

wide extent , then the above assumptions should not be made. 



For South Africa :-

cpa = 33° 59 1 32 1~00 

Ao = 25° 3C' 44 1~622 

South/ 

Sast) 
Buffelsfontein 

major axis International spheroid ) 

~ ( major axis Modified Clarke 1880 spheroid 

= 6 378 388 ~ 6 378 249ol45 326 ) metres 

( JORDAN 1958 , HENDRIKZ 1956 

= 138.854 674 metres 

/j,c~ = 0.00336 70033 67003 0.00340 75461 94953 

JORDAN 1958 , and evaluating f given 

by H~NDRIKZ 1956 

= 0~00004 05428 27950 

b/3 = + 0.00000 90982 

6e07 Re~orientation of spheroid. 

= Mo Jcos cq;-cpo)-2s;n qJsin cpa .s:r: 2 ~().-),a1]c1So 
f"'l '-

t'-1·:) . tD . ( ' 1 ) l + -· - s IY'J ~ s 1 n ;\ - /\ a c rt_ o 
f"'l 

-t- 1~ [s:n (tp-<p0 )-2sincpcos r:[Jos;nz~(/\-1\o'>]clNa 

cl'l 

where 

cis = correction to r; •. 
'-)G<. 

d!(_ = correction to 11o. 
Ma= radius of curv~~ ture of' merirU.an at initial point 

M = radius of curvature of meridian at co!hpu ta tion point 
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1\Jo= radius of curvature of prime vertical at initial point 

N = radius of curvature of prime vertical 

cl~~c(,lo= deflection components at initial point 

ciNo = geoidal height at the initial point 

at cor.;.pu t.::: t:ton pt 



For South Africa :~ 

Mo = 20 850 330 Eng. feet. 

No = 20 948 500 Eng. feet. 

(UCT 1965) 

(UCT 1965) 

cl~0 = 0 , assumed ( or 3~46 to North using TSO 1954 ) 

d 'l_o = 0 , assumed or 0~88 to \\fest using TSO 1954 ) 

c/ No= 0 , assumed. 
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CHAPTER 7 

GRAVIMETRIC DZFLECTIONS OF THE VERTICAL 

7.01 General. 

On 23rd April , 1849 G.G.Stokes read a paper " On the 

variation of gravity at the surface of the earth 11 to the 

Cambridge Philosophical Society. ( STOKES 1849 ). Stnce 

then the calculation of geoid undulations using gravity 

data has been one of the clssical problems in geodesy. 

In 1928 Vening Meinesz , using Stokes' results , derived 

formulae for calculating deflections of the vertical using 

gravity anomalies. ( i.8NING ]'liG:INESZ 1928 ) • From the 

theoretical point of view , not much need be added to the 

formulae obtained by Stokes and Vening Neinesz. 

These formulae presuppose complete and comprehensive 

gravity data over the whole earth. The fact is that this 

complete gravity data does not exist and it does not seem 

likely that such coverage will be possible in the near 

future. In view of this , and other considerations , the 

formulae derived by Stokes and Vening Meinesz must be used 

in a modified form . 

., .02 Basic Theory. 

In the following review of the basic theory , we will 

use the nomenclature in general use today and not the 

symbols used in the original papers quoted. 

In article 3l of his paper , STOKES 1849 arrived at 

a formula for determining the geoid from gravity 

observations , namely 
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P... 

(\} == ---
2TTG 

•••••••••• (7~1) 

where f\l = geoidal height 

R = mean radius of the earth 

G = mean gravity 

,!j_g = the gravity anomaly 

2f(~J)= cosec :/'2... +-!-fos~n-P!-z_ -5cos yi 
- 3 c:'o::;, ~4J /._"Se [s;n "% (_)-+- si0 11/2-)] • • • • (7-2) 

~Y)i o._ = polar co~ordinates of the point where dj applies. 

Note 

(the centre of the co-ordinate system is where 

N applies) 

In the original paper STOKES 1849 , and in some 

subsequent literature , the constant in equation 
R (7-1) is given as +n(r • In these cases the 

function of '\fJ used is equal to twice. the value of 

f(-r) above • 

. ii:quation (7~1) is called Stokes' Theorem and it enables 

us to find the geoid or the geoidal heights ) over the 

\'!hole earth , provided the gravity anomalies over the whole 

earth are known. But as f(~) is small for great distances 

from the point where N is being computed , distant 

anomalies have a smaller effect. 

Because of the manner in which (7-1) has been derived , 

the theorem is valid only if no masses are present outside 

the geoid. Hence we have the various reduction methods 

as described in chapter 3· HIRVONEN 1962 says , " The 

conclusion can be made , hoWever , that the errors caused 

by the theoretical defects of Stokes' formula are 

essentially smaller than the errors which still at present 

and long in the future will be caused by the scantiness 

of the gravity measurements actually carried out. " 



The gravimetric deflection of the vertical is the slope 

of N. This deflection can be expressed in terms of the 

two components , :§; 5 in the north ... south direction and ll_:l 

in the e~st-west di~ection~ 

Note : The suffix g to §· and '1 will be omitted 

hereafter and gravimetric components will be 

assumed unless otherwis.e stated. 

')N s = --
()X 

'dN 
and •••••••••• 

oY 

The minus sign in (7-3) is a convention used to 

correspond with the definitions 

~ = ( astronomical latitude) 

~ = ( astronomical longitude 

(geodetic latitude) 

geodetic 

longitude) x ( cosine geodetic latitude) 

• • • • • • • • • • • • ( 7-3a) 

( HEISKANEN 1967 ) 

In (7-3) X is taken in a north-south direction and 

Y is taken in an east-west direction being positive 

towards the east. 

In 1928 Vening Neinesz differentiated Stokes' theorem 

to obtain the deflection of the vertical , which can be 

expressed as follows :-

£:.," == - -?'' 1-~~s ~ dct17T cl fQP 
_...~ 2JTG 1 

0 o ol.jl 

_p" 12/T 
::. - -'- SIY1 

2TlG- o 

SOLLINS 1947 has 

Sd{ry) ,.· ll) ci•J and ci'{ =>111 l' l 

•• ( 7-4) 

Notes : (A) The gravimetric deflections calculated from 

(7-4) under ideal conditions ( a knowledge of 

gravity over the entire earth's surface ) 

represents absolute values in contrast to 

astronomical deflections which represent 

relative values. (See 6.00 with .regard to 

" absolute 11 values ) ~ 
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(B) For the calculations of the gravimetric 

deflections , the following conditions must 

apply :-

(1) The gravity field observations must be 

converted to the same world gravity system; 
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(2) The gravity formula used must give the value 

zero for'the mean gravity anomaly of the earth; 

(3) The flattening of the reference spheroid and 

that of the spheroid used in the theoretical 

gravity formula must be the same. 

7.03 A practical computation procedure. 

The literature in the field of physical geodesy shows 
. ' . 

that the theoretical developments of the concepts are 

usually more advanced than the practical applications of 

these concepts. This is mainly due to insufficient gravity 

material being available. 

Th~ problem , then , in the application of the theory 

is to work out a practical method for performing the 

computations. The gravimetric methods used to compute the 

vertical deflection components will depend on the behaviour 

of equation (7-4) when y is small. 

The principles used in working out a practical computation 

procedure are 

(a) The gravity field immediately surrounding the 

computation point plays a decisive part in the deflection 

of the vertical ; 

(b) The effect of the distant areas , .while not being 

neglected ,, play a smaller part in the deflections 

(c) At the computation point , the Vening Meinesz 

formulae are indeterminate. 



7•04 The square method. 

tt we consider a surface element to be represented by 

an infinitely small square dq , we could replace 

d q in equation ( 7 -4 ) 

cl t C1)i) y- cos a_lJtj. cl~ 
d 

II f I/ i d (Cljl) . . II Cl d q 
f(_ "-- -_- . c;,, Q.Ll_j' v 

211 G- 1- ell! 

and get 

(7-5) 

Note : Q , the azimuth of dq , is measured from South 

through West. 
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If we now replace dq by a small square of finite 

dimension q and evaluate the constant taking f = 206265" , 

G = 979800 mgals ; we get 

J' Jl 335 L 'l_:: -0.0, L 

} ..... (7-6) 

" Jl ~ 
~ ::: - o. 0335 L_ 

This summation must be extended over half the earth 

around the computation point. 

The use of equation (7 ... 6) is known as the "square" 

method. ( The figures are actually apher\oal t:r-ap~zo1da ·) • 

7.05 To calculate the area of the square , q, in (7~6) 

we use the following formulae ( JORDAN l958 ) :~ 

b 2 n L\~ 
q ( sq. Km ) = ( A cos fsin L)2£- B cos 3 cp sin 3 f:..

2
P 

90 

+ C cos 5 cps in 5 .b..J! - D cos 7 qJ sin 7 6J! 
+ E cos 9 o/ sin 9 ~:£ ........• ) 

• • • • • • • • • • • (7-7) 



50 

where 
l e2 + 3 e4. 5 6 3'f; 8 i?3 10 

A = 1 + 2 + tb e + 128 e + -e B 250 
I 2 3 4 3 6 3S 8 +4se 10 

B = -e + !(o e + Uo e +19z.e 0 2~)0 

c -~ e4 I 6 + ~e8 + /+-5_el0 
= + rrae so b4 51 z_ 

D 
I 6 5 8 +~elO = Ttz_e + 2S("'e 512 

.E s 8 3 10 
= ---e + S12 e 2"304-

F 3 10 = 503Z e 

e = eccentricity of the spheroid. ( For the international 

spheroid e2 = 0.00676 81701 97224 ) . 
b = semi-minor axis of the spheroid. ( For the international 

spheroid b = 6 356 911.946 13 metres ). 

q= mean lat1tude.of squar~ 

~o/= difference ( in degrees ) between northern and southern 

limits of square. 

~~= difference in degrees between eastern and western 

limits of square. 

7.06 The azimuth , Q. , and the angular distance , ~ 

required in equation (7-6) a~ obtained as follows :-

F> 0 

Q 

Sov+h Pole. 

In the above figure 

Po = computation point 

c9o = lati.tude of computation point 

8 ~ = centre of square q 

tf'Z- Latitude of 0 = \q, 

6/1 = difference in longitude between Po and ~ 

s;1'"' <Po .Sin t{J(,.. ·+CoS o/o CoSo/~ CoS, ,6 )_J 
• ( 7-8) 

C 0 S c.{Jcz._ S /v1 1\ /1 _ 

s;r~ tl 

Co5 lf -::: 

/ 



The 

is 

last quantity needed to compute equation (7~6) 
df('f!) 

d~ 
From equation (7-2) we get 

cos '1/-z.. LV 
= - 0.25 - ... 1.5 cos Y2. + 2.5 sin f 

sin2 1 2-

+ 1.5 sin lf loge ( sin'lJ)/z_ + sin2 i'h_). 

(
/ 1 + 2 sip ..J;2.. )\ ~l)) 

- 0.75 cot Yz.. cos If 
1 + sin '-Ph __ 

• . . • • • • ( 7 .... 9 ) 

and SOLLINS 1947 has given 

! [- cosec Y2 - 3 - 8- sin "'f2 + 32 sin
2 ~z 

+ 12 sin3 1!2 - 32 sin4 <Pjz,. 
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+ 3 sin2 "f loge ( sin 1/z_ + sin2 ·'l(z.. )] •••• (7-9a) 

7.08 

When using equation (7 -6) for computing ~ and fl_ for 

any point , we divide the earth into 1° x 1° or 5° x 5° 

spherical trapezoids ( "squares" ) • 

HEISKANEN 1959 says that experience has shown that for 

radial distances greater than 20° from the computation 

point, 5° x 5° squares should be.used and that for 

radial distances from 3° to 20° from the computation point 

squares of 1° x 1° should be used. 

For radial distances of less than 3° from the computation 
cH (\))) 
citp 

point , the squares have too large an effect,as 

approaches infinity as ""-Y approaches zero and therefore 

a different method of computation will have to be used. 

In this case a further sub~division is made and we use 

the 11 circle-ring " method. 



7.09 The circle-ring method 

Equation (7-L!.) was 
I! pi/ J' 2 TT . f I I cl f ( l..il) - . ... \)' .6 Cl ' c{ •tyi 

~ ~ ---/ c.os ({de'- - f\jJ s,n '1 _:_) 
2. n (__.,.. 0 - o c 

or , ,, .y .. d·vJ 
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c/ S" :: - ~- !_ ( S 1 n <~ 2 - 5; il') c, ,;[ f '(l.)/) S; n !J) !J_'] --,,J d ~~ L 
Lll(.:;-- .,_y r j .. (7-10) 

f II 1· 1' +d -yi "I LJ /l J 
d "- _ _:{___(c_ 0 st:l,-C-c..SCtz.) f'l'Y):5;A-Y1

· :J··u/ 6 
7 rz - 2/T(;r lr 

where d 5" and d rl' are the effects on the components 

!)u and rl'' of a circular ring compartment ( with radial 

boundaries '/ _ and l..f'-+ di.f\ and azimuth boundaries o 1 and Ct.z_ ) 

and the gravity anomaly ~glV 

The best practical procedure is that suggested and used 

by RICE 1952. This is a modification and improvement on 

Kasansky's method. ( SAKATOW 1957 , HEISKANEN 1958a ) 

Rice used circular templates having a uniform angular 

aperture of 10 degrees • The tables published in SOLLINS 

1947 were used and radii computed so that the effect of 

each compartment has a radial deflection effect of 

0.001 seconds of arc for a mean anomaly of one milliga1. 

· · p'
1 

cl {{L))) s· ,\J ·/"II I·- o''-o, l.e. ---- --- .r) Y'·c r c q- .u always. The radii zn& ar-~ ! · 

in this case are in geometric progression with a common 

ratio of 1.1864. The mean gravity anomaly of each 

compartment is estimated and the effect of each compartment 

is computed. This effect is multiplied by cos a 

and the summation gives the total effect on ~ 

Multiplying the effects by sin a and summing gives the 

total effect on ~ 

In using Stokes' function f(1_)( and its variations) as 

outlined above for determining gravimetric deflections , 

finite summation cannot be applied to the area immediately 

surrounding the computation point. In the region within 

about 10 Km of the computation point , we must therefore 

use a different method. 



7.10 The gradient method __ • 

In order that the integration should lead to a finite 

result , the gravity anomaly of any point , in the small 

region surrounding the computation point , can be expressed 

as a function of position. 

Regard a circular area with radius r
0 

arourtd the 

computation point as a plane region. Take rectangular 

co-ordinates with the origin at the centro , the X-axts in 

a north-south direction and the Y-axis in an east-west 

direction. Assume that 

= D. g0 + r cos a + r sin a ••••• (7-11) 

Consider the earth as a sphere with radius R 

dr 
and ay = Substitute these values 

R 

in the first two terms of equation (7-9a) and we get 

\ I 1 3 \ d f (t.Y) s;ny.d~ = -(-;:- + --- 1dr (7-12) 
2R ) 

• • • • • • • • 
cl~ 

Substutute (7-11) and (7-12) in (7.-4) to obtain 

r:. fiT r ( 
-1/ p r- ... )1__ . 069 . (.[jgJ I-, 3l 

,..JC :::: __ )1-._\Gr"-rrc.osct-('-· -+rs,na... -J cos n -::.+- do. d,-
d'J 2n& 1: -~ c!X y -' 2(<, 

-·o o 
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. r 2~ r S (7-13: 
, -P j 0 J -- a .6 c, . L~ .9] . r ' 3 J I d d r( :::. --. [!\So-+ •c~~s Cl r -· + ,~ stn Cl -S,1 s:1n o...L r=+ 2 R. c n.. r 

2TTG 0 0 0 X I 

and the integration of (7~13) gives 

d s 11 

~ 
..p 1/ --

+ 3 r·2.J s f~<J l -· llo -·-,-
26- L 4/Z 0 a)< (7<-14) . . . . . . . . . . . 

( 

f''- -, di'ig j d,1 
,, 

2G Lio 3 r2J :: + 4R lo sy 
i.e. we now have expressions for the portions of S and 1_ 

contributed by the inner zone of radius r
0 

• 



Substitute the values 979800 for G and 6371 for R 

to get 

d { ,, = r- 2 J r ~~s 
:; 0~10526 Lr0 + 0.00012 r 0 X 

dr( 
SDg 

= 0~10526 [r0 + 0.00012 r~] 
y 

•••••••• (7~15) 

where and are the gravity " gradients tt 

X y 

in milligals in the north-south and east-west directions 

respectively and 
Sx SY 

• ---·- . I ··-- . '·· 
I 
I 

I // 

i i 
i I :,---r 

I 
i / 

-- -... _J_ -- - ~ 

6 g~ 

in Kilometres 

\ 
' 

/ 
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The figure above shows the situation near the computation 

point P0 • The radius of the circle is r
0 

and the 

gravity anomalies at the north , south , west and east 

points of the circle are .6 gn , D Ss , D gw 

respectively. 

Formulae (7~15) now become 

1( ds = 0'~05263 1 + 0.00012 ro) ( 6 Ss -Dgn) 
. 'I 

0!~05263 ro) ( ,6 ge -.6 sw) arc = 1 + 0.00012 

and neglecting the small term with r 0 we have 

and L\ ge 

cis ,t = o'~05263 c6 ss - Llgn ) 
1/ 

d fl = 0'~05263 ( D ge ~ L'l gw ) 
••••••••••• (7 ..... 16) 
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From the above reasoning ; we note that equations (7~15) 

and (7-16) are strictly valid only if the gravity gradient 

is constant over the area within the circle i.e. we should 

have parallel gravity anomaly contours at a uniform 

spacing. RICE 1952 has shown that even if this condition 

does not apply , d €/ and d fl,
1 

could be evaluated to 

sufficient accuracy ( if the local gravity survey is 

adequate ) by increasing the accuracy of equations (7~16). 

This is done by taking four additional gradient lines as 

shown in the figure below. 

i.e. the circle is divided into 45° sectors and .6gnw , 

D gne , D gse and LJ gsw are the additional anomalies 

at the north-west , north-east i south-east and south-west 

points on the circle. 

The gravity gradients bgn to ,6gs 

are given weight 1 and the gravity gradients /~ gnw to LJ gne , 

!J gsw to b e;se , Jj ghw to /J g 8 w. and fj, gne to .Ll g 8 e are 

given weight ! . When considering gradients of half weight 

it must be remembered that the distance over which tpe 
1 

gradient applies is (2)-2 of the radius. Taking the distances 

into account and using the above mentioned weights , we 

utilise all six gradient lines to get an improvement on 

equation (7-16) , namely 

asl'= o'~026365 L6gs - LJgn) + o'~ol861 /(L1gse-llgne)+(L1gsw-L1gnw)] 

c~,-t= o•:o2636s < fj, ge -~gw) + o'~ol861 [<Llgse-Llgsw)+(L1gne-llgnwD 

. . . . . . ~ . . . ~ . . (7-17) 
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RICE 1952 gives the following equations ( converted to 

our nomenclature for the north~south and east-west gradients 

5, = 0~165(~~g)r0 
= 0'!105 ( ~ gs ... Dgn ) l 
= 0'!0525 (Lj gs -ll gn ) 

and similarly rt_ 1 = 0'!0525 ( /J. ge -.6 gw 

From Rice's results and his published free air anomaly 

contour sketches , we can deduce that for the additional 

gradient lines he used 

52.= 
1 

o'll05 (Ll gse .... fj gne )( 2) -2 

= 0'!0742 (b. gse .... b,gne ) 

33 = 0~0742 ( 6gsw -Dgnw ) 

'12- =0'!07 42 C6 gse -LJgsw 

1(3 = 0 1!07 42 (LJ gne -L} gnw ) 

and mean S 251 +sz+53 
= 

4 

2 1/.. I + fl2 + '1. 3 
mean r{__ = 

4 

The above will give results similar to those obtained 

from equations (7-17) but (7 .... 17) are much quicker to use 

and the mean is obtained directly. 



7.11 Summary and analysis. 

Consid2ring the basic theory and the limitations of 

some of the computation equations , we can set out a 

practical procedure for computing the gravimetric 

deflections of the vertical at a point , based on the 

methods and suggestions of H.~ISKANEN 1958a and 1958b and 

RICE: 1952. A summary of part of the following has been 

published elsewhere in LOON 1967. 

Vfe divide our procedure into four stages. At the end of 

each stage a portion of the deflection component is 

obtained , so that 

t; d, S -t (lz 5 + c/3 ~ + d4--S 

rt_ -=- ell 'l -t cit- 'rc + d3 f1 + c-\4- 'l. 

• • • • • • • • • • • (7-18) 

Stage 1. 

In this stage we use Rice's gradient method for 

computing the effect of the immediate neighbourhood of. the 

station. on 5 and '1 . i.e. we compute cl1s and ·cl1'1 

A fundamental circle of radius between b.5 Km and 10 Km is 

usually recommended. The nature of the gravity anomalies 

around the computation point will determine the radius 

chosen_, i.e. that radius which i'Iill give a uniform gravity 

gradient. The circle is divided into eight sectors of 45° 

sach to obtain the three north-south and the three east-

west gravity gradients. c\5 and c\1'1 are found by using 

equations (7-17). 

Note : For r
0 

,Rice used various values eg. 0.279 Km , 

0.554 Km and 4.320 Km. Dl: VOS VAN STSSN'rHJK 1947 used 

30 Km. H~ISKANSN 1958b suggests from 0.5 Km to 5.0 Km 

depending on the accuracy of the gravity anomalies. 
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Stage 2. 

The area outside the fundamental circle is now divided 
0 into circular rings up to an angular distance of about 3 

from the computation point. The length of- the radii of 

these rings are in geometric progression with a ratio of 

1.1864 and are divided into 36 equal compartments of 10° 

angular aperture each. 

Tho following table has boen adapted from RICE 1952 

.. 
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Angular--distance Inner radius /Angular distance Inner radius 
degrees Km degrees Km 

0.004 0.467 0.129 14.29 

0.005 0.554 0.152 16.94 

0.006 0.657 0.181 20.09 

0.007 0.780 0.214 23~83 

0.008 0.926 0.254 28.25 

0.010 1.099 0.301 33·48 

0.012 1.304 0.357 39.67 

0.014 1.547 0.423 47.00 

0.017 1.836 0.501 55.66 

0.020 2.179 0.593 65.90 

0.023 2.586 0.701 77.97 

0.028 3.068 0.829 92.22 

0.033 3.641 0.980 109.0 

0.039 4.320 1.157 128.7 

0.046 5.125 1.366 151.9 

0.055 6.081 1.611 179.1 

0.065 7.216 1.897 210.9 

0.077 8.560 2.230 248.0 

0.091 10.15 2.619 291.2 

0.108 12.05 3.068 341.2 

Table for radial deflection effect of o':ool with mean 

0 compartment anomaly of 1 mgal and angular aperture = 10 

I 



The average gravity anomaly for each compartment is 

estimated. The effect for each compartment is computed i,9. 

average gravity anomaly in milligals mul tipl~.ed by 0. 001 

= effect in seconds of arc. These effects are added up for 

each 10° sector~ This sum is then multipled first by 
A 

cos a then by sin a • ( vlhere a is the azimuth of the 

median of the ssctor i.e. 5° , 15° , 25° and so on ). 

The sum of all the cos a terms gives dz S and the sum 

of all the sin a terms gi v~ s clz 11__ 

0 ( RICE 1952 went up to about Ll.8 and HEISKANEN 1958a 

reports that the Columbus Group we· t up to 9~8 for this 

method. As reported in chapter 8 , we have gone up to 

80 ) about in this investigation. 

Stage 3~ 

From 3° to 20° away from the computation point , the 
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mean gravity anomalies of 1° x 1° squares are useo.~ ~quation 

(7-6) is used in this stage and can be written as follows·­

for the effects of any 1° x 1° square :-

.65 " - o-"o335 

ore'' ~ 

where 
d {(~l) 

d S = - 0.
0

033$ -cl-- CoS C..L ·1· 

c's.l!.::l't.­

c',c· !Jsi-

• • • • • • • • • • • • • 

'f dt<~.¥) . 
c I 'l = - 0 '.' 0 3 3 5 c1 '\.1' 5 I h Q . C(... 

(7-19) 

a = azimuth from computation point to centre 

of square. Use equation (7-8). 

q =area of square. Use equation (7-7) • 

. ~.S"z. = mean gravity anomaly of the square. 
dt(~) can be found from tables, eg. SOLLINS 1947. 

cl1f 
c' 3 and C

1
r(_ , called the Vening Meinesz co-

efficients , can be computed beforehand. 

cl 3 ~ and cl3 ~. are the summations of all the equations 

(7 -19) 



Stage 4. 

From 20° to the antipodes , repeat stage 3 abovebut 

US A- 5° X 5° t bt i ~ squares o o a n and c/4-IL 

Summing up the effects obtained in these four stages ; 

we then get the components of the gravimetric deflections 

of th2 vertical at the computation point. 

7.12. Other investigations~ 

Since Vening Meinesz's work on gravimetric deflections , 

many others have contributed to kno\.vledge in this field. 

For example ·: ~ 

TSUBOI 1954 has used a method of calculating deflections 

gravimetrically using the Bessel Fourier series and 

neglecting the curvature of the earth. His results agree 

in the main with those of RICS 1952. 
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COOK 1950 , using Jeffreys'' spherical harmonic development 

obtained the following standard deviations of the different 

sources of error for the calculation of deflections of the 

vertical 

A single deflection , neglecting gravity outside 20°: 1" 

Difference of deflections II II II 

Calculation of the effects of gravity from 0~05 to 5°: 0'~1 

Calculation of the effects of gravity within o?o5: between 

0'~1 and 0'!5 

WEISFELD 1967 worked from Stokes' formula and , by 

applying the theory of distributions , arrived at 

" the Vening Heinesz formulas with the singularities 

removed.'' Weisfeld and Schubert maintained that the 

method used by Vening Meinesz ( differentiation of the 

integrand of Stokes' integral ) is not valid , in· that , 

at the computation point the integrals of the deflection 

formulae are divergent. As far as can be ascer~ained , 

no practical tests have been made using Weisfeld's formulae.. 

DE GRAAFF-HUNTER 1951 has also re-derived the Vening 

Meinesz formulae. 



7.13 Maps of deflections. 

Tests were done using the results of BICE 1952 , in an 

attempt to establish whether contour deflection maps could 

be drawn and interpolations carried out. These tests 

showed that interpolation of S and 1 on deflection contour 

maps was a hazardous process and should not be attempted. 

Whereas geoidal undulations are area values , deflection 

components are point values. Atte~tion is drawn to 

LUNDQUIST 1966 ~t-1here contour maps for !5 and r~_ are drawn 

at sea level , and at elevations of 1 000 Km , 10 000 Km 

and 100 000 Km. These maps are based on results obtained 

in the Satellite Geodesy Program of the Smithsonian 

Institution. Because of their scale , however , these 

maps can only be generalizations. 

7.14 Anomaly maps. 

The gravity anomaly maps for the computation of the 

deflection of the vertical should be drawn on the 

stereographic projection. The usefulness of this 

projection lies in the fact that great circles passing 

through the centre point are projected as straight lines 

and that all circles on the sphere remain circles on the 

projection. The formulae used are 

COS gJ Sin tf~COS ~ - sin q::> cos cpo 
X = 2r 

1 + cos cp cos (j{,cos A + sinf sin cp-? 

cos q? sin A 
y = 2r 

1 + cos cp cos ·Cj)0 co s .A + sin q) sin 4Jo 

JORDAN 1948 ) .......... ~·· (7.-20) 

where r = radius of earth 

cp = latitude of point to be calculated 

1\ = longitude difference 

cpo = latitude of centre point 
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Using equations (7~20) , two stereo3raphic maps were 

constructed. Annexure 1 is a 1 in 3,500,000 map of 

South Africa with centre at 30° South Latitude , 25° East 

Longitude. This map will be suitable for use with the 

circle ring method. Annexure 2 is a 1 .in 400,000 map 

with grid intervals at 10 minutes of arc and can be used 

for the gradient method. and for the circle ring method. 

Although tho centre of this map used in the construction 
0 was 31 South Latidude ·; it could be used in South Africa 

in the latitude belt 29° to 32° South Latitude. 

7.15 The effect on deflections of increasing gravity 

field radius. 

-2 I 
-3 

-4 

-5 

I 
i 

FIGURE 7/1 
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Figure 7/1 shows the graphs of {('f)::-; n """Y i.e. the 

Stokes' function as used for calculating geoidal heights 

and dd{~~)) c_)·~ .,,) t i i f t' d 'i ....~ " 'i L.e. he Ven ng Me ne sz uno 10n use 

for calculating deflections of the vertical. Studies by 

the Columbus Group·( H~ISKANEN 1958b ) have shown that the 

effect of the gravity field on the components of the 

deflection decreases with the square of the distance from 

the computation point , whereas the effect of the gravity 

field on the geoidal heights decreases with the distance 

from the computation point. An examination of figure 7/1 

shows the correlation between these findings and. the 

relevant functions. 

The table on the next page has been compiled from 

results published by RICE 1952 and KAULA 1954. 

The points A , B , C , D and E in column 1 are Kaula's 

points Conley , Stanforth , State , Columbus and Barr 

respectively. 

The po·ints E F and G in column 1 are Rice's points 

Twin , Pw and Pe respectively. 

The extension of the table ( columns 9 to 14 ) has 

been calculated using only the £7 deflection components. 

In this extension we have 

column 9 = column 7 divided by column 8 

10 = differences using column 8 

11 = differences using column 7 

12 = differences using column 6 

13 = differences using column 5 

14 = differences using column 4 
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-
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8 

+0.19 +2 .84 I +2.56 +2 .61 1 +3.16 
+1.35 +2.71 +2.10 +1.71 +2.92 

-0.08 +1.37 +1.15 +1.19 +1.74 
~1.13 ~2'.90 -3.27 -3.70 -2.49 

-0.58 -0.01 -0.11 -0.08 +0.49 
-2.11 -6.00 .... 6.24 -6.70 -5.49 

-0.72 -0.60 -0.70 -0.68 -0.13 
-2.03 -6.20 -6.44 -6.90 -5.69 

+1.16 +0.27 +0.57 +0.58 +1.13 
+0.90 -2.18 -2.35 -2.85 -1.65 

-0.73 -0.58 -0.87 
-0.61 -0.60 -0.14 

-0.53 -0.76 -1.58 
+0.68 -0.07 +0.93 

+0.37 -0.70 -1.08 
I .+0.28 +0.05 +0.22 ! 

Table showing deflection components in 

seconds of arc as related to increasing 

gravity field radius 

I I 9 10 11 12 13 

0.83 
+1.42 +1.42 +1.41 

0.68 
+1.25 +1.27 +1.26 

0.16 
+0.62 +0.60 +0.59 

5.23 
-1.26 -1.26 -1.27 

0.51 
I 0.67 

+0.71 +0.18 +0.20 
0.48 

+0.50 +0.06 I -0.90 
0.65 I ' 

--

14 

+1.47 

+1.38 

+0.59 

-0.87 

Table showing differences using ~ values 

only 
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From column 9 , it can be seen that the deflection 

component obtained using the gravity field radius up to 

12~65 is a large percentage of the deflection obtained 

using the whole field. 

Columns 10 to 14 ( especially for Kaula's points ) show 

that differences between deflection components using a 

gravity field radius of from only 1~6 compare well with 

the differences using the whole gravity field. The 

comparisons are not so good with Riceis points. This is 

probably due to the fact that Kaula had more and better 

gravity observations over the whole field available. 

The above observation concerning the differences of the 

deflection components and Szabo's good agreement between 

gravimetric and astronomical deflections leads us to 

conclude that the following is a feasible precedure :-

Take astronomical deflections at a number of points , 

say 30 Km apart. Compute the gravimetric deflections 

at these points and at intermediate points at , say , 

10 Km apart. The gravity field used in these computations 

need only extend for a limited radius. Using the 

differences in the gravimetric deflection components , we 

can easily arrive at the astronomical deflections of the 

intermediate points. We are thus "transporting" the 

astronomical deflections by means of easily computable 

gravimetric deflections. The reverse procedure could be 

adopted to compute the gravimetric deflection of , say , 

Buffelsfontein , where the gravity field consists mostly 

of the sea area. In this case , we would compute the 

gravimetric deflection at an inland station , say , 

Kimberley , using the gravity field of the whole earth. 

Now by means of astronomical deflections ; we could 

transport the Kimberley gravimetric deflection to 

Buffelsfontein. 
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7.16 Gravimetric deflections using the electronic 

computer. 

Hany gravimetric deflections have been done using the 

electronic computer. Gravity anomalies over the whole 

earth are stored and used as required. For examples of 

these computations see UOTILA 1960 and NAGY 1963. 
·, 

In this thesis , as reported in chapter 8 , 

the computations were of the "one-off 11 type and the 

electronic computer was therefore not used. 
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CHAPTER 8 

COMPUTATIONS 

8.01 Gradient effects for Rice's points. 

With the information published in RICE 1952 , the gradient 

effects of Rice's points using equation ( 7-17 ) were 

calculated. The following table shows the good 

agreements obtained. 

Station Differences: Rice -Loon 

seconds of arc 

Bartley -0.003 -0.002 

Roby +0.001 +0.010 

Brooks +0.004 +0.008 

Lacassa -0.017 .... Q.003 

Sears ~o ,'022 -0.032 

Bynum 0 -0.009 

Little Rock -0.069 -0.018 

Legion +0.012 -0.002 

Polk .:..o.oo7 -0.003 

Burns -0.003 0 

Bogue +0.006 -0.006 

.Score .... o.oo9 -o .oo4 

Using Rice's published results as a control , the above 

table confirms the application of the method established 

in chapter 7 and the use of equation (7-17)·. 



8.02 Circle ring method for Ricets points. 

Again using information in RICE 1952 , the following 

results were obtained for the station Twin :-

seconds of arc 

Circle ring method ( Loon ) 

Gradient effect ( Rice ) 

Total deflection components 

-0.459 

+0.011 

-0.448 

+1.180 

+0.008 

+l.i88 

The computations for the circie ring method were.from 

radius 0.657 Km. to radius 65.90 Km. Using Rice's 

graph to scale off the deflection components up to the 

last mentioned radius , we get ~ = -0'~5 and 

~. = +1';1 

The above results cbhfirm the applicatioh of the circle 

rihg method , and , as mentioned in chapter 7 , the azimuth 

must be measured from South through 1rlest ( i.e. clock-

wise ) to agree with the usual convention of 

"astronomical - geodetic 11 for the deflections. 

8.03 Deflections at Kimberley Hill and Hanover. 
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The gravimetric deflection of the vertical was calculated 

for the trigonometrical stations Kimberley Hill ( longitude 

point ) and Hanover ( station No. 20 ). The gravity 

information used was that published by the Geological 

Survey of the Rep.1blic of South Africa in their Handbook 

3 , 1962. ( See SMIT 1962 and HALES 1962 ) 

The gradient method was used with a fundamental circle· 

of radius 4.32 Km in each case and the circle ring 

method used from 4.32 Km to 541.5 Km i.e. up to 4~8 • 

A template was dr·awn for the circle ring method and 

gravity anomalies estimated on the 1 in 2 000 000 

Isostatic Anomaly ( AH 30 ) map by HALES 1962. 
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NOTE A stereographic projection map was not used for these 

and subsequent calculations because 

(a) the error of estimating the mean anomaly plus 

the error in the drawing of the anomaly contours 

would be greater than any positional error of 

the grid lines ; and 

(b) such a map is at present not available. 

These gravimetric deflections were compared with the 

astronomical deflections as obtained from the South African 

Geodetic Reports with the folloWing results :~ 

Gravimetric Astronomical 

s e c o n d s of a r c 

Kimberley Hill t;j = +0.03 s,:;_= -1.56 

'l__. = -2~37 rto.= -0.07 
j 

Hanover ~9 = +0.15 s<t= -0.01 

'1:-J= +0.87 flo.= -0.45 

8.04 Analysis of Kimberley Hill and Hanover results. 

The poor comparisons obtained could be due to 

(a) the fact that corrections for variation of the pole 

and to FK4 system have not been applied to the 

astronomical deflections. ( The effect of change of 

spheroid for t:qese points is negligible ). These 

astronomical observations were made aqout 60 years ago. 

(b) the poor gravity anomaly information available in the 

immediate v~£.inity of the computation points. ( The 

gradient effects in each case were based on only 

two gravity anomaly values ). 

(c) observational errors 

(d) the assumed astronomical deflections at Buffelsfontein 

may be wrong. 



It is felt, however, that the greatest effect in.this 

case is contributed by the poor gravity coverage in the 

vicinity of 'the points. 

8.05 Deflections at Tunnel Shaft No. 3 • 

The gravimetric deflection components were calculated 

for the ground position of Tunnel Shaft No. 3 of the 

proposed Orange ~ Fish River Tunnel. Tunnel Shaft 3 

lies about 108 Km south of the Trompsberg Anomaly and about 

25 Km south of Venterstad. 

The following information was used :~ 

(a) the isostatic anomaly :.1ap ( 1 in 250 000 ) of the 

Tunnel area as publighed in KLEYvtEGT 1964 ; and 

(b) the isostatic anomaly map ( i in 2 ooo ooo ) of the 

Geologocal Survey. ( HALES 1962 )~ 

Templates were drawn fdr u~e on the above maps. 

The following results were obtained :~ 

TUNNEL SHAFT 3 

Gradient method up to I fja 
I 

Y"tg 
..) 

Km Degrees seconds of arc 
------

6.08 0.055 -4.17 -1.62 

12.05 0.108 -2.31 -1.25 

23.83 0~214 -2.24 -0.63 

47.00 0.423 -0.84 -0.05 

92.22 0.829 -0.68 -On65 

In each case the circle ring method was used up 

to 835.9 Km ( 0 7.5 ) and the total deflection 

components are given. 

TABLE 8/1 
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TUNNEL SHAFT 3 

s9 '13 
seconds of arc 

Gradient method up to 6.08 Km -1.04 +.0.04 

PLUS circle ring method up to 

Km 

12.05 -1.95 -0.09 

23.83 -3.10 -0.41 

47.00 -}.20 -0.88 

92.22 -3-95 -1.65 

835-9 • . .:-4 •17 -1.62 

Tft;;BLE 8/2 

8.06 Analysis of deflection at.Tunnel Shaft 3 • 

The final result for the deflection components is 

5'3 = -4'~17 
rz '3 = -1'~ 62 

based on the gradient method with fundamental circle radius 

= 6.081 Km and the circle ring method up to 835.9 Km or 

7.•5 degrees. 

If this radius for the fundamental circle is increased , 

then the results are less reliable because there is not a 

uniform gradient over the circle. ( i.e. the gravity 

anomaly contours are not parallel ). The effects of 

increasing this radius can be seen from Table 8/1. With 

a radius of 6.081 Km , the gravity anomaly contours are 

more or less parallel. 

Although the accuracy depends on the size of the radius 

( the smaller the radius , the higher the accuracy ) , 

a small radius can only be used if there is a dense 

gravity station network in the vicinity of the computation 

point. In this case there were 3 gravity stations in the 

6.081 Km radius but many more in the surrounding area. 

HEISKANEN 1958a says that in many cases 4 to 8 gravity 
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stations in a 5 Km circle are sufficient but this would 

depend on the nature of the gravity anomaly field. As a 

guide , Heiskanen gives a figure of 30 stations in a 

circle of 20 Km radius. In the case of Tunnel Shaft 3 , 

there were 19 stations in a ~adius of 20 Km• 

Using results obtained by KAULA 1954 for 5 computation 

points ( see 7.15 ) , we calculate that the deflections 

obtained using the field up to 7~5 range from 60% to 88% 

of the deflections obtained using the whole field , fo~ 

most of the points. But this observation can only be 

regarded as a generalisation to indicate that the fina1 

result given for Tunnel Shaft 3 will probably not change 

by more than 30-40% if the whole field is availabie~ 

With regard to the effect on deflections of increasing 

~ravity field radius , the results shown in Table 8/2 can 

be shown graphically as in Figure 8/1 below. 
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The general characteristics of figure 8/1 compare well 

with the 30 graphs shown by RICE 1952. The general 

conclusion one can draw is that there is a "settling down" 

of the deflection component after about 350 Km from the 

computation pointo This is significant when considering 

the method of transporting the deflection ; as mentioned 

in chapter 7. It means that if we use a gravity field. of 

only 350 Km , then the differences between deflection 

compbnents of neighbouring points are fairly accurate. 

HSISKAN'l:N 1958a says that ari accuracy of the deflection 

e = \Is 2 + 112 of o .s seconds of arc can be obtained with 

a dense gravity station net around the computation point 

plus a good regional gravity survey up to 2000 Km. Not 

every point with similar gravity coverage would , however , 

yield the same result. The greatest accuracy will be 

obtained where the area immediately surrounding the point 

has a smooth or uniform ) gravity anomaly field. 

It should be mentioned here 1 that if the gravity 

survey in the Tunnel area was done while bearing in mind 

the possible computation of gravimetric deflections , then 

many more well placed gravity statio~s would have been 

recoffi~ended by a geodesist. This would have greatly 

increased the accuracy of the deflectionso 
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CHAPTER. 9 

CONCLUSIONS AND RECOMM.ZNDATIONS 

9.01 General 

Very little has been done in South Africa from the 

gravity-geodesy point of view. In order to make gravity 

information useful ih geodetic work , the geodesist should 

have a hand in at least the planning stage of all gravity 

surveys. This would ensure that these surveys are 

properly connected to base stations , that adequate 
' 

coverage is obtained around. future computation points 

and that the surveys are carried out to the required 

. accuracy. 

9.02 Gravimetric deflections in South Africa. 
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As far as can be ascertained ; the gravimetric deflections 
; 

calculated in chapter 8 are the first done in South Africa. 

In order to facilitate the calculation of further 

gravimetric deflections , a manual for these calculattons 

could be compiled. This manual could contain the following 

information :-

A. Requirements with regard to gravity field. 

B. Details of the calculation procedures i.e. the gradient 

method , the circle ring method and the square method. 

C. Tables for constructing maps on the stereographic 

projection in South Africa. 

D. Tables for the calculation of G , theoretical gravity , 

in South Africa on the International Spheroid. 

E. Areas of 5° x 5o and 1° x 1° squares for use in the 

square method. 

F. Information for reducing astronomical deflections 

so that they can be compared with gravimetric 

deflections. This wou:d include correction graphs 

for South Africa for change of spheroid from the 



Modified Clarke 1886 to the Internationai Spheroid , 

tables for reduction to the same star catalogue system 

and so on. This information will also be useful for 

"transporting" the deflections as outlined in 7 .i4 • 

G. The computations for the square method could be done 

by the electronic computer and the mean gravity 

anomalies of the squares could be stored on punched 

cards and used When required• The layout of the 

programme and a· sug~ested method of recoding on cards 

is described in UOTILA 1960~ The proposed. manual 

could include the latest available mean anomalies of 

the ·required squares. 

H• An outline of the methods of predicting gravity 

anomalies in unsurveyed areas. 

9.03 The applications of physical geodesy• 

In this thesis , t~e calculation of gravimetric 

deflections of the vertical have been described in detail.. 

A similar procedure can l:?e worked out for the calculattc:' 

o:f·geoidal heights• With these quantities N, S and rt, 

the tollo~irig a~plications are·possible. 

A. Determination of the best fitting reference spheroid• 

The best fitting spheroid for a region will make 

( 
2 2 \ . Z.. ~c..+ r1

4 
J = minimum. This is the usual criterion 

applied but a better determination results from making 

£[(sQ.- s
9

)
2
-r (f'[<:\.- i(9J]= minimum, 

because we now take unknown density anomalies and any 

lack of complete isostatic compensation· in to account. 

B. Undulations of the geoid. 

If N is known , especially in the regions where base 

lines are measured and at the initial point , theL the 

geodetic co-ordinates can be accurately referred to the 
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reference spheroid and not to the geoid as is usually done. 

For every 10 metres separation between the geoid and 

spheroid , the error in reducing the base line to the geoid 

and not to the spheroid , ii:l of the order of 1 in 665 000. 

Various reports give N values for South Africa which 

range from +20 metres to -180 metres. ( BO~WORD 1958 , 

H::!:ISKANJ:N 1965 , UOTILA 1962 ). ( These values , however , 

are not with reference to the Clarke 1880 spheroid ). 

Reduction to the spheroid would eliminate certain 

distortions in a triangulation system. 

c. Deflections at triangulation stations. 

A deflection of the ve'b~lcal at a triangulation station 

introduces an error in the observed direction similar to 

that given by the inclination of the horizontal axis of a 

theodolite. This error can be written as Gtan h 

( HEISKANEN 1958a ) where g is the difference between the 

deflection components at both ends of a triangle side and 

h is· the vertical angle. For h =lOo and g = 15'' the 

error is 2.9 seconds of arc• Even with h = 5° the error 

is 1.3 seconds of arc. A knowledge of these deflections , 

which can be computed gravimetrically , will eliminate this 

source of error. 

D. Linking of existing geodetic systems. 

In order to link existing geodetic systems onto one 

World System we need the absolute values of N ZS and 
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~ at the initial points of all the local systems as well 

as astronomical observations at these and other points. 

Details of this type of computation are given in 

HEISKANEN 1958a • 



"· 

8::.. Control points for smail scale maps. 

The formulae used in this case are 

where 

cp = 
)\ = 
A = 

cp, ~,A 

I t 
)\ - rt_g Sec qJ 

I In I A - ll_g +-an '-f 

are the· geodetic latitude,longitude and 

azimuth 
are the astronomical latitude,longitude 

and azimuth : 

~5' , ~ s are the gravimetric deflection components. 

The right hand sides of the above equations are 

obtained from astronomical and gravimetric observations 
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and the geodetic co-ordinates are then calculated. Using 

gravimetric deflections in this way would overcome the 

effects of the deflection of the vertical on photogrammetric 

work in regions having no geodetic control as mentioned by 

KARARA 1960. 

The above formulae can also be used for calculating 

distances over large areas 

HEISKANE:N 1952 gives a point accuracy of about 40 

metres and a distance accuracy of about 60 metres 

irrespective of the distance. For maps of 1 in 100 000 

and smaller scale this is more than adequate. 

9.04 Physical geodesy in South Africa. 

Some of the applicatio~s of physical geodesy have been 

given in 9.03. These can be used in South Africa but 

perhaps more important is to consider the future of 

geodesy in this country. At some future date the 

South African Geodetic Triangulation will be re­

computed. ( This will probably necessitate the re-



observing of some of the triangles). It will then be a 

suitable time to change the Geodetic Datum point to some 

other point which will enable a st~ong gravimetric 

de termination of ~ 1 q~ and N to be computed. This will 

give a better connection ot th~ South African system to 

any o~her system. Tlie changing of the datum point is not 

a complicated pr6ceih.ire artli cart be done ,;~Y the st~oke of 

an administrative pen ! 1i (:BoMrOFID 1962) ~ 

Perhaps the most important task fo~ prysical geodesy 

in South Africa at present is the d~termination of the 

geoidal undulations. This information will be required 

for any re-computation of the Geodetic Triangulation as 

well as being needed for the launching and tracking of 

rockets and missiles. This is a project which will take 

some years and will have to be undertaken on a national 

level. 

MUch work has been done in the field of physical 

geodesy in the u.s.A. ( the Columbus Group and others ) , 

Canada ( NAGY 1963 and others ) , Australia ( NATHER 1966 

and 1967 ) any many other countries. It would be a pity 

if South Africa were to lag behind in this field. 
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