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Abstract

In this thesis we use the 1+1+2 covariant approach to General Relativity to study exact

solutions and perturbations of rotationally symmetric spacetimes in f(R) gravity, one of

the most widely studied classes of fourth order gravity.

We begin by introducing f(R) theories of gravity and present the general equations

for these theories. We investigate the problem of matching different regions of spacetime,

shedding light on the problem of constructing realistic inhomogeneous cosmologies in the

context of f(R) gravity. We also studying strong lensing in these fourth order theories of

gravity derive the lens mass and magnification for the gravitational lens system.

We provide an extensive review of both the 1+3 and 1+1+2 covariant approaches

to f(R) theories of gravity and give the full system of evolution, propagation and con-

straint equations of LRS spacetimes. We then determine the conditions for the existence

of spherically symmetric vacuum solutions of these fourth order field equations and prove

a Jebsen-Birkhoff like theorem for f(R) theories of gravity and the necessary conditions

required for the existence of Schwarzschild solution in these theories.

In order to study the perturbations of Schwarzschild black holes in this context, we

apply the 1+1+2 perturbative procedure to determine a complete set of gauge-invariant

perturbation variables. A reduced set of frame independent master variables, which obey

two closed wave equations are then found - one for the transverse, trace-free (tensor)

perturbations and the other for the additional scalar degree of freedom, which is a feature

of forth-order theories of gravity. We show that for the tensor modes, the underlying

dynamics in f(R) gravity is governed by a modified Regge-Wheeler tensor which obeys

the same Regge-Wheeler equation as in General Relativity. For the quasinormal modes

(QNMs) that follow from the scalar perturbations, we find that the possible sources

of scalar QNMs for the lower multipoles are from primordial Black Holes, while higher

mass, stellar black holes are associated with extremely high multipoles, which can only

be produced in the first stage of black hole formation. Since the scalar QNMs are short

ranged, this scenario makes their detection beyond the range of current experiments.

Keywords: f(R) gravity, Spherically symmetric solutions, Birkhoff’s theorem, Regge-

Wheeler equation, Matching, Lensing
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Chapter 1

Introduction

1.1 f(R) gravity

Einstein’s theory of General Relativity (GR) [3] is widely accepted to be a fundamental

theory for modern physics, describing well the standard model of gravitation and cos-

mology. Just three years after Einstein developed his theory, in 1918, Herman Weyl [4]

began to consider modifications of GR by including higher order invariants in its action.

Motivated by the desire to obtain a unified field theory, he extended the geometrical

representation of GR to account not only for gravitational but also electromagnetic fields.

In 1921, Arthur Eddington also began to consider fourth order theories of gravity [5, 6]

and he followed this up by publishing The Mathematical Theory of Relativity that

contained his work on generalised versions of Weyl’s theory. Since then there have been

a great number of proposed higher order theories of gravity that propose modification of GR.

The surge of interest in modified theories of gravity in the 60s, 70s and 80s was pri-

marily due to limitations in GR when considering strong gravity regimes. Utiyama and

DeWitt [7] showed that renormalisation of GR at the one-loop quantum level required

that the field equations should be higher than second order. Modifications of the GR by

supplementing the Einstein-Hilbert action with higher order curvature invariants were

at the time limited to the early universe and provided, for example, a nice geometrical

explanation for inflation [8] in cosmology. More recently, however, the corrections to

GR have been introduced to accommodate recent observations and more so to account

for the “dark sector” of the universe. The number counts of clusters of galaxies [9],

measurements of type Ia supernovae [10–13] and the cosmic microwave background

(CMB) anisotropies [14–16], indicate that of the energy density budget of the universe,

5% comprises ordinary matter (baryons, radiation and neutrinos), while the rest, which

does not interact electromagnetically, consists of 27% dark matter and 68% dark energy

(DE) [17]. Dark matter is responsible for the gravitational clumping of galaxies, galaxy

clusters and large scale structures and the requirement of its existence had been known for

1
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1.1. f(R) gravity 2

some years [18]. Dark energy is a label for the relativistic energy density with negative

pressure required to explain the inferred late-time accelerated expansion of the universe.

If GR is the correct theory of the gravitational action then its application to cosmology

should incorporate these observations. The implication of this description is that we live in

a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe that is dominated by cold

dark matter (CDM) and DE in the form of a positive cosmological constant. This model

of the universe is the best fit so far and is based on the hypothesis that the universe is

homogenous on large scale. It is commonly referred to as the ΛCDM (or concordance) model.

The question naturally arises: what is the importance of considering alternative the-

ories of gravity to GR, as possible explanations to the observations if the ΛCDM model

agrees well with the observations. One of the main motivations for the search for alterna-

tive theories of gravity arises from the obscure nature of DE candidates. The alternative

possibility is to conjecture that the apparent need for DE could simply be because the

application of Einstein’s equations at cosmological scales is ill-suited. Some of the modified

theories of gravity that provide a late time acceleration for the universe without the need

for the presence of any exotic fluids are Scalar-tensor theories, Dvali-Gabadadze-Porrati

(DGP) braneworld model [19], TeVeS (Tensor-Vector-Scalar) [20] and and Hořava-Lifschitz

gravity [21–23]. One such theoretical proposal that has recently attracted a considerable

amount of attention is fourth order gravity (FOG) that can accelerate at late times

without the presence of DE [24–28]. In particular, dynamical systems analysis shows that

for FLRW models, there exist classes of fourth order theories which admit a transient

decelerated expansion phase that is important for structure growth, followed by one with

an accelerated expansion rate [29]. These cosmic evolutions therefore mimic the standard

ΛCDM cosmic history. Another feature of these FOG theories is that they are also able

to account for the rotation curves of spiral galaxies without the need for dark matter [30].

See [31–33] for detailed reviews.

A complete understanding of the consequences of such a radical shift away from the

standard approach to cosmology is still far from complete. We attempt to contribute to

this understanding by considering the construction of inhomogeneous cosmological models

within the framework of f(R) theories of gravity. This will be done by attempting to

match together existing solutions. In particular, we will attempt to construct Swiss cheese

models by matching spherically symmetric vacuum solutions with FLRW solutions. The

motivation for this study is to understand both the effect of cosmological expansion on

the gravitational fields of astrophysical bodies, as well as the large-scale expansion that

emerges in a universe with large density contrasts. These questions have been carefully

studied in Einstein’s theory, where the aforementioned constructions have proven to

be useful devices for understanding them. Fourth-order theories are considerably more
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1.2. Covariant approach 3

complicated than Einstein’s theory, but by applying the same constructions we should

expect to gain some insights into these questions. These extra complications include the

absence of Jebsen-Birkhoff’s theorem, so that spherically symmetric vacuum spacetimes

are not unique [34], as well as more complicated junction conditions [35].

Further motivation for this study comes specifically from the work of Mignemi and

Wiltshire [36], where these authors used a dynamical systems approach to perform a

non-perturbative study of the static, spherically symmetric solutions of analytic f(R)

theories. They found that these solutions are generically not asymptotically flat, and

that boundary conditions could therefore be important in determining the gravitational

fields of isolated massive bodies. Similar results have been found for non-analytic f(R)

theories [37]. These effects are entirely absent if one assumes asymptotic flatness from the

beginning, as is standard in most approaches to studying weak gravitational fields [38–43].

The construction of inhomogeneous cosmological models, as outlined above, provides a

way to implement appropriate boundary conditions, and therefore allows the validity of

standard weak-field approaches to be investigated.

A major point of interest with any theory of gravity is the degree to which the

physics is consistent with both cosmological and solar system scales. Measurements coming

from post-Newtonian tests like the precession of planetary orbits, the dragging of inertial

frames and the deflection of light represent critical tests for any theory of gravity. One of

the triumphs of GR is its prediction of the gravitational deflection of light, a feature that

was confirmed by results from Arthur Eddington’s solar eclipse expedition in 1919. Since

then gravitational lensing has been a key tool for mapping the mass distribution of galaxies

and galaxy clusters and putting constraints on scales as small as stars (microlensing)

to large-scale structures and cosmological parameters [44]. Given that the lensing effect

is dependent on the underlying theory of gravity, the consequences of deviating from

Einstein’s theory would result in deviations from the standard expression of the deflection

angle and is worth investigating. In this thesis, we study strong gravitational lensing effects

in f(R) gravity where we consider in particular Rn gravity and find the deviations of the

mass and magnification quantities from GR.

1.2 Covariant approach

Spacetime can be described using tetrad formalisms or metric (or coordinate) based ap-

proaches. The tetrad formalisms range from the Newman-Penrose null tetrad method [45],

to the 1+3 covariant approach developed by Ehlers and Ellis [1, 2, 46] which includes both

a full tetrad approach and a ‘partial’ covariant approach where only one timelike tetrad

vector is chosen. The formalism is based on a 1+3 threading of the spacetime manifold



Univ
ers

ity
 of

 C
ap

e T
ow

n

1.2. Covariant approach 4

with respect to a timelike congruence, such that spacetime is decomposed into space and

time.

The 1+3 formalism has been a useful tool for understanding of many aspects of rel-

ativistic fluid flows, whether it is applied in terms of fully nonlinear GR effects or the gauge

invariant, covariant perturbation formalism. The 1+3 approach to perturbation theory

was developed by Ellis, Bruni and Dunsby [47–49], building on early work by Hawking [50],

Lyth and Mukherjee [51] and Ellis and Bruni [52]. The covariant perturbation formalism

employs kinematic and dynamical variables to describe nature, that have both physical and

geometric significance and remain valid in all coordinate systems. This is unlike the metric

based approach which is plagued by gauge modes arising from the choice of reference

coordinate system. Further work in the formalism has been in its implementation to the

physics of the CMB [53–55].

More recently, linear perturbation theory has been developed for fourth order theo-

ries of gravity (FOG) using the 1+3 covariant approach [29, 56–59], providing important

features that differentiate the structure growth in FOG from the GR results. It was found

that the evolution of density perturbations is determined by a fourth order differential

equation rather than a second order one, which in turn implies that the number of modes

of the density perturbations increases from two to four. Other findings were that the

perturbations in FOG are not scale-invariant as in GR but instead depend on the scale for

any equation of state for standard matter and that in contrast with what one finds in GR,

the growth of large scale density fluctuations can also occur in backgrounds in which the

expansion rate is increasing in time. The latter finding effectively leads to a time-varying

gravitational potential and puts tight constraints on the Integrated Sachs-Wolfe (ISW)

effect for these models.

As an application of the 1+3 approach we consider the role that shear plays in the

relationship between Newtonian and relativistic cosmologies. The presence/or lack of shear

relates to the way information is conveyed along geodesic congruences. It is expected

that since Newtonian gravity is a limiting form of GR, then the properties of Newtonian

gravity should follow from those of GR as demonstrated by Ellis in 1967 [60]. He showed

that if the four velocity vector field of a barotropic perfect fluid with vanishing pressure is

shear-free, then either the expansion or the rotation of the fluid vanishes. The shear-free

result has been extended to general barotropic fluids for a number of special cases by

Senovilla [61] and there has been an attempt to prove the result for shear-free perfect

fluid solutions with linear equations of state [62]. We consider whether the result holds in

situations where the hydrodynamic and gravitational equations have been linearised about

a Friedmann-Lemâıtre-Robertson-Walker (FLRW) background [63] and also whether it
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extends to the more general setting of FOG [64].

In this thesis we employ the 1+1+2 formalism developed recently by Clarkson and

Barrett [65] which is a natural extension to the 1+3 approach, optimised for problems

which have spherical symmetry, including the Schwarzschild solution, Lemâıtre-Tolman-

Bondi (LTB) models and many classes of Bianchi models. The approach involves a

‘semi-tetrad’ where, in addition to the timelike vector field of the 1+3 approach, a spatial

vector is introduced. In GR, the 1+1+2 formalism has been applied to the study of

perturbations of locally rotationally symmetric (LRS) spacetimes [65–71] and strong

lensing studies [72]. It has also been introduced to the study of LRS spacetimes in the

context of f(R) gravity [73,74].

The advantage of using the 1+1+2 formalism for spacetimes with preferred direc-

tion is that the 1+3 equations in these cases usually become intractable. As an example, in

the astrophysical black hole setting a 1+3 decomposition results in the presence of non-zero

vectors and tensors in the background spacetime and as a result all the equations have

vector-tensor and tensor-tensor coupling in them, rendering them intractable. However,

applying the 1+1+2 approach to these systems results in all projected vectors and tensors

being of first-order, such that the aforementioned coupling in the background doesn’t

occur. After harmonic decomposition, the system of equations constitutes scalar quantities

in the perturbed spacetime for which the solution can be found [65].

1.3 Spherically symmetric spacetimes

In GR, spherically symmetric vacuum spacetimes have an extra symmetry: they are either

locally static or spatially homogeneous. This rigidity of spherically symmetric vacuum

solutions is the essence of Jebsen-Birkhoff theorem [75–78]. This theorem makes the

Schwarzschild solution crucially important in astrophysics and underlies the way local

astronomical systems decouple from the global expansion of the universe. In essence, the

Schwarzschild solution is the unique spherically symmetric solution of the vacuum Einstein

field equations (EFEs) and represents the spacetime geometry of the Solar System, and

the spacetime geometry outside spherically symmetric matter distributions to very good

approximation. Moreover, it was recently shown [79, 80], that in GR, the rigidity of

spherical vacuum solutions of Einstein’s field equations continues even in the perturbed

scenario: almost spherical symmetry and/or almost vacuum implies almost static or almost

spatially homogeneous. The rigidity embodied in this property of the EFEs is specific to

vacuum GR solutions, or those with a trace-free matter tensor and is known not to hold

for theories with extra degrees of freedom (for example, f(R) theories of gravity or other

scalar-tensor theories [81,82]).
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Using the 1+1+2 covariant approach we outline the general conditions for the exis-

tence of certain types of static spherically symmetric solutions in f(R) theories. In this

framework we investigate the extra conditions required for a Jebsen-Birkhoff-like theorem

in spherically symmetric spacetimes to hold in f(R) gravity. The important result that

emerges covariantly from our investigation is that, there exist a non-zero measure in the

parameter space of these FOG theories, for which the Jebsen-Birkhoff like theorem remains

stable under generic perturbations. Furthermore, our result is a local result and hence does

not depend on specific boundary conditions used for solving the perturbation equations.

1.4 Covariant perturbations of Schwarzschild black holes

The interest in studying of black hole (BH) perturbations comes from the important role

they play in gravitational wave physics. There are various ways by which a black hole can

be perturbed: by incident gravitational waves, by objects falling into it or by aspherical

gravitational collapse. The understanding of perturbations of black holes therefore

provides insight into different number of areas of interest in gravitational radiation studies.

Contributions to the investigation of BH properties in FOG theories include an extensive

study of the Schwarzschild de Sitter BH in [83, 84], Schwarzschild BH perturbations in

f(R,G) gravity in [85] and a stability analysis of the Schwarzschild BH in [86] where they

make a transformation from f(R) gravity to the scalar-tensor theory for their analysis.

Perturbations of Schwarzschild BH at linear order in GR have been studied through

metric perturbations, the Newman-Penrose (NP) formalism [87] as well as the 1+1+2

covariant formalism [65]. these studies found that the perturbations are governed by

two second order wave equations with an effective potential namely, the Regge-Wheeler

equation (derived initially by Regge and Wheeler [88]) for the odd (axial) perturbations

and the Zerilli equation (first derived by Zerilli [89]) for the even (polar) perturbations.

Using the 1+1+2 approach, Clarkson and Barrett [65] demonstrated that both the odd

and even parity perturbations may be unified in a covariant wave equation equivalent to

the Regge-Wheeler equation. This wave equation is characterised by a single a covariant,

frame- and gauge-invariant, transverse-traceless tensor.

In this thesis we apply the 1+1+2 approach to the analysis of the perturbation of

Schwarzschild BH in f(R) gravity, following steps as given in [65, 69]. Due to the extra

degree of freedom inherent in these FOG theories, one has to additionally consider the

linearised Ricci scalar wave equation in the investigation. Gauge invariance is assured in

the analysis via the Stewart-Walker lemma [90] which states that a perturbation variable

is gauge invariant if it vanishes in the background. The linearisation procedure applies
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this criterion by considering these variables as first order and consequently neglecting their

products. Harmonic functions can then be introduced in the background which results

in two decoupled parities reflecting the invariance of the background spacetime under

parity transformation. The introduction of harmonics means that finding a solution simply

involves solving a linear system of algebraic equations. After introducing the harmonic

functions, the main objective will be to find a reduced set of master variables which obey

a closed set of wave equations.

The initial perturbations of the BH eventually get decay exponentially (ringing) at

frequencies that are characteristic of the BH and independent of the source of the

perturbation as was first discovered by Vishveshwara in 1970 [91]. These complex valued

frequencies satisfy boundary conditions for purely outgoing waves at infinity and purely

ingoing waves at the BH horizon. The solutions to the perturbation wave equations that

are constructed from these frequencies are known as quasinormal modes which we discuss

in the context of f(R) gravity.

1.5 Thesis outline

In Chapter 2 we introduce f(R) theories of gravity and present the general equations

for these theories. Following this, in Chapter 3 we investigate the problem of matching

different regions of spacetime in order to construct inhomogeneous cosmological models in

the context of these theories. We also analyse the behaviour of the general expression for

the deflection angle for spherically symmetric spacetimes in the case of f(R) = Rn gravity

and derive the lens mass and magnification for the gravitational lens system.

In Chapter 4 we outline the 1+3 covariant method in f(R) gravity and hence pro-

vide a covariant (gauge invariant) description of spacetime. The approach is then applied

to shear-free perturbations of FLRW universes for both GR and FOG cases in Chapter 5.

In Chapter 6 we present the full system of 1+1+2 decomposed field equations equa-

tions in f(R) gravity.

Chapter 7 is devoted to proving a Jebsen-Birkhoff-like theorem for f(R) theories of

gravity, to find the necessary conditions required for the existence of a Schwarzschild

solution in these theories. We discuss under what circumstances we can covariantly set

up a scale in the problem. We then perturb the vacuum spacetime with respect to this

covariant scale to find the stability of the theorem.

In Chapter 8 we present the vacuum field equations linearised around a Schwarzschild
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black hole background using the 1+1+2 formalism. We discuss the spherical and time

harmonics which are introduced to the system of equations which allow us to write the

equations in scalar form. We then derive a covariant and gauge-invariant wave equation

which describes the perturbations of the Schwarzschild BH spacetime. This equation is

the covariant form of the Regge-Wheeler equation, corresponding to a master variable

that constitutes a gauge and frame invariant transverse-traceless (TT) tensor. We also

investigate the stability of the BH to external perturbations and as part of the perturbative

analysis we discuss quasinormal modes.

Chapter 9 focuses on the method of solution to the perturbation equations using

matrix methods where we demonstrate the significance of the freedom of choice of frame

basis.

Chapter 10 contains our conclusions and an outlook for extensions of the work we

have presented.

Useful relations utilised in our work are contained in the appendix.
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Chapter 2

f (R) Gravity

In this chapter we introduce f(R) theories of gravity and present the general equations for

these theories (see [31–33] for detailed reviews).

2.1 Action and field equations

In GR the Einstein-Hilbert action is given as

S =
1

2

∫
dV
[√−g (R− 2Λ) + 2LM (gab, ψ)

]
, (2.1)

where LM is the Lagrangian density of the matter fields ψ, R is the Ricci scalar and Λ is the

cosmological constant. The invariant volume element is given by the expression
√−g dV

and the gravitational Lagrangian density as Lg =
√−g (R− 2Λ), where g is the determinant

of the metric tensor gab. A generalisation of this action is done by replacing R in (2.1) with

a C2 function of the quadratic contractions of the Riemann curvature tensor R2, RabR
ab,

RabcdR
abcd and εklmnRklstR

st
mn where εklmn is the antisymmetric 4-volume element. In

fact, in the quantum field picture, the effects of renormalisation are expected to add such

terms to the Lagrangian in order to give a first approximation to some quantised theory of

gravity [92,93]. The Lagrangian density that can be constructed from the generalisation is

of the form

Lg =
√−g f(R,RabR

ab, RabcdR
abcd) . (2.2)

It is a well known result that [94–96],

(δ/δgab)

∫
dV
(
RabcdR

abcd − 4RabR
ab +R2

)
= 0 , (2.3)

(δ/δgab)

∫
dV εklmnRklstR

st
mn = 0 , (2.4)

that is, the functional derivative of the Gauss-Bonnet invariant RabcdR
abcd− 4RabR

ab +R2

and εiklmRikstR
st
lm vanishes with respect to gab. If we consider the function f to be linear

9
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in RabcdR
abcd, we can use this symmetry to rewrite RabcdR

abcd in terms of the other two

invariants and as a result the action for FOG can be written as:

S =
1

2

∫
dV
[√−g (c0R+ c1R

2 + c2RabR
ab
)

+ 2LM (gab, ψ)
]
. (2.5)

where the coefficients c0, c1 and c2 have the appropriate dimensions. Similarly, if the

spacetime is homogeneous and isotropic, then because of the following identity,

(δ/δgab)

∫
dV

(
3RabR

ab −R2
)

= 0 , (2.6)

the term RabR
ab can always be rewritten in terms of the variation of R2. It then follows

that the “effective” fourth-order Lagrangian for these highly symmetric spacetimes contain

only powers of R and we can, without loss of generality, write the action as

S =
1

2

∫
dV
[√−g f(R) + 2LM (gab, ψ)

]
. (2.7)

This action is the simplest generalisation of the Einstein-Hilbert gravity. Though in our

later analysis we do not always consider isotropic spacetimes, the action (2.7) still remains

quite general as it represents the only ghost-free higher order theory. Demanding that the

action be invariant under some symmetry ensures that the resulting field equations also

respect that symmetry. That being the case, since the Lagrangian is a function R only,

and R is a generally covariant and locally Lorentz invariant scalar quantity, then the field

equations derived from the action (2.7) are generally covariant and Lorentz invariant.

There are different variational principles that can be applied to the action S in or-

der to obtain the field equations. One approach is the standard metric formalism where

variation of the action is with respect to the metric gab and the connection Γabc in this case

is the Levi-Civita one, that is, the metric connection

Γabc =
1

2
gad (gbd,c + gdc,b − gbc,d) . (2.8)

In the Palatini formalism, the metric and the connection are treated as independent fields

and the action is varied with respect to each of them. A third procedure is the metric-affine

approach which uses the Palatini variation but without the assumption that the matter

action is a function of the connection as well as the metric. Unlike in the Einstein-Hilbert

case where both the metric and Palatini approach lead to the same field equations for the

action, the field equations that one obtains from (2.7) depend on the variational principle

used. The versions of f(R) gravity as a result of this are the standard metric f(R) gravity,

the Palatini f(R) gravity and additionally, the metric-affine f(R) gravity.
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2.1.1 Metric formalism

Varying the action (2.7) with respect to the metric gab over a 4-volume yields:

δS = −1

2

∫
dV
√−g

[
1

2
f gab δg

ab − f ′ δR+ TMab δg
ab

]
, (2.9)

where ′ denotes differentiation with respect to R, and TMab is the matter energy momentum

tensor (EMT) defined as

TMab = − 2√−g
δLM
δgab

. (2.10)

Writing the Ricci scalar as R = gabRab and assuming the connection is the Levi-Civita one,

we can write

f ′ δR ' δgab
(
f ′Rab + gab�f

′ −∇a∇bf ′
)
, (2.11)

where the ' sign denotes equality up to surface terms and � ≡ ∇c∇c. By demanding that

the action be stationary, so that δS = 0 with respect to variations in the metric, one has

finally

f ′
(
Rab −

1

2
gabR

)
=

1

2
gab (f −Rf ′) +∇a∇bf ′ − gab�f ′ + TMab . (2.12)

It can be seen that for the special case f = R, the equations reduce to the standard

Einstein field equations.

It is convenient to write (2.12) in the form of effective Einstein equations as

Gab =

(
Rab −

1

2
gabR

)
= T̃Mab + TRab = Tab , (2.13)

where we define Tab as the total EMT comprising

T̃Mab =
TMab
f ′

(2.14)

and

TRab =
1

f ′

[
1

2
gab (f −Rf ′) +∇a∇bf ′ − gab�f ′

]
. (2.15)

The components of the Tab can be considered to represent two effective “fluids” [24,28,30,97]:

the curvature “fluid” (associated with TRab) and the effective matter “fluid” (associated

with T̃Mab ). This allows us to adapt more easily techniques from the “covariant approach”

(see, [2, 49, 52, 65, 98]), to study a wide range of problems in f(R) gravity that were

originally devised for GR.

The field equations (2.13) are fourth order in derivatives of the metric, which can

be seen from the existence of the ∇a∇bf ′ term in (2.15). This result also follows directly
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from a ramification of Lovelock’s theorem [99, 100] which requires, in a four-dimensional

Riemannian manifold, that the construction of a metric theory of modified gravity admits

higher than second order derivatives to the field equations. This is generally thought of

as an undesirable feature in a Lagrangian based theory as it can lead to Ostrogradski

instabilities [101] in the solutions of the field equations. The f(R) theories, however, are

a special case in which this instability can be avoided [102], due to the existence of an

equivalence with scalar-tensor theories.

In order to help avoid confusion later, we point out that we use the superscripts M

and R to denote quantities relating to the standard matter fluid and curvature fluid

respectively and that the unbarred dynamic quantities with no superscripts are derived

from the total effective EMT.

2.1.2 Palatini formalism

In the Palatini formalism, the metric gab and connection Γabc are treated as indepen-

dent fields and the variation of the action is performed with respect to each of them

separately. For the GR case, varying the Einstein-Hilbert action with respect to the

connection, assuming the manifold is torsionless, results in the connection being the

Levi-Civita connection and the variation with respect to the metric gives the usual

Einstein field equations. For the f(R) case, however, the resulting field equations from

the Palatini approach differ from those obtained using the metric approach in these theories.

We denote the Ricci tensor as Rab and, in this case, it is constructed with an inde-

pendent connection and R is given as gabRab.

Varying (2.7) with respect to the metric and the connection over a 4-volume yields,

respectively,

f ′Rab −
1

2
gab f = TMab , (2.16)

∇c
(√−g gab f ′) = 0 , (2.17)

where the matter energy momentum tensor TMab is defined the usual way and the covariant

derivative is taken with respect to the independent connection. We see here that taking

the condition f(R) = R, which implies f ′(R) = 1 yields (2.17) as the metricity condition

of the Levi-Civita connection and hence the connection becomes the Levi-Civita one.

It then follows that Rab = Rab, R = R and from (2.16) we recover Einstein’s field equations.

Serious shortcomings of the Palatini formalism include the introduction of non-perturbative

corrections to the matter fields and strong couplings between gravity and matter at low
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energies [103,104]. Furthermore, the nature of the Cauchy problem for f(R) gravity in the

Palatini formalism is not well formulated in the presence of matter. Without a well-posed

initial value problem, Palatini f(R) lacks the predictive power that is required of any

physical theory [105].

2.1.3 Metric-affine formalism

In the Palatini formalism, the matter action SM =
∫
LM (gab, ψ) is assumed to be dependent

only on the the metric and matter fields. In the metric-affine formalism, one considers the

metric and connection to be independent field as in the Palatini approach, but in addition,

the matter action is a function of the metric, the matter fields and the connection. The

action of this theory then becomes [106],

S =
1

2

∫
dV
[√−g f(R) + 2LM (gab,Γ

a
bc, ψ)

]
. (2.18)

where R = gabRab and the Ricci tensor Rab is constructed with an independent connection

as in the Palatini approach.

If we consider that the Ricci scalar is invariant under projective transformation,

Γcde → Γcde + λd δ
c
e, then any action built from a function of R, and this includes the

Einstein-Hilbert action, is projective invariant in metric-affine gravity. However, since the

matter fields do not exhibit this type of invariance, this can lead to inconsistency of the

field equations. One way to get around this problem is by adding an action term containing

a Lagrange multiplier term Ba which has the form

SL =

∫
dV
√−g Ba Γb[ba] . (2.19)

Varying the action with respect to the metric, the connection and the Lagrange multiplier

results in, respectively,

f ′Rab −
1

2
gab f = TMab , (2.20)

Γa[ab] = 0 , (2.21)

1√−g
[
∇c
(√−g f ′ gac) δbd −∇d (√−g f ′ gab)]+ 2 f ′ gac Γb[cd]

=
χ

2

[
∆d

ab − 2

3
∆c

c[bδa]
d

]
, (2.22)
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where

∆a
bc ≡ − 2√−g

δSM
δΓabc

(2.23)

is the tensor defined by the variation of the matter action with respect to the connection.

By splitting (2.22) into a symmetric and antisymmetric part and performing contractions

and manipulations, it can be show that ∆a
(bc) 6= 0 will introduce non-metricity and

∆a
[bc] = 0 corresponds to the vanishing of torsion, respectively, with the Palatini f(R)

gravity belonging to the latter.

The metric approach to the f(R) theories will be the focus of the thesis. For stud-

ies of the Palatini and metric-affine approaches and the results that follow, the reader is

referred to [31,106].
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Chapter 3

Some results in f (R) Gravity

In order to investigate the impact of modifications to gravity, in this chapter we consider

the problem of matching different regions of spacetime so as to construct inhomogeneous

cosmological models in the context of Lagrangian theories of gravity constructed from

general analytic functions f(R), and from non-analytic theories with f(R) = Rn. The

junction conditions that need to be satisfied when matching together different solutions in

f(R) theories are discussed. We also discuss what we mean by ‘the weak-field limit’ which

includes taking Minkowski space to be the solution around which weak-field expansions

are performed. We then attempt to make a Swiss-cheese-like construction in which we

match the usual weak-field solutions to FLRW solutions in theories with analytic f(R) and

proceed to try and match some known exact solutions, including here some theories with

non-analytic f(R).

Additionally, we study gravitational lensing which has proven to be a powerful tool

in astrophysics and cosmology where it has been used to used to determine the mass

distribution of galaxies and galaxy clusters and to put constraints on cosmological

parameters. Given that the lensing effect is dependent on the underlying theory of gravity,

investigating modifications of GR would result in deviations from the standard expression

of the deflection angle which is worth investigating. On that account we study strong

lensing of spherically symmetric spacetimes in the case of f(R) = Rn gravity by analysing

the behaviour of the general expression for the deflection angle within this context. We

subsequently derive the lens mass and magnification for the gravitational lens system.

3.1 Junction conditions for f(R) gravity

Matching together different regions of spacetime in f(R) theories of gravity is a problem

that has been considered in [35,107], and it requires a set of junction conditions, analogous

to the Israel-Darmois junction conditions from GR [108, 109]. We will briefly recap the

relevant results here.

15
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The central requirement in [35] is that if one allows delta functions in the matter

part of the field equations (that is, if one allows matter fields to be localised on the

boundary hyper-surface), then delta functions should occur at most linearly in the parts of

the field equations that involve geometry only. Here we are interested in the case in which

there is no brane located at the boundary. We therefore require that there should be no

delta functions in the part of the field equations containing geometry only.

Now, in a Gaussian normal coordinate system, ds2 = dy2 + γµν dx
µ dxν , where the

boundary is located at y = 0, the Ricci scalar can be written as

R = 2 ∂yK −K∗µν K∗µν −
4

3
K2 + R̄ , (3.1)

where ∂y is the normal covariant derivative with respect to the boundary, R̄ is the Ricci

curvature constructed from γµν , Kµν = −1
2 Lyγµν (that is, the Lie derivative of γµν with

respect to the normal) is the extrinsic curvature of the boundary, K and K∗µν are the trace

and trace-free parts of this quantity, respectively.

It can be seen from the field equations (2.13) that R must be continuous at the

boundary. This is because the curvature fluid contains terms like ∂yf
′(R), which can be

expanded as

∂yf
′(R) = f ′′(R) ∂yR . (3.2)

If R is not continuous then the second term above would contain a factor of δ(y). This is

not allowed unless f ′′(R) = 0, which is just Einstein’s equations. We can then see from

(3.1) that γµν must also be continuous, otherwise Kµν would contain a factor of δ(y), and

R would contain factors of (δ(y))2. This is not allowed, as Kµν and R occur directly in

the field equations. We therefore have that γab and R must both be continuous across the

boundary.

The yy and ya components of (2.13) are then given by

∂y
[
(Kab −Kγµν) f ′(R) + γµν f

′′(R) ∂yR
]

= 0. (3.3)

Integrating this across the boundary one then finds

[
(Kµν −Kγµν) f ′(R) + γµν f

′′(R) ∂yR
]+
− = 0, (3.4)

where the [. . . ]+− notation means the difference of the quantity in the brackets on either side

of the boundary. Similarly, one can integrate R across the boundary to find, from (3.1) that

[R]+− = 0, and hence that [2 ∂yK −K∗µν K∗µν ]+− = 0. The trace and trace-free parts of (3.4)
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are then given by

f ′′(R) [∂yR]+− = 0 , (3.5)

f ′(R) [K∗ab]
+
− = 0 , (3.6)

[K]+− = 0 , (3.7)

which, together with

[γµν ]+− = 0 , (3.8)

[R]+− = 0 , (3.9)

form the junction conditions in f(R) theories in which f ′′(R) 6= 0. For further details the

reader is referred to [35].

3.2 Bottom-up construction of a cosmological model

One of the oldest ways of trying to construct inhomogeneous cosmological models is

to join Friedmann-Lemâıtre-Robertson-Walker (FLRW) solutions, at some appropriate

boundary, to the spherically symmetric spacetimes that are expected to exist around

individual isolated objects. This was famously achieved by Einstein and Straus for the

case of the Schwarzschild solution and the Einstein-de Sitter universe [110]. It is also

possible to join the Lemâıtre-Tolman-Bondi solutions of Einstein’s equations to FLRW at

a spherical boundary [111]. These models are often referred to as ‘Swiss cheese’, as this

is what the global structure starts to look like if one can keep removing regions of the

FLRW ‘cheese’, and replacing it with either Schwarzschild or Lemâıtre-Tolman-Bondi holes.

The gravitational fields around isolated objects, and the FLRW solutions of f(R)

theories, have both been extensively studied in the literature (see [31–33, 112, 113] for

reviews). In this section we do not intend to contribute further to the study of either of

these fields, but instead to the ways in which one can construct cosmological models that

contain massive astrophysical bodies. This will be done by attempting to match together

existing solutions. In particular, we will attempt to construct ‘Swiss cheese’ models by

matching spherically symmetric vacuum solutions with FLRW solutions.

At present, much of the current literature assumes that in f(R) theories the evolu-

tion of the FLRW ‘background’ cosmology proceeds independently of the growth of

structure within it. The motivation for this within Einstein’s theory comes, in large

part, from the studies of inhomogeneous cosmologies. It also comes, however, from the

correspondence between Newtonian cosmology and the FLRW solutions of Einstein’s

equations during dust domination: The rate at which nearby astrophysical bodies fall



Univ
ers

ity
 of

 C
ap

e T
ow

n

3.2. Bottom-up construction of a cosmological model 18

away from each other can be considered as being due to a Newtonian force (up to the

usual accuracy this implies), or due to the expansion of the universe. Both are reasonable

descriptions on small enough scales. If one attempts to use f(R) as an explanation of dark

energy, however, then one wants the cosmological expansion to be different to that of a

dust dominated universe. The usual interpretation of the motion of nearby astrophysical

bodies as being describable (up to some accuracy) within Newtonian theory is therefore

lost, and the intuition we have gained on this subject from studying the solutions of

Einstein’s equations must be re-evaluated.

In order to evaluate the existence or not of a weak-field limit, and the emergence of

FLRW-like behaviour on large scales, one cannot begin by assuming the existence of either

of these things. Any realistic investigation, however, needs to make some assumptions, and

here we will begin by assuming that the gravitational fields around astrophysical bodies

can be described by known solutions (either weak-field or exact). We will then proceed to

see which FLRW solutions these can be matched with, or which FLRW behaviours emerge,

given this assumption. Throughout this section we will use Latin letters a, b, c, etc. to

denote spacetime indices, and Greek letters to denote coordinates on a boundary. When it

is required, the letters i, j, k, etc. will be reserved for spatial indices.

3.2.1 Viability of FLRW geometry in f(R)

The spatially homogenous and isotropic FLRW model has been important in our under-

standing of the nature of the universe within the context of GR. In this model the metric,

in spherical coordinates, is given by

ds2 = −dt̂2 + a2(t̂)

[
dr̂2

1− kr̂2
+ r̂2 dθ̂2 + r̂2 sin2 θ̂ dφ̂2

]
, (3.10)

where a(t̂) is the scale factor and k = −1, 0, 1 for negative, zero, and positive curvature

respectively.

The establishment of the spacetime as FLRW may be taken from the observable isotropy

of the CMBR (assuming isotropy holds everywhere) together with the Ehlers-Geren-Sachs

therorem (EGS) [114] which states

If a family of freely-falling observers measure self-gravitating background radi-

ation to be everywhere exactly isotropic in the case of non-interacting matter

and radiation, then the universe is exactly homogenous.

However, the CMBR is not exactly isotropic, implying that it has been almost spatially

homogenous and isotropic since decoupling of matter and radiation. Stoeger, Maartens and

Ellis [115] proved the stability of the EGS results by showing that spacetimes that are close
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to satisfying the EGS conditions are almost-FLRW. These results are summarised in the

Almost-EGS theorem which states

If the Einstein-Liouville equations are satisfied 1 in an expanding universe,

where there is present pressure-free matter with a timelike 4-velocity vector field

ua such that (freely-propagating) background radiation is everywhere almost-

isotropic relative to ua in some domain U , then space-time is almost-FLRW in

U .

In terms of viability of FLRW geometry in f(R), the validity of the EGS theorem has been

extended to f(R) theories by Rippl, van Elst, Tavakol, and Taylor in [118]. They generalised

the results of Maartens and Taylor [119] to show that for metric f(R) theories, a perfect

fluid spacetime with vanishing vorticity, shear and acceleration is FLRW only if the fluid

has in addition a barotropic equation of state. Accordingly, the EGS theorem and its almost

extension are valid for general f(R) theories as well. An independent proof of this result

was demonstrated recently by Faraoni [120] where he went on to prove the validity of the

EGS theorem for Palatini f(R) gravity.

3.2.2 Matching weak-field geometries to FLRW

The simplicity of the Swiss cheese approach and the degree to which it has influenced

the development of inhomogeneous cosmology in GR, makes it a natural place to begin

studying the relationship between weak-field systems and cosmology in f(R) theories of

gravity.

By “weak-field” we mean that in extended regions of the Universe that are small

compared to the Hubble scale, but large compared to the Schwarzschild radius of any

compact objects that may exist within it, that the geometry of spacetime within the region

(but outside of the compact objects) can be well described by small fluctuations around

Minkowski space, such that

gab ' ηab + hab , (3.11)

where ηab is the metric of Minkowski space, and there exists a coordinate system in which

each of the components of hab is � 1 and slowly varying. The description given by (3.11),

and the corresponding physics, is what is meant by ‘the weak-field limit’.

There are a number of points in this explanation that require further clarification.

Firstly, what we mean by ‘Hubble scale’ here is the quantity cH−1 when considering

space-like separations, and H−1 when considering time-like separations (here H is the

Hubble constant, as measured by observers using the recessional velocity of nearby objects).

1It is assumed that Einstein equations are satisfied and radiation obeys the Liouville’s equation L(f) = 0
where L is the Liouville operator from kinetic theory [46,116,117]
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For a region to be ‘small’ compared to the Hubble scale then means that any two points

on the boundary of that region that are space-like separated should be � cH−1 apart, and

that any two points that are time-like separated should be � H−1 apart. This definition

requires H to be reasonably uniform throughout each small region, which we will assume

to be true. The criterion that these regions should be much larger than the Schwarzschild

radius of any compact objects, and that (3.11) should not be taken to describe the regions

inside (or near) compact objects, are simply intended to remove from our consideration the

regions near black holes and neutron stars.

Let us now further consider equation (3.11). The crucial point here is that the ge-

ometry of spacetime in the region under consideration can be taken to be close to that

of Minkowski space. In this case one can decompose the tensor hab according to how its

various parts transform under spatial rotations in the background Minkowski space. In

general, one can then write hab as (see [121])

hab dx
a dxb = 2Φ c2 dt2 − 2Bi c dt dx

i + 2 (Ψ δij +Hij) dx
i dxj .

The divergence of Bi and the trace of Hij can be set to zero by an appropriate choice

of coordinates, and the divergence-less part of Bi and the trace-free part of Hij can be

consistently ignored. This leaves

ds2 ' −(1− 2Φ) c2 dt2 + (1 + 2Ψ)δij dx
i dxj , (3.12)

where φ and Ψ are both � 1 and slowly varying. We refer to this as ‘the Newtonian limit’

if Φ behaves like a Newtonian potential, and satisfies ∇2Φ ' − 4πGµM .

Finally, we can make the concepts of ‘small’ and ‘slow’ precise by introducing a di-

mensionless order-of-smallness parameter, ε. Velocities, vi = dxi/dt, are then said to be

‘small’ if v/c ∼ O(ε), and quantities are said to be ‘slowly varying’ if acting on them with a

time-derivative adds an extra O(ε) of smallness when compared to a spatial derivative (the

order of smallness of time derivatives and velocities are expected to be similar because the

evolution of gravitating systems are typically governed by the motion of their constituents).

From the field equations and equations of motion it can be seen that the lowest order parts

of Φ and Ψ, and the matter energy density µM , are given by

Φ ∼ Ψ ∼ GµM ∼ v2

c2
∼ ε2 .

The field equations and equations of motion within the region under consideration can then

be expanded order-by-order in ε, with the ‘weak field’ limit of equation (3.12) corresponding

to the expansion up to O(ε2). The ' sign will be used in what follows to mean ‘equal up
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to terms of O(ε3) and smaller’. This is the same expansion in ε that is routinely used in

the standard parameterised post-Newtonian (PPN) approach to gravitational physics in

weak-field systems [122].

The weak-field limit of f(R) theories of gravity has been studied extensively in the

literature (see e.g. [31–33, 112, 113], and references therein), with the full post-Newtonian

limit of theories with analytic f(R) that admit Minkowski space as a solution being found

in [43]. There the Lagrangian function is expanded in a Taylor series as

f(R) = f(0) + f ′(0)R+
1

2
f ′′(0)R2 +O(R3) , (3.13)

where primes denote differentiation with respect to R. One may note here that the

expansion is being performed as a series around R = 0, in keeping with our assumption

that Minkowski space is a suitable background about which we can perform an analysis of

the weak field. This limits our consideration to theories in which f(0), f ′(0) etc. are finite,

which is certainly not true for all theories [25]. One is, of course, at liberty to consider

expanding around other backgrounds, with non-zero Ricci curvature, R0 (see, e.g., [123]).

In this case, however, one must deal with the complexity of solving the full non-linear

Einstein equations in order to find the background, which is both difficult and likely to

result in many different possibilities. We will consider this further for some simple theories

in Subsection 3.2.3.

To the order required here, and taking Minkowski space as the background geome-

try, the metric is given by (3.12) with [43]

Φ =
1

f ′0

(
V +

1

2
f ′′0 R

)
, (3.14)

Ψ =
1

f ′0

(
U − 1

2
f ′′0 R

)
, (3.15)

where we have used the abbreviations f ′0 = f ′(0) and f ′′0 = f ′′(0), and where U , V and R

satisfy

∇2U = − 4π µM +
f0

4
, ∇2V = −4π µM − f0

2
(3.16)

and

∇2R− f ′0
3f ′′0

R = − 8π

3f ′′0
µM +

f0

6f ′′0
, (3.17)

where f0 = f(0).

Assuming the existence of a weak-field limit, these theories can be seen to have a

Newtonian limit if f ′′R � U . Unlike in the PPN treatment, we will not insist that the
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solutions of (3.16) and (3.17) approach zero at asymptotically large distances, but will

instead enforce boundary conditions using cosmology.

We will now try to match the weak-field geometry to an FLRW geometry (3.10)

that is filled with a perfect fluid. Within the FLRW spacetime we will excise a region

interior to the sphere r̂ = Σ̂, and replace it with a region of spacetime that is spherically

symmetric, and that is well described by the weak-field geometry given in (3.12). In this

case it is convenient to write the spatial metric in spherical polar coordinates, so that

δijdx
idxj = dr2 + r2 dθ2 + r2 sin2 θ2 dφ2. We can then identify the angular coordinates in

both regions, which we will refer to as Region I and Region II, respectively.

Without loss of generality, we consider the boundary to be comoving with the fluid.

As there are no spatial gradients in Region I, the boundary must be static with respect to

the hypersurfaces of homogeneity that exist in the FLRW geometry. In Region II, however,

the boundary is free to move in the radial direction. The first fundamental form of the

boundary, on either side, is then given by

γIµν dx
µ dxν = −dt̂2 + a2(t̂) Σ̂2dΩ2 ,

γIIµν dx
µ dxν ' −

(
1− 2Φ− Σ̇2

)
dt2 + (1 + 2Ψ)Σ2 dΩ2 ,

where the boundary is at r = Σ in Region II, and where we have used the notation '
to mean equal up to terms of post-Newtonian order (that is, up to O(ε3)). The junction

condition (3.8) then gives the conditions

(1 + Ψ)Σ ' a(t̂) Σ̂ , (3.18)

dt̂

dt
' 1− Φ− 1

2
Σ̇2 . (3.19)

Now let us consider the extrinsic curvature. To calculate this we need to know the normal

to the boundary, which is given in each region by

nIa =
a(t̂) δr̂

a√
1− k r̂2

, (3.20)

nIIa '
(

1 + Ψ +
1

2
Σ̇2

)
δra − Σ̇ δta . (3.21)

The second fundamental form on the boundary is then given by

Kµν =
∂xa

∂xµ
∂xb

∂xν
na;b , (3.22)
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which for the two spacetimes we are considering is

KI
µν dx

µ dxν ' r

(
1− k r2

2 a2(t̂)
+

1

f ′0
U − f ′′0

2f ′0
R

)
dΩ2, (3.23)

and

KII
µν dx

µ dxν '
(

1

f ′0
V,r +

f ′′0
2f ′0

R,r − Σ̈

)
dt̂2

+ r

(
1− f ′′0

2f ′0
R+

1

2
Σ̇2 − f ′′0

2f ′0
r R,r +

1

f ′0
U +

r

f ′0
U,r

)
dΩ2 ,

(3.24)

where we have already used the junction conditions (3.18) and (3.19).

The junction conditions (3.6) and (3.7) then give

Σ̇2

Σ2
' −2U,r|Σ

f ′0Σ
− k Σ̂2

Σ2
+
f ′′0
f ′0

R,r|Σ
Σ

, (3.25)

Σ̈

Σ
' V,r|Σ

f ′0 Σ
+
f ′′0
2f ′0

R,r|Σ
Σ

. (3.26)

These look very much like the Friedmann equations derived from Einstein’s equations,

with the terms containing the Newtonian potential U acting like the matter terms, and

with the term involving the spatial curvature k playing its usual role. Here, however, we

also have two additional terms containing derivatives of the Ricci scalar, R. These extra

terms can be seen to contain all of the new behaviour that one obtains by generalising the

gravitational Lagrangian from R to f(R).

So far we have only applied the junction conditions that exist in Einstein’s equa-

tions: That the first and second fundamental forms on the boundary must be continuous

if we are to avoid a surface layer of matter. Let us now apply the additional junction

condition (3.5). The spacetime in Region I is homogeneous, so in this case we must have

∂yR =

√
1− kr̂2

a(t̂)
R,r̂ = 0 . (3.27)

Applying the junction condition (3.5) then gives

R,r|Σ ' 0 , (3.28)

where we have used k Σ̂2 ∼ O(ε2), as can be seen from (3.25). This means that the last

terms on the right-hand side of both (3.25) and (3.26) must vanish at O(ε2), so that we

are left with exactly the same equations as in Einstein’s theory (up to the presence of f ′0
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in the denominator of the terms involving U , which can be absorbed into constants, and

the terms involving f0 in (3.16) and (3.17), which act like Λ).

This treatment appears to show that the only Swiss cheese solutions that exist in

f(R) theories of gravity must either have FLRW regions that behave in the same way they

do in Einstein’s theory (possibly with Λ, and up to possible small corrections), or it must

be the case that the spacetime within the excised spheres cannot be described using the

weak-field geometry given in (3.12).

3.2.3 Matching exact solutions

We have so far considered joining weak-field geometries to FLRW, in theories in which

f(R) is an analytic function. This has shown that acceleration in the resulting cosmological

model cannot occur in any new ways if the junction conditions given in Section 3.1 are to

be obeyed. One must therefore either allow for gravitational fields to be rapidly varying, or

give up on a description of the regions around astrophysical objects as small fluctuations

about Minkowski space. The latter of these two possibilities suggests that it may be useful

for us to consider exact solutions.

Unfortunately, the complexity of the field equations (2.13) make exact solutions dif-

ficult to find. However we know that for all functions f(R) which are of class C3 at R = 0

and f(0) = 0 while f ′(0) 6= 0, the Schwarzschild solution is the only vacuum solution with

vanishing Ricci scalar [73]. It therefore seems natural to try and match a spherical region

with Schwarzschild geometry to an exterior FLRW spacetime. In the context of Einstein’s

theory this corresponds to the well-known Einstein-Straus approach described earlier [110].

Furthermore, if we restrict our considerations to f(R) = R1+δ then there are two known

exact solutions (other than the vacuum solutions of Einstein’s equations, that is, which

are also solutions of these theories). A static spherically symmetric vacuum solution with

non-trivial asymptotics was found in [37], and more recently via an independent method

in [73]. A time-dependent spherically symmetric vacuum solution was found in [34]. In

what follows, we will also try and join these two solutions to FLRW geometries.

3.2.3.1 An Einstein-Straus-like construction

The constructions we consider here consist of point-like masses at the centre of otherwise

empty spherical regions, whose geometry is described by the Schwarzschild metric, and

that are embedded in FLRW geometry at appropriate boundaries. Such constructions

were originally considered by Einstein and Straus [110], and were introduced to address

the question of whether or not the expansion of the universe can affect local mechanical

phenomena, such as planetary orbits. Since the spacetime near the central mass is

Schwarzschild, the planetary orbits are given by the usual time-like geodesics of this
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geometry, and the cosmic expansion does not affect them. Let us now investigate whether

such a construction can be performed in f(R) gravity.

We begin by writing the Schwarzschild solution as

ds2 = −A(r) dt2 +
dr2

A(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
, (3.29)

where

A(r) =

(
1− 2M

r

)
. (3.30)

Let us now try and embed this solution in an FLRW geometry, as specified in (3.10). To do

this, consider a boundary at r̂ = Σ̂ in the FLRW spacetime and r = Σ in the Schwarzschild

solution. The first fundamental form on the boundary is then given in the vacuum region

by

γµν dx
µ dxν = −

(
A− Σ̇2

A

)
dt2 + Σ2dΩ2 (3.31)

and in the FLRW region by

γµν dx
µ dxν = −dt̂2 + a2(t̂) Σ̂2 dΩ2 , (3.32)

where we have identified angular coordinates in the two different regions at the boundary

and where dΩ2 = dθ2 + sin2 θdφ2. The junction condition (3.8) then gives

Σ = a(t̂)Σ̂ , (3.33)

dt̂

dt
=

√
A− Σ̇2

A
. (3.34)

To calculate the second fundamental form we need the space-like unit vector normal to the

boundary. In the vacuum region this is given by

na =

√
A√

A2 − Σ̇2

(
−Σ̇, 1, 0, 0

)
, (3.35)

while in the FLRW region it is

na =
a(t̂) δra√
1− k Σ̂2

. (3.36)

The second fundamental form on the FLRW side of the boundary is then

Kµν dx
µ dxν = a(t̂) Σ̂

√
1− k Σ̂2 dΩ2 , (3.37)
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while on the vacuum side of the boundary it is given by

Ktt =
3AA,r Σ̇2 −A3A,r − 2A2 Σ̈

2
√
A (A2 − Σ̇2)3/2

, (3.38)

Kθθ =

√
Σ2A3

(A2 − Σ̇2)
, (3.39)

where all quantities should be evaluated at the boundary. Matching K±θθ at the boundary

we obtain

Σ̇2 = A2

[
1− A

(1− kΣ2/a2)

]
. (3.40)

Writing the above equation in the coordinates (t̂, r̂, θ, φ), and using (3.33), (3.34) together

with the form of the function A(r), we find

Σ̂3 a(t̂)

[
k +

(
da(t̂)

dt̂

)2
]

= 2M . (3.41)

The left-hand side of the above equation is the usual definition of the Cahill-Macvitte mass

function [124] in FLRW spacetimes.

Differentiating (3.41) with respect to t̂ gives G1
1 = 0. This implies that the total

pressure (standard matter and curvature fluid) must vanish on the boundary, but as the

pressure in the FLRW region is homogeneous, this means that the total pressure should

vanish throughout the FLRW region. In this case, equating the time component of the

extrinsic curvature will not give any new information.

If we now impose the requirement that R should be the same on either side of the

boundary, from (3.9), then we must have

6

(
1

a(t̂)

d2a(t̂)

dt̂2
+

1

a(t̂)2

(
da(t̂)

dt̂

)2

+
k

a(t̂)2

)
= 0 . (3.42)

The above equation combined with the condition of vanishing total pressure, then implies

vanishing total density (curvature fluid and standard matter) in the FLRW region. What

is more, putting R = 0 in (2.13) shows that the effective energy-momentum tensor of the

curvature fluid must be proportional to gab. It then follows that the energy-momentum

tensor of standard matter, Tmab , must also be proportional to gab, and so can only be a

vacuum energy. It also follows that the FLRW region can only be Minkowski spacetime

(in Milne coordinates, if k = −1). Finally, from (3.5) we see that the normal gradients

automatically match identically, as R = 0 on both sides.
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We note that the situation remains the same if, instead of a Schwarzschild interior

we have a Schwarzschild-de Sitter, or anti-de Sitter, interior. In these cases the interior

region has a constant, non-zero Ricci scalar. As R must be matched across the boundary,

the FLRW region must also have a constant Ricci scalar, and from (2.13) it can be easily

seen that the effective energy-momentum tensor of the curvature fluid must be proportional

to gab. Furthermore, matching the second fundamental form now gives G1
1 = constant in

the FLRW region, which implies that the total pressure must be constant. Taken together,

these two conditions imply that the total energy density should also be constant, and that

the energy-momentum tensor of matter in the FLRW region must have TMab ∝ gab, which is

nothing other than vacuum energy. The only solution in this case is therefore a spacetime

that is de Sitter everywhere.

It is a curious result that the Schwarzschild solution cannot be embedded in any

FLRW spacetime (other than the trivial case of Minkowski space) in f(R) theories of

gravity, unless the theory is linear in R. However, this conclusion is natural from the

junction conditions because the conditions that the Ricci scalar and its first derivative

should match across the boundary make the non-trivial f(R) theories qualitatively different

from GR, where R can be discontinuous. If a spherically symmetric object is joined to

a FLRW geometry in f(R) theories, then one must expect an evolution of the boundary

values of R and Ṙ, which is something that pure Schwarzschild or Schwarzschild-de Sitter

solutions cannot satisfy. Hence, in the following sections, we will explore some other

exact non-GR solutions in f(R) gravity, in order to check whether Einstein-Straus-like

constructions are possible with them.

3.2.3.2 A static solution in Rn gravity

An exact static, spherically symmetric vacuum solution of f(R) = R1+δ, that was found

in [37] and later found using the 1+1+2 covariant approach in [73], is given by [37,73]

ds2 = −A(r) dt2 +
dr2

B(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
, (3.43)

where

A(r) = r
2δ(1+2δ)
(1−δ) +

c1

r
(1−4δ)
(1−δ)

,

B(r) =
(1− δ)2

(1− 2δ + 4δ2)(1− 2δ − 2δ2)

(
1 +

c1

r
(1−2δ+4δ2)

(1−δ)

)
.
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The Ricci scalar for this solution is

R = − 6 δ(1 + δ)

(1− 2δ − 2δ2) a2 r2
. (3.44)

We will now try and embed this solution in an FLRW geometry. To do this, consider a

boundary at r = Σ in the vacuum region. The first fundamental form on the boundary is

then given in the vacuum region by

γµν dx
µ dxν = −

(
A− Σ̇2

B

)
dt2 + Σ2 dΩ2 . (3.45)

Matching the first fundamental forms then gives

Σ = a(t̂) Σ̂ (3.46)

dt̂

dt
=

√
A− Σ̇2

B
. (3.47)

In the vacuum region the spacelike unit vector normal to the boundary is given by

na =

√
A√

AB − Σ̇2

(
−Σ̇, 1, 0, 0

)
, (3.48)

The second fundamental form of the vacuum side is

Ktt =
2BA,r Σ̇2 +AB,r Σ̇2 −AB2A,r − 2AB Σ̈

2
√
A(AB − Σ̇2)3/2

, (3.49)

Kθθ =

√
Σ2B2A

(AB − Σ̇2)
, (3.50)

where all quantities should be evaluated at the boundary.

The junction conditions (3.6) and (3.7) are then satisfied if

Σ̇2 = AB

[
1− B

(1− kΣ2/a2)

]
(3.51)

Σ̈ =
(A,r B +B,r A)

2
− B(2A,r B +B,r A)

2(1− kΣ2/a2)
. (3.52)

Consistency of these equations requires

(AB,r −A,r B)

(1− kr2)
= 0 . (3.53)

Substitution from (3.43) shows that this can be achieved only if δ = 0 or −1/2.
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If we now impose the requirement that R should be the same on either side of the

boundary, from (3.9), then we get

1

a(t̂)

d2a(t̂)

dt̂2
+

1

a(t̂)2

(
da(t̂)

dt̂

)
+

k

a(t̂)2
= − δ(1 + δ)

(1− 2δ − 2δ2) a(t̂)2 Σ̂2
. (3.54)

This strongly constrains the allowed form of a(t). Finally, from (3.5), we find that we must

have √
ABR,r√
AB − Σ̇2

= 0 , (3.55)

as there are no spatial gradients in the FLRW region. This means that we must also

require R,r = 0 at the boundary in the vacuum region. This is only satisfied if δ = 0 or −1,

as can be seen from the right-hand side of (3.54).

It is therefore the case that the junction conditions from Section 3.1 can only be

satisfied if δ = 0, in which case the field equations (2.13) simply reduce to Einstein’s

equations. In this case the vacuum solution given in (3.43) reduces to the Schwarzschild

solution, and (3.54) no longer needs to be satisfied as f ′′ = 0, and the right-hand side of

(3.2) vanishes automatically. The vacuum solution (3.43) cannot, therefore, be used to

model the gravitational field of an astrophysical object embedded in an FLRW universe

in these theories, unless f(R) is linear in R. This is despite the fact that this solution is

the asymptotic attractor of all spherically symmetric, static, vacuum solutions of theories

with f(R) = R1+δ [37], suggesting that the spacetime around astrophysical objects that

are embedded in FLRW should be time dependent.

3.2.3.3 A non-static solution in Rn gravity

An exact solution for time-dependent, spherically symmetric vacuum situations in f(R) =

R1+δ theories is given by [34]:

ds2 = −A(r) dt2 + q2(t)B(r)
(
dr2 + r2 dΩ2

)
, (3.56)

where q(t) = t
δ(1+2δ)
(1−δ) , and

A(r) =

[
1− c2

r

1 + c2
r

]2/σ

,

B(r) =
(

1 +
c2

r

)4
Aσ+2δ−1 ,

where σ2 = 1− 2δ + 4δ2. The Ricci scalar in this case is given by

R = −6 δ(1 + δ)(1 + 2δ)(1− 4δ)

(1− δ)2 t2A
. (3.57)



Univ
ers

ity
 of

 C
ap

e T
ow

n

3.2. Bottom-up construction of a cosmological model 30

Again, to match this solution with an FLRW exterior, consider a boundary at r = Σ in this

solution. The first fundamental form on the boundary is then given in the vacuum region

by

γµν dx
µ dxν = −

(
A− q2B Σ̇2

)
dt2 + q2B Σ2 dΩ2 . (3.58)

Matching the first fundamental forms then gives

q
√
B Σ = a(t̂) Σ̂ , (3.59)

dt̂

dt
=

√
A− q2B Σ̇2 . (3.60)

and the unit vectors tangent and normal to the boundary are given by

ua =
1√

A−B q2 Σ̇2

(1, Σ̇, 0, 0) , (3.61)

na =

√
AB q√

A−B q2 Σ̇2

(−Σ̇, 1, 0, 0). (3.62)

Calculating the second fundamental form for the matching surface we get

Ktt =
2q̇ q(B2 q2 Σ̇3 − 2AB Σ̇) + q2 Σ̇2(2Ar B −Br A)− 2q2ABΣ̈−AAr

2
√
AB q(A−B q2 Σ̇2)3/2

,

(3.63)

Kθθ =
qΣ(ABr Σ + 2AB + 2q̇ Σ̇B2 qΣ)

2
√
AB

√
A−B q2 Σ̇2

. (3.64)

Matching the Ricci scalar then gives

1

a(t̂)

d2a(t̂)

dt̂2
+

1

a(t̂)2

(
da(t̂)

dt̂

)2

+
k

a(t̂)2
= −δ(1 + δ)(1 + 2δ)(1− 4δ)

(1− δ)2 t2A(Σ)
. (3.65)

Finally, the boundary condition n · ∇R = 0, gives

Σ̇ = − 2 c2

σΣ2
(
1− c2

Σ

)3 (
1 + c2

Σ

)3 (1− c2
Σ

1 + c2
Σ

) 4(1−δ)
σ

t
(1−3δ−4δ2)

(1−δ) , (3.66)

unless δ = 1/4, 0, −1 or −1/2, in which case n · ∇R = 0 automatically. We can now

construct an algebraic constraint for Σ by equating Ktt on either side of the boundary and
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using Eqs. (3.59) and (3.66) to remove a(t̂) and Σ̇. This gives

q

A
1−2δ

2

 (
Σ2 + c2

2

)
(1− δ)k − 2 c2 σ

2 Σ

(1− δ)
√
σ2 − 4 c2

2 t
2(1−2δ−2δ2)

(1−δ) Σ8(1−δ)/σ(Σ2 − c2
2)2A2(1−δ)

−
√

1− k Σ̂2
(
Σ2 − c2

2

)]
= 0 . (3.67)

This equation must be satisfied at all times, but is clearly very difficult to solve for Σ

directly. We can, however, perform a series expansion in c2. To zero order we then have

the constraint √
1− k Σ̂2 = 1 +O(c2), (3.68)

so that k ' 0. This says that the FLRW geometry in which we are embedding must be

close to spatially flat. Using this in the first order equation then gives

σ

(1− δ) c2 = 0 +O(c2
2), (3.69)

so that the only possible solutions would appear to require either σ = 0 +O(c2), or c2 = 0.

The first of these possibilities requires δ to be complex, in which we are not interested here,

and the second is the requirement that the central mass vanishes. The matching of this

latter situation to FLRW is trivial, as the geometry in (3.56) can itself be seen to reduce

to FLRW when c2 → 0. Once again we therefore appear to be unable to match solutions

to FLRW, except when δ = 0, or when the entire spacetime is FLRW anyway.

The anomalous cases that remain are those in which δ = 1/4, −1 or −1/2, as in

these cases (3.66) can no longer be used. Of these δ = −1 seems problematic as it

corresponds to a Lagrangian density L =constant, which can hardly be said to be a

Lagrangian for gravity at all. The cases δ = −1/2 and δ = 1/4 also seem problematic,

as in these cases the field equations (2.13) contain terms that are ill-defined, with both

numerator and denominator reducing to zero.

In all of these cases the Ricci scalar must vanish, so the only exterior FLRW geom-

etry that one could match to would have to be Milne anyway. We do not, therefore,

consider them to be of any interest for our current purposes.

We therefore find that even for this non-trivial non-static solution, a matching with

a FLRW exterior is not possible. This is true even though the solution itself approaches

FLRW asymptotically.
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3.2.4 Discussion

After a discussion of the junction conditions that need to be satisfied when matching

together different solutions in f(R) theories, a number of attempts were made to construct

inhomogeneous cosmological models by matching different regions of spacetime. This

was done both for theories with general analytic functions f(R) and for non-analytic

theories with f(R) = Rn. In all cases studied, it was found that it is impossible to

satisfy the required junction conditions without the large-scale behaviour reducing to

what is found from Einstein’s equations with a cosmological constant. For theories with

analytic f(R) this suggests that the usual treatment of weak-field systems as perturbations

around Minkowski space may not be compatible with late-time acceleration that is driven

by anything other an effective cosmological constant given by f(0). For theories with

f(R) = Rn, we found that a number of well-known spherically symmetric vacuum solu-

tions could not be matched to an expanding FLRW background, including the well-known

Einstein-Straus-like embeddings of the Schwarzschild exterior solution in FLRW spacetimes.

The absence of these constructions represents a crucial difference between f(R) the-

ories and scalar-tensor theories of gravity. In the latter it is already known that

Einstein-Straus-like embeddings are indeed possible, both in cosmological and astrophys-

ical gravitational collapse scenarios (see for example [125]). This is true despite the

extra junction conditions that are required in scalar-tensor theories, where the scalar

field and its normal derivative must be matched at the boundary. These two conditions

may initially seem quite similar to the extra conditions required in f(R) gravity, that

is, matching the Ricci scalar and its normal derivative). However, it turns out that the

conditions in f(R) theories are much more restrictive, and give much stronger constraints

on the spacetimes allowed on either side of the boundary. This is due to R taking a very

specific form once an ansatz has been made for the metric (by specifying it should be give

by Eqs. (3.12) or (3.29), for example), which is in general not true for scalar-tensor theories.

These results are quite different to what is suggested by using linear perturbation

theory around an FLRW background in f(R) theories. In that case there seems to be little

impediment to including large density contrasts by allowing δµM to become large, while φ

and ψ are required to stay small. This difference could indicate that while the weak-field

solutions we have considered here are problematic, there may be ways of obtaining useful

(approximate) spacetime geometries from the perturbed FLRW approach. This would, in

fact, appear to be quite similar to the approach that is taken in [123], where the expansion

of f(R) is performed around a time-dependent, but spatially homogeneous and isotropic

background geometry with R = R0(t). In this case small regions of spacetime can still

be approximated as being close to Minkowski space, but the emergence of cosmological

evolution on large scales cannot be studied in the same way, as it is, at least to some degree,
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being assumed from the outset. This does not in any way diminish the potential validity

of such an approach, but it does appear to require knowledge about the geometry of the

entire observable universe in order to model the spacetime around a single astrophysical

object (it would also appear to require a re-think of the current framework for interpreting

precision tests of gravity). Alternatively, it may be the case that the difference between

the bottom-up constructions attempted here, and the top-down construction of perturbed

FLRW, could be indicating that cosmological back-reaction is large in f(R) theories. This

is certainly plausible, and should probably be expected when “screening mechanisms” such

as the chameleon effect come into play.

3.3 Lensing

Gravitational lensing has been a powerful tool used to determine the mass distribution of

galaxies and galaxy clusters and to put constraints on scales as small as stars to large-scale

structures and cosmological parameters. Given that the lensing effect is dependent on the

underlying theory of gravity, investigating modifications of GR would result in deviations

from the standard expression of the deflection angle and is consequently worth investigating.

The derivation of the form of the lensing angle for f(R) theory has been presented

in [126] and [127]. In this section we illustrate the effects of strong lensing in the case of an

exact static spherically symmetric spacetime of f(R) = Rn gravity as carried out in [74].

3.3.1 The bending angle

In the presence of a strong gravitational field such as a black hole, a photon experiences a

deflection about the centre of symmetry. For f(R) = Rn gravity, the form of the deflection

angle in the static, spherically symmetric spacetime defined by the solution (3.43) is,

α =

∣∣∣∣∫ r1

r0

O(r) dr

∣∣∣∣+

∣∣∣∣∫ r0

r2

O(r) dr

∣∣∣∣− π ; (3.70)

where

O(r) = L−1 J

r2

[
r

(4n2−6n+2)
n−2 − J2

(
r−2 − 2M r

(4n2−12n+11)
n−2

)]− 1
2

.

and n = δ + 1. Here, M is the effective mass of the lensing object, J is the impact

parameter and L is a constant. For an asymptotically flat solution, the total change in

α(r) is twice the change from infinity to r0.

It is important to remember that the metric (3.43) can be used only for

n < (1 +
√

3)/2 ≈ 1.23. Beyond this value of n the signature changes and the solu-
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tion should be considered unphysical in this context. In the limit n → 1 the form of

the deflection angle (3.70) would be the standard form in GR [128] for a Schwarzschild

spacetime.

We now analyse the behaviour of the deflection angle α by computing it against n

for different distances from the source r1 and for different values of the distance of closest

approach r0 as shown in Fig 3.1 and Fig 3.2 respectively. As a fiducial system, the distances

r0 are in units of the Schwarzschild radius.
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Figure 3.1: Plot of the bending angle α compared to the bending angle in general relativity against
n corresponding to different values of r1, with r0 = 100 and r2 = 30000.
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Figure 3.2: Plot of the bending angle α compared to the bending angle in general relativity against
n corresponding to different values or r0 with r1 = 25000 and r2 = 10000).

The divergence of the curves in both plots is indicative of the deviation from the

standard GR bending angles values. In Fig 3.1, the deflection angle is dependent of the

distance from the source r1. There is increased bending when r1 decreases for n < 1 and

when r1 increases for n > 1. In Fig 3.2, one can see that for a fixed n, the deflection angle

varies for different values of distance of closest approach r0. In particular for n < 1 there

is more bending as the values of r0 increase, whereas for n > 1 more bending occurs as r0
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decreases. Fig 3.2 also tells us that, at fixed r0 the bending angle first decreases with n for

n < 1 and then, for n > 1, starts increasing. However, our conclusions are only valid for

n < 1.23 because of the limits on the validity of (3.43).

3.3.2 Einstein ring positions and lens mass

We consider the trajectory of a photon whose orbit is described by (3.70). Also, in this

subsection we will only consider the values of n ≥ 1. Hence, due to the limits of validity of

the solution we have 1 ≤ n < 1.23. Following the approach given in Weinberg’s book [128],

to first order of approximation in n − 1 (which is a small quantity as 1 ≤ n < 1.23) and

M/r0, the deflection angle can be obtained as

α = 4M

[
1

r0
− 1

2r1
− 1

2r2
+ (n− 1)

(
(1 + ln(r0))

r0
− 1 + ln(r1)

2r1
− 1 + ln(r2)

2r2

)]
.

(3.71)

We have kept the terms involving r1 and r2 as the solution is not asymptotically flat. It can

be noted that even up to first order in (n−1), this makes a considerable difference from the

GR value. For n = 1, we recover the usual expression for the bending angle in GR, taking

into consideration asymptotic flatness and neglecting the terms involving M/r1 and M/r2

(as we know in the weak deflection limit of GR, if M/r0 is of the order of ε, then M/r1 or

M/r2 is of order of ε2):

αGR =
4M

r0
. (3.72)

The additional terms in (3.71) can be interpreted as the correction term to the classical

lens equation and this correction depends on r1, r0, r2 and the parameter n.

The basic geometric setup for a gravitational lens system is illustrated in Fig (3.3).

The light ray emitted by the source S is deflected by the lens L and the image is seen by

the observer O at S1. β is the angular position of the source; θ the angular position of

the image; and DL, DS and DLS are the observer-lens, observer-source and lens-source

angular diameter distances, respectively.

From the Fig 3.3, the following relations hold:

β = θ − α (3.73)

α =
DLS

DS
α̃ (3.74)

where α is the reduced deflection angle and is related to the actual deflection angle α̃

through the relation (3.74), the assumption here being that the angles are small, that is,
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Figure 3.3: The basic geometric setup for a gravitational lens system with corresponding angles
and angular diameters.

θ, β, α̃ << 1. Explicitly the bending angle is

β = θ − 4M DLS

DS

[
1

r0
− 1

2r1
− 1

2r2

+ (n− 1)

(
1 + ln(r0)

r0
− 1 + ln(r1)

2r1
− 1 + ln(r2)

2r2

)]
, (3.75)

and in GR, (3.75) is simply

β = θ − DLS

DS

4M

r0
, (3.76)

where M is the lens mass.

We require the Hubble expansion rate H(z) in order to calculate the distances DL, DS and

DLS , which are associated with observed redshifts2. We identify the overall background

spacetime as homogeneous and isotropic described by the FLRW metric with curvature

parameter κ, and assume the universe to be filled with a perfect fluid of pressure pM

and density µM (equation of state p = ωµM ). For Rn theory the generalised Friedmann

equation is given by [37]

H2 + (n− 1)H
Ṙ

R
− (n− 1)R

6n
=

8πG(2− n)

3(3− 2n)

Rn−1
0

Rn−1
µM , (3.77)

where R0 is the value of the Ricci tensor at the present epoch. For a flat universe, κ = 0,

(3.77) has the power-law solution:

a(t) = t
2n

3(1+ω) . (3.78)

2We assume in this section that the embedding of the spacetime (3.43) in a surrounding FLRW region
can exist without satisfying all the matching conditions

<',' ---- ------

D, 
D , 
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During the matter-domination era, the evolution of the scale factor (3.78) gives the results3

a(t) = a0

(
t

t0

) 2n
3

,

H0 =
2n

3t0
,

µM =
3H2

0

16πG

(3− 2n)(3− 13n+ 8n2)

n3 − 2n2
,

R(t) =
4(4n2 − 3n)

3t2
. (3.79)

Using (3.79) in the field equation (3.77) to solve for H(z) to first order in n− 1 yields

H(z) ' (1 + z)H0

√
2
√

1 + z
3−2n
n (1− 2.686(n− 1)) , (3.80)

Given (3.80) the angular luminosity distance is evaluated as

dA(z) =
1

(1 + z)

∫ z

0

dẑ

H(ẑ)
. (3.81)

Fig 3.4 shows plots of dimensionless angular luminosity distance (1/H0)−1dA(z) for various

values of n, where the small residual radiation effects have been neglected. From the plot

we see that the value of dA(z) for Rn models increases with increasing n.

Figure 3.4: The variation of dimensionless angular luminosity distance as functions of redshift, for
different values n

We now consider the special case of gravitational lensing where the source, lens and

the observer are perfectly aligned so that β = 0 in (3.75). In this case, θ is the Einstein

3These solutions hold exactly from the time of matter-radiation equality up until the present
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radius, which is the angular radius of an Einstein ring. Using (3.71), the lens equation is

now given by

θ =
4M DLS

DS

[
1

r0
− 1

2r1
− 1

2r2
+ (n− 1)

(
1 + ln(r0)

r0
− 1 + ln(r1)

2r1
− 1 + ln(r2)

2r2

)]
.

(3.82)

Taking r0 = θDL, r1 = DLS and r2 = DL, we can now re-write the lens equation (3.82) as:

θ =
4MDLS

DS

[
1

θDL
− 1

2DLS
− 1

2DL

+ (n− 1)

(
1 + ln(θ DL)

θ DL
− 1 + ln(DLS)

2DLS
− 1 + ln(DL)

2DL

)]
. (3.83)

The position,

θE =

√
4M

DLS

DS DL
, (3.84)

corresponding to the classic GR case (3.76) is the Einstein angle.

The lens mass M for the Rn case is given by

M = − DLDS θ
2

2 [n (DLS (θ − 2) + θDL) + (n− 1)χ]
, (3.85)

where

χ = DLS (θ − 2) ln(DL) + θDL ln(DLS)− 2DLS ln(θ) .

and for GR (n = 1),

MGR = − DLDS θ
2

2 (DLS(θ − 2) +DLθ)
. (3.86)

As an example we consider the observed Einstein ring case [129] which is found to be an

almost perfect ring. The system consists of a quasar as the background source at a redshift

z = 0.68 which is lensed by a dwarf spheroid galaxy at a redshift of z = 0.0375 forming an

almost perfect 360o of radius 6”.

We plot in Fig 3.41 the ratio of the mass of the lensing galaxy in (3.85) to the GR

mass against n and find that the lens mass is higher than the classical GR mass. The value

of the mass increases exponentially with increasing n. Thus even a small deviation from

n = 1 would make the lens mass different from GR value.

Now the radius of the ring is obtained by solving for θ in (3.83) for different values

of n. Solving numerically using MAPLE, we obtain two images of the background source
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Figure 3.5: Plot of the ratio of the mass of the lensing galaxy to it’s GR mass against n

as in the classical case and we recover the classical GR value for n = 1. In Fig 3.6 we

plot the image positions of the Einstein radius against n for different source positions

DS . The image positions are sensitive to both n and DS . We see that the value of the

angular separation between the images decreases with increasing n and for a fixed value

of n the image position increases in value with increasing DS in agreement with Fig 3.1.

The decrease in the value of angular separation converges at n ' 1.16, therefore no rings

are expected to form for models that span 1.16 ≤ n ≤ 1.23. A second ring also forms at

1.07 ≤ n ≤ 1.16, and this becomes larger with increasing n. Possibilities of this occurring

in the GR case are the existence of a second companion source, a star forming region or

lensing by a singular isothermal sphere in two planes.

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16
0
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θ
"

n

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16
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−6

−4

−2

0

θ
"

Figure 3.6: The image positions of the Einstein radius against n. Two images of the background
source are obtained as in the classical GR case which is recovered at the value of n = 1

We can now take into account the lens induced magnification which is defined as

the ratio of the lensed flux to the unlensed flux or as the ratio of the lensed and unlensed

solid angles [44]:

M =

∣∣∣∣β dβθ dθ

∣∣∣∣−1

. (3.87)
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1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

D

n

Figure 3.7: Plot of deviation of the Einstein angle θ from the classical GR value against n. The
Einstein angle decreases with respect to the classical angle.

In units of the Einstein angle θE , that is, by setting

β̄ =
β

θE
, Θ =

θ

θE
,

the lens equation (3.75) may be written as

β̄Θ = Θ2 − 1− (n− 1) (C1 − C2 Θ + ln(Θ)) (3.88)

where

C1 = 1 + ln(DL) + lnθE ,

C2 =
θE

2DLS

[
DLS +DL

(
1 +

1

(n− 1)

)
+DLS ln(DL) +DL ln(DLS)

]
From (3.88) we obtain

M =

∣∣∣∣1− 1

Θ4
+

Υ

2 Θ4
(n− 1)

∣∣∣∣−1

(3.89)

where

Υ = θE φ
[
Θ2 + (n− 1) ln(θE) (DLS +DL) ln(DL) (1 + Θ2) + 1

]
− 4 [ln(θE) + ln(DL) + ln(Θ)]− 2 Θ2 − 2

+
θE (DLS +DL) Θ

[
Θ2 (n− 1) + 1

]
+ (n− 1) [Θ ln(Θ) + ln(DL)]

(n− 1)DLS

+
θE DL Θ

[
Θ2 + (n− 1) ln(DLS)

]
DLS

Given the positions obtained numerically in (3.83), the magnification is found to remain

constant with varying n.
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3.3.3 Comparison with other models

In [126] it was found that the deflection angle is defined for 1 ≤ n and that the value of

lensing strength decreases with increasing n . The relative deviation of the image position

angles with respect to the standard GR angle, in their case, takes on both negative and

positive values indicating that Rn gravity may increase or decrease the Einstein angle with

respect to the classical result. However, they found the value of the relative deviation to

be negative over almost the full parameter space.

On computing the relative deviation of the images position angles from the stan-

dard GR case, we found that the deflection angle is defined for only 1 ≤ n ≤ 1.16. This

deviation as a function of n is negative over the parameter space and is always reduced

for the outer ring while it increases for the second inner ring. The solution (3.43) used

in the calculations is an exact spherically symmetric vacuum solution of the f(R) field

equations while the solution used in [126] is an approximate one. This may account for the

difference in the results found here from the results in [126] in the deviation. Solar system

tests provide stronger constraints on n to the extent that in [37], perihelion precession

observations provide a stronger bound of n = 1 + (2.7 ± 4.5) × 10−19. That being so, we

see that the constraints on n weaken on cosmological scales.

Our results also show that the correction of the bending angle leads to the lensing

mass being higher than that of the GR case, confirming what was found in [126]. In the

case of [127], upon increasing the distance of closest approach, more bending is expected.

Their results are limited to values of n < 1 and this agrees with the results we obtain in Fig

3.2, where for n < 1, as the distance of closest approach ro increases, so does the bending.

3.3.4 Conclusion

In this section we have studied strong lensing in f(R) = Rn gravity. The key features that

emerged from this analysis are as follows:

1. It was shown that the bending angle is dependent of the details of the theory of

gravity, (in this case the value of the parameter n), and also the geometry of the lens

system (the values r0 , r1 , r2), that is, the bending angle depends on the position of

the observer, source and the distance of closest approach.

2. The lens mass as calculated for a small deviation from GR increases exponentially

with increasing n.

3. The radius of the Einstein ring decreases with increasing n, and there exists multiple

rings for certain intervals of n, which is a novel feature of fourth order gravity and

cannot be accounted in GR without assuming the existence of a second companion
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source, a star forming region or lensing by a singular isothermal sphere in two planes.

The magnification of the ring, however remains unchanged up to small deviations

from GR.
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Chapter 4

The 1+3 covariant approach in

f (R) gravity

The 1+3 covariant approach provides a covariant description of spacetime in terms of

scalars, 3-vectors and projected symmetric trace-free (PSTF) 3-tensors and the equations

governing their dynamics, based on the Ricci and Bianchi identities. These quantities have

a physical or direct geometrical meaning, which have a natural interpretation for comoving

observers.

In this chapter, we adapt the 1+3 covariant approach based on [1, 46, 130–132] to

FOG. A comprehensive review of the formalism in GR can be found in [2]. We present for

the first time a complete 1+3 decomposition of the field equations in f(R) gravity.

4.1 Frame choice

The covariant approach presented here is based on the introduction of a partial frame

in the tangent space of each point. Once the frame has been chosen, a complete set of

covariantly defined (that is, gauge invariant) exact variables, all of which vanish in the

background are obtained, that set up equations describing the true spacetime. However,

since the true spacetime lacks the symmetry of the background there is, in general, no

unique covariant definition of the frame vectors and one is free to specify a choice of frame.

In what follows, ‘frame invariant’ describes invariance under the choice of frame vectors.

We begin the analysis with a suitable choice of frame, that is, one corresponding to

the 4-velocity ua of an observer in spacetime. There are a number of natural choices for ua.

The energy frame (or Landau frame [133]) uaE , which is defined to be a timelike eigenvector

of the energy momentum tensor. For observers following the energy frame, the energy flux

vanishes. There is the particle frame (or Eckart frame [134]) uaN which is derived from the

43
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particle flux vector Na; observers in this frame see no particle flux. There is also the entropy

frame uaS , that is defined by the entropy flux vector Sa. The aim of these frame choices

is to simplify the calculations by way of restructuring the equations and to better their

interpretation, for example, by choosing the energy frame, the total energy is alway zero [49].

Equation (2.13) allows us to define a two effective fluid where the physical components

are only the standard matter components, while the curvature fluid is a mathematical

construction, present due to additional gravitational degrees of freedom. Choosing a frame

corresponding to the total matter/curvature fluid would be physically unmatchable to

observations as the energy conditions of the curvature fluid and effective standard matter

are not necessarily satisfied [77]. This makes the choice of frames uaE , u
a
N and uaS , in

general, not suitable. The most natural choice of frame is therefore the one associated with

standard matter ua = uaM which remains thermodynamically well defined, whatever the

behaviour of the effective fluid is. This choice is also physically motivated by the fact that

the real observers are attached to galaxies and these galaxies follow the standard matter

geodesics [97].

4.2 Kinematics

The non-intersecting timelike family of worldlines (associated with fundamental observers

comoving with the cosmological fluid) form a congruence in spacetime (M, g) representing

the average motion of matter at each point. In each case their four-velocity is

ua =
dxa

dτ
, with ua u

a = − 1 , (4.1)

where τ is the proper time along the worldline of any fundamental observer. This vector

field ua provides a timelike threading for the spacetime. Given the four-velocity ua, there

are defined unique projection tensors

Uab = −ua ub , (4.2)

hab = gab + ua ub , (4.3)

where (4.2) projects parallel to ua and (4.3) projects onto the rest space orthogonal to ua

and it follows that

Uac U
c
b = −Uab , Uab u

b = ua , Uaa = 1 ,

hab u
b = 0 , hac h

c
b = hab , haa= 3 . (4.4)
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The effective volume element for the rest space of the comoving observer is given by

εabc = ηabcd u
d , where εabc = ε[abc] and εabc u

c = 0 . (4.5)

Here, ηabcd is the four-dimensional volume element (ηabcd =
√
| det g |)δ0

[a δ
1
b δ

2
c δ

3
d]) thus,

ηabcd = 2u[aεb]cd − 2εab[c ud] . (4.6)

Since ηabcd is totally skew-symmetric ηabcd = η[abcd], it follows that the following contractions

hold

εabc ε
def = 3!hd[a h

e
b h

f
c] ,

εabc ε
dec = 2hd[a h

e
b] ,

εabc ε
dbc = 2hda ,

εabc ε
abc = 3! . (4.7)

Moreover, two derivatives can be defined: the four-velocity ua is used to define the covariant

time derivative (denoted with a dot - ‘ ˙ ’) along the observers’ worldlines, where for any

tensor Za..bc..d

Ża..bc..d = ue∇eZa..bc..d , (4.8)

and the spatial projection tensor hab is used to define the fully orthogonally projected

covariant spatial derivative - ‘D’, such that,

DeZ
a..b

c..d = hre h
p
c ... h

q
d h

a
f ... h

b
g∇rZf..gp..q , (4.9)

with projection on all the free indices.

Any spacetime 4-vector va may be covariantly split into a scalar, V , which is the

part of the vector parallel to ua, and a 3-vector, V a, lying orthogonal to ua;

va = −ua V + Va , where V = vb u
b and V a = hab v

b . (4.10)

Any projected rank-2 tensor Scd can be split as

Sab = S〈ab〉 +
1

3
S hab + εabc S

c , (4.11)

where S = hcdS
cd is the spatial trace, S〈ab〉 is the orthogonally projected symmetric trace-free

PSTF part of the tensor defined as

S〈ab〉 =

(
hc(a h

d
b) −

1

3
hab h

cd

)
Scd , (4.12)
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and finally S[ab] is the skew part of the rank-2 tensor which is spatially dual to the spatial

vector Sc

S[ab] = εabc S
c ⇔ Sa =

1

2
εabc S

[bc] . (4.13)

We use angle brackets to represent the PSTF tensors and also to denote orthogonal projec-

tions of covariant time derivatives along ua:

V̇ 〈a〉 = hab V̇
b , Ṡ〈ab〉 =

(
hc(a h

d
b) −

1

3
hab h

cd

)
Ṡcd . (4.14)

By these definitions, for the derivatives of the projection tensors and the 3-volume element

one obtains

Da Ubc = Da hbc = Da εbc = 0 , (4.15)

U̇〈ab〉 = ḣ〈ab〉 = ε̇〈abc〉 = 0 , (4.16)

ḣab = 2u(a u̇b) , (4.17)

ε̇abc = 3 u̇d εd[ab uc] . (4.18)

In analogy to vector analysis in three dimensions, we introduce the covariant spatial diver-

gence and curl that generalises these Newtonian operators to curved spacetimes [132, 135].

The covariant spatial divergence and curl for projected vectors and fully projected rank-2

tensors are,

div V = DaVa , (divS)a = DbSab ;

curlVa = εabc DbV c , curlSab = εcd(a DcSdb) . (4.19)

For a symmetric rank-2 tensor,

Sab = S(ab) → curlSab = curlS〈ab〉 , (4.20)

since curl (khab) = 0 for any k. Note that unlike in the Euclidian case, div curl is not in

general zero, for vectors or rank-2 tensors.

The covariant decomposition of the derivative of a scalar Ψ is:

∇aΨ = −uaΨ̇ + DaΨ , (4.21)
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while the exact form of the covariant decomposition of the derivative of the 4-vector (4.10)

is

∇avb = −V
(
−ua u̇b +

1

3
hab θ + σab + ωab

)
+ ub

(
1

3
θ Va + σca Vc + ωca Vc

)
−ua

(
V̇〈b〉 + ub u̇c V

c
)

+
1

3
(div V ) hab + D〈aVb〉 +

1

2
εabc curlV

c

−ub∇aV , (4.22)

and that of the orthogonally projected rank-2 tensor (4.11) is

∇cSab = −uc
(
Ṡ〈ab〉 + 2u(a Sb)d u̇

d
)

+ 2u(a

(
1

3
ΘSb)c + Sdb) (σcd − εcde ωe)

)
+

3

5
(divS)〈ahb〉c −

2

3
εdc(a curlS

d
b) + D〈aSbc〉 . (4.23)

The algebraic terms Θ, ωab, σab, u̇a, in (4.22) and (4.23) are kinematic quantities arising

from the relative motion of comoving observers. The trace term defined as

Θ = Daua , (4.24)

is the expansion scalar (volume expansion) and represents the rate of expansion of the fluid.

The shear tensor

σab = D〈aub〉 (4.25)

is the symmetric trace-free part of the spatial change of the four-velocity with the properties

σab = σ(ab) , σab u
b = 0 , σaa = 0 . (4.26)

This tensor determines the distortion arising in the matter flow, leaving the volume invari-

ant. The shear magnitude is expressed as

σ2 =
1

2
σab σab ≥ 0 and σ2 = 0 ⇔ σab = 0 . (4.27)

The anti-symmetric vorticity tensor

ωab = D[aub] , (4.28)

describes the rigid rotation of matter relative to a non-rotating frame with

ωab = ω[ab] , ωab u
b = 0 . (4.29)
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The vorticity tensor may also be represented by the vorticity vector ωa, where

ωa =
1

2
ηabcd ud ωbc =

1

2
εabc ωbc =

1

2
curlua ⇔ ωab = εabc ω

c ;

ωa ua = ωa ωab = 0 . (4.30)

The vorticity magnitude is given by

ω2 =
1

2
ωa ωa = ωab ωab ≥ 0 and ω = 0 ⇔ ωa = 0 ⇔ ωab = 0. (4.31)

Finally, the four-acceleration u̇b = uc∇cub, represents the degree to which the matter

moves under forces other than gravity (a free-falling observer has vanishing acceleration in

her rest-frame, that is, moves under gravity and inertia alone).

The variation of the velocity with position and time is of interest here and therefore

we define the covariant derivative of the four velocity using (4.22) as

∇aub = σab + ωab +
1

3
Θhab − ua u̇b . (4.32)

4.3 Riemann curvature

Any given vector field va defined on a manifold must obey the Ricci identity

2∇[a∇b]vc = Rdabc vd , (4.33)

where

Rdabc = Γdac,b − Γdab,c + Γeac Γdeb − Γeab Γdec , (4.34)

with Γabc being the Levi-Civita connection. The tensor Rdabc is the Riemann curvature

tensor and represents the curvature of the spacetime manifold. This tensor possesses the

following symmetry properties

Ra[bcd] = 0 , (4.35)

known as the first Bianchi identities, and

Rabcd = R[ab][cd] = Rcdab . (4.36)

By contraction one obtains from (4.34) the Ricci tensor Rab = Rcacb = Rba and a further

contraction yields the Ricci scalar (or curvature scalar) R = Raa.

The second Bianchi identities are defined as

∇[eRab]cd = 0 . (4.37)
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Applying a twofold contraction to (4.37) gives the twice-contracted Bianchi identity

∇aRac +∇bRbc −∇cR = 0 ⇐⇒ ∇aGab = 0 . (4.38)

4.4 The energy momentum tensor

The total energy momentum tensor (EMT) Tab as defined in (2.13) can be decomposed

relative to ua by splitting it up into parts parallel and orthogonal to ua as follows:

Tab = µua ub + qa ub + ua qb + p hab + πab; (4.39)

where µ is the total effective energy density relative to ua, p the total isotropic pressure,

qa the total energy flux (momentum density) relative to ua and πab the and PSTF total

anisotropic stress, such that1

µ = Tab u
a ub = µ̃M + µR , (4.40)

p =
1

3
Tab h

ab = p̃M + pR , (4.41)

qa = − Tbc u
c hba = q̃Ma + qRa , (4.42)

πab = Tcd h
c
〈a h

d
b〉 = π̃Mab + πRab , (4.43)

with

µ̃M =
µM

f ′
, p̃M =

pM

f ′
, q̃Ma =

qMa
f ′
, π̃Mab =

πMab
f ′

. (4.44)

The following properties hold for these dynamic quantities :

qa u
a = 0 , πab u

b = 0 , πab = π(ab) , (4.45)

πaa = 0 , qa = q〈a〉 , πab = π〈ab〉 .

The physical behaviour of the matter present, that is, the relativistic energy, momentum and

stresses associated with a matter field are represented in general by TMab . The pressure pM

is induced by the random thermal motions, qMa is such that energy might be transmitted

by heat conduction and it will carry a momentum (or is a heat conduction term in the

instantaneous rest frame) and πMab is due to processes such as viscosity. These quantities are

related by an equation of state in order to capture the physics; for example, in the perfect

fluid case where the total EMT is characterised by the equation

Tab = µua ub + p hab , (4.46)

1As a reminder, we use the superscripts M and R to denote quantities relating to the standard matter fluid
and curvature fluid respectively and that the unbarred dynamic quantities with none of these superscripts
are derived from the total effective EMT.
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the standard matter quantities pM and µM are related by the equation of state pM =

pM (µM , s), where s is the entropy density.

4.4.1 Energy conditions

The description of standard matter and radiation in the universe is such that at least one

of the following conditions [77] is obeyed:

1. The weak energy condition (WEC): The energy momentum tensor TMab at each p ∈M
obeys

TMab u
a ub ≥ 0, (4.47)

for any timelike vectors ua. This means that the energy density as measured by any

observer is non-negative. For a perfect fluid, WEC will hold if

µM = TMab u
a ub ≥ 0 and µM + pM ≥ 0 . (4.48)

The expression µM + pM ≥ 0 implies that matter will tend to move in the direction

of a pressure gradient applied to it.

2. The dominant energy condition (DEC): This says that for every timelike vector ua,

then TMab u
a ub ≥ 0 and that TMab u

a is a non-spacelike vector, that is, it is a future-

directed timelike or null vector. For a perfect fluid case, this holds if µM ≥ 0 and

−µM ≤ pM ≤ µM . It then follows that the isentropic speed of sound

c2
s = (∂p/∂µ)s=const (4.49)

obeys,

0 ≤ c2
s ≤ 1 ⇔ 0 ≤ (∂p/∂µ)s=const ≤ 1 , (4.50)

that is, the flow of TMab as measured by the observer does not exceed the speed of light.

This guarantees local stability of matter (lower bound) and causality (upper bound),

respectively.

3. The strong energy condition (SEC): The EMT obeys the inequality

TMab u
a ub ≥ 1

2
TM ud ud, (4.51)

for all timelike vectors uc. This will hold for a perfect fluid if

µM + pM ≥ 0 and µM + 3pM ≥ 0 , (4.52)

and would be violated by a negative energy density or a large negative pressure. The

SEC is related to the attractiveness of gravity.
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From the twice contracted Bianchi identities (4.38), we know that the divergence of the left

hand side of (2.13) is identically zero, making the divergence of the right hand side zero and

as a result Tab is conserved. This reveals that if standard matter is conserved, then the total

fluid is also conserved even though the curvature fluid may in general possess off-diagonal

terms [119,136,137], that is,

∇bTab = 0 (4.53)

It is worth noting here that even though the standard matter still follows the usual conser-

vation equations ∇bTMab = 0, the individual effective tensors are not conserved [97],

∇bT̃Mab = −∇bTRab = − f
′′

f ′2
TMab ∇bR . (4.54)

Furthermore, the fluids with TRab and T̃Mab defined above are effective and consequently can

admit features that one would normally consider unphysical for a standard matter field.

Thus, all the thermodynamical quantities associated with the curvature defined previously

should be considered effective and not bound by matter constraints.

The curvature fluid and the effective matter do not necessarily satisfy the WEC.

This relation is the key hypothesis which allows the timelike vectors uaE , u
a
N , u

a
S to exist

and is, in general, a very reasonable assumption [29]. The violation of this condition means

that the energy frame of the matter uaM is the natural choice of frame as standard matter

maintains its thermodynamical properties, regardless.

4.4.2 Curvature energy momentum tensor

The curvature EMT as given in equation (2.15) is defined as

TRab =
1

f ′

[
1

2
gab (f −Rf ′) + gca gdb∇c∇df ′ − gab�f ′

]
, (4.55)

and the derivative terms can be decomposed into time and spatial parts resulting in the

curvature EMT taking the form

TRab =
1

f ′

[
1

2
gab (f −Rf ′)− ḟ ′

(
1

3
hab θ + σab + ωab

)
+

1

3
hab D2f ′

+ D〈aDb〉f
′ +

1

2
εabc curlD

cf ′ − ua
(
hcb (Dcf ′)˙ + u̇c ub Dcf ′ − ḟ ′ u̇b

)
+ub

(
1

3
θDaf

′ + σa
c Dcf

′ + ωa
c Dcf

′ + ua f̈ ′ −Daḟ ′
)

− gab
(
u̇c Dcf ′ − θ ḟ ′′ − f̈ ′ + D2f ′

)]
. (4.56)
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In this way, the curvature thermodynamical quantities µR = TRabu
aub, pR = 1

3T
R
abh

ab, πRab =

TRcdh
c
〈ah

d
b〉 and qRa = −TRbchbauc can be written in terms of 1+3 variables as

µR =
1

f ′

[
1

2
(Rf ′ − f) + f ′′′DaRDaR+ f ′′D2R−Θ f ′′ Ṙ

]
; (4.57)

pR =
1

f ′

[
1

2
(f −Rf ′)− 2

3
f ′′D2R− 2

3
f ′′′DaRDaR+

2

3
Θ f ′′ Ṙ

+ f ′′′ Ṙ2 + f ′′ R̈− u̇c f ′′DcR
]

; (4.58)

πRab =
1

f ′

[
f ′′′D〈aRDb〉R+ f ′′D〈aDb〉R− σab f ′′ Ṙ

]
; (4.59)

qRa = − 1

f ′

[
f ′′′ ṘDaR+ f ′′DaṘ−

1

3
Θ f ′′DaR− σac f ′′DcR− ωac f ′′DcR

]
.

(4.60)

Given that the field equation (2.13) can be written in its trace reverse form as

Rab = Tab −
1

2
gab T , (4.61)

taking the the trace of equation (4.61) we find an expression for the Ricci scalar in terms

of the total thermodynamical quantities

R = − T = −(T̃M + TR) = µ− 3p . (4.62)

Using (4.62) in (2.13) and from the decomposition of the EMT (4.39), we obtain an expres-

sion for the 1+3 split of the Ricci tensor Rab as

Rab =
1

2
(µ+ 3p)ua ub +

1

2
(µ− p)hab + 2u(a qb) + πab , (4.63)

in terms of the total thermodynamical quantities.

Now for the effective matter fluid, the trace term T̃M is given as

T̃M =
1

f ′
gab TMab =

1

f ′
(
3 pM − µM

)
, (4.64)

and from taking the trace of (4.56) we have

TR = gab TRab =
1

f ′
[
2(f −Rf ′)− 3

(
f ′′D2R+ f ′′′DaRDaR

− f ′′′ Ṙ2 − f ′′ R̈+ u̇c f
′′DcR− f ′′ θ Ṙ

)]
. (4.65)
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Substituting (4.64) and (4.65) into equation (4.62) results in

Rf ′ − 2f + µM − 3 pM

= − 3
(
f ′′D2R+ f ′′′DaRDaR− f ′′′ Ṙ2 − f ′′ R̈+ u̇c f

′′DcR− f ′′ θ Ṙ
)
.

(4.66)

This allows us to write the curvature trace equation as

Rf ′ − 2f = − 3
(
f ′′D2R+ f ′′′DaRDaR− f ′′′ Ṙ2 − f ′′ R̈+ u̇c f

′′DcR− f ′′ θ Ṙ
)
. (4.67)

4.5 Weyl curvature

The locally free gravitational field is given by the Weyl curvature tensor Cabcd defined by

the equation

Cabcd = Rabcd − 2g[a
[cR

b]
d] +

1

3
Rg[a

[c g
b]
d] . (4.68)

This is the part of the spacetime curvature which is not directly determined locally by

matter. Following from the definition, the Weyl tensor has the symmetry properties (4.35)

and (4.36) of the Riemann tensor with the additional property that it is trace-free on all its

indices

Ccacb = 0 . (4.69)

Thus we may think of the Ricci tensor Rab as the trace of Rabcd, and of Cabcd as its trace-free

part. The Weyl tensor can be split relative to ua as

Eab = Cabcd u
b ud , → Eaa = 0, Eab = E(ab), Eab u

b = 0 , (4.70)

Hab =
1

2
εadeC

de
bc u

c , → Ha
a = 0, Hab = H(ab), Hab u

b = 0 , (4.71)

where we label Eab and Hab as the ‘electric’ and ‘magnetic’ Weyl curvature parts respec-

tively, in analogy to the 1+3 split of the Maxwell field strength tensor [138]. On that

account we may write Cabcd as

Cabcd = CEabcd + CHabcd, (4.72)

where

CEabcd =
(
4 ga[p gq]b gc[r gs]d − ηabpq ηcdrs

)
up urEqs ,

CHabcd = 2
(
ηabpq gc[r gs]d + ga[p gq]b ηcdrs

)
up urHqs .

The Bianchi identities (4.37) are integrability conditions relating the Ricci tensor to the

Weyl tensor, enabling the action at a distance of the gravitational field (tidal forces,
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gravitational radiation) and influencing the motion of matter and radiation through the

geodesic deviation equation for timelike and null vectors, respectively [139–141].

A fully 1+3 decomposed form of the Riemann curvature tensor Rabcd can now be

obtained by inserting the equations (4.72), (4.63) and (4.62) into equation (4.68) giving

Rabcd = RabP cd +RabI cd +RabE cd +RabB cd ; (4.73)

RabP cd =
2

3
(µ+ 3p)u[a u[c h

b]
d] +

2

3
µh[a

[c h
b]
d] ,

RabI cd = − 2u[a hb][c qd] − 2u[c h
[a
d] q

b] − 2u[a u[c π
b]
d] + 2h[a

[c π
b]
d] ,

RabE cd = 4u[a u[cE
b]
d] + 4h[a

[cE
b]
d] ,

RabH cd = 2 εabe u[cHd]e + 2 εcde u
[aHb]e .

where P represents the perfect fluid part, I the imperfect fluid part and E and H are the

parts due to the electric and magnetic Weyl tensor, respectively.

4.6 The field equations

We now look at the dynamical relations for an arbitrary spacetime in the 1+3 formulation

of FOG. This spacetime may be completely characterised by the following set of geometrical

quantities

{R, Θ, u̇a, σab, ωab, Eab, Hab} , (4.74)

together with the set of thermodynamic matter variables as described in Section 4.4,

{µM , pM , qMa , πMab } , (4.75)

provided an equation of state which relates the thermodynamic variables is prescribed. The

propagation, evolution and constraint equations for the above covariant variables can be

obtained from the field equations (2.13) and its associated integrability conditions.

4.6.1 The Ricci identities

The first set of propagation equations arises from the Ricci identities (4.33) for the funda-

mental timelike vector field ua, that is,

2∇[a∇b]uc = Rab
c
d u

d, (4.76)

on substituting in from (4.32) and (4.73). The propagation equations are obtained by

contracting (4.76) with ua, separating out the orthogonally projected part into trace, skew

symmetric and symmetric trace-free parts, respectively:
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1. The expansion propagation equation (generalized Raychaudhuri equation [142])

Θ̇−Dau̇
a = − 1

3
Θ2 + u̇a u̇

a − σab σab + 2ωa ω
a − 1

2
(µ+ 3p) , (4.77)

demonstrates the attractive nature of the matter present [1, 46,130].

2. The vorticity propagation equation

ω̇〈a〉 − 1

2
εabcDbu̇c = − 2

3
Θωa + σab ω

b . (4.78)

3. The shear propagation equation

σ̇〈ab〉 −D〈au̇b〉 = − 2

3
Θσab + u̇〈a u̇b〉 − σ〈ac σb〉c − ω〈a ωb〉 − (Eab − 1

2
πab) , (4.79)

shows how the gravitational field Eab (the tidal force) directly induces shear, which

then determines the vorticity propagation and also by (4.77), induces deceleration.

Three sets of constraint equations can be obtained by first projecting (4.76) orthogonally

and then:

4. the divergence equation for rate of shear is obtained by contracting over indices b and

c:

0 = (C1)a = Db σ
ab − 2

3
DaΘ + εabc [ Db ωc + 2u̇b ωc ] + qa ; (4.80)

5. the divergence equation for vorticity is obtained by multiplying with εabc:

0 = (C2) = Daω
a − u̇a ωa ; (4.81)

6. The H constraint is obtained by multiplying with εabc and taking the PSTF part:

0 = (C3)ab = Hab + 2 u̇〈a ωb〉 + D〈aωb〉 − εcd〈aDcσ
b〉
d ; (4.82)

characterising the magnetic Weyl tensor as being constructed from the vorticity ‘dis-

tortion’ and the ‘curl’ of the shear.

4.6.2 The second Bianchi identities

I. From the equations (4.38), (4.39) and (4.32), we can rewrite (4.53) as

µ̇+ Daq
a = −Θ (µ+ p)− 2 u̇a q

a − σab πab , (4.83)

for the component parallel to ua and

q̇〈a〉 + Dap+ Dbπ
ab = − 4

3
Θ qa − σab qb − (µ+ p) u̇a − u̇b πab − εabc ωb qc , (4.84)
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for the component orthogonal to ua.

In the standard matter case, the evolution equation for µ̇M represents the

matter energy conservation equation and determines the rate of change of relativistic

energy along the fundamental world lines. The q̇M equation gives the momentum

conservation equation determining the acceleration caused by various pressure

contributions. When we consider a perfect fluid case, the conservation equations for

standard matter reduce to

µ̇M = −Θ
(
µM + pM

)
, (4.85)

Dap
M = −

(
µM + pM

)
u̇a, (4.86)

showing for (4.85), that
(
µM + pM

)
is the initial mass density and also governs the

conservation of energy. The relation (4.86) connects the acceleration u̇a to µM and

pM .

II. Another set of equations arises from contracting the Bianchi identities (4.37) once,

giving an additional pair of propagation equations and a further pair of constraint

equations when covariantly decomposed. The propagation equations are

1. the Gravito-electric (Ė) propagation equation:

Ė〈ab〉 +
1

2
π̇〈ab〉 − εcd〈aDcH

b〉
d +

1

2
D〈aqb〉

= − 1

2
(µ+ p) σab −Θ

(
Eab +

1

6
πab
)

+ 3σ〈ac

(
Eb〉c − 1

6
πb〉c

)
− u̇〈a qb〉 + εcd〈a

[
2 u̇cH

b〉
d + ωc

(
Eb〉d +

1

2
πb〉d

)]
, (4.87)

2. and the Gravito-magnetic (Ḣ) propagation equation:

Ḣ〈ab〉 + εcd〈aDc

(
Eb〉d −

1

2
πb〉d

)
= −ΘHab + 3σ〈acH

b〉c +
3

2
ω〈a qb〉

− εcd〈a
[
2 u̇cE

b〉
d −

1

2
σb〉c qd − ωcHb〉

d

]
,

(4.88)

respectively. These equations show how gravitational radiation arises by taking the

time derivative of the equations, which gives a wave equation for Eab as well as Hab.

The constraint equations derived from the once-contracted Bianchi identities (4.36)

are the
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3. Gravito-electric (divE) divergence equation:

0 = (C4)a = Db

(
Eab +

1

2
πab
)
− 1

3
Daµ+

1

3
Θ qa − 1

2
σab q

b

−3ωbH
ab − εabc

[
σbdH

d
c −

3

2
ωb qc

]
,

(4.89)

4. and the Gravito-magnetic (divH) divergence:

0 = (C5)a = DbH
ab + (µ+ p) ωa + 3ωb

(
Eab − 1

6
πab
)

+ εabc
[

1

2
Dbqc + σbd (Edc +

1

2
πdc)

]
.

(4.90)

We note here that the equations (4.80), (4.89) and (4.90) are not constraints in the real sense

of the word as we have spatial and time derivatives of the curvature in the thermodynamic

terms. These equations become constraints when f(R) = R, which is just the GR case.

4.6.3 Evolving the constraints

Propagating the constraints (4.80)–(4.82), (4.89) and (4.90) along ua [132,143] leads to the

following system of equations 2:

(Ċ1)〈a〉 = −Θ (C1)a − 3

2
σab (C1)b +

1

2
εabc ωb (C1)c −

8

3
ωa (C2)

− εabcσbd (C3)c
d − 3ωb (C3)ab − (C4)a ; (4.91)

(Ċ2) = −Θ (C2) ; (4.92)

(Ċ3)〈ab〉 = −Θ (C3)ab + 3σ〈ac (C3)b〉c + εcd〈a ωc (C3)b〉d

+
1

2
εcd〈a σb〉c (C1)d +

3

2
ω〈a (C1)b〉 ; (4.93)

(Ċ4)〈a〉 − 1

2
εabc Db(C5)c = − 4

3
Θ (C4)a +

1

2
σab (C4)b − 1

2
εabc ωb (C4)c

− 1

2
(µ+ p) (C1)a − 1

2
πab (C1)b

+ 2εabcEbd (C3)c
d +

3

2
εabc u̇b (C5)c ; (4.94)

(Ċ5)〈a〉 +
1

2
εabc Db(C4)c = − 4

3
Θ (C5)a +

1

2
σab (C5)b − 1

2
εabc ωb (C5)c

− 1

2
qb (C1)c −

2

3
qa (C2) + 2εabcHbd (C3)c

d

− 3

2
εabc u̇b (C4)c . (4.95)

2Derivation of these equations requires application of the commutation relations given hereafter.
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If the constraints are satisfied at an initial instant (on the local 3-space) surface, it follows

from (4.91) - (4.95) that the constraints vanish identically when propagated along ua and

therefore are satisfied for all time. This verifies that the constraint equations are preserved

under evolution.

4.6.4 Irrotational flow

According to the Frobenius theorem, a vector field ξa is hypersurface orthogonal if and only

if it satisfies

ξ[a∇b ξc] = 0 . (4.96)

If ua is hypersurface orthogonal, we have

ωab = 0 ⇐⇒ 0 = u[a∇buc] = u[a Dbuc] = u[a ωbc] (4.97)

therefore the timelike congruence ua irrotational. By Frobenius theorem, it follows that

the distribution of the rest spaces (3-vector spaces) is integrable. These instantaneous rest

spaces, defined at each point by hab, ‘fit together’ to constitute 3-surfaces in spacetime

orthogonal to ua. The curvature tensor of the 3-spaces (3)Rabcd, is defined by the three-

dimensional version of the Ricci identity

2D[aDb]Vc = (3)Rabc
d Vd , (4.98)

for any 3-vector field Va on the three dimensional manifold Σ. The intrinsic 3-curvature

tensor is related to the Riemann curvature tensor Rabcd by the Gauss equation [77]:

(3)Rabcd = (Rabcd)⊥ −KacKbd +KbcKad , (4.99)

where ⊥ means projection with hab on all indices and Kab is the extrinsic curvature (second

fundamental form),

Kab = Daub =
1

3
Θhab + σab . (4.100)

The 1+3 decomposition (4.73) of the Riemann tensor yields(
Rabcd

)
⊥

=
2

3
µh

[a
[c h

b]
d] + 2h

[a
[c π

b]
d] + 4h

[a
[cE

b]
d] . (4.101)

Using this in (4.99) and contracting reveals an expression for the 3-Ricci tensor,

(3)Rab =

(
2

3
µ− 2

9
Θ2

)
hab −

1

3
Θσab + Eab +

1

2
πab + σac σ

c
b . (4.102)
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The 3-Ricci tensor (4.102) can be divided into a trace-free and trace part as

(3)Rab = (3)Sab +
1

3
(3)Rhab , (4.103)

where (3)Sab denotes the trace-free part (which is essentially equivalent to Eab) and R is the

3-Ricci scalar obtained by contracting (4.102),

(3)R = 2µ− 2

3
Θ2 + 2σ2 , (4.104)

which is the generalised Friedmann equation. The trace-free and the trace parts of (3)Rab

in defined in (4.103) are related to each other by the Bianchi identities for the 3-surfaces

Db
(3)Sba =

1

2
Da

(3)R , (4.105)

which is equivalent to the (4.89) because of (4.102).

Moreover, we mention that the relation between the extrinsic curvature and the

3-Ricci tensor is given by the Codacci-Mainardi equation,

DaK
a
b −DbK

a
a = Rcd u

d hcb . (4.106)

which is equivalent to the constraint (4.80) when the vorticity vanishes.

4.7 Commutation relations

In general the two derivatives - ‘ ˙ ’ and -‘D’ do not commute and therefore give rise to

various commutator relations which play an integral part in all partial frame formalisms.

This is a manifestation of spacetime curvature which is derived from the Ricci identities for

spacetime scalars Z, 3-vectors V a and rank-2 tensors Sab, respectively [144]:

∇[a∇b]f = 0, (4.107)

2∇[a∇b]Vc = Rabcd V
d (4.108)

2∇[a∇b]Zcd = −Rabec Sed −Rabed Sec. (4.109)

The 3-space commutator relations orthogonal to the congruence ua, follow by successively

writing out the 3-commutators explicitly and then using the Ricci identities (4.107)–(4.109),

the splitting (4.32) of ∇aub and the generalised Gauss equation (4.99).
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4.7.1 3-scalar derivatives

For scalar functions Z one obtains:

D[aDb]Z = εabcω
c Ż ⇐⇒ εabcDbDcZ = 2ωa Ż , (4.110)

DaŻ − (DaZ) ˙
⊥ = − u̇a Ż +

(
1

3
Θhab + σab + εabcω

c

)
DbZ . (4.111)

4.7.2 3-vector derivatives

For the 3-vectors V a:

D[aDb]Vc =

[(
Ec[a +

1

2
πc[a

)
− 1

3
Θσc[a +

1

3
Θωd εdc[a + ωc ω[a

+
1

3

(
µ− 1

3
θ2 − 3ωd ω

d

)
hc[a

]
Vb] +

[
hc[a

(
Eb]d +

1

2
πb]d

)
− 1

3
Θhc[a σb]d − σc[a σb]d −

1

3
Θhc[a εb]deω

e − σc[a εb]deωe

+σd[a εb]ceω
e + hc[a ωb] ωd

]
V d + εabdω

d V̇〈c〉 , (4.112)

DaV̇b − (DaVb)
˙
⊥ = −u̇a V̇〈b〉 +

(
1

3
Θhac + σac + εacdω

d

)
(DcVb + V c u̇b)

−H d
a εdbcV

c − 1

2
hab qc V

c +
1

2
Va qb . (4.113)

4.7.3 3-tensor derivatives

For the second-rank 3-tensors Sab, the following holds:

D[aDb]S
cd = 2

[(
Ec[a +

1

2
πc[a

)
− 1

3
Θσ(c

[a +
1

3
Θωe εe[a

c + ω(c ω[a

+
1

3

(
µ− 1

3
θ2 − 3ωe ω

e

)
hc[a

]
Sd)

b] + 2

[
h(c

[a

(
Eb]e +

1

2
πb]e

)
− 1

3
Θh(c

[a σb]e − σ(c
[a σb]e −

1

3
Θh(c

[a εb]efω
f − σ(c

[a εb]efω
f

−ωfεf [a
(c σb]e + hc[a ωb] ωe

]
Sd)e + εabeω

e Ṡ〈cd〉 , (4.114)

DaṠbc − (DaSbc)
˙
⊥ =

(
1

3
Θhad + σad + ωad

)(
u̇b S

d
c + u̇c S

d
b + DdSbc

)
− u̇a

(
Ṡbc

)
⊥

+
[
ha[e qb] − εebdHd

a

]
Sec +

[
ha[e qc] − εecdHd

a

]
Seb .

(4.115)
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Chapter 5

Shear-free perturbations of FLRW

Universes

We showed in Chapter 4 how the differential properties of timelike geodesics are described

by the kinematic quantities, expansion Θ, shear (or distortion) σab, rotation ωc, and accel-

eration u̇a. Of particular interest is the role that shear plays in the relationship between

Newtonian and relativistic cosmologies. For example, it has been known for some time that

quasi-Newtonian descriptions of cosmology, the so-called Silent models, may be constructed

for observers moving along geodesics which are both shear-free and irrotational [145]. The

intricate relationship between the kinematic quantities in Newtonian and relativistic fluid

flows in GR is most strikingly seen in a remarkable result obtained by Ellis in 1967 [60]. In

this paper it was found that,

If the four velocity vector field of a barotropic perfect fluid with vanishing pres-

sure is shear-free, then either the expansion or the rotation of the fluid vanishes.

This is a purely local result to which no corresponding Newtonian equivalent appears

to hold, as counter-examples can be explicitly constructed. Given that this shear-free

theorem and its extensions appear to hold for arbitrarily weak fields and for fluids of

arbitrarily low density, one needs to understand why the Newtonian approximation fails.

It is expected that since Newtonian gravity is a limiting form of GR, the properties of

Newtonian gravity should follow from those of GR. Considerable work has been put into

the nature of shear-free congruences [61, 62]. It is of considerable interest to ask whether

the result holds in situations where the hydrodynamic and gravitational equations have

been linearised about a Friedmann-Lemâıtre-Robertson-Walker (FLRW) background [63]

and also whether it extends to the more general setting of FOG [64].

In this chapter, we illustrate the features of the 1+3 covariant approach by applying

it to shear-free perturbations of FLRW universes for both GR [63] and FOG cases [64].

61
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5.1 Gauge invariance

Lifshitz, in 1946 [146] pioneered the work on classical relativistic theory of cosmological per-

turbations, a study that has since been plagued by gauge issues. In the standard approach

to investigating perturbations, any tensorial quantity Q can be split into a background part

Q0 and a small perturbation δQ.

Q = Q0 + δQ (5.1)

To define the perturbations a gauge choice has to be made. This is the choice of specifica-

tion of the mapping Φ between the observable (true) universe defined by the manifold M
and a fiducial (background) manifold M̄. The existence of arbitrary numbers of mappings

corresponds to the gauge freedom of theory and herein lies the problem of choosing the

best way to carry out the mapping or correspondence, also known as the “fitting problem”

in cosmology [52]. In terms of coordinate choice, for a given coordinate system in M,

there is a large choice of possible coordinate systems in M̄. The perturbed quantities are

not invariant under a gauge transformation and are required to obey the transformation,

whereas the background quantities remain unchanged. If a quantity is invariant under the

choice of mapping, then it is gauge invariant .

An alternative definition of gauge invariance is described by the Stewart-Walker

lemma [90]: the perturbation δQ to the geometrical background quantity Q0 on M̄ is

gauge invariant if and only if Q0 either

i. vanishes,

ii. is a constant scalar,

iii. is a constant linear combination of products of Kronecker deltas with constant coeffi-

cients.

The definition of gauge invariance we use here is from the first two options. In this case

the mapped quantity will be constant regardless of choice of mapping Φ, which defines the

same perturbation δQ.

Following previous work by Gelarch and Sengupta in 1978 [147], Bardeen in 1980 [121],

developed a fully gauge invariant theory of cosmological linear perturbations. However,

since most of the gauge invariant variables in this seminal paper are defined with respect

to a particular coordinate system, they tend to have an obscure physical and geometrical

meaning unless a particular hypersurface condition is specified [148,149].

In what follows, by ‘gauge invariant’ we mean the invariance of the equations under

the mapping between the true and background spacetimes.
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5.2 Linearised field equations about FLRW background

To perturb the FLRW spacetime, we use the standard 1+3 covariant perturbation theory

in [47–49,52,55,98,150], where the Hubble scale sets the characteristic scale for the pertur-

bations. Furthermore, we consider the case of shear-free perturbations and hence the shear

tensor (σab) vanishes identically. The remaining quantities that vanish in the background

spacetime

{ωab, u̇a, Eab, Hab, q
M
a , π

M
ab } ,

along with their derivatives and the spatial derivatives of {Θ, pM , µM , R} are considered

to be first order and are automatically gauge-invariant by virtue of the Stewart and Walker

lemma. In the linearisation procedure, we neglect all products of first order quantities in

(4.76) – (4.90) and since we consider shear-free perturbations, the shear tensor vanishes

identically. The standard matter is considered to be a perfect fluid in the perturbed

spacetime and as a result qMa and πMab are zero.

The effective thermodynamical quantities for the curvature fluid are now

µR =
1

f ′

[
1

2
(Rf ′ − f) + f ′′D2R−Θ f ′′ Ṙ

]
; (5.2)

pR =
1

f ′

[
1

2
(f −Rf ′) + f ′′ R̈+ f ′′′ Ṙ2 +

2

3
f ′′
(

Θ Ṙ−D2R
)]

, (5.3)

πRab =
f ′′

f ′
D〈aDb〉R , (5.4)

qRa = − 1

f ′

(
f ′′′ ṘDaR+ f ′′DaṘ−

1

3
Θ f ′′DaR

)
, (5.5)

With these conditions, the linearised field equations are then as follows:

Propagation equations

Θ̇− div u̇ = −1

3
Θ2 − 1

2
(µ+ 3p) , (5.6)

ω̇〈a〉 − curl u̇a = − 2

3
Θωa , (5.7)

Ḣ〈ab〉 + curlEab −
1

2
curlπRab = −ΘHab , (5.8)

Ė〈ab〉 +
1

2
π̇Rab − curlHab +

1

2
D〈a q

R
b〉 = −ΘEab −

1

6
ΘπRab , (5.9)
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µ̇M = −Θ (µM + pM ) , (5.10)

µ̇+ div qR = −Θ (µ+ p) , (5.11)

q̇R〈a〉 + Dap+ DbπRab = − 4

3
Θ qRa − (µ+ p) u̇a , (5.12)

Constraint equations

0 = (C0)ab = Eab −D〈au̇b〉 −
1

2
πRab , (5.13)

0 = (C1)a = DaΘ−
3

2
εabc Db ωc + qRa , (5.14)

0 = (C2) = divω , (5.15)

0 = (C3)ab = Hab + D〈a ωb〉 , (5.16)

0 = (C4)a = Da p
M + (µM + pM ) u̇a , (5.17)

0 = (C5)a = Db

(
Eab +

1

2
πRab

)
− 1

3
Da µ+

1

3
Θ qRa , (5.18)

0 = (C6)a = DbHab + (µ+ p)ωa +
1

2
curl qRa . (5.19)

The linearised commutation relations for shear-free congruences are now:

For any scalar ‘V ’

[DaDb −DbDa]V = 2εabcω
c V̇ ,

εabcDbDcV = 2ωa V̇ . (5.20)

If the gradient of the scalar is of the first order, we then have

[
DaDbDa −DbD

2
]
V =

2

3

(
µ− 1

3
Θ2

)
DbV , (5.21)

[
D2Db −DbD

2
]
V =

2

3

(
µ− 1

3
Θ2

)
DbV + 2εdbcD

d(ωcV̇ ) , (5.22)
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Also for any first order 3-vector V a, we have

(DaDb −DbD
a)Va =

2

3

(
µ− 1

3
Θ2

)
ha[aVb] , (5.23)

hac h
d
b (DdV

c)̇ = Db
˙V 〈a〉 − 1

3
Θ DbV

a , (5.24)

hac (D2V c)̇ = Db(D
〈bV a〉)̇− 1

3
Θ D2V a . (5.25)

The spatial curvature (4.104) is now

(3)R = 2
[
µ− (1/3) Θ2

]
. (5.26)

up to linear order. Using the field equations and identities of this section we will now

investigate the compatibility of the new constraints with the existing ones in terms of the

consistency up to the linear order of their spatial and temporal propagation for both GR [63]

and FOG cases [64].

5.3 Consistency of the new constraints: The GR case

We now take f ′ = 1 and f ′′ = 0 in (5.2)–(5.19) in order to recover the field equations in GR.

We note that the constraints (C1)a, (C2), (C3)ab, (C5)a and (C6)a are the constraints of the

Einstein field equations for general matter motion specialised to the shear-free case and are

known to be consistently time propagated along ua locally. However the conditions σab = 0

and qMa = 0 give the two new constraints (C0)ab and (C4)a respectively. Furthermore, we

assume the matter to have a barotropic equation of state pM = pM (µM ) satisfying the

weak and dominant energy conditions. We exclude the vacuum case and therefore the

energy conditions (4.48) and (4.50) will be

µM > 0 ; µM + pM > 0 ; µM ≥ |pM | (5.27)

for both the background spacetime and the perturbed solution (the Minkowski and De

Sitter backgrounds will not occur) and the speed of sound is (4.49).

The conditions of shear-free perturbations and the matter being a perfect fluid in

the perturbed spacetime give rise to two new constraints (C0)ab and (C4)a respectively. To

check their compatibility with the linearised existing constraints of Einstein field equations

(henceforth all the equations are up to the linear order), we plug (C0)bd in (C5)b to get

Dd D〈bu̇d〉 −
1

3
Db µ

M = 0 . (5.28)
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Now from the constraint (C4)b we have

u̇b = − c2
s

µM + pM
Db µ

M (5.29)

Using equation (5.29) in (5.28) we get the constraint

(C7)b :=
c2
s

µM + pM
Dd D〈bDd〉µ

M +
1

3
Db µ

M = 0 . (5.30)

For the new constraints (C0)ab and (C4)a to be compatible with the existing ones, the

constraint (C7)b must be satisfied.

To check the spatial consistency of (C7)b on any initial hypersurface we take the

curl of (5.30) to get

c2
s

µM + pM
εacbDc DdD〈bDd〉µ

M +
1

3
εacbDcDb µ

M = 0 , (5.31)

which using (5.20) gives

c2
s

µM + pM
εacbDc DdD〈bDd〉µ

M +
2

3
ωa µ̇M = 0 . (5.32)

Breaking the PSTF part according to equation (4.12) and using the commutators (5.21),

(5.22) we have

c2
s

µM + pM
εacb

[
2

3
Dc DbD

2µM +
2

3

(
µM − 1

3
Θ2

)
DcDb µ

M

+ ˙µM εdbkDcD
dωk
]

+
2

3
ωa µ̇M = 0 . (5.33)

Again using (5.20) and (4.7) in the above equation we get

c2
s

µM + pM

[
4

3

(
µM − 1

3
Θ2

)
ωa ˙µM − ˙µMDkD

aωk + µ̇M D2ωa
]

+
2

3
ωa µ̇M = 0 . (5.34)

Now from the relation (5.22) and using (5.15) we know

DkD
aωk =

2

3

(
µM − 1

3
Θ2

)
ωa , (5.35)

Plugging (5.35) and (5.10) in (5.34) and simplifying we finally get

(C8)a := Θ

[
2

3
ωa Y + c2

s D2ωa
]

= 0 , (5.36)



Univ
ers

ity
 of

 C
ap

e T
ow

n

5.3. Consistency of the new constraints: The GR case 67

where

Y = µM + pM + c2
s

(
µM − 1

3
Θ2

)
. (5.37)

From (C8)a we can immediately see that for matter with constant pressure (pM =

constant → c2
s = 0), shear-free perturbations are consistent if and only if Θωa = 0 (as

according to the second condition of (5.27), µM + pM > 0). That is, if the geodesics of

the matter congruence in the perturbed spacetime are shear-free then they should be either

expansion-free or vorticity-free (or both). This shows that the results of [60] and [61] for

pressure-free matter are true for the linearised theory. However for a general equation of

state, all we can say from the equation (5.36) is, either the matter congruence is expansion

free (Θ = 0), or the vorticity vector must satisfy

(C9)a :=
2

3
ωa Y + c2

s D2ωa = 0 , (5.38)

for the new constraints to be spatially consistent on any initial hypersurface.

Now let us check the temporal consistency of the constraint (5.38). Propagating it

along ua we get (
c2
s D2ωa

)
˙+

2

3
(ωa Y )˙ = 0 . (5.39)

We can easily see that

ċ2
s = −Θ

(
µM + pM

) d2pM

d(µM )2
. (5.40)

Now from (5.25) we have

c2
s

(
D2ωa

)
˙ = c2

s

[
Db(D

〈bωa〉)̇− 1

3
Θ D2ωa

]
. (5.41)

We know from the constraint (5.15) that

Db (D〈bωa〉)̇ =
1

2
Db

[
(Dbωa)̇ + (Daωb)̇

]
. (5.42)

Using (5.24) the equation (5.42) becomes

Db (D〈bωa〉)̇ =
1

2
Db

[
Db ˙ω〈a〉 − 1

3
Θ Dbωa + Da ˙ω〈b〉 − 1

3
Θ Daωb

]
. (5.43)

Simplifying the above equation using (5.7), (5.17) and (5.20), we get

Db (D〈bωa〉)̇ = −1

2
Θ
(
1− c2

s

) (
D2ωa + DbD

aωb
)
. (5.44)
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Putting equation (5.44) in (5.41), we have

c2
s (D2ωa)̇ = −Θα c2

s D2ωa −ΘβDbD
aωb , (5.45)

where

α = −c
2
s

2
+

5

6
; β =

c2
s

2

(
1− c2

s

)
. (5.46)

Using (5.38) and (5.35), (5.45) becomes

c2
s

(
D2ωa

)
˙ =

2

3
ωa Θ

[
αY − β

(
µM − 1

3
Θ2

)]
. (5.47)

Combining (5.40) and (5.47) and using (5.38) we get

(
c2
s D2ωa

)
˙ =

2

3
ωa Θ

[
Y

c2
s

(
µM + pM

) d2pM

d(µM )2
+ αY − β

(
µM − 1

3
Θ2

)]
. (5.48)

Also from (5.6), (5.10) and (5.40) we have

Ẏ = −Θ

[(
µM + pM

)(
µM − 1

3
Θ2

)
d2pM

d(µM )2
+ Z

]
, (5.49)

where

Z =
(
µM + pM

) (
1 + c2

s

)
+

2

3
c2
s

(
µM − 1

3
Θ2

)
. (5.50)

Now using (5.7), (5.17), (5.20) and (5.49) we get

2

3
(ωa Y )̇ = −2

3
ωa Θ

[(
−c2

s +
2

3

)
Y + (µM + pM )

(
µM − 1

3
Θ2

)
d2pM

d(µM )2
+ Z

]
(5.51)

Finally using (5.48) and (5.51) in (5.39) and simplifying, we get

2

3
ωa Θ

(
µM + pM

) [(
µM + pM

) d2pM

d(µM )2

− c2
s

(
5

6
+
c2
s

2

)
−

(3)R

2 (µM + pM )
c4
s

(
1− c2

s

)]
= 0 . (5.52)

where (3)R = 2
[
µM − (1/3) Θ2

]
. In FLRW spacetimes it can be written in terms of the

scale factor ‘a(t)’ as,

(3)R =
k

a(t)2
= k exp

{
2

3

∫
dµM

µM + pM

}
, (5.53)

where k = −1, 0,+1 denotes open, flat and closed universes respectively. Thus we can

easily see that for the new constraints to be spatially and temporally consistent we must

have either ωa Θ = 0 or the barotropic equation of state must satisfy the following non-linear
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higher order differential equation:

(
µM + pM

) d2pM

d(µM )2
− dpM

dµM

(
5

6
+

1

2

dpM

dµM

)

− k
exp

{
2
3

∫ dµM

µM+pM

}
2 (µM + pM )

(
dpM

dµM

)2(
1− dpM

dµM

)
= 0 . (5.54)

We see that the shear-free results of [60] and [61] are avoided, at least at the linearised level,

if the equation of state of the matter solves (5.54). However, a priori it seems highly unlikely

that any realistic barotropic equation of state will obey this extremely non-linear equation.

We now try to find solutions of this equation, under various simplified assumptions or

realistic initial conditions, to confirm it is nonphysical.

1. Flat universe (k = 0) with c2
s = constant 6= 0: This is the simplest case in which the

equation (5.54) reduces to a simple algebraic equation(
5

6
+

1

2
c2
s

)
= 0 , (5.55)

which gives c2
s = −5/3. This is physically not possible as the lower bound on the local

sound speed (4.49) is violated, implying that the matter will be locally unstable. This

will then make the perturbations grow and the linearised equations will no longer be

valid.

2. Closed/open universe with c2
s = constant 6= 0: In this case also, the equation (5.54)

reduces to an algebraic equation, and we get the relation

(3)R = − 2

(
5
6 + 1

2c
2
s

)
c2
s (1− c2

s)

(
µM + pM

)
(5.56)

Differentiating (5.56) with respect to µM and using (5.53) we get

2

3

(3)R

(µM + pM )
= − 2

(
5
6 + 1

2c
2
s

)
c2
s (1− c2

s)

(
1 + c2

s

)
. (5.57)

Eliminating (3)R/
(
µM + pM

)
from (5.56) and (5.57) we get the solution c2

s = −1/3,

which again violates the lower bound of the local sound speed, making the matter

locally unstable and the perturbations will grow beyond the scope of linearised regime.

3. Flat universe with varying sound speed: In this case the equation (5.54) becomes

(
µM + pM

) d2pM

d(µM )2
− dpM

dµM

(
5

6
+

1

2

dpM

dµM

)
= 0 . (5.58)

To solve (5.58), if we choose the initial epoch (µM = µM0 ) to be a radiation dominated
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one (which is quite realistic in view of our current understanding of the universe) with

c2
s ≈ 1/3, then from (5.58) we can easily see that c2

s monotonically increases with

µM . And in the interval (µM0 ≤ µM < ∞) the function pM (µM ) is concave upwards.

Therefore there must exist an earlier epoch at which p(µM ) > µM , which violates

(5.27). Furthermore if we consider p(µ) to be a C∞ function, we can easily see from

(5.58) that at the matter dominated epoch (where p(µ) = 0 and c2
s = 0), all the higher

derivatives of p(µ) with respect to µ vanish, implying that the sound speed would be

constant (c2
s = 0) for all µ ∈ [0,∞). Hence any solution of (5.58) with varying sound

speed can never pass through the matter dominated c2
s = 0 phase.

4. Closed/open universe with varying sound speed: This being the most general case, we

try to find a solution with similar initial conditions as the previous case. Since we know

that very early universe was radiation dominated, let us suppose that there exists an

epoch (a0 << 1) with density µM0 and pressure pM0 where (µM0 , pM0 ) ≈ 1/a4
0. As we

have already seen, (3)R ≈ 1/a2
0, hence the last term on the LHS of (5.54) becomes

suppressed and in this case one can also easily show that c2
s monotonically increases

with µM . Therefore there must exist an earlier epoch a1 < a0 with µM1 > µM0 , where

pM (µM ) > µM and (5.27) is violated. In other words, no solution satisfying (5.27)

exists for (5.54) that gives a radiation dominated era in the early universe. In this

case, we can easily show (as in the previous case) that there exists no solution of (5.54)

with varying sound speed that can pass through matter dominated c2
s = 0 phase. This

makes the equation of state (with varying sound speed) which solves (5.54) unphysical,

as we know from our present understanding of the universe that it must pass through

a matter dominated epoch.

Hence for any physically realistic barotropic equation of state, if the new constraints are to

be consistently propagated, we must have ωa Θ = 0. We thus proved an important theorem

for shear-free perturbations of FLRW spacetimes:

For an “almost” homogeneous and isotropic Universe filled with a barotropic

perfect fluid subject to a physically realistic equation of state, if the fluid con-

gruence is shear-free in a domain U, then it must be either vorticity-free or

expansion-free in U.

5.4 Consistency of the new constraints: The f(R) case

For f(R) gravity [64], in addition to considering the linearised field equations (5.2)–(5.19),

the standard matter in this case will be assumed to have a barotropic linear equation of state

pM = wµM . As with the GR case, to check the compatibility of the new constraints (C0)ab

and (C4)a with the existing constraints of the field equations, we begin by substituting
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(C0)bd into (C5)b and use

u̇b = − w

w + 1
Dbψ , (5.59)

where ψ = ln(µM ) in the resulting equation to obtain the constraint

w

w + 1
Dd D〈bDd〉ψ +

1

3
Db µ−DdπRbd −

1

3
Θ qRb = 0 . (5.60)

To check for the spatial consistency of the new constraints (5.60), we follow the steps (5.28)-

(5.36) which in f(R) results in

2

3
Θ

{
ωa
[(

w

2
+
f ′′

3f ′
Q

)
(3)R+

(1 + w)µM

f ′

]
+

(
f ′′

f ′
Q+

3w

2

)
D2ωa

}
= 0 , (5.61)

where

Q =
1

3
Θ2 (j − q − 2) + (3)R , (5.62)

and the expansion Θ, acceleration q, jerk j and snap s parameters are defined by the

following relations

Θ = 3
ȧ

a
, q = − äa

ȧ2
,

j =

...
aa2

ȧ3
, s =

a3

ȧ4

d4a

dt4
, (5.63)

in terms of the scale factor a(t) of an FLRW spacetime, such that the Ricci scalar R can

be written as

R =
2

3
Θ2 (1− q) + (3)R , → Ṙ =

2

3
ΘQ , (5.64)

which is useful to obtain the form of (5.61).

To check for temporal consistency of the new constraint (5.60), it is propagated

along ua which after a little manipulation ( [64] gives a detailed derivation) results in

Θωa
{[

(3)R
(1− w)P

3
+

(1 + w)

f ′
(3w + 5)f ′ + 4f ′′Q

6f ′
µm

]
+
Z

P

[(
1 + w

f ′

)
µm

]}
= 0 .

(5.65)

where

P ≡ f ′′

f ′
Q+

3w

2
,

Z =
2

3

[
f ′′′

f ′
−
(
f ′′

f ′

)2
]
Q2 +

f ′′

9f ′

[
(4 + 5q + j + j q + s) Θ2 + 6 (3)R

]
. (5.66)

We can see from (5.61) and (5.65) that for the new constraints to be spatially and temporally

consistent, either ωa Θ = 0 or the expression in the curly brackets must vanish. Interestingly
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enough, in (5.65) if the 3-curvature vanishes, the result of Section 5.3 can always be avoided

for vacuum universes (µM = 0). This implies, that

A shear-free, spatially flat vacuum universe in any f(R) theory can rotate and

expand simultaneously in the linearised regime.

The non-vacuum case, if a flat Milne universe is considered, for example, where the matter

energy density is given by µM = µ0
a3(1+w) , we have

Θ̇ = −1

3
Θ2 , R = 2

3 Θ2,

a(R) =
1√
R
, Ṙ = −

√
2
3 R

3
2 . (5.67)

Substituting these quantities into the Friedmann equation (5.26) yields

−R2 d
2f(R)

dR2
+
f(R)

2
− µ0

a(R)3(1+w)
= 0 , (5.68)

which has the following general solution:

f(R) = C1R
1+
√
3

2 + C2R
1−
√
3

2 − 4µ0

1 + 12w + 9w2
R

3(1+w)
2 . (5.69)

Considering the particular solution (the last term of (5.69)), which is an Rn theory of

gravity, the corresponding flat Milne universe in Rn gravity in (5.65) reduces the term in

the curly brackets to
(1 + w)µM

6f ′
[3w + 9− 4n] = 0. (5.70)

Comparing solutions (5.70) with the particular solution of (5.69) and taking n = 3(1+w)/2,

we get the result that w = 1 if µM 6= 0. In other words:

For a stiff fluid in R3 gravity, there exists a flat Milne-universe solution which

can rotate and expand simultaneously at the level of linearised perturbation the-

ory.

5.5 Discussion

These results give an interesting scenario. In GR the linearised shear-free solutions do

not have the same behaviour as shear-free Newtonian solutions. This may affect simple

structure formation scenarios for rotating matter. We would like to emphasise again that

this local result of linearised Einstein field equations about an FLRW universe is only valid

for isentropic perfect fluids in GR. For non-isentropic fluids, fluids with anisotropic stress

(for example, collision free neutrinos in an anisotropic space-time) or for gravity theories
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where we have an extra degree of freedom, this result can be avoided as demonstrated in

the f(R) case and a shear-free fluid congruence may rotate and expand simultaneously.
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Chapter 6

The 1+1+2 covariant approach in

f (R) gravity

The 1+3 covariant approach has been successful in its application to cosmology. Most

cosmological models are based on the cosmological principle which is the hypothesis that

the universe, at least on large scales, is isotropic and homogenous. This means that

the only essential coordinate is time. However, if the spacetime considered admits less

symmetry, for example if it is an inhomogenous spherically symmetric system, the resulting

1+3 equations are messy tensorial partial differential equations that become intractable.

The 1+1+2 approach developed recently by Clarkson and Barrett [65] is ideally suited to

investigate such systems in the sense that it includes an additional frame vector, assuming

the background spacetime has some preferred direction, while keeping the benefits the 1+3

approach. This formalism has been applied in various areas in the context of GR [66, 71]

and in f(R) gravity in [73, 74] . A similar approach was introduced in [151] and further

developed in [143,152,153] with previous studies mostly based on the context of symmetries

of solutions of EFEs [153–155].

Following [69], this chapter presents for the first time the full system of 1+1+2

equations in f(R) gravity.

6.1 Kinematics

In the 1+3 decomposition a timelike unit vector ua is split in the form R ⊗ V , where

R denotes the timeline along a timelike unit vector ua (ua ua = −1) and V is the 3-space

perpendicular to ua. In the 1+1+2 approach, we further split the 3-space V , by introducing

the unit vector ea orthogonal to ua such that

ea u
a = 0 , ea e

a = 1 . (6.1)

74
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Then the projection tensor

Na
b ≡ hab − ea eb = ga

b + ua u
b − ea eb , (6.2)

projects vectors onto 2-spaces orthogonal to ea and ua which, following [65,66,69], we refer

to as sheets. It thus follows from this that

eaNab = 0 = uaNab , Na
a = 2 . (6.3)

Any spacetime 3-vector ψa can now be irreducibly split into a scalar, Ψ, which is the

component along ea and a 2-vector, Ψa, which is a sheet component orthogonal to ea, i.e.,

ψa = Ψ ea + Ψa , where Ψ ≡ ψa ea and Ψa ≡ Nab ψb ≡ ψā , (6.4)

where the bar on a particular index denotes projection with Nab on that index. A similar

decomposition can be done for a PSTF 3-tensor, ψab, which can be split into scalar, 2-vector

and 2-tensor parts as follows:

ψab = ψ〈ab〉 = Ψ

(
ea eb −

1

2
Nab

)
+ 2Ψ(a eb) + Ψab , (6.5)

where

Ψ ≡ ea eb ψab = −Nabψab ,

Ψa ≡ Na
b ec ψbc ,

Ψab ≡ ψ{ab} ≡
(
N(a

cNb)
d − 1

2
NabN

cd

)
ψcd . (6.6)

The curly brackets denote the part of a tensor which is PSTF with respect to ea. We also

have that,

h{ab} = 0 = N{ab} , N〈ab〉 = −e〈a eb〉 = Nab −
2

3
hab . (6.7)

The sheet carries a natural 2-volume element, the alternating Levi-Civita 2-tensor

εab ≡ εabc ec = ηdabc e
c ud , (6.8)
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induced by the volume element εabc of the 3-spaces. From the definition of εab and Nab, the

following relations hold

εab e
b = 0 = ε(ab) , (6.9)

εabc = ea εbc − eb εac + ec εab , (6.10)

εab ε
cd = Na

cNb
d −Na

dNb
c , (6.11)

εa
c εbc = Nab , (6.12)

εab εab = 2 . (6.13)

From these definitions it follows that any object can be split in the 1+1+2 setting into

scalars, 2-vectors in the sheet and PSTF 2-tensors (also defined in the sheet) .

Apart from the ‘time’ (dot) derivative of an object (scalar, vector or tensor), which

is the derivative along the timelike congruence ua, we introduce two new derivatives which

the congruence ea defines for any tensor ψa..b
c..d:

ψ̂a..b
c..d ≡ ef ∇fMa..b

c..d ,

δfψa..b
c..d ≡ Nf

j Na
l ... Nb

gNh
c ... Ni

d Djψl..g
h..i . (6.14)

The hat-derivative is the spatial derivative along the vector-field ea in the surfaces orthog-

onal to ua. (We note that the congruence ua retains the primary importance it has in the

1+3 covariant approach). The δ-derivative is the projected spatial derivative onto the or-

thogonal 2-sheet, with the projection on every free index. By these definitions, one obtains

the following relations for the derivatives of the sheet-projection Nab and the sheet volume

element εab :

Ṅab = 2u(a u̇b) − 2e(a ėb) = 2u(aAb) − 2e(a αb) ,

N̂ab = −2e(a ab) ,

δcNab = 0 ,

ε̇ab = −2u[a εb]cAc + 2e[a εb]c α
c ,

ε̂ab = 2e[a εb]c a
c ,

δcεab = 0 , (6.15)

where Aa ≡ u̇ā, αa ≡ ėā and aa ≡ ec Dc ea = êa.

Taking ea to be arbitrary, the 1+3 kinematical and Weyl quantities can be split in

accordance with the decompositions (6.4) and (6.5), respectively. The 4-acceleration,
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vorticity and shear, split irreducibly as

u̇a = A ea +Aa , (6.16)

ωa = Ω ea + Ωa , (6.17)

σab = Σ

(
ea eb −

1

2
Nab

)
+ 2 Σ(a eb) + Σab . (6.18)

For shear scalar, σ one arrives at

σ2 ≡ 1

2
σab σ

ab =
3

4
Σ2 + Σa Σa +

1

2
Σab Σab , (6.19)

and for the electric and magnetic Weyl tensors one gets

Eab = E
(
ea eb −

1

2
Nab

)
+ 2 E(a eb) + Eab , (6.20)

Hab = H
(
ea eb −

1

2
Nab

)
+ 2H(a eb) +Hab . (6.21)

From equation (4.22) and using the relations (see Appendix A) we can obtain the exact

form of the covariant decomposition of the derivative of the 3-vector (6.4) as

∇aψb = −ua
[(

Ψ̇−Ψc α
c
)
eb + Ψαb + Ψ̇b̄

]
− uaub (AΨ +AcΨc)

+ub

[(
1

3
θ + Σ

)
Ψ ea +

(
1

3
θ − 1

2
Σ

)
Ψa + ΣaΨ + ΣcΨc ea

+Σa
cΨc + Ω εa

c Ψc − εac Ωc Ψ + ea ε
cdΨc Ωd

]
+

1

3

(
Ψ̂ + Ψφ−Ψc a

c + δcΨ
c
)

(Nab + ea eb)

+
1

3

(
2Ψ̂− φΨ− 2Ψca

c − δcΨc
)(

ea eb −
1

2
Nab

)
+

[
Ψa(a + δ(aΨ + Ψ̂(ā −

1

2
φΨ(a + Ψc

(
ξ εc(a − ζc(a

)]
eb)

+Ψ ζab + δ{aΨb} +
1

2
εab

(
2Ψ ξ + εcd δcΨd

)
+ e[a εb]c Ψc ξ

−e[a

(
−Ψ ab] + δb]Ψ− Ψ̂b] −

1

2
φΨb] − ζb]c Ψc

)
. (6.22)

where φ ≡ δae
a, A ≡ ea u̇a, ξ ≡ 1

2 ε
abδaeb and ζab ≡ δ{aeb}. An analogous relation for the

rank-2 tensors holds by applying (4.23) and using the Appendix A.

Thus by (6.22) the expression for the full covariant derivative of ea in its irreducible
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form is

∇a eb = −Aua ub − ua αb +

(
1

3
Θ + Σ

)
ea ub + (Σa − εac Ωc) ub

+ea ab +
1

2
φNab + ξ εab + ζab , (6.23)

from which we can obtain the spatial derivative of ea as

Daeb = ea ab +
1

2
φNab + ξ εab + ζab . (6.24)

The other derivative of ea is its change along ua,

ėa = Aua + αa . (6.25)

Similar to the kinematical variables of ua in the 1+3 approach (which also appear here),

the new kinematic variables aa, φ, ξ, ζab, A and αa are fundamental objects in spacetime,

and their dynamics give us information about the spacetime geometry. From equation

(6.24) we see that along the spatial direction ea, φ represents the expansion of the sheet,

ζab is the shear of ea (i.e., the distortion of the sheet) and aa its acceleration, while ξ

represents the vorticity associated with ea (‘twisting’ of the sheet).

We include here the expression for the 1+1+2 split of the full covariant derivative

of ua

∇aub = −ua (A eb +Ab) + ea eb

(
1

3
θ + Σ

)
+ ea (Σb + εbcΩ

c)

+ (Σa − εacΩc) eb +Nab

(
1

3
θ − 1

2
Σ

)
+ Ω εab + Σab , (6.26)

from which we can derive the useful relation

ûa =

(
1

3
θ + Σ

)
ea + Σa + εabΩ

b , (6.27)

for the calculation of the Ricci identities.

Furthermore, we may decompose the different parts of spatial derivative of a scalar

Ψ and a 2-vector Ψa = Ψā, respectively, as follows

DaΨ = Ψ̂ ea + δaΨ , (6.28)

DaΨb = −ea eb Ψc a
c + eaΨ̂b̄ − eb

(
1

2
φΨa + (ξ εac + ζac) Ψc

)
+ δaΨb (6.29)
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Similarly for a PSTF 2-tensor Ψab = Ψ{ab}, we have

DaΨbc = −2 ea e(b Ψc)d a
d + ea Ψ̂bc − 2e(c

[
1

2
φΨc)a + Ψ d

c) (ξ εad + ζad)

]
+ δaΨbc . (6.30)

6.2 The energy momentum tensor

Given that the anisotropic fluid variables qa and πab split as

qa = Qea +Qa , (6.31)

πab = Π

(
ea eb −

1

2
Nab

)
+ 2Π(a eb) + Πab , (6.32)

in terms of the 1+1+2 variables, the total energy momentum tensor (4.39) is

Tab = µua ub + p hab + 2u(a

[
Qeb) +Qa

]
+ Π

(
ea eb −

1

2
Nab

)
+ 2 Π(a eb) + Πab ; (6.33)

recalling that the thermodynamic quantities as presented in (6.33) are representative of the

total combination of the standard matter and curvature quantities. Moreover, in terms of

1+1+2 variables the curvature thermodynamic quantities are obtained from decomposition

of the 1+3 quantities (4.57)-(4.60) as

µR ≡ TRab ua ub =
1

f ′

[
1

2
(Rf ′ − f)− θf ′′ Ṙ+ f ′′′X2 + f ′′′ δaRδaR

+ f ′′ X̂ + φf ′′X − aa f ′′ δaR+ f ′′ δaδaR
]
, (6.34)

pR ≡ 1

3
TRab

(
Nab − ea eb

)
=

1

f ′

[
1

2
(f −Rf ′) +

2

3
θ f ′′Ṙ+ f ′′′ Ṙ2 + f ′′ R̈−A f ′′X

−Aaf ′′ δaR−
2

3
(φ f ′′X + f ′′′ δaRδaR+ f ′′ δaδaR

+ f ′′′X2 + f ′′ X̂ − aa f ′′ δaR)
]
, (6.35)

QR ≡ ea qRa = − 1

f ′

[
f ′′′ ṘX + f ′′

(
Ẋ −A Ṙ

)
− αa f ′′ δaR

]
, (6.36)

QRa ≡ Na
b qRb =

1

f ′

[(
1

3
θ − 1

2
Σ

)
f ′′ δaR+

(
Σa − εabΩb

)
f ′′X

+
(

Σa
b + εa

bΩ
)
f ′′ δbR− Ṙ f ′′′ δaR− f ′′ δaṘ

]
, (6.37)
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ΠR ≡ ea ebπRab =
1

f ′

[
1

3

(
2f ′′′X2 + 2f ′′ X̂ − 2Aa f ′′ δaR− φ f ′′X

− f ′′′ δaRδaR− f ′′ δaδaR
)
− Σ f ′′ Ṙ

]
, (6.38)

ΠR
a ≡ Na

b ec πRbc =
1

f ′

[
−Σa f

′′ Ṙ+X f ′′′ δaR+ f ′′ δaX −
1

2
φ f ′′ δaR

+
(
ξ εa

b − ζab
)
f ′′ δbR−

1

2

(
Σa + εa

bΩb

)
f ′′ Ṙ

]
, (6.39)

ΠR
ab ≡

(
N(a

cNd
b) −

1

2
NabN

cd

)
πRcd =

1

f ′

(
−Σab f

′′ Ṙ+ ζab f
′′X

+ f ′′′ δ{aRδb}R+ f ′′ δ{aδb}R
)
, (6.40)

where we have defined R̂ = X. Additionally, the 1+1+2 split of the curvature trace equation

(4.67) results in

Rf ′ − 2f = 3
(
f ′′ θ Ṙ− f ′′′X2 − f ′′′ δaRδaR− (A+ φ)f ′′X

− f ′′ X̂ − f ′′ δaδaR+ f ′′′ Ṙ2 + f ′′ R̈
)
. (6.41)

6.3 Derivatives and Commutators

In general the three derivatives defined so far, dot - ‘ ˙ ’, hat - ‘ˆ’ and delta - ‘δa’, do not

commute. The commutations relations for these derivatives of any scalar ψ are

ˆ̇
ψ − ˙̂

ψ = −A ψ̇ +

(
1

3
Θ + Σ

)
ψ̂ +

(
Σa + εabΩ

b − αa
)
δaψ , (6.42)

δaψ̇ − (δaψ) ·⊥ = −Aa ψ̇ +
(
αa + Σa − εabΩb

)
ψ̂ +

(
1

3
Θ− 1

2
Σ

)
δaψ

+ (Σab + Ω εab) δ
bψ , (6.43)

δaψ̂ − (δaψ) ˆ
⊥ = −2 εabΩ

b ψ̇ + aa ψ̂ +
1

2
φ δaψ + (ζab + ξ εab) δ

bψ , (6.44)

δ[aδb]ψ = εab

(
Ω ψ̇ − ξ ψ̂

)
. (6.45)

Here, and in the work that follows, the symbol ⊥ denotes projection onto the sheet (it had

previously been used in 1+3 to mean projection onto the observer’s rest-space). From the

above relations it is clear that the 2-sheet is a genuine 2-surface (instead of just a collection

of tangent planes) if and only if:

− The commutator of the time and hat derivative do not depend on any sheet compo-
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nent, that is, when Greenberg’s vector

Σa + εabΩ
b − αa , (6.46)

vanishes [151,155]. Accordingly, the two vector fields ua and ea are 2-surface forming.

− The sheet derivatives commute (specifically, the derivative δa will be a true covariant

derivative on this surface), that is, when ξ = Ω = 0.

The commutation relations for 2-vectors ψa are

ˆ̇
ψā − ˙̂

ψā = −A ψ̇ā +

(
1

3
Θ + Σ

)
ψ̂ā + (Σb + εbc Ωc − αb) δbψa

+Aa (Σb + εbc Ωc)ψb +H εab ψb , (6.47)

δaψ̇b − (δaψb)
·
⊥ = −Aa ψ̇b + (αa + Σa − εac Ωc) ψ̂b̄ +

(
1

3
Θ− 1

2
Σ

)
(δaψb + ψaAb)

+ (Σac + Ω εac) (δcψb + ψcAb) +
1

2
(ψaQb −Nab ψ

cQc)

−
(

1

2
φNac + ξ εac + ζac

)
ψc αb +Ha εbc ψc , (6.48)

δaψ̂b − (δaψb)
ˆ
⊥ = −2 εac Ωc ψ̇b̄ + aa ψ̂b̄ +

1

2
φ (δaψb − ψa ab) + (ζac + ξ εac) (δcψb − ψc ab)

−2
(
Ω εa[b + Σa[b

) (
Σc] + εc]dΩ

d
)
ψc

−ψa
[(

1

2
Σ− 1

3
Θ

)
(Σb + εbc Ωc) +

1

2
Πb + Eb

]
+Nab

[(
1

2
Σ− 1

3
Θ

)(
Σc + εcd Ωd

)
+

1

2
Πc + Ec

]
ψc , (6.49)

δ[aδb]ψ
c =

[(
1

3
Θ− 1

2
Σ

)2

− 1

4
φ2 +

1

2
Π + E − 1

3
µ

]
ψ[aN

c
b]

−ψ[a

[
−
(

1

3
Θ− 1

2
Σ

)(
Σ c
b] + Ω ε c

b]

)
+

1

2
φ
(
ζ c
b] + ξ ε c

b]

)
+

1

2
Π c
b] + E c

b]

]
+N c

[a

[
−
(

1

3
Θ− 1

2
Σ

)(
Σb]d + Ω εb]d

)
+

1

2
φ
(
ζb]d + ξ εb]d

)
+

1

2
Πb]d + Eb]d

]
ψd

−
[(

Σ c
[a + Ω ε c

[a

) (
Σb]d + Ω εb]d

)
−
(
ζ c

[a + ξ ε c
[a

) (
ζb]d + ξ εb]d

)]
ψd

+εab

(
Ω ψ̇c̄ − ξ ψ̂c̄

)
. (6.50)

Analogous relations for second-rank tensors hold but are more complicated.
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6.4 The field equations

The key variables of the 1+1+2 formalism of FOG are the irreducible set of geometric

variables,

{R, Θ, A, Ω, Σ, E , H, φ, ξ, Aa, Ωa, Σa, αa, aa, Ea, Ha, Σab, ζab, Eab, Hab} , (6.51)

together with the set of irreducible thermodynamic matter variables,

{µM , pM , QM , ΠM , QMa , ΠM
a , ΠM

ab} , (6.52)

for a given equation of state. The full 1+1+2 equations for the above covariant variables

can be obtained by applying the 1+1+2 decomposition procedure to the 1+3 equations

(Appendix A), and in addition, by covariantly splitting the Ricci identities for ea:

Rabc ≡ 2∇[a∇b]ec −Rabcded = 0 , (6.53)

where Rabcd is the Riemann curvature tensor. By splitting this third-rank tensor using the

two vector fields ua and ea, we obtain the evolution equations (along ua) and propagation

equations (along ea) for αa, aa, φ, ξ and ζab.

The full set of 1+1+2 equations for arbitrary spacetimes as given in [69] are:

6.4.1 The evolution equations

The evolution equations for the φ, ξ and ζab are obtained from the projection uaRabc.

uaN bcRabc:

φ̇ =

(
2

3
θ − Σ

)(
A− 1

2
φ

)
+ 2 ξΩ + δaα

a +Aa (αa − aa)

+ (aa −Aa)
(

Σa − εabΩb
)
− ζab Σab +Q ; (6.54)

ua εbcRabc:

ξ̇ =

(
1

2
Σ− 1

3
θ

)
ξ +

(
A− 1

2
φ

)
Ω +

1

2
(aa +Aa)

[
Ωa + εab

(
αb + Σb

)]
+

1

2
εabδ

aαb − 1

2
εcaζ

c
b Σab +

1

2
H ; (6.55)
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ucRc{ab}:

ζ̇{ab} =

(
1

2
Σ− 1

3
θ

)
ζab + Ω εc{aζ

c
b} +

(
A− 1

2
φ

)
Σab − ξ εc{aΣ c

b} − ζc{a Σ c
b}

+δ{aαb} +
(
A{a − a{a

)
αb} −

(
A{a + a{a

) (
Σb} − εb}dΩd

)
− εc{aH c

b} .

(6.56)

A 1+1+2 decomposition of the standard 1+3 evolution equations gives us the remaining

evolution equations, as not all information needed to determine the full 1+1+2 equations

is contained in Rabc.

Vorticity evolution equation:

Ω̇ =
1

2
εabδ

aAb +A ξ + Ω

(
Σ− 2

3
θ

)
+ Ωa (Σa + αa) ; (6.57)

Shear evolution:

Σ̇{ab} = δ{aAb} +A{aAb} − Σ{a
[
Σb} + 2αb}

]
− Ω{a Ωb} +A ζab

−
(

2

3
θ +

1

2
Σ

)
Σab − Σc{a Σ c

b} − Eab +
1

2
Πab . (6.58)

6.4.2 Mixture of propagation and evolution

ua ebRabc̄ = ea ubRabc̄:

α̂ā − ȧā = −
(

1

2
φ+A

)
αa − ξ εabαb +

(
1

3
θ + Σ

)
(Aa − aa) +

(
1

2
φ−A

)(
Σa + εabΩ

b
)

− ξ
(
εabΣ

b − Ωa

)
+ ζab

(
−αb + Σb + εbcΩc

)
+

1

2
Qa − εabHb ; (6.59)

ua eb ucRabc = −ea ub ucRabc:

Â − 1

3
θ̇ − Σ̇ = −A2 +

(
1

3
θ + Σ

)2

− 2αa Σa + ΣaΣ
a − Ωa Ωa − aaAa

+ εabα
a Ωb +

1

6
(µ+ 3p) + E − 1

2
Π ; (6.60)
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Raychaudhuri equation:

Â − θ̇ = − δaAa − (A+ φ)A+ (aa −Aa)Aa +
1

3
θ2 +

3

2
Σ2 − 2 Ω2

+ 2 Σa Σa − 2 Ωa Ωa + Σab Σab +
1

2
(µ+ 3p) ; (6.61)

Vorticity evolution:

Ω̇ā +
1

2
εabÂb = −

(
2

3
θ +

1

2
Σ

)
Ωa +

1

2
εab

(
δbA−A ab − 1

2
φAb

)
+ Ω (Σa − αa) +

1

2
ξAa −

1

2
εabζ

bcAc + Σab Ωb . (6.62)

Shear evolution:

Σ̇− 2

3
Â =

1

3
(2A− φ)A−

(
2

3
θ +

1

2
Σ

)
Σ− 2

3
Ω2 + Σa

(
2αa − 1

3
Σa

)
− 1

3
δaAa −

1

3
Aa (2 aa −Aa) +

1

3
Ωa Ωa +

1

3
Σab Σab − E +

1

2
Π ,

(6.63)

Σ̇ā −
1

2
Âā =

1

2
δaA+

(
A− 1

4
φ

)
Aa −

(
2

3
θ +

1

2
Σ

)
Σa +

1

2
A aa −

3

2
Σαa

−Ω Ωa −
1

2
(ξ εab + ζab)Ab + Σab

(
αb − Σb

)
− Ea +

1

2
Πa .

(6.64)

Energy conservation:

µ̇+ Q̂ = − θ (µ+ p)− (φ+ 2A)Q− 3

2
Σ Π + (aa − 2Aa)Qa

− δaQa − 2 Σa Πa − Σab Πab ; (6.65)

Momentum conservation:

Q̇+ p̂+ Π̂ = −δaΠa −
(

3

2
φ+A

)
Π−

(
4

3
θ + Σ

)
Q− (µ+ p)A

+
(
αa − Σa + εabΩ

b
)
Qa + (2 aa −Aa) Πa + ζab Πab , (6.66)
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Q̇ā + Π̂ā = −δap+
1

2
δaΠ− δbΠab −Q

(
αa + Σa + εabΩ

b
)
− 3

2
Π aa

−
(

4

3
θ − 1

2
Σ

)
Qa + Ω εabQ

b −
(

3

2
φ+A

)
Πa + ξ εabΠ

b

−
(
µ+ p− 1

2
Π

)
Aa − ΣabQ

b − ζabΠb + Πab

(
ab −Ab

)
; (6.67)

Electric Weyl evolution:

Ė +
1

2
Π̇ +

1

3
Q̂ = εabδ

aHc +
1

6
δaQ

a +

(
3

2
Σ− θ

)
E − 1

2

(
1

3
θ +

1

2
Σ

)
Π

+
1

3

(
1

2
φ− 2A

)
Q+ 3 ξH− 1

2
(µ+ p) Σ +

1

3
(aa +Aa)Qa

+
(

2αa + Σa − εabΩb
)
Ea +

(
αa −

1

6
Σa −

1

2
εabΩ

b

)
Πa

+ 2εabAaHc − Σab

(
Eab +

1

2
Πab

)
+ εabHbc ζac , (6.68)

Ėā +
1

2
εabĤb +

1

2
Π̇ā +

1

4
Q̂ā =

3

4
εabδ

bH+
1

2
εbcδ

bHca −
1

4
δaQ+

3

4

(
E +

1

2
Π

)
εabΩ

b

− 1

2

(
µ+ p− 3

2
E +

1

4
Π

)
Σa −

1

2
QAa +

3

2
H εabAb

− 3

2

(
E +

1

2
Π

)
αa −

1

4
Qaa −

3

4
H εabab −

1

2
Ω εabEb

+

(
3

4
Σ− θ

)
Ea +

5

2
ξHa −

(
1

4
φ+A

)
εabHb +

1

4
ξ εabQ

b

+
1

2

(
1

4
φ−A

)
Qa −

1

2

(
1

3
θ +

1

4
Σ

)
Πa −

1

4
Ω εabΠ

b

+
1

2
Σab

(
3Eb − 1

2
Πb

)
+

1

2

(
3Eab −

1

2
Πab

)
Σb −Hab εbcAc

−
(
Eab +

1

2
Πab

)(
αb +

1

2
εbcΩc

)
+

1

2
ζab

(
εbcHc +Qb

)
,

(6.69)
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Ė{ab} − εc{aĤ c
b} +

1

2
Π̇{ab} = −εc{aδcHb} −

1

2
δ{aQb} −

1

2

(
µ+ p+ 3E − 1

2
Π

)
Σab

− 1

2
Qζab −

3

2
H εc{aζ c

b} −
(
θ +

3

2
Σ

)
Eab + Ω εc{aE c

b}

−
(

1

6
θ − 1

4
Σ

)
Πab +

1

2
Ω εc{aΠ

c
b} + ξHab

+

(
1

2
φ+ 2A

)
εc{aH c

b} −A{aQb} + 2εc{aHb} (ac −Ac)

−
(
α{a +

1

2
εc{aΩ

c

)(
2Eb} + Πb}

)
+ Σ{a

(
3Eb} −

1

2
Πb}

)
+ Σc{a

(
3E c

b} −
1

2
Π c
b}

)
+ εc{aHb}dζcd ; (6.70)

Magnetic Weyl evolution:

Ḣ = − εabδaEb +
1

2
εabδ

aΠb − 3ξ E +

(
θ +

3

2
Σ

)
H+ ΩQ+

3

2
ξΠ− 2εabAa Eb

+
(

2αa + Σa − εabΩb
)
Ha − 1

2

(
Ωa + εabΣ

b
)
Qa − ΣabHab −

1

2
εabEbc ζac ,

(6.71)

Ḣā −
1

2
εabÊb +

1

4
εabΠ̂

b = −3

4
εabδ

bE +
3

8
εabδ

bΠ− 1

2
εbcδ

bEca +
1

4
εbcδ

bΠc
a +

3

4
HΣa

+
1

4
QεabΣ

b +
3

4
QΩa +

3

4
H εabΩb − 3

2
E εabAb −

3

2
Hαa

+
3

4

(
E − 1

2
Π

)
εaba

b − 5

2
ξEa +

(
1

4
φ+A

)
εabEb −

1

8
φ εabΠ

b

+

(
3

4
Σ− θ

)
Ha −

1

2
ΩεabHb +

3

4
ΩQa −

3

8
Σ εabQ

b +
5

4
ξΠa

+ Σab

(
3

2
Hb +

1

4
εbcQc

)
+

3

2
εabζ

bc

(
Ec −

1

2
Πc +

2

3
Ac
)

+Hab
(
αb +

3

2
Σb − 1

2
εbcΩc

)
, (6.72)



Univ
ers

ity
 of

 C
ap

e T
ow

n

6.4. The field equations 87

Ḣ{ab} + εc{aÊ c
b} −

1

2
εc{aΠ̂

c
b} = εc{aδ

cEb} − 12εc{aδ
cΠb} −

3

2
HΣab +

1

2
Qεc{aΣ

c
b}

+
3

2

(
E − 1

2
Π

)
εc{aζ

c
b} − ξEab −

(
θ +

3

2
Σ

)
Hab

−
(

1

2
φ+ 2A

)
εc{aE c

b} − Ω εc{aH c
b} +

1

2
ξΠab

+
1

4
φ εc{aΠ

c
b} + Σ{a

(
3Hb} − εb}cQc

)
− 2α{aHb}

+ Ω{a

(
3

2
Qb} − εb}cHc

)
+ E{a2εb}c (ac +Ac)

−Π{aεb}ca
c + 3Σc{aH c

b} − εc{aζcd
(
Eb}d −

1

2
Πb}d

)
.

(6.73)

6.4.3 Propagation equations

Propagation and constraint equations are formed from either projecting Rabc as shown in

this subsection, or from projections of the 1+3 constraint equations in Section 4.6.

eaN bcRabc:

φ̂ = −1

2
φ2 + 2ξ2 +

(
1

3
θ + Σ

)(
2

3
θ − Σ

)
+ δaa

a − aa aa

− ζab ζab + 2εabα
a Ωb − Σa Σa + Ωa Ωa − 2

3
µ− 1

2
Π− E ; (6.74)

ea εbcRabc:

ξ̂ = −φξ +

(
1

3
θ + Σ

)
Ω +

1

2
εabδ

aab +
1

2
εabΣ

a ab +

(
1

2
aa + αa

)
Ωa ; (6.75)

eaRa{bc}:

ζ̂{ab} = −φ ζab − ζc{aζb}c + δ{aab} − a{a ab} + 2α{a εb}cΩ
c − Ω{a Ωb}

−Σ{a Σb} +

(
1

3
θ + Σ

)
Σab −

1

2
Πab − Eab ; (6.76)

Shear divergence (C1)a ea:

Σ̂− 2

3
θ̂ = −3

2
φΣ− 2ξΩ− δaΣa − εabδaΩb + 2Σa a

a − 2εabAa Ωb + Σab ζ
ab −Q ,

(6.77)
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(C1)ā:

Σ̂ā − εabΩ̂b =
1

2
δaΣ +

2

3
δaθ − εabδbΩ−

3

2
φΣa + ξ εabΣ

b − ξΩa −
3

2
Σ aa

+

(
1

2
φ+ 2A

)
εabΩ

b + Ω εab

(
ab − 2Ab

)
− δbΣab − ζab Σb

+ Σab a
b + εabζ

bc Ωc −Qa ; (6.78)

Vorticity divergence equation (C2):

Ω̂ = −δaΩa + (A− φ) Ω + (aa +Aa) Ωa , (6.79)

(C3){ab}:

Σ̂{ab} = δ{aΣb} − εc{aδcΩb} −
1

2
φΣab + ξ εc{aΣ

c
b} +

3

2
Σ ζab − Ω εc{aζ

c
b}

− 2Σ{a ab} − 2εc{aAc Ωb} − Σc{a ζ
c

b} − εc{aH c
b} ; (6.80)

Electric Weyl Divergence (C4)a ea:

Ê − 1

3
µ̂+

1

2
Π̂ = −δaEa −

1

2
δaΠ

a − 3

2
φ

(
E +

1

2
Π

)
+

(
1

2
Σ− 1

3
θ

)
Q+ 3 ΩH

+ (2Ea + Πa) a
a +

1

2
ΣaQ

a + 3ΩaHa −
3

2
εabΩ

aQb + εabΣ
acH b

c

+

(
Eab +

1

2
Πab

)
ζab , (6.81)

(C4)ā:

Êā +
1

2
Π̂ā =

1

2
δaE +

1

3
δaµ+

1

4
δaΠ− δbEab −

1

2
δbΠab +

1

2
QΣa +H εabΣb

− 3

2
HΩa −

3

2
QεabΩ

b − 3

2

(
E +

1

2
Π

)
aa −

3

2
φ

(
Ea +

1

2
Πa

)
+

3

2
Ω εabQ

b

+ ξ εab

(
Eb +

1

2
Πb

)
+ 3ΩHa − Σ εabHb −

(
1

3
θ +

1

4
Σ

)
Qa +

1

2
ΣabQ

b

− ζab
(
Eb +

1

2
Πb

)
+

(
Eab +

1

2
Πab

)
ab + 3Hab Ωb ; (6.82)
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Magnetic Weyl divergence (C5)a ea:

Ĥ = −δaHa −
1

2
εabδ

aQb − 3

2
φH−

(
3E + µ+ p− 1

2
Π

)
Ω−Qξ

+ 2Ha aa − 3Ωa

(
Ea − 1

6
Πa

)
+ ζabHab − εabΣa

c

(
Ebc +

1

2
Πbc

)
, (6.83)

(C5)ā:

Ĥā −
1

2
εabQ̂

b =
1

2
δaH− δbHab −

1

2
εabδ

bQ− 3

2

(
E +

1

2
Π

)
εabΣ

b − 3

2
φHa

−
(
−3

2
E + µ+ p+

1

4
Π

)
Ωa −

3

2
H aa +

1

2
Qεaba

b − 3Ω Ea

+
3

2
Σ εabEb + ξ εabHb −

1

2
ξQa +

1

4
φεabQ

b +
1

2
Ω Πa +

3

4
Σ εabΠ

b

+Hab ab − ζabHb − 3

(
Eab −

1

6
Πab

)
Ωb +

1

2
εabζ

bcQc . (6.84)

6.4.4 Constraints

εabucRabc:

δaΩ
a + εabδ

aΣb = (2A− φ) Ω− 3ξΣ + εabζ
acΣb

c +H ; (6.85)

N bcRābc:

1

2
δaφ− εabδbξ − δbζab = −Ω

(
Ωa + εabΣ

b − 2εabα
b
)
−
(

1

3
θ − 1

2
Σ

)(
Σa − εabΩb

)
−2ξ εaba

b −
(

Σb − εbcΩc

)
Σab −

1

2
Πa − Ea ; (6.86)

From (C3)ab e
b and (C1)ā, or ea ucRab̄c

δaΣ−
2

3
δaθ + 2εabδ

bΩ + 2δbΣab = −φ
(

Σa − εabΩb
)
− 2ξ

(
Ωa − 3εabΣ

b
)
− 4Ω εabAb

+2ζabΣ
b + 2εabζ

bc Ωc + Σab a
b − 2εabHb −Qa .

(6.87)

Finally, we note that equations (6.86) and (6.87) are not real constraints due to the cur-

vature thermodynamic terms that have spatial and temporal derivatives of the curvature.

Furthermore, the equation formed from (C3)ab e
a eb is equivalent to (6.79) and (6.85).
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We also draw attention to equation (6.60), which can be written in terms of (6.61)

and (6.63) [(6.60)= 1
3(7.11)−(6.63)]. The redundancy in the field equations is due to

the fact that some of the information contained in Rabc is already contained in the 1+3

equations. We also note that there are no evolution equations for A, Aa, αa, and there

is no propagation equation for aa; these must all be determined by specifying a choice of

frame.
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Chapter 7

Spherically symmetric spacetimes

and the Jebsen-Birkhoff theorem

in f (R) gravity

It was recently shown in [79, 80], that in GR, the rigidity of spherical vacuum solutions

of Einstein’s field equations continues even in the perturbed scenario: almost spherical

symmetry and/or almost vacuum implies almost static or almost spatially homogeneous.

This is an important reason for the stability of the solar system and of black hole spacetimes

and is interesting from the point of view that the universe expands globally though it is

made up of locally spherically symmetric objects imbedded in vacuum regions whose local

spacetime domains is required to be static by Jebsen-Birkhoff’s theorem. A similar study

of local stability is required for the spherically symmetric solutions in modified gravity

theories, to see if these theories are physically viable.

In this chapter, we prove a Jebsen-Birkhoff-like theorem for f(R) theories of gravity,

to find the necessary conditions required for the existence of Schwarzschild solution in

these theories. We discuss under what circumstances we can covariantly set up a scale in

the problem. We then perturb the vacuum spacetime with respect to this covariant scale to

find the stability of the theorem. We do this in two steps: (a) First we keep the spherical

symmetry and perturb the Ricci scalar around R = 0 to find the necessary conditions on

the spatial and temporal derivatives of the Ricci scalar for the spacetime to be almost

Schwarzschild. (b) We then define the notion of almost spherical symmetry with respect

to the covariant scale and perturb the spherical symmetry to prove the stability of the

theorem.

91
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7.1 1+1+2 equations for LRS-II spacetimes

Locally Rotationally Symmetric (LRS) spacetimes posses a continuous isotropy group at

each point and hence a multi-transitive isometry group acting on the spacetime manifold

[153]. These spacetimes exhibit locally (at each point) a unique preferred spatial direction,

covariantly defined, for example, by either vorticity vector field or a non-vanishing non-

gravitational acceleration of the matter fluids. The 1+1+2 formalism is therefore ideally

suited for covariant description of these spacetimes, yielding a complete deviation in terms

of invariant scalar quantities that have physical or direct geometrical meaning [66]. The

preferred spatial direction in the LRS spacetimes constitutes a local axis of symmetry and in

this case ea is just a vector pointing along the axis of symmetry and is thus called a ‘radial’

vector. Since LRS spacetimes are defined to be isotropic, this allows for the vanishing of all

1+1+2 vectors and tensors, such that there are no preferred directions in the sheet. Thus,

all the non-zero 1+1+2 variables are covariantly defined scalars. The variables that fully

describe LRS spacetimes are

LRS :
{
R, A, Θ, φ, ξ, Σ, Ω, E , H, µM , pM , QM , ΠM

}
, (7.1)

and are what is solved for in the 1+1+2 approach. A detailed discussion of the covariant

approach to LRS perfect fluid space-times can be found in [153].

A subclass of the LRS spacetimes, called LRS-II, contains all the LRS spacetimes

that are rotation free. As a consequence, in LRS-II spacetimes the variables Ω, ξ and H
are identically zero and the variables

LRS class II :
{
R,A, Θ, φ, Σ, E , µM , pM , QM , ΠM

}
, (7.2)

fully characterise the kinematics. The propagation, evolution and constraint equations

(as described in the previous chapter) become simplified for these variables and are given by:

Propagation equations:

φ̂ = − 1

2
φ2 +

(
1

3
Θ + Σ

)(
2

3
Θ− Σ

)
− 2

3
µ− 1

2
Π− E , (7.3)

Σ̂− 2

3
Θ̂ = − 3

2
φΣ−Q , (7.4)

Ê − 1

3
µ̂+

1

2
Π̂ = − 3

2
φ

(
E +

1

2
Π

)
+

(
1

2
Σ− 1

3
Θ

)
Q . (7.5)
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Evolution equations:

φ̇ = −
(

Σ− 2

3
Θ

)(
A− 1

2
φ

)
+Q , (7.6)

Σ̇− 2

3
Θ̇ = −Aφ+ 2

(
1

3
Θ− 1

2
Σ

)2

+
1

3
(µ+ 3p)− E +

1

2
Π , (7.7)

Ė − 1

3
µ̇+

1

2
Π̇ =

(
3

2
Σ−Θ

)
E +

1

4

(
Σ− 2

3
Θ

)
Π +

1

2
φQ− 1

2
(µ+ p)

(
Σ− 2

3
Θ

)
.

(7.8)

Propagation/Evolution equations:

µ̇+ Q̂ = Θ (µ+ p)− (φ+ 2A)Q− 3

2
Σ Π , (7.9)

Q̇+ p̂+ Π̂ = −
(

3

2
φ+A

)
Π−

(
4

3
Θ + Σ

)
Q− (µ+ p)A , (7.10)

Â − Θ̇ = − (A+ φ)A+
1

3
Θ2 +

3

2
Σ2 +

1

2
(µ+ 3p) . (7.11)

where

µ =
1

f ′

[
µM +

1

2
(Rf ′ − f)− θ f ′′ Ṙ+ f ′′′X2 + f ′′ X̂ + φ f ′′X

]
, (7.12)

p =
1

f ′

[
pM +

1

2
(f −Rf ′) + f ′′′ Ṙ2 + f ′′ R̈−A f ′′X

+
2

3

(
θ f ′′ Ṙ− φ f ′′X − f ′′′X2 − f ′′ X̂

)]
, (7.13)

Q = − 1

f ′

[
QM + f ′′′ ṘX + f ′′

(
Ẋ −A Ṙ

)]
, (7.14)

Π =
1

f ′

[
ΠM +

1

3

(
2f ′′′X2 + 2f ′′ X̂ − φ f ′′X

)
− Σ f ′′ Ṙ

]
. (7.15)

Commutation relation:
ˆ̇
ψ − ˙̂

ψ = −A ψ̇ +

(
1

3
Θ + Σ

)
ψ̂ . (7.16)



Univ
ers

ity
 of

 C
ap

e T
ow

n

7.1. 1+1+2 equations for LRS-II spacetimes 94

Due to the additional degrees of freedom, equations (7.3)-(7.16) are not closed and we have

to add the curvature trace equation (which corresponds to the trace of the modified field

equations):

Rf ′ − 2f = 3
(
f ′′ θ Ṙ− f ′′ X̂ + f ′′ R̈− (φ+A) f ′′X − f ′′′X2 + f ′′′ Ṙ2

)
. (7.17)

Since the vorticity vanishes, the unit vector field ua is hypersurface-orthogonal to the space-

like 3-surfaces whose intrinsic curvature can be calculated from the Gauss equation for ua

(4.99). With the additional constraint of the vanishing of the sheet distortion ξ, that is,

the sheet is a genuine 2-surface, the Gauss equation for ea together with the 3-Ricci iden-

tities determine the 3-Ricci curvature tensor of the spacelike 3-surfaces orthogonal to ua to

be [66]:

3Rab = −
[
φ̂+

1

2
φ2

]
ea eb −

[
1

2
φ̂+

1

2
φ2 −K

]
Nab . (7.18)

This gives the 3-Ricci-scalar as

3R = − 2

[
1

2
φ̂+

3

4
φ2 −K

]
, (7.19)

where K is the Gaussian curvature of the 2-sheet and is related to the two dimensional

Riemann curvature tensor and two dimensional Ricci tensor as

(2)Rabcd = K (Na
cNbd −Na

dNbc) , =⇒ 2Rab = KNab . (7.20)

From (7.19) and (7.3) an expression for K is obtained in the form

K =
1

3
µ− E − 1

2
Π +

1

4
φ2 −

(
1

3
Θ− 1

2
Σ

)2

. (7.21)

From (7.3)-(7.8), the evolution and propagation equations of K can be determined as

K̇ = − 2

3

(
2

3
Θ− Σ

)
K, (7.22)

K̂ = −φK. (7.23)

From equation (7.22), it follows that whenever the Gaussian curvature of the sheet is non-

zero and constant in time, then the shear is always proportional to the expansion:

K 6= 0 and K̇ = 0 =⇒ Σ =
2

3
Θ . (7.24)
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7.2 Vacuum LRS II spacetimes

Following [79], we covariantly investigate the geometry of the vacuum (µM = pM = QM =

ΠM = 0) LRS-II spacetime by trying to solve the Killing equation for a Killing vector of

the form ξa = Ψua + Φ ea, where Ψ and Φ are scalars. The Killing equation gives

∇a(Ψub + Φ eb) +∇b(Ψua + Φ ea) = 0 . (7.25)

Using equations (6.23) and (6.26), and multiplying the Killing equation by ua ub, ua eb, ea eb

and Nab results in the following differential equations and constraints:

Ψ̇ +AΦ = 0 , (7.26)

Ψ̂− Φ̇−ΨA+ Φ

(
Σ +

1

3
Θ

)
= 0 , (7.27)

Φ̂ + Ψ

(
1

3
Θ + Σ

)
= 0 , (7.28)

Ψ

(
2

3
Θ− Σ

)
+ Φφ = 0 . (7.29)

Considering that ξa ξ
a = −Ψ2 + Φ2, if ξa is timelike (that is, ξa ξ

a < 0), then because of the

arbitrariness in choosing the vector ua, we can always make Φ = 0, while if ξa is spacelike

(that is ξa ξ
a > 0), then we can make Ψ = 0.

Let us first assume that ξa is timelike and Φ = 0, then (7.26) - (7.29) reduce to

Ψ̇ = 0 , (7.30)

Ψ̂−ΨA = 0 , (7.31)

Ψ

(
1

3
Θ + Σ

)
= 0 , (7.32)

Ψ

(
2

3
Θ− Σ

)
= 0 . (7.33)

Looking at (7.30) and (7.31), we know that their solutions always exists. For a non trivial

Ψ, the constraints (7.32) and (7.33) together imply, that in general Θ = Σ = 0, that is,

the expansion and shear of a unit vector field along the timelike Killing vector vanishes.

We also see that the time derivatives of all the quantities in the field equations (7.3)-(7.17)

vanish and hence the spacetime is static.
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Now if ξa is spacelike and Ψ = 0, then (7.26) - (7.29) reduce to

AΦ = 0 , (7.34)

−Φ̇ + Φ(Σ +
1

3
Θ) = 0 , (7.35)

Φ̂ = 0 , (7.36)

Φφ = 0 . (7.37)

The solution of equations (7.35) and (7.36) always exists and the constraints (7.34) and

(7.37) in this case together imply that in general, (for a non trivial Φ), φ = A = 0.

If we impose further the condition,

R = R0 = const. and f ′0 6= 0 ,

which in turn implies

Π = 0 , (7.38)

µ =
1

f ′0

[
1

2
(R0 f

′
0 − f0)

]
, (7.39)

p =
1

f ′0

[
1

2
(f0 −R0 f

′
0)

]
, (7.40)

R0 f
′
0 − 2f0 = 0 , (7.41)

where f ′(R0) = f ′0, then all the spatial derivatives of all the quantities in (7.3)-(7.17)

vanish. From this we see that homogeneity is only achieved if R = constant, otherwise

inhomogeneity is admitted for non-constant R. This result is unlike that of GR where the

spacetime is spatially homogenous upon setting φ = A = 0 in the list of LRS II equations.

We can now say that :

There always exists a Killing vector in the local [u, e] plane for a vacuum LRS-II

spacetime in f(R) gravity. If the Killing vector is timelike then the spacetime is

locally static. If the Killing vector is spacelike, the spacetime is locally spatially

homogeneous if and only if R = R0 = const. and f ′0 6= 0.

If we apply the conditions R = R0 = const. and f ′0 6= 0, to the system of equations (7.3)-

(7.17), then from (7.5), (7.8), (7.22) and (7.23) we get:

E = C K3/2 . (7.42)

That is, the 1+1+2 scalar of the electric part of the Weyl tensor is always proportional to

the (3/2)th power of the Gaussian curvature of the 2-sheet. The proportionality constant



Univ
ers

ity
 of

 C
ap

e T
ow

n

7.3. Spherically symmetric spacetimes in higher order gravity 97

C sets up a scale in the problem in this particular case.

7.3 Spherically symmetric spacetimes in higher order gravity

Let us now turn to the case of spherically symmetric spacetimes which belong naturally to

LRS class II.

7.3.1 Locally static vacuum spacetimes

As already discussed in the previous section, the condition of staticity implies that the dot

derivatives of all the quantities vanish. Furthermore we have Θ = Σ = 0, then K̇ = 0 in

(7.22) and from equation (7.6) we have that the heat flux Q vanishes identically in these

spacetimes. With this choice, and after a bit of manipulation, the set of 1+1+2 equations

which describe the spacetime reduces to the following four coupled first-order equations [73],

f ′
[
φ̂+ φ

(
1

2
φ−A

)]
=

1

3
Rf ′ − 2

3
f + (φ+ 2A) f ′′X , (7.43)

f ′
[
Â+A(A+ φ)

]
=

1

6
f − 1

3
Rf ′ − f ′′X A , (7.44)

R̂ = X , (7.45)

f ′′ X̂ = −1

3
Rf ′ +

2

3
f − f ′′′X2 − (φ+A) f ′′X . (7.46)

If we then choose coordinates to make the Gaussian curvature ‘K’ of the spherical sheets

proportional to the inverse square of the radius co-ordinate ‘r’, (such that this coordinate

becomes the area radius of the sheets), then this geometrically relates the ‘hat’ derivative

with the radial coordinate ‘r’. As we have already seen, K̂ = −φK, where the hat derivative,

defined in terms of the derivative with respect to the co-ordinate ‘r’, depends on the specific

choice of ea (orthogonal to ua and the sheet). If we choose the ‘radial’ co-ordinate as the

area radius of the spherical sheets, then the most natural way to define the hat derivative

of any scalar M would be

M̂ =
1

2
r φ

dM

dr
, (7.47)

for a static spacetime.

From the structure of (7.43)-(7.46) we can already deduce some important results

for spherically symmetric static solutions in a general f(R) gravity in an absolutely

co-ordinate independent manner. These results are important because they can be used as

guidelines to understand the behaviour of any proposed f(R) model in this setting and to

design new ones.
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7.3.1.1 Necessary condition for existence of solutions with vanishing Ricci

scalar.

It is evident from the equations (7.43)-(7.46) above, the function f must be of class C3 at

R = 0, which implies,

|f ′(0)| < +∞ , |f ′′(0)| < +∞ , |f ′′′(0)| < +∞ . (7.48)

Also, we impose the conditions

f(0) = 0, R = 0 (7.49)

Note that the condition of vanishing of the Ricci scalar throughout the manifold automati-

cally implies X = 0.

Now there are two possibilities:

1. f ′(0) 6= 0: In this case we see the system reduces to the following:

φ̂ = − 1

2
φ2 − E , (7.50)

Ê = − 3

2
φE , (7.51)

Â = −A (φ+A) , (7.52)

together with the constraint:

E +Aφ = 0 . (7.53)

Also, the local Gaussian curvature of the 2-sheets is given as

K = −E +
1

4
φ2 . (7.54)

The parametric solutions for these variables (when K > 0 ) are

φ =
2

r

√
1− 2m

r
, A =

m

r2

[
1− 2m

r

]− 1
2

,

E =
2m

r3
, K =

1

r2
, (7.55)

where m is the constant of integration. Solving for the metric using the definition of

these geometrical quantities we get [66]

ds2 = −
(

1− 2m

r

)
dt2 +

dr2

(1− 2m
r )

+ r2 dΩ2 , (7.56)
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which is the metric of a static Schwarzschild exterior.

It is also interesting to note that the above result is consistent with the condi-

tions f ′ > 0 and f ′′ > 0, which guarantee the attractive nature of the gravitational

interaction and the absence of tachyons [27]. This shows that there may be a

connection between this solution and the very nature of the gravitational interaction.

The presence of this solution can have interesting consequences on the validity

of these models on the Solar System level. In particular if one concludes that the Sun

behaves very close to a Schwarzschild solution, the experimental data of the solar

system would help constraining these models.

2. f ′(0) = 0, f(0) = 0: In this case (7.43)-(7.46) are identically satisfied for all values

of φ and A that guarantees R = 0 and hence X = 0 1. Hence for all models with

f ′(0) = 0, any solution with vanishing Ricci Scalar in GR would be a solution to

the above system. This is interesting as it shows that fourth-order gravity in this

context can present the same solutions of GR plus additional solutions. For example,

the Reissner-Nordström solution which represent the space time outside a spherically

symmetric charged body, is a solution to the system (7.43)-(7.46) even if no electric

charge is present. Similarly a static spherically symmetric solution for a perfect fluid

interior with equation of state p = (1/3)µM (for example Hajj-Boutros solution [161]

or the special case of Whittaker solution [162]) can be a solution of this system in the

absence of any standard fluid.

The presence of solutions of the type in paragraph (2) shows that when the conditions given

in paragraph (1) are not satisfied the Schwarzschild solution is not a unique static spherically

symmetric solution. Such results hint towards a violation of the general Jebsen-Birkhoff

theorem in its classical form for fourth-order gravity.

7.3.1.2 Necessary condition for existence of solutions with constant scalar cur-

vature

Solutions with constant Ricci scalar are characterised by the fact that R = R0 = const.

and, as consequence, X, X̂ = 0. Imposing these conditions on (7.43)-(7.46) and supposing

1It has been noted by several authors that the situation f(0) = f ′(0) = 0 is somewhat pathological,
since the scalar degree of freedom of this theory, f ′(R) corresponds to a Brans-Dicke scalar field in the
equivalent Brans-Dicke representation, with Brans-Dicke parameter ω = 0, it also corresponds (apart from
a constant) to the inverse effective gravitational coupling of the theory. Therefore, f ′ = 0 corresponds to
infinite gravitational coupling Geffective = G/f ′ and to a singularity of the field equations. However, one
can formally set f ′ ≡ 0 and look for solutions of the field equations with this constant value of f ′. A similar
situation has been pointed out to occur in scalar-tensor gravity [156–160]



Univ
ers

ity
 of

 C
ap

e T
ow

n

7.3. Spherically symmetric spacetimes in higher order gravity 100

it to be at least of class C3 in R = R0 one obtains

f ′0

[
φ̂+ φ

(
1

2
φ−A

)]
=

1

3
R0 f

′
0 −

2

3
f0 , (7.57)

f ′0

[
Â+A(A+ φ)

]
=

1

6
f0 −

1

3
R0 f

′ , (7.58)

−R0 f
′
0 + 2f0 = 0 , (7.59)

where f ′(R0) = f ′0 etc. A first solution exists if

f ′0 6= 0 , f0 6= 0 , 2f0 −R0 f
′
0 = 0 . (7.60)

If we take instead f ′0 6= 0, f0 = 0 one obtains again the Schwarzschild solution (R0 = 0).

Finally another solution can be achieved if

f ′0 = 0 , f0 = 0 , R = R0 , X, X̂ = 0 , (7.61)

is satisfied. As in the previous Subsection 7.3.1.1, in this case also, any constant Ricci

scalar solution in GR would identically be a solution of the system.

The relation (7.60) was already found by Barrow and Ottewill [163] in the cosmo-

logical context and later rediscovered in [164]. It relates the value of the constant Ricci

scalar with the universal constants in the action. For example if we have the Lagrangian

as R− 2Λ, which is the Lagrangian for GR with the cosmological constant, we must have,

as is well known, the relation R0 = 4Λ.

7.3.1.3 The curious case of R2 gravity.

As we have already explained, the condition for existence of solutions with covariantly

constant scalar curvature connects the constant curvature with the universal constants of

the Lagrangian. However, this is not the case for f(R) = KR2. In fact for this type of

Lagrangian the third condition of (7.60) is identically satisfied. This means that we can

have a constant curvature solution for any value of the curvature. Thus for R2 gravity,

the ‘cosmological’ constant term in a Schwarzschild-dS/AdS spacetime becomes a local

constant of integration just like the mass. Hence in this theory we can have two distant

stars behaving like two different Schwarzschild-dS/AdS object with different values of the

constant. Unfortunately this case is rather pathological since it corresponds to the case in

which the trace of the field equations in vacuum, 3�f ′+f ′R−2f = 0 is satisfied identically

for constant Ricci scalar, whereas usually it may be satisfied for special values of R. In any

case this model is ruled out by solar system experiments (see [165,166]).
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7.3.2 Locally spatially homogenous vacuum spacetimes

Now if we consider the case when φ = A = 0 with R = 0, f(0) = 0 and f ′(0) 6= 0, and

choosing ua =
√

2m
t − 1 δat , where m is a constant, solving (7.3)-(7.17) results in the unique

solution

Θ =
3m− 2t

t
√
t(2m− t)

, Σ = − 2

3

3m− t
t
√
t(2m− t)

, (7.62)

E = − 2m

t3
, K =

1

t2
. (7.63)

Again solving for the metric components we get

ds2 = − dt2

(2m
t − 1)

+

(
2m

t
− 1

)
dr2 + t2 dΩ2, (7.64)

which is a part of the Schwarzschild solution inside the Schwarzschild radius.

7.3.3 Jebsen-Birkoff like theorem in f(R) gravity

We can now give a generalisation of the Jebsen-Birkhoff-like theorem in f(R) gravity:

For f(R) gravity, where the function f is of class C3 at R = 0,with f(0) = 0

and f ′(0) 6= 0, the only spherically symmetric solution with vanishing Ricci

scalar in empty space in an open set S, is one that is locally equivalent to part

of maximally extended Schwarzschild solution in S.

It is also interesting to note that the covariant scale defined by equation (7.42) is equal to

the Schwarzschild mass m.

7.4 Spherically symmetric spacetime with an almost vanish-

ing Ricci scalar

From the previous section we know that for f(R) gravity with R = 0, f(0) = 0 and

f ′0 6= 0, all spherically symmetric vacuum spacetimes are locally isomorphic to a part of

Schwarzschild solution. In [80], the vacuum LRS II spacetime was perturbed by putting

in a small amount of general matter that obeys WEC and DEC, to find out the amount

of matter that can be introduced to the spacetime for the Jebsen-Birkhoff theorem to

remain approximately true. Analogously, we investigate here the necessary conditions

on the magnitude and spatial and temporal derivatives of the Ricci scalar, for the above

theorem to remain approximately true. In this section we only deal with the static exterior

background as it is astrophysically more interesting.
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We have seen that the vacuum spherically symmetric spacetime with vanishing Ricci

scalar has a covariant scale given by the Schwarzschild radius which sets up the scale for

perturbation. Going by our description of the energy momentum tensor for vacuum LRS

II spacetime in f(R) gravity as consisting of curvature terms µR, pR, ΠR and QR and

taking a static Schwarzschild background, then the set {R, Θ, Σ}, describes the first-order

quantities (according to the Stewart and Walker lemma [90]). Performing a series expansion

of f(R) in the neighbourhood of R = 0 gives f(R) = f ′0R as a first-order term. Neglecting

the higher order quantities in (7.12)-(7.15), we get the following equations

µ =
f ′′0
f ′0

(
X̂ + φX

)
, (7.65)

p =
f ′′0
f ′0

(
R̈−AX − 2

3
φX − 2

3
X̂

)
, (7.66)

Q = − f
′′
0

f ′0

(
Ẋ −A Ṙ

)
, (7.67)

Π =
f ′′0
3f ′0

(
2X̂ − φX

)
. (7.68)

and

Rf ′0 = 3f ′′0

(
X̂ + (A+ φ)X − R̈

)
(7.69)

for the trace. Thus we see that by perturbing the Ricci scalar in the neighbourhood of R = 0

background, we are actually generating a ‘curvature fluid’ having the above thermodynamic

quantities. Therefore the situation here is similar to introducing small amount of matter

on a Schwarzschild background in GR. In [80] the sufficient conditions for the smallness of

these matter perturbations in order for the spacetime to remain almost Schwarzschild are

given. These conditions in our case become[
|R|

K(3/2)
,
f ′′0

(1/2) |Ṙ|
K(3/2)

,
f ′′0 |R̈|
K(3/2)

,
f ′′0

(1/2) |X|
K(3/2)

,
f ′′0 |X̂|
K(3/2)

,
f ′′0 |Ẋ|
K(3/2)

]
<< C, (7.70)

and [
f ′′0

3/2 |...R|
K(3/2)

,
f ′′0

3/2 |Ẍ|
K(3/2)

]
<< C . (7.71)

Similar to [80], we also need to specify in what domain these equations will hold. This is

important because eventually we will reach a radius r where these inequalities may no longer

hold; but this will be unphysical. On the basis that in the real universe asymptotically flat

regions are always of finite size, being replaced at larger scales by galactic and cosmological

conditions, we will describe the local domain where our results will apply by [79],

− Defining finite infinity F as a 2-sphere of radius RF � C surrounding the star: this

is infinity for all practical purposes [167,168].
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− Assuming the relations (7.70), (7.71) hold in the domain DF defined by rS < r < RF

where rS > C is the radius of the surface of the star.

We now linearise the field equations (7.3)-(7.17) by neglecting the higher order quantities

and we obtain the following equations for the first-order quantities

Σ̂− 2

3
Θ̂ ≈ − 3

2
φΣ +

f ′′0
f ′0

(
Ẋ −A Ṙ

)
, (7.72)

Θ̇ ≈ − f ′′0
2f ′0

(
3R̈− X̂ − (3A+ φ)X

)
, (7.73)

Σ̇− 2

3
Θ̇ ≈ f ′′0

f ′0

[
R̈−X

(
A+

1

2
φ

)]
, (7.74)

φ̇ ≈
(

Σ− 2

3
Θ

)(
A− 1

2
φ

)
− f ′′0
f ′0

(Ẋ −A Ṙ) , (7.75)

Ė ≈
(

3

2
Σ−Θ

)
E + φA f ′′0

2f ′0
Ṙ , (7.76)

1

3
Rf ′0 ≈ f ′′0 X̂ − f ′′0 R̈+ (φ+A) f ′′0 X . (7.77)

From these equations we can see that if (7.70) and (7.71) are locally satisfied at any epoch,

within the domain DF , then the spatial and temporal variation of the expansion Θ and the

shear Σ are of same order of smallness as the perturbations and derivatives of the Ricci

scalar. In that case a timelike vector will not exactly solve the Killing equations (7.26)-

(7.29) in general, although it may do so approximately. To see this explicitly, let us set

Φ = 0 in the Killing equation (7.25)

∇a(Ψub) +∇b(Ψua) = 0 . (7.78)

and we once again try to solve the equation for a Killing vector of the form ξa = Ψua with

an aim to see how close the vector ξa = Ψua is to Killing vector in the perturbed scenario.

We consider the scalars constructed by multiplying the killing equation by the vec-

tors ua, ea, the projection tensor Nab and utilise equation (6.23) and (6.26) to facilitate

the calculation. We know that multiplying the Killing equation by ua ub and ua eb results

in equations for which the solution of the scalar Ψ always exists. The constraints obtained
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from multiplying the Killing equation by ea eb and Nab only vanish if Θ = Σ = 0, however,

we are considering here the perturbed case which is characterised by non-zero Θ and Σ.

As a result not all the equations are completely solved in general. If we set up (7.78) as a

symmetric tensor

Kab := ∇a(Ψub) +∇b(Ψua) . (7.79)

we can instead say that there always exists a non-trivial solution of the scalar Ψ for which

|Kab u
a ub| and |Kab u

aeb| vanishes and that |Kab e
a eb|2 and |KabN

ab|2 are non-zero since

Θ and Σ are non-zero. However, if the conditions[ |Kab u
a ub|2

K3/2
,
|Kab u

a eb|2
K3/2

,
|Kab e

a eb|2
K3/2

,
|KabN

ab|2
K3/2

]
<< C (7.80)

are satisfied, then we can say that ξa = Ψua is close to a Killing vector and that the

spacetime is approximately static.

Subtracting the background equation (7.54) from (7.21), we get(
1

3
Θ− 1

2
Σ

)2

≈ f ′′0
2f ′0

φX . (7.81)

Similarly subtracting (7.50) from (7.3) we get(
1

3
Θ + Σ

)(
2

3
Θ− Σ

)
≈ f ′′0

2f ′0

(
2X̂ + φX

)
. (7.82)

Using the above equations (7.81) and (7.82), we immediately see that if (7.70) is locally

satisfied, then the following conditions are satisfied

|Kab e
a eb|2 = Ψ2

(
1

3
Θ + Σ

)2

� C K3/2 , (7.83)

|KabN
ab|2 = Ψ2

(
2

3
Θ− Σ

)2

� C K3/2 . (7.84)

It follows that there always exists a timelike vector that satisfies (7.80). This vector then

almost solves the Killing equations in S and hence the spacetime is almost static in S.

Moreover, the resultant field equations are the zeroth-order equations (7.50)-(7.53) with an

addition of O(ε) terms.

7.5 Almost spherically symmetric spacetimes

In order to define the notion of an almost spherically symmetric spacetime, we begin by

writing the geodesic deviation equation for a family of closely spaced geodesics on the 2-



Univ
ers

ity
 of

 C
ap

e T
ow

n

7.6. Almost spherically symmetric spacetime with vanishing Ricci scalar 105

sheets with tangent vectors ψa(v) and separation vectors ηa(v) (where ‘v’ is the parameter

which labels the different geodesics) as [169],

ψe δe(ψ
f δfη

a) = K(ψa ψd η
d − ηa ψc ψc) . (7.85)

We have used here the definition of the two dimensional Riemann curvature tensor equation

(7.20).

We now define a vector V a by

V a = ψe δe(ψ
f δfη

a)−K0(ψa ψd η
d − ηa ψc ψc) , (7.86)

where K0 is the Gaussian curvature for a spherical sheet at any point P , which can be

fixed by making the vector V a = 0 at that point. This vector vanishes for exact spherical

2-sheets in any open neighbourhood of P but doesn’t for non-spherical sheets. As a result,

from the magnitude of V a(=
√
Va Va) we obtain a covariant measure of the deviation from

the spherical symmetry.

We can now define an almost spherically symmetric spacetime in following the way [169]:

Any C3 spacetime with positive Gaussian curvature everywhere, which admits

a local 1+1+2 splitting at every point is called an almost spherically symmetric

spacetime, if and only if the following quantities are either zero or much smaller

than the scale defined by the modulus of the proportionality constant in equation

(7.42):

− The magnitude of all the 2-vectors (defined by
√
ψaψa) and PSTF 2-tensors

(defined by
√
ψabψab) described in equation (6.51).

− The magnitude of vector V a defined above in (7.86).

7.6 Almost spherically symmetric spacetime with vanishing

Ricci scalar

We have seen in Section 7.4, that subject to the conditions (7.70) and (7.71), on any

spherically symmetric local domain DF , the spacetime remains “almost” Schwarzschild

for all the f(R)-theories that admit a Schwarzschild background, (that is, a background

characterised by a vanishing Ricci scalar with f(0) = 0 and f ′0 6= 0). We now wish to see

to what extent the conditions hold when we perturb this geometry.

As previously stated, the sheet will be a genuine two surface if and only if the com-

mutator of the time and hat derivative do not depend on any sheet component and the
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sheet derivatives commute in (6.42) and (6.45). Following from the definition of almost

spherical symmetry, in the perturbed scenario we will require the sheet to be an almost

genuine 2-surface such that the commutator of the time and hat derivative almost do not

depend on any sheet component and the sheet derivatives almost commute. In that case we

see from (6.42) and (6.45) that the scalars Ω and ξ will be of the same order of smallness

as the other vectors and PSTF 2-tensors on the sheet. Furthermore, from the constraint

equation (6.85), we see that the scalar H is of the same order of smallness. Dealing once

again with the static exterior background, we now have it that the set of 1+1+2 variables

[R, Θ, Σ, Ω, H, ξ, Aa, Ωa, Σa, αa, aa, Ea, Ha, Σab, Eab, Hab, ζab] , (7.87)

are all of O(ε) with respect to the invariant scale. We shall treat these variables along

with their derivatives and the dot - ‘ ˙ ’ and delta - ‘δ’ derivatives of {A, E , φ} as first-order

relative to the background terms.

Performing a series expansion of f(R) in the neighbourhood of R = 0 and neglect-

ing the higher order quantities in (6.34)-(6.40), we obtain

µ ≈ f ′′0
f ′0

(
X̂ + φX + δ2R

)
, (7.88)

p ≈ f ′′0
f ′0

[
R̈−AX − 2

3

(
φX + X̂ + δ2R

)]
, (7.89)

Q ≈ − f
′′
0

f ′0

(
Ẋ −A Ṙ

)
, (7.90)

Qa ≈ − f
′′
0

f ′0
δaṘ , (7.91)

Π ≈ f ′′0
3f ′0

(
2X̂ − φX − δ2R

)
, (7.92)

Πa ≈
f ′′0
f ′0

(
δaX −

1

2
φ δaR

)
, (7.93)

Πab ≈
f ′′0
f ′0
δ{aδb}R . (7.94)

Linearising the field equations (6.54)-(6.84) and substituting in equations (7.88) - (7.94)

we obtain:

Evolution equations

The evolution equations for ξ and ζ{ab} are:

ξ̇ =

(
A− 1

2
φ

)
Ω +

1

2
εabδ

aαb +
1

2
H ; (7.95)
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ζ̇{ab} =

(
A− 1

2
φ

)
Σab + δ{aαb} − εc{aH c

b} ; (7.96)

Vorticity evolution equation:

Ω̇ =
1

2
εabδ

aAb +A ξ , (7.97)

Ω̇ā +
1

2
εabÂb =

1

2
εab

(
δbA−A ab − 1

2
φAb

)
; (7.98)

Shear evolution:

Σ̇ā −
1

2
Âa =

1

2
δaA+

(
A− 1

4
φ

)
Aa +

1

2
A aa − Ea +

f ′′0
2f ′0

(
δaX −

1

2
φ δaR

)
, (7.99)

Σ̇{ab} = δ{aAb} +A ζab − Eab +
f ′′0
2f ′0

δ{aδb}R ; (7.100)

Magnetic Weyl evolution:

Ḣ = − εabδaEb − 3ξ E , (7.101)

Ḣā = − 3

2
E εabAb −

1

2
εabδ

bE − 1

2
(φ− 2A) εabEb + εc{dδ

dE c
a} − E

f ′′0
4f ′0

εabδ
bR , (7.102)

Ḣ{ab} + εc{aÊ c
b} = εc{aδ

cEb} +
3

2
E εc{aζ c

b} −
(

1

2
φ+ 2A

)
εc{aE c

b} ; (7.103)

Electric Weyl evolution:

Ėā +
1

2
εabĤb =

3

4
E
(
εabΩ

b + Σa − 2αa

)
−
(

1

4
φ+A

)
εabHb

+
3

4
εabδ

bH+
1

2
εbcδ

bHca , (7.104)

Ė{ab} − εc{aĤ c
b} = − εc{aδcHb} +

(
1

2
φ+ 2A

)
εc{aH c

b} −
3

2
E Σab ; (7.105)

Evolution equation for êa:

ȧā − α̂ā =

(
1

2
φ+A

)
αa −

(
1

2
φ−A

)(
Σa + εabΩ

b
)

+ εabHb +
f ′′0
2f ′0

δaṘ . (7.106)

Propagation equations

ξ̂ = −φ ξ +
1

2
εabδ

aab ; (7.107)

ζ̂{ab} = −φ ζab + δ{aab} − Eab −
f ′′0
2f ′0

δ{aδb}R ; (7.108)
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Shear divergence:

Σ̂ā − εabΩ̂b =
1

2
δaΣ +

2

3
δaθ − εabδbΩ−

3

2
φΣa

+

(
1

2
φ+ 2A

)
εabΩ

b − δbΣab +
f ′′0
f ′0
δaṘ , (7.109)

Σ̂{ab} = δ{aΣb} − εc{aδcΩb} −
1

2
φΣab − εc{aH c

b} ; (7.110)

Vorticity divergence equation:

Ω̂ = − δaΩa + (A− φ) Ω ; (7.111)

Electric Weyl Divergence:

Êā =
1

2
δaE − δbEab −

3

2
E aa −

3

2
φ Ea + E f ′′0

4f ′0
δaR ; (7.112)

Magnetic Weyl divergence:

Ĥ = − δaHa −
3

2
φH− 3E Ω , (7.113)

Ĥā =
1

2
δaH− δbHab +

3

2
E
(

Ωa − εabΣb
)
− 3

2
φHa . (7.114)

Together with the linearised curvature trace equation

1

3
R =

f ′′0
f ′0

[
X̂ − R̈+ (φ+A)X + δ2R

]
. (7.115)

From the evolution equations (7.95) - (7.106), it is evident that if the background is

static with Σ = Θ = 0 or “almost static” with Σ = Θ = O(ε), the time derivatives

of the first-order quantities at a given point are all of the same order of smallness

as themselves. Hence if at a given epoch these quantities are of O(ε), then there ex-

ists an open set S in the domain DF where these quantities continue to be of the same order.

This time if we project the Killing equation (7.25) for a Killing vector of the form

ξa = Ψua, with Na
c u

b, Na
c e

b and Na
c N

b
d , we obtain the following additional constraints on

the 2-sheet:

−δcΨ + ΨAc = 0 , (7.116)

Ψ Σc = 0 , (7.117)

Ψ Σcd = 0 . (7.118)
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The solution of (7.116) always exists and as we have just seen, the LHS of equations (7.117)

and (7.118) remains O(ε) in S. Hence a timelike vector almost solves the Killing equations,

making the spacetime almost static.

We have therefore demonstrated an important result: For any f(R) theory of grav-

ity which admits a Schwarzschild background, if (7.70) and (7.71) are locally satisfied at

any epoch, (within the domain DF ) and the sheet derivatives of these scalars are of the

same order of smallness as themselves, then there exists an open set S in DF where the

conditions continue to hold. The size of the open set S depends on the parameters of

theory (namely the quantity f ′′(0)) and the covariant scale (which is the Schwarzschild

mass of the star) and we can always tune the parameters of the theory such that the

perturbations continue to remain small for a time period which is greater than the age

of the universe. In that case the local spacetime around almost spherical stars will be

stable in the regime of linear perturbations. The results of a more rigorous analysis of the

perturbation equations (done in the next chapter) is consistent with the above result.
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Chapter 8

Perturbations around a

Schwarzschild black hole in f (R)

gravity

The interest in studying black hole (BH) perturbations comes from the important role

they play in gravitational wave physics. There are various ways by which a black hole

can be perturbed: by incident gravitational waves, by objects falling into it or by aspher-

ical gravitational collapse. The understanding of perturbations of black holes therefore

provides insight into a different number of areas of interest in gravitational radiation studies.

Perturbations of Schwarzschild BH at linear order in GR have been studied through

metric perturbations, the Newman-Penrose (NP) formalism [87] as well as the 1+1+2

covariant formalism [65]. In the metric approach, fluctuations of the spacetime geometry

are determined by closed wave equations: the Regge -Wheeler equation for odd parity and

the Zerilli equation in the even parity. These wave equations act on linear combinations

of the functions (and their derivatives) appearing in the perturbed metric, but these

functions do not determine directly the gravitational waves which they represent, nor are

they frame independent, as a general co-ordinate transformation would not preserve the

wave equation. Using the 1+1+2 approach, Clarkson and Barrett [65] demonstrated that

both the odd and even parity perturbations may be unified in a covariant wave equation

equivalent to the Regge -Wheeler equation. This wave equation is characterised by a single

covariant, frame- and gauge-invariant, transverse-traceless tensor.

In this chapter we present the complete set of 1+1+2 covariant and gauge invariant

evolution, propagation and constraint equations linearised around the Schwarzschild

background in f(R) gravity. As in the previous chapter, we keep in mind that gauge

invariance holds for set of variables (7.87) that vanish in the background and we neglect

110
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the products of these O(ε) variables in (6.54)-(6.87).

Furthermore, we also derive a covariant and gauge-invariant wave equation which

describes the perturbations of a Schwarzschild black hole spacetime in FOG. This equation

is the covariant form of the Regge -Wheeler equation, corresponding to a master variable

that constitutes a gauge and frame invariant transverse-traceless (TT) tensor.

8.1 Linearised field equations

The linearised field equations (evolution, propagation and constraint) around a

Schwarzschild background (with vanishing Ricci scalar) for f(R)- gravity are as fol-

lows:

Evolution equations:

φ̇ =

(
2

3
Θ− Σ

)(
A− 1

2
φ

)
+ δaα

a +
f ′′0
f ′0

(A Ṙ− Ẋ) , (8.1)

ξ̇ =

(
A− 1

2
φ

)
Ω +

1

2
εabδ

aαb +
1

2
H , (8.2)

Ω̇ =
1

2
εabδ

aAb +A ξ , (8.3)

Σ̇− 2

3
Θ̇ = −φA− δaAa − E −

f ′′0
2f ′0

(
δ2R+ (φ+ 2A)X − 2R̈

)
, (8.4)

Ė =

(
3

2
Σ−Θ

)
E + εabδ

aHb + φA f ′′0
2f ′0

Ṙ , (8.5)

Ḣ = − εabδaEb − 3ξ E , (8.6)

Σ̇ā − εabΩ̇b = δaA+

(
A− 1

2
φ

)
Aa − Ea +

f ′′0
2f ′0

(
δaX −

1

2
φ δaR

)
, (8.7)
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Ėā +
1

2
εabĤb =

3

4
E
(
εabΩ

b + Σa − 2αa

)
−
(

1

4
φ+A

)
εabHb

+
3

4
εabδ

bH+
1

2
εbcδ

bHca , (8.8)

Ḣā = − 3

2
E εabAb −

1

2
εabδ

bE − 1

2
(φ− 2A) εabEb + εc{dδ

dE c
a} − E

f ′′0
4f ′0

εabδ
bR , (8.9)

ζ̇{ab} =

(
A− 1

2
φ

)
Σab + δ{aαb} − εc{aH c

b} , (8.10)

Σ̇{ab} = δ{aAb} +A ζab − Eab +
f ′′0
2f ′0

δ{aδb}R , (8.11)

f ′′0
f ′0
δaṘ = δaΣ−

2

3
δaθ + 2 εabδ

bΩ + 2 δbΣab + φ
(

Σa + εabΩ
b
)

+ 2εabHb . (8.12)

Propagation equations:

φ̂ = − 1

2
φ2 − E + δaa

a − f ′′0
2f ′0

(
2X̂ + φX + δ2R

)
, (8.13)

ξ̂ = −φ ξ +
1

2
εabδ

aab , (8.14)

Ω̂ = − δaΩa + (A− φ) Ω , (8.15)

Â − Θ̇ = −δaAa − (A+ φ)A+
f ′′0
2f ′0

[
3R̈− δ2R− X̂ − (3A+ φ)X

]
, (8.16)
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Σ̂− 2

3
Θ̂ = − 3

2
φΣ− δaΣa − εabδaΩb +

f ′′0
f ′0

(
Ẋ −A Ṙ

)
, (8.17)

Ê = −3

2
φ E − δaEa − E

f ′′0
2f ′0

X , (8.18)

Ĥ = − δaHa −
3

2
φH− 3E Ω , (8.19)

ȧā − α̂ā =

(
1

2
φ+A

)
αa −

(
1

2
φ−A

)(
Σa + εabΩ

b
)

+ εabHb +
f ′′0
2f ′0

δaṘ , (8.20)

Σ̂ā − εabΩ̂b =
1

2
δaΣ +

2

3
δaθ − εabδbΩ−

3

2
φΣa

+

(
1

2
φ+ 2A

)
εabΩ

b − δbΣab +
f ′′0
f ′0
δaṘ , (8.21)

Âa − 2Σ̇a = − δaA− 2

(
A− 1

4
φ

)
Aa −A aa + 2Ea −

f ′′0
f ′0

(
δaX −

1

2
φ δaR

)
. (8.22)

Êā =
1

2
δaE − δbEab −

3

2
E aa −

3

2
φ Ea + E f ′′0

4f ′0
δaR , (8.23)

Ĥā =
1

2
δaH− δbHab +

3

2
E
(

Ωa − εabΣb
)
− 3

2
φHa , (8.24)

ζ̂{ab} = −φ ζab + δ{aab} − Eab −
f ′′0
2f ′0

δ{aδb}R , (8.25)

Σ̂{ab} = δ{aΣb} − εc{aδcΩb} −
1

2
φΣab − εc{aH c

b} , (8.26)
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Ė{ab} − εc{aĤ c
b} = − εc{aδcHb} +

(
1

2
φ+ 2A

)
εc{aH c

b} −
3

2
E Σab , (8.27)

Ḣ{ab} + εc{aÊ c
b} = εc{aδ

cEb} +
3

2
E εc{aζ c

b} −
(

1

2
φ+ 2A

)
εc{aE c

b} . (8.28)

f ′′0
2f ′0

(
δaX −

1

2
φδaR

)
= −1

2
δaφ+ εabδ

bξ + δbζab − Ea , (8.29)

Trace equation:

f ′′0 (X̂ − R̈) =
1

3
Rf ′0 − f ′′0

[
δ2R+ (φ+A)X

]
. (8.30)

Constraints:

δaΩ
a + εabδ

aΣb = (2A− φ) Ω +H , (8.31)

It is important to notice here the freedom of choice of frame vectors demonstrated in absence

of evolution equations for A, Aa, and αa, along with the absence of a propagation equation

for aa in the preceding equations. This holds true in any spacetime, as one can choose the

frame vectors at any point, whose motion cannot be uniquely determined and must be put

into the equations by hand [65].

8.2 Gauge invariant variables

Not all the set of covariant equations in the previous section comply with the Stewart and

Walker criterion [90] due to the isolated zeroth-order background terms that appear in them.

By taking the angular derivatives of the background variables {E , φ, A}, we introduce the
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following set of gauge invariant characters

Wa = δaE , (8.32)

Ya = δaφ , (8.33)

Za = δaA , (8.34)

that vanish in background and are therefore gauge invariant. Applying the commutation

relations (6.43) and (6.44) and substituting for the subsequent equations, we obtain the

linearised propagation and evolution equations for the variables defined as

Ẇa =
3

2
φ E
(
αa + Σa − εabΩb

)
+

3

2
E
(
δaΣ−

2

3
δaΘ

)
+ εbcδaδ

bHc +Aφ f ′′0
2f ′0

δaṘ ,

Ẏa =

(
1

2
φ2 + E

)(
αa + Σa − εabΩb

)
+ δaδcα

c

+

(
1

2
φ−A

)(
δaΣ−

2

3
δaΘ

)
+
f ′′0
f ′0

(
A δaṘ− δaẊ

)
, (8.35)

Ŵa = − 2φWa −
3

2
E Ya +

3

2
φ E aa − δaδbEb − E

f ′′0
2f ′0

δaX , (8.36)

Ŷa = −Wa −
3

2
φYa +

(
1

2
φ2 + E

)
aa + δaδba

b − 1

3
δaR

+
f ′′0
f ′0

[(
A+

1

2
φ

)
δaX +

1

2

(
E − 1

4
φ2

)
δaR+

1

2
δ2δaR− δaR̈

]
, (8.37)

Ẑa = −
(

3

2
φ+ 2A

)
Za −AYa +A (φ+A) aa + δaΘ̇

− δaδbAb +
f ′′0
f ′0

(
δaR̈−A δaẊ

)
. (8.38)

These equations add no new information to what has already been given in the previous

section however, they are now gauge invariant. We can then replace the equations (8.5),

(8.1), (8.18), (8.13) and (8.16) with (8.35), (8.35), (8.36), (8.37) and (8.38) respectively.

The following additional constraints are obtained by application of the commutation

relation (6.44) to the variables E , φ and A, respectfully,

εabδ
aW b = 3φ E ξ , (8.39)

εabδ
aY b =

(
φ2 + 2E

)
ξ , (8.40)

εabδ
aZb = 2A (φ+A) ξ . (8.41)
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It is also useful to replace (8.4) with

δaΣ̇−
2

3
δaθ̇ = −Wa −AYa − φZa − δaδbAb −

f ′′0
2f ′0

[
δ2δaR− 2δaR̈

+

(
E − 1

4
φ2

)
δaR+ (φ+ 2A) δaX

]
. (8.42)

Introducing the new variables eliminates possible spherically symmetric perturbations (for

which they are automatically zero) but since all the vacuum spherically symmetric static

spacetimes are Schwarzschild, we do not lose any true degrees of freedom by adding them

[65].

8.3 Commutation relations

The following are the relevant commutation relations for the derivatives of first-order

scalars, vectors and tensors.

Scalars:

˙̂
Ψ− ˆ̇Ψ = A Ψ̇ , (8.43)

δaΨ̇− (δaΨ)· = 0 , (8.44)

δaΨ̂− (̂δaΨ) =
1

2
φ δaΨ , (8.45)

δ[aδb]Ψ = 0 ; (8.46)

Vectors:

˙̂
Ψā − ˆ̇Ψā = A Ψ̇ā , (8.47)

δ[aδb]Ψc =

(
1

4
φ2 − E

)
Nc[aΨb] ; (8.48)

Tensors:

˙̂
Ψ{ab} − ˆ̇Ψ{ab} = A Ψ̇{ab} , (8.49)

δ[aδb]Ψcd =

(
1

4
φ2 − E

)(
Nc[aΨb]d +Nd[aΨb]c

)
. (8.50)

8.3.1 Harmonics

In order to solve the equations, it is standard procedure to decompose the first order vari-

ables harmonically (see, [50, 121]). The perturbations can be described by a linear system

of ODEs by introducing spherical and time harmonics.
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8.3.2 Spherical harmonics

In analogy with the decomposition of perturbations into scalar, vector and tensor modes

in FLRW models [2, 48], the perturbations of the Schwarzschild geometry fall into two

distinct classes based on how they transform on the surfaces of spherically symmetry: even

(electric) and odd (magnetic) modes 1. Given the spherical symmetry of the background,

we can naturally choose spherical harmonics as our basis functions. This allows us to write

the first-order variables as an infinite sum of the basis functions such that the scalars can

be expanded as a sum of even modes, and the vectors and tensors can be expanded in

sums over both the even and odd modes. Moreover, the angular derivatives appearing in

the equations are effectively replaced by a harmonic coefficient. The presentation in this

section follows [65] where the harmonics were introduced in a covariant manner.

We introduce the set of dimensionless spherical harmonic functions Q = Q(`,m),

with m = −`, · · · , `, defined in the background, as being eigenfunctions of the spherical

laplacian operator such that

δ2Q = − `(`+ 1)

r2
Q , (8.51)

and Q is covariantly constant, Q̂ = 0 = Q̇. The function r is covariantly defined by

r̂

r
=

1

2
φ , ṙ = 0 = δa r , (8.52)

and gives a natural length scale to the spacetime. It is included in the definition (8.51)

so that the equation propagates (and evolves as well). The factor r is defined up to an

arbitrary constant, which reflects our freedom in choosing a particular normalisation of the

spherical harmonic functions. We will find it most useful for our purposes to fix this freedom

by identifying r with the usual Schwarzschild parameter through covariantly defining

r ≡
(

1

4
φ2 − E

)−1/2

. (8.53)

We stress that these relations and harmonics are defined in the background only; we only

expand first-order variables, so zeroth-order equations are sufficient.

We now look successfully at the expansion of first order scalars, vectors and tensors

in spherical harmonics and the replacements which must be made in the equations.

1Alternatively, as first depicted in Chandrasekhars book [87], odd perturbations are called axial and even
perturbations are called polar.
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Scalar harmonics

We can now expand any first order scalar Ψ in terms of these functions as

Ψ =
∞∑
`=0

m=∑̀
m=−`

Ψ
(`,m)
S Q(`,m) = ΨSQ, (8.54)

where the sum over ` and m is implicit in the last equality. We use the subscript S to

remind us that Ψ is a scalar, and that a spherical harmonic expansion has been made. Due

to the spherical symmetry of the background, we can drop m in the equations.

The replacements which must be made for scalars when expanding the equations in

spherical harmonics are

Ψ = ΨSQ , (8.55)

δaΨ = r−1ΨSQa , (8.56)

εabδ
bΨ = r−1ΨS Q̄a , (8.57)

where the sums over ` and m is implicit.

Vector harmonics

We define the even (electric) parity vector spherical harmonics for ` ≥ 1 as

Q(`)
a = r δaQ

(`) (8.58)

in order to have

Q̂a = 0 = Q̇a . (8.59)

The vector harmonic (8.58) obeys

δ2Qa = (1− ` (`+ 1)) r−2Qa , (8.60)

where the (`) superscript is implicit. Similarly we define odd (magnetic) parity vector

spherical harmonics as

Q̄(`)
a = r εabδ

bQ(`) ⇒ ˆ̄Qa = 0 = ˙̄Qa , δ2Q̄a = (1− ` (`+ 1)) r−2Q̄a . (8.61)

Note that Q̄a = εabQ
b ⇔ Qa = − εabQ̄b, so that εab is a parity operator. The crucial

difference between these two types of vector spherical harmonics is that Q̄a is solenoidal 2,

so

δaQ̄a = 0 , while δaQa = −` (`+ 1) r−1Q . (8.62)

2Unlike Qa, we cannot construct a scalar from Q̄a.
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Note also that

εabδ
aQb = 0 , and εabδ

aQ̄b = ` (`+ 1) r−1Q . (8.63)

The harmonics are orthogonal: Qa Q̄a = 0 (for each `), which implies that any first-order

vector Ψa may be expanded as

Ψa =

∞∑
`=1

Ψ
(`)
V Q(`)

a + Ψ̄
(`)
V Q̄(`)

a = ΨVQa + Ψ̄V Q̄a . (8.64)

Again, we implicitly assume a sum over ` in the last equality, and the V reminds us that

Ψa is a vector expanded in spherical harmonics.

As in the scalar case, the replacements to be made for vectors when expanding the

equations in spherical harmonics are

Ψa = ΨVQa + Ψ̄V Q̄a , (8.65)

εabΨ
b = − Ψ̄VQa + ΨV Q̄a , (8.66)

δaΨa = − ` (`+ 1) r−1ΨVQ , (8.67)

εabδ
aΨb = ` (`+ 1) r−1Ψ̄VQ , (8.68)

δ{aΨb} = r−1
(
ΨVQab − Ψ̄V Q̄ab

)
, (8.69)

εc{aδ
cΨb} = r−1

(
Ψ̄VQab + ΨV Q̄ab

)
. (8.70)

Tensor harmonics

We define even and odd tensor spherical harmonics for ` ≥ 2 as

Qab = r2 δ{aδb}Q, ⇒ Q̂ab = 0 = Q̇ab, δ2Qab =
[
φ2 − 4E − ` (`+ 1) r−2

]
Qab ,

(8.71)

Q̄ab = r2 εc{aδ
cδb}Q , ⇒ ˆ̄Qab = 0 = ˙̄Qab, δ2Q̄ab =

[
φ2 − 4E − ` (`+ 1) r−2

]
Q̄ab,

(8.72)

and as in the vector case they are orthogonal: Qab Q̄
ab = 0, and parity inversions of one

another: Qab = −εc{aQ̄ c
b} ⇔ Q̄ab = εc{aQ

c
b} . Any first-order tensor may be expanded as

Ψab =

∞∑
`=2

Ψ
(`)
T Q

(`)
ab + Ψ̄

(`)
T Q̄

(`)
ab = ΨTQab + Ψ̄T Q̄ab . (8.73)
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For the tensors, the following replacements must be made when expanding the equations in

spherical harmonics:

Ψab = ΨTQab + Ψ̄T Q̄ab , (8.74)

εc{aΨb}
c = − Ψ̄TQab + ΨT Q̄ab , (8.75)

δbΨab =

[
1− 1

2
`(`+ 1)

]
r−1

(
ΨTQa − Ψ̄T Q̄a

)
, (8.76)

εc{dδ
dΨa}

c = −
[
1− 1

2
`(`+ 1)

]
r−1

(
Ψ̄TQa + ΨT Q̄a

)
. (8.77)

Odd and even parity perturbations

Expanding the perturbations into spherical harmonics, leads to two independent subsets,

namely:

Odd perturbations :

VO ≡{ĒT, HT, Σ̄T, ζ̄T} ,
{ĒV, HV, Σ̄V, ΩV, ĀV, ᾱV, āV, X̄V, ȲV, Z̄V} ,
{HS, ΩS, ξS} ; (8.78)

Even perturbations :

VE ≡ {ET, H̄T, ΣT, ζT} ,
{EV, H̄V, ΣV, Ω̄V, AV, αV, aV, XV, YV, ZV} ,
{ΣS, θS RS} ; (8.79)

whose resulting equations are decoupled from each other as presented in Appendix B. We

remark on the ‘parity switching’ which occurs between the sets of variables. We see in the

equations that these terms always appear alongside a ‘εab’ factor relative to other variables

(e.g., Hab and Ωa appear alongside ‘εab’ relative to variables such as Eab and Σa).

8.3.3 Time harmonics

Since the background is static, we can resolve the perturbations into temporal harmonics.

We do this by performing a Fourier analysis of the time derivatives of the first order

quantities by decomposing them into their Fourier components. This corresponds to

assuming a harmonic time dependence eiωτ for the first order variables.

We define the time harmonic functions T (ω) in the background by

Ṫ (ω) = i ω T (ω), T̂ (ω) = 0 = δaT
(ω); ω̇ = 0 = δaω , (8.80)



Univ
ers

ity
 of

 C
ap

e T
ow

n

8.4. The Regge -Wheeler equation 121

and from the commutation relation between the dot- and hat- derivatives this must satisfy

ˆ̇T +A Ṫ = 0 , (8.81)

which in turn implies

ω̂ = −Aω , (8.82)

in the background. Integrating (8.82) in terms of r, gives

ω = σ

(
1− 2m

r

)−1/2

=
2σ

φ r
, (8.83)

where σ is a constant. Then any first order variable Ψ may be expanded as

Ψ =
∑
ω

Ψ(ω)T (ω) = Ψ(ω)T (ω) , (8.84)

and the dot - ‘.’ derivatives of these first order quantities can be replaced by factors of i ω.

8.4 The Regge -Wheeler equation

In GR, the gravitational perturbations of Schwarzschild black holes are governed by a single

second-order wave equation, namely the Regge -Wheeler equation [88] describing the odd

perturbations and the Zerilli equation [89] describing the even perturbations. Both the

equations satisfy a Schrödinger-like equation and it was demonstrated in [170] that the

effective potentials of these equations have the same spectra. The aim of this section is to

perform an analysis of the perturbation of Schwarzschild BH in f(R) gravity and find a

reduced set of master variables which obey a closed set of wave equations for these theories.

8.4.1 Gravitational perturbations

If we consider very large distances from the source (A = φ = 0), the gravitational pertur-

bations should be well approximated by a plane wave, with ea lying in the direction of

propagation. On imposing the condition that R vanishes at infinity, the plane gravitational

waves are described by the 1+1+2 transverse-traceless tensors Eab, Hab, Σab and ζab only,

as in GR. Otherwise there is coupling with the scalar waves which can produce other

scalar and vector modes. The tensors Eab and Hab represent the tidal and gravitational

waves effects in analogy with the propagation of electromagnetic waves. However, the wave

equations for these two tensors do not close in the general frame.

If we now consider the general case, apart from the four TT tensors, a number of

other TT tensors can be constructed from the δ- derivatives of vectors and scalars in

general, for example, δ{aWb}, δ{aab}, δ{aδb}Ω, etc. The wave equations for these tensors
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can be calculated by applying the wave operator Ψ̈{ab} − ˆ̂
Ψ{ab} for a tensor Ψab [65].

The aim here is to calculate all such possible wave equations involving these tensors

and systematically eliminating unwanted terms until a closed equation is obtained. In

particular, calculating the wave operator for ζab and δ{aWb}, we notice that they contain

similar terms.

We consider the case of the wave operator for ζab, that is, ζ̈{ab} − ˆ̂
ζ{ab}, where we

apply the following steps:

− Take the dot- derivative across (8.10), for which the resulting evolution equations are

substituted.

− Substitute for aa from (8.36) and αa from (8.35) (while utilising the constraints (8.39),

(8.12),(8.41), (8.29) and (8.40) to substitute for ξ, Σ, Za even Ya and odd Ya respec-

tively).

What follows is an expression consisting of only δ{aWb} and ζab, for the odd harmonics

and δ{aXb}, ζab and δ{aδb}R for the even harmonics. We can recast this result as the wave

equation,

M̈{ab} − ˆ̂
M{ab} −A M̂{ab} +

(
φ2 + E

)
Mab − δ2Mab = 0 , (8.85)

where we have introduced the dimensionless, gauge-invariant, frame-invariant, transverse-

traceless tensor Mab defined as

Mab =
1

2
φ r2 ζab −

1

3
r2 E−1 δ{aWb} +

f ′′0
3 f ′0

r2 δ{aδb}R . (8.86)

The even part of (8.86) is coupled to the curvature term and as a result we have to include

the trace equation (8.30) to achieve closure. On the other hand, the curvature term

vanishes for the odd part of Mab and this leaves the tensor in exactly the same form as in

the GR case [65].

We can expand (8.85) into scalar harmonics as

M̈ − ˆ̂
M −A M̂ +

[
` (`+ 1)

r2
+ 3E

]
M = 0 , (8.87)

where we let M = {MT,MT}. In appropriate coordinates the wave equation (8.87) is the

Regge -Wheeler equation.

We note that both the odd and even parity parts of Mab satisfy the same wave

equation (8.87). We convert to the parameter r, using (7.47) and (7.55) and use the time
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harmonics in (8.87) to get

κ2M − 2m

r2

[
2m− r
r

]
dM

dr
+

(
2m− r
r

)2 d2M

dr2
+

(
2m− r
r

)[
` (`+ 1)

r2
− 6m

r3

]
M = 0 .

(8.88)

We then make a change to the ‘tortoise’ coordinate r∗, which is related to r by

r∗ = r + 2m ln
( r

2m
− 1
)
, (8.89)

thus, (8.88) can be written in the form(
d2

dr2
∗

+ κ2 − VT
)
M = 0 , (8.90)

with the effective potential VT

VT =

(
1− 2m

r

)[
` (`+ 1)

r2
− 6m

r3

]
, (8.91)

which is the Regge -Wheeler potential for gravitational perturbations.

8.4.2 Scalar perturbations

The trace equation (8.30), which is a wave equation in R, corresponds to scalar modes that

are not present in standard GR but occur in f(R) theories of gravity due to the extra scalar

degree of freedom. The equation constitutes the same generalised Regge -Wheeler equation

for massive scalar perturbations on LRS background spacetimes in GR with

U2 =
f ′0

3 f ′′0
, (8.92)

as the effective mass of the scalar.

To obtain the familiar Regge -Wheeler equation we first rescale R as R = r−1R and

use (8.52) and (7.50) to rewrite equation (8.30) in the form

R̈ − ˆ̂R−AR̂ −
(
E − U2 + δ2

)
R = 0 . (8.93)

Proceeding as in the previous case, we introduce scalar spherical harmonics to (8.93) re-

sulting in

R̈S − ˆ̂RS −AR̂S −
[
E − Ũ2 − `(`+ 1)

r2

]
RS = 0 . (8.94)
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where Ũ2 = C1/(3 C2). Converting to the parameter r and then the tortoise coordinate, we

get (
d2

dr2
∗

+ κ2 − VS
)
R = 0 , (8.95)

where

VS =

(
1− 2m

r

)[
` (`+ 1)

r2
+

2m

r3
+ Ũ2

]
. (8.96)

The expression (8.96) is the Regge -Wheeler potential for the scalar perturbations.

8.4.3 Potential profile

The form of the wave equations (8.90) and (8.95) describing black hole perturbation is

similar to a one dimensional Schrödinger equation and hence their potentials correspond to

a single potential barrier. We consider the potential profile of the effective potentials VT and

VS in a Schwarzschild BH case for the gravitational and the scalar fields respectively. The

Regge -Wheeler equations (8.90) and (8.95) can be made dimensionless by dividing through

by the BH mass m. In this way the potential (8.91) and (8.96) become

VT =

(
1− 2

r

)[
` (`+ 1)

r2
− 6

r3

]
, (8.97)

VS =

(
1− 2

r

)[
` (`+ 1)

r2
+

2

r3
+ u2

]
, (8.98)

where we have defined (and dropped the primes),

κ′ = mκ , r′ =
r

m
, u = mŨ . (8.99)

For the gravitational perturbations and the scalar perturbations with u = 0, the derivative

of the potential has two roots with one in the unphysical region r < 0 and the other one in

the region r > 0 corresponding to a maximum of the potential. For the scalar perturbations

with u 6= 0, the potential has three extrema: one in the unphysical region r < 0, a local

maximum at rmax and local minimum at rmin in the region r > 0 such that 2 < rmax < rmin.

Fig 8.1 shows a plot of the potential for the gravitational field for different ` as a

function of the Schwarzschild radial coordinate r (a) and the tortoise coordinates r∗ (b).

In this case the potential decays exponentially near the horizon and as 1/r2 at spatial

infinity.

Fig 8.2 shows the potential profile for the scalar field for several values of u = at ` = 2 (a)

and at ` = 3 (b). We see that the effect of the massive term Ũ is to move the asymptotic

value of the potential of scalar perturbations up by u2 and to cause the potential to

approach the asymptotic value slowly. Moreover, increasing the value of u causes the peak

of the potential to broaden as the peak value decreases relative to the asymptotic value.
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Figure 8.1: The potential for the gravitational field for ` = 2, 3, 4 as a function of r (a) and r∗ (b).

The peak eventually disappears altogether when u exceeds a certain value.

Figure 8.2: The potential for the scalar field for different u as a function of r for ` = 2 (a) and
` = 3 (b).

8.4.4 Black hole stability

We now investigate the stability of the BH to external perturbations which is pegged on

the BH remaining bounded in time as it evolves.

The asymptotic behaviour of the solutions to (8.90) is given as

ψ ∼ e± iκr∗ , (8.100)
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both at the horizon and at spatial infinity. If we consider purely imaginary solutions such

that we set κ = − iα, then the time dependence of the perturbations becomes eαt which

is unstable owing to the fact that they grow exponentially with time. For regularity, we

require the perturbation to fall off to zero at spatial infinity and therefore choose

ψ ∼ e−αr∗ . (8.101)

If (8.101) is to be matched to the solution that goes to zero at the horizon, then dψ/dr∗ < 0,

d2ψ/dr2
∗ < 0 within the range −∞ to ∞. However, this is not the case since the potential

is positive definite and as a result (8.90) never becomes negative in this range. Since the

solutions cannot be matched, this rules out perturbations that grow exponentially with

time. This proof of stability of a BH was first provided by [91]. Later on [171,172] provided

a more rigorous proof using the energy integral. This can be derived by first considering

the time dependent version of (8.90)(
∂2

∂t2
− ∂2

∂r2
∗

+ VT

)
M = 0 . (8.102)

(recalling that the time dependence was replaced by the factor eiωt when we considered

time harmonics). Multiplying (8.102) by the partial derivative of the complex conjugate

M∗ with respect to time and then adding the resulting equation to its complex conjugate

we get

∂

∂r∗

(
∂M∗

∂t

∂M

∂r∗
+
∂M∗

∂t

∂M

∂r∗

)
=

∂

∂t

(∣∣∣∣∂M∂t
∣∣∣∣2 +

∣∣∣∣∂M∂r∗
∣∣∣∣2 + VT |M |2

)
. (8.103)

After integration by parts over r∗ from −∞ to∞, the left-hand side of (8.103) vanishes and

we obtain the energy integral,

∫ ∞
−∞

(∣∣∣∣∂M∂t
∣∣∣∣2 +

∣∣∣∣∂M∂r∗
∣∣∣∣2 + VT |M |2

)
dr∗ = constant . (8.104)

Since VT is positive definite, the integral (8.104) bounds the integral of |∂M/∂t|2 and

it therefore excludes exponential growing solutions to (8.90). The above energy integral

argument for stability falls short of a complete proof as it does not rule out perturbations

that grow linearly with t. Also, since we have only provided the bounds for integrals of M ,

the perturbation may still blow up as r →∞.

The proof of stability for the scalar perturbations depends on Ũ . The potential VS

in (8.96) remains positive definite subject to the condition

Ũ2 =
C1

3 C2
≥ 0 . (8.105)
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A different type of instability will be the tachyonic instabilities associated with these modes

if C1 ≤ 0. Both these instabilities do not arise, however, as we have shown in Chapter 7 that

the necessary conditions for the existence of a Schwarzschild BH solution in f(R) theories

are consistent with the requirement that C1 > 0 and C2 > 0.

8.4.5 Quasinormal modes

The gravitational wave radiation from a perturbed BH can in general be divided into three

components:

(i) an initial pulse emitted directly by the perturbation source depending on the initial

conditions;

(ii) an exponentially damped oscillation (ringing) at intermediate times characterised by

a single complex frequency, which doesn’t depend on the source but is characteristic

of the BH parameters;

(iii) a power-law tail that develops after the ringing at very late times.

The ringing phase is due to a superposition of quasinormal modes (QNMs) of the BH.

We see from (8.90) and (8.95) that for the f(R) Schwarzschild black hole, the linearised

equations lead to the same equations as for GR for gravitational and scalar perturbations

respectively. Comprehensive reviews on BH and QNMs can be found in [173–176].

The gravitational QNMs are solutions to the Regge -Wheeler equation (8.90) subject

to the boundary conditions

M ∼

 eiκr∗ for r∗ → −∞
e−iκr∗ for r∗ → +∞ .

(8.106)

These boundary conditions (8.106) represent purely outgoing waves at infinity (r ∼ r∗ →∞)

and purely ingoing waves at the horizon (r → 2m, r∗ → −∞). In other words we want to

discard unwanted contributions at the event horizon and at spatial infinity, as we do not

want gravitational radiation entering the spacetime from infinity to continue to perturb

the BH, nor do we want waves coming from the vicinity of the horizon due to external

sources like accretion of matter.

To obtain solutions to (8.90) and (8.95) requires discrete values of the frequency pa-

rameter κ called quasinormal frequencies and the solutions constructed from them are the

quasinormal modes. The quasinormal frequencies have both a real and imaginary part

which we write as

κ = <(κ) + =(κ) . (8.107)
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Since QNMs are characterised by the parameters of the BH [91], we expect the imaginary

part to be damped with time for each value of r∗ due to energy being radiated to infinity

or the horizon. If we then consider that in (8.90) and (8.95) that the time dependence

has been replaced by the factor eiωt, we expect to have ψ ∼ eiκ(t−r∗) at spatial infinity.

We see from this that =(κ) < 0 corresponds to a bound state since the solution (8.106)

vanishes exponentially for r∗ → +∞. This option for a negative imaginary part is

excluded since the potential VT decays towards spatial infinity and therefore disallows

these bound states. We can therefore only have =(κ) > 0 which corresponds to the solution

being damped with time but diverges exponentially as r∗ → +∞ on a hypersurface of

constant time; the same holds for the horizon. This consequence of divergence is balanced

out by the fact that it takes the signal an infinite time to reach, for example, spatial infinity.

The scalar QNMs correspond to solutions of (8.95) with

R ∼

 eiχr∗ for r∗ → −∞
e−iχr∗ for r∗ → +∞ ,

(8.108)

where χ =
√
κ2 − Ũ2 for the scalar field. For the choices =(κ) ≈ 0 and κ ≤ Ũ , there will be

no energy radiating into infinity. The sign of χ is chosen so as to be in the same complex

surface quadrant as κ.

8.4.5.1 Methods for computing quasinormal frequencies

There have been numerous attempts to calculate QNMs to high accuracy using numerical

and semi-analytical methods. Difficulties arise from, for example, the admixture of the

solutions such that the exponentially growing required solution gets contaminated by traces

of the unwanted solution which decreases exponentially as we approach the boundaries. In

1975, Chandrasekhar and Detweiler [170] computed numerically the first few modes and in

1985, Leaver [177] proposed the most accurate method to date. We list here some of the

methods that have been employed:

− Continued fraction method by Leaver [177], which was later improved by Nollert [178]

to cater for quasinormal frequencies with very large imaginary parts. This is based on

the observation that the Teukolsky equation is a special case of a class of spheroidal

wave equations that appear in the determination of the eigenvalues of the H+
2 ion. The

quasinormal frequencies are calculated from the recurrence relations constructed for

the coefficients of the series representation of the solutions of the equations governing

the perturbations.

− Laplace transforms approach by Nollert and Schmidt [179] where the QNMs are re-

garded as the poles of the Green’s function for the Laplace transformed solution of
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the time-dependent equations governing the perturbations.

− The inverted BH effective potentials approach by Mashhoon and Ferrari [180–182].

They provided an analytical approach to the problem by approximating the Regge -

Wheeler potential in the wave equation governing the perturbations with other po-

tentials. The parameters of these potentials are adjusted to obtain a good fit to the

Regge -Wheeler potential near its maximum. This method doesn’t allow for the de-

termination of frequencies with large imaginary parts as these highly damped modes

are more sensitive to changes in the potential far away from its maximum.

− WKB approach by Schutz, Will and Iyer [183–185]. This semi-analytical procedure is

based on reducing QNM problem into the standard JWKB treatment of scattering of

waves on the peak of the potential barrier in quantum mechanics. It involves relating

matching of the asymptotic WKB solutions at spatial infinity and the event horizon

with the Taylor expansion near the top of the potential barrier across the turning

points. A QNM is expected to have a frequency such that the square of the frequency

is approximately equal to the peak of the potential. The method works best for modes

with relatively small imaginary parts.

Other methods include the phase integral approach [186] and the monodromy technique

[187].

8.4.5.2 Results on gravitational field quasinormal modes

The low lying frequencies for gravitational QNMs start with comparatively large real parts

and small imaginary parts. The imaginary part grows, while the real part decreases until

it becomes almost zero at an overtone index n = 9 when ` = 2, to n = 41 when ` = 3.

This point corresponds to a mode whose frequency is (almost) purely imaginary with n

increasing with ` and is very close to the so-called algebraically special mode [188] located

at

mκ ≈ ± i(`− 1)`(`+ 1)(`+ 2)/12 . (8.109)

This algebraically special mode approximately marks the onset of the asymptotic high

damping regime, such that the real part of the modes higher than (8.109) starts growing

and approaches its asymptotical value. Fig 8.3 shows the low gravitational QNMs 3 of

Schwarzschild black holes, calculated using the continued fraction method [177,178].

Weakly damped modes: Mashhoon [180], Schutz and Will [183] have shown that the complex

frequency for the fundamental quasinormal frequency (n = 0) and frequencies with small

imaginary parts (small n) can be estimated from the relation

(2mκ)2 ≈ 4V (rm)− 4 i

(
n+

1

2

)(
−2

d2V (rm)

dr2
∗

)1/2

(8.110)

3Numerical data of 1000 QNMs is available from http://qnms.way.to



Univ
ers

ity
 of

 C
ap

e T
ow

n

8.4. The Regge -Wheeler equation 130

where the peak of the potential barrier is at rm.

Highly damped modes: Using a variation of Leaver’s method, Nollert [178] showed

that the real part of the gravitational quasinormal frequencies approaches a constant value.

Various other numerical and analytical techniques [187,189] confirm his results which show

|κ=| → ∞ , while κ< → T ln 3 , (8.111)

where T = (8πm)−1 is the Hawking temperature.

Modes with large `: The large multipole limit of QNMs has been determined ana-

lytically as

2mκ ≈ 1

3
√

3
[2`+ 1 + i (2n+ 1)] (8.112)

in [181,182,185,190].

8.4.5.3 Results on scalar field quasinormal modes

For the scalar field perturbations, studies have shown that the mass of the field has crucial

influence on the damping rate of the QNMs. Using the WKB approximation [191–193],

it was found that when the massive term u of the scalar field increases, the damping

rate decreases. The WKB method that was used in this analysis is valid for n < ` and

within this restriction, the approximation breaks down for large u. This is due to the

potential losing its maximum as it drops relative to the asymptotic value (see Fig 8.2).

The procedure requires modification [194] to avoid this problem.

Figure 8.3: Plot of the first 60 QNMs for ` = 2 and ` = 3.
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Later calculations using Leaver’s method showed that as a result of the decreasing

damping rates, for certain values of u, there are QNM oscillations with arbitrary long

life [195, 196]. These ‘almost’ purely real modes are called quasiresonant modes, a term

originally coined by Ohashi and Sakagami [195]. It has also been found that there is a

threshold value of u above which the QNMs may disappear, at least for the lower overtones

only. The higher overtones will continue to decay with time [196].

It is important to note that the massive u term affects the lower QNMs only as was

observed in [196]. They showed that for asymptotically high overtones (n → ∞), the real

part of the frequencies approaches the same asymptotical value ln 3(8πm)−1 as in the

gravitational field case (8.111).

In GR the possible sources of massive scalar QNMs are from the collapse of objects

made up of self-gravitating scalar fields (‘boson’ stars) [197–199], in situations where the

massless field gains an effective mass [200] or as scalar field dark matter [201]. In order to

illustrate what these results mean for f(R) theories of gravity we restrict our attention to

the ` = 0 multipole of the field. From [195], the cut-off mass at which the QNMs disappear

for these modes is approximately at mŨ = 0.4 − 0.5 and from PPN constraints [43] for

these theories we obtain the bound for Ũ as

Ũ2 =
C1

3C2
� 2

L2
(8.113)

where L is the smallest length scale on which Newtonian gravity has been observed. Recent

results [202] place at L ∼ 10µm and using this we can set (8.113) as

Ũ � 1.4× 105m−1 (8.114)

Given these details, we can estimate that the mass of the BH associated with the disap-

pearance of the QNMs

BH mass� 4µm . (8.115)

Such a BH could only have been formed from density fluctuations in the early universe

[203, 204]. What is more, if these primordial BH are to be detected now, they would have

to have an initial mass of subatomic scales (∼ 10−16m) [205]. These results apply to QNMs

at lower overtones and even then, QNMs are short-ranged, making their detection currently

unfeasible [176].
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Chapter 9

Solutions to the perturbation

equations

9.1 Structure of the equations

The structure of the system of governing equations for the perturbations is divided into

three distinct types of equations: evolution, propagation, and constraint equations. The

true degrees of freedom of this system is governed by the reduced set of master variables

M and R, which obey the covariant, gauge-invariant tensorial equations (8.85) and (8.30),

respectively. All other variables are then related to these master variables by quadrature,

plus frame degrees of freedom. Harmonic expansion of the perturbation equations allows

us, at any radial position from the black hole, to structure the equations in matrix form.

The harmonic variables in (8.78) and (8.79) can then be treated as ‘coordinates’, that is,

as dictating a 34-dimensional vector space V34. We then analyse the system of equations

to obtain solutions. In this section, we itemise the procedure for this analysis, as set out

in [65].

− After adopting spherical harmonic decomposition (see Appendix B), the number of

variables in the system of equations is 34 in total. Let V denote the 34-dimensional

vector consisting of these odd VO and even VE variables as presented in (8.78) and

(8.79) respectively, such that

V = (Odd variables | Even variables) = (VO,VE) . (9.1)

− Further, inserting time harmonics into these equations (as discussed in Subsection

8.3.3) so that dot derivatives are everywhere replaced by iω, results in:

• 29 propagation equations which constitute a linear system of ODE’s

V̂29 = P V , (9.2)

132
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where V29 denotes the vector consisting of the 29 elements of V which have a

propagation equation and P is the 29 × 34 propagation matrix, which contains

iω terms comprising evolution equations which have hat derivatives in them.

• 26 algebraic relations between the variables, comprising 18 equations from the

evolution equations without a propagation derivative in them and 7 constraints.

These take the form, in matrix notation

F V = 0 , (9.3)

where F is a 25× 34 matrix. In view of the fact that the constraints propagate

and evolve consistently, except for the constraint (8.41), the rows that make up

the constraints are just linear combinations of the 18 rows that make up the

algebraic relations derived from the evolution equations. The constraint (8.41)

is excluded because it is not represented in the evolution equations owing to the

fact that there is no equation for Za. This means that 6 of the rows in F give

no additional information, resulting in F being of rank 19.

− So far, the formulation has resulted in 34 unknowns and 19 algebraic relations in the

system which corresponds to 34− 19 = 15 degrees of freedom. This means that there

are 15 variables to be solved, which we denote by v, and write

V = C v , (9.4)

where C is a 34× 15 matrix of the form
←− 6 −→ ←− 9 −→

odd even

 . (9.5)

− We now split the vector v into two parts: v = (vD,vF ), a ‘determined’ part containing

10 variables which have an individual propagation equation and a part containing

15 − 10 = 5 variables which do not, corresponding to 5 frame degrees of freedom. If

we insert (9.4) into the propagation equation, (9.2) we get the underlying propagation

equation for the solution vector as

v̂D = B vD + A vF , (9.6)

where B is a 10× 10 matrix and A is 10× 5.

− Finally, since we can arbitrarily choose the 5 frame degrees of freedom (vF ), we find

that there are only 10−5 = 5 true dynamical propagation equations. This means that
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only 5 components of vD are unknowns for which we have propagation equations.

9.2 Determining the full solution

9.2.1 Odd

9.2.1.1 General frame

The problem of finding a solution is in deciding which variables to choose as the ba-

sis. If we don’t specify a frame choice, and choose our solution vector as, say, vDO
=

(Σ̄T, ζ̄T, W̄V, ĀV), then there are two undetermined variables, which we can choose to be

vFO
= (ΩV, āV); the 4-dimensional dynamical system in general is therefore

v̂D = Bg
O vD + AO vF . (9.7)

where the ‘g’ stands for ‘general frame’. The remaining variables are linear combinations

of elements of vDO
, except Σ̄V, which depends on ΩV and nothing depends on āV.

9.2.1.2 Specific frame

To concur with [65] for the GR case, we will choose the frame such that ȲV = ĀV = 0 which

implies that ξS = ΩS = āV =WV = Z̄V = ΩV = 0. The basis vector for the solution is

chosen to be

v =

(
MT

M̂T

)
; (9.8)
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that is, the governing DE will be the Regge-Wheeler equation. With regard to (9.4), the

remaining variables in terms of this solution basis vector are given by

ĒT
HT

Σ̄T

ζ̄T

ĒV
HV

Σ̄V

ΩV

ĀV

ᾱV

āV

WV

ȲV

Z̄V

HS

ΩS

ξS



=



−J/2φ2r4 −2/φr2(
−4L+ J + 8r2ω2 + 16

)
/4iωφr4 − J/2iωφ2r4

1/iωr2 2/iωφr2

2/φr2 0

l/φr3 0

0 −l/iωφr3

−l/iωφr3 0

0 0

0 0

l/iωφr3 0

0 0

0 0

0 0

0 0

−Ll/iωφr4 0

0 0

0 0



(
MT

M̂T

)
(9.9)

where for the sake of brevity we have used the aliases

L = ` (`+ 1) , (9.10)

l = (`− 1) (`+ 2) = L− 2 . (9.11)

9.2.2 Even

9.2.2.1 General frame

Without specifying a frame choice, we can choose the set vDE
= (ΣT, ζT, ΣV +

Ω̄V, aV WV, RS), in terms of which we can solve the system of equations. In this case

there are three undetermined variables which we can choose to be vF E
= (Ω̄V, aV, ΘS);

following which our 6-dimensional differential equation in general is

v̂E = Bg
E vD + AE vF . (9.12)

The remaining variables are linear combinations of elements of vDE
, except ΣV, which

depends on Ω̄V and ΣS, which depends on ΘS.
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9.2.2.2 Specific frame

As in the odd case, we choose our solution vector, AV = YV = 0 (and hence ZV = 0). In

this case we will choose MT, M̂T, RS and R̂S as the basis vector for the full solution. The

expressions for the obtained solutions are rather huge and so in the interest of brevity we

introduce the variable M as a function of the basis variables such that

M =
1

24c3C1 (L2 l2 −A2(4L+ 4− c3)2r4 ω2)
{−i ω φ r[96L l(L+ 1)− 3(8l (L+ 4)

+3(8L− 16− c3)c3)φ2r2]C1MT − 72 iωAφ3 r5 c3 C1 M̂T

−i ω φ r[(8 l(L+ 4) + (8L− 16− c3)c3)φ2 r2 − 32L l(L+ 1)]C2RS

+ (24 i ωAφ3r5)c3 C2 R̂S

}
. (9.13)

Utilising (9.13), we now have for our basis vector

v =


M
M̂T

RS

R̂S

 , (9.14)

with the solution given by,
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where

J = 3φ2 r2 − 4 , (9.15)

Γ = c2
3C1 + 4(A2 − E)[(2l(J + 4) + 3(L+ 2)c3)C2 +

8c3C1

φ2 − 4E ]r

+
2[(4 + J)E + 3c3r]ω

2c3C2

r
, (9.16)

χ = 1/72{36(L(c3 + 8) + 8− c3)c3C2 + 64(A2 − E)r2(l(J + 4)C2 + c3C1r
2)

− 3[(J + 4)(8L+ 8− c3)C2 − 4(c3C1 − C2E(16 + 8L+ 3c3 − 16ω2φ2)

+ 8A2C2(2 + lω2φ2))r2]c3} , (9.17)

Π = (2l − c3)(4L+ 4− c3)c3C2 + 2E [2c3C1r
4 + (2l(4 + J) + 3(2 + L)c3)r2C2

+ 2c3(−4− 4L+ c3)C2ω
2] , (9.18)

Ψ = 3(4L− c3)[4(J − 4L)(L+ 1) + (J + 2L)c3 − c2
3]C2 − 2c3r(3r)− 2[(4L− c3)C1

+ 2(8− 4L+ c3)C2ω
2] , (9.19)

∆ = 3r2{4Llc3C1 + 6Ll(−6− 6L+ c3)φ2C2 + [16(L+ 1)3 + 8(2(L− 4)L− 1)c3

+ (L+ 1)c2
3]ω2C2}+ 6Ll(4 + 4L− c3)(6 + 6L− c3)C2 − 8lLc3r(C1 + 6C2ω

2) .

(9.20)
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Chapter 10

Conclusions and outlook

In this thesis we have used the 1+1+2 covariant approach to General Relativity (GR)

to study exact solutions and perturbations of rotationally symmetric spacetimes in f(R)

gravity, one of the most widely studied classes of fourth order gravity.

We began in Chapter 2 by introducing f(R) theories of gravity and presenting the

general equations for these theories. We then considered the problem of matching different

regions of spacetime in Chapter 3. The aim was to construct inhomogeneous cosmological

models, shedding light on the problem of constructing realistic inhomogeneous cosmologies

in the context of f(R) gravity. In all of the cases studied, we found that it is impossible to

satisfy the required junction conditions without the large-scale behaviour reducing to that

expected from Einstein’s equations with a cosmological constant. For theories with analytic

f(R), this suggests that the usual treatment of weak-field systems as perturbations about

Minkowski space may not be compatible with late-time acceleration driven by anything

other than a constant term of the form f(0), which acts as a cosmological constant. In

the absence of Minkowski space as a suitable background for weak-field systems, one

must then choose and justify some other solution around which to perform perturbative

analyses. For theories with f(R) = Rn we find that no known spherically symmetric

vacuum solutions can be matched to an expanding FLRW background. This includes the

absence of any Einstein-Straus-like embeddings of the Schwarzschild exterior solution in

FLRW spacetimes. On this note it would be interesting to study the physical consequences

of ‘jumps’ in the Ricci scalar and/or in the normal derivative of the Ricci scalar across

the boundary. As is well known from the Israel-Darmois junction conditions, a jump in

the second fundamental form gives rise to surface stress-energy and surface tension on

the matching surface that can, for example, be used to stabilise gravitational vacuum

condensate stars [206]. In a similar way, it is plausible that relaxing the extra matching

conditions in f(R) theories could give rise to surface terms that might be of physical

interest. This has been studied in the context of brane-world cosmology in [35].

139
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Chapter 3, was also devoted to studying strong lensing in f(R) = Rn gravity. We

showed that the bending angle is dependent of the details of the theory of gravity, (in this

case the value of the parameter n). We also showed that the lens mass as calculated for

a small deviation from GR increases exponentially with increasing n. The radius of the

Einstein ring was found to decrease with increasing n, and it was also found that multiple

rings exist for certain intervals of n. The multiple rings are a novel feature of fourth order

gravity and cannot be accounted for in GR without assuming the existence of a second

companion source, a star forming region or lensing by a singular isothermal sphere in two

planes. The magnification of the ring, however, remains unchanged up to small deviations

from GR. The aforementioned conclusions are valid for n < 1.23 but from [37] we see that

the solar system constraints limit (n − 1) < 10−19 and hence put stronger constraints for

the theory of gravity than strong lensing. However, pedagogically it is interesting to find

some novel observational signatures of strong lensing in higher order gravity theories, that

would help to obtain constraints on the function f and consequently test the nature of

gravitational interaction in the strong field regime.

In Chapter 4 and 6 we provided an extensive review of both the 1+3 and 1+1+2

covariant approaches to f(R) theories of gravity. In the 1+3 formalism, a time-like flow ua

is introduced which splits spacetime into ‘time’ and ’space’. The 1+1+2 further decomposes

the ’3-space’ relative to a preferred spatial vector ea. The full system of field equations

(evolution, propagation and constraint) of spacetime is derived from the Bianchi and Ricci

identities in the formalisms in a gauge invariant (co-ordinate independent) manner. From

the structure of these equations we can already obtain some important information about

the spacetime in general since the covariant decomposition of the spacetime introduces

quantities that have a clear physical or geometrical meaning, which gives a better under-

standing of the underlying physics which sometimes remains obscure in the metric approach.

Furthermore, in Chapter 5 we used the 1+3 formalism to study the role that shear

plays in the relationship between Newtonian and relativistic cosmologies in GR. Linearised

shear-free solutions are almost universally used to study the formation of structure by

gravitational instability in the expanding universe, and are believed to result in standard

local Newtonian theory. We found an that an exact result for the Einstein field equations

is that if pressure-free matter is moving in a shear-free way, then it must be either

expansion-free or rotation-free (valid for isentropic perfect fluids). This result had been

previously suggested to be true for any barotropic perfect fluid, but a proof has remained

elusive. We considered the case of barotropic perfect-fluid solutions linearised about an

FLRW geometry, and proved that the result remains true except for the case of a specific

highly nonlinear equation of state. We argue that this equation of state is nonphysical, and

hence the result is true in the linearised case for all physically realistic barotropic perfect
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fluids. This result, which is not true in Newtonian cosmology, demonstrates that the

linearised solutions, believed to result in standard local Newtonian theory, do not always

give the usual behaviour of Newtonian solutions. We also presented work from [64] which

shows that these results do not always hold true a general f(R) theory of gravity. They

demonstrated that in these theories there is at least one physically realistic non-vacuum

case in which both rotation and expansion is simultaneously possible. This result suggests

that there are situations where linearised FOG posses properties with Newtonian theory

that are not valid in GR. Another interesting point that emerged from our analysis is that

there exists a class of barotropic equation of state (however unphysical that may be) for

which the usual shear-free result can be avoided in the linearised case. It would be an

interesting problem to see whether this same class of equations of state (or some similar

class) allows shear-free rotating and expanding solutions for the full nonlinear Einstein

equations for a barotropic perfect fluid.

In Chapter 7 we proceeded to apply the 1+1+2 covariant approach to determine

the conditions for the existence of spherically symmetric vacuum solutions of these fourth

order field equations. We proved a Jebsen-Birkhoff like theorem for f(R) theories of gravity

and set the necessary conditions required for the existence of Schwarzschild solution in

these theories. In order to study the perturbations of Schwarzschild black holes in this

context, we discussed under what circumstances we can covariantly set up a scale in the

problem. We showed that subject to certain conditions holding true the spacetime remains:

a) “almost” Schwarzschild when we perturb the spacetime by keeping spherical symmetry

and perturbing the Ricci scalar around R = 0; b) “almost spherically symmetric” with

respect to the covariant scale when we perturbed the spherical symmetry. The size of the

open set S where this holds depends on the parameters of theory (namely the quantity

f ′′(0)) and the covariant scale (which is the Schwarzschild mass of the star). As a result

of this analysis we can make the deduction that one can always tune the parameters of

the theory such that the perturbations continue to remain small for a time period which

is greater than the age of the universe. In that case, the local spacetime around almost

spherical stars will be stable in the regime of linear perturbations.

Having set up the scale for the perturbations, we applied the 1+1+2 perturbative

procedure to study the perturbations of Schwarzschild black holes in f(R) gravity. From

the Stewart-Walker lemma which states that a variable is gauge invariant in the perturbed

spacetime if it vanishes in the background, it follows that since the exact Schwarzschild

black hole involves only scalars then all the vector and tensor quantities are gauge invariant

under linear perturbations. We were able to obtain a frame invariant TT tensor MT which

satisfies the Regge-Wheeler equation irrespective of parity. We showed that for the tensor

modes, the underlying dynamics in f(R) gravity is governed by a modified Regge-Wheeler
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tensor which obeys the same Regge-Wheeler equation as in GR. In order to close the

system the Ricci scalar wave equation is included which corresponds to scalar perturbations

that are not present in GR. Since the Regge-Wheeler equation governs the odd (axial)

perturbations the premise then would be to then work out a Zerilli tensor for the even

(polar) perturbations. The analysis would be involve rigorous mathematical manipulation

(and sufficient ingenuity) in FOG if one goes by the fact that its derivation in GR (which is

second order) is considerably more complicated than the derivation of the Regge-Wheeler

tensor due to the larger number of functions involved. Using the 1+1+2 formalism in

GR, [65] obtained a Zerilli tensor which satisfies the Zerilli equation. They also showed

that the Zerilli variable can expressed as a linear combination of the Regge-Wheeler tensor

and it’s derivative. This agrees with the results of [170] where they showed that Zerilli and

Regge-Wheeler equations are representations of the same physical situation. Using results

from Myung et al in [86] where using the metric method they derived the Zerilli equation

for the even gravitational perturbations in f(R) gravity, we can safely say at this point

(albeit cautiously) that the Regge -Wheeler tensor is the more fundamental one of the two

in f(R) gravity. The main difference between GR and f(R) gravities is the appearance of

the scalar perturbations. For the quasinormal modes (QNMs) that follow from the scalar

perturbations, we find that the possible sources of scalar QNMs for the lower multipoles

are from primordial Black Holes. Higher mass, stellar black holes are associated with

extremely high multipoles, which can only be produced in the first stage of black hole

formation. Since the scalar QNMs are short ranged, this scenario makes their detection

beyond the range of current experiments.

Finally, Chapter 9 is devoted to finding the solution to the perturbation equations.

The introduction of harmonics reduced the system into a linear system of algebraic

equations which simplified things and we were able to find the solution of the system using

matrix methods, while employing the freedom to choice of frame vectors.

As a final comment we would like to point out that there are a number of other ar-

eas of application of the 1+1+2 perturbation approach that are worth pursuing in the

context of f(R) gravity. The violation of Birkhoff’s theorem in its general form in FOG

means that Schwarzschild is not the only exact types of static spherically symmetric

solution in these theories. We can therefore consider extending the work done in this thesis

to exploring the application of gravitational wave propagation of these other spacetimes.

Following successful results in GR [66, 67], it would be interesting to use the 1+1+2

formalism to investigate whether a covariant Regge-Wheeler master equation can be found

for electromagnetic perturbations of the spacetime in FOG. We leave these and other

developments for future work.
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Appendix A

Useful relations for decomposing

In this appendix we present useful expressions from [65] for decomposing 1+3 quantities to

1+1+2 variables which were employed in Chapter 6. Given any relation in 1+3 notation,

these relations may be utilised to aid decomposition.

Any 1+3 spacetime 3-vectors xa, ya and PSTF 3-tensors ψab, φab, may be decom-

posed as

xa = Xea +Xa , (A.1)

ya = Y ea + Y a , (A.2)

ψab = ψ〈ab〉 = Ψ

(
eaeb −

1

2
Nab

)
+ 2Ψ(aeb) + Ψab , (A.3)

φab = φ〈ab〉 = Φ

(
eaeb −

1

2
Nab

)
+ 2Φ(aeb) + Φab . (A.4)

The following expansions from 1+3 quantities −→ 1+1+2 variables may be performed:

xa x
a = X2 +XaX

a , (A.5)

ηabcx
b yc =

(
εbcX

b Y c
)
ea + εab

(
Y Xb −X Y b

)
, (A.6)

x〈a yb〉 =
1

3
(2X Y −Xc Y

c)

(
eaeb −

1

2
Nab

)
+
[
X Y(a + Y X(a

]
eb) +X{a Yb} ,

(A.7)

ψab x
b =

(
X Ψ +Xb Ψb

)
ea −

1

2
ΨXa +X Ψa + ΨabX

b, (A.8)

ηcd〈ax
c ψ d

b〉 = εcdX
c Ψd

(
eaeb −

1

2
Nab

)
+Xεc{a Ψ c

b} −Xcεc{a Ψb} ,

+

[(
X Ψc − 3

2
ΨXc

)
εc(a + εcdX

c Ψd
(a

]
eb) , (A.9)
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ψab ψ
ab =

3

2
Ψ2 + 2Ψa Ψa + Ψab Ψab , (A.10)

ψc〈a φ
c

b〉 =

(
1

2
Ψ Φ +

1

3
Ψc Φc − 1

3
Ψcd Φcd

)(
eaeb −

1

2
Nab

)
+

[
1

2
Ψ Φ(a +

1

2
Φ Ψ(a + Ψc Φc(a + Φc Ψc(a

]
eb)

− 1

2
Ψ Φab −

1

2
Φ Ψab + Ψ{a Φb} + Ψc{aΦ

c
b} , (A.11)

ηabcψ
b
d φ

dc = eaεbcΨ
b
d Φdc +

3

2
εab

(
Φ Ψb −Ψ Φb

)
. (A.12)

For 1+3 covariant time derivative ‘ ˙ ’ and the fully orthogonally projected covariant spatial

derivative ‘D’ we find:

ẋ〈a〉 =
(
Ẋ −Xb α

b
)
ea +X αa + Ẋā , (A.13)

ψ̇〈ab〉 =
(

Ψ̇− 2Ψc α
c
)
eaeb −

1

2
Ψ̇Nab +

[
3Ψα(a + 2Ψ̇(ā − 2αc Ψc(a

]
eb)

+ 2Ψ(a αb) + Ψ̇{ab} , (A.14)

Dax
a = X̂ +X φ−Xa a

a + δaX
a , (A.15)

ηabcD
bxc =

(
2X ξ + εbcδ

bXc
)
ea + ξ Xa + εab

[
−X ab + δbX − X̂b − 1

2
φXb − ζbcXc

]
,

(A.16)

D〈axb〉 =
1

3

[
2X̂ − φX − 2Xc a

c − δcXc
](

eaeb −
1

2
Nab

)
+X ζab + δ{aXb}

+

[
X a(a + δ(aX + X̂(ā −

1

2
φX(a +Xc

(
ξεc(a − ζc(a

)]
eb) , (A.17)

Dbψab =

(
Ψ̂ +

3

2
φΨ− 2Ψb a

b + δbΨ
b −Ψbc ζ

bc

)
ea + Ψ̂ā +

3

2
φΨa +

3

2
Ψ aa −

1

2
δaΨ

−Ψab a
b + [−ξ εab + ζab] Ψb + δbΨab , (A.18)

ηcd〈aD
cψ d

b〉 =
[
3ξΨ + εcdδ

cΨd − εcdΨde ζce

](
eaeb −

1

2
Nab

)
+

(
−3

2
δcΨ +

3

2
Ψac + Ψ̂c +

1

2
φΨc + 2Ψd ζ

cd

)
εc(aeb)

+
[
5ξΨ(a + εcd

(
Ψd ζc(a + δcΨd(a

)]
eb) − εc{aδcΨa} + 2εc{aa

c Ψb}

+ εc{aΨ̂
c
b} +

1

2
φ εc{aΨ

c
b} −

3

2
Ψ εc{aζ

c
b} + ξΨab + εc{aΨb}dζ

cd . (A.19)
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Appendix B

Harmonically decomposed

equations

We present the system of harmonically decomposed ordinary differential equations. Each

vector and tensor equation produces two harmonics equations for each `, one of odd par-

ity and one of even parity, due to the orthogonality of the vector and tensor harmonics.

We implicitly assume a sum over ` in the equations, and the S, V, T subscripts indicate

respectively, scalar, vector and tensor terms. These remind us that a spherical harmonic

expansion has been made.

B.1 Propagation and evolution equations

ξ̇S =

(
A− 1

2
φ

)
ΩS +

` (`+ 1)

2r
ᾱV +

1

2
HS , (B.1)

Ω̇S =
` (`+ 1)

2r
ĀV +A ξS , (B.2)

ḢS = − ` (`+ 1)

r
EV − 3 E ξS , (B.3)

Σ̇S −
2

3
r ẐV =

2

3
r

[
2AZV −A(φ+A)aV +

` (`+ 1)

2r2
AV −

3

2
WV −

1

2
AYV

]
+

1

6
RS −

C2

2 C1

[
φXS + E RS −

1

4
φ2RS +

1− ` (`+ 1)

r2
RS

]
, (B.4)
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B.1. Propagation and evolution equations 146

Θ̇S − r ẐV = r

[(
3

2
φ+ 2A

)
ZV +AYV −A(φ+A)aV −

` (`+ 1)

r2
AV

]
+

1

6
RS −

C2

C1

(
R̈S −AXS

)
, (B.5)

Σ̇V +Ω̇V = −EV + ZV +

(
A− 1

2
φ

)
AV +

C2

2 r C1

(
XS −

1

2
φRS

)
, (B.6)

Σ̇V − Ω̇V = − ĒV +ZV +

(
A− 1

2
φ

)
ĀV , (B.7)

ĖV −
1

2
ĤV =

3

4
E
(
ΣV − 2αV −ΩV

)
+

(
1

4
φ+A

)
HV +

2− ` (`+ 1)

4r
HT , (B.8)

˙̄EV +
1

2
ĤV =

3

4
E
(
ΣV − 2 ᾱV + ΩV

)
−
(

1

4
φ+A

)
HV

+
3

4 r
HS +

2− ` (`+ 1)

4r
HT , (B.9)

ḢV =
3

2
E ĀV +

1

2
WV +

1

2
(φ− 2A) ĒV +

` (`+ 1)− 2

2r
ĒT , (B.10)

ḢV = −3

2
E AV −

1

2
WV −

1

2
(φ− 2A) EV −

` (`+ 1)− 2

2r
ET − E

C2

4 r C1
RS , (B.11)

ẆV =
3

2
φ E
(
αV + ΣV +ΩV

)
− E
r

(
ΘS −

3

2
ΣS

)
+
` (`+ 1)

r2
HV +Aφ C2

2 r C1
ṘS , (B.12)

ẆV =
3

2
φ E
(
ᾱV +ΣV − ΩV

)
, (B.13)
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B.1. Propagation and evolution equations 147

ẎV =

(
1

2
φ2 + E

)(
αV + ΣV +ΩV

)
− ` (`+ 1)

r2
αV

+
1

r

(
1

2
φ−A

)(
ΣS −

2

3
ΘS

)
− C2

r C1

ˆ̇RS , (B.14)

ẎV =

(
1

2
φ2 + E

)(
ᾱV +ΣV − ΩV

)
, (B.15)

ζ̇T =

(
A− 1

2
φ

)
ΣT +

αV

r
+HT , (B.16)

˙̄ζT =

(
A− 1

2
φ

)
ΣT −

ᾱV

r
−HT , (B.17)

Σ̇T =
AV

r
+A ζT − ET +

C2

2 r2 C1
RS , (B.18)

Σ̇T = − ĀV

r
+A ζ̄T − ĒT , (B.19)

ĖT + ĤT = −HV
r
− 3

2
E ΣT −

(
1

2
φ+ 2A

)
HT , (B.20)

˙̄ET − ĤT = −HV

r
− 3

2
E ΣT +

(
1

2
φ+ 2A

)
HT , (B.21)

ḢT − ˆ̄ET =
ĒV
r
− 3

2
E ζ̄T +

(
1

2
φ+ 2A

)
ĒT . (B.22)

ḢT + ÊT =
EV
r

+
3

2
E ζT −

(
1

2
φ+ 2A

)
ET . (B.23)
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ξ̂S = −φ ξS +
` (`+ 1)

2r
āV , (B.24)

Ω̂S =
` (`+ 1)

r
ΩV + (A− φ) ΩS , (B.25)

ĤS =
` (`+ 1)

r
HV −

3

2
φHS − 3E ΩS , (B.26)

Σ̂S −
2

3
Θ̂S = − 3

2
φΣS +

` (`+ 1)

r

(
ΣV −ΩV

)
+
C2

C1

ˆ̇RS , (B.27)

Σ̂V +Ω̂V =
1

2r

(
ΣS +

4

3
θS

)
− 3

2
φΣV −

(
1

2
φ+ 2A

)
ΩV

+
` (`+ 1)− 2

2r
ΣT +

C2

r C1
ṘS , (B.28)

Σ̂V − Ω̂V = − ΩS

r
− 3

2
φΣV +

(
1

2
φ+ 2A

)
ΩV −

` (`+ 1)− 2

2r
ΣT , (B.29)

ÂV − 2Σ̇V = −ZV − 2

(
A− 1

4
φ

)
AV −A aV + 2EV −

C2

r C1

(
XS −

1

2
φRS

)
, (B.30)

ˆ̄AV − 2Σ̇V = −ZV − 2

(
A− 1

4
φ

)
ĀV −A āV + 2ĒV , (B.31)

α̂V − ȧV =HV −
(

1

2
φ+A

)
αV +

(
1

2
φ−A

)(
ΣV −ΩV

)
− C2

2r C1
ṘS , (B.32)

ˆ̄αV − ˙̄aV = −HV −
(

1

2
φ+A

)
ᾱV +

(
1

2
φ−A

)(
Σ̄V + ΩV

)
, (B.33)
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ÊV =
1

2
WV +

` (`+ 1)− 2

2r
ET −

3

2
E aV −

3

2
φ EV + E C2

4 r C1
RS , (B.34)

ˆ̄EV =
1

2
WV −

` (`+ 1)− 2

2r
ĒT −

3

2
E āV −

3

2
φ ĒV , (B.35)

ĤV =
1

2r
HS +

` (`+ 1)− 2

2r
HT +

3

2
E
(
ΩV +ΣV

)
− 3

2
φHV , (B.36)

ĤV = − 3

2
φHV −

` (`+ 1)− 2

2r
HT +

3

2
E
(
ΩV − ΣV

)
, (B.37)

ŴV = − 2φWV −
3

2
E YV +

3

2
φ E aV +

` (`+ 1)

r2
EV − E

C2

2 r C1
XS (B.38)

ŴV = − 2φWV −
3

2
E YV +

3

2
φ E āV (B.39)

ŶV = −WV −
3

2
φYV +

(
1

2
φ2 + E

)
aV −

` (`+ 1)

r2
aV −

1

3r
RS

+
C2

r C1

[(
A+

1

2
φ

)
XS +

1

2

(
E − 1

4
φ2

)
RS +

1− ` (`+ 1)

r2
RS − R̈S

]
(B.40)

ŶV = −WV −
3

2
φYV +

(
1

2
φ2 + E

)
āV (B.41)

ζ̂T = −φ ζT +
aV
r
− ET −

C2

2 r2 C1
RS , (B.42)

ˆ̄ζT = −φ ζ̄T −
āV
r
− ĒT , (B.43)
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Σ̂T =
1

r

(
ΣV −ΩV

)
− 1

2
φΣT +HT , (B.44)

Σ̂T = −1

r

(
ΣV + ΩV

)
− 1

2
φΣT −HT , (B.45)

1

2
YV +

` (`+ 1)− 2

2r
ζT + EV = − C2

4r C1
(φRS − 2XS) , (B.46)

R̂S =
1

2
φRS +

2r C1

C2

[
1

2
YV +

` (`+ 1)− 2

2r
ζT + EV

]
, (B.47)

ṘS =
C1

C2

[
ΣS −

2

3
θS − (` (`+ 1)− 2) ΣT + φ r

(
ΣV +ΩV

)
− 2 rHV

]
, (B.48)

B.2 Trace equation

C2(X̂S − R̈S) =
1

3
RS C1 − C2

[
(φ+A)XS −

` (`+ 1)

r2
RS

]
. (B.49)

B.3 Constraints

HS =
` (`+ 1)

r

(
ΣV − ΩV

)
− (2A− φ) ΩS , (B.50)

1

2
YV −

ξS
r
− ` (`+ 1)− 2

2r
ζ̄T = − ĒV , (B.51)

HV = − ΩS

r
− ` (`+ 1)− 2

2r
ΣT −

1

2
φ
(
ΣV − Ω

)
. (B.52)
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[109] W. Israel, Nuovo Cimento B Serie 44, 1 (1966).

[110] A. Einstein, E. G. Straus, Reviews of Modern Physics 17, 120 (1945).

[111] M. B. Ribeiro, Astrophys. J. 388, 1 (1992).

[112] S. Nojiri, S. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).

[113] H.-J. Schmidt, Int. J. Geom. Meth. Mod. Phys. 4, 209 (2007).

[114] J. Ehlers, P. Geren, R. K. Sachs, Journal of Mathematical Physics 9, 1344 (1968).

[115] W. R. Stoeger, R. Maartens, G. F. R. Ellis, Astrophys. J. 443, 1 (1995).

[116] G. F. R. Ellis, D. R. Matravers, R. Treciokas, Annals of Physics 150, 455 (1983).

[117] G. F. R. Ellis, R. Treciokas, D. R. Matravers, Annals of Physics 150, 487 (1983).

[118] S. Rippl, H. van Elst, R. Tavakol, D. Taylor, General Relativity and Gravitation 28,

193 (1996).

[119] R. Maartens, D. R. Taylor, General Relativity and Gravitation 26, 599 (1994).

[120] V. Faraoni, ArXiv General Relativity and Quantum Cosmology e-prints arXiv:gr-

qc/0811.1870 (2008).

[121] J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).

[122] C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University

Press, 1993), revised. edn.

[123] G. J. Olmo, Phys. Rev. D 72, 083505 (2005).

[124] M. E. Cahill, G. C. McVittie, Journal of Mathematical Physics 11, 1382 (1970).



Univ
ers

ity
 of

 C
ap

e T
ow

n

BIBLIOGRAPHY 157

[125] T. Harada, T. Chiba, K.-I. Nakao, T. Nakamura, Phys. Rev. D 55, 2024 (1997).

[126] S. Capozziello, V. F. Cardone, A. Troisi, Phys. Rev. D 73, 104019 (2006).

[127] S. Mendoza, Y. M. Rosas-Guevara, A&A 472, 367 (2007).

[128] S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, 1972).

[129] K. K. Ghosh, D. Narasimha, Astrophys. J. 692, 694 (2009).
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