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Synopsis

The research community and industry alike have, over the past decade, been showing
considerable interest in packet-switching networks to support voice services as well as data
services. A technology that was standardised to accommodate these delay-sensitive require-
ments is Asynchronous Transfer Mode (ATM), which deals particularly well at transporting
uncompressed voice and data. However, due to the exponential increase in wireless appli-
cations and their supporting access technologies, a need has arisen for an infrastructure in
the wide area network to support and maintain the QoS requirements of low-bit rate, com-
pressed voice. An adaptation layer known as AAL2 was re-standardised to support these
specialised voice services. However, a severe side-effect of using AAL2 with traditional

ATM switches results in inefficient routing and waste-age of resources.

In this study, a design for an AAL2 switching node will be proposed to address the above-
mentioned issues. The design is comprised of modules that perform the following functions:
Buffering, payload interrogation, protocol translations, packet classification, packet re-
routing, timing, scheduling and support for signalling and management interfacing. The
supporting architecture is targeted towards an embedded x86-based computing system,
which itself is overlaid upon one or several ports of a high-speed, research-oriented ATM
switch, known as the Washington University Gigabit Switch (WUGS).

In order to evaluate the operation and performance of the AAL2 switch architecture,
a testbed is proposed and implemented, comprising the AAL2 switch at the core, with a
supporting infrastructure to emulate the generation and analysis of low bit-rate voice traffic
over an AAL2 connection. By conducting a set of experiments, a series of operational and
performance results will be presented. Particular focus will be placed on the performance
and efficiency of the AAL2 layer over ATM, as well as the ability of the switch to route
packets from multiple sources to a set of output connections in the correct manner.
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Glossary of Terms

For the convenience of the reader, this glossary is provided. These terms occur extensively
throughout the text.

ATM Asynchronous Transfer Mode. ATM is a cell-based technology that provides mul-
tiplexing gain, can utilise high-bandwidth carrier technologies and provides service
guarantees.

AAL2 ATM Adaptation Layer Type 2. AAL2 was re-standardised in 1997 for the multi-
plexing of short, variable length packets from various low-bit rate applications onto
a single ATM connection.

AAL2 Channel A unique AAL2 channel, characterised by a Channel Identifier (CID).
Several AAL2 channels are multiplexed onto a single AAL2 path.S

AAL2 Path Analogous to an ATM virtual connection when carrying AAL2-type traffic.
An AAL2 path may contain up to 248 AAL2 channels.

AAL2 Switching A specialised type of switching where a translation is performed based
on the virtual path identifier (VPI), virtual channel identifier (VCI) and channel
identifier (CID) of a packet, as opposed to the usual VPI / VCI translation that is
performed in ATM switching.

APIC ATM Port Interconnect Chip. A specialised ATM chip developed by Washington
University in St. Louis for sending and receiving ATM cells.

codec An algorithm capable of compressing or decompressing voice traffic. A codec may
also be used to alter video streams if required.

CPS Common Part Sub-layer. The sub-layer of AAL2 that is responsible for converting
between CPS-packet format and AAL2 PDU format.

FPX Field Programmable Port Extender. An FPX module contains a high gate-count
FPGA on which designs may be implemented. An FPX resides between a line card
and input port of the WUGS, and allows per-port packet processing to be achieved.

Packetisation Delay The length of time taken to place information into the payload of
an ATM cell. A large packetisation delay can adversely affect voice quality.

xiii



Poisson A mathematical process used to model random arrivals. The probability of an
arrival in a small interval of time depends only on the size of the time interval, and

not on the past history of the process.

Socket A logical abstraction mechanism, where a network device is represented as a single
descriptor (value). Bidirectional data flow can occur by reading and writing to this

descriptor.

SPC Smart Port Card. An SPC is an embedded computer produced by Washington
University for cell-based processing on a WUGS port. An SPC typically runs the
NetBSD operating system and is equipped with an APIC for sending and receiving
ATM cells.

Timer-CU The timer mechanism used to ensure outgoing AALZ2 cells are not stalled too
long at the transmitter.

VXT Virtual Circuit Translation Table. The internal WUGS table used to house ATM
switch mappings.

WUGS Washington University Gigabit Switch. An 8-port ATM research switch that has
been open-sourced. A WUGS facilitates the development of cell and packet-based
algorithms at both the hardware and software levels.

xiv



Chapter 1

Introduction

1.1 Introduction

When communication networks began to emerge in the earlier half of the previous century,
the primary form of communication that took place was in the form of speech, or what is
commonly referred to as voice.! This was due to the fact that the technology to transmit
information digitally simply did not exist at that time. However, being able to transmit
voice from one location to another was soon regarded as a significant stepping stone,
and soon resulted in voice-based transmissions forming an integral part of everyday life.
Even in the modern-day world where other services such as video, text and data are
present, being able to transmit and receive voice is still considered as the “number one”
priority service by many, and hence voice based-applications have received their due share
of attention. Therefore in the context of information transfer, voice has formed part and
parcel of communication networks since their birth, and it is unlikely that it will become
any less-entrenched in the future.

Voice, just like other services such as video and data, is generated from applications which
reside at the access point to the network. This point of access need not be a physical
link to the first switch in the network, but could well b¢. and usually is, an interface to a
typical network-based Application Programming Interface (API) suited to that particular
application. Applications that fall into almost any category have certain requirements
(some more stringent than others) that must be met by the network technology, or else the

Strictly speaking, telegraphy was the first form of communication to exist.



application will perform poorly end-to-end and may even fail, and voice applications are
certainly no exception to the rule. Obviously the most important requirement that must be
satisfied for voice in a point to point call is somehow ensuring that the voice information
reaches the other end in a certain time limit, which should pever be violated. Such a
time limit has in fact been suggested in the literature [29] to be no longer than 150ms. If
the time it takes for voice to travel from the source to the destination, through a given
network, exceeds this limit, such as in a typical telephone call for example, it may become
uncomfortable and even disturbing to maintain the conversation for the parties affected
at either end. Another phenomenon that can severely affect the quality of voice is known
as jitter, where the voice information does not arrive in a constant form at the receiver,
but instead the rate fluctuates, causing unwanted glitches. Further requirements do exist
for voice applications, but it should suffice at this point to say that voice itself is quite
evidently a sensitive application, and that a network technology that is deemed suitable for
transferring such information should at least be able to conform to these basic requirements,
namely meeting minimum delays and ensuring at the receiver that information is available
and can be unpacked both on time and at a constant rate.

Traditional methods for encoding a voice stream take an analogue signal, in which the
fluctuations are proportional to the amplitude of the user’s speech, and digitise this infor-
mation at fixed time intervals. The samples are then digitally encoded and transmitted,
at a fixed rate of 64 kbps into the entry point of a synchronous network, today known
commonly as the Public Switched Telephone Network, or PSTN. This method of encoding
voice has been used for many decades and is in fact still in use today around the world.

In the early seventies, when the PSTN was already firmly entrenched and switching many
telephone calls world-wide, parallel work had begun in North America by the Department
of Defence to create a suitable redundant data network that would span the continent
[1]. The protocols responsible for transferring data in this network later evolved into what
is today known as the Internet Protocol (IP) and these data networks soon connected
all continents on the globe to form the Internet. IP networks were, of course, originally
intended for carrying data information. The intention of the IP protocol was to create a
layer-3 logical inter-working technology, that would not depend on the underlying physical
network architecture. These networks were vastly different to the traditional PSTN based
networks in that the information (data in this case as opposed to voice) was carried in the
form of asynchronous packets instead of frames filling up synchronous time-slots. Therefore
these networks only transmitted data when it was necessary to do so and hence the total



bandwidth available could be allocated at all times to all the active connections, and
not necessary all connections, both active and inactive. However, these networks could not
operate for long before becoming congested, with the obvious result that applications’ data
would sometimes take longer to traverse the network than usual, and that the path taken
each time through the network would not be the same. This shortcoming however, was not
regarded as a problem for data as data does not have the same sensitive requirements that
voice has. Two main constraints for voice that can be relaxed for data is firstly the end-
to-end maximum allowed duration that will be tolerated, as well as the constant manner
in which traditional voice is required to be transmitted to avoid jitter. Latency and jitter
are not factors of concern for non-real-time applications, such as data. However, data
transmissions cannot tolerate lost information in the network. Therefore as voice and data
are radically different applications, it is scarcely surprising that two separate transmission

networks have evolved over the years.

As the PSTN was around many years before data networks emerged, and since almost
all homes and offices have access to the telephone, it made sense to use the telephone
connection as an access technology for data networks, such as X25 networks, as shown in
Figure 1.1. It was simply not possible to provide each and every customer with a direct
data pipe to their home. When the Internet started becoming common-place, it was not
feasible at the time to provide a separate data connection for each customer. Therefore
to gain access to this central data network, customers’ data was converted to an analogue
form before entering the telephone network, where the digital information would eventually
reach the packet-based network as data.

As the resources provided by data networks advanced, particularly bandwidth, new appli-
cations were born that tried to use these resources to provide additional services such as
speech and low quality video, and hence it was no longer suitable to use the PSTN as an
access network. The ISDN model was therefore soon introduced which allowed the PSTN
for the first time to be a carrier for these multimedia services at a rate of 128 kbps.

In the early eighties, work had already begun on a new cell-switching technology known as
Asynchronous Transfer Mode (ATM) to provide a network model that would be entirely
application driven. In Europe, the driving force behind this technology was J.P. Coudreuse,
from the CNET Prelude Project, who wanted to see a tight integration between services
and cell-based switching networks. In the United States, Jon Turner from Washington
University had been conducting extensive research on cell-switches, and their practical
deployment in the enterprise [3]. Jon Turner is considered by many to be the father of

3
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Figure 1.1: Using the PSTN as an Access Network

ATM, not because he was the inventor of this technology, but because of his driving force
behind ATM research [2}.

ATM, the technology of choice for the broadband ISDN model, is able to guarantee the
support of four primary classes of service, which represent all possible traffic types that
may occur in the network. ATM technology is independent of the underlying physical
technology. Although work has been done on supporting voice calls (uncompressed voice)
over ATM, the PSTN still remains the primary technology to support telephone traffic.

Before ATM technology had been seriously considered for voice, researchers had already
been investigating the feasibility of transporting voice over IP networks. The interest in
pursuing research in this area was sparked by the pure economies of these networks. Due
to the success of the Internet, the exponential increase in the total bandwidth of these
networks to support data applications resulted in decreased costs for consumers. This
reached the extent where it was considered a viable option to attempt voice transmissions
over data networks, as bandwidth-hungry data applications had already surpassed voice
bandwidth requirements. The first requirement to transmit voice over a packet-based
network was to present the voice information in a suitable form, i.e. as packets offered
to the network, carrying “chunks” of digitised voice. As indicated above, IP networks are
capable of offering best-effort delivery of data, and the same would apply to the treatment
of voice packets, as logically, the network cannot distinguish these two traffic types in
their packetised form. One way of trying to avoid congestion in IP networks, that does



not provide much guarantee, is to simply produce less data, or digital voice samples per
second in this case. In order to provide voice as a lower bit-rate application than usual,

compression techniques are required.

Compression algorithms usually manifest themselves as codeck at the originating and re-
ceiving end of the voice channel. The nature of voice itself makes it possible to implement
highly effective compression algorithms, some that are capable of reducing the voice bit-
rate by a factor of eight. This is due to the fact that a large portion of speech contains
silence (almost fifty percent [23]) and can be completely eliminated. The silence, or instead,
comfort noise, is re-inserted at the receiving end. Reducing the rate at which voice enters
an IP network can help to improve the network’s response in propagating the voice infor-
mation, but still nothing can be said about any guarantees that the network can provide.
Furthermore, if the network does suffer somewhat from variations in delay for example,
buffers can be inserted at the receiving end to allow a constant play-out of the voice in-
formation. Although it is possible to transmit voice over IP, IP networks are inherently
incapable of providing hard real-time guarantees that voice requires.

Up to this point we have only considered the transport of voice in fixed networks. In
the striving to make applications, particularly voice, as mobile as possible, extensive focus
has been placed on so-called “last mile” or access technologies, particularly in wireless
devices such as cell-phones, voice-enhanced PDAs and various wearable devices. There
have already been reports of the number of mobile handsets in use exceeding that of fixed
devices in certain geographical areas. One limitation these devices must all deal with is
very limited bandwidth imposed by scarce spectrum resources. Spectrum is an expensive
resource, where only a limited band can be allocated per operator, and hence it is critical
that network operators make full use of their allocated bandwidth to get good returns
on their investments. Radio access technologies are steadily improving and those already
successfully implemented include TDMA and CDMA. A discussion of how these operate
does not fall within the scope of this document. However, it is worth mentioning that
the data rates portable devices are able to sustain have steadily been increasing. Second
generation or GSM portables support a data rate of 9.6kbps, GPRS supports a data rate of
168kbps (currently implementations are closer to 21kbps) and 3rd Generation (3G) devices
already offer data rates of 384kbps and are expected to offer 2Mbps data rates in the near
future. To maximise the limited spectrum resources that are available, one again turns to
compression techniques, but in a wireless medium, compression plays a far more important
role and is mandatory. A highly effective algorithm that may be deployed in present-



day 2nd Generation cellular networks is CS-ACELP (Conjugate Structure Algebraic Code
Excited Linear Progression), that is capable of compressing a 64kbps voice stream into a

mere 8kbps.

The drawbacks in utilising traditional synchronous networks for low bit-rate voice are ob-
vious. There is a distinct mismatch of the information rate of the traffic source and the
channel bandwidth of a network connection. Traditional multimedia services require large
amount of bandwidth to operate effectively, and it is assumed the bandwidth exists to sup-
port these services. Low bit-rate services are quite different to these traditional services,
and do not operate efficiently when trying to match them with existing network infrastruc-
tures.. These differences help one to understand why existing network infrastructures are
no longer suitable. Due to voice compression the parameters describing the traffic source
entering the fixed network are vastly different to those of an uncompressed audio source.
In the latter, information enters the network from a terminal at a constant bit rate (the
inter-arrival time between samples is constant). Upon compression, redundant information
is no longer transmitted, resulting in traffic exhibiting more variable bit rate characteris-
tics. The burstiness of the traffic varies according to a number of factors, but is primarily
affected by the codec that is utilised in the handset or traffic source. For example, as
shown in [4], the GSM Full Rate (GSM FR) is a speech codec that produces a 36-bytes
voice packet every 20 ms during the speech burst with a rate of approximately 13 kbps.
For CS-ACELP, a 10 byte packet is produced 10 ms during the on period (during speech)
at a rate of 8 kpbs. As the on and off times of speech are not deterministic, the traffic
produced by these codecs is hence quite bursty in nature.

The VBR (Variable Bit Rate) nature of the source implies that as traffic is only sent
for a portion of the time period, the waiting synchronous network must somehow insert
redundant information into information payloads to ensure that framing constraints are
not violated. Another issue that needs to be taken into account is the fact that in many
networks, compressed data entering the network needs to be uncompressed in order to be
transmitted effectively across the synchronous network. Each time compression or decom-
pression takes place, further unwanted delays are introduced along the connection path,
which is an undesirable effect. One not only requires a network that can provide statisti-
cal gain by operating asymmetrically, but also one that can form a good core technology,
where services do not need to be further mapped onto an existing underlying physical
network. For example, the frames from IP traffic are often mapped onto a frame-relay or
ATM transport network while traversing the public network, as there are currently no wide



area Ethernet infrastructures in place?. By continually having to alter the data structure
by adding additional goverhead to packets as they pass to the lower levels of the network,
errors, delays and protocol-mismatch become common-place.

ATM, itself a cell based networking technology, offers good support for constant bit rate
traffic as well as bursty traffic. ATM has always offered éupport for circuit switched
voice over an Adaptation Layer known as AAL1l. However, AAL1 is not efficient when
transmitting lower bit rate voice, mainly due to the packetisation delay. The packetisation
delay, the time it takes to create an ATM cell with voice information, grows inversely
proportionally to the bit rate of the voice. Therefore it will take far longer to packetise
voice data from a low bit-rate source, requiring some enhancement to be made to ATM3.

For this reason, the ATM Forum has devised a new adaptation layer known as AAL2,
standardised by the ITU in 1997, that caters for delay-sensitive, bursty and low-bit rate
traffic, particularly voice. Essentially, what AAL2 does is to multiplex several packets
(sometimes called mini-cells |23]) of low-bit rate sources into a single ATM cell before
transmission. By multiplexing packets into cells, the probability of traffic being available
at a given instant is much higher, with the result that cells can be sent off more regularly,
eliminating delays. In the event that an AAL2 cell payload does not fill up within a
specified time period, a timer will expire and ensure that the current cell, full or not, is
dispatched.

While ATM is certainly the most sensible choice when it comes to multiplexing the diverse
traffic types that are characteristic of today’s services, it does present its own problems.
Firstly the transfer delay between source to destination of a cell (or frame) is not as small
as that of most circuit switched networking architectures. Secondly, ATM may prove to be
less efficient than traditional TDM systems due to the cell overhead imposed [6]. It is also
for these reasons that telecommunications operators who want to use ATM have been so
willing to try out AAL2 technology for voice - the multiplexing gain provided by AAL2 can
reduce the above side-effects of traditional ATM-based voice transport quite substantially.

AAL?2 was initially intended for trunking purposes as shown in Figure 1.2. Here the voice
information from various sources is pac:ctised and multiplexed into ATM cells along a
single ATM virtual connection (VC). Two problems may occur with AAL2 trunking that
will be covered in more detail in Chapter 2. The first problem is the inability of AAL2 to

?Resilient Packet Ring Technologies may extend Ethernet past the local area network, but their scala-
bility is considered limited.
3Efficiency comparisons in ATM will be covered in more detail in Chapter 2
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Figure 1.2: The Benefit of Using AAL2 for Trunking Purposes

multiplex voice from the output of different codecs, e.g. multiplexing voice from a GSM
Half Rate codec and a CS-ACELP codec®. The receiver will not know what codec to apply
to the retrieved packets, as it will have no idea how they were formed. Secondly, if a
single ATM VC carrying separate channels is copied to two destinations, all the AAL2
sub-channels will be carried in the VC for each direction, instead of sensibly carrying only
the sub-channels that are required at the destination.

These problems have resulted in increasingly more focus being placed on AAL2 switching
[23]. An AAL2 switch is capable of disassembling AAL2 cell payloads into the individual
short voice packets, grouping those packets destined for each separate destination onto the
appropriate queue, and finally recreating AAL2 cells from the re-grouped packets before
dispatching them to the following node(s) in the network. This is made possible due to
the fact that each voice packet in an AAL2 connection has an additional information field,
viz. the CID or channel identifier. Since the goal of AAL?2 is to multiplex several channels
onto a single ATM connection, a scheme must exist whereby individual channels may be
identified. The CID is therefore used to assign unique identifiers to each individual channel.
Therefore it is possible to perform logical AAL2 switching at the VPI / VCI / CID level
instead of ATM switching at the VPI / V(I level.

1.2 Thesis Objectives

This study will focus on the design and implementation of an AAL2 switching node. It
was made clear at an earlier stage that more emphasis needs to be placed on the core

“Suggestions have been made to use the UUTI field in CPS packet headers to attempt to address this
issue :



functionality of the network to suit the applications that will drive the network. Alongside
W-CDMA and OFDM, AAL2 has been regarded as an excellent solution to the problems
and challenges imposed by future UMTS/IMT-2000 and 4th generation systems. [4, 6].
There have been investigations on how far AAL2 technology should extend towards the
end-user along a possible access network, but these studies will focus on AAL2 purely at

the core network level, and assume existing access protocols.

Most importantly at this stage though is the question of exactly which services the proposed
AAL2 switch is expected to provide. Naturally, the switch should be able to perform
the AAL2 switching discussed above. It should not only perform the switching correctly
(header translation) but in addition it should be robust, scalable and efficient. The AAL2
switching level should be completely isolated from the ATM level. In other words, the
AAL2 network and addressing should be logical. The AAL2 switch should appear as
an ATM switch to other ATM switches. The switch should also be intelligent enough
to distinguish between AAL2 cells and non-AAL2 ATM cells, which shall henceforth be
referred to as standard ATM cells.

As the implementation of an AAL2 switching node is highly specialised, and given the fact
that AAL2 is a relatively new technology, there were no commercial tools available when
the project was initiated, that would have made it possible to implement a suitable design.
Although it is possible to implement a simplistic design on a high-performance FPGA, the
resulting design would be non-practical, and extensive expertise would be required to pro-
vide the supporting link interfaces to allow the system to operate. Furthermore commercial
vendors are often unwilling to provide customisable hardware to the research community.
For this reason, Professor Jon Turner at Washington University in St. Louis had initiated a
programme in 1999, funded by the National Science Foundation and DARPA, to provide a
high-performance eight-port research switch to a number of universities around the world.
These switches to date have been used very successfully to implement a selection of high-
profile research projects (some non-disclosed)®. Based on the success of the programme,
and the suitability of the hardware, it was hence decided to purchase one of these research
switches from this university, known as the WUGS (Washington University Gigabit Switch)
to implement the AAL2 switching node design. Washington University have also designed
and made available an embedded computer capable of intercepting ATM cells between a
link interface and the ATM switch fabric, which allows one to implement an active pro-

SInformation on  this  programme can be found at the following URL:
http://www.arl.wustl.edu/gigabitkits/



cessing module, in this case the system architecture for an AAL2 switching node. At a
later stage, Washington University released an adapter card with a programmable FPGA
" and supporting link circuitry, which the author and colleagues are seriously considering
for future work in this field. Chapter 4 will provide a more in-depth introduction on the
WUGS and associated components. '

Many papers have focused on performance metrics for AAL2 technology [7, 8] and have
used both analytical methods and simulation to come to conclusions how various metrics
are related to the performance of a design. The intent of these studies is to compare the
functionality and performance of the switching node with results suggested in the literature
which will aid in obtaining conclusive results. Of particular interest will be how well the
AAL2 technology for the switch scales with an increase in the number of users for a given
link bandwidth, the effects on varying the packet sizes from the incoming voice streams,
the efficiency of attempting to send large data packets through the switch, and what effect
the AAL?2 timer mechanism will play on the efficiency of the outgoing traffic payloads.

The goal of designing and implementing an AAL2 switch on the WUGS will form the first
phase of a five year project which may well be continued beyond that point. The design will
take into account further extensions that are to be incorporated into the switching node to
enhance its functionality. The primary enhancement, which is currently being researched by
a colleague of the author, will be AAL2 signalling. AAL?2 signalling is a separate signalling
protocol that is used in the creation and tear-down of AAL2 connections, communication
of AAL2 switches in a network, updating AAL2 routes in a network and various other
essential services. AAL?2 signalling is a logical signalling entity and does not exist at the
ATM layer. It relies on reserved AAL2 channels that are made available at system startup.
A good overview of AAL2 signalling requirements can be found in [4, 9].

1.3 Scope and Limitations

While the author realises that there are a large array of factors that can enhance the
performance of the AAL2 switch at hand, these studies cannot address every issue that
could impact on the performance of the design.

The operating system of choice for running software on the Washington University’s em-
bedded computer is NetBSD 1.4.1. This OS was not selected by the author, but instead
by Washington University as a suitable operating system on which to implement active
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network designs for the Smart Port Card. Although NetBSD is a well-structured operating
system and offers good performance, it is not a real-time operating system, and hence the
mechanisms found in real-time systems, particularly scheduling mechanisms, which could
enhance the performance of the switching node, are not possil?le to implement in this in-
stance. The author has decided to use NetBSD in the implementation phase, as focus
on implementing real-time mechanisms would require extensive further research and hence
draw the attention away from the principle purpose of this study, i.e. of implementing a
functional AAL2 switching system. However, the author is fully aware of the enhancements
that a real time OS can provide, and will make recommendations at a later stage for a
suitable OS.

The minimum timer resolution offered by NetBSD is only 10 ms. Although this does
not affect the number of users that may be supported (a faster machine need only be
supplemented to support more users), it certainly does play a role in what voice codecs
may and may not be supported. To date, the codec with the shortest packet inter-arrival
 time is G729, which produces packets every 10 ms. However, codecs requiring better
network response are continually being researched, and are likely to soon be available.

Although the WUGS is itself considered as a high performance ATM switch, it does have
its limitations with regard to link speed at each port on the switch. For a very large
scale implementation to support many users, the performance increase by placing the
active networking modules at the input side of the switch could result in much improved
performance, as the output of the module would have available of N x Link Speed, where
N represents the number of ports on the WUGS (currently 8 ports). Fortunately however,
the combined user bandwidth in the implementation and tests is expected to be small.

Due to internal constraints and design simplification, the ATM link chip known as the
ATM Port Interconnect Chip (APIC) that is responsible for transmitting and receiving
ATM cells can only carry a maximum of 256 separate channels or Virtual Connections
(VCs) at any given moment. This will also have a direct influence on the number of AAL2
users that can be supported. As a maximum of 248 AAL2 users are allowed per connection,
this will give a theoretical total of 67000 separate AAL2 connections that can be permitted
on each port of the WUGS.
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1.4 Thesis Outline

The remainder of the document is organised as follows:

e Chapter 2 begins with an overview of voice, the principle' application to drive AAL2
technology. A short study of the nature of voice traffic is essential, to enhance the
reader’s understanding of the various real-time requirements that would be placed on
a transmission network. The manner in which voice traffic can be multiplexed over
an ATM connection using AAL2 is then discussed in further detail, with particular
reference to the transformation phase between voice packets and AAL2 PDUs. Since
AAL2 promises efficient voice transfer over an ATM network, its performance against
AAL1 and AALS is compared. The limitation of ’using AAL2 as a trunking technology
is then investigated, and why one ought to extend a given network to support AAL2
switching. AALZ2 switch concepts, as proposed by various researchers in the field,
are presented, as well as performance metrics that may be used to judge a switch’s
operation. As the AAL2 switch will be implemented as an integral component of a
larger ATM switch, ATM switch performance principles are also covered, and how
they would affect the transfer of real-time voice.

e In chapter 3, the focus is shifted towards the design of an AAL2 switch architecture.
The requirements in terms of supporting the transfer of real-time voice over an AAL2
connection, with an extension framework for AAL2 signalling, are first mapped into a
requirements specification. This specification will show the typical path through the
AALZ2 switch, that would be taken by AALZ2 cells and CPS packets, and corresponding
actions that would be taken at each stage. A full design is presented, showing how
the overall switching system may be broken up into a series of modules that operate
independently from one another, and how each one is responsible for a small switch
function. Finally, the interface definitions between core modules will be discussed.

e Chapter 4 will discuss the WUGS architecture and the suitability of applying this
architecture to an AAL2 switch. The reader will be shown how the propased AAL2
module can be implemented onto an embedded computer, viz. the Smart Port Card
(SPC) and how the SPC will integrate with the main Washington Switch. The
interface chip for sending and receiving ATM cells, viz. the APIC, is discussed in
detail and several of its advantages and drawbacks are highlighted, as well as the
reason why certain APIC features were made use of. Finally, the reader will be
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shown how a typical test environment that is comprised of multiple components may
be mapped over to a single Washington Switch.

Chapter 5 will focus on the implementation of the AAL2 switch. Implementation
choices, such as the use of threads, are justified. Each ;n'xodule will be presented in
detail, and how the organisation and function of the module will address a set of re-
quirements, as presented in chapter 3. Relevant issues with regard to the development
of the switch will also be presented.

In chapter 6, it will be demonstrated how the AAL2 switch will be tested. First
the requirements for external testbed components will be discussed. The testbed
will consist of two components, viz. a source client to generate AAL2 traffic and
an analyser to receive traffic. A sequence of tests will be conducted on the switch
as traffic is passed through. These tests will include establishing routes through the
switch, and configuring the switch to condense and expand AAL2 routes. Finally, a
set of experiments will be conducted to evaluate the efficiency of the AAL layer, and
how the various performance parameters are linked to one another.

Chapter 7 will present a set of conclusions that were drawn from these studies. These
conclusions will present the order in which components were implemented, and what

limitations were found to exist.

Chapter 8 will present recommendations, which may be used to prescribe future work
for an improved AAL2 switch architecture.

Finally, a set of appendices are presented to provide further background information,
as well as development specific details.
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Chapter 2

Literature Review and Background

Theory

2.1 Introduction

At this stage, the motivation for implementing an active switch based on AAL2 networking
technology ought to be clear to the reader. In active network elements such as intelligent
ATM switches and IP routers, the elements are capable of playing a much larger role in
the transport and distribution of the traffic they pass around the network. Unlike passive
network elements, which are merely capable of storing and forwarding data through the
network, active network elements go a step further by performing some type of network
transfer function on the traffic. As an example, an IPv4 router may be capable of interro-
gating the payload in IPv4 packets, and determining whether any IPv6 packets are being
tunnelled - these may then be extracted and forwarded onto an IPv6 backbone network in-
stead. Similarly, in the AAL2 switch being considered, the primary function of this switch
is to perform AAL2 switching, as opposed to ATM switching. The only way this can be
made possible is to physically remove the AAL2 sub-channels from the ATM cell stream
before performing the central switching function. This can be seen as an active function,
and hence the AAL2 switch can be considered as an active network element.

Before a design of any network element can be tackled, two important questions should
be addressed, viz. Do all the modules comprising the switch and the switch itself func-
tion correctly, and how well does the switch perform in various operating environments,
particularly those that are likely to place the system under stress. A system may be con-

14



sidered operational, but perform poorly under even the slightest load variations. On the
other hand, a quick response time, perhaps considered as good performance, may result
in unwanted alterations to the traffic and mis-insertion (switching of data to the incorrect

output ports). r

If the AAL2 switch is ever to perform adequately in any networked environment, it is
necessary to have a good understanding of the type of application that will reside at the
end points of the AAL2 switching network, in this case, primarily low-bit rate voice. This
is of particular importance to ensure that the required mechanisms can be made to conform
to a certain specification. One cannot set standards for network elements where the traffic
is only vaguely understood. Hence a more detailed overview of the characteristics of voice
traffic will be covered to aid the reader in understanding why components must meet
minimum application requirements.

i

In orde;'\to address the issue of functional correctness, a thorough understanding of the
technologies upon which the switch will be based is mandatory. A significant portion of
this chapter will therefore’ be devoted to the AALZ2 technology itself, and how AAL2 can
be realised initially as a trunking technology, and later in a switching technology. Research
in the academic community has significantly aided cellular operators in making decisions
whether to try AAL2 technology for their core networks, due to its suitability in supporting
voice applications {23]. It is therefore imperative that one takes a look at such research
in this chapter, in order to determine the current status of AAL2 technology, and to show
what areas in this technology still requires attention. Various papers in the literature have
suggested suitable metrics on which to base the performance of a typical AAL2 switch,
and it will be shown how the results of these will assist in the evaluation of the switch
architecture at a later stage.

2.2 Voice Characterisation

The previous chapter introduced voice as a sensitive real-time application. Voice is par-
ticularly sensitive to end-to-end delays imposed by the network as well as delay variation.
Some have argued that mean delay for voice is not a meaningful QoS measure for end-to-
end voice transport [19]. Instead, it has been suggested that one should rather examine
the tail of the voice delay distribution, and quantify the overall fixed delay at the K** per-
centile. When one wishes to analyse the side-effects suffered by voice when passing through
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a network, what is often more of interest is the ratio of successful, or uncorrupted packets
that reach the destination over the total number of packets transmitted. As delay is the
main contributor to voice degradation, we are therefore concerned with what percentage of
packets will suffer as a result of a given fixed delay in the network Clearly, increasing the
delay will result in more packets arriving late at the destmatlon, which may be unusable
by the application . If one wishes to maintain a certain success rate, it is possible to vary
the delay in the network, until we find the success ratio we require.

To reduce jitter on voice networks, buffers can be inserted at the receiving end. The
purpose of such a buffer would be to ensure clock-recovery at the receiving end. If the
buffer is tooc small, the receiver will be unable to smooth out the traffic successfully. If the
buffer is too large, cell delays are once again introduced. The rate at which information is
played out at the receiver will depend on the voice codec that has been selected to decode

the information.

A subjective metric has been developed to evaluate voice quality, known as Mean Opinion
Score (MOS). Various subjjects are requested to evaluate the quality of voice in a session,
and give a score from 1 to 5, where 1 is considered unacceptable quality, while a score
of 5 is given to excellent voice quality. A lower score naturally indicates that more effort
is required by the subject to interpret what is being said. A MOS of 4 is regarded as
toll-quality voice. The MOS scale is often used to indicate what quality is sustained in the
network.

When a voice source is compressed, two additional requirements are placed on the network.
Firstly the rate at which the voice enters the network now varies, as opposed to the previous
constant bit-rate stream for uncompressed voice. We refer to such voice traffic as variable
bit rate traffic or VBR traffic, as opposed to constant bit rate traffic, or CBR traffic.
The reason for this VBR nature is simple: compression algorithms are designed to remove
redundancies in voice. Therefore during a period of silence there is no need to transmit
any information, and hence the traffic source will remain idle during the period [18]. This
would imply that, if one were to look at the shape of the traffic source over time, it would
look very irregular, i.e. the envelope would contain many peaks ard troughs, and would
not look even. When the bandwidth level of a source is at its lowest (corresponding to a
trough), it would be consuming the least possible bandwidth of the link, and hence more
bandwidth would be available for other sources. Therefore during silence intervals, the
network can make use of multiplexing gain to transmit the voice information from another
source. However, when a user suddenly speaks, the network will be required to respond
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much faster and have a large instantaneous bandwidth to handle this new talk spurt.

The second requirement placed on the network when compressing voice is that the network
should be more intolerant of any loss of information. In uncompressed voice and video,
the loss of a few bits of information will have a minimum effect on the perceived quality
at the receiving end. However, if a compression algorithm cr;mpresses a voice stream by
a magnitude of four, losing one bit of information will be significant to losing four times
the amount than in the uncompressed case, and the results in loss of quality will be four
times that at the receiver. Therefore, the higher the compression ratio being achieved, the
higher the network should prioritise the voice traffic path.

In the literature, numerous comparisons have been performed with telephony over both
best-effort IP and ATM networks {30]. The large number of hops a packet can experience
in an IP network will affect the end-to-end delay. Furthermore, the non-deterministic
path that packets follow through the network will contribute to the overall delay variation
(jitter), hence making it impossible to guarantee the quality of service (QoS) required
by voice applications. The best performance achieved with voice over IP occurs in an
under-utilised IP network, where compression is performed to lower the bit rate. For small
intranets, this may appear to be an acceptable solution (simply provide more bandwidth)
but in a core networking environment this is clearly unacceptable.

2.3 The AAL2 Specification and AAL2 Trunking

AAL2 was initially named AAL-CU {Composite Users) but the original technology that had
been suggested for the segmentation and re-assembly of voice had become unpopular over
the years, particularly due to its inefficient handling of voice packets. The ATM Adaptation
Layer Type 2, or AAL2 was initially proposed by the ATM Forum and soon standardised
by the I'TU-T in late 1997, to support the delivery of short packets from variable, low bit-
rate and delay-sensitive applications{15]. This newer technology has completely replaced
AAL-CU, and over the last number of years, has been drawing widespread interest from
the research and indusicial community.

The traditional way to encapsulate voice into ATM cells makes use of AAL1. AAL1 was
suggested as a suitable adaptation layer for ATM for supporting circuit switched voice
connections. As frames or packets of voice are sequentially removed from the input source,
the bits are placed into the 48 byte payload of the ATM cell. Once full, the ATM cell
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is dispatched. In this case, the cell only holds data from one source. For 64kbps voice,
where samples are arriving relatively quickly, the time taken to fill the ATM cell would
be relatively short, and hence the packetisation delay will be small. However, packetising
information from lower bit-rate, compressed voice sources has g serious effect in increasing
delay[21, 19, 6, 14]. This is due to the fact that the traffic is bursty, and hence periods
of time exist during which no information is generated. Furthermore, on average, voice
information is arriving at a much slower rate than before, and hence the time taken to
the fill the ATM cell is extended. As an example, the time taken to fill an ATM cell from
a 64kbps voice source using AAL1 is approximately 6ms [6]. However, when reduced to
8kbps, the packetisation delay is increased to 48 ms, eight times as much. The packetisation
delay is therefore inversely proportional to the bit rate of the voice source being considered,
thus rendering AAL1 quite inefficient for low-bit rate voice. It is quite interesting to note
that ATM using AAL1 for voice is actually less efficient than traditional circuit switched
networks, due to the cell-header overhead [16].

AAL2 has been designed to alleviate this drawback by multiplexing several low bit-rate
connections into the payload of a single ATM cell. The chance that three voice sources
are idle at any given moment is far lower than that of a single source. This implies that
the time taken to fill an ATM cell from more than one source will be significantly shorter.
As one is multiplexing several voice channels on a single ATM VC, further information
is required to distinguish these channels on an end-to-end basis from one another. For
this reason, each channel is identified by a separate ID, known as the Channel Identifier
(CID), that is stamped onto the header of each packet carrying traffic for this channel.
The principle of carrying multiple voice channels over a single VC as opposed to the first
generation scheme of one VC allocated per channel, is shown diagrammatically in Figure
2.1 below.

Although AAL1 and AALS are not primarily intended for transmitting low bit rate voice
over an ATM connection, it is still interesting to compare the efficiencies of these adap-
tation layers to that of the AAL2 layer. Briefly, AAL1 is intended to support low-delay
CBR apolications that are typically synchronous in nature. If the :ource information is
structured, it is capable of restoring this structure at the receiver. In addition to this,
AAL1 includes clock recovery mechanisms at the receiver to ensure synchronous operation
[1]. AAL5, on the other hand, is intended for the transport of VBR data frames, which
are typically longer than the ATM cell payload size of 48 bytes. These frames may be
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Figure 2.1: Multiplexing Users onto an ATM Link using AAL1 and AAL2

transmitted in either a streaming mode or message mode, depending on the application
requirements. The reader should be aware that neither AAL1 nor AALS offer multiplex-
ing mechanisms in the Common Part Sub-layer (CPS), as there is no way of uniquely
identifying separate flows on the same virtual connection’.

Various simulation models have been proposed to analyse the efficiency of AAL1, AALS
and finally AAL2 voice sources [19]. In this study, this author assumes homogeneous voice
sources, of varying bit rates, which are then applied to the input of his model. In the paper,
this author is interested in the number of voice sources that may be supported, without
violating a specified quality of service, which is given as a bounded 95 % percentile of
voice, as described above. These experiments are repeated for all three adaptation layers,
by varying either the bit rate or voice packet size. The results from these experiments
are interesting, but not surprising. [19] has found that for uncompressed voice of 64kbps,
AAL1, AALS5 and AAL2 are equally efficient, but for low-bit rate voice of 8kbps, which can
be obtained using CS-ACELP, AAL2 is approximately five times more eflicient than both
AAL1 or AALS, and that for voice packets up to 40 bytes in size, AAL1 and AALS perform
identically. Furthermore, this paper concludes that for low bit rates, the total number of
users than may be supported is very sensitive to the packet size chosen, while for high voice
coding rates, varying the packet size does not necessarily increase the number of users that
can be supported.

Other papers have investigated the possibility of increasing the number of users on an
AALZ2 channel by implementing several techniques that may reduce the quality of the

!Note that LLC may provide multiplexing facilities, but at a higher-layer than ATM.
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voice somewhat. Analytical performance models and results for AAL2 multiplexors that
implement bit dropping on certain voice packets have been presented [15]. The author has
assumed 32 kbps voice that would be produced by a ADPCM codec as defined in ITU-T
(G-727. Bit dropping is possible with AAL2 firstly due to the fact that one has access to the
individual voice packets in the channel and secondly, for each channel, the information is
arranged with the least significant bits containing the information of least relevance to the
quality of the traffic. Dropping the relevant bits in the packet is far superior to previous
techniques of employing cell dropping, which introduces once again unwanted packetisation
delays [4]. Furthermore it it not easy to work out how many packets are being dropped
in a cell, or the significance of the information loss. The bit-dropping model of above has
suggested significant higher capacity, e.g. for ;li T1 channel. Applying these techniques
almost doubles the number of users that can be supported, and approximately 30 % more
users can be supported on a full T1 connection [15]. It was shown that it is possible to
implement the bit-dropping shown above, and yet still retain a MOS of 4.

Still others have examined the suitability of AAL2 for transferring data packets. When
3G networks utilising AALZ2 technology in the core have acquired a critical mass of con-
sumers, value added services (text, low bit-rate compressed video, file-transfer) are likely
to come next. It may be more feasible to transport these data services over AAL2 to
simplify channel provisioning and billing in the AAL2 network. Furthermore, the need
for dynamically creating AAL2 connections has given impetus to AAL2 signalling, which
itself can be regarded as AAL2 data®. For these reasons, simulation models to investigate
the possibility of transporting data over AAL2 have also been presented [4]. They have
found that although AALS5 has slightly less overhead for packets shorter than 500 bytes,
the difference in percent overhead between AAL2 and AALS5 for packets larger than 750
bytes is constant. Therefore, provided a Service Specific layer exists above the Common
Part Sub-layer (CPS) for AAL2, it would be possible to segment these large packets for
AAL2, and yet not sacrifice too much efficiency.

These findings will be valuable to the author in evaluating the effectiveness of the AAL2
technology considered for the switch. One is particularly interested in how the switch will
respond to the range of traffic types suggested in the above simulations, and for each traffic
type or codec, the number of users that may be sustained. Although these authors have
suggested suitable efficiency metrics, they have focused on simulation models and analytical

2Some signalling messages can be 129 bytes long, which is more than twice the maximum payload
length (64 bytes) that is supported by AAL2
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derivations. Traffic sources have either been Poisson [8] or Markov modelled [16], the talk
period to total period ratio has been explicitly stated, processing delays in constructing
AAL2 cells have been ignored, packets lengths and number of cells per packet are assumed
constant [8] and in some cases queues for ATM cells are considered infinite. It is therefore of
interest how real-world traffic and components will cooperate, and whether the efficiencies,
delays and sustained load of a physical AAL2 switch will mimic these results or not. In a
typical implementation, queues are expensive (memory may not always be available) and
each queue adds unwanted delays. In addition, processing delays are very real in an AAL2
implementation, and if the wrong approach is opted for, this will impact no doubt on the

performance.

It would be intuitive at this stage to examine briefly the nomenclature and structure of
AAL2 as it currently stands. Further details may be found in the ITU recommendation
ITU-363.2, on which the following information is based. This adaptation layers is primarily
responsible for segmenting information from upper-layer applications, multiplexing this
information if necessary, and passing the information in a suitable form to the ATM layer
for transmission. AALZ2, as in other adaptation layers contains the Common Part Sub-layer
(CPS) and Service Specific Convergence Sub-layer (SSCS). The SSCS defines additional
services that may reside on the top of AAL2, e.g. frame-based services such as Internet
traffic, and mechanisms for additional error detection and correction. In many cases,
particularly for short voice packets, the SSCS may be null, and as it is not required in the
interim, a detailed functional overview will not be given. The CPS contains the mechanisms
to segment packets that are generated from either a voice or data source. Provided these
packets do not exceed 64 bytes they may be packetised into a sequence of one to three
ATM cells, depending on the packet length, and where in the ATM cell payload the packet
was started. Figure 2.2 shows examples of packets allocated to various cells.

The CPS packet is defined as the packet that will hold information for a particular source.
A CPS packet has a three-byte header and variable size payload, as shown in Figure 2.3.
The three byte header has 24 bits split into four fields, an 8-bit field, a 6-bit field, a 5-bit
field and another 5-bit field, representing the Channel Identifier (CID), Length Indicator
(LI), User-to-user Indication (UUI), and Header Error Control (HEC) respectively. As
AAL2 is required to multiplex several of these packets into a single cell, packets for each
ATM VC are uniquely defined with the CID. However, although a theoretical limit of 256
connection could be supported, some of these are not used or reserved, and hence only
channels 8 to 255 may be supported [12]. The CPS packets have variable lengths and
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hence the LI field can specify a length of 1 octet to 64 octects. The LI field is always one
less than the packet payload size. The UUI field is passed transparently through the ATM
stack by the AAL2 CPS to the corresponding CPS layer on the receiving end, where it is
then passed up to the SSCS (if it exists) or the application. Hence applications may use
the UUI field as they see fit as the structure and contents of this field is not specified in
this recommendation, e.g. the UUI may be used to convey what codec ought to be applied
to the receiver to uncompress the voice packets, as pointed out earlier. Finally the HEC
field is used to detect any possible errors in the packet payload®.

The AAL2 PDU (Protocol Data Unit) is a 47 byte structure that is capable of holding zero
or more of these CPS Packets. Therefore, in the ATM cell payload, there is one byte left
over for what is known as the start field. The start field contains an Offset Field (OSF)
which is 6 bits, Sequence Number (SN) and Parity (P) which are each one bit long. The
OSF indicates where a new packet will begin in the CPS PDU. This is due to the fact
that the bytes immediately following the start field may be the continuation of a packet
that started in the previous PDU. The header of this packet with its LI field would have
been in the previous PDU as well, and hence no length information would be available in
the current cell, which is why one requires this offset field. If a new packet starts directly
after the SF, the OSF will be zero. When there is no more information in the CPS PDU, a
padding of zeros is placed in the remaining octets. The SN is an alternating bit that allows

3There is insufficient information in the HEC to form any correction on this data.
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the receiver to determine whether an ATM cell was dropped in the network. A shortcoming
of this scheme is that an even number of cell losses is undetectable [23]. The parity bit is
an odd parity bit calculated over the start field and allows the receiver to detect errors.
The start field, together with the AAL2 PDU, itself containing various CPS packets, are
concatenated to form the ATM PDU. Finally the ATM cell header is appended to the front
of the ATM PDU before being transmitted through the ATM network.

If the SSCS exists above the CPS, the interface between the two will contain a service
access point (SAP) for each different service requested from the above layer. The above
layer will then pass its information (CPS Packets) as a service data unit (SDU). It is the
task of the CPS layer to multiplex several of these SDUs into AAL2 PDUs to be passed
eventually to the ATM layer. For this, the implementation of a state-machine based CPS
transmitter is recommended [15]. On the receiving end, a mechanism is required to perform
the reverse process of extracting indivual packets out of the cell stream, and for this purpose
a similar state-driven CPS receiver has been recommended. The exact operation of both
the transmitter and receiver would fall completely out of the scope of this document, and
hence the reader is urged to consult the recommendation where an SDU-based design
(System Definition Language Design) can be found. However, a brief overview of each will
be given.

The CPS transmitter contains four states, Idle, Part, Full and Send, as shown in Figure
2.4. If the transmitter has not begun with the process of constructing a 48-byte ATM
PDU, it will remain in the Idle state until the transmission of a CPS packet is requested.
When this does eventually happen, a special timer is started and the transmitter begins
the process of constructing the new PDU. This timer is known as the timer-CU. When
the transmitter has finished processing this packet it will jump to state Part, until either
the timer expires, or the AAL2 PDU is filled. At an earlier stage this document stressed
the damaging effects on voice quality caused by network delays, of which packetisation
delay in low bit-rate voice is usually the culprit. Therefore, once the creation of a PDU
is commenced it would be non-sensible to wait too long for an additional voice packet to
arrive, as this would violate the time constraints of the first packet, which would have
already been mapped to the first series of octects in the new cell. It is for this reason that
the use of the timer-CU is recommended. When the timer-CU expires, it indicates to the
system that it should not wait for any further information, and that the half-empty PDU
should be immediately dispatched. In such a case the PDU should be filled with padding
information, as indicated above. When the value in the timer-CU reaches its limit, the state
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Figure 2.4: CPS Transmitter State Machine

machine is immediately switched to state Send, where it will await permission from layer
management before sending the completed CPS-PDU. If the CPS-PDU is filled before the
timer expires, the transmitter will once again await layer management’s request to dispatch
the cell.

The CPS receiver resides at the receiving end and contains only one state, Idle, which is
shown in the state diagram of Figure 2.5. After processing each AAL2 PDU and extracting
the packets, the receiver will return to the beginning of the Idle state to await the following
PDU. Upon receiving a PDU, the parity and sequence are checked and if the PDU contains
any outstanding data of a CPS packet already being formed, this information is extracted
and appended to the packet. Otherwise, any further information is extracted to form new
packets. If enough octects are extracted to match the LI field in a packet header, the
packet is considered complete and dispatched to the upper-layer application or SSCS. If
the end of the PDU is reached before enough octects can be extracted, the remaining data
can be expected in the following CPS PDU. Note that no timer is specified or needed at
the receiver - its operation is purely asynchronous.

Such a state machine has in fact already been used in simulation models [19]. A transmitter
and receiver on the Linux operating system has already been successfully implemented,
where ATM drivers were modified to support AAL2 [17]. Others have examined the timer-
CU more closely and found that the number of bytes wasted as a result of the timer-CU is
inversely proportional to the number of users on a connection [23]. Hence the more users,
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the less critical is the operation of the timer-CU to the system. It was shown that for
under 50 users, the timer-CU was critical to preserve the voice quality of each channel.
In Chapter 6, we shall see that the stage where the timer is not required is around the
47-users level, which is almost identical to the result above. Typical values suggested in
the literature for the timer-CU range from under 2ms to 7ms.

The efficiency and simplicity of AAL2 for voice has given impetus to the design of many
AAL2 trunking systems, where the channels of various AAL2 users are concentrated at one
end of the ATM network, and extracted at the receiving end. By AAL2 users, the author is
referring to applications that would generate low bit-rate voice. Thus an AAL2 user could
be the application residing on a mobile handset about to carry the data over wireless ATM,
but more typically is voice data in AAL2 form leaving a base station over a fixed ATM
link. Many organisations have investigated the possibility of PABX systems utilising AAL2
technology, where the AAL2 users can be regarded as telephone handsets. For organisations
already employing IP telephony who wish to switch over to AAL2 technology, no immediate
modification in their telephone handsets would be required, but instead mainly in the voice
concentrators. This is due to the fact that provided a suitable SSCS exists above the CPS in
the AAL2 enabled PABX, extended frames (IP frames) can be passed successfully through
the ATM network as AALZ2 cells. Organisations that now actively market AAL2 technology
include RAD, Netopia, Siemens, Ericsson and Cisco.

2.4 AAL2 Switching

For small networks and channel pipes that simply carry traffic from one end to another,
AAL2 is currently the most efficient technology available. However, as the network size
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increases, AAL2 does not always scale well, and can start to cause severe headaches for
network planners. By network size, one does not necessarily imply just an increase in the
number of users. Simply increasing the number of users on an end-to-end channel may
allow AAL2 to perform more efficiently, in terms of increased multiplexing gain achieved,
as shown previously. However, if the network grows geographically larger, eventually more
and more endpoints are required. Such a network setup is shown in Figure 2.6.

This diagram shows a configuration of five ATM switches, three AAL2 concentrators and
various voice sources/receivers. The first AAL2 concentrator receives five different voice
channels for transmission. The channels have been arbitrarily divided into two groups,
to emphasise that there are in fact two different destinations for the various voice chan-
nels. Three channels are to end up at concentrator 2 and the remaining two channels at
concentrator 3, where they will then be de-multiplexed.

The initial problem experienced by simply utilising AAL2 as a trunking technology is that
a single VC (Virtual Channel) is only intended to carry traffic that has the same pair
of cell-assembly and cell-disassembly devices at the source and destination. This means
that traffic from different cell-assembly or cell-disassembly devices cannot be mixed into
a single VC. If five voice sources enter an AAL2 network, each having being coded in a
separate way, it is vital that the AAL2 packets are sent to the receiver with the correct
codec information to decode or decompress the packets correctly, otherwise the recovered
traffic information will be meaningless.

Another phenomenon that may be experienced with AAL2 is depicted in the following
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scenario. Looking back at Figure 2.6, we are presented with two choices at ATM switch A
Either switch the five voice channels along the solid line from switch A to switches B, C, D
and finally to switch E, thus undergoing four ATM switch hops. Alternatively, traversing
the dotted line results in a total of three hop counts. Regardless of what route is taken,
each conrentrator receives five voice channels and ends np discarding at least two. The
network example shown in Figure 2.6 is more practical and likely to appear in a typical
ATM network than the idealised trunking example of Figure 2.1, where each and every
voice packet carried on the entire route is intended for the same destination.

An ATM switch switches at the ATM layer by modifying the ATM header and is unaware of
the AAL2 packet structure within each cell. As indicted in the previous chapter, an AAL2
switeh is capable of disassembling the incoming ATM cells into indivual CI*S packets, and
switching based on the CID found in this header of each packet, as well as the VPI and
VI values in the ATM header. Cells leaving the AAL2 switch contain packets all destined
for the same destination?. This functionality is depicted in Figure 2.7.

A typical network topology incorporating both ATM and AAL2 switches at the periphery

*This is provided further dowmstream AALZ switching is not tequired,
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of the network is given in Figure 2.8. The earlier along the network path AAL2 packets
can be broken up and recrganised, the sooner these packets will traverse their destination
along a more optimised path, resulting in both redneed network delays and less load on
the network in carrving unwanted yoice trathe.

The design of & monolithic, VLSI {Very Large Scale Integration) single-chip AAL2 switch
was propesed in 2000 [14]. The author of this paper compared two types of switch, Type
I and Tvpe IL A Type I switch is able to break up a CPS Packet into two parts whereas a
Type Il switch cannot. The paper shows that the synthesisable logie for a Type [ switch
requires substantially more on-chip resources as Type 1 entails a more complex re-assembly
process and may introduce delays in the Content Addressable Memory {CAM) used for
buffers. The location for Type ¥ AALZ switches is suggested to be at endpoints of the
network and Type 2 switches should reside in the core [14]. Furthermore this anthor
uses simulation techniques to compare metrics for both types of switch, ncluding time
taken to discard cells, suitable CPS packet huffer size fo maintain a certain ATM cell rate
and the typical loss ratio experienced with CT5 packets when timeouts oceur. In these
studies, voice entering the switch s assumed full-rate (64 kbps), which does not really take
advantage of the efficiency offered by AALZ

(Others have focused more on performance issues of an AALZ switching network and have
derived results from analytical methods [21, In their analysis, a fixed CPS packet length
is assumed and arrival-rates for packets are Poisson modelled. State space theory is used
to dedve the cell delay variation {CDV) and analytical expressions for both the delay
distribution as well as the PLR {(Packet Loss Ratio) in the AALZ switch. Tor a single node
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the paper investigates performance issues such as load, bandwidth, timers and buffers.
The timeout value in AAL2 switches is critical to delay performance and buffer size is
critical to loss performance [8]. Finally, a network model incorporating AAL2 switches
is proposed, where the reduction in bandwidth that can be achieved is shown by placing
AAL2 switching nodes at strategic points.

A large scale VTOA (Voice and Telephony over ATM) switching node has also been pro-
posed [18]. Here instead of identifying the internal mechanisms required in a switching
node, the authors have instead investigated the feasibility of migrating VTOA nodes with
existing network technology, particularly that found in the public switching network. The
studies present three approaches for implementing a large scale VTOA architecture. The
first is an STM based switching node, where a VTOA handling node is inserted for each out-
going ATM trunk. The ATM based switching node allows incoming calls to be mapped to
virtual connections in the public ATM network, and may either incorporate STM switches
(which concentrate incoming calls over SDH channels) or AAL2 switches (which first com-
press the incoming calls into ATM cells, one call per cell, before multiplexing many voice
streams into single outgoing cells). For these three implementations Common Channel SS7
(CCSS7) signalling has been suggested to reroute calls to the STM network in the event
of a fully-loaded ATM based VTOA node refusing a call connection. Services that should
be offered by VT'OA-capable technology for both the consumer and network operator have
also been defined [18], and the economic implications of implementing VTOA with an ex-
isting network has been analysed. Customers are unlikely to accept the newer technology
if the cost per call is not less than that of a standard 64 kbps call or if the quality of voice
calls is degraded unacceptably while passing through the network.

It is thus evident that sufficient research has been done on AAL2 technologies and AAL2
switching to determine what performance metrics should be included for evaluation, and
that one should take these metrics into account when designing these various components.
Apart from the VLSI architecture that was implemented on a single chip, most authors
have either made use of simulation techniques or analytical methods to produce results, and
the author is not aware of any research-based attempts to produce a fully-fledged AAL2
switching node. In the VLSI approach, the authors did not mention how their chip-based
design could be incorporated into a standard network, and what supporting components
would be required. Furthermore, for analytical derivations, assumptions are often required
to allow researchers to formulate a mathematical model, as shown above. Unfortunately

many of these assumptions do not always mimic true characteristics and requirements of
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typical applications, and hence it is necessary to evaluate a physical implementation of
such a switching node and its supporting AAL2 components. None of the papers thus
far have focused on how one maps these system components into a possible software-
based approach, such as an embedded computer and hence possible side effects that may
result from the use of a non-real-time operating system used for the implementation. The
designs presented above also do not consider the addition of value-added services, or more
importantly, signalling upgrades. AAL?2 signalling has come under the spotlight recently,
and co-research is aimed at producing an AAL2 signalling stack to complement the AAL2
node functionality.

The results obtained from simulation and analytical methods are however extremely useful
for comparison with the real switch, and it is the goal of the author to produce such
a switch, based on a real ATM switch, and determine its behaviour under many of the
conditions imposed on the simulation models developed above. Furthermore by using a
ATM switch already developed by others, focus can be placed on the AAL2 functionality
and not the ATM functionality, which ought to both be isolated from. one another in any

event.

2.5 Evaluation Metrics

Results obtained from evaluating the switch’s performance under various conditions will
be compared to performance metrics obtained from the literature as indicated above. The
author is interested in investigating the following aspects, some of which are functional

and others performance related:

e Large numbers of AAL2 users: For a given link bandwidth, the effects of introducing
large numbers of users that can be supported by the suggested AAL2 switch will
be investigated. For each new user, a separate CID is required. There is a limit
to the number of CIDs (248) per connection. Therefore the number of connections
that may be supported on the ATM switch would affect the number of users in an
industrial environment. It has also been suggested that the number of users that

may be sustained can be very sensitive to the maximum allowed packet size.

o Multiplexing gain: The multiplexing gain for AAL2 increases with the number of
users in the network, as well as maximum allowed packet length, traffic bit rates and

specified timeout values.
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e Efficiency: The efficiency of the payload of outgoing AAL2 PDUs is dependent on
a number of factors, including packet-size, timer, and the number of users on the

connection.

¢ Timer-CU: In the literature various values for the timef-CU have been suggested.
It was also stated that for 50 users or less, the timer-CU’s presence is critical. The
operation of this timer-CU in producing minimal network delays, but still maintaining
a suitable multiplexing gain will be investigated

e Finally, the application of AAL2 to support large data frames such as those found in
IP traffic will be analysed.

2.6 ATM Switch Requirements

When cells enter the AAL2 switch, AAL2 processing is performed at the input of the
switch. Once cells have been processed, they enter the ATM switch fabric where the
cells headers are translated to the appropriate output connection. As there is an AAL2
switching component and an ATM switching component, we cannot ignore the ATM switch
sub-components that will no doubt have a large impact on the performance of the AAL2
switch. As an example, if sufficient buffering is not provided in the ATM switch, bursts of
input traffic will result in the AAL2 switching module not being able to process this traffic
fast enough (it is held up by the buffer-less switch), and hence information will be lost. We
therefore conclude this chapter by giving a brief overview of the fundamental ATM switch
components, and what effect these components would have on an AAL2 switching system:

e Buffering - Buffering forms an essential element in most ATM switches, particularly
due to the fact that it is expensive and non-trivial to implement a non-blocking
switch architecture (which in theory, would not require any buffering). As the traffic
most likely to enter the ATM switch (or AAL2 switch) will be VBR voice, it is likely
to have bursty characteristics, and hence sufficient buffering will be required at the
switch input, as explained above. When the peak traffic rate of an application within
the switch fabric to the output link bandwidth ratio is small (1:20), small buffers
are usually sufficient [27]. However, when the traffic peak to link ratio increases,
larger buffers are required. OQutput buffer requirement for an ATM switch on which
AAL2 multiplexing is implemented need not be very large . If the AAL2 traffic is
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well scheduled onto the input link, the individual bursty effects of the traffic will be
smoothed out and the input traffic will appear more as a CBR source to the switching
fabric. This is why relatively small buffers are required.

If the input buffering for the switch is implemented as a single FIFO, head of line
blocking is likely to occur. This is because both ATM and AAL2 cells will be present
in the ATM stream, and only get separated once they enter the AAL2 processing
module of the switch. Head of line blocking can be avoided by placing buffers on the
output side, but this would require a high speed AAL2 processing module (essentially
non-blocking) and the output to the AAL2 switch would only have the link capacity
of one port of the switch to its disposal, instead of full access to the switch fabric.
It is relatively simple to calculate buffer thresholds in an ATM switch to suit AAL2

requirements [5].

Routing - Routing in ATM switches is typically either static or dynamic. Static
routing implies that traffic will take a deterministic path through the switch. How-
ever, this often results in blocking as paths soon become congested. Instead dynamic
routing allows traffic to pass through multiple paths through the switch, and hence
traffic is evenly distributed through the various stages of the ATM switch. We shall
later see how the WUGS switch itself exhibits a dynamic switching architecture.

Multi-casting - Multi-casting is referred to as the ability of an ATM switch to copy
the contents of a cell and instead of outputting the cell to a single port, outputting
the cell to multiple individual ports, or a range of ports. Multi-casting is of not much
value in bidirectional traffic flows, where interaction between end-users is commonly
taking place. However, for voice distribution networks, multi-casting can be highly
effective. Using multi-casting to broadcast ATM cells with AAL2 sub-channels has
not been presented in the literature to date, but could play an inmportant role when
streaming a set of AAL2 sub-channels to customers, with each customer wishing to
accept a subset or all such channels.

Scheduling - Many scheduling algorithms for ATM switches have been proposed in
the literature, and some of these algorithms emulate the preemptive scheduler that
is found in many operating systems, which are responsible for scheduling tasks. As
tasks in a system have various priorities, and ought to be scheduled according to
their importance, so does ATM traffic. Real-time VBR voice should have a higher
priority than data traffic, and the switch mechanisms should ensure that this voice
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traffic reaches the AAL2 switching modules in time to avoid increases in delay or
jitter. As the AAL2 module will be implemented as an input-side module, it will be
necessary to investigate the effects of input scheduling schemes. We shall also see in
Chapter 5 how scheduling is extended to the AAL2 switching module to allow for
the prioritisation of real-time traffic flows.

34



Chapter 3

System Design for the AAL2 Switch

3.1 Introduction

As was stated before, the mechanisms of AAL2 allow data from multiple users, each user
occupying a unique AAL2 channel, to flow along a single ATM connection. This is achieved
by setting up a point-to-point AAL2 connection. A point-to-point connection implies
a statically created connection between any two arbitrary points in the ATM network.
At the source, compressed voice packets are arranged into 48-byte protocol data units
(PDUs) before being passed to the ATM layer for delivery, and hence we refer to this
process as a CPS-Packet to AAL2-PDU transformation, or simply AAL2 encoding. At the
destination end, the inverse process occurs, where AAL2 PDUs are re-converted into the
original CPS packets. We refer to this inverse process as an AAL2-PDU to CPS Packet
transformation, or AAL2 decoding. If a direct path exists between these two nodes, i.e. no
AAL2 switches are present, then one would expect the data on the path to undergo both

these transformations only once.

If we shift our attention away from the point-to-point connection scenario, and focus on
the AAL2 switch itself, we find an interesting phenomenon. As AALZ2 switching may
sometimes be regarded as a new virtual layer above the AAL2 CPS, i.e. at a packet
level, the switch must first decode any AAL2 PDUs into CPS packets before they may
be processed. Likewise, all outgoing packets must be re-converted, or be encoded into an
AAL2 PDU format before leaving the switch. There is a fundamental difference between
the point-to-point scenario just discussed and the switch scenario, as shown in Figure

3.1. In the switch, the order in which events occur, i.e. the order in which information
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Figure 3.1: AAL2 Duality

is processed, is reversed to that of a point-to-point system. Whereas the transmission
channel in the first instance was simply an ATM link carrying AAL2 PDUs, the so-called
transmission medium in the switch would be a high-speed bus instead whose function
would be to carry these CPS packets. This duality principle allows one to conclude that
AAL2 switching essentially incorporates the same principles of encoding found on an AAL2
trunk, but simply with these mechanisms inverted, and that a further internal mechanism
is required to provide switching or regrouping of the CPS packets to the correct outgoing
stage.

In the preceding chapters we presented AAL2 as a suitable technology for the transport
of packet-based voice, and motivated the necessity for the AAL2 switching node. An
AAL2 switching node includes user, control and management functions to facilitate its
primary task of switching, by enabling dynamic connection setup and synergy with the
surrounding network (signalling) as well as network monitoring, emulation and accounting
features (management functions). Therefore the word “node” should be taken to imply a
switch in which the above features are present. Henceforth, when referring to the AAL2
switch alone (without the “node” suffix), we are referring to the user-plane model of the
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switch. It is this aspect of the switch that these studies will focus on.

Before presenting a fully-fledged system design, we will examine the requirements of the
AAL2 switching node in more detail, as these requirements will outline the system defini-
tion from which a suitable design may be forged. The system definition given in System
Definition Language (SDL) will guide the reader as to how the system should achieve
the various functions. These function are further mapped to a series of modules, each of
which operate independently from one another, but yet work co-operatively to achieve a
fully-operational system.

Before proceeding any further, the reader should be aware of various terms that are synony-
mous with the AAL2 technology. An AALZ2 channel may be regarded as a point-to-point
unidirectional pipe that is capable of transporting voice traffic in packetised form. Each
AAL2 channel is identified by its unique CID value. An AAL2 path is defined as a single
ATM virtual connection that is capable of carrying multiple AAL2 channels. By capable,
we imply that various signalling procedures would have occurred during the connection
setup phase to create such a “channel aware” AAL2 path. The words path and channel will
be used interchangeably throughout this document to mean AAL2 path and AAL2 channel,
respectively. Finally, in discussions involving the AAL2 technology, mention shall be made
of AAL2 PDUs, which have been packed according to the recommendations given in ITU
363.2, and non-AAL2 PDUs, which may represent any other type of PDU, including those
representing AALD and AALO connections. The words “standard PDU” and “standard cell”
will be used to indicate non-AAL2 type PDUs and non-AAL2 type cells, respectively.

Finally, a good architecture is dependent on a good switch design. A good design is not
one in which the winning attribute is cost. As the switch is intended to form part of a
core switching network, cost is of secondary importance. A good switch design is one that
allows the internal mechanisms of the switch, even if implemented as higher layer protocols,
to best respond to the traffic at hand, once again voice. A good design is one that scales
well between serving tens of customers to thousands of customers.

3.2 Switching Node Functional Requirements

In the previous sections, we examined the requirements for an AAL2 layer to carry com-
pressed voice, and the need for AAL2 switching, but with emphasis on economic feasibility
and efficiency gains. In this section, the reader is presented with a technical overview of the
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various system requirements. These requirements have been selectively placed into three
groups for clarity. In the first group, we examine system-wide or global requirements that
should be addressed by the switching node as a whole. The second group deals with those
requirements that ought to be met exclusively by the AAL2 layer mechanism. The final
group will take a look at switching requirements at the CPS packet level.

The following requirements relate to the global switching system:

e Tosupport a dynamic system, the use of AAL2 signalling is required. AAL2 signalling
requests are conveyed to the system at the AAL2 layer and not at the ATM layer, and
signalling messages are carried in the payloads of CPS packets. This signalling would
be responsible for the set up of and tear down of AAL2 channels within an AAL2
path. More importantly, AAL2 signalling will be responsible for the maintenance of
the internal CID translation table. It is therefore a requirement for the system to be
able to reroute signalling information to the appropriate sub-systems, that may then
deal with these issues.

e The AAL2 switch must not only support the switching of AAL2 cells, but standard
ATM cells as well. It should be the task of ATM signalling to route the AAL2
and ATM flows to independent switch inputs, but in the absence of signalling, a
more sophisticated probing mechanism may be required. Note that although AAL2
signalling is being taken into account, it does not form the focus of this study - the
primary emphasis will lie on achieving functional AAL2 switching.

e The system should be able to support logging for accounting purposes, and traffic flow
information for evaluation purposes, which may both be implemented as management

functions.

e The switch should support multiple paths for two reasons. Firstly, it is likely that
under heavy load more than 248 channels would be required on the same end-to-
end route. For this reason, multiple paths may be used in parallel to support more
channels than the ITU imposed limit of 248 per path, in a similar fashion to tandem
trunks found in many public voice-carrier networks. In addition to this, for each
separate end-to-end route, a separate AAL2 path is required. The switch must
support these multiple paths in both the input and output stages.

e As the input stage receives CPS packets from each incoming path, it must be able to
keep track of what position in the PDU the following packet is to be retrieved and
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whether any further information can in fact be extracted at the current time. It may
therefore be said that a requirement of the system is to maintain the correct state
for each input path, so that when more information arrives, processing may continue
where it left off. It should also be evident that the state of a particular AAL2 input
path is unlikely to be the same as that of any other path, and hence the system is

required to hold the corresponding state information for each input path that exists.

Similar to the input paths that have been discussed, each output path will also be

characterised by its own state variables, and these must be maintained.

The following requirements relate to the standard operation of a typical AAL2-layer mech-

anism, without taking switching into account:

e For each AAL2 path being administered by the switch, the channels comprising the

path should be extracted in time for switching purposes. As soon as it is clear to
the system to what output port a channel must be switched, the information on
the channel must once again be formed into the suitable protocol data units for

transmission.

For each AAL2 path, the switch should conform to the end-to-end delay requirement
to support the requirements of voice traffic. To avoid having to incorporate echo

cancellation equipment into the network, this delay should be no greater than 30 ms.

The system should support up to 248 channels per path, and channel 8 on each path

should be reserved for signalling purposes.

The following requirements relate to that of AAL2 switching:

e Suitable queues should be provided to hold pending voice packets. There are two

stages in the switch where a voice packet may incur blocking. The first block may
occur before the scheduler, where a packet must wait to be scheduled. The second
block may occur where a packet is about to be inserted into an outgoing PDU, but
cannot, as the output AAL2 mechanism is not yet ready, and the packet is delayed
somewhat. Queues hold these packets as they build up to insure packet loss is kept

within a reasonable limit under heavy load.
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e An internal table should be available for switching packets to output paths based
on three labels, namely the input path on which the channel entered the switch,
the channel ID itself (CID) as well as the output path to which the channel should
be assigned. By using these first two parameters as i}xdices into a lockup table,
functional switching may be achieved. An important organisational requirement
that will impact on the system design is that the entries in this table need to be
accessible by sub-systems that will provide dynamic updating of the switch’s internal

environment.

e It was stated earlier that the use of voice compression imposes varying delay con-
straints on each network element, in this instance the AAL2 switch, and that these
delay constraints are typically dominated by thé codec in use for the particular chan-
nel. It was also stated that the more powerful the compression scheme used, the
more sensitive the application would be to delays. Each channel in the switch will
therefore represent voice information (or data) that should be treated with a suitable
quality of service that must in some way match the voice delay requirements. This
translates into the need for scheduling within the switch to support these varying
service types.

3.3 System Definition

Having established these three groups of requirements, it is now possible to examine the
actions that ought to be taken in the processing of a single protocol data unit, as it enters
the system. These actions are shown in the SDL diagram of Figure 3.2. A description
of SDL repertoire can be found in Appendix B. The reason for only considering a single
input and output path in this diagram is that the steps taken in processing packets from
multiple paths are identical. The only difference between these paths is that they must
each maintain their own state. It is not possible to show current state information in the
system definition below. We shall therefore assume, for demonstration purposes, that the
internal CID table has been set p appropriately so that all channels extracted from the
single input path happen to map directly onto a single outgoing path.

The operation of the system to process a single PDU may be given as follows:

e When the system is in the IDLE state, it has completed all pending work, and is
awaiting a fresh PDU from the ATM layer below for processing.
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o Once a PDU has been successfully received, a decision must be made before it may
be processed any further. If the PDU is a standard AAL PDU it must be passed to
the ATM layer for VPI/VCI switching. It should be noted that the SDL diagram
of Figure 3.2 is not specific to either the user-plane or, control-plane and may in
fact encompass both. Therefore, the possibility exists that the incoming PDU may
contain ATM signalling information. If the PDU does contain any valid signalling
requests, these are processed, and any required system updates are performed. An
example of such an update would be a request to allocate a new AAL2 path.

e Although non-AAL2 PDUs have been catered for, the incoming PDU is most likely

to contain AAL2 user information instead. Therefore the next stage would most
likely involve extracting as many packets as possible from the PDU, and placing these
complete CPS packets into an array of buffers. A separate buffer is to be allocated for
each individual channel that exists, including channels reserved for signalling. Note
that although we are currently concerned with a single AAL2 path, in the case when
multiple paths exist$, and a channel CID is duplicated, this will result in multiple
buffers being allocated for these channels. The allocation of these buffers depends
on how many paths carry the channel with the same CID. It is therefore important
to note that although two particular channels may have the same CID value, if they
don’t belong to the same path, they are not alike, and should be treated as unique
channels.
Once again, the need to retain state information for each incoming path cannot
be overemphasised. The first few bytes retrieved from a PDU that represent valid
data may mark the beginning of a new CPS packet, or a continuation of a packet
already under construction from the previously received PDU. It the latter case, had
the system not been aware of the progress of the packet at the end of the previous
PDU, errors would result when trying to process “meaningless” data from the new
PDU. The fact that the system is able to retain the per-path state makes this packet
retrieval mechanism possible.

e A loop is now entered at C in Figure 3.2, where succes:ive packets are retrieved
from the input buffers and processed. The number of packets processed before the
loop expires, with the proviso that packet are always available, will depend on the
scheduling policy selected to provide the required quality of service to the channel
bound to the packet stream.

42



e Once a packet has been read in from a buffer, the header is examined. If the packet
contains information that may be classified as signalling, the packet is submitted
for processing by a signalling entity. This signalling entity is capable of accepting
packets with signalling commands or information and ‘Qrocessing this information.
It then makes decisions based on the information, and tarries these out in the form
of updates to the system and the surrounding network environment by generating
either events or signalling messages. If a local update is required (i.e. within the
switch system itself) the signalling entity is capable of triggering other sub-systems
to carry out the relevant commands, e.g. adding a channel to an incoming path. If a
remote update is required (i.e. to a distant AAL2 switch) the signalling information
is encapsulated into one or more CPS packets, and the CPS packets are submitted
for translation on a valid output path.

e If the packet header indicates that the packet contains user data, a further check
is applied to ensure that the packet belongs to an already allocated channel corre-
sponding to the inpit path on which the packet entered the system. If no such match
exists, the packet is simply discarded. If the packet is valid, it may be submitted to
the scheduler.

e In the scheduling stage, packets that belong to the same scheduling group are taken
from the input buffers and translated to the output buffers, in a manner that is
governed by the scheduling mechanism assigned to the group. Once scheduling of
a group is complete, the following unprocessed group will receive attention, and 0
on, until all input buffers with one or more packets in them have been accessed at
least once. (The more times a particular buffer is accessed of course depends on the
scheduling scheme)

e At the output stage, the CID table is examined, and a path match is found. Successive
bytes comprising the packet are then copied into the remaining space of the PDU
currently under construction.

e W'i2n no more space is available inside the current PDU, it is +2ady for transmission
and may be dispatched. A new PDU is then created and the outstanding packet
contents are placed inside this new PDU.

e Once the processing of the current packet is complete, the system will continue the
loop if any packets should still be processed, or else return to the IDLE state once
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again, where more information may be received.

e For each outgoing AAL2 path that is created, a separate timer is responsible to
ensure each PDU is submitted to the ATM layer on time. The timer value forms
yet another state parameter of each outgoing path. When a timer expires, the PDU
under construction is filled with padding before being transmitted.

3.4 System Design

To support AAL2 switching, we realise the switch design may be broken up into two
main logical segments. These segments are logical in the sense that they do not map
directly to any discrete system modules. A segment may in fact comprise three or four
modules to operate correctly. The first segment incorporates the mechanisms to support
the breaking up of AAL2 PDUs into CPS packets and vice versa, and the second segment
comprises the mechanisms to support the core CID switching function. At this stage,
switching implies the translation of CPS packets to the correct output path based on the
translation table, and does yet take into account any scheduling mechanisms. To function
correctly these systems require the support of various sub-systems distributed throughout
the switch. These sub-systems include but are not limited to signalling components, that
take care of updating information dynamically and queue managers that are responsible
for dynamically allocating memory for buffers on demand.

As the operation of the system at runtime will be highly asynchronous, a sensible approach
is to ensure that tasks that may be grouped together and form one aggregate function
are grouped into their own unit, and that each unit operates independently from others.
Although a unit may require data from a neighbouring unit to function, it is not aware of
the state of its neighbour, and cannot predict when new data will become available. We
may regard the AAL2 switch as a non-symmetrical system for the following reasons:

e The ouality of service required for each channel will place separate requirements on
the internal scheduler at different times. This will affect the time taken to schedule
batches of packets that may belong to the same QoS group as well as the rate at
which input and output buffers are emptied or filled (which will of course affect the
operation of neighbouring modules)
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e As the number of input and output paths increases, the number of state machine
instances in the system will increase, i.e. the state machines that control the segmen-
tation and re-assembly of AAL2 packets. When control is passed to a state-machine
instance, it is not trivial to determine the time that wi]l elapse until processing is
complete, and this places further uncertainly on the opéi‘ation of the system.

e Each path may carry any number of connections from 1 to 248, and the ratio of
signalling requests to user data on a given path may vary. As signalling requests are
treated with higher priority, user-classified data will have to wait until these requests
have been processed.

The overall design diagram is given in figure 3.3, and consists of nine separate units, which
may be described as follows:

o The Admission Control Unit (ACU) is responsible for receiving ATM-level sig-
nalling requests on a well-known address. These UNI-based requests are intended
for the establishment of AAL2 connections. If a request is received to allocate a new
AALZ2 path, the SPU (discussed shortly) is notified to create this path. At this state
the ACU is a null entity and the establishment of AAL2 paths is assumed to be the
responsibility of a management entity.

o The Interrogator Unit (IU) is required where ATM signalling has not been im-
plemented, or is not possible. ATM signalling incorporates connection setup mecha-
nisms, which allow the ATM VC to be classified as a carrier for AAL2-type traffic.
In the absence of ATM signalling, ATM cells of any type may enter the switch on the
same connection identifier (i.e. the VPI/VCI index). It is the responsibility of the
interrogator unit to examine the payload of such cells carefully to identify whether
the given cell payload contains AAL2 type data or not. The IU would peform such a
function by scanning the payloads of cells to determine whether any distinct patters
may be found. As an example, the CID field of an AALZ cell can only take on certain
values!. If, in an unknown cell, the field in which a CID would exist, is found to have
a value of 1, then the cell couldn’t possibly be an AAL2 cell. Of course, only one

- such clue would not necessarily be sufficient to guarantee the type of a cell. Such a
function would most likely be processor intensive, and would best be implemented in
hardware.

Values of 0-7 for a CID are not allowed and have been reserved.
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e The AAL2 Disassembly Unit (ADU) provides the mechanisms for converting
PDUs into corresponding CPS packets, and placing each packet into its associated
buffer for processing. The ADU must be capable of handling multiple input AAL2
paths and retain the correct state variables for each inpyt path.

¥

e The Input and Output CPS Packet Stores hold packets that are waiting to be
scheduled or reassembled. These stores are accessible to the SPU, ADU and ARU as
these units either create, insert or remove packets respectively.

o The Packet Scheduler Unit (PSU) copies packets from the Input Packet Store to
the Output Packet store. It differentiates between different channel QoS requirements
by grouping equal or similar QoS’s into a single type of service, and performing a-
suitable scheduling algorithm on the type of service group.

o The AAL2 Re-assembly Unit (ARU) reads in the CPS packets from the Output
CPS Packet Store. The unit has access to the CID translation table. It performs
a lookup for each packet to determine the outgoing path?. Once a path is found, a
mechanism takes over the role of reconstructing the PDU for that path. This unit
may also be interrupted at any stage by the Timer Unit, in which case the path
targeted will have its next outgoing PDU immediately dispatched.

e The Timer Unit (TU) has the highest priority of execution in the system. This
unit is responsible for maintaining the timer-CU for each outgoing path. The TU. is
able to interrupt the system at any stage and pass control to the ARU. The ARU will
take over the task of padding the PDU and transmit it, when necessary, as discussed
above.

o The Signalling Processing Unit (SPU) takes care of signalling requests it they
arrive, and makes decisions based on the information to perform dynamic updates
to the system. It is primarily responsible for creating end-to-end routes through the
switch, i.e. a mapping from input path and channel to a corresponding output path,
and the tearing down of these connections. When a new channel is created, the
SPU will allocate both an input queue and output queue in the relevant stores to
accommodate packets of the channel. When a new route is established, the SPU will
determine whether an outgoing path exists to accommodate the route, and if not,

?Note we are referring to a logical lookup. We shall examine the actual mechanism for performing a
lookup in Chapter 5
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create a new output path. Furthermore, it will place the relevant entry in the CID
table, to be used by the ARU in its re-assembly process. The SPU must maintain
the current active input and output paths, as well as the CID table. It is also the
function of the SPU to remove routes, channels and pat}as when they are no longer
needed, and to reject requests that may bring about unwanted effects in the system,
e.g. a user trying to remove a path with one or more active channels.

e The Configuration and Control Unit (CCU) is responsible for configuration
and system startup. The CCU will initialise all the various modules of the system
on startup, and ensure that the relevant time elapses for the system to reach steady
state, before accepting new data.

We have yet to examine how these modules will interface to one another at the system
level, i.e. the interface signals that are required between modules in the system. The
signals are the following:

i

o VALID IN_SIG_PACKET is initiated by the ADU to inform the SPU that
a packet containing AAL2 signalling information is available in an input queue for
processing.

e VALID OUT_SIG_PACKET is generated by the SPU to the ARU when a
packet containing a signalling request destined for a remote entity must be transmit-
ted

e ADD_CID_MAPPING is a signal sent from the SPU to the CID table entity to
create a new Input Path / CID / Output Path Mapping

e START TIMER _CU is sent by the ARU to the TU when the construction of a
new PDU is commenced.

¢ RESET TIMER _CU indicates that the current timer is no longer required (the
ARU has either sent the PDU as it was filled before the tirmer expired or the con-
struction of the PDU was cancelled)

o TIMER CU_EXPIRED is generated when a timer reaches its limit and the ARU
is required to immediately dispatch the current PDU. The signal is sent directly from
the TM to the ARU.
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ALLOCATE CHANNEL QUEUE is sent from the SPU when a new channel
is being set up, to pre-allocate the input and output queue resources that are required
to buffer packets for the channel. This signal is targeted to two units, namely the

Input Cell Store and Output Cell Store '

FREE CHANNEL_ QUEUE frees buffers for future channels.

ADD AAL2 PATH is sent either by the ACM or CCU module to the SPU to
dynamically or manually set up a new AAL2 input path

ADD AAL2 CHANNEL is sent by the CCU to manually add a channel to a
given path

ADD AAL2 ROUTE may also be initiated by the CCU to add an end-to-end
route for a channel.

49



Chapter 4

WUGS Architecture

4.1 Introduction

Before the implementatidn aspects of the AAL2 switch can be discussed, based on the
design from the previous chapter, it will be essential at this stage to examine the WUGS
architecture on which the switch is based. It could be said that the WUGS switch and
supporting environment to date offers the most extensive research capabilities in the ac-
tive networking arena, by allowing one to effectively “cut-through” the physical technology
barrier, and instead concentrate at the higher level system design and accompanying pro-
tocols. :

When the Washington University Gigabit Network Distribution Programme commenced
in 1999, the university in the position to ship their base ATM switch, i.e. the Washington
University Gigabit Switch (WUGS) to selected participants (including the University of
Cape Town), thus paving the first steps towards the research the programme had intended
to promote. The standard kit was comprised of the following components:

e The base ATM switch

e ATM Port Interconnect Chip Network Interface Cards (APIC NIC), to allow end
stations to communicate with the switch over an optical link

o Line card adapters, to form the transmission interface for each switch port, and hence
provide the relevant optical to electrical conversion, at two possible link speeds
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Figure 4.1: Enhanced WUGS Port Functionality

b
Since 1999, two additional components have been released. Both the Smart Port Card

(SPC) and Field Programmable Port Extender (FPX) allow high-degree, per-port cus-
tomisation of the switch, depending on what port these modules are located. Naturally
the overall power and degree of functionality these modules can provide scales according to
the total number of occupied switch ports. By “occupied port”, the author simply implies
a port that has been extended with either of the above-mentioned components. Although
the FPX module is to be targeted in the following stage of this research, it is currently out
of scope of this text, and the reader is instead referred to the recommendations in Chapter
8.

This chapter will introduce and describe the various WUGS components that make up
this environment, and the relevance of these components to the implementation of the
AAL2 switch. The reader is cautioned of the abridged manner in which these components
are described, as it is simply not possible (and not relevant) to provide the same detailed
coverage that can be found in the supporting literature from Washington University [10].
The function of the AAL2 switching module, in extending the WUGS architecture is shown
in Figure 4.1 above.

Figure 4.1 makes the clear distinction between the AAL2 switch design domain, and the
WUGS environment domain. The objective of this chapter is therefore to focus on the
supporting WUGS environment that will make the later implementation possible. The
following chapter shall then present more close-up coverage of the actual implementation
specifics.
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Figure 4.2: WUGS Internal Organisation
4.2 WUGS Base Switch Overview

The Washington University Gigabit Switch or WUGS is an 8-port ATM switch, the internal
organisation of which is shown in Figure 4.2. The architecture of the switch allows for the
number of ports to be extended to 64. In order to provide connectivity from an optical
medium to the switch port processors, two separate linecards are distributed. A low-
speed dual OC-3 linecard allows per-port throughput of 310 Mbit/s (2 x 155 Mbit/s).
A linecard capable of operating at a much higher speed of 1.2 Gb/s, with proprietary
optical technology from Hewlett Packard, is alsq available and was subsequently used for
each AAL2-enabled port of the switch. Although the throughput provided by the original
OC-3 linecard would have sufficed for the purpose of this research, this linecard is not
compatible with the APIC NIC, which itself also runs at a link speed of 1.2Gbit/s, and
was the only ATM-based adapter currently supported by the version of NetBSD at the
time. Commercial ATM adapters that do operate at OC-3 link rates generally do not have
open-source specifications and are hence ill-supported on UNIX-based platforms.

The switching fabric forms the core of the switch and connects each input port processor
to all possible output port processors. The fabric is based on a well-known, multi-stage
switching architecture, known as a Benes switching architecture that contains multiple
stages or ranks of individual switching elements. Each of these switching elements is in
turn configured as a simple single stage crossbar interconnect. As demonstrated in [28],
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the number of stages in a Benes switching scheme may be expressed as 2k + 1. The first
k — 1 stages distribute the incoming load as evenly as possible, which the last k stages
route individual cells to their corresponding outputs. In this way, switch contention is
greatly reduced as the internal throughput of the switch need be no higher than that of
any external link [28]. :

To reduce the internal speed at which the switch must operate, four parallel planes are
provided. Data is transmitted through the switch as consecutive 36-byte words, each
containing a single four byte header and four additional bytes, each passing through a
separate switch plane [5]. The internal switch fabric is synchronously clocked at 120 Mhz,
and fourteen cycles are required to transmit an ATM cell through the switch fabric.

In order to perform cell header lookups, a lookup‘table known as the Virtual Circuit
Translation table (VXT table) is provided that can hold a maximum of 768 simultaneous
entries [5]. To make modification to this table, control cells must be sent to any input port
of the switch. A control cell is simply a raw ATM cell (AALO cell) with its VC field set
to 32. Depending on the orientation of various fields in the cell payload and their values,
the VXT table will be updated accordingly. To simplify the process of controlling the
switch by having to send individual cells, two utilities are provided. The first utility, called
GBNSC, accepts commands from a remote application over a TCP socket and encapsulates
the command into the control cell payload in a form that can be understood and carried
out by the WUGS. The remote application that sends the commands to GBNSC is known
as Jammer, and can either read a control script from disk, or accept individual commands
from a user in an interactive session. The use of these tools is documented in Appendix E.

4.3 APIC NIC

The ATM Port Interconnect Chip (APIC) is a high-performance network interface chip
developed by Washington University for the sending and receiving of ATM traffic at a
maximum speed of 1.2 Gbit/s. To allow the APIC to interface directly with a system’s
main memory, it contains a PCI compliant IO bus that operates at a frequency of 33Mhz.
As all the APIC iegisters can be accessed directly from the operating system and are
open-sourced, a high level of control and customisation can be achieved.

To allow the APIC to operate as a network interface on a standard PC-based workstation,
the APIC chip was integrated with supporting components to form the APIC network
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interface card (NIC). The APIC NIC plugs directly into an available PCI slot on any
system motherboard. A simple kernel upgrade is all that required to allow the APIC to be
accessible to the system. There are two ways in which the APIC may be controlled from
software. In the native socket mode, raw ATM sockets are bgund {0 a particular virtual
connection on the APIC, allowing special 56-byte cells to be sent to and received from the
APIC.

One of the drawbacks of the native socket interface is the inability to control the APIC
from user-space, i.e. from applications that are run by a so-called standard user of the
system. Another disadvantage of sockets is the limited efficiency that is achievable, due to
the fact that all accesses to the device must occur via a software-based device driver. To
alleviate some of these drawbacks, a special set of usermode libraries have been provided
by Washington University that provide direct access and control to the on-chip registers,
hence providing an additional means by which the chip may be controlled. This results
in better network efficiency, particularly when transporting large higher-level data frames,
such as AAL5 frames. The main drawback of the usermode libraries though, is their
complexity and low-level knowledge of the APIC chip that is required. The socket interface
for the APIC is considerably simpler and far more abstract than the usermode libraries.
Furthermore, although the usermode libraries do provide better efficiency when dealing
with longer frames, transmitting smaller frames or individual AALO / AAL2 cells is not as
efficient. It was also felt that the efficiency gained from the usermode code would be offset
to some extent by the limited speed of the SPC, and hence the throughput that could
be provided'. For these reasons, it was chosen to use the native socket interface of the
APIC in the interim, allowing more focus to be placed on the software adaptation layer
functionality of AALZ2 instead.

As AALS5 is undoubtedly the most popular manner in which to transport applications’
traffic over an ATM network nowadays, the APIC can operate in two modes. The most
common is the AAL5 mode, in which AAL5 frames are segmented into individual ATM
cells and recovered at the receiving end. In the AALO mode, raw ATM cells or buffers of
raw cells are passed directly to the APIC for transmission, and hence there is no presence of
an ATM adaptamion layer. Therefore there is no support for AAL2, and all AAL2 packet
encapsulation must be performed in software. In fact, the AALO mode of the APIC is
recommended for implementation of non-supported adaptation layers [7]. As explained

'The operation of the AAL2 modules are significantly more complex than traditional switching, with
contributes to additional processor cycles on the SPC being consumed.
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in chapter 2, packets arrive at this software adaptation layer and are placed into 48-byte
PDUs. Upon completion of the PDU, 2 headers are appended to form a 56 byte cell, which
is then directly passed in the AALO mode to the APIC for transmission. The first header
is simply the ATM cell header without the HEC field, which wi]l be appended by hardware
before the cell is dispatched. The second four byte header is an internal APIC header,
which is used for routing purposes.

The APIC chip contains three individual ports [7]. The first port is the input port on
which the APIC receives ATM cells. All constructed cells are sent out on the second port
or output port of the chip. Furthermore, the APIC communicates with the main system
via the PCI bus interface, which may be regarded as the third APIC port. This leads to
three paths that cells may take through the APIC chip. The receive path is defined to be
the path from the input port of the APIC to the system bus interface. The transmit path
is the path taken by cells that originate in main memory to be transmitted onto the ATM
link and which should exit through the output port. Finally the transit path applies to
cells the simply enter the APIC through the input port, and pass directly through to the
output port. If the APIC has not been explicitly configured to accept data from an input
port on a specified VC, the default action taken by the APIC is simply to propagate the
cells from input to output.

4.4 The Smart Port Card

The Smart Port Card (SPC) is an embedded computer capable of performing cell-level
processing in software. The SPC is based on a Pentium embedded module running at
166 MHz with on-board level-2 cache and a Northbridge controller to coordinate activity
between main memory, the CPU and PCI bus. A custom FPGA has been integrated onto
the SPC-board to provide system BIOS capabilities and synchronisation in the form of
software interrupts to the operating system. As the SPC resides in the WUGS, there is
naturally no need to support standard peripherals such as keyboards, mice, screens and
tk» like. The only access to the SPC is provided via two serial »orts (to provide shell access
to a user) and the APIC interface.

The APIC interface allows the SPC to receive and transmit ATM cells to and from the
switch ports and core switch fabric. In the case of the SPC, the APIC chip is integrated
directly on-board with the existing SPC components and communicates directly to the
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PCI bus. In the previous section, the three ports of the APIC were discussed. The three
ports are identical on the SPC-integrated APIC.

However, there is one subtle difference between the APIC on board the SPC and the NIC-
based APIC. Each APIC chip is connected to two physical interfaces. When the APIC is
part of a Network Interface Card, the two available interfaces are a fibre-optic interface and
a high-speed ribbon interface, which was intended to provide a cheaper alternative. With
regard to the APIC on the SPC, instead of the fibre and ribbon port, one refers instead
to the link and switch port, as the APIC on the SPC is directly “sandwiched” between
the linecard of the particular port (link) and the switch fabric (switch). This is one of
the reasons why an additional internal 4-byte APIC header must be appended to cells in
software - this header contains routing information that informs the APIC whether the cell
ought to exit on the fibre or ribbon port (NIC) or link or switch ports (SPC) instead.

To initialise the SPC, a kernel and corresponding file system are first prepared at a re-
mote development workstation. The kernel need only be customised to support the bare
essentials that would allow the SPC to achieve the correct tasks, e.g. APIC support and
ramdisk support®. Once complete, the kernel and file system are combined into a single
image and downloaded over the ATM network to the SPC. Once downloaded, a sequence
of bits provides an instruction to the SPC to start booting. Once booted, a user or kernel
level process may take control. The process of configuring the SPC is discussed in more
detail in Appendix E.

4.5 NetBSD Operating Environment

NetBSD version 1.4.1 was chosen by the Applied Research Lab [10]. It was released under
the BSD license and is a free UNIX-based OS. A proprietary embedded OS obtained from
a commercial vendor would undoubtedly have clashed with the Gigabit programme ideals.
NetBSD was developed using the C programming language (as are most UNIX-based OS’s) |
and is supported by almost all GNU applications, debuggers and tools, which themselves
provide outstanding developer support.

NetBSD was felt to be a suitable OS as it provided several mechanisms required by the
AALZ2 switch module. Descriptors and socket support are required for file (logging) and

2Support for SCSI, RAID, video controllers, etc. which appear in standard NetBSD kernels is, of course,
removed.
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network access. Software interrupts are required to allow the timer-CU to operate correctly
when transmitting AAL2 cells. As NetBSD is a lightweight operating system, it does not
come bundled with too many generic (and not particularly useful) utilities and drivers.
This is seen as an added advantage, as the SPC does not contain any secondary storage,
and must rely on a ramdisk in main memory to store the file system and kernel®. The size
of the ramdisk is further limited to 24 MB.

NetBSD does however, have its disadvantages. As already mentioned, it is not inherently
a real-time operating system. This makes it not possible to provide strict QoS guarantees,
particularly for voice traffic, especially under heavy loads. Voice traffic is sensitive to
network delay and jitter, and a non-real time OS is only capable of offering relative priority
to varying traffic grades. Secondly, due to the same reasons, the correct timing of the timer-
CU mechanism cannot be guaranteed.

An additional disadvantage of NetBSD is the lack of support of threads, which themselves
may be regarded as lightweight processes. However, this problem was eliminated by making

use of a process-specific threading environment.

4.6 Integrating the WUGS Components with the AAL2
Switch

The preceding sections ought to have provided sufficient grounding to allow one to now
examine how the various WUGS components may be used as a support structure for the
AAL2 switch. It should once again be stressed that any AAL2 functionality is to be kept
within the domain of the SPC itself. It should also be noted that as no signalling support
is enabled in the WUGS, all VXT tables entries must be allocated manually.

For each port on the WUGS that the AAL2 module (hence SPC) resides, the corresponding
port will be enhanced with AAL2 switching. Therefore, as there are eight ports on the
WUGS, there naturally exists the opportunity of enhancing all eight of these ports. We
shall however, in the example below, focus on two AAL2 enabled ports. The SPC is
capable of processing both ingress traffic to the WUGS as well as egress traffic. There are
two advantages of configuring the SPC to process ingress traffic:

3 A symbol-only version of the kernel is stored on the file system to save space, and links directly to the
already running kernel.
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e The SPC has the throughput capability of the entire switching fabric, with the result
that output queues on the AAL2 switching module need not be very large.

e Once cells have been processed by the AAL2 module, they will still need to be
switched at the ATM level by the WUGS. It is simpler’to achieve switching if the
SPC is located at the input port - cells that exit are already at the input of the
switching fabric, and are treated as conventional ATM cells. Had the SPC been
located at the output port, the corresponding output port would need to identify
these cells and recycle them through the switch, if a cell lookup was required. As
the cell arrives on the corresponding input port, an entry in the VXT table would
need to exist to ensure that the cell would be switched correctly in its second pass
through the switch. '

Having decided to placed the AAL2 modules on the input ports of the switch, the following
steps must be taken to incorporate the design onto the WUGS:

e All end-stations, sources and/or base stations that will be communicating with the
WUGS are first identified. VCs are allocated for any ingress and egress traffic external
to the WUGS and are noted®. If a source generates AAL2 traffic, it will link up to
an AAL2 enabled port. Sources generating ATM traffic, or a mixture of ATM and
AAL?2 traffic that must terminate at a single port, are linked up to non-capable AAL2
input ports, where the connections will be switched to the appropriate entities (either
output port if ATM or recycled back to input for AAL2).

o The input ports on which the AAL2 modules (SPCs) will reside must then be deter-
mined. These input ports should preferably not be used for standard ATM traffic.
in order to provide the maximum bandwidth available to the SPC.

e If any ATM switches precede AAL2 switches, the ATM traffic may be passed through
the WUGS to a recycling port, where the traffic is subsequently recycled back to an
AAL2 module for processing.

® Any standard ATM connections that are simply switched from an input port to an
output port should be entered into the VXT table.

4Not all VCs are directly entered into the VXT table.
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e As AAL2 modules generate ATM cells, the VCs on which cells are transferred must
also be included into the VXT table to ensure the traffic will propagate through the
switch.

When an SPC generates APIC cells (56-byte cells), it is impbrta‘nt to ensure that these
cells enter the switch fabric and do not pass back out the input port. Therefore any output
connections on which the APIC will send cells, must be configured to transmit cells on the
switch interface and not the link interface.

In Figure 4.3, a testbed is shown with 5 base stations that either send or receive AAL2
traffic. Not all sending base stations connect directly to an AAL2 switch, but may be
passed through an ATM switch to separate the traffic flows. Although there are 2 ATM
switches and 2 AAL2 switches in the diagram, it is a simple matter to show how the entire
functionality of Figure 4.3 may be included into a single WUGS.

The chapter concludes by providing a practical solution for realising a testbed that consists
of both ATM and AAL2 switches, which is shown in Figure 4.4. Note how a separate VC
is allocated for each ATM connection. Connections may carry one, two or three AAL2
channels simultaneously. Cells that enter SPC modules are likely to have their contents
altered, and hence it would not be a good idea to maintain the same set of VC identifiers
at the SPC output as the input. Note that the solution is not the most compact that may
be realised, but has been deliberately spread over the entire switch to aid in simplicity.
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Chapter 5

The AAL2 Switch Arghitecture

5.1 Introduction

This chapter will focus on the software architecture of the AAL2 switch that will run on one
or multiple SPCs in the WUGS. First a general system overview is given, with emphasis
on the requirements to support a modularised system, and how scheduling of the modules
should occur. These modules are then discussed in a particular order, which is influenced

by the following factors:

e To degree to which certain units depend upon one another

o The flow of information through the system. As an example, AAL2 packets will first
enter the ADU before being passed to the PSU and from there to the ARU and TU
mechanisms. These four units may be essentially viewed as an AAL2 pipeline, and
are hence discussed in this order.

The chapter concludes with relevant notes on development issues.

9.2 System Overview

The AAL2 switch architecture is modelled as a non-preemptive, cooperative system, with
several modules that run independently of one another. As these modules are required to
operate in parallel, the resource of the CPU must be shared evenly amongst all processing
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entities, and hence context switching is required. The only way to achieve context switching
in a native NetBSD environment is to allocate a separate process for each module that is
required, and allow the kernel to schedule the individual processes.

There are several drawbacks to this approach. Firstly, for each process that is spawned, a
separate memory space must be allocated. There have been attempts to allow processes
to share memory, but the mechanisms are complex and non-portable across platforms.
Secondly, due to the preemptive nature in which the kernel switches in and out each
process, there is no way of knowing when a given code segment will be interrupted. This
can result in an unwanted condition in which two processes simultaneously attempt to
execute a segment of code that ought to be allocated to only one process at any given
time. Critical sections and atomic locks can be used to avoid these race conditions, but
these mechanisms add complexity to algorithms and atomic locks must be supported at
the hardware level. Finally, the use of processes limits the scalability of a system. As
large segments of memory must be shifted with each context switch, the responsiveness of
a system with many processes is affected. If a process were to be allocated to each AAL2
path, for example, the AAL2 switch would become sluggish under heavy load.

A better alternative, which alleviates the drawbacks mentioned above, is to make use of
threads, which are essentially lightweight processes. The fundamental advantage of threads
over processes is that threads are capable of sharing memory amongst themselves, and each
thread need only store its own program counter, stack pointer, stack memory and signal
table. Each module is therefore implemented as a separate thread, with each thread being
scheduled at the process level, and not at the kernel level.

By employing a cooperative strategy amongst the threads in execution, the race conditions
discussed above can be eliminated in the following manner. When a thread is picked up
by the CPU from a ready or waiting queue, the thread will be given full control to the
CPU and must relinquish control at some stage to give other threads a chance to run.
This is achieved by an explicit yield instruction from the thread itself, which immediately
results in the thread being placed once again on the ready queue. Therefore when data
is made available for a particular module or thread, the module will process the data and
yield control to the scheduler. Another advantage provided by a cooperative strategy is
that routines are not required to be re-entrant, since a cooperative environment will not
allow two modules to run the same code segment simultaneously. A re-entrant routine is
required to yield the same results when being invoked by multiple threads of execution,
and is substantially complex to implement.
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It should further be noted that the AALZ2 switch is a work conserving system, which
implies that the switch is never idle when there is useful work to do. A preemptive system
would produce side-effects that would result in a non-work conserving system. A diagram
depicting the organisation of the switch architecture is show? in Figure 5.1. Unlike the
design diagram of Figure 3.3, more emphasis is placed on the core modules of the switch
~and their supporting structures. As the Admission Control Unit (ACU) and Interrogator
Unit (IU) have not at this stage been implemented, they are either shown as null entities,
or have been omitted from the diagram.

The modules that were either partially or completely implemented were:

e Signalling Processing Unit (SPU)

o Configuration and Control Unit (CCU)
o AAL2 Disassembly Unit (ADU)

‘e Packet Scheduling Unit (PSU)

o AAL2 Re-assembly Unit (ARU)

e Timer Unit (TU)

Three important structures that may also be found in the switch, and that are not listed
above, are the input packet store, output packet store and CID table. These structures
are not considered to be stand-alone modules, but rather as central mechanisms, to which
all modules that require them, have equal access. As an example, the Input Packet Store
needs to be accessible from both the ADU and PSU, while the Output Packet Store should
be accessible from the PSU and ARU, as was pointed out in Chapter 3.

Communication between modules is achieved by the use of events, a standard mechanism
used by threads. If a module is waiting for an event, it will be placed on an event queue,
and another module will be given a chance to execute. When an event is generated for the
module in question, the scheduler will .x.ove the module from the event queue to the front
of the ready queue, ready for execution. Once the current running thread yields control,
the module that had been waiting for the event is finally given a chance to execute. These
events are used to emulate several of the interface signals discussed at the end of Chapter
3.
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5.3 Operation of the SPU and Processing of Events

The purpose of the SPU, as outlined earlier, is to process incoming AAL?2 signalling packets,
perform required system updates and generate required signalling packets destined for
remote switches. The SPU may be regarded as the unit inthe AAL2 switch that most
intimately relates to the passing of messages via events, as it is driven by input events
before any useful processing may be performed. The SPU can receive any of the following

input events:

e AAL2_IN_SIG_PACKET specifies that an AAL2 signalling packet has arrived,
and is waiting in the Input Packet Store to be processed. A parameter that must be
specified is on what queue descriptor the packet is to be found.

o ADD_AAL2_ INPUT_PATH or REMOVE_AAL2_INPUT _PATH, require an in-
put path identifier to be specified. This could take the form of a valid incoming ATM
VCI, in which the input AAL2 cells will arrive.

e ADD_AAL2_OUTPUT_PATH or REMOVE _AAL2_OUTPUT_PATH are iden-
tical to their input counterparts, but instead require an outgoing ATM VCI to be
specified

e ADD_CHANNEL_MAPPING or REMOVE_CHANNEL_MAPPING both require
a parameter triplet, consisting of the input path created above, a channel ID, from
9 to 255 representing the AAL2 channel that is to be bound or unbound to the
outgoing path, respectively, as well as a Type of Service identifier. The reason for
not specifying the ITU recommended range from 8 to 255 is due to the fact that
channel 8 is reserved for signalling AAL2 channels, and channel 8 is automatically
allocated by the SPU for each input path created. If the input path does not exist,
the channel ID is not in the specified range, or has already been allocated, and an
appropriate response error signal (or event) should be generated.

¢« ADD_AAL2_ROUTE or REMOVE_AAL2_ROUTE maps or unlinks an input
AAL2 path and associated channel, as bound together above, to an outgoing AAL2
Path, respectively. If the output path does not exist, or a condition occurs regarding
the first two parameters as mentioned above, an appropriate error signal should be
generated. |
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At system startup, when the SPU is instantiated, it is not ready to accept input events. It
first executes an initialisation routine. Although this routine can be used to create input
paths, output paths, channel mappings and AAL2 routes manually, the primary purpose
of this initialisation phase to set up the required mechanisms to process events. In order
to be able to receive a set of events, and not just a single one, a structure known as an
event ring is required. Each element in the event ring contains a pointer to the following
element. The elements in the ring represent all possible events that can be generated, and
should any of these events be generated, the event(s) will be held in memory until they
may be processed. What is then required is for the SPU in its standard operation state, to
wait on this event ring and to process the incoming events as they arrive. In the context
of the signals discussed above, the input event ring will hold eight possible events, each
representing one of the possible input requests.

Not only should a mechanism exist to process and receive events themselves, but also
the event parameters. Furthermore the number of these parameters is not fixed. As
an example, the ADD AAL2 ROUTE event requires three parameters to be specified,
whereas the ADD_AAL2 INPUT_PATH specifies only one parameter, and some events
may even have no parameters. Therefore each event is bound to a structure known as a
message port. A message port represents a queue into which messages representing the
parameters are passed. As the message port is bound to a certain event, the appropriate
event will automatically be generated as soon as a message is placed on the queue. The
unit that is targeted, in this case the SPU, upon receiving the event will know that a
message is pending, and will read the message, representing the required parameter off the
queue. The question that arises is: If an event requires three parameters to be specified,
should three individual messages be queued? The answer to this would be negative, as
three individual events would be generated, hence requiring the receiver upon reading the
first event to decide on how many additional events are required to fulfil the outstanding
information. A far better solution is to pass a pointer as part of the message that is placed
on the message port. This pointer refers to a structure that contains the required number
of elements. Note that the structure is not passed, only the pointer, hence requiring only
a single event to be generated. This process of passing pointers to structures into message
ports, which then results in events being generated, is illustrated below in Figure 5.2.

Once the SPU has completed setting up the event ring and associated message ports, it
enters the standard operation state, where it will wait for an event to be received. If
no events exist, the thread representing the unit is immediately suspended, allowing the
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Figure 5.2: Passing Message Ports as Events to the SPU

other threads in the system to run. When an event is received, the event is processed. If
updates are required, for example modifying internal tables, these are performed. If an
event specifies the existence of a signalling packet, the packet is read off the Input Packet
Store and subsequently processed. If output signals are to be generated, appropriate events
can be placed in an output event ring, in an identical manner as discussed above. If a target
unit is to receive one of these events, it must wait on the same event ring as specified by
the sender. Finally, if AAL2 signalling packets are targeted to a remote AAL2 switch,
the packet must be placed on the Outgoing Packet Store. The next step would involve
determining the output path for which this packet is destined, and notifying the correct
ARU instance (that is responsible for generating outgoing AAL2 PDUs for the path in
question). The event that would be generated would naturally carry a parameter to inform
the ARU where to find the signalling packet in the Output Packet Store.

It should be stressed as this point that by creating the above mechanisms, the SPU is
in the state where further work can be carried out in a second research phase, with no
prior knowledge required of the internal workings of the AAL2 switch, how the modules
(threads) interact with one another, and how AAL2 PDUs are formed into packets and
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vice versa. The developer need only concern himself/herself with the relevant interface and
processing of these events.

5.4 Operation of the CCU

The CCU forms the core of the AAL2 switch architecture. Although it is responsible for
only a small portion of the total processing in the switch, it is the first unit to be given
control upon switch startup. The CCU will then instantiate the other modules by starting
up their individual threads. When the switch is booted, no parallelism exists and there
is only one thread of execution. The CCU performs the following functions to allow the
AAL2 switch to reach a state in which incoming information can be processed:

e Create an environment to support threads by loading the relevant libraries

e Initialise a pool of FIFO (First In First Out) queues. When a FIFO queue is requested
by a module, a que{xe is allocated from this pool. There is a reason for initialising
this pool up-front. Although at first queues have not been assigned to any use, the
memory required for each queue has been requested and is committed as from this
instance in time. When at a later stage a queue is required, a queue descriptor need
only be assigned to the relevant module instead of the module having to dynamically
request memory. Memory requests are expensive and consume processor resources.
Hence it is best to perform as much memory allocation as possible in the initialisation
stage, before any useful work is required. The amount of memory that is preallocated
depends on the maximum number of channels that are to be supported. Therefore,
if a good response is required, then a large number of queues should be preallocated.
In the event that the pool runs dry, a result of trying to allocate more channels than
what internal queues can accommodate, additional memory may then be requested.
FIFO queues are required particularly by both Packet Stores, and the queues must
be accessible by the ADU and ARU modules, as well as the PSU and SPU.

e Initia:ise a set of linklists, to be used by the PSU and ARU, the uce of which will be
explained later.

¢ [nitialise the remaining modules by spawning their threads. These modules are the
SPU, PSU and TU. Once these modules have been initialised, they will be given a
chance to run once the CCU vields control.
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e Enter the steady state. In this case, the CCU yields control. Further functionality
that can be included into this module is to receive instructions from a management
workstation. The data path in which these instructions would flow is likely to be out
of band of the user AAL2 streams, and may even be based on TCP sockets.

5.5 Static (single-instance) and Dynamic (multi-instance)
Modules

The modules comprising the AAL2 switch can be placed into two categories. The SPU,
CCU, PSU and TU can be referred to as static modules, whereas the ARU and ADU
are implemented as dynamic modules. The static modules are created when the switch
boots up and remain active throughout the operating lifetime of the AAL2 switch, hence
occupying the same memory space. Furthermore there is only one instance of each static
module, and each static module need only maintain a single state of global significance in
the system.

Dynamic modules are not instantiated at the switch startup cycle, but are created upon
demand. In the design chapter, the need was specified to maintain a separate state model
for each in-going and outgoing path that exists. As the ADU and ARU represent the
processing elements to accommodate these input and output path respectively, it was
decided to implement a separate unit instance for each path that is required. For example,
if two input paths and three output paths have been specified, there will exist two ADU
instances and three ARU instances, respectively.

5.6 Functions and Organisation of the ADU

The ADU is primarily responsible for accepting AAL2 based ATM cells from the IU and
extracting the CPS packets from these cells!. These cells were introduced in the previous
chapter and it may once again be stressed that these a.e in fact 56 byte APIC cells, with
a four-byte ATM header (excluding the HEC field) and a four-byte internal APIC header.

For each AAL2 input path that is created, a new ADU instance or thread must be in-
stantiated. Apart from the separate state each ADU must maintain, there was another

"When the IU is not present, the ADU will accept cells directly from the input link.
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important concern that further motivated the breakup of a single ADU into individual
instances, which is based on socket behaviour. When an ATM network socket is created, a
descriptor (a value used to identify the socket) is returned which can subsequently be used
to read and write information to the socket. Furthermore, there are two modes in which a
socket can operate, viz. blocking and non-blocking. If a socket is set to the blocking mode,
and a read command is encountered for example, the execution of the process or thread
will cease until information from the link can be read in. Once a specified number of bytes
have been extracted using the socket descriptor, the execution of the process or thread will
continue unabated. In the non-blocking mode, if a read command is encountered and no
data is available, the process or thread execution will continue uninterrupted, and when
information does later arrive, it will automatically be copied to a buffer that was specified
to hold the cell contents. Hence in the non-blocking mode, a check must be made on the
descriptor to determine whether any information did in fact arrive.

Now if the ADU were a single module, blocking sockets would be relatively simple to
implement. However, suppose that the ADU was supporting three simultaneous input
paths. Note that for each AAL2 input path, a separate socket descriptor is required.
When the ADU attempts to read information from the first socket, representing AAL2
path 1, and no data is available, the ADU will stall until data does arrive on the particular
AAL2 path, irrespective of the status of the remaining sockets. If in the event that data
never arrived on the first socket, the ADU would remain in this state forever, and the
other sockets would not be served from this point forward. Hence such an implementation
is clearly unacceptable. Coding this single ADU module using non-blocking sockets also has
drawbacks. The code for multiple AAL2 paths would become excessively complex, having
to keep state of the degree to which each AAL2 path has been processed. Furthermore, if a
large number of AAL2 paths were active at any given time, a check to determine whether
any of the sockets representing these paths had valid input data or not would need to be
performed on each and every socket. Hence the cost and processing delay would increase
linearly with the number of the AAL2 input paths present, even if some or most of these
paths are completely idle.

If each ADU instance is coded as a separate thread, it need only concern itself with a single
incoming AAL2 path. Therefore if the socket interface is impleinented in the blocking
mode, the thread will block when no input data for its input path is available. This is
perfectly acceptable as other input paths will not be affected. Even if the thread is in the
DIVCKLLY Staty, aud data arrives on another AAL2 path, the thread bound to the AAL2
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path will be responsible for collecting the data instead. In this manner, the code for each
ADU instance is identical and tremendously simplified. Note that re-entrance is also not a
concern, as a different state structure, and hence separate memory area is passed with each
ADU that is instantiated. A final concern with blocking socket; is that the standard socket
commands supplied with NetBSD block the entire process (consisting of multiple threads)
for each blocking socket that does not have data to process. However, an equivalent set of
thread-based socket commands only result in the thread being blocked. These commands
are based on the same POSIX interface standards as their process-based counterparts.

The unit responsible for creating these ADU instances is the SPU. This will of course
occur on a command received as an event, or manually by the SPU itself. Henceforth
when reference is made of the ADU, an ADU instance is in fact implied, which in turn
corresponds to a unique AAL2 input path. Each ADU holds the following state information:

o The AAL2 path identifier, which represents the ATM VC on which cells arrive for
the path.

e The path socket descriptor

o The thread identifier for the ADU. On UNIX-based systems each process is allocated
a unique process identifier. In a similar fashion, each thread that is spawned is
allocated a unique thread identifier.

e A boolean variable, to indicate whether the path will accept AAL?2 signalling requests
or not. Note that a path may be allocated by a Management System. Furthermore,
for security reasons, it may be a desire to not have a switch accept AAL2 signalling
requests from various users.

e A structure used to define the state of the CPS receiver.

e An array of 255 elements, known as the Channel Table, which represents all active
AAL2 channels bound to the path. Each entry has an active/non-active variable
that is set accordingly. Furthermore each table entry points to both an input queue
deseriptor and output quene deseriptor. which represent indices into the Input Packet
Store and Qutput Packet Store respectively. Note it is not a concern of the ADU to
copy packets into the Qutput Packet Store - this should be performed by the PSU.
Furthermore it should be noted that strictly only 248 table entries are required, but
the array contains 255 elements to simplify indexing.
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Based on this information, when each ADU is first instantiated by the SPU, the following
once-off actions are performed:

e Open an APIC connection on the specified VC identifier and bind it to a socket that
will be used for future data transfers. ; '

e Allocate a FIFO queue to hold signalling requests. Note that signalling packets are
not kept in either of the cell stores, but instead in their own queues.

e Automatically activate channel 8 to accommodate signalling packets, and set the
descriptors accordingly.

o Initialise the CPS receiver state machine variables.

Now that the ADU has been initialised it is ready to accept new data. When the ADU
receives the 56 byte cell from its associated socket, the first 8 bytes are stripped off and the
remaining 48 byte PDU is passed to the ITU-T CPS receiver. Note that this receiver will
process the entire PDU before returning control to the calling thread. The CPS receiver
was coded directly according to the SDL language specification given in [15], and the
interested reader is referred to this specification. Once a complete CPS packet has been
formed, the packet is passed as a CPS indication, which means that the packet is being
passed to a higher layer with reference to the OSI protocol stack. At this stage, the CID
entry in the packet is examined, in which case the packet is treated according to one-of
the following rules:

e The Channel Table for the input AAL2 path indicates the channel in question is
invalid. The obvious cause of this is that the particular channel has not yet been
allocated. In this instance, the packet is simply discarded.

e The channel is valid, and a CID of 8 was detected. In this instance, the packet is
defined as an AAL2 signalling packet. The packet is “enqueued” onto the signalling
q «ue, and an event is issued to the SPU.

o The channel is valid, and a CID of 9 to 255 was detected. This is the most common
scenario. Here the packet is “enqueued” onto the appropriate queue as given by the
Channel Table entry for the particular CID. No event need be generated, as the
packet will shortly be processed by the PSU.
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When control is returned to the main ADU thread from the CPS receiver, the ADU will
itself cooperatively yield control to the main system scheduler.

5.7 The PSU and Scheduling

As AAL2 traffic is most likely to be voice traffic with certain real-time expectations, a
need for scheduling exists to ensure higher-priority packets endure less delay, and that low
priority packets do not starve. The purpose of the PSU is to copy the CPS packets from
their input queues to their corresponding output queues, while ensuring packet fairness.
Note that the PSU is not concerned with matching packets to output paths - this is done
in the last stage by the ARU. If the PSU were to perform a lookup for each packet that
was to be copied, the packet would experience an additional delay. It might at this stage
seem to the reader that placing the lookup function at the ARU would simply shift this
delay further down the AAL?2 pipeline, but this is not the case, and will be explained in
the section on the ARU.

The PSU defines three scheduling types of service, viz. low delay, normal delay and high
delay. Each of these scheduling classes is implemented as a separate linklist consisting of
entries known as channel mappings. A channel mapping is simply a structure that contains
an input queue descriptor, with a matching output queue descriptor. When the Packet
Scheduling Unit (PSU) receives the ADD_CHANNEL _MAPPING event, not only does
it mark the appropriate Channel Table for the input path active, as indicated earlier, but
also informs the PSU that packets will arrive soon, and must be scheduled according to
one of the three types of service. This is performed by creating a new channel mapping
structure, and initialising the descriptors. Once set, the channel mapping entry is simply
appended to either the low delay, normal delay or high delay linklist. It does not make a
difference if the channel mapping is appended to the head or tail of the linklist. The only
possible side effect is an instantaneous re-shuffling of the order in which the packets in the
linklist are processed, but this effect is eliminated on a long term basis?.

When the PSU is given control by the system scheduler, it will always process the entries in
the low delay linklist first. For each linklist, first the number of elements is obtained. Then
each element is traversed and the corresponding packets, if any, are copied from input to

?Longterm here applies to three switching cycles or more. A switching cycle represents the time to
cycle through all system modules,
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output. Note that as each queue is visited as the linklist is being traversed, more than one
packet may be dequeued from the queue. The question arises to whether only one packet
should be copied off the queue before visiting the next queue, or whether all available
packets ought to be copied off. This, of course, depends on the scheduling scheme. For the
low delay scheme, it is more appropriate to copy only one packet off at a time and proceed
to the next low delay element. If too many packets are copied off the same queue, the
other low delay channels will suffer. Rather sacrifice the quality of a channel on which too
many packets are queueing up than jeopardise the quality of all remaining channels. What
is done, however, is to keep track of an additional packet flag for the low delay linklist.
When an element is dequeued from the queue, a check is also performed to determine
whether any remaining elements exist on the queue. If so, the flag is set. If after the first
pass through the low delay linklist, the additional packet flag is set, the linklist is simply
traversed again. If any queues still have further (3 or more) elements waiting, the flag will
be set once again and the linklist will be traversed a third time, and so on. A threshold
counter increments for each time the low delay linklist is revisited, and once reached, the
low-delay linklist is no longer traversed for the current switch cycle and attention is instead
given to the normal delay linklist.

In the second linklist, the linklist is visited only once, but here the number of elements
copied off each queue is set to a value known as the Normal Delay Window Size (NDWS).
This window size depends on the number of low delay channels as well as the average peak
arrival rate for all the low delay channels. If these channels are few or the average peak
arrival rate for packets decreases, the NDWS will increase, as there is naturally more time
to process normal delay packets. The NDWS will decrease if the opposite behaviour is
detected. Only if there is sufficient time remaining to process the high delay channels,
taking into account switch overhead as well as the next time channels must be processed,
is the high delay linklist traversed. Here all elements are copied from each input queue
to output queue, and therefore the linklist need only be traversed once. A scheme that is
recommended by the author, but hasn’t been implemented yet, is to log the time at which
the the PSU begins processing the low delay linklist, as well as the completion time of the
normal delay linklist. The difference in these times can be used as a measure to determine
the time allowed for high delay processing.

Note that CPS packets within the AAL2 switch are always treated as 64 byte structures,
even though their size is variable. This is due to the fact that copy mechanisms can operate
quickly on fixed sized data, particularly if these mechanisms are ported to hardware. 64-
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byte structures are also easily moved across buses, as it is easy to represent 64 bytes as an
integral number of bus transfers. Finally, once all elements have been processed, the PSU
yields control to the main system scheduler.

5.8 Operation of the ARU

The AAL2 Re-assembly Module is intimately related with the Timer Unit to perform the
following primary functions:

e Ensure that AAL2 channels are inserted into the correct outgoing path

o Reassemble CPS packets from the Qutput Packet Store and output signalling queue
into AAL2 PDUs

e Liaise with the TU to ensure that the timing requirements for each outgoing AAL2

path are met

Like the ADU, for each outgoing path that is requested, a separate ARU instance or thread
is created by the SPU. Sockets are used to write out the data in a similar way as discussed
for the ADU. Hence the same limitations caused by blocking exist and similar action may
be used to address such issues. If the APIC link is not ready to accept new data from the
ARU, the ARU will suspend execution until new data arrives.

Each ARU holds the following state information:

The AAL2 output path identifier, which represents the ATM VC on which APIC
cells will depart

The output path socket descriptor

The thread identifier for the ARU

e The timer-CU iimit for the path, specified in time units3.

A structure to maintain the state of the CPS transmitter.

A descriptor pointing to the output signalling queue.

*The concept of time units will be discussed in Chapter 6.
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e A structure known as a channel set. A channel set is simply a linklist of entries, one
of each channel that is to be transmitted on the AAL2 path. Therefore if ten channels
are destined for the path, excluding the signalling channel, there will be ten entries
in the linklist. Each entry holds a channel ID, and corresponding descriptor that
indicates where in the Qutput Packet Store packets for the channel can be found.

When each ARU is initialised, the following actions are taken:

o Open an APIC connection on the specified VC identifier and bind it to a socket that
will be used for future data transfers.

e Allocate a FIFO queue to hold output signallixig packets generated from the SPU.

# Initialise the CPS transmitter state machine.

When an AAL2 route is established in the switch, an outgoing AAL2 path must be mapped
to a channel and input pdth. As each input path and channel combination maps directly
to an input packet queue, which via the PSU maps directly to an output packet queue, it is
simple to obtain the output queue descriptor for a given pointer to an AAL2 input path and
corresponding channel. Therefore, the output AAL2 path can “claim” the set of channels
that are to be reassembled on the outgoing path. This is simply done by adding an entry
to the Channel Set linklist which contains the channel ID and output queue descriptor.

When execution is given to the ARU, the ARU will first check to see whether any signalling
packets exist that must pass onto the outgoing link. As signalling packets relate to the
control plane, they should be given higher priority over user traffic. Each signalling packet
extracted from the output signalling queue will be submitted to the CPS transmitter for
processing. When no more signalling packets can be extracted, the ARU can now process
the Channel Set. First the number of entries in the Channel Set are obtained. Then the
linklist representing this channel set is traversed, and for each queue visited, all packets
are extracted and submitted to the CPS transmitter. Note that it is quite in order to
extract all packets from each queue, as packets would not be available in the first instance
if the PSU had not allocated enough priority to the channel. The primary reason for
implementing the Channel Set scheme is to eliminate lookup delays. Only when an AAL2
route is established, is an entry added to the Channel Set. Under low load conditions, there
will most likely exist several channels in the Channel Set in which no packets are available.
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In this case it may be questionable whether traversing a linklist with some empty elements
is really quicker than performing a table lookup. However, under heavy load, far more
channels will be active, and traversing the linklist will result in many more hits.

Each packet that is extracted is immediately submitted to the CPS transmitter. The
operation of this CPS transmitter was explained in detail in éhapter 2. If the transmitter
was in the Idle state, it processes the packet contents, appending them to the newly created
AAL2 PDU. If there is still space remaining in the PDU, the transmitter will initialise the
timer-CU for the path, by issuingan ADD_ TIMER event to the TU, with the timeout value
included, specified in milliseconds, as well as the output path that generated the request.
With the timer now running, the transmitter enters state Part and returns control to the
ARU. As more packets are submitted for processing; provided the PDU does not fill up,
the transmitter will always return to state Part. However, two conditions will cause it to
change state:

e The CPS transmitter will change to state Full when a packet is delivered by the
ARU and the AAL2 PDU is now full and must be sent. In this instance, the PDU is
converted to a 56 byte APIC cell. The ATM header is calculated using the Path VC
identifier that was specified on creating the path. Note that in the implementation
of the AAL2 switch, the ATM VPI is always treated as zero, as the virtual path
concept exist at the ATM layer, and is of not of great significance here. The APIC
header is calculated to ensure cells enter the WUGS switch and do not simply pass
out the link interface again. Finally the APIC cell is submitted to the network layer
by issuing a write socket command.

If the PDU is sent off before the timer-CU expires, an event is generated to the
TM, known as CANCEL_TIMER, with the output path identifier. As a new PDU
will be under construction, the timer-CU can be reset to its default value.

e The CPS transmitter will change to state Send when the appropfiate timer-CU for the
path has expired. In this instance the TU can directly invoke the CPS transmitter,
in the so-called TIMEOUT mode. The conventional mode of calling the transmitter
is the CPS_UNITDATA mode, which simply implies more data is being submitted
for processing. In the TIMEOUT mode, the partially constructed PDU is padded
with zeros, send out on the network link, and the transmitter returns to the IDLE
state.
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If the transmitter was called in the CPS_UNITDATA mode, it will return control to the
ARU, which will itself yield control the main system scheduler. If the transmitter was
called in the TIMEQUT mode, it will return control to the TU inste;ad.

4

5.9 The Timer Unit

Although the TU is itself implemented as a thread, is has the highest priority in the system
and is capable of interrupting the entire system process. The principle function of the TU
is to coordinate the timers for all active output AAL2 paths, and ensure the relevant
transmitter entities are notified on expiry of a timer. The TU can accept two input events:

e ADD_TIMER, with the corresponding output path identifier and timeout value

e CANCEL_TIMER with the output path identifier

Implementing the TU raised several concerns initially. Implementing a single timer on
NetBSD is relatively straightforward. A timer structure is created, with the time specified
in seconds and microseconds. The system timer is subsequently sta;ted, with this struc-
ture passed to it. When the timer expires, a system-wide signal known as SIGALRM is
generated. To catch this signal, a handler function must have been specified before the
timer was invoked. The function of this handler is to notify the ARU that generated the
timer in the first instance.

However the system timer provided with NetBSD is unable to accommodate multiple
timers. If while the timer is running, and a new time is submitted, the timer simply
adjusts to the new time. The question arises as to how can one utilise this single timer
in such a way to create the illusion of a multiple timer structure? The answer to this
lies in a front-end to the timer function, which is invoked by the TU on receipt of the
ADD_TIMER event, simply known as the “add _timer wrapper”. Asithe system timer can
only accommodate a single timeout value, the wrapper function must store all incoming
timers in such a way so that when the system timer expires, a new timer carefully calculated
from the store is submitted to the system. As this wrapper is called with both a timeout
value and a path ID, an additional requirement that had to be met was to be able to supply
this path ID when the timer expired.
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When several timeout values are submitted simultaneously for procéssing, the logical de-
cision is to always take the most critical timer from this list, i.e. Ithe timer that really
ought to expire next. As an example, if two timeouts are requested simultaneously, one to
timeout in 3 time units and the second to timeout in 5 time g?its, it would make sense to
choose the first timeout of 3, wait for the timer to expire, artd then submit the difference
between these two times, i.e. 2 on the second round. What is essentiélly required is a data
structure known as an inverse priority heap. A inverse priority heép is simply a queue
that always returns the most critical value, in this case the smallesf; value upon request.
However, what was required was not just simply an inverse priority Heap (IPH) that could
store scaler values, i.e. timer values, but more complex elements. rI‘?he time elements are
in fact structures that consist of three elements: |

e The timeout value indicates when the timer will expire, relative to a reference time
(discussed below) |

e An array of targets: When the timer expires, all targets in this array and hence
all AAL2 output paths specified will be affected. The reason for having an array
of targets and not just a single target is simple. If two transmitter state machines
happen to specify timeouts that will occur at the same instance in time, this must
be accommodated into the timer mechanisms. It does not make sense to issue two
simultaneous timeouts, and is also not possible. Rather issue a single timeout and
specify that multiple entities should be notified.

o A target count, which simply states how many active targets exist for each timeout
value.

When it may be clearly ascertained that no timers indeed are runmning in the system, a
reference time variable is set to zero. The reference time simply keeps track of where
on a frame-based time scale timer are interrupting and new timers are added, in order
that correct decisions can be made on what values should be passed to the system timer.
Apart from the timer elements that can be stored on the heap, there is also a current
time element, which has the same timeout and target structure discussed above. The
current _time element always contains the timeout value, relative to the reference time,
when the following timeout will occur. When the add_timer function is called for the first
time, there will of course be no future timeout value, and hence the current timer structure
will be modified accordingly. Note that the heap is only used for the first time when a
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timer is already running, and a new timer is specified. If the TU is in this state when the
add_timer wrapper is called, the following conditions need to be taken into account:

e The new time submitted to the add timer wrapper will expire before the already
running timer. In this instance, the current running timer and its matching targets
is suspended and placed on the heap. The new time becomes the current time and
system timer is invoked once again with this time. When the system timer expires,
the original time will be pulled off the heap, the difference in time will be calculated

and the difference will be passed to the system timer as the current time.

e The new time submitted is greater than the already running timer. Here, the system
timer is left untouched, as it is still considered as the most critical timer in the system.
The new time and its targets is simply placed on the priority heap for processing at
a later stage. Note that if a timer is placed on the IPH, and another element already
exists on the heap of the same value, the target lists are simply merged with one

another.

e The new time submitted equals the current time. The system timer is left untouched,
but the target list of the current timer is appended to include the new target passed
with the new time. Therefore when this timer expires shortly, all affected transmitters

will be notified accordingly.

When the current timer expires, the handler function will always be invoked. The handler
function first notifies the relevant transmitter entities that PDUs must be sent out, by
traversing the target list of the expired timer and generating events to each target (ARU)
affected. Then the next timeout value and associated target are extracted from the IPH,
if any. If no more timers exists, the TU enters the non-timing stage and the reference time

is once again set to zero to start a new reference frame.

Occasionally a timer already set must be cancelled. Timers are cancelled by specifying
the target that should not be affected, and not the timeout value. Therefore it is not
simple to traverse the IHP to remove the required target, as the IHP uses timer values as
comparison elements and not targets. A much simpler scheme is to use a cancelled timer
array. When CANCEL TIMER events are received, the timer target is simply added to
this array. The timer that was originally specified is still left to expire in the conventional

manner. However, in the handler function, the cancelled timer array is examined, and if
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the affected targets generated by the expired timers equals an element in the array, the
transmitter is no longer notified, creating the illusion of a cancelled timer. Once an element
is found in the array, it is simply removed.

g

5.10 Development Notes

In the preceding sections, it was noted that frequent use is made of FIFO queues, linklists
and inverse priority heap structures. For this reason, these structures were coded as gen-
eralised structures, and can be extended to any i{nplemem‘,ation that requires them. These
structures and the features that each can provide are discussed in Appendix D.

The programming language selected for the AAL2 switch implementation was C, as C
is fast, efficient and constant in the results it produces [26]. Furthermore the NetBSD
operating system was implemented using C, as well as the APIC network drivers.

To facilitate the development of the project, sections of the implementation were broken
into individual files. Each module is coded as a separate file, as well as the three abstract
data types and transmitter and receive state machines. A more detailed description of the
code base can be found in Appendix F.

The following external libraries were required to made the developmeht of the AAL2 switch
possible:

e The PTH library, or GNU portable threads, required to support modules as threads
and inter-module events

The raw ATM library, required to provide raw ATM socket support, or the creation
of “AALOQ cells”.

The generic socket libraries, required for standard socket operation

The time library, required to implement the process-wide system timer

The signal library, required to allow a handler function to be attached to the SIGALRM
system signal on timer expiry
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Chapter 6

Evaluation of the AAL2 Switch

6.1 Introduction

This chapter discusses the evaluation of the AAL2 switch. The first few sections discuss
issues relevant to the traffic sources that were used to evaluate the switch, but more details
may be found in Appendix C. Subsequent sections discuss tests performed to evaluate
operational aspects of the AAL2 switch, such as the ability to switch packets correctly.
The remaining sections, and bulk of the chapter, will analyse performance issues relevant
to the AAL2 CPS and the effects induced by upper-layer application traffic.

6.2 Source Generator Requirements

In Chapters 1 and 2 AAL2 was defined as an adaptation layer to support the transmission
and multiplexing of several variable low-bit rate channels onto an AAL2 Path, or ATM
virtual connection. Although the low bit-rate traffic of interest here may be data being
submitted to the AAL2 layer, it generally refers to encoded voice traffic generated by appli-
cations or middle-ware. Therefore, in order to perform an analysis on the AALZ2 capabilities
of the system, an application capable of generating these CPS packets is required.

This application or client should fulfil the following requirements:

e The length of the packets generated should not be random, and must be set before-
hand, either by means of a script that is parsed on startup, or through a management
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Figure 6.1 Testbed Components to Evaluate the AALZ Swileh

interface. The length of each packet pavload may range from 1 byte up to & maxunim
of 64 Lytes. Packets larger than 64 hytes shonld not be generated. This requirement
is set by the ITU-363.2 specification,

The structure of cach CPS packet header should conformn to the ITU-363.2 rocotn-

mendation.
It should be possible to vary the number of packets that are generated.

The rate and size of the packets generated should conform to that specitied by ome
of several standardised voice compression codecs that are currently available,

The contents of the payload of each packel should be randomly generated as i il
were valid voiee information. This is the simplest method o penerate data.

Each CI'S TPacket and AAL2 PDU that is gencrated must be logged Lo disk for off-line
analysis,

Multiple sources, or muliiple users should be supported.

There are many standardised algorithms awailable for compressing voiee and pencrating

the variable-length packets. The algorithms ranpe from fairly simple codees snch as G-T11

that perform almost no compression, to highly sophisticated algorithins such as G-729 that

produyce speech as very low bie rates. The multiplexang feature of AAL2 is best utilised

when heing applied to lower bit-rate vodees. The codecs of interest are listed in Table
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Table 6.1: Standard Compression Codecs

6.1. Although some codecs are degeribed by au exhaustive array ol parameters, many of
these parameters are not of interest to the network or physical layers. As an example, some
parameters attempt to define models that assist in reconscructing speech and comlort notse,
both only of relevance to the sending and receiving end application. ¥e need not concern
ourselves with these. However, there are two fundamental parametars which may be nsed to
characterise gach codec. The source packet distribution refers to the time interval between
successive packets. Therefore, if the source packet distribution is 20 ms. then packets from
that sonrce will be generated every 20 ms The second parameter of interest 1s the packet
size of the somree. The packet size will vary asccording to the compression codec that has
been selected {or evalnation purposes, Both the source packet distribution and packet size
lor a number of common codecs are shawn in the table above.

To model & source, the test chient reads data from a configuration file that describes the
manner in which packets {or the source must be transmitted. These parameters include the
codec, packet size, number of packets, and source packet distribution, i.e. the rate at which
packets are produced. If multiple users are to be emulated, then multiple sources must be
defined in the configuration file. Also defined in the configuration file is the timer-C1J that
will have plobal significance to the AALZ path and hence all channels to be mmltiplexed
onta it. The implementation of the test client and server is discussed in [urther detail in

Appendix C.

6.3 Testbed Components
To perform an evaluation of the AAL2 switch, the following components were required:

o AALZ Generator, shown in Figure 6.1 to emulate multiple sources and combine their
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traffic into a single outgoing AAL2 path.

e AAL2 Analyser, shown in Figure 6.1 to receive AAL2 traffic from the source and
reconstruct the individual CPS packets for comparison with those logged at the
sending end.

o A WUGS with an AAL2-enabled switch port, i.e. equipped with an SPC.

6.4 System Calibration and Time-scale Normalisation

Figure 6.1 showed how CPS packets could be generated as if they were coming from multiple
sources, before being multiplexed onto a single AAL2 connection. To multiplex packets
from several sources is simple - just submit the CPS packets when they are generated to
the CPS transmitter, and all will be taken care of. If every source that is to be multiplexed
generates packets at the same rate, then the CPS transmitter must work at N times the
rate at which a single source is transmitting, where N represents the number of sources
that are being emulated. For example, as shown in Figure 6.1, three sources are being
multiplexed onto a single AAL2 link. If each source generates packets every 30 ms, then
the CPS transmitter must be capable of accepting at least three packets within a 30 ms
period, i.e. 1 packet every 10 ms. If five sources were being multiplexed instead, then the
CPS transmitter would have to accept 5 packets within a 30 ms period, i.e. one 1 packet
every 6 ms, regardless of the packet size. Therefore the greater the number of sources in
the system, the harder the CPS transmitter must work.

In the above example, it was simple to calculate the rate at which packets would enter
the CPS transmitter, since all sources that were defined were characterised by the same
codec (packet distribution and packet size). However, assume now that the three sources,
called A, B, and C generate packets every 5 ms, 10 ms and 20 ms respectively, as shown
in Figure 6.2. Exactly how fast must the CPS transmitter be able to accept CPS packets?
By examining the figure, one can see that as 20 ms is the slowest rate, it defines the period
or cycle over which the same behaviour will occur again and again. In other words, the
distribution of packets is the same in the first 20 ms period as well as all subsequent periods
of the same size. Therefore one need only analyse the system over a single 20 ms interval,
much in the same way as performing an analysis on a rate-monotonic system. In 20 ms,
seven packet are generated. Therefore the CPS transmitter must be capable of accepting a
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Figure 6.2: Multiplexing Three Sources onto an AAL2 Link

new packet approximately every 20/7, or 3 ms. Since 3 ms is less than the smallest source
packet rate or distribution of 5 ms (corresponding to Source A), one can conclude that a
CPS transmitter that can accept packets every 3 ms would be sufficient.

In the AAL2 generator, an interrupt will trigger the transmitter whenever a packet is
ready. Therefore, for the example above, the interrupt mechanism must be fast enough to
trigger the transmitter approximately every 3 ms or more. If the system can only handle
interrupts with a time granularity of 10 ms or more, then the generator will not be able to
transmit packets fast enough. This was found to be an issue with the NetBSD operating

system, which can only generate interrupts every 10 ms.

The only solution to such a problem is to slow down the rate at which packets are generated,
in order that the operating system can keep up. To do this, the smallest period at which
timers can operate, i.e. 10 ms, is declared to be 1 base unit. 1 base unit will then correspond
to a time period of 1 ms. Therefore a real time-interval of 3 ms will be represented in the
generator as 3 base units, or 30 ms. In this way, a thorough performance investigation can
still be conducted as the results can simply be scaled back to real time-units if required.

To ensure that for the base time selected, sufficient processing capability was available,
a sequence of packets was generated every 10 base time units. Each packet generated
was logged, as well as the time at which the packet was generated. The log files were
analysed upon completion of the run, and it was found that the time increments were
indeed constant. If the rate at which the packet times increased deviated slightly (upward)
from the norm, the base time would have been too small.

6.5 End-to-end Operational Evaluation of the AAL2 CPS

To analyse the correct operation of both transmitter and receiver, the following require-
ments had to be met:
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#Packet 0, CID=17, LI=id

17 56 0 245 26 157 69 39 186 226 168 59 130 156 172 123 101 132
#Packet 1, CID=17, LI=14

17 56 0 109 8% BL 147 13% 90 29 22 67 72 188 250 106 22% 208
#Packet 2, CID=17, LI=14

17 56 0 247 10 13 249 165 200 239 234 37 228 1326 180 100 236 &7
$Packet 3, CID=1l7, LI=l4

17 56 0 6% 152 249 180 103 21 149 4 200 254 18 172 142 13 131
$Packet 4, CID=17, LI=l4

17 §6 © 160 93 215 21 104 196 226 237 21 42 236 107 85 180 186
#racket 5, CID=17, LI=ild

17 56 0 206 138 30 47 59 42 244 52 18 52 51 240 138 17 186
#Packet §, CIDwi7?, Liwld

17 %6 0 138 164 1324 145 130 55 66 114 172 101 51 151 41 232 238
#racket 7, CID=17, LI=14

17 856 O 58 1328 238 66 196 126 172 156 48 210 78 109 122 41 183
#pPacket 8, CID«17, LI=ld4

17 56 0 208 180 186 135 B4 166 248 212 43 118 10% 20 189 76 87
§rackat 9, CIDs17, Li=l4

17 56 O 196 203 115 100 32 54 230 83 130 71 198 231 199 21 177
#Packet 10, CIDel7?, Lieild

17 56 0 121 %0 158 103 251 28 220 208 212 240 13 185 171 25 2
#rachet 11, CID=17, LI=14

17 56 0 89 180 29 220 9 176 113 9 51 18 167 192 222 132 62

Figure 6.3: CPS Packet Logfile showing 12 Packets, each of length 15 and CID of 17

e Every packet received at the analyser would have to match the corresponding source

packet exactly.

e Packets would have to arrive in the correct order in which they were sent.

e At the transmitter, any PDUs that were sent out due to the timer expiring, and not
because they were full, would have to be checked, to ensure that the correct amount

of padding had been inserted.

A very simple method for comparing streams of packets to determine their accuracy, was
to log all packets that were generated at the source end, as well as all packets received at
the remote end. A typical logfile of packets is shown in Figure 6.3.

Once both the sending and receiving end log files were extracted, the UNIX utility “diff”
was applied to compare the two files and find the difference, hence indicating any non-
matching lines that were found. In the earlier development stages, this utility helped
tremendously in diagnosing faults both at the transmitter and the receiver. A stage has
been reached where end-to-end AALZ2 transmission can take place indefinitely, without any
errors occurring. Hence, when the files were analysed off-line, their contents were identical,
implying packets had arrived uncorrupted and in the correct sequence. Occasionally, the
source log file would have one or two additional packets than the receiver log file. This was
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#Packat 0, CID=20, LI=3

20 36 0 253 116 21 14 205 221 153 51 161 114
$#Packet 1, CID=20, LI=9

20 36 ¢ 233 %2 113 167 2 7% 330 182 36 116
#Packat 3, CID=30, LI=S

20 36 G 234 142 194 243 354 129 170 §0 223 186
#Packet 3, CID=20, LI«3

20 36 0 133 5 27 232 209 56 181 33 161 182
$Pucket 4, CID=20, LI=9

A0 36 0 34 49 330 13 28 31 66 €7 190 4
$#Packet 5, CID=30, LI=9

20 36 0 143 €3 232 138 24 104 20 133 343 8
#racket 6, CID=20, LI=9

20 36 0 94 163 34 191 131 76 251 181 304 17
$Packat 7, CID=30, LI=$

20 36 0 38 3 8% ST 131 2% 150 151 120 44
#racket 8, CID=20, LI=$

20 36 0 57 44 137 44 148 50 27 109 174 158
$Packet 9, CID=20, LI=9

20 36 0 30 78 213 131 245 23 37 23 114 4
$Packet 10, CIDa30, LI=H

a0 36 © 185 74 31 86 56 138 11 1352 168 102
#Facket 11, CID=20, LI=S

20 36 0 158 304 100 100 25 185 139 160 139 3¢

Figure 6.4: CPS Packet Logfile showing 12 Packets, each of length 10 and CID of 20

caused by the receiver having not received the final PDU (as it had not been constructed),
hence not being able to construct the final packets.

The logfiles for various tests that were performed cannot be shown here, due to their size.
However, tests were performed for packet sizes of up to 64 octets, where the number of
packets in each case was increased to 10000 and transmitted in each case. In all the tests
performed, both logfiles were found to match one another. To allow for more processing
capability in the AAL2 generator, all packets from a particular source file were first read
into memory before being transmitted. The generator can write out packets at a much
faster rate if they are sourced from memory. By continually having to read each packet
from a file, a lot of time and processing power would be wasted, which could have been
used elsewhere (for example, by supporting more AAL2 users).

To analyse the effect of the timer-CU at the transmitting end, outgoing PDUs were logged
and their contents were analysed. The figures above and below show the process of per-
forming such an analysis. First, a series of packets transmitted every 10 time units, each
of length 10 bytes is shown in Figure 6.4. The outgoing PDUs formed from these packets
were also logged.

To analyse what the effect would be of varying the timer-CU on the contents of outgoing
PDUs, three tests were performed.
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$eenBDU 0 wnn

2 20 36 0 253 116 91 14 205 321 153 51 161 114 20 36 0 223 92 113 167 2
75 220 182 36 116 20 36 0 234 142 194 243 254 129 170 90 222 186 20 36
0 123 5 27 232 209

$onoPDY 1 ou-
20 56 281 23 161 182 20 36 O 94 43 230 12 28 31 66 67 150 4 20 36 0 143
62 232 138 38 104 20 133 143 5 20 36 ¢ 94 162 24 191 131 76 251 181 204
17 38 36 ©

$oooBDY 2 onn »
43 38 3 B9 57 191 29 150 151 120 44 20 36 © 57 44 137 44 148 50 27 109
174 158 20 36 0 20 78 213 131 245 23 37 23 214 4 20 36 0 195 74 31 8¢
%6 138 11 152

Figure 6.5: PDU Contents for Large Timer-CU value

6.5.1 Maximum Efficiency Test

For the first experiment, the timer-CU was set to a relatively high value of 50 time units.
The result of this was simply that the timer had no effect on the outgoing traffic whatsoever,
and PDUs were completely filled with packet data. This is shown clearly in the truncated
logfile of Figure 6.5.

Another effect that was noted was that half the contents of the second-last packet, as well
as the last packet itself, did not appear in the logfile of the figure above. This was simply
due to the fact that the transmitter had been waiting indefinitely for additional packet
data to arrive to fill the last PDU.

6.5.2 Standard Efficiency Test

The same test was repeated with a timer-CU set to 20 time units. The logfile of this test
is shown in Figure 6.6.

In this case a distinct padding of zeros occurred at the end of each transmitted PDU.
As soon as two packets had been submitted, the timer expired and the PDU was sent, as
shown above. It was simple to note how the efficiency dropped substantially with the lower
timer value, as almost half of each PDU remained under-utilised. Note how the remaining
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$oo-PDU 0 ~en
2 30 36 0 253 116 1 14 305 321 153 51 161 114 20 36 © 233 92 113 167 2
75 230 183 36 116 0 0 0 0 0 0 0 0 OO O O00O000000O0O

$---PDU 1 oo
© 20 36 0 234 142 194 243 254 135 170 S0 222 186 20 36 0 123 5 27 233
209 56 181 33 161 162 0 0 0 0 0 G O OO DGO OO OB OO0 OO

€---PDU 2 -
2 20 36 0 94 49 230 12 38 31 66 67 190 4 20 36 0 143 62 3233 128 28 104
20133 143 5 0000000000000 000000D0 G

#-~-BDU 3 ---
0 20 36 0 4 162 24 151 131 76 251 181 204 17 20 36 8 38 3 8% 57 151 35
150 191 130 €4 0 0 0 0 0 0 O O O 0D QG OO O DO OO OO

BonePDY 6 oo
3 30 36 0 57 44 137 44 148 50 37 105 174 158 28 36 0 30 78 213 131 345
233723 214 4 00 0000800080000 D0D0D000O0

Figure 6.6: PDU Contents for Timer-CU of 20

two packets were also not present, due to the client terminating after only 12 packets were
generated.

6.5.3 Low Efficiency Test

The final test was performed by setting the timer-CU to its lowest possible value of 10!
time units, as shown in Figure 6.7. It can be seen in the corresponding logfile how each
PDU carried only a single CPS packet.

6.6 AAL2 Switch Evaluation

The section will evaluate the ability of the AAL2 switch to switch at the packet level,
by monitoring CPS packets for each AAL2 path on the output side of the switch. To
determine whether the correct operations were being achieved, four tests were conducted.

LA timer-CU less than the packet inter-arrival time is non-causal.
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cx
Pe 3

gee PIN
2 3 # 233 136 81 34 305 323 153 51 161 134 0 0 0 G L O VGO OO0 O
8008000000000 00606058¢Ca0

[ T8 1 B SR

© 30 360233 92333 167 375 220 183 36 136 6 0 6 8 0 0 OGO QL OGO O
9000000CG00D00000CDRRD

G---PDA 3 -on

220 36 0 234 342 154 243 254 139 170 90 222 WE 0 0 G S L DV OO VU 0 ®
6900000060006 00880600 800

Booo B 3 ~ee

© 20 360323 5 27 333 209 56 381 43 161 12 0000 C0CE GO O VO DO
coveo00s0e00e 06000

oo BDE 4 aon

320 36 0 $4 49 230 12 38 31 66 67 190 4 00 00V 0000 606000008
0200006080000 00060

$eenBDO 5 -oo

© 30 36 0 143 62 333 138 38 104 20 133 M1 50000 000 0CQ0C 0 S O
20600850008 000068000900

[R088 - X JEES

220 36 0 $4 263 34 191 131 76 253 193 204 17 0 00 000D O O UG O U
80600000 000000808008808

$eee BB T wne

© 30 36 © 383 89 57 391 39 150 191 120 46 0 5 R 00 0000006 R OB O
Be0GCOBCRIBCGID GG 00

(I I

330 36 6 57 44 137 46 148 50 37 109 174 156 6 000 V0 GG Q00 S OC T
2ELOEO00022860080000

GonnBDU B -o-

020 36 0 20 78 210 131 345 33 37 23 3 4 DG OV 0O 0D VOOV QQ OB O
¢80 0000008060680 060¢0

#---P00 10 ---

230 36 0 195 74 33 86 56 128 11 133 268 303 6 6 G 2 0 606 C 260000
8000000000000 0000CD

Figure 6.7: PDU Contents for Timer-CU of 10

6.6.1 AAL2 Forwarding Test

In the first test, the switch was configured to transit AAL2 traffic from a single input
AAL2 path to a single output AAL2 path. Therefore, if four channels were bound to a
given input path, then all four of these channels would appear unaltered or unswitched
at a corresponding single output path. In this case the AAL2 switch would simply be
forwarding packets from the input to the output. A single AAL2 generator was responsible
for generating the required CPS packets, and all traffic produced by the switch was fed once
again into an AAL2 analyser, where the CPS packets were reconstructed. By probing four
individual points, as shown in Figure 6.8, two sets of logs were generated and compared:

e The first set included all CPS packets generated at the sending end, before being
encapsulated into AAL2, as well as all CPS packets reconstructed at the receiver,
and corresponds to points 1 and 4.

o Not only were CPS packets logged, but also the stream of AAL2 PDUs, both just
before and after the switch, as shown by points 2 and 3 in the figure.
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Packet cPs AALZ2 Switch cps Packst
Generator Transmitter Recelver Analyser

Figure 6.8: Analysing Data at Four Points

By probing all four points as mentioned above, instead of just the end-points, the process
of troubleshooting faults on the AAL2 path was simplified. As an example, had the logfiles
containing 48-byte PDUs matched, but not the CPS-packet-based logfiles, then the location
of the fault would not have been in the AAL2 switch itself, but instead at either of the two
end-stations.

10 000 CPS packets of varying attributes were produced, and both sets of logfiles were
compared. In all cases, no corruption of the data, at both the packet level and AAL2
level, was detected. Furthermore, no packets were mis-inserted, or appeared at the wrong
outputs, which was the desired result for this experiment. All packets and AAL2 PDUs
were also found to arrive in the order in which they were sent. The logfiles produced have
not been included, due to their size, but do resemble those of Figure 6.4 and Figure 6.5.

6.6.2 AAL2 Path Compression Test

In this test, the effect of modifying internal routes in the switch and the corresponding
result on the output traffic (logs) was analysed. The switch was configured in the following

way:

e The AAL2 packet generator was configured to produce AAL2 traffic from two sources
onto a single outgoing AAL2 path. The logfiles for both these sources, as well as the
traffic for the AAL2 path is shown in Figure 6.9. Source A is shown in green on
the figure, where each packet is 10 bytes long and is bound to AAL2 channel 12.
The second source, Source B, is shown in blue and is bound to channel 24. On the
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Three small experiments were performed. In the first experiment, the result of which is
shown in the first column of Figure 6.10, the channel set of output path A was configured
to include all packets on channel 12, whereas the channel set for the second path (path B)
was set to include traffic on channel 24. Since a single input AAL2 path exists, only the
channel ID and output path need to be specified when creating an AAL2 route through
the switch, as the input path would always have the same value. The result achieved is
relatively straightforward - all traffic shown in the logs for output path A only included
that obtained from source A, whereas the traffic found on output path B was exclusively
that of source B.

In the second experiment, shown in the second column of Figure 6.10, the channels bound
to both output paths were simply swapped, so that output path A now contained the
traffic from source B, and vice versa.

The third experiment, shown in the third column of Figure 6.10, showed how the AAL2
switch could be used to concentrate traffic onto a single output path. Here the channel set
for output path A was set to include traffic from both sources, whereas no channel set for
output path B was defined. The result was that all traffic was now concentrated onto the
single path. Had one of the channels not been specified in this path’s channel set, packets
belonging to the channel would not have been able to pass through the switch, and would
simply have been discarded.

6.6.3 AAL2 Path Expansion Test

In the previous test, only one input AAL2 path was assumed. However, it would be more
practical to evaluate the ability of the switch to accept data on multiple input paths. Figure
6.11 shows three sources, sources A, B and C, shown in red, green and blue, respectively.
The components were configured on the following way:

e Sources A, B and C were bound to channels 20, 30 and 40 respectively, with packet
lengths of 10 bytes, 10 bytes and 12 bytes respectively.

e Source A was transmitted on input Path A, and sources B and C were multiplexed
onto input path B.

o Therefore 2 ADUs were initialised to accept traffic on two independent paths. For
each ADU, the corresponding channel mappings were added.
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e A single ARU was initialised. A channel set was initialised to include all three
channels, hence defining three separate AAL2 routes through the switch:

— AAL2 Route 1 carried data from input path A on channel 20 to the output
path.

— AAL2 Route 2 carried data from input path B on channel 30 to the output
path.

— AAL2 Route 3 carried data from input path B on channel 40 to the output
path.

The result of the this experiment is shown in Figure 6.12. One would expect the traffic
from both paths and all three channels to be concentrated onto the single output path,
and as shown, this is indeed the case. CPS packets from all three sources are interleaved
with one another, and the colours ought to assure the reader that no packets are missing,
out of order or corrupted.

6.6.4 Signalling Packet Receive Test

In order to monitor the flow of signalling packets in the switch, a source was specified in
the standard manner as was performed for the tests above. However, in this case, the CID
entry of several packets at random positions in the file was changed to 8, thus creating
fictitious signalling packets. These packets were streamed into the AAL2 switch, and the
effects noted. For each packet received, the ADU would queue packets onto the relevant
queues. Once the CPS receiver has completed processing the current PDU, an event was
generated to the SPU. Included with the event was a message with the number of packets,
the queue where the packets could be found as well the AAL2 path on which the packets
occurred. In all cases, the signalling packets were retrieved by the SPU for processing.
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6.7 AAL2 Performance Metrics

Having evaluated the functional operation of the AAL2 switch, the following sections shall
concentrate on performance issues, particularly that of the AAL2 transmitter and its timer
mechanism. The following performance parameters are of interest:

e PDU Efficiency
The PDU efficiency is a measure of how well a given AAL2 PDU has been utilised.
As a goal of the AAL2 protocol is to improve the statistical multiplexing gain of
ATM for voice, payload efficiency is naturally of concern.

e Timer-CU
Although the purpose of the timer-CU is to ensure that delay requirements of voice are
met, and hence that the packetisation delay does not exceed a maximum threshold,
the efficiency of outgoing cells may well be compromised. Hence this timer-CU plays
a critical role in the multiplexing behaviour of AAL2.

e Number of Users

By providing multiplexing features at the AAL2 layer, multiple users can be sup-
ported. As the number of users increases, so does the efficiency. For a small number
of users, a timer-CU is usually necessary to ensure PDUs do not wait too long. How-
ever, as the number of users is increased, a timer mechanism may not be necessary,
as traffic enters the CPS transmitter at a fast-enough rate. Therefore one would
want to establish how many users would be required to render a timer mechanism
completely redundant, i.e. where 100 % efficiency could be achieved.

e Packet Size
The larger the packet size, the quicker the PDUs are filled. As a consequence the
efficiency improves, and timer requirements become less critical.

o Source Packet Distribution
The faster packets are sent, the sooner PDUs are filled as well, hence allowing the
same type of effects to be observed as in the above point.

To analyse the degree to which these metrics influence one another, the following assess-

ments were performed:
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e A PDU output analysis
o A PDU efliciency distribution test

e An analysis of multiplexing multiple users onto a single AAL2 path

6.8 PDU Output Analysis

If one ignores the delay-sensitive requirements for voice, then it is possible to make max-
imum use of the multiplexing capabilities of AALZ2, as all outgoing PDUs are assumed to
be full. For a given number of CPS packets, a series of AAL2 PDUs will be generated. The
ratio of the number of AAL2 PDUs generated to CPS packets will vary according to the
timer-CU value as well as the CPS packet size. When this ratio is high, say 0.8 or more,
a large number of PDUs are generated for a given number of packets, and hence outgoing
bandwidth is inefficiently utilised. However, the bandwidth utilisation can be optimised
by selecting a suitable timer-CU value for a given CPS packet size.

When the effect of the timer-CU is introduced, PDUs are only partially filled before being
sent out. The timer-CU, as well as the CPS packet size will have a direct effect on the
PDU to packet ratio, and hence the reduction in outgoing AAL2 traffic that is achieved
To examine the relationship between these three parameters, three tests were performed.
For each test, 200 packets were transmitted every 3 time units, over a total period of 600
time units. Furthermore each test consisted of five trials, where in each trial the value of
the timer-CU for the AAL2 path was successively decreased by 3 times units. The results
of these tests will now be discussed.

6.8.1 PDU Reduction with Small Packet Sizes

The CPS Packet size chosen for the first test was 10 bytes. A graph showing the five trials
of this test, each plotted as an individual series, is shown in Figure 6.13.

The relationship between the various series of the graph is immediately clear, and quite
expected. As the timer-CU was gradually decreased, the number of outgoing PDUs sub-
sequently increased. In other words, the ratio of useful data to padded data decreased
as the timer-CU decreased, hence increasing the amount of output traffic produced. The
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intercepts on the right-hand vertieal axis (af 600 time 1mits) for all 5 trials are disenssed

boelomr

a A timer-CU of 15 coreesponded 1o a rotal of 50 PD1s rransmiteed and henee a rel-
arrvely high nomltiplexing gain chat was achicved. In this instance the value of the
timer was foo large to have any elfeel al all. This was dne to the fact that 'DUs
always departed boefore the timer had had & chance Lo imterrapt the systome. Being
1kl te CPS packets, by the tie che b packen was appended to the partially filled
PDU at 12 titne unis, the PDU had already Leon dispatehod. The pmmbor of PDIUs
tramsmilied may e caloalated as follows:

T T 5 H - PacketStzew Xgmbey af Puckets
Nusmbor af PIN s transietfteod = 1T DB S

= glﬂlf'l_x?w PDI-TS
= Da PO s

whore the total packet size inclwding the header war 13 Ivtes,

o A timer-CU of 12 time nnits implicd a marginally higher oucpar PDU eonne. How-
ever, the manner in which the traffie was distrilmned across ot going PINUs was quite
dilferent. in than partiimlar mwslance,. Rofer lo Figure 6,14 Hers, ionstead of cach om-

soing PDU being completely ntilised, a phenomenon was expemionced where the firse
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FDU was 100 % wutilised and the second FDU was only partially filled before being
dispatched.

As the inter-arrival time of amriving packets was set to 3 time units, the timer natu-
rally only interrupted the system after four packets had been encapsulaled. However,
at the end of PDU 1, the timer was reset 1o 12 time ynits and the remainder of packet
4 was placed at the beginning of the second PDU. After three additional packets had
been submitted, viz. packets 5, 6 apnd 7, the end of the PDU had not yet been
reached, and hence the system was interrapted by the timer, as shown in the fignre.
This paltern was repeated in the 3rd and 41h PDU, and in the 5th and 6tk PIXU,
and so on. The result was that for every 7 packeis submitted, 2 PDUs were required.
Therefore the number of PDUs required for 200 packets was simply caleulated as

follows:
Number of PDUstransmitted = == N“"‘&TT“J Elts
= pnis
= nTPDUs

The following vertical intercept oceurred at 67, where the timer-CU was sel to 9
titne units. After 3 CPS packets had heen encapsulated in the PDU, the timer-CU
expired. Henee every PDU transmitied only contained 39 bytes out of 47 possible
bytes of useful information. Therefore the number of PDUs tequired was simply:
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o When che fimer-CU was set 10 G time nnits only 2 packets were multiplexed into
vach ontgoing PTU. Henee balf the munber of T'DUs to the mmnber of CT0S packets
were regnired. Therefove, as 200 CPS packets wore fod inre the multiplesor, only 100
PDUs hadd to be generated

o The lowest efficicney achioved ocewrresd whim only 1 packet was placed in the firss
13 lvies of all PDUs, when the timer-CU was at its lowest possible valne of 3
This resultedd in the remaimng PDU octers being hilled wich padding information.
Therefore. tor every packet srapmnieted, sn cquivadent PTIU was voquirved. resulting
in a total of 200 PDUs thar wore transnuiftod.

.82 PDU Reduction with Standard Packet Sizes

The patamaetors for the second test wore identical to the first tost; howoever here che length
of the CPS packets wore donbled to twenty Ivtes”, Tho results of the test are shown in
Fignre 6.15 and are explained helow:

s When the timer-CU was sot o either 15, 9 or G base nnits the same mmober of PDUs

Fwote that the full packet siee inclnding hoader will pow be 23 Iwvies - hence the Ul packel. size is
slighthy Tess tlua clonbled.
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were produced. This is due to the fact that in all three cases, PDUs were completely
filled before the timer could interrupt the system. Therefore lines representing these
three trials lie directly on top of one another in the graph shown in Figure 6.15, and
appear as a single series of points. The number of PDUs generated was calculated

as follows:
Number of PDUs transmitted = Packet Sj’; ;ﬁ;‘ggegi‘i Packets
20+3)x 200
204320 ppy s
97 PDUs

The number of additional PDUs required is easily calculated when these PDUs are
100 % utilised. This is shown below, where PIR represents the packet increase ratio:

Additional PDUsrequired = PIR x Number of PDUs transmitted
= 3 x 55 PDUs

e A timer-CU of 6 base units for 20-byte packets implied that for every 2 CPS packets
submitted, the timer would expire. In such an event the PDU contained 46 used
bytes out of 47. Therefore, although one PDU was required for every 2 packets sent,
each PDU was very efficiently utilised. Once again, the number of PDUs required
was simply half the number of packets, i.e. 100.

e Only one packet could be placed in each PDU when the timer-CU was set to 3 base
units. 200 PDUs, which was equivalent to number of packets inputted, was required.

6.8.3 PDU Reduction with Large CPS Packets

In the final test, the packet size was increased to 40 bytes. The effect of this operation is
shown in Figure 6.16 below.

e In the figure, only two distinct trends were noticed. The first line intercepted the
vertical axis at 183, and corresponded to the cases where the timer-CU was set to
15, 12, 9 and 6. In all four cases the timer was once again too slow to lower the
PDU efficiency under 100 %. Once again, the number of PDUs required was simply

derived from:

105



— TIMER-Cll=15
E suwvmaia TIMER-CUI=12
E TIMER-CLI=8
[N 5 e e e e Y TIMER-CLI=F
% — TIMER-CL=3
; e
u il i [E1
Time Unita

Figure 6.16: Number of PDUs transmitted for 40-byte Packets

wro i . ) _ Packet Rizex Number of Packets
Number of PDU s transmitted — TP Bice

(401 3)%200
%Pﬂb’s
=t 183 PDU

¢ In the second instance, one PDU was transmitted for every input packet received,

resulting in a total of 200 PDUs that were transmitted.

(i.8.4 Summary

The following may be congluded:

s The vatue of the timer-C'U had a definite effect on the number of PDUs required for
a given number of CPS packets, and the value of this timer was found to be inversely

praportional to the number of PDUs transmitted.

o The [arger the packet size, the more the timer-CU conld be relaxed. As indicated by
the three tosts, increasing the packet size to 20 allowed one to relax the timer by 76
%, and inecreasing the packet size to 40 byte allowed a further reduction of 59 % to
he achieved, yot in both cases still achioving 100 % cfficiency.

¢ Asthe packet size increased, the difference between the minimum and maximum num-
her of PDUs transmatted, based on the corvesponding timer values, became gradually

L6



less and less. In the first test, where the CPS packet size was only 10 bytes, the differ-
ence in the number of PDUs required was 145, whereas in the final test using 40-byte
packets, the difference was only found to be 17. What may be concluded therefore, is
that for small packet sizes, the effect of the timer-CU was significantly greater than
that experienced for larger packets.

6.9 The PDU Efficiency Distribution

The PDU efficiency distribution gives a graphical indication of the payload utilisation of
outgoing PDUs. Five test were performed, where in each test the effects of packetising
information generated from a particular codec with several timeout values were compared.
The three codecs used in these tests were the following:

e G729 producing 10-byte packets, one every 10 time units,
e (G729 producing 20-byte packets, one every 20 time units, and

e GSM full-rate, where 36-byte packets were produced every 20 ms.
The following large packets sizes were also taken into account:

o 44-byte packets. Together with the header, the packet size comes to 47, which fills
the PDU payload exactly. Therefore one would expect to see a 100 % efficiency
distribution for all such packets, as these packets are exactly PDU-aligned.

e 45-byte packets are just one byte too big to be handled by a single PDU, resulting
in the last byte* overlapping into the adjacent PDU. Depending on the affect of the
timer, this could result in tremendous under-utilisation of PDUs, as will be seen in
the subsequent tests.

o 64-byte packets are the largest possible packet size that could be accommodated by
the CPS functionality of AAL2, due to the LI only being 6 bits wide, and hence
efficiency distributions produced by such packets are of interest.

In each test below, 20 CPS packets were generated, and the efficiency for various timeouts
for each test were analysed.

4This is provided, of course, that the 45-byte packet began at the first byte in the PDU payload.

107



| [onwcReo=m
mTIMERLL=20
2 [umvER-cu=ae
CTIMER-CLIk}
mTMER-GLU=ED

POU Paykad Eflclancy

e T S At S S I~ e i1 S I i e v . H Wi Ebs ot

A3Us Teansmicled

Figure 6.17: Efficiency Distrilmcion for 20 GT29-10 CTS Packets
6.9.1 Distribution with Small CP5 DPackets

The PDUs ereated from 20 CPS packets, cach packet 10 lwtes long, conformimg to the
(3T20 specificarion, are displayed against cficiency i Fignee 6.17 below;

The following was naoted:
s For a timer-CU of 10 {shown in blne). one PDU per packer was generated, resuliing

in the same mmber of PDUs being gencrated as packers, Henee, a vory low PRU
officieney of 28 Y1 was achioved. and was also calenlaned as follows:

. o0 _ Caeeappea Thptes
PDU Ef ficiency = TraFmnsm PIIT Paydond 5128
_ (10+7)
7

= 25 I.r%

o When the ther was set to 20 time mnits (shown in marcon). one PDU for overy fwo
piackers was goneraled. resnlting in only 10 PDUs being goperated and cach PDU
holding an cfficieney of 55 %. The same offect was further noticed for a timer of 30
{shown in vellow). hut onee again only 6 PDUs were produead. cach with an cfficiency
of B3 Y.

» An interesting effect was observed wich a timer of 40 (shown in ¢yan). Here it was
notedl Lhat the officiency for the first FDU was 100 %, whereas that for the second
PDMT was only 94 %. with this same patern altemating in subsegnuent, PDUs. The

reason For such hebaviewr is straightforward and was cxplained carlier. The first
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Figure 6.18: Efficiency Distribation for 20 G720-20 CPS Packets

PDU was found to be completely niilised and the remaining 5 bytes of the fonrth
packet were placed at the beginning of the tollowing PDUL After three more packels
wore successfully plaeed in this PDL, the timer frmd. The efficieney for this PDU

was Lhen simple:

- vl _ Oreunied Mhartes
PDU Ef ficiency = Mazimasn POI Pagload Size

AR AL e g ] L A L ] |
EL
94

Furthermore, i shoiskd be noted thar the overall efficiency is taken as the average
efficiency aver all PDUs transmiceed, awl 35 in this case equal to 97 .

¢ Finally, with a timer of 50 (shown in magenta), all ontgoing PDUs were Illy niilised.

6.9.2 Distribution with Standard-size CPS Packets

The resnlus af incroasing the packes size to 20 hetes B the G-T20 eodec are shown o

Figure 6,18 helow.

The following was noted:
o PO veere alwavs foaud to he hetor netlised chan the case for 10-Dwte packets, and

the wminiinmn officiency increased to 50 7. as opposed to 28 Y regardless of auy

imposed rimer offeets,
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Figure 6.19: Effictency Distribution lor 20 GSM-FR CPS Packets

# Nov alternating effeciencies can be found. due to the way in which packets were dis-

tributed across PDls,

6.9.3 Dhstribution with GSM-FIR Packets

The efficiency achieved by plotting 36-byte packets conforming to the GSM full-rate apec-

ification is shown in Figure 6.19 below:

e Note the efficiencies achieved ranged from 82 % up to 100 5.

6.9.1 Distribution with 44-byte Packets
The maximum efficiency achievable is shown for the 44-byvte packets i Figure 6.20 below:

o The distribution was found to be constant, as no matter what timer-value was spoc-
ified, PDUs were always fully utilised. For this reason, only the effects of a single

timer, implemented with the lowest possible value®, was shown.

6.9.5 Distribution with 15-byte DPackets

The results for this fest with two series of 45-byte packets with timers of 20 and 30 fime

units, are shown in Figure 6.21:

5The 44-byte, 45-byte and 6d-byte packets are plotted with source distribution rates of 20 time nnits

eiich.
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o Note the npder-uiilsation that ocerred wilth o timer of 20 firme units. Efficiencies
wore found to oseillate botween 100 % and only 298 whers only 1 bvee one of AT
possible bytes was ocoupied by packet data. This was founed to be the lowest possibile
efficicney that eonlid acenr in any given PDU. The overall efficiency over this range

was therefore emdv 51 %

6.9.6 Distribution with Large CPS Packets

The ctfect of 6d-1wte packets is shown in Fignre £.22 helow,

» The same behaviour was achieved with L5-bvte packers, apart from a better PDU

efficieney.

6.9.7 Summary

I the graphs shown above, it 35 noted that only 19 PDUs were transmitted for each vest,
whereas 20 CI'S packets were sent. This was Iecanse the CPS irapsmitter only «Jispatched
a PDU when full or if the tmer expired. By the thne the last packel was transmitied. the
logging funciion had already terminated.

The tollowing diagram of Figure 6.23 shows the overall effect of the previons six tests:
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Fignre 6.23: Efficiency Summary Graph
From this figre, the tollowing was notod:

¢ Short packets with a rapklly cxpiting Umer resulted in vory Jow officiencicr. and

worlil nos peneraliy e recommended .

» The average efficiency of a PDU diseribition for the minimnm possible timeout vaine
was nal necossarily proporrional o the packet size. We saw above ehat althongh
Gd-livie packers were the largest, they ranked 3rd in tenus of worst-case officieney

FIATANLCTS,

s It was always possible (o achieve 100 % efficiency for any given packer size, by
adjusing rhe rhuer aceordingly. Otwionsly rhis wonld imply delay gnarantecs baving
to be sacrificed for a requined eHicieney heiug mot,

6.10 Multiple Users

All he rests diseussad thus far assimicd packets smiviog froan a single sonree only. Tn the
following series of tests, the number of nsers was graclualiy mereased, aud the officiencies
tor the various packet sizes were comparorl. In each test, the offeels on officieney of op
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Figure 6.24: 100 users transmitting G729 10-byte Packets

o 100 users was analvsed. Note that no test for 44-byte packets was conducted, as such
packets had already been seen to always exhibit 100 % efficiency. The timer-CU for all
tests below was set to the minimnm value of 10 time units. Had the fimer been larger,
the outgoing PDUs would exhibit the same efficiency, tegardless of the mumber of users.
Therefore, to allow the number of users to dominate the results obtained, the timer-CU

should be kept as stall as possible.

G.10.1  Mnultiple Users Transmitting Small CPS Packets

100 users, each generating 1) byte CIS packets are apalvsed in Figure 6.24 abaove.

e Note how the efficicncy began at 28 % for a single user and gradually inereased,

o As the nunber of nsers increased. the pscillations between minimum and maximaum
efficiency gradually became smaller and smaller, until in the vicinity of 90 to 100
nsers, the efficiency varied between only 96 and 100 %. The reason for these dying
oscillations was die to the PDU distribution that was produced for each run where
the munber of users was fixed. In the preceding section, we saw how the officiency is
not always the same for every PDU transmitted, but may in fact alternate between
two values, with the same pattern re-oceurring every two PDUs. When the number
of users was increased, the same cffect was observed, except that the probability
of each ontgoing PDU being 100 % utilised pgrew less and less. As efficiency was
caliulated as the average over a set of PDMs, it was found for example, that every
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Figure 6,25 100 users trapsmitting G729 2{-byvic Packets

four in five PDUs had an efficiency of 100 %, whercas the fifth PDU would only have
an efficiency of 22 %. However, the average elliciency would be calculated as 84 %,
as the efficiency of the last PIDU would bring down the averall result, The larger this

period becomes, the smaller the oscillations.

6.10.2 DMultiple Users Transmitting Standard-size CPS Packets
The resnlts for the seeond test are displayed in Figure 6.25:

® [n the graph above an interesting phenomenon occurred. Ag the nmumber of nsers
increased, the minimum possible efficicney that could be achicved did not rige lineaxly,
but at an expouentially decaving rate. What was believed to be actually decaving
as the numboer of uscrs increased, was the effect that a partial PIIU will have on all
other PNz thal were completely filled. When two users would transmit, the PDU
wonld be almaost filled up and the ellicieney would be 97 %. However, when a thind
user was introduced, two PDUs would be required and the average efficiency wonld
drops to 73 % (duc to the sccond PDU only having an efficiency of 47 %), Therefore
it can be seen that the low efficiency of the second PDU would have a dramatic effect
on the first PDU and hence bring down the overall efficiency substantially, in fact, by
35 %. The next tirne this phenomenon wonld be abserved wonld be when the number
of users increased from 4 to 3, and when the efficiency dropped from 97 % to 81 %,
However, in thig case a drop in efliciency of 20 % would oceur, In order to transmit
data for 4 users, 2 PDUs would be required. and for 5 users, 2 and half PT3Us wonld
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be required. We saw that the third PDU had less effect in bringing down the total
average. For a given set of PDUs, the effect that the single unfilled PDU will have
on the total efficiency is what decays exponentially.

e Another point that is worth noting on the graph above is that the maximum achiev-
able efficiency remained relatively constant at about 97 % until the number of users
reached 47, where it jumped instantaneously to 100 %. At this point the maximum
frequency jumped up to 99 % and remained constant until an additional increase at
94 users occurred. The reason for this behaviour was simply due to the fact that as
47 bytes were available for CPS packets in the AAL2 PDU payload (excluding the
start field) packets were unlikely to exactly fill all outgoing PDUs until 47 sources ex-
isted. When the number of sources equalled the maximum transfer unit size, packet
contents divided exactly into the series of PDUs, resulting in an efficiency of 100 %.
This may also be shown in the formula below:

. . Numberof SourcesxSource Packet Size
PDUs Required PO MTD

_ 47 (20+3)

a7
13 PDUs exactly

Note that 100 % efficiency was achieved when 47 users were transmitting simul-
taneously, regardless of the packet size, as the 47 in the numerator and denominator
would cancel one another. This led one to conclude that the timer-CU was not re-
quired for 47 users or more, and had almost no effect. For the range from 1 to 10

users, the operation of the timer was critical.

6.10.3 Multiple Users with Large CPS Packets

The results for the remaining tests showing the efliciencies for multiple users for GSM-FR
packets, 45-byte packets and 64-byte packets are shown in Figures 6.26, 6.27 and 6.28

respectively.

e For 45-byte packets there was scarcely any difference between the rates at which the
minimum and maximum efficiencies rose, and the rate of both was seen to decay
exponentially. The reason for this was that because the total CPS packet size was
larger than the MTU of the PDU, efficiency levels could not drop below a threshold
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Figure 6.28: 100 users transimitting 64-byte Packets
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once it had been reached, as it was impossible to fit a new packet in the remainder
of the PDU.

o It may be said that GSM FR performs the best of all packets schemes (apart from 44-
byte packets) as it was closest to the MTU®. The efficiency started with a relatively
high value of 83 % for a single user and for 8 users was already found to oscillate in
the 90-100 % band.

e The bumps experienced at higher user counts were simply due to errors introduced
with rounding-off of values.

8 Although 45-byte packets are strictly closer, they are larger than the MTU size and cannot be consid-
ered for comparison
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Chapter 7
Conclusions

The preceding six chapters have presented the architectural design and implementation
of an AAL2 switching node, where particular emphasis was placed on functions relating
to the user-plane of the broadband ISDN model. It was shown how such a switch could
be prototyped to match the sensitive and time-varying requirements of voice services,
which can and are likely to be found in 3rd and 4th generation networks. By making use
of the WUGS support architecture provided by Washington University, the development
time required to achieve a working system was substantially reduced. Furthermore, the
operating nature of the embedded system (SPC) and support end-stations, allowed for
extensive testing to ensure switch compliance, as well as obtaining suitable performance

benchmarks.

The implementation status of the AAL2 switch is at a stage where the following functions

are operational:

The AAL2 CPS, which is capable of converting CPS Packets to AAL2 PDUs and

vice versa.

AAL2 route establishment in the switch, and most importantly, switching based on
the channel identifie (CID) of individual AAL2 sub-channels

Efficient CID lookup engine, where modifications to AAL2 routes in the switch are

only required when new channels are added, deleted or re-shuffled

Support for multiple AAL2 input and output paths
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e The ability of the PSU to distinguish between three different service classes, i.e. low
delay and normal delay for voice, and high-delay for SSCS-data

e Support for common channel signalling (CCS) on CID 8, and ability to pass AAL2
signalling packets to the SPU (Signalling Processing Unit)

Due to the vast scope of issues imposed by AAL2 and AAL2 switching in the WUGS
environment, careful consideration had to be given in the implementation phase as to what
modules ought to be prototyped first, and of particular importance, how the development
time of these modules could be reduced. The principle components of the design were
implemented in a phased approach, and are presented in the order in which they were
completed:

e The ADU (AAL2 Disassembly Unit) and ARU (AAL2 Re-assembly Unit) were the
first modules to be completed, for the simple reason that these modules are not
related in any way to AAL2 switching. It was therefore possible to fully test the
operation of the AAL2 CPS by creating the AAL2 generator and analyser based on
the same technology, connecting these two devices together!, and monitoring their
operation. By basing the AAL2 receiver and AAL2 transmitter mechanisms on the
recommendation given by ITU-T 363.2, which form the core functions of the ADU and
ARU respectively, the development time of these modules was kept to a minimum,
allowing more focus to be placed on the AAL2 switching itself. Furthermore, the
modular nature of these units and the use of threads required one to only have to
consider the case for a single AAL2 path - the technology scaled very well to multiple
input and output paths.

o The PSU (Packet Scheduling Unit), with its corresponding input and output packet
stores, were the following components to be completed. By realising that the buffering
requirements for both packet-stores could be fulfilled by multiple FIFO mechanisms,
and implementing each delay class in the scheduler as a separate linklist, special
attention was given to the development of separate FIFO and linklist algorithms.
The primary purpose of these algorithms was to provide an abstract interface to
these respective data types. that could be re-used where needed in the switch?, hence

'In reverse order, of course, with an ARU-like device {AAL2 generator) at the source to generate the
packet stream and an ADU-like device (AALZ2 analyser) at the receiver to receive and process the AAL2
sraffic.

*Information on the various ADTs is provided in Appendix D.
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providing a more comprehensive code-base and further reducing the development

time.

The following stages involved incorporating the CID translation engine into the ARU
mechanism via the use of channel sets, re-using the featires provided by the linklist
ADT, as well as including channel tables in the ARU to access the central packet
stores, and in this manner, making use of the FIFO ADT.

The SPU (Signalling Processing Unit) was the following module to be implemented.
Note that the intention of this research was not to produce a fully operational SPU,
but instead provide a workable environment, with a well-structured interface, on
which a higher-level AAL2 signalling framework, which could make use of extended
AAL2 SSCS capabilities, could be implemented.

The supporting framework for the CCU (Configuration and Control Unit) was pre-
pared during the next phase. As the previous modules had now already existed, and
the CCU was declared to be the first module to receive execution rights, the devel-
opment of the project was at a stage where the CCU could instantiate these existing
modules to commence the first testing procedures. |

Finally, the implementation of the timer unit and corresponding inverse priority heap
ADT was completed, and their functionality was incorporated into the ARU. Due
to the limitation imposed, extensive work was required at this phase to provide a
working and elegant mechanism to provide multiple timers for multiple paths. '

Although incorporated into the design, the IU (Interrogator Unit) and ACM (Ad-
mission Control Unit) were not implemented.

The ability to extend a port of an ATM switch (WUGS) with an embedded computer (SPC)
running the NetBSD operating system provided the developer with the resources to focus

on open-source, higher-level algorithms, not achievable with may commercial platforms

and proprietary software. However, this chosen enviroument did present several of its own

drawbacks in the implementation phase:

@ The internal processor of the SPC is clocked at a frequency of 166 Mhz, which
is comparatively slow by today’s standards. A logical side effect of this was the
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limitation on the number of users that could be supported®. The system was further
slowed down by general operating system house-keeping, which included memory
management and device driver overheads, as well as the additional CPU consumption

of the external GNU-Pthreads library. ]

*

As NetBSD is not a real-time operating system, it was not possible to guarantee the
scheduling and processing of traffic in real-time.

A major side-effect that the SPC architecture had on the AAL2 switch, was first the
fact that a maximum of only 1 timer could exist concurrently, with the additional
imposed maximum resolution of this timer. The maximum resolution was found to
be 10 ms. Even in cases where ample processing capability was available for a module
to complete its task under 10 ms, there was no method known to the author at the
time as to how a smaller time period could be measured. This required all results
to be calibrated by normalising the time-scale to time units, where each time unit
represented 10 ms. |

In Chapter 5, it was discussed how events could be passed to the SPU by means
of message ports. This was required for example, when the ADU had detected a
signalling packet, and had to notify the SPU accordingly. When multiple signalling
packets occurred in a single PDU, multiple events would be required to be generated
to the SPU. However, it was noticed that the GNU portable threads library did
not support sending multiple messages to the same message port. Hence, for each
message sent to a message port, the message had to be extracted by the SPU before
a new message (for another signalling packet) could be sent. This drawback was
solved by sending a pointer to a queue of signalling messages, as well as the number
of messages to be extracted, for each CPS receiver run.

To evaluate the functional correctness of the AALZ switch, several tests were conducted,

first on two end-systems transmitting AAL2 packets to one another, and at a later stage

on the switch itself. In all tests performed, a stream of packets or PDUs was sent, and

the resulting switch or end-stations’ actions were analysed and logged. By examining

these logfiles off-line, it was concluded that both end-stations and switch were functioning

correctly. Additional tests were performed to analyse the ability of the switch to expand

3The multiple user results of chapter 6 had to be implemented on a high-performance processor with
APIC ports
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traffic from a single input AAL2 path to multiple output paths, and to condense traffic
from multiple input paths to a single outgoing AAL2 path. These tests were confirmed to
be successful, as shown in Chapter 6. A final test to ensure operating conformance to the
design was to ensure that all signalling packets interspersed with user traffic on a given
input path would be retrievable by the SPU, which was found to be true.

By analysing in detail the AAL2 layer functionality itself, useful performance-related results
were obtained. It was found that the value of the timer-CU on a given path affected the
efficiency of outgoing traffic, particularly when short packets were transmitted. The timer-
CU was found to be inversely proportional to the number of outgoing PDUs for a given
number of input packets. This implied that relaxing the timer-CU somewhat, although
perhaps sacrificing the quality of voice channels on the path, would result in a substantial
reduction in the amount of output traffic produced. It was found that the codec used to
generate voice had an effect on the performance of AAL2, and that the timer-CU, efficiency
and codec itself were intimately related to one another. It was shown in Chapter 6 how
100 % efficiency could always be achieved, regardless of the packet size, by relaxing the
timer-CU sufficiently, and that the minimum efficiency was not necessarily proportional to
packet size, as what might have been previously envisioned. Finally, the effect of increasing
the number of users was analysed. Of interest was to determine the point at which 100 %
efficiency would be reached without the need for a timer. This test concluded that such an
efficiency could be reached with a minimum of 47 users. It was also found that the point
at which 100 % efficiency could be reached recurred when increasing the number of users,
and was influenced to a large extent by the packet size.
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Chapter 8
Recommendations

Although a functional AAL2 switch has been implemented, it was simply not possible to
cover all foreseeable concerns and aspects of this technology, and there are hence many
open-ended issues that yet still remain to be further researched and analysed. Many of the
recommendations were only realised in later stages of the project, and several of these may
in fact be transposed to possible future research projects.

Based on the preceding work, and conclusions drawn, the following recommendations can
be made:

e The only sub-layer of AAL2 that was implemented is CPS, and hence SSCS function-
ality still remains to be investigated. Additional work would therefore be required
to implement such an SSCS, where the additional functionality gained would be es-
sential. As an example, AALZ2 signalling specifications make mention of signalling
packets that may exceed the maximum CPS allowable size of 64 octets, thus requir-
ing this intermediate functionality. Furthermore, higher-level applications wishing to
make use of AAL2 as a transport layer may find the CPS imposed packet limit a
severe overhead drawback.

e ~he signalling framework to complete the control-plane func:ions of the switch must
still be implemented and is currently underway. As the SPU will provide support for
AAL?2 signalling only, additional work would be required to enhance the switch with
ATM signalling capabilities. This would require implementation of the Admission
Control Module with a UNI 4.0 compliant signalling stack. Work in this field is also
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currently underway to augment the WUGS with ATM signalling capabilities’.

o Due to constraints of the SPC that were mentioned in the previous chapter, the
logical next step to be taken would be to migrate several of the switch modules to
a hardware platform, such as the Field Programmable Port Extender (FPX). The
FPX is a specialised board provided by Washington University that will allow the
functionality of a switch port to be extended by means of a synthesised logic design.
Features that would be migrated to hardware would be those based at a low level, that
are conceptually simple, and that require intensive processing capabilities, such as
cell interrogation, packet extraction, fast CID lookups and timing. For these reasons,
likely candidate modules for hardware migration would include the IU (although not
implemented yet), certain functions of the ADU and ARU as well as the base timer
unit?. Modules that ought to remain in software would include those comprising
fairly complex algorithms and those that perform system updates on a far more rare
scale to their hardware-suggested counterparts. This include the SPU, ACM and
CCU. !

e Although implementations employing the usermode code of the APIC are likely to be
more complex than socket based function calls, with a more in-depth understanding
required of the APIC and its internal organisation and registers, it would be of interest
at some stage to investigate the feasibility of such an implementation. It is strongly
expected that the usermode code would operate more efficiently than a native socket
interface. A wrapper interface could be written to hide the internal APIC details for
future development, and in so doing, providing a socket-alive interface.

e Further research would still be required to investigate what features could be sup-
ported in the CCU to provide management features, in the form of a suitable man-
agement framework. The system operations and management function (OSF) would
liaise closely with the various modules of the system and perhaps the user-flows them-
selves to collect fault and performance data for the switch. Throughput information
could be collected in a similar fashion to be used for billing purposes. The OSF
could furthermore accept commands from an out-of-band channel for controlling the

!The only signalling protocol currently supported in the WUGS is CMAP, which a proprietary signalling
protocol.

?The base timing could be achieved at a hardware level with extremely fine granularity, with a higher-
level software wrapper to provide timer updates.
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switch and generate information in the reverse direction, possibly along the same
out-of-band connection, to a monitoring station for further analysis.

Although ATM multi-casting is well understood and well-researched, little work has
been done in the area of AAL2 multi-casting. With AALZ multi-casting extensions in
the switch, a channel on an input path can be range-copied to form multiple outgoing
channels. The author wishes to define intra-path AAL2 multi-casting as the copying
of channels that will all exit the switch on the same AAL2 output path. Inter-path
AAL2 multi-casting may then be defined as the copying of channels that will exit the
switch on two or more outgoing paths.

As NetBSD is not a real-time operating system, it would be of interest to port
the switch architecture to a platform with real-time capabilities. There are literally
dozens of real-time operating system available on the market today, and a fair amount
of research would be required to select a suitable OS. However, two possible real-time
platforms that may be worth investigating, and which are both open-source, are Q-
Linux and RedHat’s eCos for embedded systems.

It is well known that switching AALZ2 packets at an early stage in the network would in
most cases reduce congestion. Therefore, placing AAL2 switches at various locations
in an ATM network, where the positions of these switches haven't been thought
out carefully, may well result in a sub-optimal AAL2 switching topology. Therefore,
given an interconnected mesh of ATM switches, where a number of AAL2 switches
are to be added, it should be possible to recommend positions for such switches, as
well as the relative density for these switches in various regions of the network. The
optimum solution will of course depend on factors such as average network load on
various links, latency, number of ATM switches as well as nature of the traffic being
transported.

When a WUGS is fully populated with AAL2 modules, the load at a given instance in
time will not be constant across all ports. What is proposed therefore is an intelligent
AAL2 master that can intera: t with the various AAL2 slaves, which themselves are
responsible for the switching. The AAL2 master will be responsible for examining
the load on each port to determine which modules are overloaded and which modules
are under-utilised. By redirecting AAL2 traffic from overloaded modules to under-
utilised modules by means of recycling, it should be possible to achieve a certain
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level of load balancing. A neural network may further be used to “predict” oncoming
congestion, where contingency measures could be made.
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Appendix A

Traditional Methods for Transporting
Voice in ATM and SSCS Extensions

A.1 Introduction

Although AAL2 is superior at carrying short voice packets for variable bit-rate delay-
sensitive applications, AAL1 as well as AALS may still be used to carry voice under special
circumstances, or when AAL?2 is simply not available. This appendix will briefly examine
these two alternative adaptation layers when used to transport voice.

This appendix will also provide a brief outline of additional functionality that may be
-achieved by means of a Service Specific Convergence Sub-layer (SSCS) implemented on
top of the standard CPS.

A.2 Voice over AAL1

The use of AAL1 for carrying voice over ATM was standardised by the ITU-T in 1993.
The mechanism by which PCM-based voice may be carried over an ATM connection was
defined by the ATM Forum as Circuit Emulation Service (CES). There are two methods
for placing voice channels over an AAL1 connection:

e Unstructured circuit emulation, refers to the process of placing the information from
an entire E1 or T1 pipe onto an ATM connection, without regard to the sub-channels
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ATM Voice

Header Header 47-byle Voice Payload
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Figure A.1: Encapsulation of Voice onto AAL1 Payload (Adapted from ATM Forum)

within the data pipe. The disadvantage of this scheme is that the total E1/T1
bandwidth is permanently allocated, even when some of the sub-channels are idle.

o Structured circuit emulation, refers to the process of carrying individual sub-channels
that belong to an E1 or T1 connection. Hence only the accumulative bandwidth that
is required for these' N channels need be reserved.

AAL1 does not support variable bit-rate voice, and is therefore best suited to the transport
of uncompressed, synchronous voice, such as PCM encoded samples from a G-711 vocoder.
An AAL1 connection would therefore be valuable as a CBR trunk between two digital
PBXs.

AALL is suitable for the transmission of voice as it provides synchronisation between the
source, network and receiver. Synchronisation is an essential requirement to ensure voice
samples can be played out at the same rate at the receiver as was sent by the source. The
method for encapsulating voice into the AAL1 payload is straightforward, and is shown in
Figure A.1.

Voice samples are placed into the 47-byte payload of the AAL1 frame. A voice header is
appended to provide sequencing if required. Finally, the ATM cell header is appended and
the cell is dispatched.

AALl cannot provide the same multiplexing gain as what may be achieved by AALZ.
However, there are certain instances where AAL1 should be used instead:

o When inter-working with N-ISDN networks, AAL1 would be required for synchroni-
sation with the network clock.
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Figure A.2: Encapsulation of Voice onto AAL5 Payload (Adapted from ATM Forum)

e AAL2 provides bandwidth efficiency only for compressed traffic streaming at a low
bit rate, and where excessive packetisation delay would mar the quality of the voice.
However, the packetisation delay achieved for G-711 based voice onto an AAL1 PDU
is only 5.8 ms, and hence AAL1 is quite adequate for such voice. Furthermore making
use of AAL2 would prove to be inefficient.

e Voice services, such as fax and data, do not operate well over an AAL2 connection,
and hence one should consider making use of AAL1 in this case.

A.3 Voice over AALS

Although AALS was initially intended for data application, it may indeed by used for
voice, and operates in a similar manner to AAL1. The difference with AAL5 is that only
40 octects may be used for voice data as shown in Figure A.2, instead of 47 as in AAL1.

Furthermore, an 8-byte trailer as appended to the voice information to construct a full
PDU.

A.4 SSCS Extension to AAL2

Throughout this text, we have assumed the absence of an SSCS layer. Two SSCS specifi-
cations have been defined by the ITU-T thus far:

e 1366-1 was defined to allow larger than normal packets to be carried over an AAL2
connection. This functionality is required for message passing via the AAL2 net-
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work and was not intended for real-time applications such as voice. AAL2 signalling
messages and certain data applications would benefit from this specification.

o 1366-2 defines the mechanisms whereby circuit-mode data, voice-call information and
in-band signalling messages may be carried over an AAL2 connection. Three types
of packets are defined:

— With Type 1 packets, no error checking is performed on the payload whatsoever.

— Type 2 packets are partially protected with a 5-bit cyclic redundancy check
(CRC)

~ Type 3 packets are fully protected and are appended with a 10-bit CRC field.
Type 3 packets are used to carry control data, such as fax control information
(not the image), E-164 addressing information and signalling data.
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Appendix B

SDL Nomenclature

B.1 Introduction

The symbols used for the design specification of chapter three are explained here. Note that
the symbols used in the design specification form an extremely small subset of available
SDL symbols.

The various SDL symbols that were used are shown in Table A2.1 on the following page.
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SDL Symbol Meaning

m ?
- Action

Connector

Decision

{User Raguest
Input Signal / User Request
User
tndication
Output Signal / User Indication
Procedurs 1
Procedure
START
Start
STATE 1
State

Table B.1: SDL Symbols used and their Meaning
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Appendix C

AAL2 Switch Evaluation Test Suite

C.1 Introduction

This chapter will describe the test suite that was developed and used to evaluate the
performance and functionality of the base AAL2 switch. The test suite was comprised
of two components, as introduced in chapter 6. The AAL2 Generator was responsible for
emulating the source traffic of multiple AAL2 sources, where each source’s attributes could
be individually specified. The AAL2 Analyser was responsible for receiving AAL2 traffic
from the network, (which may or may have originated from an AAL2 switch), extracting the
individual packets, and logging these packets to file for further analysis. Note that the name
“Analyser” for this AAL2 receiver may be slightly misleading and cause one to think that
analysis is only performed at this particular end-point in the network. However, analysis,
particularly when obtaining performance benchmarks, was also performed at the AAL2
Generator itself, where the timer-CU was implemented, and the reader’s attention is drawn
to this fact. This appendix will briefly discuss the internal operation and organisation of
these evaluation tools.

C.2 The AAL2 Generator

The AAL2 generator was based on a non-threaded architecture, and implemented as a
monolithic unit. There were two reasons why the support given by threads was not required
for this generator:
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e It was not the intention to include the emulation of multiple AAL2 paths into the
generator, but simply the function of being able to multiplex multiple channels onto
a single AAL2 path. It will be seen shortly how a single generator can be re-spawned
as multiple processes to allow for the streaming of multipJe input AAL2 paths into a
single AAL2 switch. "

e In comparison to the switch, the AALZ2 generator may be likened to the ARU, as it
is primarily responsible for the creation of AAL2 traffic. No support for signalling,
management, or scheduling was required. Due to the processing power required by
threads, it was decided at the testing stage to rather dispense with this thread-based
environment and allocate more processing power to the multiplexing of multiple
SOurces.

The generator software was written in the same environment as the switch itself, and a large
portion of the ARU code was reused, apart from the timer mechanism, whose operation
will be explained shortly., Before the operation of the generator is described, it would
be helpful to understand the manner in which sources are defined. Data describing the
various sources is defined in a file known as sources.conf, which must be placed in the same
directory as the generator client program. If the file is re-edited, the generator must be
stopped and restarted before the modified file can be read in.

#source configuration file - mo whitespace!
#global options

timer-cu = 50

aal2-path = 90

sequence = 1

#source specific options

#---Source t---

define source

begin

name = theCompressedScurce
codec = g7329

packet-length = 10

packets = 12

aal2-channel = 18
active = 1

it = 10

logfile = s1.=sd

end
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As is noted, there are two main sections of the file, viz. global options and source specific
options. Global options relate to the entire AAL2 path onto which channels are multiplexed
and include the following definitions®:
!
o Timer specification (timer-cu), defines the timer-CU in base time units for the path.
Note that the timer-CU should not be less than than the lowest source inter-arrival
time (i - discussed below).

e AAL2-Path Identifier {aal2-path), defines the VC that ought to be allocated for the
outgoing path, and must match an already open channel bound to the APIC NIC2.

e Sequence Number status (sequence) specifies whether the sequence number, as dis-
cussed in Chapter 2 on AALZ, should begin with a 1 or a 0.

Source specific options are used to define the attributes for an individual source. A “source
block” is begun by the tokens define source and begin, followed by various options, and
must be terminated by the end token. A maximum of 20 source blocks may be currently
defined, but this limit is easily extended. As shown in the file example above, a source
should be described in the following manner:

e Source name (name) is a canonical name given to a source and may be used simply
to aid the tester.

e Source codec {codec) defines the source according to one of the following codecs: g-
726, g-T27, g-728, g-729, gsm-fr and gsm-hr. By specifying one of these codecs the
packet rate and packet size will be automatically specified. For example, specifying
the source codec as gsm-fr will define a packet length of 36 bytes and an inter-
arrival packet time of 20 time units (equivalent to the 20 ms specified for this codec).
However, the user of the generator is discouraged from using this option, and should
rather explicitly define the codec parameters.

e Length of Packet. (packet-length) is used to define the length of individual packets
explicitly, and is the preferred method for specifying packet sizes. Note that such a
length, in the context of AAL2, will exclude the CPS packet header.

!Tokens in italics indicate the syntax to be used in the configuration file.
2The process of binding a channel to the APIC NIC is discussed in Appendix E.

139



e Number of Packets (packets) specifies the number of packets to be generated. Once
the allocated quota for a source is reached, the active bit (defined below) is cleared

and the source will automatically become inactive.

e Source Identifier (aal2-channel) defines the allocated CID to be stamped into the
header of CPS packets as they are generated. Note that fake CCS signalling packets
may be created simply by specifying a CID of 8.

e Active Bit (active) declares whether a source should start up in the active mode or
not, and should generally be set to 1. Its intended use is to allow a source to be
deactivated without having to remove or comment out the source description from
the source file.

o Packet Inter-Arrival Time (it) specifies the inter-arrival time of packets of the par-

ticular source in base time units®.

o Logfile (logfile) sets aside a log file to which packets will be written when they are
generated. Note that when multiple sources are defined, the user should remember
to allocate a separate log file, with a unique name, for each source.

Note that the syntax of the source file is extremely strict and the parser is sensitive to
whitespace in the regions where it shouldn’t be. If tokens are not defined as shown in the
source file, they will be ignored.

The operation of the AAL2 generator may now be described as follows:

e The first operation to be undertaken by the generator is to parse the source configu-
ration file, sources.conf, and store the source data in a source attribute array, where
each attribute entry defines a single source.

e In the following stage, the actual packet data is generated. For each source, the spec-
ified number of packets, each the correct size, are generated with random payloads.
/» CPS header with the specified CID value is appended tc the packets and logged
to the specified file. Once this stage is complete, there should be N individual packet
files, if N sources were defined in the configuration file.

3Currently, only sources of the CBR-traffic class can be generated.
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o Now that all packets to be generated are on file, and are hence safely stored for later
analysis, the generator proceeds to read all packets into memory. As there is ample
memory to store sufficient packets for the various tests that would be required, it was
decided to rather stream packets from memory than fronP secondary storage, simply
due to the excessive delays that would be experienced 'in reading each packet for a
file.

e The final pre-processing stage involves initialising an output AAL2 path onto which
the AAL2 traffic may be placed, initialising the transmitter state machine to default
values, resetting the timer reference frame to zero and opening any logfiles to store
statistics during the generator run. A

¢ The main loop of the AAL2 generator is driven by the timer handler function. When
this loop is first entered, it will wait for a global variable to be cleared, which signifies
that a timeout has occurred. The timeout can indicate that a source packet must
be sent, or that the path timer has expired. If the required inter-arrival time for a
source has been reached, and the source is an active source, then an additional packet
from the logfile matching the source will be submitted to the CPS transmitter. Once
all sources that wish to submit packets have been attended to, the new timeout is
computed for the handler function. If all packets from a source have been trans-
mitted, the source will be declared inactive, and will not be considered for future
transmissions. The main loop will then be stalled until once again it is interrupted
by the timer handler, in which case the process is repeated. ’

C.2.1 Implementation of the AAL2 Generator Timeout Mecha-

nism

It was decided to use an alternative timer mechanism for the AAL2 generator as opposed
to the one that was discussed in chapter 5, for two reasons:
e Only a single timer-CU is required, as the client need only support a single path, and

is not thread aware.

e As the generator must emulate the effect of multiple sources, a timer for each source
is required to ensure that the correct packet inter-arrival times are adhered to.
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Source/Timer | Time (in base units)
Source A 3
Source B 7
Source C 5
Timer-CU 10

Table C.1: Source Inter-arrival Times

Reference Time | Source A | Source B | Source C
1
2
3 *
4
5 *
6 *
7 ES
8
, 9 *
10 *
11
12 v
13
14 *
15 E3 *
16

Table C.2: Source Inter-arrival Times

To illustrate the operation of the timer mechanism, an example will be used. Assume the
client must generate traffic for three sources, Source A, B and C, as well as a path timer,
whose inter-arrival times and expiry time, respectively, are shown in Table C.1 above.

Now, if source A were to transmit 5 packets, source B, 2 packets and Source C, 3 packets,
the packets would occur at the times indicated by (*) in Table C.2 above.

The fundamental task of the generator is to calculate the time the system should wait
before the next interrupt should occur. The time is known as the critical time. Before
the main loop has been entered, no packets have yet been transmitted, and therefore the
timer-CU won’t be running. As no time has yet elapsed, the reference time is now zero.
To determine the critical time, a counter is commenced at the reference time (zero in this
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case) and increments by one, until a critical time is found. With each iteration of the
counter, a test is performed on the inter-arrival times of each source to determine whether
any of these values will divide exactly into the counter value. As an example, when the
counter reaches 1, neither 3, 7 or 5 can divide exactly into this number. Therefore, at
this stage nothing is done, and the counter simply increments.. At 2, the same effect is
noticed. At 3, it is found that the inter-arrival time of Source A divides exactly into this
number. Hence the critical time is calculated as the difference between this time (3) and
the reference time (0), and the counter need not increment any further.

Before setting the timer to 3 time units, an additional check is made to ensure this time
does not exceed that of a possibly running timer-CU. For example, if the critical time is
set to 3 time units, but a timer-CU would occur at 2 time units, then the critical time will
be altered to 2 time units instead, as the timer-CU would have to occur first. When the
timer-CU does eventually interrupt the system, the critical time will be recalculated, and
the reference time will be updated. In this instance, the following calculated critical time
would be 1. ,

More commonly, the critical time would be less than the current running timer-CU. There-
fore, in the example above, a timeout would occur at 3 time units. When this happens,
a check is made once again to see what sources are affected. If a source is affected, it is
required at this stage to transmit a packet, provided it is still active. Once the full list of
sources has been scanned, the new critical time is calculated. As the next timeout should
occur at 5 time units, and since the reference time is 3 time units, the new critical time
would be 2 time units. This process is repeated until all sources are no longer idle, at
which point the generator will terminate.

C.2.2 Emulating Multiple Input AAL2 Paths

As the generator was implemented to multiplex data onto a single outgoing path, an entirely
new instance of the algorithm, in its own process space, must be run for each additional
output path that is required. Although the algorithms may be run on the same machine,
each instance should be in a separate directory, with its own source definition file. One
concern that manifested itself was that it was initially not possible to start all transmitting
processes at the same instance in time. However, a simple wait instruction was inserted at
the start of the generator code. When the generator is instantiated, it will only begin to
stream packets into the AAL2 transmitter when the following calendar half-minute comes
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around. Therefore, if a generator as started at a system clock time of 22:30:39, it will only
run when a time of 22:31:00 is reached. This gives a user ample time to start additional
generator instances, and works reasonably well for a small number of AAL2 paths.

F

*

C.3 The AAL2 Analyser

The AALZ2 analyser is responsible for receiving AALZ cells from the network and extracting
the packets within each AAL2 cell. The architecture of the analyser is considerably simpler
than that of the generator. No timer mechanism is required, packets need not be generated
(as they already exist), and there is no need to p.arsela source file.

The operation of the analyser is as follows:

e Before the analyser can receive traffic from the network, an input path is created on
a specified VC to receive the traffic, and the CPS receiver is initialised.

o For each AAL2 cell that is received, the PDU itself is logged to file, and the payload
contents are submitted to the CPS receiver for processing. The receiver will conse-
quently log all packets that are extracted to disk. A separate file is held for each
group of packets with identical CIDs.

The analyser does not accept traffic on mulitiple AAL2 paths. To enable this feature,
multiple instances of the analyser must be run, each as a separate process, and bound to
a unique ATM VC. As no processing can be performed until cells are received from the
network, it does not matter if the various traffic analysers are started at slightly different

instances in time.
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Appendix D

Abstract Data Type

D.1 Introduction

This appendix will give an overview of three Abstract Data Types (ADTs) that were
implemented and extensively used for the AAL2 switch implementation. The notion of
an ADT implies a generalised structure or code segment that, although is required by the
particular switch implementation, may be re-used for any architecture that would require
such an ADT. Furthermore, it was decided to make use of such ADTs for the following
reasons:

e Simplified interface: The design of any ADT, whether a FIFO, linklist or hash
table, requires a simple-to-use and standard interface. In this manner, one need not
possess the technical know-how of a particular ADT in order to use it, and need only
learn a simplified set of function calls.

e Portability and re-use: By coding each ADT in ANSI C, a higher degree of
portability can be maintained. Although such code was originally intended to run
in the NetBSD environment, it may easily be compiled on the respective platform of
whatever iature application is to be supported. ’

e Simplified testing and robustness: By first isolating the code for a given ADT
before incorporating it into the main implementation, an extensive series of tests may
be conducted, and the process of diagnosing faults is significantly simplified.
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D.2 Generalised FIFO algorithm

Due to the requirement for buffers to be situated at multiple locations in the AAL2 switch,
a series of queue managers were required. It was decided to base these queue managers
on a simple FIFO discipline. A FIFO (First In First Out) simply implies that elements
will leave the queue, i.e. be serviced, in the order in which they arrived, hence providing
a certain degree of fairness'. A special requirement of this FIFO algorithm, however, was
that it would not be limited to the storage of only a single type of element, but would
indeed be able to accommodate various element types. As an example, both CPS packets
and AAL2 PDUs may require queueing in the switch. Both these structures are different in
length and format, and may both be regarded as complex data types, whereas an unsigned
character would be regarded as a simple data type?. The FIFO should therefore support
both simple and complex data types.

The feature of supporting multiple user-defined types is made possible by defining an
array of void® pointers. Before being placed in the queue, the size of the element to be
stored must be determined and passed with the element itself. This is necessary in order
to correctly delineate elements from one another in the queue, and to ensure the right
number of bytes are copied for each element*. When retrieving elements from the FIFQ
{dequeue operation), a void pointer to a raw block of data in memory is returned. This
pointer must first be type-casted to the appropriate type (e.g. struct type_cps_ packet or
unsigned char) before it may be used.

The code-base for the FIFO ADT may be found in fifo.c, and contains the following function
calls:
D.2.1 Functions for creating and destroying FIFOs

e Initialisation
Before the FIFO algorithm may be used, it must first be initialised. The maximum

1Note that there are multiple definitions of fairness in the literatv ro, particularly that pertaining to
scheduling mechanisms.

2Here the author defines a complex data type as one that may be broken up into simpler individual
segments, e.g. a structure consisting of a 64-byte array of characters, preceded by 3 separate unsigned
characters for header identification and classification purposes

3Not type-casted in any way

*Copying of element data onto the FIFO is performed in a raw fashion, byte for byte, without regard
for the type of the element, until the specified element size is satisfied.
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number of concurrent FIFOs that will be needed is the only parameter required.
int init_fifo (int NumFifos);

o Creating a FIFO
For each new FIFO required, create_ fifo must be called with the relevant parameters.
This will ensure that the FIFQO's internal variables are set to appropriate values.
These variables indicate, amongst other things, where free space exists to enqueue
the next element, what elements must be dequeued next, the number of elements on
the queue, the supported element size and how the internal structure of the FIFO
should be organised. Parameters that are to passed include the maximum number
of elements to be supported by the queue, as well as the element size in bytes®. The
return value from this function call is a descriptor that is to be used for subsequent
access to the FIFQ.

;

int create_fifo (unsigned char element_num,size_t element_size);

e Destroying a FIFO
When a FIFQO is no longer required, it may be destroyed by passing its matching
descriptor {obtained from creale_fifo) to the function call below. The task of this
function call is to free all memory occupied by the FIFO and mark the FIFO as
unallocated. An unallocated FIFO may be assigned to the caller in the followihg
instance of create_ fifo, hence providing a primitive re-use mechanism®.

int destroy_fifo (int fifo);

D.2.2 Standard Element Processing

¢ Enqueue
Enqueue is the process of placing a new element on the FIFO, to be extracted at
a later stage. Before an element can be placed on a FIFO, the descriptor of the

5Note that one limitation of the FIFQ algorithm is that all elements common to a FIFQ must be of
the same data type.

$This mechanism was found to be adequate for the needs of the AAL2 switch, and ought to match
those of many buffer-oriented applications.
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FIFO must be identified, and the size of the element must match the size passed to
the create_fifo call routine. If this is not adhered to, unpredictable behaviour and
memory corruption will occur. This descriptor, together with a pointer pointing to
the start of the element’s memory block are passed together to the routine below. If
successful, the value 0 is returned. If unsuccessful, e.g.- the FIFO is full, a value of
-1 is returned.

int enqueue (int fifo,void * element);

o Dequeue .
Dequeue is the process of retrieving an element from the queue. Before an element
may be retrieved, a storage area of the correct size and type must be preallocated.
The correct FIFO descriptor, together with a pointer to this storage area are passed
together. Provided the FIFO is not empty (in which case of -1 will be returned)
the contents of the new element will be copied to the allocated storage area. When
successful, a value of 0 is returned.

int dequeue (int fifo,void * element);

D.2.3 Miscellaneous Options (non-mandatory)

e Number of Elements
The number of elements held by a particular FIFO may be retrieved by passing the
FIFO descriptor to the function call below:

int Fifo_Elements (int fifo);

e Testing for FIFO Full or Empty
2 additional function calls are provided to determine whether a FIFO is full or empty.
A value of 1 (TRUE) is returned if the required condition is satisfied, and 0 (FALSL)
for the opposite condition:

int IsFull (int fifo);
int IsEmpty (int fifo);
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D.3 Generalised Linklist Algorithm

Although many features of the FIFO can be found in that of a linklist, the two ADTs are
not alike. Indeed, a linklist allows for insertion or extraction af’ either the head or tail of a
linklist, unlike a FIFQ, which must follow a strict access control discipline. Furthermore,
in the FIFO algorithm, it is not possible to examine the contents of any other element
without first extracting the element(s) from the front of the queue’, whereas elements of a
linklist may be examined without altering the structure and order of the linklist.

The need for a linklist ADT arose from two separate requirements in the switch. Firstly,
an individual linklist is required for each scheduling class in the PSU of the switch, as
explained in chapter 5. Secondly, for each outgoing AAL2 path, a separate linklist must
exist for the channel set that will ultimately indicate what channels will be combined at
the path output. The linklist ADT code has been further extended to provide a rich set
of additional features, to be explained shortly.

The multiple-type feature of the FIFO above has been implemented in a similar fashion
in the linklist, and the same requirements exist for adding and removing elements, with
regards to allocating sufficient storage, and making use of the correct linklist descriptor
when accessing the various function calls. Furthermore, each individual linklist must also
contain elements of the same type and size. Therefore once a particular data type has been
specified, the linklist cannot accommodate another type unless it is destroyed.

The linklist implementation can be found in linklist.c, of which the various functional calls
contained within are discussed below.

D.3.1 Creating and Destroying Linklists

o Initialisation
Before any linklists may be created and used, the algorithm must first be initialised.
The only parameter required is the maximum number of linklists that need to be
support 1.

int init_linklist (int NumLinklists);

"The author does not see any direct need for such an operation to occur.
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e Linklist Create

When creating a linklist, the size of the element to be stored must be known, and
is the only parameter required. Note that unlike the process of creating a FIFO,
there is no need to specify the number of elements thaf are to be supported in a
linklist. This is because memory allocation of linklist elements is fully dynamic, and
the only limitation on linklist size is the total memory capacity of the process. It was
felt that a dynamic allocation scheme was more suitable in this case, as the linklist
structure and size changes less frequently. The routine below will return a unique
linklist descriptor, that is to be used for all further accesses to the linklist.

int CreatelLinkList (size_.t element_size);

e Linklist Destroy
When a linklist is no longer required, it may be destroyed, and the memory can be
freed for another application.

int DestroyLinkList (u.int16_t linklist);

D.3.2 Standard Linklist Operations

s Adding an Element to the Head '
Adding an element to the head of the linklist is simple. One need only possess the
linklist identifier, as well as a pointer to the storage block in memory of the element,
before calling the routine below:

int AddToHead (u_inti6_t linklist, void * element);

e Adding an Element to the Tail
The format for adding an element to the tail is identical to the above scenario®:

int AddToTail (u_intl16_t linklist, void * element),

8Note that when adding an element to an empty linklist, AddToHead and AddToTail will have the
same effect.
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¢ Removing an Element from the Head or Tail
If neither the head or tail elements are required, the appropriate function call may
be used. If successful, a value of 0 is returned. If no elements can be extracted from

the linklist, a value of -1 is returned. ;

*

int RemoveHead (u_int16_t linklist);
int RemoveTail (u_inti6_t linklist);

e Get Head and Tail Elements
The two function calls below may be used to non-obtrusively extract an element from
a linklist®. The structure of the linklist will not be altered. Once the pointer to a
block of memory is received from the calling routine, it must be type-casted to be
usable.

void * GetHeadElement (u_inti6_t limklist);
void * GetTailElement (u_intl6_t linklist);

D.3.3 Extended Operations

e Get Element based on Index
Occasionly, the need arises to linearly traverse a linklist’s elements and read their
contents. This is the case, for example, in the output channel set of an AAL2 path.
A loop is initialised from 1 to the number of the elements of the linklist. In this
manner, the current loop index may be passed to the routine below to retrieve the
element at the specified location:

void * GetElement (u_int16_t linklist, int index);
e Remove Element based on Index
The process of removing an element based on an index is identical to the above

scenario. A value of -1 is returned if the linklist is empty.

int RemoveEntry (u_inti6_t linklist, int index);

®For a linklist containing a single element, both functions will return the same element.
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e Get Number of Elements
The number of elements of a linklist is required when performing the above linear
traversal, for example.

int GetNumElements (u_inti6_t linklist); :

D.4 Inverse Priority Heap

A priority heap is a structure similar to a queue, with the exception that elements are
retrieved based on priority, e.g. the element with the highest value is retrieved first. An
inverse priority heap implies that the lowest element is now given the highest priority. An
inverse priority heap (IPH) was required to support multiple timers in NetBSD. The lowest
time is always considered to be most critical, and hence must be extracted first.

The IPH is based on a binary tree, where heap order is satisfied. For heap order to occur,
a parent cannot have a value lower than either of its children. For example, if a parent
has the value of 7, and its children have values of 4 and 6, then heap order is satisfied.
However, suppose that the children were instead 4 and 8. In such a case, heap order would
not be satisfied, as 7 is less than 8. However, provided this constraint is met, the children
need not be ordered from left to right, as is the case with a complete binary tree. Hence
the children could have been 6 and 4, or 8 and 4, for case 1 and case 2, respectively.

Instead of storing an array of simple decimal values, the priority heap has been modified
to store a structure, shown as follows:

typedef struct {
char target _count;
unsigned long target [10];
unsigned long target_time;
} entry_type;

The target_time is the value to be used by the IHP algorithm. Hence, the structure to be
retreived from the IPH will always be the one with the lowest target time. Target count
refers to the number of targets to be found in the target array. The target array represents
all sources that must be notified when a timeout occurs. For example, if at time t=3,

152



Source 1 generates a timeout of 4 time units, and at time t=35, Source 2 generates at
timeout of 2 units, then at time t=7, the timeouts of both Source 1 and Source 2 will
expire, and hence both sources will be notified.

The code for the IPH can be found in priority_heap.c and pribrity_heap.h.

D.4.1 Initialisation

The only routine required for initialisation is shown below. The routine will ensure an
array is created!® to store the binary tree with heap order as explained above.

int InitPH (void);

D.4.2 Standard Operation

¢ Inserting an Element
Before an element can be inserted, the element structure must first be created and
instantiated. A pointer of type entry_ type pointing directly to this structure is passed
to the routine below. The routine will examine the target time of the structure, and
reorder the tree recursively until heap order is satisfied. This allows for a simpler
remove algorithm that operates substantially faster!:.

int InsertPHElement (entry_type * new_heap_entry);

¢ Removing an Element
Once again, the element with the smallest target time will be removed. The structure
comprising this element will be copied to a preallocated area of memory, pointed to

by argument theElement.

irt RemovePHElement (entry.type * theElement);

0The array is limited to 30 elements. It was not envisioned that more than 30 unique timeout valyes
would be required. However, this limit is easily extended.
HReordering of a tree can be expensive with many elements.
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Appendix E

WUGS, APIC and SPC Usage Guide

E.1 Introduction

This appendix describes the physical procedures to be taken out to configure the WUGS
environment to support a given architecture, such as an AAL2 switching module. This
appendix may therefore be used as a quick-start guide for those unaware of the WUGS
operating environment, and who wish to get the AAL2 switch “up and running” as soon
as possible. The following prior technical knowledge will prove helpful:

e A good understanding on the general layout of the WUGS, AAL2 switching module
and testbed components

e A good understanding of NetBSD (or any BSD-based environment) and the ability
to recompile a kernel

E.2 Setting up of the WUGS Controller

The only way v configure the VXT table of the WUGS is via an externzl controller that
transmits raw ATM cells on VCI 32. Therefore the first step in constructing an operational
WUGS environment is to setup and configure the WUGS controller. The WUGS controller
is simply an end-station (PC) equipped with an APIC NIC to transport the raw ATM cells.
To install the machine, the following should be done:
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e A version of NetBSD 1.4.1 must be obtained.

e Following the INSTALL directions, NetBSD should be installed on the WUGS con-
troller. This is a relatively straightforward process, and won't be explained here.
Once the installation is complete, the following additional non-WUGS-related soft-
ware is also recommended:

— GNU Bash, a user-friendly interactive shell

— Secure Shell, preferably OpenSSH, to allow users to remotely access the machine
in a secure fashion?).

— Vim, or Vi Improved, a text editor that support syntax highlighting?®.

o The Washington University SPC MSR (ex-Crossbow) distribution must be obtained
via their cvs server, cvs.arl.wustl.edu, and should be extracted in the /usr/downloads
directory of the newly installed machine. This distribution includes a full set of GNU
development tools, modified APIC kernel, full SPC operating environment and all
WUGS utilities reqﬁired.

e Once extracted, the directions in the README file in the root directory of the
distribution will guide one on how to complete the installation of the above mentioned
utilities, and how to compile the new APIC-aware kernel. Once the kernel has been
installed, the machine will need to be rebooted, and checked with “dmesg [ less” to
test whether the kernel has detected the new APIC NIC.

e The installation of the WUGS controller is now complete.

E.3 Running GBNSC and Jammer on the WUGS Con-

troller

To enable the controller to communicate with the WUGS switch, the following requirements

musec be met:

» A port on the WUGS must be directly connected to the APIC NIC of the host-based
controller. In the example below, port 4 was used as the control port.

10penSSH will require OpenSSL and Perl to be installed on the machine beforehand.
2Vim required ncurses to be installed on the machine beforehand.
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o Before control cells may be sent to the WUGS, a PVC to the WUGS must be set
up with a VPI/VCI of 32 (decimal). This is achievable with the following commands:

/sbin/ifconfig apic0 up
/usr/sbin/atm_ifconfig apicO 0x000020 open -inport FIBE‘! -outports FIBER -aal0_cell
-nollc ratm

e To create the control cells that will ultimately be sent to the WUGS, a program
known as the Gigabit Network Switch Controller (GBNSC) must be running on
the controller. GBNSC will listen for commands over a TCP socket from Jam-
mer (discussed below) and convert these commands to raw ATM cells that can be
interpreted by the WUGS. A complete overview of GBNSC can be found at the fol-
lowing URL: GBNSC Overview http://uww.ststech.com/.../Switch_Software/
The_GigaBit_Network_Switch_Controller, Version_1.3.pdf. When the GBNSC
process is initialised, a configuration file is read in that describes the manner in which
the WUGS is connected to the controller (port number and control VC) as well as
flow control information (UNI vs NNI ports). An example script can be found in
Appendix I. In order to initialise GBNSC, the following command should be issued,
directly from the directory where itself as well as the matching configuration file may
be found:

GBNSC.apic -a -b64000 config.apic

e At this stage, the controller is ready to receive commands from Jammer. Jammer may
operate in two modes. The first mode is an interactive mode, where a user specifies
Jammer-based commands directly. The second mode is a script-based mode, where
Jammer will read a set of commands from a file. As the Jammer commands are rela-
tively cryptic, and not intuitive, a hybrid mode was selected to create an interactive,
user-friendly environment for configuring the VXT table. A script containing a set
of standard function calls was released by the Georgia Institute of Technology, and
is available on the main Washington University Gigabit Kits website. The following
commands are provided:

The script to enable these commands is included in Appendix I, and can be incorpo-
rated with Jammer in the following manner:
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| Command Function
Initialise () Initialise port maintenance registers
AddPvc2  (SourcePort, SourcePath, | Create a bi-directional VC between source
SourceChannel, DestPort, DestPath, | and destination ports
DestChannel ) N
AddPve (SourcePort, SourcePath, | Create a uni-directional VC from source to
SourceChannel, DestPort, DestPath, | destination port
DestChannel )
AddPve2  (SourcePort, SourcePath, | Remove already-active bi-directional VC
SourceChannel, DestPort, DestPath,
DestChannel )

Table E.1: Commands to establish and tear down WUGS connections

Jammer 0.1 inca 3552 kitsppp.js

“0.1” refers to clustelf 0, switch 1. Jammer will connect to GBNSC on port 3552 (pro-
vided GBNSC is listening on this port) of host inca. The script file to be included will
be called kitsppp.js. More information on the Jammer utility may be found at the fol-
lowing URL: Jammer URL http://www.seas.smu.edu/ barr/wugs/jammer.pdf.
It is also possible to control GBNSC from a remote énd-station, which itself must
run an instance of the Jammer utility. The difference here will the host name, which
will not be the name of the host itself. For example, if host aztec wishes to control
the GBNSC utility on inca, the syntax of the Jammer command will be identical to
the example above (and does not change to aztec).

E.4 Migrating an architecture to the SPC

Since the architecture and components of an end-station are almost identical to that of the
SPC, it is a relatively simple process to migrate an implementation from the one platform
to the other. The following procedure shows how this may be accomplished:

e As the SPC contains a ramdisk that will house the entire file hierarchy of the oper-
ating system, the first step that needs to be performed is to prepare the filesystem.
A working filesystem is provided with the MSR or Crossbow distribution that would
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have been installed above, and is given the name SPC2{MB.fs. The file can be found
in the SPC root directory, usually called spc_ working _ dirs/root_ wdir, which is off
the main root directory of the distribution. Note that as the filesystem is stored as a
contiguous image, it must first be mounted before any mofdiﬁcations can be made. To
select a suitable mountpoint, the script “mountit” should first be edited. Following
this, the script may be run, which will first attach a device node to the image file,
and then mount the file in the specified location in the normal way.

Now that the file system can be accessed directly, the development code may be
copied to a suitable location, e.g. /usr/local/AAL2Switch. If any external library
files are required, e.g. libpth, these should be copied to the standard library direc-
tories, which are usually /lib or Just/lib3. Once configuration of the filesystem is
complete, it may be unmounted using the “unmountit” script?.

o Before the filesystem can be downloaded, the SPC kernel must first be rebuilt. A
symbol-only version of the kernel will be added to the root of the filesystem and the
filesystem and kernel will be concatenated into a single image before being down-
loaded. Before the kernel is compiled, it should first be configured by editing the
appropriate configuration file. As an example, the crossbow kernel configuration can
be found at the following location relative to the root of the distribution: cross-
bow/NetBSD /usr/src/sys/arch/i386 /conf/SPC_24_ MB_with_ Crossbow. Configu-

" ration of the kernel should be performed by first changing to the correct directory be-
fore editing the file. The user may then proceed by running config SPC_24_MB_with_ Crossbow
to prepare the build environment. The build scripts can be found in the directory
../compile/SPC_24_MB_ with_ Crossbow. Once in this directory, the user should
run ../mk.1, a script provided by Washington University, to build the kernel image
and copy this image to the root spc working directory. '

e By returning to the root SPC working directory, the symbol-only version of the kernel
can be extracted and added to the SPC filesystem®. This is performed by running
the mk.2 script in the current directory.

e The user now returns to the directory crossbow/NetBSD /usr/src/sys/arch/i386/compile

*Warning: A common trap to fall into is to forget that the SPC filesystem root actually falls under the
mountpoint specified, e.g. /mnt/spc. A user should be careful to ensure that their files are not copied to
main filesystem of the workstation.

4The mountit and unmountit scripts must be carried out by the superuser.

$Also to be performed by the superuser.
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to run the mk.3 script. This script will append the kernel image to the SPC filesys-
tem, and create a bss file that is suitable for downloading to the SPC.

Before the entire image may be downloaded to the SPC, two PVCs must be opened
to the SPC. The SPC is assumed to reside on the samé switch port to which the
end-station is connected, that will be responsible for downloading this file. The
first PVC is an AALS5 connection to the SPC that will be used for downloading the
frames that represent the image. An AALO connection is also initialised to allow the
SPC to provide feedback to the end-station. The various required connections may
be configured by running the doit.sh script in the spc_ working_ dirs/configuration
directory, off the main distribution root directory.

The image may now be downloaded to the SPC. First, the user should change to the
spc_working_ dirs/downloads directory off the root of the main distribution. Before
downloading may commence, the SPC must first be reset. This is performed by
running the “resetit.sh” script, which will send a reset control cell to the SPC. Once
complete, the image comprising the filesystem and kernel may be downloaded by
running the “doit.sh” script.

The downloads process will take approximately four minutes. While waiting, the
user should open a serial console to the SPC which will be used for shell access.

Once the download is complete, the user may log in to the SPC as root, configure
the required APIC connections to the switch, and run the relevant software. If an
error in the filesystem is detected, or required code or libraries are missing, or if an
additional script or tool is provided, the entire downloading process must be repeated.
As this consumes considerable time, a suggestion is to make use of the NFS protocol
to mount a remote filesystem. This has the following advantages:

— Any changes that are made will not be lost when the SPC is reset or the WUGS
loses power.

— Code can be edited and recompiled on the end-sta’ion, which is equipped with
the necessary development libraries, headers and compilers. The resulting bi-
nary file can then be directly run on the SPC to test it behaviour. It would not
be feasible to place an entire development library on the SPC, as the filesystem
is only 24 MBytes in size.
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Appendix F

AAL2 Switch and Client Code Overview

F.1 Introduction

The AAL2 switch,.generétor and analyser projects combine multiple source files, each
of these files accomplishing a small task. To address certain portability issues and to
maximise the re-use of already existing code, certain files appear in both the switch and/or
both end-station environments. This appendix will name all these code components, with
a description of each.

F.2 AAL2 Switch Code Environment

The code comprising the core AAL2 switch module is made up of the following components:

e “aal2.h”
Main AAL2 header file. Contains structures to hold an APIC cell, a CPS Packet, an
AAL2 PDU, the transmitter state machine structure, and the receiver state machine
structure.

® “adu.c!f
ADU Module. This module reads in AAL2 PDUs and passes them to the receiver
for processing. Once complete, control is relinquished.
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e “aru.c”
ARU Module. This module removes CPS packets from the output stores and passes
them to the AALZ2 transmitter. Once all possible packets are extracted, control is

relinquished. r

[3

e “ccu.c’
CCU Module. Performs initial configuration of the system, and starts additional
threads. The main function, i.e. the first function to receive execution can be found
here.

e “fifo.¢”

Abstract FIFO-manipulation routines.

e “linklist.c”

Abstract linklist-manipulation routines.

o “priority _heap.h”
Abstract priority heap data structure header file.

® “priority _heap.c”
Abstract priority heap data manipulation routines.

® “DSU.C”
Packet Scheduling Unit. Initialises low-delay, normal-delay and high-delay linklists.
Passes channels from input to output store according to scheduling class, and relin-
quishes control.

e “receive.c”
CPS Receiver. Contains state machine driven by input AAL2 PDUs. Non-signalling
packets are copied to the input store. Signalling packets are copied to the dedicated
signalling queue set aside. Once the PDU has been fully analysed, and provided any
signalling packets were extracted, an event is generated to the SPU. Once complete,
control is relinquished.

e “spu.c”
Signalling Processing Unit. Contains routines to start instances of an ADU or ARU,
assign channels to input paths, append channels to an output channel set, create
input AAL2 paths, create output AAL2 paths as well as a state machine to process
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incoming signalling packets. Once all packets have been processed, control is handed
over to the main scheduling unit.

e “switchcore.h”
Main AAL2 switch data structure header file. Contains’signalling event identifiers
and templates for a table mapping structure, an output channel set structure, input
and output AAL2 path structures and a structure to hold signalling information.

@ “tools.c”
Miscellaneous tools. Contains utilities to subtract times for analysis purposes, func-
tions to convert CPS packet headers from serialised form to individual identifier form
and vise versa, and functions to convert the start field of a PDU from serialised form
to individual identifier form.

e “transmit.c”
CPS Transmitter. Contains state machine to construct AAL2 PDUs, and pass com-
plete PDUs to the output link.

o “tu.c”
Timer Unit. Contains routines to set and reset a new timer, a timer handler function
to catch timer interrupts, an intelligent timer wrapper to make use of a single system
timer to create the illusion of multiple timers, and a routine to cancel already active
timers, for when PDUs becoming full and longer require the timer.

F.3 The AAL2 Generator

The generator contains the following code components:

e “aal2.h”
Main AAL2 structure header file.

e “aal2term.b”
Terminal header files. Contains similar structures as found in aal2core.h, but modified
for end-terminals.
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e “client.c”
Main analyser / client source file. Contains timer functions and wrappers, as dis-
cussed in Appendix C, and a main loop to extract packets from memory at the correct
times and pass them to the CPS transmitter.

?

e “excel.c”
External program (not compiled in with analyser) to convert logs produced by the
analyser into a column-aligned format, suitable for reading by MS-Excel®.

e “file.c”
Routines for reading packets and PDUs into memory. This is required to ensure that
data for the client may be written directory out of memory, instead of reading from
a file multiple times, slowing down the entire process.

e “packetgen.c”
Packet generation routine. Generates packets with specification as defined in sources.conf
(see Appendix C), and utilises the math library random routine to produce random
payload data.

e “parser.c’
Parser routine to read specifications from source.conf file. Converts identifiers to
tokens, matches tokens and assigns parameters to data structures.

e “sources.h”
Source description header file. Specified source template to fully describe the at-
tributes of a source.

e “sources.c”
Write various generator events to logfile, that will later be processed by the excel
function.

e “sources.conf”
External source configuration file.

e “tools.c”
Miscellaneous functions for converting between various packet header and start field
formats.

!The excel routine was used as a preprocessor for the graphs of chapter 6.
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e “transmit.c”
CPS Transmitter.

F.4 The AAL2 Analyser / Receiver

The analyser contains few components. They are:
@ L(aalg.h17
Main AALZ2 structure header file.

e “aal2term.h”
AAL? terminal structure header file.

e “file.c”

Routines for reading packets and PDUs from file into memory.

& “receive.c’
CPS Receiver.

e “server.c”
Main server file. Reads AAL2 PDUs from the networks, submits data to the CPS
receiver and logs all activity.
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Appendix G

Accompanying CD-ROM

This text is accompanied by a CD-ROM. Before navigating the CD-ROM, the user should
first read the README file in the root directory, which will contain any last minute

information. The CD-ROM will contain the following information:

Source Code
All source code that was produced can be found in the “Sources” directory.

Source Code Documentation
Documentation that proved invaluable, and to which the author is extremely grateful,
can be found in the “Source-docs” directory

WUGS Environment
All WUGS-related sources and utilities that were used for this thesis can be found
in the “WUGS” directory.

WUGS Documentation
Documentation describing the WUGS, SPC and APIC can be found in the “WUGS-
docs” directory.

Conference Proceeding and Journal Articles
Electronic copies of research papers, some which are listed in the “References” section
of this text, can be found in the “Research Literature” directory.

Thesis document
This document, in both postscript form and pdf form, can be found in the “Manuscript”
directory.
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