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ABSTRACTABSTRACT   
 

The evidence now strongly supports an African origin of the first Homo 

sapiens. Currently, the best-known fossil evidence for the earliest H. sapiens 

derives from the Omo Kibish and Herto sites in Ethiopia, and dates to ca. 200-

150 thousand years ago (ka). However, very few archaeological data spanning 

the critical period across our species’ evolutionary origin are known from 

securely dated contexts on the continent.  

Through renewed excavations and analysis of newly-recovered as well as 

previously excavated lithic assemblages from the Gademotta Formation, this 

dissertation investigates the technological behavior and broader evolutionary 

context across the time period when the first H. sapiens emerged in the wider rift 

valley in Ethiopia.  

Results from new geochronological analyses establish the age of the 

lowermost cultural horizon at Gademotta as 279 ± 2 ka, making it the oldest 

precisely dated Middle Stone Age (MSA) site. Lithic analysis reveals that 

Middle Pleistocene hominin populations at Gademotta incorporated into their 

technological repertoire the earliest stone-tipped projectile weapons as early as 

>279 ka. Comparisons of technological behavior of later Middle Pleistocene 

with earlier Upper Pleistocene hominin populations in the Ethiopian rift valley 

indicate that they possessed substantially comparable capacities for behavioral 

variability. Data from the present study strongly support the existence of 

relatively stable adaptations across the period when H. sapiens emerged in 

northeast Africa. Behavioral patterns considered as indications of “modernity” 

have much older roots than previously realized.  
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CHAPTER ONE 

1. INTRODUCTION 

Human evolution is a record of the rise of some hominin species and 

the vanishing of others. The earlier part of human evolution was an 

exclusively African phenomenon. To wit, the emergence, evolution, and 

disappearance of the earliest hominin species were geographically entirely 

limited to the African continent (e.g., Brunet et al. 2002; Pickford & Senut 

2001; Haile-Selassie et al. 2004b; White et al. 1994, 2006, 2009; M. Leakey 

et al. 1995, 1998; Dart 1925; Broom 1938; Johanson et al. 1978; Asfaw et 

al. 1999; Suwa et al. 1997; L. Leakey 1959; L. Leakey et al. 1964; Berger et 

al. 2010). Only after the emergence of the genus Homo did hominins 

disperse out of Africa, for the first time ca. 1.8 million years ago (Gabunia 

et al. 2000; Vekua et al. 2002; Rightmire 1991). The last major species-

level hominin dispersal from Africa with far-reaching repercussions had to 

wait until Homo sapiens appeared much later on the continent.  

Homo sapiens first appeared in east Africa between ca. 200 ka and 

150 ka (McDougall et al. 2005; Clark et al. 2003; White et al. 2003). In the 

periods that followed, this species spread throughout the continent and 

beyond, absorbing and replacing residual populations of the same genus.  

The rise of the earliest H. sapiens in Africa is supported by fossil as 

well as genetic evidence (e.g., McDougall et al. 2005; White et al. 2003; 
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Ingman et al. 2000; Yotova et al. 2007). Controversies do exist, however, 

about the behavior of the earliest H. sapiens. In general, these contentions 

pertain to the timing, pace, and trajectory of the transition to behaviors 

accepted as modern. There is also a vibrant debate on whether these 

behaviors are exclusive to H. sapiens or were shared with other 

penecontemporaneous, non-modern populations/species (e.g., Klein 2000, 

2008; Mellars 2006; McBrearty & Brooks 2000; Nowell 2010; d’Errico 

2003; Hovers & Belfer-Cohen 2006; Zilhão et al. 2010; Henshilwood & 

Marean 2003; Shea 2011).  

There are several models of how these behaviors arose and which 

particular traits should be the focus of attention. However, testing these 

models has proved to be virtually inapplicable mainly due to the vague 

definition of what lines of behavior should be considered modern (Nowell 

2010; d’Errico & Stringer 2011; Shea 2011). As a result, most mainstream 

researchers still have more differences than consensus on issues surrounding 

modern behavior. From a methodological perspective, an increasing number 

of works currently stress the need for the development of models that can 

link causes to outcomes (Stringer 2007; Richerson et al. 2009; Powell et al. 

2009; Shea 2011; d’Errico & Stringer 2011), as opposed to far more 

abundant examples of scrutinizing what has been termed the “laundry list” 

of “traits of modernity”. The empirical reality of testing some of the most 

appealing models (e.g., Powell et al. 2009; Hovers & Belfer-Cohen 2006; 

Shea 2011) continues to be challenging, as archaeological contexts suitable 
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for such investigations are extremely rare on the African continent.  

The prime focus of this dissertation is understanding the behavioral 

context across the evolutionary juncture when the first H. sapiens appeared 

in the broader rift valley in Ethiopia (i.e. the Omo Valley, the Main 

Ethiopian Rift and the Afar Rift). Through the analysis of lithic assemblages 

from sites in the Gademotta Fm., this dissertation elucidates the behavioral 

capacities of hominin populations that inhabited the same geographic region 

at different periods in the later Middle Pleistocene and earlier Upper 

Pleistocene.  

This research capitalizes on the location of the major study area at the 

heart of the Main Ethiopian Rift: the Gademotta Ridge (Fig. 1.1). This 

region is almost equidistant between the sites of Herto and Omo Kibish that 

have yielded the earliest known fossils of H. sapiens dated to 160-154 ka 

and ~195 ka, respectively (Clark et al. 2003; White et al. 2003; McDougall 

et al. 2005, 2008; F. Brown et al. 2012; Fig. 1.1a). In addition, the region 

has several features that make it ideal to investigate behavioral variability 

throughout the Middle- and Upper Pleistocene. The Gademotta Ridge hosts 

a continuous cultural sequence that spans much of the MSA (Wendorf & 

Schild 1974; Wendorf et al. 1975; Laury & Albritton 1975), as well as high-

confidence geochronological framework (Morgan & Renne 2008; Sahle et 

al. 2013). The locality has also benefited from extensive raw material 

sourcing and paleoenvironmental studies (Vogel et al. 2006; Negash et al. 

2010; Basell 2008; see also Trauth et al. 2010; Blome et al. 2012; F. Brown 
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et al. 2009). The combination of these different features provides an ideal 

setting to investigate questions of the dynamics of behavioral capacities 

across the later Middle- and earlier Upper Pleistocene.  

Some of the oft-cited models for modern human origins propose that a 

population ancestral to modern humans expanded in Africa and beyond 

between 350 ka and 250 ka (Lahr & Foley 1998; see also Weaver 2012). 

These models propose that cost-benefit ratios in adaptive strategies are 

affected by population changes that occur as a result of environmental and 

behavioral changes (Lahr & Foley 1998: 147-148). If this assumption holds, 

then variability in technology ought to follow the change in population 

density and ecological carrying capacity.  

More favorable paleoenvironmental conditions in the broader 

Gademotta region (Basell 2008; Trauth et al. 2010; Vogel 2006; Negash et 

al. 2010) may have created an ecological equilibrium in which increased 

population sizes and greater behavioral variability could be supported across 

the later Middle Pleistocene. If variability in technological attributes such as 

metric properties of cores, flakes, and retouched tools in later Middle 

Pleistocene occupations at Gademotta is comparable with that from later 

periods, then the assumption that the area supported large populations as 

early as >279 ka is supported. These populations may later have expanded 

and created the demographic ground for the emergence of the first H. 

sapiens in the region. 

Notwithstanding the lack of a widely employed lithic analysis 
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framework for the region, the mosaic of techno-typological variability in 

MSA sites in east Africa (e.g., Clark 1988; Shea 2008; Yellen et al. 2005; 

Wendorf & Schild 1974, 1993) contrasts with comparable records elsewhere 

on the continent which represent “sharp breaks and horizon-wide 

transformations” (Lombard 2012: 142; Clark 1988). The implications of 

such a unique mosaic of variability among east African MSA sites for 

understanding the evolutionary context of early humans is clearly far-

reaching. Finer-grained intra- and inter-regional comparisons of 

technological variability across the MSA allow the testing of the suggested 

evolution of the earliest humans in this part of Africa in an evolutionarily 

stable context. Through a direct comparison of technological behavior 

witnessed in sites within the wider rift valley in Ethiopia, this dissertation 

seeks to test more closely whether increased behavioral variability evolved 

in contexts of stable adaptation. In so doing, the dissertation will contribute 

additional data to an accumulating body of knowledge on the evolutionary 

dynamics that marked the wider period across the appearance of our species 

(Shea 2008; Basell 2008; Blome et al. 2012; Beyene 2010; Yellen et al. 

2005; Brooks et al. 2006; Tryon 2008). 

Specifically, this research employs renewed geochronological and 

stratigraphic investigations in order to attain a finer-grained 

contextualization of later Middle and earlier Upper Pleistocene occupations 

within the Gademotta type-site. Renewed excavations have enabled the 

recovery of assemblages from selected cultural horizons using modern 
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excavation techniques and procedures. Assemblages are studied with more 

emphasis on technological, rather than typological, variability while 

accurate spatial data are used to test hypotheses developed out of previous 

research in the area. Through the incorporation of nuanced approaches to 

lithic analysis this dissertation investigates how the technological behaviors 

of hominin populations that inhabited the Gademotta Ridge compare during 

different periods across the later Middle and earlier Upper Pleistocene. 

Specifically, the assessment of evidence for projectile technology and the 

analysis of “costs” and “benefits” in flake production in sites spanning a 

broad timescale are used as proxies for deciphering the behavioral capacities 

of hominin populations from as early as >279 ka versus those close to 105 

ka.  

Finally, in an attempt to obtain a more comprehensive, regional 

picture of behavioral variability across the critical period when the first H. 

sapiens emerged in the rift valley in Ethiopia, this dissertation employs data 

that I collected from sites within the wider region under discussion. 

Comparisons of patterns of technological behavior among sites from 

different regions and periods in the later Middle- and earlier Upper 

Pleistocene contribute to understanding better the behavioral context across 

the period when early H. sapiens appeared within the same rift system 

(McDougall et al. 2005; Shea 2008; Clark et al. 2003; White et al. 2003; 

Yellen et al. 2005; Haile-Selassie et al. 2004a). Results are used to evaluate 

closely the strength of previous suggestions that typological similarities 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 7 

within and across MSA assemblages spanning wide temporal and spatial 

ranges in northeast Africa may represent relatively stable adaptations during 

the period of our species’ evolutionary origin (Clark 1988; Shea 2008; 

Yellen et al. 2005, see also Basell 2008; Blome et al. 2012).  

 

Figure 1.1 A map of Ethiopia showing (a) important MSA sites in the rift, 

(b) deposit classes in the Gademotta area and its environs (After 

Dainelli et al. 2001) 
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1.1 Behavioral context across the emergence of Homo sapiens: 

Approaches to the later Middle- and earlier Upper Pleistocene 

archaeology of sub-Saharan Africa 

 
Is the emergence of anatomical modernity associated with behavioral 

changes that have marked the later Middle- and Upper Pleistocene? Did the 

earliest members of our species possess behavioral capacities that were 

dramatically distinct from their immediate predecessors, their 

contemporaries, and/or their Upper Pleistocene descendents? These are 

questions that have not been fully addressed as yet.  

The dearth of securely dated sites that incorporate the anatomical and 

behavioral transitions across the latter part of the Middle Pleistocene (e.g., 

Clark 1982, 1988; Tryon & McBrearty 2002), together with the presence of 

widely divergent opinions among researchers (e.g., Klein 2000, 2008; 

Mellars 2006; McBrearty & Brooks 2000; Hovers & Belfer-Cohen 2006; 

Zilhão et al. 2010), continues to hinder investigations surrounding the 

above-stated questions. As a result, much of our current understanding of 

the evolutionary context across the emergence of our species relies on data 

from the more extensively researched southern African record. The best-

described sites in the southern African record are largely limited to Upper 

Pleistocene contexts. Also, there has been a strong emphasis on the 

“behavioral modernity” approach to studying evidence from these contexts 

(e.g., K. Brown et al. 2009, 2012; d’Errico 2007; Lombard 2007; Wadley et 

al. 2009, 2011; Henshilwood et al. 2011; Marean et al. 2007). In 
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comparison, the limited number of sites in east Africa document records 

from older contexts with superior geochronological resolution and skeletal 

evidence for the earliest H. sapiens  (McDougall et al. 2005; Shea 2008; 

Clark et al. 2003; White et al. 2003; Yellen et al. 2005; Brooks et al. 2006; 

Haile-Selassie et al. 2004a; Deino & McBrearty 2002; McBrearty & Tryon 

2006; Wendorf & Schild 1974; Morgan & Renne 2008; Sahle et al. 2013). 

The older age of these localities, coupled with research approaches 

commonly employed in the region (Shea 2012), often results in the 

construction of a framework whereby most of the localities are depicted as 

having little or nothing to contribute to the debates surrounding the 

emergence of complex behaviors.  

Current inferences about the emergence of complex behaviors rely 

heavily on the search for traits which most researchers take to demonstrate 

behavioral modernity (McBrearty & Brooks 2000 and references therein; 

Henshilwood & Marean 2003; Nowell 2010; Klein 2000, 2008). These are 

traits that mostly marked the Middle-to-Upper Paleolithic transition in 

Europe, which also coincided with the arrival of H. sapiens in the continent 

and the subsequent disappearance of Neanderthals (Marean & Assefa 1999; 

Bar-Yosef 1998; Conard & Bolus 2003). Inherent limitations of such an 

approach are manifested in its failure to create the desired links between 

behavioral and biological modernity in Europe (e.g., Zilhão 2006, 2011; 

Caron et al. 2011; d’Errico 2003; Mellars 2005; d’Errico & Stringer 2011). 

In Africa, these links are even more tenuous, often marked with the 
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“precocious” appearance of many of the hallmarks of sophisticated human 

behavior (e.g., Barham 2002; Marean et al. 2007; K. Brown et al. 2009; 

Henshilwood et al. 2011).  

Within the behavioral modernity approach, interpretations about the 

when and how of the emergence of the capacity for sophisticated behavior 

among our ancestors remain widely divergent. For some (Klein 1999, 2000, 

2008; Klein & Edgar 2002; Mellars 1996, 2007) this was a relatively swift 

phenomenon that started only after ca. 50 ka. Other scholars (e.g., Gamble 

2007; McBrearty & Brooks 2000; Deacon & Wurz 2001) perceive this as a 

process with much older roots, involving an accumulation of traits over 

time. Even within the latter, long-chronology perspective, mainstream 

researchers do not agree on whether or how the emergence of skeletally 

fully modern humans is related to behavioral patterns in the African Middle 

Pleistocene. Detailed reviews of the different views on the timing, mode and 

tempo of the evolution of modern human behavior have been widely 

published elsewhere (e.g., d’Errico & Stringer 2011; Nowell 2010; Shea 

2011; Hovers & Belfer-Cohen 2006; McBrearty & Brooks 2000; 

Henshilwood & Marean 2003) and are beyond the scope of this dissertation. 

Instead, a brief summary is provided here in order to illustrate the inherent 

problems with the behavioral modernity approach and reinforce the 

necessity of more nuanced approaches. 

Proponents of the short-chronology paradigm contend that Upper 

Pleistocene neural shifts brought about the capacity among H. sapiens to 
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exhibit “modern behavior” (Klein 1999, 2000, 2008; Klein & Edgar 2002). 

According to these researchers, the most important selective advantage of 

such mutations was the capacity for language, and this likely emerged 

among H. sapiens ca. 50 ka in Africa (Klein 2000: 27). However, the 

detection in Neanderthal DNA of the FOXP2 gene (Krause et al. 2007) 

responsible for the purported later emergence of the capacity for language 

(Klein & Edgar 2002) has posed a critical challenge to this argument, 

suggesting that fully syntactical language may have evolved much earlier 

among the common ancestor of H. sapiens and Neanderthals.  

The long-chronology view to behavioral modernity, mainly 

represented by McBrearty and Brooks’s (2000) seminal paper, contends that 

such behavioral capacity was present among Middle Pleistocene hominins 

of Africa. According to this perspective, modern behavior is the result of 

better accretion of traits involving multi-directional trajectories that varied 

across space and time (McBrearty & Brooks 2000: 456). Critiques of this 

approach include: i) it fails to set out clearly, what d’Errico (2003: 189) 

calls ““the criteria to find the criteria””. As a result, the approach provides a 

list of behavioral traits that mostly arise out of those developed for the 

European Upper Paleolithic record; ii) it incorporates a tacit assumption, by 

considering the capacity for behavioral modernity as a cumulative process 

with given first appearance datums, of a dichotomy into beginners and 

masters of modern behavior among H. sapiens. However, such distinctions 

in the manifestation of these behaviors by H. sapiens may equally be the 
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result of taphonomic and methodological biases (Shea 2011: 4-5; Shea 

2012). In other words, an apparent accumulation of traits may be the result 

better evidence from more recent periods (i.e. due to a lesser degree of 

geological attrition) and may not be a true representation of differences in 

the capacities for behavioral modernity once this had fully evolved among 

the African Middle Pleistocene H. sapiens.  

A more critical approach within the longer-chronology view has put 

forward certain criteria to sift out behaviors that carried symbolic meaning 

as more compelling indicators of complex cognitive abilities among modern 

humans (Henshilwood & Marean 2003). This view stresses that the 

behavioral modernity approach is inherently problematic, but contends that 

not all traits in this approach are to be discarded. Rather, certain traits reflect 

symbolically organized behavior and can thus adequately define modern 

behavior. The capacity for symbolically mediated behavior is reflected in 

the use of symbolic thoughts to organize behavior and should be 

recognizable in the archaeological record. The most common evidence for 

external symbolic storage includes art, ritualized burial/mortuary practice, 

personal ornamentation, and use of social space (Henshilwood & Marean 

2003: 635; Wadley 2001).  

Yet, this too has been criticized (Chase 2003; Davidson 2003; Shea 

2011) as merely a search for theoretically more convincing lines of evidence 

toward the same end – showing the presence of behavioral modernity. 

In general, traits that are commonly considered indicative of modern 
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behavior include personal adornment, ritualized disposal of the dead, long-

distance trade/exchange, exploitation of distant and/or difficult-to-procure 

resources, structured living space, composite tools, projectile technology, 

and regional technological styles (McBrearty & Brooks 2000 and references 

therein). Most of these traits are inferred from artifactual traces in the 

archaeological record, such as engraved ochre/eggshell (Henshilwood et al. 

2009; d’Errico et al. 2012; Texier et al. 2010); processed ochre 

(Henshilwood et al. 2011; Lombard 2007); perforated beads (e.g., Assefa et 

al. 2008; Bouzouggar et al. 2007); marine foods (Marean et al. 2007; Walter 

et al. 2000); grave goods/post-mortem manipulation of the dead (see 

McBrearty & Brooks 2000 for a review of claims); artifacts securely 

provenanced to distant sources (Merrick et al. 1994; Negash & Shackley 

2006; Negash et al. 2010, 2011). A number of other traits are theoretically 

symbolically mediated and sophisticated but cannot be identified in the 

archaeological record as they do not leave material traces (Wurz 2012). 

Therefore, our perception of the capacity of hominin populations for what 

are taken as sophisticated behaviors relies on what traits we can infer from 

the archaeological record.  

The conundrums of the behavioral modernity approach are larger and 

more complicated than has been summarized here. Yet, alternative 

approaches that attempt to provide nuanced theoretical and methodological 

grounds for the study of the behavioral capacities of our species have been 

slow to emerge. This has long deterred archaeologists from looking for 
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Afrocentric interpretations for African contexts (Shea 2011). As a result 

there is now an even longer list of the supposed hallmarks of behavioral 

modernity (see Nowell 2010 for a recent review) than there was only a little 

over a decade ago (cf. McBrearty & Brooks 2000). Furthermore, these 

criteria continue to be forced upon the African behavioral record although 

they derive from models developed decades ago for much younger and more 

geographically restricted European contexts.  

A plethora of evidence is now showing that most of the traits in the 

behavioral modernity checklist first originated in Africa (e.g., Marean et al. 

2007; Henshilwood et al. 2011; K. Brown et al. 2009; Bouzouggar et al. 

2007; Lombard & Phillipson 2010; Wadley et al. 2009). Some researchers, 

however, continue to term these behaviors as precocious or dismiss them as 

outliers. The entire trait-list-based approach proves problematic and has to 

be discarded altogether (Shea 2011). Unfortunately Paleolithic scholars have 

still not replaced the behavioral modernity paradigm with an understanding 

of what other currencies of behavior should measure human uniqueness. In 

his comment to the assessment of models for modern behavior by 

Henshilwood and Marean (2003), Davidson (2003: 638) warns us that 

searching for traces of behavior that are still dependent on our 

understanding of communications as evidenced in much later periods can be 

deeply methodologically flawed and inherently biased. The danger such an 

undertaking presents is that in the search for such behavioral traces we may 

be missing other lines of evidence for possible symbolic communications 
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(see also d’Errico & Stringer 2011: 1061; Shea 2011: 5, 10-11).  

Perhaps the shortcomings of the behavioral modernity approach 

explain the apparent disconnect between the behavioral evidence in southern 

and eastern Africa. Despite the dramatic fossil evidence of H. sapiens at 

localities such as Omo Kibish, Herto, or Aduma in the Ethiopian rift, these 

sites bear barely any instance of the types of behavioral attributes widely 

highlighted in the southern African record. This incongruence is even more 

puzzling considering the notable absence of fossil evidence to assert the 

presence of H. sapiens even in the younger southern African record (Shea 

2008; Clark et al. 2003; Yellen et al. 2005; Brooks et al. 2006; Marean et al. 

2007; Herries 2011; see Feathers 2002; Groves & Throne 2000 for 

discussion on the ages and taxonomic affinities of the Klasies River 

remains). Differential preservation and the nature of sites in these regions 

are admittedly possible reasons. But this does not seem to answer the 

magnitude of the difference between behavioral evidence deriving from the 

two regions.  Perhaps such evidence is not visible in the eastern African 

sites in forms we are expecting to see, rather than being absent altogether 

(Barham & Mitchell 2008: 257). Added to the spectacular preservation of 

non-lithic cultural evidence in the many coastal and near-coastal cave sites 

in South Africa is the advantage of greater research focus the period has 

received in this region. This introduces the issue of sampling as yet another 

important factor for the greater representation of the non-lithic evidence 

mostly interpreted as indicative of sophisticated behavior (Shea 2012). Such 
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disparity in the regional records of the evidence is what seems to have 

created the difference in the interpretation of behaviors across the period of 

our species’ origin.   

The question we should be asking ourselves, then, is why are we 

bound to this demonstrably problematic approach of behavioral modernity? 

Why, in the face of an accumulation of evidence from different regions on 

the continent, are we limited to reporting first appearance datums of certain 

behavioral patterns than investigate wider contexts that contribute to the 

development of sub-regional and regional pictures of the evolutionary 

dynamics marking the critical period in question (Lombard 2012)? As I 

have briefly summarized, the present paradigms cannot explain, in 

particular, the absence in east Africa of the widely accepted markers of 

modern behavior in the fashion documented in sites in southern and 

northern Africa. In other words, the apparent differences between later 

Middle Pleistocene hominin behaviors from eastern versus southern and 

north Africa can equally be the result of differences in the methods of 

interpretation of the archaeological records rather than a product of the 

records themselves (Shea 2012). In fact, as will be argued in the final 

chapters of this dissertation, there are several lines of evidence that make a 

strong case for the presence of behaviors among the later Middle 

Pleistocene denizens of the Gademotta and Herto regions that can be 

securely considered modern (Clark et al. 2003; Beyene 2010; Sahle & 

Beyene forthcoming; Shea 2011; Yellen et al. 2005). However, rather than 
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fitting the evidence into the trait list of modern behavior, a more meaningful 

analysis of the behavioral context in which these traits emerged will be 

provided here. 

A further problem in the behavioral modernity approach relates to the 

definition of modern. If we support the view that modern behaviors are 

exclusive to H. sapiens, even within Africa, then many sites that have 

produced evidence of behavioral attributes referred to as modern could be 

questioned. This is largely because of the virtual absence of skeletal 

evidence to support the presence of H. sapiens, for instance, in many of the 

sites in southern Africa. Grand generalizations are often made a priori about 

the makers of material cultures that reflect behavioral modernity being H. 

sapiens. Such generalizations prove to be “untested, and . . . unnecessary” 

(Tryon 2011: 23), in particular as most views now favor the decoupling of 

behavioral and anatomical modernity (e.g., Nowell 2010 and references 

therein; Zilhão 2011; Caron et al. 2011; Hovers & Belfer-Cohen 2006). 

Despite the near unanimous acceptance of the many flaws of the 

behavioral modernity approach, the practicality of discarding it proves 

difficult. Are there other alternative approaches to studying the behaviors of 

the earliest H. sapiens and, for that matter, their immediate predecessors and 

contemporaries? A recent critique by Shea (2011) represents an attempt to 

call for the total abandonment of the behavioral modernity approach. In this 

thorough reappraisal of the behavioral modernity concept, Shea (2011) not 

only depicts the ineptness of this approach, but also proposes an alternative 
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approach as a better way to explain the behavioral context across the period 

immediately before and after the emergence of H. sapiens.  

The behavioral variability approach, in particular to the study of the 

behavioral capacities of later Middle- and earlier Upper Pleistocene H. 

sapiens in Africa, is not necessarily a new one. Minichillo’s (2005) 

dissertation, which reviews widely published interpretations on the behavior 

of MSA and LSA humans in the Western Cape Province of South Africa, 

indicates that the behavioral modernity approach has a number of 

deficiencies. In particular, Minichillo (2005) notes that the behavioral 

modernity approach fails to adequately explain the actual behavioral 

capacities of humans that occupied the same region during different periods. 

Refuting former conclusions of Klein (1999), which favored the presence of 

differential cognitive abilities between MSA and LSA populations in the 

Cape, Minichillo (2005: 239-240) views the behavioral modernity concept 

in light of what is called phenotypic plasticity – the ability to respond 

rapidly to certain ecological/cultural changes. Interestingly, he details that 

this can be expressed technologically through a noticeable increase in the 

variability of tool forms and can only be explained in the ecological/cultural 

context from which the particular finds derive. In his analysis of the Kibish 

assemblages, found in association with fossils of the earliest H. sapiens, 

Shea (2008) shows us that the measurement of flake cutting edge and metric 

variation in flake striking platform can be applied to infer costs and benefits 

reflected in the technological behavior of later Middle- and earlier Upper 
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Pleistocene hominin populations.  

Unlike behavioral modernity, behavioral variability is a characteristic 

of all humans, as well as other species, and does not necessarily follow a 

diachronic trend. In addition, behavioral variability is shared by all 

hominins, can be expressed quantitatively, and has reversible trends (Shea 

2011: table 1). While the identification of evidence of sophisticated 

behavior is important in itself, it does not lend itself to inferences that allow 

regional comparisons and broader pictures of human evolution (Shea 2011, 

2012; Lombard 2012).  

In this dissertation, the behavioral variability approach is employed to 

investigate the behavioral context across the period when H. sapiens 

appeared. Specifically, I will show that with the incorporation of additional 

techniques of studying technological capabilities of later Middle- and earlier 

Upper Pleistocene hominin populations, we can better explain behavioral 

patterns. Using data from multiple well-dated MSA occupations in the 

Gademotta Fm. (Wendorf & Schild 1974; Morgan & Renne 2008; Sahle et 

al. 2013) and other MSA sites in the wider rift valley in Ethiopia that have 

yielded fossils of the first H. sapiens (McDougall et al. 2005; Shea 2008; 

White et al. 2003; Clark et al. 2003; Beyene 2010; Haile-Selassie et al. 

2004a; Yellen et al. 2005), I compare costs/benefits in flake production and 

the capacity for projectile technology. This allows me to explore behavioral 

variability among hominin populations from geographically and temporally 

discrete sites. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 20 

 

CHAPTER TWO 

2. THE MIDDLE STONE AGE 

The MSA represents a cultural phase between the Earlier and Later 

Stone Ages (ESA/LSA) and spans the period from >279 ka to ca. 40 ka 

(Sahle et al. 2013; Morgan & Renne 2008; Dieno & McBrearty 2002; 

McBrearty & Brooks 2000). Defined on the basis of techno-typological 

attributes, the MSA is commonly characterized by the presence of prepared 

core/flake technologies and blade tools, which stand in contrast to the large 

cutting tools of the preceding long-lived Acheulean tradition (Goodwin & 

Van Riet Lowe 1929; Deacon and Deacon 1999).  

As opposed to long-held views, the transition from the ESA to the 

MSA has over the last few decades proved to be complex and gradual. At 

several sites in east and southern Africa, tool forms usually associated with 

the Acheulean tradition, and/or regarded as transitional (i.e. the 

Sangoan/Fauresmith), co-occur with those considered distinctly MSA, and 

vice versa (McBrearty & Tryon 2006; Tryon & McBrearty 2002, 2006; 

Johnson & McBrearty 2009; Porat et al. 2010; Van Peer et al. 2003; Shea 

2008; Clark et al. 2003; Walter et al. 2000; Bruggemann et al. 2004). Some 

of these contexts have yielded skeletal evidence for the earliest H. sapiens, 

thereby introducing the need for a reconsideration of the attribution of 

certain technologies to a given taxon  (Clark et al. 2003; Shea 2008). 

Similarly, the MSA-LSA transition occurred across a long period of time 
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and differs within and across regions. The earliest MSA-LSA transition in 

east Africa has been reported from the site of Enkapune Ya Muto in Kenya 

at >46 ka (Ambrose 1998) while surviving MSA elements in other sites 

have been documented from much later periods  (e.g. Gossa et al. 2012; 

Willoughby 2007; McBrearty & Brooks 2000). 

An exhaustive review of the MSA is beyond the scope of this 

dissertation. Instead, a summary of major MSA sites in sub-Saharan Africa 

that span the period of interest here (i.e. ca. 280 ka to ~80 ka) will be 

provided. More detailed descriptions are provided particularly on the MSA 

of the Gademotta Fm., the Kibish Fm. and the Middle Awash region as 

assemblages from these contexts make up the central part of this 

dissertation.  

 

2.1 An overview of the MSA of sub-Saharan Africa prior to 80 ka 

Evidence for the earliest MSA comes from sites in the Gademotta and 

Kapthurin Fms. (Sahle et al. 2013; Morgan & Renne 2008; Wendorf & 

Schild 1974; Dieno & McBrearty 2002; Tryon & McBrearty 2002, 2006; 

McBrearty & Tryon 2006). In the Kapthurin Fm. of the Kenyan rift, the 

earliest MSA occurs in interstratification with large bifaces of the 

Acheulean tradition in contexts dated to >284 ± 12 ka (Tryon & McBrearty 

2002, McBrearty & Tryon 2006). At the Koimilot (GnJh-17; GnJi-74) and 

Rorop Lingop (GnJi-28) localities in the Kapthurin Fm. the early MSA is 

characterized by the Levallois technique and rare unretouched pointed 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 22 

pieces (Tryon & McBrearty 2006: 503; McBrearty & Tryon 2006). The 

presence of the Levallois method as a common component of the Acheulean 

and early MSA in the Kapthurin Fm. indicates that the transition to the 

MSA was multi-directional, time-transgressive and gradual (McBrearty & 

Tryon 2006). In addition, the earliest MSA in the Kapthurin Fm. provides 

evidence of sophisticated behavior in the form of grindstones and pigments, 

which occur at site GnJh-15 in contexts >284 ka (McBrearty & Tryon 

2006). 

Like Kapthurin, the early MSA in the Sai Island of the Sudanese Nile 

Valley and at Abdur in the Eritrean Red Sea coast show an interstratification 

with industries considered Acheulean, at 223-152 ka and ~125 ka, 

respectively (Van Peer et al. 2003; Walter et al. 2000; Bruggemann et al. 

2004). At site 8-B-11 in the Sai Island, the early MSA is depicted as 

containing the Sangoan transitional industry. Moreover, evidence for the 

processing of pigment (i.e. red and yellow ochre) and plant foods is 

documented from the same context (Van Peer et al. 2003). At Abdur, the 

MSA contains flakes and blades made on high-quality silicates such as 

obsidian (Walter et al. 2000; Bruggemann et al. 2004). The Red Sea coastal 

site shows some of the earliest evidence for marine resource exploitation 

(Walter et al. 2000; cf. Marean et al. 2007). The Kapedo Tuff archaeological 

sites of the Kenyan rift provide another instance where a typical MSA 

assemblage is found in association with a pick, in a context dated to 

between 135 ka and 123 ka (Tryon et al. 2008). Results of a comparison of 
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the Kapedo Tuff MSA with other sites in Kenya and southern Ethiopia 

suggest that the availability of lithic raw material is an important factor 

affecting variability defined on the basis of typology (Tryon et al. 2008).  

At Lake Eyasi, in Tanzania, a broadly constrained (>132-82 ka) MSA 

sequence contains simple flakes associated with an archaic H. sapiens 

cranium (Domínguez-Rodrigo et al. 2008). The provenience of the cranial 

fragments is not conclusive. If these remains are as young as 132-82 ka, the 

contexts marks the latest instance where primitive morphological features 

among populations of our lineage continued (Domínguez-Rodrigo et al. 

2008). 

The early MSA record of the southern African region is rich, but often 

characterized by the lack of high-confidence dates and secure contextual 

data especially for fossil hominins (see Herries 2011; Lombard 2012 for 

recent reviews). An important early MSA site-complex in this region is 

found at Pinnacle Point, close to the southern tip of the continent. The early 

MSA at Cave 13B is marked by evidence of probable heat-treatment of 

stone materials, exploitation of marine resources, and the use of pigment 

from as early as ca. 164 ka (K. Brown et al. 2009; Marean et al. 2007; see 

also Watts 2010). At Blombos Cave, evidence of symbolic behavior 

includes incised and engraved ochre pieces dating to ca. 100-75 ka, and an 

ochre mixing kit ~100 ka old (Henshilwood et al. 2009, 2011). The MSA at 

Klasies River, in the Eastern Cape province of South Africa, documents a 

sequence spanning the period between ca. 115 ka and 60 ka  (Wurz 2002). 
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The Klasies River MSA depicts the flexible subsistence strategies of 

inhabitants of the area, as inferred from widely studied faunal and lithic 

assemblages (Wurz 2002; Klein & Cruz-Uribe 1996; Milo 1998; Klein & 

Edgar 2002; cf. Minichillo 2005). Evidence of a deliberately engraved ochre 

pebble has been recovered from a context dated to 100-85 ka (d’Errico et al. 

2012). In southeastern Africa, the Mozambican sites of Mikuyu and Ngalue 

provide evidence that MSA populations processed and consumed a wide 

range of starchy plant foods as early as ~105 ka (Mercader et al. 2008; 

Mercader 2009). Elsewhere in central Africa, evidence for ochre use comes 

from a broadly bracketed context at Twin Rivers, Zambia, dating to between 

400 ka and 141 ka (Barham 2002). However, like most early MSA sites in 

the region (e.g. Grün et al. 1996; 2003; see also Herries 2011), the dates for 

this site are less secure. This stands in sharp contrast with some of the 

aforementioned east African sites where the MSA in its classical sense 

occurs in securely dated and older contexts. 

 

2.1.1 The MSA of the Gademotta Fm.  

The archaeological site-complex of the Gademotta Fm. was 

discovered and excavated four decades ago by a team of researchers led by 

Fred Wendorf of the Southern Methodist University (Wendorf & Schild 

1974). Located in the central sector of the Main Ethiopian Rift (Fig. 1.1a), 

this open-air site complex represents a setting with few parallels in Africa. 

The interstratified tephra layers in this formation provide superior 
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stratigraphic controls for occupations spanning much of the MSA (Sahle et 

al. 2013; Morgan & Renne 2008; Fig. 2.1).  

The Gademotta Fm. is located on a high ridge, which once made up a 

portion of an ancient, collapsed caldera west of the modern Lake Ziway 

(Laury & Albritton 1975; Fig. 1.1b). This formation rests unconformably 

over the volcanics of the Kulkuletti Fm. dated to ca. 1.3 million years ago 

(Vogel et al. 2006). Two major archaeological localities are known from 

previous investigations in the Gademotta Fm. These are the Gademotta 

type-site (hereafter Gademotta) and the Kulkuletti area. These two major 

foci of initial phase of research are located ca. 2.5 km apart along a 

southwest-northeast trending transect (Fig. 1.1b). 

Previous research in the Gademotta Fm. determined the ages of two 

major tephra beds using the 40K/40Ar methods. These initial dating results 

suggested an age of 181 ± 6 ka (Wendorf et al. 1975) for the lowermost 

bedded-tuff of Unit 10; subsequent age estimations were reported on this 

tephra as 235 ± 5 ka (Wendorf et al. 1994; Fig. 2.1). Unit D represents a 

lapilli ash bed deposited during the filling of a large erosion feature that 

removed most of Unit 12 in the Kulkuletti area. This ash was dated at 149 ± 

13 ka (Wendorf et al. 1975; Fig. 2.1). A recent 39Ar/40Ar geochronology 

revised the ages of Unit 10 to 276 ± 4 ka and Unit D to 183 ± 10 ka 

(Morgan & Renne 2008). Similar analysis on the uppermost Unit 15 ash 

could not yield a secure age (Morgan & Renne 2008). However, a recent 

geochemical correlation shows that the composition of this ash matches with 
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the Aliyo Tuff in the Kibish Fm., which is dated to 104 ± 1 ka (F. Brown et 

al. 2012). 

 

 

Figure 2.1 Stratigraphic sections of the cultural sequence and placement of 

previously excavated sites (in green) in the Gademotta Fm. 

(After Laury & Albritton 1975) 

 

 

 

Major archaeological excavations conducted in 1972 both at 

Gademotta and Kulkuletti recovered a large collection of distinctly MSA 

assemblages from several sites. Most notable among these previously 
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excavated sites are ETH-72-1 and 72-9 in the Kulkuletti area, and ETH-72-

8B, 72-7B and 72-6 in the Gademotta area (Wendorf & Schild 1974; Fig. 

2.1). The high-quality obsidian quarried from a source near Kulkuletti, 

known as Worja, (Vogel et al. 2006) makes up the sole stone raw material 

used for the manufacturing of artifacts in all occupations (Wendorf & Schild 

1974). 

The availability of radiometric dates that extend into the Middle 

Pleistocene, together with the rich assemblages and spatial features, had 

long made the occupation at ETH-72-8B particularly dominant in 

discussions surrounding the beginning of the MSA (Wendorf & Schild 

1974, 1993; McBrearty & Brooks 2000; Shea 2008; Yellen et al. 2005). 

This site represents an occupation in the Unit 9 paleosol, marking the 

lowermost MSA occurrence in the sequence. Based on physical correlations, 

this site was suggested to underlie Unit 10 (Laury & Albritton 1975; Fig. 

2.1). As opposed to most other early MSA sites (e.g. McBrearty & Tryon 

2006; Van Peer et al. 2003; Shea 2008; Clark et al. 2003; Bruggemann et al. 

2004; Tryon et al. 2008), the earliest MSA at ETH-72-8B is characterized 

by the absence of any trace of an Acheulean occupation and abundant 

retouched tool forms attesting enormous techno-typological variability 

(Wendorf & Schild 1974; Wendorf et al. 1975).  

ETH-72-8B yielded over 9,000 artifacts, nearly half of which is debris 

(Wendorf & Schild 1974: 84). Debitage, particularly primary flakes, and 

retouched tools dominate the non-debris assemblage while the Levallois 
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technique is well represented (Wendorf & Schild 1974: table 1, 2). In 

addition, the horizontal distribution pattern of artifacts at ETH-72-8B, 

specifically the rapid thinning out of artifact density from the center of the 

excavation, was interpreted as conforming to a roughly circular depression 

interpreted as marking the floor of a shelter (Wendorf & Schild 1974: 151). 

The suggested presence of a prehistoric “hut” needs further investigation 

and, if supported, would constitute some of the earliest known evidence for 

a housing feature, with implications for sophisticated behavior among 

Middle Pleistocene hominin populations (McBrearty & Brooks 2000). 

Stratigraphically below ETH-72-8B, near the base of the Unit 9 

paleosol (Fig. 1.2), small handaxes were recovered in surface contexts. This 

may be suggestive of a possible final Acheulean occurrence, although no 

cultural horizon attributed to this tradition was discovered in situ (Wendorf 

& Schild 1974: 48; Wendorf et al. 1975; Laury & Albritton 1975). 

Sites ETH-72-7B and 72-1 both represent occupations in the Unit 11 

paleosol and are bracketed between Units 10 and 12 (Laury & Albritton 

1975: table 1; Fig. 2.1). An age of 183 ka on the Unit D tuff at Kulkuletti 

provided the most recent upper-capping date for these occupations (Morgan 

& Renne 2008; Fig. 2.1). Assemblages from these occupations, like those 

from ETH-72-8B, have been depicted as exhibiting tremendous 

technological variability that contrasts with substantially younger MSA sites 

in the region, such as Kibish and Herto (Wendorf & Schild 1974, 1993; 

Schild & Wendorf 2005; Shea 2008; Clark et al. 2003). In addition, 
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substantial similarity between attributes of assemblages from these younger 

sites in the Gademotta Fm. and the ETH-72-8B assemblage has been 

presented as indicative of a technological “stasis” spanning a period of 

almost 100 ka (Wendorf & Schild 1974; Morgan & Renne 2008). 

Site ETH-72-6 and 72-9 were excavated into the Unit 13 paleosol at 

Gademotta and Kulkuletti, respectively (Wendorf & Schild 1974; Laury & 

Albritton 1975: table 1; Fig 2.1). The recent correlative age for the Unit 15 

ash (F. Brown et al. 2012) provides a minimum age for these sites. 

Typological and technological patterns of assemblages from these sites are 

generally similar to the older sites described above, such that retouched 

tools and primary flakes make up the largest proportion of the assemblages 

and the Levallois method is an important component (Wendorf & Schild 

1974). 

A particular horizon that preserved fossilized bones was identified 

below the Unit 9 paleosol. This horizon has yielded numerous faunal 

remains, including a hippopotamus upper molar, an equid tibia (possibly 

Dolichohippus grevyi), and dental and hemi-mandibular remains of 

wildebeest (possibly Connochaetes taurinus), hartebeest (possibly 

Alcelaphus buselaphus), and large- and medium-size antelopes (Gautier 

1974). Although this fossiliferous channel fill has been tentatively 

considered contemporaneous with the occupation at ETH-72-8B, its 

stratigraphic relationship could not be confidently established (Wendorf & 

Schld 1974).  As a result, the assumption that faunal remains recovered from 
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this secondary deposit possibly represent prey hunted by inhabitants of the 

ETH-72-8B occupation (Gautier 1974) must be treated with caution.  

 

2.1.2 The MSA of the Kibish Fm. 

The Kibish Fm. is situated in the Omo Valley of the rift valley in 

Ethiopia (Fig. 1.1a) and contains sites named KHS, AHS and BNS (Shea 

2008; Fig. 2.2). The first two sites are dated to ca. 196 ± 2 ka, while the 

minimum age for BNS is 104 ± 1 ka (McDougall et al. 2005, 2008; F. 

Brown et al. 2012; Fig. 2.2). Fossils of H. sapiens recovered from this site 

complex include the Omo I and Omo II crania, and additional post-cranial 

elements at KHS and AHS (McDougall et al. 2005; Pearson et al. 2008). 

Despite missing facial parts, Omo I has been shown to fall well within the 

range of H. sapiens while the Omo II cranium represents an “archaic”, near-

modern individual (Day & Stringer 1991; See also Rightmire 2008; 

Tattersall & Schwartz 2008).  

The non-debris assemblages from the Kibish sites are dominated by 

debitage. Retouched tools generally make up a small proportion of the 

whole assemblage. In addition, large cutting tools and bifaces were 

recovered from both in situ and surface contexts, although they are more 

common in the latter (Shea 2008). Fine-grained silicates, mainly chert, make 

up the most commonly utilized raw material type in the Kibish assemblages 

(Shea 2008: 467). Extensive refitting and analysis of spatial data provide 

rare insights into the natural and cultural site-formation processes witnessed 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 31 

at BNS and KHS in the Kibish Fm. (Sisk & Shea 2008). Similarly, 

comparisons of patterns of cutting edge production and core exploitation at 

AHS, KHS and BNS suggest that denizens of these sites exhibited 

substantially similar technological behavior (Shea 2008). Certain patterns of 

behavior, such as the potentially non-utilitarian transport of opal, can be 

interpreted as indicative of the capacity of the Kibish early H. sapiens 

populations for symbolic behavior, if one is to employ commonly applied 

approaches (Shea 2011: 10-11). 

 

 

Figure 2.2 A composite stratigraphy of the Kibish Fm. (After F. Brown et al. 

2012) 
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2.1.3 The MSA at Herto and Aduma, Middle Awash area 

The sites of Herto and Aduma in the Middle Awash study area of the 

Afar Rift, northeastern Ethiopia (Figs. 1.1a, 2.3), represent MSA 

assemblages recovered from contexts that have yielded some of the earliest 

and best-known H. s fossils (Clark et al. 2003; White et al. 2003; Yellen et 

al 2005; Haile-Selassie et al. 2004a).  

The Herto MSA assemblages represent both excavated and surface-

collected materials that manifestly derive from the hominin-bearing 

sediments of the Upper Herto Member that are tightly constrained between 

160 ± 2 ka and 154 ± 7 ka (Clark et al. 2003; Fig. 2.3). Major discoveries at 

Herto include three well-preserved hominin crania (including one juvenile) 

of H. sapiens that represent a new paleosubspecies named idaltu (White et 

al. 2003). 

In general, the Herto assemblages are primarily composed of flake 

debitage and retouched tools, including those produced with the Levallois 

technique. Most of the retouched tools occur in the forms of scrapers and 

points, in addition to retouched blades. Large bifaces also make up a 

significant portion of the assemblages (Clark et al. 2003: 750-751). Fine-

grained basalt was used as the predominant raw material type for both flakes 

and tools. Points and blades were, in contrast, more often made on obsidian 

(Clark et al. 2003: 750-751, supp. info.; Beyene 2010: 46). 

Little has been published on the inferred patterns of behavior among 

the Herto humans (Clark et al. 2003; Beyene 2010), although independent 
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arrays of evidence from Herto can be used to make a strong case for the 

capacity of the earliest human populations for sophisticated behavior (Sahle 

& Beyene forthcoming). All three of the Herto crania witness bone surface 

modifications interpreted as evidence for “post-mortem manipulation and 

curation of human remains as part of mortuary practices” (Clark et al. 2003: 

751). Not far away, within the Middle Awash region, defleshing cutmarks 

on the Bodo skull have provided even earlier evidence of a special post-

mortem treatment, rather than cannibalization, by a non-sapiens species of 

the genus Homo at ~600 ka (White 2000; Clark et al. 1994). Herto provides 

much stronger evidence in that the cutmarks appear on all of the crania 

discovered at the site (Clark et al. 2003: 751). In addition, only cranial 

elements were found at Herto in a context that also preserved such delicate 

fauna as the cranium of a juvenile individual. This absence of postcrania is, 

hence, provocative as it may indicate curation of specific parts of the dead, 

most plausibly for similar ritual purposes to those documented 

ethnographically (Beyene 2010: 51; Sahle & Beyene forthcoming; Clark et 

al. 2003; White 2000). 

Another line of independent evidence suggestive of the capacities of 

the Herto people for complex behavior comes from a recent geochemical 

provenancing work in the wider Afar Rift (Negash et al. 2011). This study 

confirms the procurement of obsidian raw material by the Herto humans 

from a remote source 289 km distant (Negash et al. 2011). This is 

particularly interesting because these people had a number of other available 
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obsidian sources within much closer range (Negash et al. 2011). This work 

could not confirm whether this source was directly quarried and transported 

by the Herto humans or whether a long-distance obsidian exchange was 

involved (Negash et al. 2011: 671). Yet one can conclude that these people 

possessed knowledge and control of resources over a wider geographic 

range and/or embraced the practice of some form of social interaction. It is 

possible that trade/exchange of resources with other groups from these 

distant sources is responsible for the evident pattern (Sahle & Beyene 

forthcoming).  

The Aduma assemblage from ADU-VP-1/3 represents surface 

collections from the Ardu B sediments, with an estimated age of 100-80 ka 

(Yellen et al. 2005: 35; Fig. 2.3). The discovery of the most complete of the 

Aduma partial crania from freshly eroding sediments (Haile-Selassie et al. 

2004a) necessitated the collection of securely associated archaeological 

material from this locality (Yellen et al. 2005: 41, 49). Craniometric and 

morphological analyses put all of the Aduma Upper Pleistocene crania 

within the range of anatomically-modern H. sapiens (Haile-Selassie et al. 

2004a). 

As at Herto, the Aduma artifacts are made mainly on basalt whereas 

cryptocrystalline raw materials (primarily obsidian and chert) are similarly 

well represented. Analysis of the Aduma assemblage shows that inhabitants 

of the area responded to dynamic ecological conditions through flexible 

behavior, such as subsistence scheduling and technological variability, in a 
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fashion common among contemporary hunter-gatherers (Yellen et al. 2005; 

Brooks et al. 2006).  

Sites at Herto and Aduma show a mix of technological affinities that 

reflect the complexities of the ESA-to-MSA and MSA-to-LSA transitions. 

The Herto sites mentioned above provide one of the last appearance datums 

for the Acheulean tradition in Africa, at 154 ka (Clark et al. 2003; cf. 

Bruggemann et al. 2004; Tryon et al.  2008). Certain sites in the younger 

sections of the Ardu sequence at Aduma (Fig. 2.3) show that the transition 

to the LSA was neither straightforward nor swift (Brooks et al. 2002). 

 

 

Figure 2.3 A map showing the relative locations and composite 

stratigraphies of Herto and Aduma, Middle Awash (after Yellen 

et al. 2005; Clark et al. 2003) 
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2.2 Summary and Discussion 

The general picture depicted here shows that the MSA prior to ca. 80 

ka encompasses evidence not only for the earliest H. sapiens, but also 

patterns of behavior commonly associated with the latter part of this time 

period. In addition, the record shows that the Acheulean-MSA transition 

was a complex, diachronous and gradual process (Fig. 2.4). On the one 

hand, evidence for behaviors commonly considered quintessential to 

humans occur sporadically and “precociously” across a wide range of time 

and space. On the other, certain techno-typological attributes that define the 

preceding Acheulean tradition persist past the early-late MSA divide. An 

exception to this general picture comes from the Gademotta Fm. where even 

the world’s earliest MSA occupation does not retain elements attributable to 

the transition from the Acheulean period (Wendorf & Schild 1974; Wendorf 

et al. 1975; Fig. 2.4). As such the pattern attested by the Gademotta early 

MSA sites supports current perceptions that the Acheulean-to-MSA 

transition was complex. More importantly, it invites questions as to why 

and/or how such a pattern emerged at Gademotta as early as >279 ka while 

other later Middle Pleistocene sites in the region exhibit patterns quite 

different from it (Fig. 2.4). Answering these questions requires a closer 

examination of inferred patterns of technological behavior and the testing of 

models of modern human origins. 
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Figure 2.4 A schematic representation of the cultural stratigraphic succession 

of some of the best-known early MSA sites from east Africa 
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CHAPTER THREE 

3. MATERIALS AND METHODS  

3.1 Excavation and lithic analysis 

3.1.1 Excavation 
 

Renewed archaeological research in the Gademotta area undertaken 

for this dissertation started with an extensive field reconnaissance of the 

wider region in 2010, almost four decades after the discovery and initial 

investigation of the site complex (Wendorf & Schild 1974). Detailed 

topographic maps, figures, sketches and geographic coordinates from the 

existing literature were used to relocate previous excavations, geological 

trenches and tephra sampling localities (Wendorf & Schild 1974; Laury & 

Albritton 1975; Wendorf et al. 1975; Morgan & Renne 2008: data rep.). In 

particular, site ETH-72-6 of Wendorf and Schild (1974: fig. 36, 37) retains 

standing sections that are still visible and easily identifiable due to the 

unique shape of a relatively large (33m2) excavation that indicates little sign 

of backfill. This excavation was used as a reference to georeference a more 

comprehensive map of the Gademotta type locality. Once the maps 

produced by Wendorf and Schild (1974) were rectified, it was possible to 

relocate the other less visible sites, such as ETH-72-8B. Total stations 

(Leica TC307 and Leica Builder 505) borrowed from the Department of 

Archaeology, University of Cape Town (UCT), were used to collect spatial 
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data. A series of datums were also established to enable detailed mapping.  

Excavations were made in selected localities of the Gademotta type 

area. Major excavations included GDM7, which was excavated adjacent to 

site ETH-72-8B, and GDM 10, which lies adjacent to ETH-72-7B (Fig. 4.1; 

Wendorf & Schild 1974). Grids were set in meters, using the total station, 

with the smallest grid unit a 1 x 1m square. Excavations followed artificially 

established spits of 10cm, as there are no fine natural stratigraphic 

distinctions to follow. Excavations were conducted primarily using trowels. 

Broad-tipped chisels were occasionally used to dig carefully into 

consolidated sediments. All excavated sediments were screened through a 

5mm wire mesh. Artifacts recovered from the screening activities were 

bagged into their respective squares and levels. 

Each artifact recovered in situ that was >2cm in any dimension was 

mapped using total station and individually numbered and bagged. Each 

mapped artifact was identified with specimen type and individual field ID. 

Artifacts too small to plot were picked and bagged into the respective levels 

from which they derive. Point data collected using the total station were 

plotted in ArcMap 10.1 (ESRI) and NewPlot (McPherron & Dibble 2002) to 

provide high-precision relational data, such as artifact distribution and 

orientation patterns. 
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3.1.2 Lithic Analysis 
 

There is no single, consistently employed framework of lithic analysis 

for the MSA of east Africa (cf. Clark et al. 2003; Yellen et al. 2005; Shea 

2008; Wendorf & Schild 1974; Tryon et al. 2005; Van Peer et al. 2003). For 

the present study, the framework described by Shea (2008: appendix) in his 

analysis of the Kibish MSA assemblages has been largely adopted due to its 

comprehensiveness and Kibish’s temporal and geographical proximity to 

Gademotta. A detailed description of this framework is provided in 

Appendix-1 of this dissertation.  

Detailed morphometric and technological analyses of flakes and cores 

can help us understand how ancient hominins incorporated costs and 

benefits as part of their technological adaptive strategies (e.g., Braun et al. 

2005, 2008; Potts 1998; Shea 2008). Previous studies of variation in 

assemblages from sites in the Gademotta Fm. relied mainly upon European-

style typological analysis (Wendorf & Schild 1974; Bordes 1961). These 

studies suggested that technological strategies remained largely constant 

from the oldest through younger MSA occupations (Wendorf & Schild 

1974). In contrast, the technological analysis component of this research 

measured two major aspects of behavior pertaining to stone tool production, 

use and discard. These are: i) the analysis of cost and benefit of stone tool 

production; ii) the assessment of projectile technologies.  
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3.1.2.1 Cost/Benefit Analysis 

The analysis of costs/benefits in technological adaptations mainly 

encompasses the measurement of curation levels (sensu Shott 1989, 1996) 

as inferred from the dimensions of flake cutting edge, and core-exploitation 

strategies.  

A comparison of costs and benefits in assemblages allows the 

measurement of how different populations responded to diverse ecological 

contingencies (e.g., Blumenschine et al. 2008; Bousman 2005). This in turn 

can be used to compare the capacities for behavioral variability among 

hominin populations using the most abundant, and most durable of 

archaeological evidence – stone tools (Shea 2011).  

For this dissertation research, I collected whole-flake measurements 

on assemblages from sites in the Gademotta type area, as well as those from 

the Herto and Aduma MSA sites (Fig.1.1). All whole-flake measurements 

on the previously excavated Gademotta assemblage from ETH-72-6, as well 

as on assemblages from the Middle Awash MSA sites of Herto and Aduma, 

were conducted under a laboratory permit from the Ethiopian Authority for 

Research and Conservation of Cultural Heritage (ARCCH) and the consent 

of active research permit holders. Whole-flake raw metric data on the Kibish 

assemblages were generously provided by Dr. John J. Shea. All metric 

measurements were collected using a digital caliper accurate to 0.01mm and 

following protocols detailed in Appendix-1. A discussion of the conceptual 

basis of measurements is provided in Chapter Six of this dissertation. 
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3.1.2.2 Macro- and microscopic analysis of pointed pieces 

The presence of projectile weaponry in the archaeological record is 

often considered as a major innovation with important evolutionary 

advantages, especially with regards to subsistence strategies and 

dietary/niche breadth (e.g., Churchill 1993; O’Connell 2006). A confident 

identification of the earliest projectile technologies in the Paleolithic record 

has long proved difficult (Thieme 1997; Shea 1988, 2006; Brooks et al. 

2006; Holdaway 1989). On the basis of morphological-metrical attributes 

and use traces, “complex” projectiles are suggested to have originated 

among H. sapiens in Africa, sometime between 100 and 50 ka (e.g., Shea 

2006, 2009; Shea & Sisk 2010; Brooks et al. 2006; Lombard & Phillipson 

2010).  

Pointed artifacts made on obsidian in the Gademotta Fm. bear 

morphological features, such as small size and diagnostic impact fractures, 

often associated with the use of projectile weapons. However, these features 

can only inform on the likelihood of pointed pieces having been used as 

projectile weapons (Sisk & Shea 2011). None of these morphological 

criteria alone can speak to the actual use of a tool as a projectile. A more 

confident assessment must rely on the application of various independent 

approaches to the identification of projectile weaponry (Lombard 2011).  

This research employed three independent approaches in order to 

assess whether any of the Gademotta pointed artifacts were actually used as 

projectile weapons. These methods included: i) the identification and 
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measurement of impact-induced microfracture features on the surface of 

pointed pieces to determine the velocity of the weapon and impact delivery 

mechanism (Hutchings 1997, 2011); ii) the documentation of edge-damage 

patterns on the pointed pieces (Fischer et al. 1984; Bergman & Newcomer 

1983; Sano 2009; Lombard 2005); iii) an assessment of the suitability of the 

morphology of a pointed piece for hafting and use as the tip of projectile 

weapons (Shea 2006; Shea & Sisk 2010; Sisk & Shea 2011).   

The study of microfracture features involved multiple stages of 

analysis: i) the determination of the material properties of the obsidian used 

by the Gademotta hominins; ii) the microscopic investigation of fracture 

fronts on pointed pieces; iii) the capturing of fracture features in 

photomicrographs; iv) the measurement of dimensions of fracture feature; v) 

the calculation of the instantaneous fracture velocity.  

Fracture features, such as Wallner lines, appear on the fracture surface 

of fine-grained materials as characteristic undulations resulting from the 

interaction of the propagating crack with shear waves emanating from the 

crack force (Wallner 1939; Ravi-Chandar 2004). Wallner lines are created 

when the normally curved crack-front propagation is perturbed by intrinsic 

imperfections or terminal fracture, thereby creating shear waves radiating at 

a given velocity on the local fracture surface. It is possible to determine the 

crack velocity from the geometric configuration of these lines (Ravi-

Chandar 2004: 98). Fracture wings (hereafter FW) represent special types of 

microscopic fracture features and form from similar mechanisms. FWs are 
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“V” shaped, with their wings opening up toward the direction of fracture 

propagation and attenuating relatively rapidly than do Wallner lines (Fig. 

5.2). A detailed review of related literature on the type, nature and use of 

these microfracture features to determine the speed and direction of impacts 

producing them is provided by Hutchings (1997, 1999, 2011). 

Dr. Braun and I collected obsidian samples (n=32) from the Worja 

source near Kulkuletti to facilitate the study of material properties of the 

obsidian used by the Gademotta hominins (Vogel et al. 2006; Negash et al. 

2010). I trimmed raw material samples into slabs of 5cm thickness each 

using a lapidary saw. Two of these samples were first brought to UCT for 

initial tests. A comprehensive material analysis of the Worja obsidian was 

conducted in the National Museum of Ethiopia (NME), Addis Ababa, using 

portable ultrasonic transducers (NDT James Instruments MK IV) 

(Appendix-3).  

Young’s Modulus (E) and Poisson’s Ratio (v) for the Worja obsidian 

were determined by the pulse method using the ultrasonic transducer. These 

properties were used to calculate the Modulus of Rigidity (G). The 

distortional wave velocity (C2) of the Worja obsidian was then computed 

from G and the material density. Material density (ρ) of the Worja obsidian 

was measured in the Concrete Materials and Structural Integrity Research 

Unit (CoMSIRU) of the Department of Civil Engineering, UCT.  

The following formulae detailed by Hutchings (2011) were used in the 

calculation of the physical properties of the Worja obsidian:  
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C2 = (G/ρ)1/2   and  G = E/2(1+v) 
 

Individual readings of E and v for the Worja obsidian are provided in 

Appendix-3. Averages of the E and v values were used to calculate C2 and 

G. Since readings for E were collected on the ultrasonic transducers as 

pound/inch2 (psi), values were converted into Newton/m2 (pa [pascal]) (cf. 

Hutchings 2011: table 1).  

Velocity dependent fracture surface features were documented on 

bifacial and unifacial points from several sites in the Gademotta Fm. using a 

Keyence VHX-600 (3CCD) digital microscope, with a magnification power 

of 20 to 200x, housed in the NME, Addis Ababa. Initial attempts to identify 

microfracture features were inconclusive as a leading expert, Dr. W. Karl 

Hutchings of Thompson Rivers University, could not confidently confirm 

the presence of these features from photomicrographs of certain features on 

pointed artifacts from the Gademotta. As a result, the next phase of this 

research involved Dr. Hutchings visiting Addis Ababa to examine the 

pointed artifacts in order to identify microfracture features. As explained in 

Chapter Five, I subsequently conducted more thorough microfracture 

analyses, using the same digital microscope in the same laboratory in Addis 

Ababa. The measurement of relevant dimensions of microfracture features 

was carried out by Dr. Hutchings, and independently by myself.  

Instantaneous fracture velocity (C) is calculated from the angles of 

FWs once they have been positively identified. FWs are microfracture 
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ripples and can appear in two forms: curved and plain. Computations for 

FWs with plane crack fronts are conducted using the formula that the ratio 

of C to C2 is equal to the cosine of the semi-angle of divergence of an FW. 

Mathematically, C/C2= cos(ψ/2); where ψ is the angle of divergence of an 

FW. FWs with curved crack fronts will, in addition, include a measurement 

of the angle of curvature (Hutchings 2011: 1740, fig 6b). 

Photomicrographs of FWs were collected using a microscope housed 

in the NME, Addis Ababa, first by Dr. Hutchings, and later independently 

by myself. Measurements of angle of divergence were conducted on the 

digital versions of photomicrographs using the software on the Keyence 

microscope, and independently using the MB Ruler 4.0 (http://markus-

bader.de/MB-Ruler) ImageJ 1.440 (http://imagej.nih.gov/ij) and external 

software.  

Detailed documentation of edge-damage patterns was conducted on 

pointed pieces that have yielded measurable microfracture features. 

Macroscopic damage patterns were carefully analyzed on these pointed 

pieces to link damage patterns with the most probable tool function. 

Identification of edge damage was made largely using the naked eye, and 

seldom with the help of a hand lens and the microscope, providing 

magnifications of up to 20x. Damage patterns were classified using Sano’s 

(2009) comprehensive methodological summary. 

Tip Cross Section Area (TCSA) and -Perimeter (TCSP) were 

calculated following methods detailed by Shea (2006), and Sisk and Shea 
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(2011). For TCSP, values from the more restrictive measure of triangular 

(rather than rhomboidal) cross-section were used, as recommended by Sisk 

and Shea (2011: 3). Results were compared with values for assemblages 

from experimental spear points replicated from Levantine Middle 

Paleolithic assemblages (Shea et al. 2001). Dr. Shea provided raw metric 

data for these experimental spear points. Also, comparison was conducted 

with an archaeological assemblage of MSA pointed pieces from the Klasies 

River main site (KRM), South Africa. Raw metric data for the Klasies River 

main site point assemblage were generously provided by Dr. Sarah Wurz. 

 

3.2 Dating and stratigraphy  

3.2.1 40Ar/39Ar geochronology 

Renewed archaeological field research I conducted in 2010, alongside 

Dr. Braun, enabled me to find out that the actual stratigraphic relationship 

between the lowermost dated tepha bed of Unit 10 and the ETH-72-8B 

occupation horizon projected to underlie this tuff (Wendorf & Schild 1974; 

Laury & Albritton 1975; Morgan & Renne 2008) was not clear. Tephra 

sample for the most recent 40Ar/39Ar geochronology was collected from 

hundreds of meters away from the site, where the Unit 10 tepra crops out 

prominently (Morgan & Renne 2008: data rep.). As a result, despite 

reporting a much older age for Unit 10, this work depended on previous 

stratigraphic correlations that put site ETH-72-8B under the dated tuff 

(Morgan & Renne 2008; Laury & Albritton 1975).  
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In 2011, with the help of Dr. Balemwal Atnafu of the Department of 

Earth Sciences, Addis Ababa University (AAU), I collected several tephra 

samples and excavated geological trenches across a large area in the type-

site. This undertaking included the sampling of datable material from 

immediately above site ETH-72-8B (Wendorf & Schild 1974). In addition, a 

localized ash layer that had never before been dated was sampled from Unit 

12 of Laury and Albritton (1975) in order to obtain a better minimum age 

for occupations between this unit and Unit 10 (Wendorf & Schild 1974; 

Laury & Albritton 1975; cf. Morgan & Renne 2008).  

Early in 2012, I conducted an additional brief geological fieldwork 

alongside Dr. Leah E. Morgan of the Scottish Universities Environmental 

Research Centre and sampled the uppermost Unit 15 ash (Wendorf & Schild 

1974). Analysis of this ash is currently in progress.  

40Ar/39Ar analyses of the Unit 10 and the Unit 12 tephra samples were 

conducted by Dr. Morgan. In addition to sampling, I conducted initial 

sample preparation in the Sedimentology Lab at AAU, where I washed, 

dried and sieved bulk samples. I then took all samples to Vrije Universiteit, 

Amsterdam, where they were prepared further. Both preparation and 

measurement followed the procedures and protocols for previous analyses 

from the same area (Morgan & Renne 2008). Samples were irradiated in 

aluminum disks with the Alder Creek sanidine standard (Nomade et al. 

2005) using the Oregon State (USA) TRIGA reactor housed in the Cd-

shielded CLICIT facility. Samples were degassed using a Synrad CO2 laser; 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 49 

resulting gas was purified using SAES getters and a Polycold cryocooler. 

Argon isotopic relative abundances were measured by peak hopping on a 

Mass Analyzer Products 215-50 mass spectrometer. Backgrounds were 

measured between every one to two analyses; corrections were made via 

long-term integration of background measurements. Mass discrimination was 

measured with an air pipette analysis between every ca four to 14 analyses; 

corrections were made by a long-term average and standard deviation of air 

pipette analysis. Production ratios used follow Renne et al. (2005).  Decay 

constants and standard ages follow Renne et al. (2011); both these and 

values computed using Steiger and Jäger (1977) and Renne et al. (1998) are 

provided in Appendix-2, also to facilitate comparison with previously 

reported data (Morgan & Renne 2008: data rep.). Calculations were made 

using the spreadsheet provided by Renne et al. (2011). Uncertainties 

reported in text and figures are provided at the 1σ level and include full 

analytical and systematic uncertainties; reported values are standard error of 

the mean (SEM), except where the Mean Square of Weighted Deviates 

(MSWD) >1, where uncertainties are equal to (SEM)*

€ 

MSWD . 

In addition to results of new analyses reported here, ages published for 

some sites have been revised using the new standards published by Renne et 

al. (2011). These revisions are made in order to maintain methodological 

consistency in the discussion of ages of sites that are important for 

discussions in this dissertation. Accordingly, the revised age for the Aliyo 

Tuff in the Kibish Fm. was made using the published Ar data (McDougall et 
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al. 2005, 2008) and a spreadsheet provided by Renne et al. (2011).  The 

revised age for the Kapthurin Fm. was made in two steps – first, by separate 

raw data provided by Dr. Deino (Morgan & Renne 2008) that allowed 

calculation of an inverse isochron; second, by converting that age into the 

revised value by using the spreadsheet from Renne et al. (2011). 

 

3.2.2 Stratigraphy 

Stratigraphic investigations were conducted across the entire 

Gademotta type-site. The field aspects of these studies focused on the 

identification of marker beds and sediment features in the multiple units of 

the type-site and involved expert assistance from Dr. Atnafu. The 

monotonous succession of sediments of Units 9 though 12 necessitated the 

digging of trenches across the area. Step-trenches of 1m width were opened 

in two major loci across the type-site in order to enable a comparison of the 

stratigraphic sequence closer to site ETH-72-8B and farther north where the 

Unit 10 ash forms a prominent bed. Additionally, a series of sediment 

samples were collected from these trenches and analyzed in the 

sedimentological lab at AAU. Section drawings were finally developed in 

order to enable a holistic comparison of the sequence across space. 

Using results from the new 40Ar/39Ar geochronology, and additional 

field investigations, I developed a new understanding of the chrono-

stratigraphy of later Middle Pleistocene sections. This data allowed me to 

develop a chronological framework for the archaeological sites of the 
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Gademotta Fm. that were excavated by previous as well as renewed research 

(cf. Wendorf & Schild 1974; Wendorf et al. 1975, 1994; Laury & Albritton 

1975).  
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CHAPTER FOUR 

 
4. RENEWED RESEARCH IN THE GADEMOTTA FORMATION 

 
4.1 Renewed 40Ar/39Ar geochronology and the context of early MSA 

occupations at Gademotta 

The Unit 10 bedded-tuff is the most widespread tephra in the 

Gademotta Fm. and outcrops prominently in both the Gademotta and 

Kulkuletti areas (Laury & Albritton 1975). The most recent 

geochronological analysis of the Unit 10 ash yielded ages of 283 ± 4 ka* 

(sampled at Kulkuletti) and 279 ± 2 ka* (sampled at Gademotta) (Morgan & 

Renne 2008). (Unless otherwise noted, uncertainties are provided at 1σ here 

and throughout, excepting ages reported by Laury and Albritton [1975] for 

which confidence levels are not provided). Surveys I conducted with Dr. 

Braun in 2010 relocated the ETH-72-8B excavation in the Gademotta type 

area (Wendorf & Schild 1974; Laury & Albritton 1975; Fig. 4.1) and 

identified that Unit 10 is not easily recognized near the ETH-72-8B 

archaeological site. At ETH-72-8B there is a resistant ledge that extends 

across some 200m north of the site (Fig. 4.1). All along this resistant ledge 

the Unit 10 ash does not form a prominent outcrop. This is a sharp contrast 

to the ~60cm thick bed that Unit 10 forms some 400m farther north, from 

where samples for the most recent 40Ar/39Ar analysis were collected 

(Morgan & Renne 2008: data rep.; Fig. 4.1).  

                                                
*All ages marked by asterisks throughout this dissertation represent those recalculated from 

original publications using decay constants and standard ages of Renne et al. (2011). 
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The stratigraphic placement of site ETH-72-8B was previously based 

on a physical correlation of sediment successions from the southern part of 

the Gademotta region where the tuff is not easily visible with an area farther 

north where the Gademotta type section was developed (Laury & Albritton 

1975: 1005, fig. 9). However, the presence of abruptly changing 

geomorphological features and differential sedimentary representations 

across the type-site rendered this projection uncertain. A confident 

stratigraphic placement of ETH-72-8B consequently required independent 

40Ar/39Ar geochronology on datable separates sampled from directly above 

the occupation horizon represented by ETH-72-8B (Fig. 4.1). Tephra sample 

I collected from this unit was given a field ID of Unit 10_TB’.  

 

 

Figure 4.1 A digital terrain model of the Gademotta type area showing major 

excavations and tephra sampling localities 
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Analysis of the Unit 10_TB’ sample yielded an inverse isochron age 

of 275 ± 6 ka (Fig. 4.2a, b; Appendix-2). This result is analytically 

indistinguishable from previous results (i.e. 276 ± 4 ka; now recalculated 

using Renne et al.’s [2011] decay constants and age standards to 279 ± 2 

ka) for sample from Unit 10 (Morgan & Renne 2008). This reaffirms the 

age of the underlying sites of ETH-72-8B and GDM7 as 279 ± 2 ka. As 

reported in Sahle et al. (2013), ages for this oldest MSA occupation in the 

Gademotta Fm. do account for excess 40Ar that was trapped in sanidine 

crystals upon eruption, which has been assessed through the isochron 

method (Fig. 4.2a, b; Appendix-2). This makes the occupation horizon at 

ETH-72-8B the world’s oldest currently-known MSA occupation. Until 

now, an age of 287 ± 12 ka* for cultural horizons in the Kapthurin Fm. in 

Kenya has been widely cited as the oldest date for an MSA occurrence 

(Deino & McBrearty 2002). The application of similar isochron methods to 

the analysis of the Kapthurin samples shifts the age of 287 ± 12 ka* (Deino 

& McBrearty 2002) to 282 ± 20 ka*, making it substantially less precise 

than the age for the oldest MSA at Gademotta. 

The presence of a cemented ash layer in the uppermost parts of the 

Unit 12 bedded sandstone (Fig. 2.1) was reported in previous work 

(Wendorf & Schild 1974: fig 7). These tephra deposits occur in the form of 

localized bedded pumice pebbles directly overlain by a thin layer of fine 

ash sediments. 40Ar/39Ar analysis was conducted on samples I collected 

from the fine ash (Sample Unit12_T1s1) as well as pumice pebble deposits 
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(Sample Unit12_T1s2). These yielded analytically indistinguishable 

isochron ages of 270 ± 10 ka (for T1s1) and 252 ± 11 ka (for T1s2) (Fig. 

4.2c, d; Appendix-2). As these dates are analytically indistinguishable, and 

since the samples come from the same sub-unit, a combined analysis was 

conducted. This yielded an isochron age of 260 ± 7 ka as the age of the top 

layer of Unit 12 (Fig. 4.2c, d; Appendix-2). 

 

 

Figure 4.2 Graphs of relative probability and inverse isochron of single 

crystal total fusion analyses for sanidines for (a, b) sample Unit 

10_TB’, (c,d) combined results from samples T1s1, and T1s2 

(in red). Xenocrysts are shown in pink on the relative probability 

graphs (and are excluded from age calculations); they are not 

included on the inverse isochron graphs 
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Recent geochemical analysis has identified that the uppermost tephra 

bed in the Gademotta Fm. (Unit 15) correlates with the 105 ± 1 ka* Aliyo 

Tuff in the Kibish Fm. (F. Brown et al. 2012; Fig. 2.1, 4.1). Work is 

currently in progress to obtain direct and precise age constraints on Unit 15. 

A confident age attribution for this unit would provide a more secure 

minimum age estimate for occupation horizons represented by sites ETH-

72-6 and 72-9 within the Gademotta Fm. (Wendorf & Schild 1974; Laury & 

Albritton 1975). 

The stratigraphic aspects of this research focused on comparing the 

sequence near site ETH-72-8B with that farther north near where a previous 

study developed the type section for the Gademotta area (Laury & Albritton 

1975; Wendorf & Schild 1974). As mentioned earlier, the absence of a 

conspicuously outcropping Unit 10 ash layer south of a geomorphological 

feature described as Cut XII by Laury and Albritton (1975; Fig. 4.3) and the 

presence of differential sediment thickness/representation have complicated 

the interpretation of Gademotta sequence. Two major step-trenches, 1m 

wide and several meters high, were excavated into Units 9 through 12. 

Trench 1 was excavated into the portion of the type-site north of Cut XII 

where the Unit 10 and 12 ash beds are easily identifiable; Trench 2 was 

excavated south of Cut XII, closer to site ETH-72-8B (Fig. 4.3). 

As illustrated in the sections in Figure 4.3, there are noticeable 

differences in the thickness and magnitude of representation of sediments 

between the two parts of the Gademotta area. Sediments are the thickest just 
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north of Cut XII and abruptly thin out to the south (Fig. 4.3). Although 

positively identified, the Unit 12 bedded sandstone is notably thinner where 

Trench 2 is as compared to Trench 1. Moreover, the bedded tuffaceous 

pumice pebbles and the thin, fine ash layer that mark the top of this unit in 

Trench 1 are totally absent in Trench 2. Paleosol units 9, 11 and 13 are all 

represented in both sections, albeit with different thicknesses. The ~60 cm-

thick bedded ash of Unit 10 cannot be easily identified with the naked eye 

in Trench 2. At the top of Unit 9, where a Unit 10 equivalent sediment 

would be expected, a weathered sediment is deposited. The clay skins in 

this package of sediment make it hard to distinguish it from the underlying 

Unit 9 paleosol. However, abundant volcanic glasses can be easily 

identified in this sediment with the help of a hand lens. Further lab analyses 

of sediment samples collected from the different layers in the trenches 

prove that the sediment directly above the Unit 9 paleosol contains rich 

volcanic material and is different from the Unit 9 clayey soil and ashy 

colluvium sediments.  

Using the data from the new geochronological analyses and from the 

stratigraphic studies detailed above, a revised chrono-stratigraphic 

framework is provided in Figure 4.4. The earlier units of the Gademotta Fm 

(i.e. Units 1 through 8) are laterally discontinuous as they filled an irregular 

surface (Laury & Albritton 1975: 1003-1004). This has been noted in the 

Gademotta area where the Unit 9 paleosol near site ETH-72-8B rests 

directly on the Kulkuletti volcanics (see also the section for Trench 2 in 
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Fig. 4.3). Starting from the Unit 9 paleosol, all sediments are represented in 

both the Gademotta and Kulkuletti areas (Fig. 2.1), albeit in various degrees 

of prominence. The upper part of Unit 9 in the Gademotta area contains a 

rich cultural horizon represented by ETH-72-8B. In contrast, no cultural 

horizon has been identified in Unit 9 at Kulkuletti (Laury & Albritton 

1975). Unit 10 was deposited across the region and can be physically traced 

between Gademotta and Kulkuletti. However, for the few hundred meters 

south of Cut XII (Fig. 4.3) this unit does not represent a prominent ash bed 

as it does elsewhere in the Gademotta and Kulkuletti areas. Field 

observations and lab analyses confirm that despite its inconspicuous 

occurrence, the Unit 10 ash does overlie Unit 9 in the locality near site 

ETH-72-8B (Fig. 4.3, 4.4). This has been confirmed by independent 

geochronological analysis on a sample from directly above the 

archaeological horizon at ETH-72-8B. 

The bedded sandstone of Unit 12 is laterally continuous both in the 

Gademotta and Kulkuletti areas (Fig. 4.3, 4.4). In the area between site 

ETH-72-7B and Cut XII, in the Gademotta area, this unit contains pumice 

and ash sediments. In the Kulkuletti area, this unit is partly cut and filled by 

sediments that contain a lapilli ash named Unit D (Fig. 2.1). The cut and fill 

process at Kulkuletti took place once Unit 11 and Unit 12 were deposited 

(Laury & Albritton 1975). As a result, the recent age of 185 ± 5 ka* for 

Unit D (Morgan & Renne 2008) provided the minimum age for sites ETH-

72-7B and 72-1, which are excavated into the upper part of the Unit 11 
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paleosol at Gademotta and Kulkuletti, respectively. The new combined 

isochron age of 260 ± 7 ka reported here for the upper part of Unit 12 now 

provides a better minimum age for these cultural horizons in Unit 11 (Fig. 

4.4). 

 

 

Figure 4.3 A schematic representation of the Gademotta type-site showing 

major geological trenches and sequences 
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Figure 4.4 A composite, revised stratigraphy of the Gademotta Fm. 

Thickness of deposits is based on observations of the type section; 

the cut-and-fill in Unit 12 is projected from the section of the 

Kulkuletti area (cf. Fig. 2.1) 

 

 

 

4.2 Renewed excavations and analyses in the Gademotta type area 

Following the confident identification of the actual locations of 

previously excavated major sites in the Gademotta area, excavations were 

made in selected localities. Major excavations included GDM7 and GDM 

10, excavated adjacent to sites ETH-72-8B and 72-7B, respectively 

(Wendorf & Schild 1974; Fig. 4.1, 4.3).  
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4.2.1 GDM7 

GDM7 represents a 3 x 3m excavation adjoining, within less than a 

meter, the northwestern limits of ETH-72-8B (Fig. 4.1). This excavation 

was designed to recover an additional artifact assemblage using modern 

excavation techniques where stratigraphic details and artifact distribution 

patterns would be better documented (cf. Wendorf & Schild 1974). GDM7 

recovered a total of 4,909 artifacts (Table 4.1). The artifact-rich level is 

confined to a 20-30cm fine colluvium horizon at the base of this 70cm-deep 

excavation (Fig. 4.5).  

The non-debris (see Appendix-1 for a definition of debris) assemblage 

from GDM7 is dominated by debitage but also includes retouched tools – 

such as formal scrapers as well as unifacial and bifacial points (Table 4.1). 

Moreover, the Levallois technique is well represented (Fig 4.6). Blade 

production is exhibited in both the debitage as well as tool categories. Core 

types are generally similar to those documented for ETH-72-8B (Table 4.1). 

On average, GDM7 cores exhibit 4.90 flake scars and 2.35 removal 

surfaces. The average extent of retouch for the retouched tools is about 60% 

(i.e., 5/8th on an eight-point polar coordinate [Appendix-1]). 58.5% of tools 

in the GDM7 assemblage have more than half of their circumferences 

retouched. Of these, nearly 17% are wholly retouched. Table 4.3 provides a 

summary of artifact dimensions within each major category. 

A comparison of flake surface area-to-thickness ratio (FSA/T) in 

whole flakes versus that in retouched tools within a given assemblages has 
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been suggested as an additional tool for measuring the amount of reduction 

a given tool has experienced as a result of attrition from use as well as 

resharpening retouch (Shea 2008: 447). Flake surface area is calculated as 

the product of the technological length and midpoint width of a flake. The 

quotient of this value and the midpoint thickness of a flake provides an 

estimate of the amount of cutting edge a flake contains (Dibble 1997; Davis 

& Shea 1998). (A detailed discussion of this concept is presented in Chapter 

Six).  

Whole flakes in the GDM7 assemblage (n=54) yield a mean FSA/T 

value of 150.52 while for retouched tools (n=159) this is 135.75 (Table 4.3). 

The difference between these values is 14.77. Taking the FSA/T value as 

the amount of potential utility presented by the GDM7 whole flakes, one 

can obtain a quick estimate, from the difference in FSA-to-T ratios, of the 

amount of utility actually extracted from these assemblages. Retouched 

tools were, of course, produced from whole flakes. Assuming that these 

retouched tools entered the archaeological record when deemed exhausted, 

it appears that the utility extracted from the GDM7 tools is relatively small 

(cf., Shea 2008: 447). The result, therefore, can be used to infer the presence 

of low degrees of curation. More robust approaches to inferring the realized 

utility of a retouched tool require knowledge of the original dimension of 

the actual tools. In ethnographic contexts, this can be directly measured 

(Sahle et al. 2012; Shott & Weedman 2007). In the archaeological record, 

original tool dimensions must be inferred from the platform (e.g., Dibble 
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1995; Shott et al. 2000), and/or other morphometric attributes of the 

exhausted piece (e.g., Kuhn 1992; Clarkson 2002; Eren et al. 2005). 

Unfortunately, the morphometric approaches (i.e. geometric/volumetric 

indices) are usually applicable to certain tool forms, mostly unifacial end 

scrapers. These tool forms are very rare in the GDM7 assemblages. In 

addition, less than half of the GDM7 retouched tool assemblage retain their 

platforms (Table 4.3). 

Raw material exploitation at GDM7 proves to be by and large 

dominated by obsidian, which accounts for 95.6 % of the non-debris 

assemblage (Table 4.1). This clearly pertains to the availability of this high-

quality silicate rock at the Worja source, near Kulkuletti (Vogel et al. 2006; 

Negash et al. 2010). Rhyolite, which is more ubiquitously available at the 

base of gulleys near the site, represents the other raw material type exploited 

at GDM7, accounting for ca. 2.4% of the total non-debris assemblages. 

Other volcanics account for only about 2% of the total non-debris 

assemblages (Table 4.1).  

Cortical pieces in the GDM7 assemblage account for around 10% of 

the total assemblage. Out of the non-debris assemblages, around 32% retain 

cortex in various percentages. The most frequent cortex percentage both in 

the debris and non-debris assemblages is 31 to 50% (Appendix-1). Initial 

cortical flakes (>50% cortex) account only for about 4.6% of the debitage 

classes. However, judging from the abundance of debris and a relatively 

higher percentage of cortical pieces within the non-debris assemblage, it can 
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be concluded that there was initial core preparation activity at GDM7. This 

pattern is not surprising as the raw material source is only about 2.5 km 

away from the site.  

 

 

 

Figure 4.5 Stratigraphic profile of the western wall of the GDM7 excavation 
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Figure 4.6 Illustrations of selected artifacts from GDM7 [(a) bifacial point 

with fluted impact fractures on both proximal and distal tips, (b) 

awl, (c) denticulate, (d) unifacial foliate point with burin-like 

fracture on the disto-lateral tip, (e) single platform core, (f) 

discoidal core, (g) Levallois core], and GDM10 [(h) bifacial 

foliate point, (i) bifacial Levallois point, (j) prismatic bladelet 

core]. Artifact ‘e’ is made on rhyolite; all the rest are on obsidian 
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Table 4.1 GDM7 assemblage typology and raw material use  

Raw material  Typology Count % without 
   debris Obsidian Rhyolite Other 

CORE 

Bifacial chopper 
Discoid/Partial discoid 
Core scraper 
Levallois core 
Core on flake 
Core fragment 
Other core  
Subtotal  
 

RETOUCHED TOOL 

Point/triangular flake  
unifacial 
bifacial 

Scraper 
side 
convergent 
transverse 
double 

Awl/borer 
Denticulate 
Other retouched tool 
Subtotal 
 
DEBITAGE 

Cobble fragment 
Initial cortical flake 
Residual cortical flake 
Levallois flake 
Levallois blade 
Pseudo-Levallois point 
Prismatic blade 
Core-trimming element 
Biface-thinning flake 
Kombewa 
Angular fragment 
Non-cortical flake 
Split flake 
Snapped flake 
Subtotal 
 
DEBRIS 

HAMMERSTONE 

Grand Total 

 

1 
6 
3 
3 

19 
12 
16 
60 

 
 
 
 

15 
18 

 
41 
21 
26 
26 
2 
2 
8 

159 
 

 
4 

39 
114 
72 
15 
4 

23 
95 
42 
12 
93 

275 
13 
51 

852 
 
3837 

1 

4909 

 

0.09 
0.56 
0.28 
0.28 
1.77 
1.12 
1.49 
5.59 

 
 
 
 

1.4 
1.68 

 
3.82 
1.96 
2.42 
2.42 
0.19 
0.19 
0.75 

15.58 
 

 
0.37 
3.64 

10.63 
6.72 
1.4 

0.37 
2.14 
8.86 
3.92 
1.12 
8.67 

25.65 
1.21 
4.76 

79.47 
 
 

0.09 

100 

 

- 
6 
1 
3 

17 
11 
12 
50 

 
 
 
 

15 
18 

 
41 
21 
26 
26 
2 
2 
8 

159 
 

 
3 

37 
110 
71 
15 
4 

19 
95 
41 
11 
89 

274 
13 
51 

833 
 

3581 

- 

4623[94.1%] 

 

- 
- 
1 
- 
2 
1 
2 
6 
 
 
 
 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
0 
 

 
- 
1 
4 
- 
- 
- 
4 
- 
- 
1 
2 
- 
- 
- 

12 
 

256 

1 

275[5.6 %] 

 

1 
- 
1 
- 
- 
- 
2 
4 
 
 
 
 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
0 

 
 

1 
1 
- 
1 
- 
- 
- 
- 
1 
- 
2 
1 
- 
- 
7 
 
- 

- 

11[0.22 %] 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 67 

4.2.2 GDM10 

Excavation at GDM10 covered a 2 x 3m area and extended ETH-72-

7B northwards (Fig. 4.1). As in GDM7, this excavation was designed to 

recover assemblages from a previously documented archaeological horizon 

(cf. Wendorf & Schild 1974: 103). GDM10 was excavated into the resistant 

ledge formed by the bedded-sandstone layers of Unit 12 and the Unit 11 

paleosol, which overlie the Unit 10 bedded tuff (Fig. 4.3, 4.4). The GDM10 

excavation results in a total of 1,790 artifacts (Table 4.2). The artifact 

horizon is found in the upper parts of the Unit 11 paleosol. A few artifacts 

are also recovered from the lower layers of Unit 12; these are, however, 

indicated to have been probably reworked into this unit from the underlying 

Unit 11 (Laury & Albritton 1975). The highest concentration of artifacts is 

in levels “h” and “i” (i.e., 50cm to 70cm below the Unit 12-Unit 11 contact) 

(Fig. 4.7).  

The GDM10, non-debris assemblage is dominated by debitage, 

followed by a large number of retouched tools (cf. Table 4.1; Shea 2008). 

About half of the cores are partial discoids while the Levallois technique is 

represented by a single core. There is one single-platform pyramidal core 

that appears very similar to the bladelet cores noted from much younger 

sites elsewhere (Fig. 4.5j; cf. Gossa et al. 2012: fig. 4).  

GDM10 cores exhibit an average of 7.5 flake scars and 4.3 removal 

surfaces. The average extent of retouch for the retouched tools is 61% (i.e., 

5/8th on the eight-point coordinate [Appendix-1]). About 76.3% of tools in 
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the GDM7 assemblage have more than half of their circumferences 

retouched. Of these, about 15.3 % are wholly retouched. Table 4.3 provides 

a summary of artifact dimensions per category. 

FSA/T ratio for whole flakes and retouched tools in the GDM10 

assemblage are 197.95 and 114.08, respectively (Table 4.3). The difference 

between these two values, at 83.87, further substantiates the high retouch 

intensity inferred above from the coordinate-based invasiveness measure.  

Raw material use is almost entirely (>99.5%) limited to obsidian, the 

exception being 8 pieces of rhyolite debris (Table 4.2). About 22% of the 

total GDM10 assemblage retain cortical surface in various percentages. 

Within the non-debris assemblage, 23.5% of the artifacts have cortex. This 

probably has to do with the relatively more exhaustive flake utilization 

pattern observed from the relatively high retouch intensity and FSA/T ratio 

in the GDM10 assemblage.   

 

Figure 4.7 Stratigraphic profile of the western wall of the GDM10 

excavation. Yellow shade represents the richest artifact horizon  
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Table 4.2 GDM10 assemblage typology and raw material type  

Raw material Typology Count  % with    
    debris Obsidian Rhyolite Other 

CORE 
Bifacial chopper 
Discoid/Partial discoid 
Core scraper 
Levallois core 
Core on flake 
Core fragment 
Other core  
Subtotal 
 

RETOUCHED TOOL 
Point/triangular flake  

unifacial 
bifacial 

Scraper 
side 
convergent 
transverse 
double 

Awl/borer 
Denticulate 
Notched 
Other retouched tool 
Subtotal 

 
DEBITAGE 

Cobble fragment 
Initial cortical flake 
Residual cortical flake 
Levallois flake 
Levallois blade 
Pseudo-Levallois point 
Prismatic blade 
Core-trimming element 
Biface-thinning flake 
Kombewa 
Angular fragment 
Non-cortical flake 
Split flake 
Snapped flake 
Subtotal 
 

DEBRIS 
 
HAMMERSTONE 
 
Grand Total 

 
- 
4 
- 
1 
1 
- 
3 
9 
 
 
 

4 
6 
 

20 
5 
5 

12 
1 
3 
1 
2 

59 
 
 
- 
3 
6 

35 
6 
- 

27 
53 
21 
2 

23 
36 
2 

28 
242 

 
1481 

 
- 
 

1791 

 
- 

1.29 
- 

0.32 
0.32 

- 
0.97 
2.9 

 
 
 

1.29 
1.94 

 
6.45 
1.61 
1.61 
3.87 
0.32 
0.96 
0.32 
0.64 

19.03 
 
 
- 

0.97 
1.94 

11.29 
1.94 

- 
8.71 
17.1 
6.77 
0.64 
7.42 
11.6 
0.64 
9.03 

78.05 
 
 
 
- 
 

100 

 
- 
4 
- 
1 
1 
- 
2 
8 
 
 
 

4 
6 
 

20 
5 
5 

12 
1 
3 
1 
2 

59 
 
 
- 
3 
6 

35 
6 
- 

27 
53 
21 
2 

23 
36 
2 

28 
242 

 
1473 

 
- 
 

1782[99.5 %] 

 
- 
- 
- 
- 
- 
- 
- 
0 
 
 
 
- 
- 
 
- 
- 
- 
- 
- 
- 
- 
- 
0 
 
 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
0 
 

8 
 
- 
 

8[0.5%] 

 
- 
- 
- 
- 
- 
- 
- 
0 
 
 
 
- 
- 
 
- 
- 
- 
- 
- 
- 
- 
- 
0 
 
 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
0 
 

0 
 
- 
 

0 
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Table 4.3 Summary statistics of dimensions (mm) of cores, whole flakes and 

retouched tools from GDM7 and GDM10 

Artifact category + Statistics Length Width Thickness SP* 
Width 

SP 
Thickness 

 
GDM7 
 
CORE (n=60) 

Mean 
StDev† 
Range 

 
WHOLE FLAKE (n=54) 

Mean 
StDev 
Range 

 
RETOUCHED TOOL‡ (n=159) 

Mean 
StDev 
Range 

 
 
 
 
46.05 
11.12 
49.37 
 
 
44.86 
10.15 
39.78 
 
 
40.01 
12.96 
81.62 

 
 
 
 
33.7 
9.97 
42.49 
 
 
29.15 
8.42 
40.56 
 
 
28.23 
9.46 
58.64 

 
 
 
 
18.46 
8.07 
42.99 
 
 
8.83 
2.59 
11.85 
 
 
8.86 
3.32 
19.22 

 
 
 
 
 
 
 
 
 
19.12 
7.7 
32.37 
 
 
18.79 
7.59 
32.65 

 
 
 
 
 
 
 
 
 
7.81 
4.81 
33.86 
 
 
7.36 
3.12 
14.88 

 
GDM10 
 
CORE (n=8) 

Mean 
StDev 
Range 
 

WHOLE FLAKE (n=27) 
Mean 
StDev 
Range 

 
RETOUCHED TOOL (n=59) 

Mean 
StDev 
Range 

 
 
 
 
34.63 
7.12 
23.47 
 
 
41.3 
10.63 
48.88 
 
 
33.09 
13.29 
58.28 

 
 
 
 
29.53 
11.02 
37.55 
 
 
28.23 
8.52 
32.19 
 
 
21.96 
7.55 
32.25 

 
 
 
 
10.62 
3.48 
10.75 
 
 
6.92 
3.79 
18.35 
 
 
6.71 
2.78 
10.23 

 
 
 
 
 
 
 
 
 
19.12 
7.7 
39.44 
 
 
14.38 
7.55 
29.5 

 
 
 
 
 
 
 
 
 
7.81 
4.81 
9.17 
 
 
5.44 
2.39 
10.81 

*Striking platform; †Standard deviation;  ‡Platform dimensions collected on only 73 
(~46%) of the GDM7 and 22 (~37%) of the GDM10 retouched tools. 
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4.3 Inter-assemblage comparisons 

Detailed typological and functional analyses from previous studies on 

assemblages from ETH-72-8B, 72-7B and other sites within the Gademotta 

Fm. have contributed enormously to our knowledge of early MSA 

technological behavior (Wendorf & Schild 1974, 1993). These analyses 

document that assemblages from the earliest MSA occupations display 

remarkable typological variability. Also, little change was noted in terms of 

the technological repertoire of inhabitants of ETH-72-8B and those of 

younger sites within the Fm., namely ETH-72-7B and 72-1 (Wendorf & 

Schild 1974: 154). Analysis of the GDM7 and GDM10 assemblages 

confirm that the archaeological horizons represented by ETH-72-8B and 72-

7B do not show marked differences in terms of typological representation of 

artifacts as well as technological strategies.  

The most important aspect of this current research is that new dates 

reported here for Unit 12 now provide tighter constraints for these younger 

occupations, showing that the minimum difference in age between the 

occupations at ETH-72-8B/GDM7 and ETH-72-7B/GDM10 is much 

smaller than previously established – a mere 19 ± ka rather than ~100 ka (cf. 

Wendorf et al. 1975; Morgan & Renne 2008). As a result the lack of major 

technological difference between these two assemblages is less notable; it 

might be expected that they would share substantial aspects of the 

technological repertoire.  

Raw material exploitation patterns noted at the previously excavated 
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sites of ETH-72-8B and 72-7B as well as at GDM10 stand in some contrast 

to those evident at GDM7 where even certain non-debris pieces were made 

on rhyolite. The selection of obsidian over rhyolite by inhabitants of the 

occupation at GDM7/ETH-72-8B is clearly the result of several superior 

qualities of the former (ease/control in knapping, sharpness of edge, etc). 

However, the exploitation of rhyolite witnessed in the GDM7 assemblage 

remains intriguing. What factors led to the occasional choice of this 

relatively poor-quality material over obsidian? At this stage, no pattern can 

be discerned from the rhyolite formal tools. As a result it is difficult to 

determine if rhyolite use is associated with specific functional and/or 

technological choices. The difference in raw material exploitation patterns 

between GDM7 and the younger sites of ETH-72-7B and GDM10 does not 

appear to be substantial enough to talk of a temporal trend toward an 

exclusive use of obsidian by hominins in the later periods.  

Certain techno-typological assumptions made previously about 

specific tool production techniques in the Gademotta MSA prove to be 

weakly supported. For instance, the presence of burin-like scars on a large 

proportion of pointed pieces has raised some interest and required further 

investigation. Two features have been used to argue that these burin-like 

fractures are the result of an intentional technique of cutting edge 

rejuvination – the tranchet blow. Firstly, previous research noted these 

pseudo-burin scars mostly on the right distolateral tips (dorsal face for 

unifacial points) of the pointed forms. Secondly, microwear patterns 
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indicative the use of these pieces as projectile tips could not be clearly 

documented. These led previous researchers to suggest that the burin-like 

fractures are the result of intentional burination and the points were 

probably used for cutting and/or scraping, rather than as projectile tips 

(Wendorf & Schild 1993; see also Douze 2010). The present study 

identified a number of pointed pieces with burin-like fractures on the left 

distolateral tips on the dorsal sides of unifacial points, both in the newly-

recovered and previously collected Gademotta assemblages. In addition, 

even where burin-like fractures are present on the right-hand dorsal sides of 

pointed pieces, some of these points bear clear fracture patterns that suggest 

they were used in a longitudinal fashion (e.g, Fig. 4.8; see also Sahle et al. 

2013). Also, intentional burination is distinguishable from impact burination 

in that the latter does not retain the bulb of force as it is produced from a 

bending fracture (Cotterell & Kamminga 1987). 

A detailed discussion of the function of pointed pieces, with examples 

of pseudo-burin scars on the left distolateral tip of the dorsal side and 

associated microfracture data, from the Gademotta Fm. is provided in the 

next chapter. As it stands now, the small dimension of the burinated edges 

relative to the overall tool dimensions, and the otherwise mostly fully 

retouched circumference of most of the pointed pieces depicted to bear 

tranchet blow (e.g. Fig. 4.8, 4.5d) argue against the interpretation of these 

macrofracture as the result of attempts to produce a long cutting edge, such 

as those seen in long blade tools. 
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Figure 4.8 Pictures of a unifacial foliate point from GDM7 with a pseudo-

burin scar on the dorsal face and a macrofracture typical of 

twisting/rotating of a thrust spear tip upon impact (cf. Rots et al. 

2011) 

 

 

 

As part of the objective of comparing occupations in the Middle- and 

Upper Pleistocene, a general reassessment of the ETH-72-6 assemblage was 

conducted. Data collected on whole flakes from this assemblage are 

discussed in Chapter Six. Here, a unique technological pattern noted during 

a reassessment of the ETH-72-6 assemblage will be highlighted. I have 

noted that some of the ETH-72-6 cores exhibit the typical Nubian Techno-

complex whereby they are preferentially reduced to produce pointed flakes 

from laterally trimmed surfaces (Fig. 4.9). Personal communications with 
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Dr. Phillip Van Peer (June 8, 2012 Addis Ababa) collect opinion that these 

cores resemble ones from the Late Nubian Tradition. The fine lateral 

retouch on these cores are typical of the Late Nubian Tradition where the 

lateral remnant ridges are further used to produce elongated flakes/blades 

with inherent backing. The presence of these cores has a lot of implications 

to the inferred behavior of hominin populations in the Gademotta area as 

well as in the wider northeast African region.  

The Nubian Techno-complex represents a regionally distinct variant 

of the preferential Levallois technique of manufacturing points and is unique 

to the broader northeastern African region (Van Peer 1992). In Ethiopia, this 

tradition has been reported from the K’one MSA site, only ca. 100 km 

northeast of Gademotta within the Main Ethiopian Rift (Kurashina 1978). 

The Nubian cores from ETH-72-6, and K’one, show additional features to 

the general attributes documented as typical of this northeast African 

techno-complex (Van Peer, pers. comm). There are no secure dates for the 

MSA at K’one (Williams et al. 1977). Based on regional chronology, an age 

estimate of 70-60 ka has been assigned to the K’one MSA (Kurashina 1978; 

Brandt 1986). The ages of ETH-72-6 and K’one broadly conform to the 

generally established temporal range for the Late Nubian Techno-complex – 

Marine Isotope Stage 5 (between ~128 ka and 74 ka) (Van Peer & 

Vermeersch 2007). Outside of the Nile Valley and the wider northeastern 

African and Horn of Africa regions, the Nubian tradition has been 

documented at Dhofar in Oman, suggesting the presence of intra-regional 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 76 

cultural contacts and inter-regional population expansions (Rose et al. 

2011). In addition, the presence of technological industries specific to a 

region is considered as one indicator of modern human behavior (McBrearty 

& Brooks 2000 and references therein). 

 

 

 

Figure 4.9 A sample of preferential Levallois cores from Site ETH-72-6 that 

exhibit the Nubian Type-1 preparation  
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4.4 Comparison of the spatial distribution and density of artifacts 

Wendorf and Schild (1974: 81-84) suggested that a “roughly circular 

shallow concavity” at ETH-72-8B represented traces of a housing feature. 

They argue that the horizontal distribution of artifacts follows a concentric 

pattern with the highest clustering at the center of what they assumed was a 

“hut” (Wendorf & Schild 1974: 150-151).  

Distinct use of space, such as for residential areas, has often been 

depicted as one marker of modern behavior (McBrearty & Brooks 2000). 

Since the behavioral implications of a housing structure at >279 ka will be 

intriguing, the present research tested this hypothesis forwarded by Wendorf 

and Schild (1974: 150-151). If the observed artifact distribution pattern at 

ETH-72-8B and its conformity with a shallow depression at the center of 

this excavation indeed represents a housing structure, then it is expected that 

an excavation adjoining ETH-72-8B will yield artifact densities comparable 

with the margins of ETH-72-8B. If, on the contrary, artifact density from an 

excavation adjoining ETH-72-8B is comparable with, or greater than, that 

reported for the center of ETH-72-8B, then the hypothesis that the presence 

of the concavity and artifact distribution patterns are indicative of a housing 

structure can be rejected. 

A detailed comparison of artifact distribution patterns at ETH-72-8B 

with the GDM7 excavation is not possible as there are no published data on 

the vertical distribution of artifacts recovered from the former site. Artifact 

density at ETH-72-8B is rather represented by a 2D scatter diagram 
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(Wendorf & Schild 1974: fig. 25). The plotting of a similar scatter diagram 

for the GDM7 excavation meant superimposing distributions from multiple 

excavation levels. Even this yielded a spatial distribution pattern that 

exhibits the highest concentrations at the northern edge of the concentric 

circles originally identified by Wendorf and Schild (1974; Fig. 4.10a). As a 

result the data from GDM7 run counter to what would be predicted if there 

were a housing feature in the center of the ETH-72-8B excavation. Although 

situated outside of the artifact distribution circles, the concentration of 

artifacts at GDM7 is comparable with the innermost concentric circle of the 

hypothesized artifact concentration zone at ETH-72-8B (Fig. 4.10; Wendorf 

& Schild 1974: fig. 25).  

More simplistic figures of non-debris artifact classes per square meter 

prove to be higher for GDM7 (122 artifacts/sq m) than for ETH-72-8B 

(57.78 artifacts/sq m) (Wendorf & Schild 1974: table 1). Also, several other 

factors, (see Sahle & Negash 2010; Sahle et al. 2012 for insights from 

ethnographic cases), seem to have been underestimated in the explanation 

provided for residential and activity area choice (Wendorf & Schild 1974: 

150-151). The artifact distribution data, both horizontal and vertical (Fig. 

4.10), collected during the present research suggest that the occupation 

horizon at ETH-72-8B and GDM7 was more laterally extensive than 

previously depicted. The hypothesis that the excavation at ETH-72-8B 

represents a hut feature with a high concentration of artifacts at its center is, 

therefore, not supported by the GDM7 excavation (Sahle et al. 2011).  
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Figure 4.10 Comparisons of artifact distribution patterns of ETH-72-8B and 

GDM7. Contour intervals in ‘A’ show concavity while each 

black dot represents an artifact; turquoise lines in ‘B’ represent 

specimens with orientation (Note the correction on the north 

arrow [cf. Wendorf & Schild 1974: fig. 25]) 
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4.5 Summary and Discussion 

Previous research in the Gademotta Fm. has provided invaluable 

behavioral and contextual data on MSA occupations (Wendorf & Schild 

1974, 1993; Wendorf et al. 1975, 1994; Laury & Albritton 1975). Other 

important questions this earlier study did not address had to wait for the next 

four decades until the present renewed research was initiated. This recent 

round of research was partly encouraged by results of new geochronological 

analyses (Morgan & Renne 2008). Research carried out for this dissertation 

has established the precise stratigraphic placement of later Middle 

Pleistocene occupations. Further excavations using modern data recovery 

techniques have enabled a finer-grained analysis of hominin technological 

behavior across this important period. 

In spite of the presence of multiple tephra beds yielding radiometric 

dates, the stratigraphy in both the Gademotta and Kulkuletti areas has long 

presented a considerable degree of complexity (Brandt 1986). In addition to 

the marked difference in the thickness and representation of certain units 

across the site-complex, significant cut-and-fill processes at Kulkuletti have 

complicated the stratigraphic placement of excavated sites (Laury & 

Albritton 1975). The geochronological results reported here provide a more 

detailed and improved picture of the stratigraphy at both Gademotta and 

Kulkuletti. Through independent geochronological analyses, conducted in 

collaboration with a geochronology expert, it is now possible to confirm 

that ETH-72-8B is stratigraphically below the Unit 10 ash and is, therefore, 
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the world’s oldest-dated MSA site (Sahle et al. 2013; cf. Deino & 

McBrearty 2002).  

A new date obtained for Unit 12 provides a better minimum age for 

the occupation horizon sampled by ETH-72-7B/GDM10. Former 

stratigraphic correlations have estimated the age of this occupation to be 

similar to ETH-72-1 (Laury & Albritton 1975: table 1; Morgan & Renne 

2008). The previous minimum age for these sites came from Unit D at 

Kulkuletti, dated recently at 185 ± 5 ka* (Morgan & Renne 2008). The cut-

and-fill processes at Kulkuletti postdated the development of the Unit 11 

paleosol as well as the deposition of the Unit 12 bedded sandstone layers 

(Laury & Albritton 1975: 1007). As a result, it can be securely concluded 

that all sites within the Unit 11 paleosol are not only older than Unit D but 

also older than Unit 12, hence >260 ± 7 ka (Fig. 4.3). This result also 

explains why there seems to be little discernable temporal trend in terms of 

technological variability between assemblages recovered from occupations 

within the Unit 11 paleosol (ETH-72-7B; 72-1) versus that marking the 

oldest MSA horizon (ETH-72-8B) (Wendorf & Schild 1974).  Marked 

differences in terms of technological and/or typological attributes of 

assemblages from these occupations may not be expected considering the 

possibility of a short time window (19 ± 8 ka) that separates these later 

Middle Pleistocene sites.  

Renewed archaeological research at Gademotta specifically focused 

on the type-site as it preserved, in contrast to the Kulkuletti area, an 
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exclusively MSA occupation horizon under the lowermost tephra bed of 

Unit 10. New excavations, conducted adjoining previously excavated 

important early MSA sites, recovered thousands of artifacts through state-

of-the-art excavation techniques. Both GDM7 and GDM10, which were 

excavated into the cultural horizons previously sampled by ETH-72-8B and 

72-7B, respectively, yielded assemblages that are in most respects similar to 

those recovered from the latter sites.   

As a distinct feature of most sites in the Gademotta Fm., debitage and 

retouched tools make up a substantial portion of the non-debris assemblages 

at GDM7 and GDM10. Scrapers, blades, pointed tools, and the Levallois 

technique characterize the retouched tool components. Both in terms of their 

abundance and exclusiveness, the distinctly MSA assemblages of GDM7 

and ETH-72-8B stand in sharp contrast to the pattern exhibited by sites in 

the Kapthurin Fm. (McBrearty & Tryon 2006; Tryon & McBrearty 2006). 

At such localities as Rorop Lingop and Koimilot in the Kapthurin Fm. 

elements of the MSA occur as part of the Acheulean tradition and are 

represented by cores and flakes that attest to the Levallois method and by 

unretouched pointed pieces (McBrearty & Tryon 2006). The 

geochronological analysis reported here now confirms the age of the 

Gademotta early MSA occupation represented by ETH-72-8B and GDM7 as 

>279 ka. While the pattern witnessed in the Kapthurin Fm. shows that the 

earliest MSA and the transition from the Acheulean was complex and time-

transgressive, the Gademotta MSA at a similar, but more precise, minimum 
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age shows an exclusive occurrence of this tradition. What is represented at 

Gademotta is a comprehensive transition into the MSA. While inter-site 

difference in the timing and trajectories of this technological transition are 

clear (cf. Van Peer et al. 2003; Clark et al. 2003; Walter et al. 2000; 

Bruggemann et al. 2004; Tryon et al. 2008; Fig. 2.4) the pattern witnessed 

in the earliest MSA at Gademotta suggests that the MSA has even older 

roots and the transition into this tradition is even more complex and multi-

directional than depicted thus far.  

Better analyses of the technological behaviors of hominin population 

that inhabited the Gademotta area across the later Middle- and earlier Upper 

Pleistocene are conducted by assessing the capacity for projectile 

technology and comparing the cost/benefit in flake production between 

occupations >260 ka versus one that is <185 ka. GDM7 and GDM10 both 

represent occupations prior to 260 ka; an occupation from a much younger 

context (185-105 ka) in the Gademotta area is represented by ETH-72-6 

(Wendorf & Schild 1974; Fig. 4.1, 4.3, 4.4). The ETH-72-6 assemblage is 

similar in several ways to those from the older contexts. The Levallois 

technique is represented well and retouched tools make up a good portion of 

the assemblage. Peculiar patterns of the assemblage from ETH-72-6 are the 

prominence of Levallois core preparation flakes and single platform bladelet 

components (Wendorf & Schild 1974: 107-117, table 1). 
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CHAPTER FIVE 
5. AN ASSESSMENT OF POINTED ARTIFACTS FROM THE 

GADEMOTTA FM. FOR USE AS WEAPON TIPS  

 

5.1 Introduction 

The innovation of projectile weaponry represents a crucial turning 

point with far-reaching evolutionary advantages. Projectile weapons 

provided enhanced hunting efficiency though wider impact range, broader 

ecological niche, and reduced confrontation with dangerous prey species 

(Churchill 1993). Thus, they were a significant technological advance over 

thrusting spears (Wilkins et al. 2012). “Complex”/mechanically-assisted 

projectile weaponry, such as the bow and stone-tipped arrow, (e.g., Shea & 

Sisk 2010; O’Connell 2006; Lombard & Phillipson 2010; Churchill 1993) 

are believed to have enabled H. sapiens to successfully spread within and 

out of Africa (Shea & Sisk 2010; see also Churchill 1993).  

The earliest evidence for projectile weapon use has been suggested 

from Schöningen, Germany, where pointed wooden spears were recovered 

in association with “hunted” fauna from a context dating to ca. 400 ka 

(Thieme 1997). Whether these spears were actually thrown remains 

inconclusive and far from being readily accepted (Shea 2006; Schmitt et al. 

2003). Long-range projectile weapons, namely the bow-and-arrow and the 

spearthrower-and-dart, are suggested to have originated among H. sapiens 

in Africa during the earlier Upper Pleistocene, sometime between 100 ka 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 85 

and 50 ka (Shea 2006; Shea & Sisk 2010; Brooks et al. 2006; but see Villa 

& Lenoir 2006 for opinion on whether the spearthrower-and-dart existed in 

the African Stone Age record). These suggestions are based on approaches 

that use morphometric attributes and artifact weight thresholds as proxies 

for identifying pointed stones deemed ideal for use as the tips of certain 

types of projectile weapons. Microscopic approaches provide direct 

evidence of whether a pointed stone artifact was actually hafted. The 

identification of microscopic use-traces – such as edge damage/rounding, 

polish, striation, and organic residue – are shown to provide unique insights 

into a tool’s hafting history and direction of use (Lombard 2011; Lombard 

& Phillipson 2010). However, these analyses, too, suffer similar inferential 

difficulties. Hafting traces do not show whether a certain pattern evident on 

a hafted point is necessarily indicative of projectile weapon use  (e.g., 

Lombard 2011; Rots et al. 2011; Rots 2012). Consequently, unequivocal 

identification of projectile technologies in the archaeological record remains 

difficult.  

The identification and measurement of velocity-dependent 

microfracture features that are created on the artifact surface as a result of 

impact damage provide a non-subjective approach to assessing the presence, 

and even specific delivery mechanisms, of projectile weapons (Hutchings 

1997, 2011). This approach studies microscopic fracture features most often 

identified on the surface of artifacts (Hutchings 2011). Unlike the other 

approaches to the identification of prehistoric hunting weapons, the 
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applicability of the impact-induced fracture velocity approach is, however, 

limited to fine-grained silicates, such as obsidian and chert/flint, which 

exhibit clear microfracture features. Moreover, the approach requires the 

establishment of physical properties of the raw material on which the 

artifacts under investigation are made (Hutchings 1999, 2011). 

Consequently, the application of this approach to the assessment of potential 

hunting weapons from Paleolithic records has been limited.  

It has been demonstrated experimentally that the velocity-based 

microfracture approach can inform one on the specific delivery mechanisms 

of projectile weapons, i.e. thrust spears; javelins (i.e. hand-cast spears); 

arrows; and darts (Hutchings 2011). This attribution of weapon delivery 

mechanisms relies on the precursory loading rates of an artifact, which is in 

turn inferred from impact-induced microfracture features. Precursory 

loading rates have been determined experimentally and set as quasi-static, 

rapid, and dynamic on the basis of ranges recorded for various impact types 

and weapon delivery mechanisms (Hutchings 1997, 1999, 2011). However, 

the practical attribution of specific impact types to an artifact recovered 

from an archaeological context based solely on its instantaneous fracture 

velocity (C) values is virtually impossible. This is because of the 

equifinality that several possible impact types can produce values within the 

quasi-static and rapid loading rate regimes. As a result, this approach proves 

to work best for identifying darts and arrows, which are the only weapon 

delivery mechanisms that register fracture velocity values in the dynamic 
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loading range (Hutchings 2011: fig. 8; Fig. 5.1). 

In the present study, different independent approaches to the 

identification of archaeological hunting weapons have been incorporated in 

order to avoid exclusive reliance on data from only one type of analysis and 

the limits of inference each of these approaches poses. Data have been, 

accordingly, collected from i) velocity-dependent microfracture features; ii) 

macrofracture patterns; iii) morphometric attributes of pointed pieces. 

 

5.2 Analysis 

For the present study, typological pointed pieces from 6 sites (ETH-

72-8B, 72-7B, 72-1, 72-6, GDM7, and GDM10) were analyzed for the three 

independent lines of data mentioned above. A total of 141 pointed pieces 

were separated as possible hunting tools, from a larger assemblage of 

convergent pieces, mainly on the basis of morphological features. 

Microscopic analysis was conducted on all of these since even the smallest 

fragment of an artifact can document microfracture features (Hutchings 

1997). Certain pointed artifacts from this selection had to be excluded from 

the other methods of analysis either because they were not suitable for 

specific morphological measurements or did not provide velocity-dependent 

microfracture data to encourage further analysis specifically using the 

macrofracture approach to edge damage patterns.  
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5.2.1 Analysis of velocity-dependent microfracture features 

Velocity-dependent microfracture features are produced on fracture 

fronts of cryptocrystalline artifacts as a result of the perturbation of impact-

induced crack force (Ravi-Chandar 2004). Fracture wings (FWs) are, for 

instance, created due to the interaction of the propagating crack force with 

intrinsic imperfections of the fracturing material. Using an electro-

microscope and external light source, FWs were positively identified on 18 

pointed artifacts from GDM7, ETH-72-8B, 72-7B, 72-6 and 72-1. Two of 

these points yielded FWs on additional crack fronts, hence enabling the 

documentation of a total of 20 relevant fracture feature loci (Table 5.1).   

Fracture velocity measurements obtained from two of the 18 pieces 

(specimens ETH-72-7B_C2 and 72-8B_D1_12) were excluded from further 

analysis and interpretation. Fracture velocity data on the first piece was 

documented on a fresh fracture front, possibly resulting from sullegic and/or 

trephic factors, and produced the lowest C at 521 m/s. This could be 

attributed to damage from pressure contact, or very light percussion contact 

with a soft substance, such as a wooden drawer or table during handling and 

storage. This piece has, hence, been excluded from further investigations of 

projectile weaponry after concluding the fracture most plausibly resulted 

from post-collection damage. Fracture velocity on piece ETH-72-8B_D1_12 

was documented on a fine fracture surface identical to several other 

contiguous fracture surfaces along the edges of the piece. The fracture 

surfaces associated with this piece are morphologically different from those 
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considered to be the result of impact from weapon use. For this reason, the 

FWs on this particular piece were regarded, without the need for further 

analysis, as produced by manufacturing/retouch rather than damage from 

weapon impact. The remaining 18 fracture velocity measures were obtained 

from fracture surfaces on 16 pieces and appear to be the result of damage 

from weapon impact. 

Before discussing fracture velocity results from the Gademotta 

pointed pieces, it is necessary to provide more details on certain 

methodological issues due to the specialized application of this analysis. All 

of the angle of divergence measurements on the FWs collected by Dr. 

Hutchings were greater by >2º from those I collected independently. Dr. 

Braun carried out additional independent measurements on 

photomicrographs of Dr. Hutchings’ and mine. Dr. Braun’s measurements 

also yielded results that are lower than those of Dr. Hutchings’ and very 

close to those of mine. Small discrepancies in measurement error are 

important to note because of the sensitivity of this measure to the resultant 

inference of behavior. A difference of 1º for measurements between 130º 

and 150º, for instance, increases the C value by an average 32.5 m/s. For a 

given hypothetical FW on a plane crack front with an angle of divergence of 

140º, C will be:  

= [Cos (140º/2)] * C2 (i.e. 3995 m/s for the Worja obsidian) 

= [Cos (70º)] * 3995 m/s  

= 0.342 * 3995 m/s  

= 1366.37 m/s. 
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If we change the angle measure to 138º, the result will become 1431.68 m/s.  

Measurement variations are unavoidable in every science and have to 

do with a number of factors. In the particular case under discussion, such 

variations may be attributable to the resolution of photomicrographs, which 

is in turn governed by the light adjustment, perspective of the microscope 

lens, etc. However, the largest difference here seems to emanate from the 

observer’s opinion of where exactly the arms of an FW are to be marked. 

Even intra-individual variation in the measurement of angle of divergence 

for an FW on a fracture surface of one of the Gademotta pieces, conducted 

by Dr. Hutchings, has been noted to account for a difference of up to 1.1º 

(i.e. a C value of 36 m/s).  

While my personal opinion is that even the most conservative of angle 

of divergence measurements for the majority of the Gademotta pieces are 

substantially smaller than those collected on the same pieces by Dr. 

Hutchings, I have deliberately adopted his angle measurements for the 

present study due to the following reasons. First, the interpretation of C 

values collected on the Gademotta pointed pieces relies on loading rate 

thresholds and the correlation of these with particular impact delivery 

mechanisms set using experimental analysis where all angle measurements 

were collected by Hutchings (1997, 2011). As a result, the only way in 

which consistency in measurement can be assured is by adopting measures 

on the Gademotta pieces by the same individual. Second, where there are no 

methodological guidelines to constrain variations in the measurement of 
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angles of divergence from FWs, there are no grounds to argue which 

observation is a more accurate approximation of the actual divergence. 

Third, the highest angle of divergence measurements are associated with the 

lowest C values for a given pointed piece. Estimates that err on generous 

side therefore provide minimum values for impact velocity. Thus measures 

of impact velocity reported here represent the most conservative 

interpretation. Clearly, one is making substantial inferential leaps (e.g., from 

FWs to C, and from C values to impact types and/or weapon delivery 

mechanisms) when extrapolating hunting behavior from fracture features. In 

this instance conservative measures are most prudent. 

A summary of angular measurements and corresponding C values for 

every piece is presented in Table 5.1. Impact types and C values have been 

categorized into precursory loading-rate ranges set based on experimental 

work using the Glass Butte (Oregon, USA) obsidian. The Glass Butte 

material has nearly identical physical properties (see Hutchings, 2011: table 

1) to that of the Worja obsidian used at Gademotta (Appendix-3). Figure 5.1 

depicts C values for the Gademotta pieces plotted against impact types and 

associated precursory loading rate thresholds set using experimental work 

on the Glass Butte obsidian (see also Hutchings 2011: fig. 8, table 2). 

Thirteen of the 18 C values collected on the Gademotta pointed pieces 

are in excess of those expected for thrusting spears, but are within the range 

of direct- and indirect-percussion, as well as javelin, arrow, and dart use. 

Four of the highest C values (i.e., those >1080 m/s) are attributable to a 
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more restricted range of fracture events; specifically, hard hammer 

percussion, javelin, arrow, and/or dart impact (Table 5.1; Fig. 5.1).  

 

 

Figure 5.1 Reduction/impact types, corresponding C values, and loading rate 

ranges based on experimental work on obsidian raw material 

with a C2 value of 3865 m/s. Raw C data for all experimental 

impact types obtained from Hutchings (1997; pers. comm.) 
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The velocity-based microfracture approach works through an 

exclusion of impact types that cannot explain the loading rate documented 

on a particular piece (Hutchings 2011: 1745). However, such exclusion 

based solely on C values (and their experimentally established 

impact/weapon delivery correlates) can only be used to identify pieces with 

dynamic loading rates (Fig. 5.1). The fracture velocity approach alone 

cannot provide conclusive evidence for the majority of loading rates (those 

in the quasi-static and rapid regimes). In the seminal work that introduced 

this approach to the identification of prehistoric weaponry, 35.8% of 

experimental darts and 46.7% of experimental arrows yielded C values 

within the rapid loading range (Hutchings 1997: table 13,14,18). These are 

indistinguishable from other impact types within the same loading rate 

range on the basis of their C values alone. Specimens recovered from an 

archaeological context can only be confidently identified as darts and arrows 

using this methodology if they register C values in the dynamic loading 

range. 

For the present study, only one of the pieces, artifact ETH-72-

8B_C6_3, yielded a C value in the dynamic range (at 1497 m/s). The other 

17 readings record C values within the rapid range and are, on the basis of C 

data only, attributable to any of the overlapping correlative impact types 

(Table 5.1; Fig. 5.1). Therefore, for the majority of the Gademotta pointed 

pieces, a confident interpretation of the C data can only be attained through 

additional micro- and macroscopic analyses that aim to identify a specific 
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impact type by systematically ruling out other possible impact types with C 

values in the same loading rate regime. 

In all but two of the 16 pieces the FWs are associated with fracture 

fronts on the tips of the artifacts (Fig. 5.2). The locations of these fracture 

features suggest that they were produced by impact from use of the tips of 

these pieces in a longitudinal fashion. It is very unlikely that impact from 

reduction processes would result in an almost universal placement of 

breakage at the tips of these pointed forms. Even on pieces documenting 

FWs on a fracture surface near their base, the possibility that the tips of 

these pieces were used in a longitudinal manner cannot be dismissed. It is 

possible for a piece to yield to an impact by way of medial/basal snapping 

from the resultant bending fracture (e.g., Haynes 1980; Bergman & 

Newcomer 1983). 

As reported elsewhere (Sahle et al. 2013), the interpretation of the 

fracture velocity data collected in collaboration with Dr. Hutchings proved 

largely inconclusive. Documentation of the precise location of the measured 

FWs on every piece was not considered very important when Dr. Hutchings 

examined the artifacts. This hindered a detailed analysis of the computed C 

values in relation to the location of impact-induced microfracture features. 

Results were consequently limited to certain inferences about the possible 

impacts that may have produced the measured C values (Sahle et al. 2013). 

As a result, in order to collect the additional details and more exhaustively 

examine if FWs are present elsewhere on the pieces other than where they 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 95 

had already been documented, I conducted a subsequent, independent round 

of microscopic studies of these specimens.  

All of the 16 pieces from which the 18 relevant fracture velocity data 

were collected were reanalyzed using the same instruments housed in the 

NME and following the same procedures. If microfracture features yielding 

the documented C values on the pieces were produced by percussive impact 

from a reduction process, then it is expected that there would be FWs in a 

range of locations on the pointed pieces. If these fractures indicate use as 

projectile weapon, we would expect damage concentrated on the tips and, 

less frequently, on transverse bending fractures along the medial-basal 

sections of a piece. If occurrence of the pertinent microfracture features is 

limited mostly to the tips of the tools, as noted during the earlier stage of the 

study, I will infer that the damage patterns are best attributed to impact from 

use of these tools in a longitudinal way, as weapon tips. 

A thorough examination of the 16 pointed pieces documented the 

exact locations of every fracture feature from which data had been collected. 

In addition this re-analysis enabled me to collect a number of 

photomicrographs of these surfaces at different levels of magnification. The 

earlier stage of analysis focused exclusively on the tips and snapped 

surfaces of the pointed pieces. In contrast, the subsequent analysis 

investigated all edges of every piece at magnifications of 20 to 150x.  
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Figure 5.2 Photomicrographs of some of the pointed pieces with the location 

of fracture surfaces and features yielding C values 
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Table 5.1 C values and macroscopic damage categories of points. % fracture 

length (FL) represents where FWs are measured on the fracture 

front (FF)  

No. Specimen ID ψ  (°) C (m/s) %FL Damage details 
 
1 

 
ETH-72-8B_C1_23 

 
162 

 
625 

 
46 

 
Tip; bending fracture with 
step termination; FL=6mm; 
proximal end thinned. 
 

2 ETH-72-6_C2_3 162 625 54 Tip; unifacial spin off on 
dorsal; FL=5.2 mm; FF is 
obliquely aligned with 
typological axis. 
 

3 ETH-72-6_Z9_2 160 694 49 Tip; bending fracture with 
step termination; FL=8 mm 
on the left disto-lateral tip 
(ventral face); FF is oblique 
with the typological axis; 
impact typical of 
rotating/twisting of piece 
upon contact, common in 
thrusting spears.  
 

4 ETH-72-1_D2_3 160,155 694,865 56,56 Tip; (i) bending fracture 
with step termination 
FL=13.5 mm; ii) burin-like 
fracture with step 
termination; FL=16 mm; the 
two FFs are contiguous; 
proximal and lateral edges 
of the piece bear fractures 
with step termination. 
 

5 ETH-72-6_C2_1x 160 694 63 Tip; step terminating 
fracture; FL=5.6 mm; base 
snapped; faint FWs visible 
on the basal bending 
fracture too. 
 

6 ETH-72-6_D3_1 156 831 57 Tip; bending fracture with 
step termination; FL=4.6 
mm; FWs documented on 
an overlying unifacial spin-
off fracture. 
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Table 5.1 (cont’d) 

No. Specimen ID ψ  (°) C (m/s) %FL*  Damage details 

 
7 

 
ETH-72-8B_A3_5 

 
153 

 
933 

 
21 

 
Tip; burin-like fracture 
with step termination. 
FL=17mm; FWs are on a 
medial bending fracture 
surface; pseudo-burin scar, 
extends from tip of the 
piece to the end of the right 
mediolateral section on the 
ventral face.  
 

8 
 
 
 
 
 
 
 
 

ETH-72-6_D4_2 
 
 
 
 
 
 
 

153 
 
 
 
 
 
 

933 
 
 
 
 
 
 

46 
 
 
 
 
 
 

Tip; a transverse bending 
fracture; FL=9mm; bending 
snaps off entire tip of piece; 
FWs are on bending 
fracture surface with step 
termination; FFs on with 
similar patterns on either 
sides of this bifacial piece 

9 ETH-72-8B_A3 152 966 28 Tip; bending fracture with 
step termination; FL= 6 
mm in length for two step 
terminating fractures; very 
tip is snapped; a small 
(~2mm) spin-off fractures 
exist within one of the 
bending FF 

 
10 

 
ETH-72-8B_D4_4 

 
150 

 
1034 

 
80 

 
Tip; two burin-like 
fractures; FL=10.2 mm for 
the more prominent; FWs 
collected on the narrower 
burin-like FF running from 
the tip of the piece to the 
side of the bigger pseudo-
burin scar; undulations and 
the orientation of FWs on 
the latter scar indicate 
fracture was initiated 
obliquely from the side, 
rather than the very tip. 
 

11 ETH-72-8B_ 
C15_17 

150 1034 69 Base; bending fracture 
snapping piece; FL is 33 
mm; piece does not bear 
any other discernable 
damage fracture 
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Table 5.1 (cont’d) 

No. Specimen ID ψ  (°) C (m/s) %FL*  Damage details 

      
12 ETH-72-7B_C4_1 150 1034 46 Tip; unifacial spin-off 

fracture with feather 
termination (on dorsal 
side); FL is 4.2 mm; a 
burin-like fracture with 
feather termination 
contiguous to it to the right 

 
13 

 
ETH-72-8B_A3_4 

 
149,142 

 
1068,1301 

 
29,50 

 
Base; transverse fracture; 
FWs documented on the 
basal snapped surface; a 
step-terminating burin-like 
fracture 9.5mm from the 
tip to the right distolateral 
on the dorsal side; 
contiguous transverse 
fractures with feather and 
step termination on a plain 
ventral side (possibly 
related to the impact on 
the dorsal side). 
 

14 GDM7_IXg_3078 143 1268 57 Tip; transverse fracture 
with feather termination; 
FL is 7 mm; fracture 
removes entire tip of piece 
on one face; a narrow, 
feather terminating 
fracture initiated from 
same spot on the very tip 
 

15 ETH-72-1_A1_1 139 1399 38 Tip; burin-like fracture; 
FL=14.5 mm and extends 
from the very tip of the 
piece to the lateral; 
proximal end is snapped. 
 

16 ETH-72-8B_C6_3 136 1497 24 Tip; burin-like fracture; 
FL= 30mm; located on the 
right side of the ventral 
face, extending from the 
very tip to the mediolateral 
edge of the piece; a step-
terminating fracture (8.5 
mm long) at proximal tip 
on the dorsal side; 
proximal retouch scars 
visible on the ventral side. 
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Most of the microfracture features documented on these pieces prove 

to be restricted to the artifact tips. Where FWs were identified in more than 

one fracture front, they remain limited to contiguous fracture fronts on the 

tips of the pieces or opposite sides of a transverse fracture along a snapped 

tip or basal surface. FWs present on contiguous fracture surfaces appear to 

be clearly the result of whatever impact produced the measured FWs on the 

pieces. This inference is substantiated by the orientation of the FWs, which 

indicates the direction of impact propagation. A case in point illustrating 

this scenario is specimen ETH-72-1_D2_3, which retains two contiguous 

fracture surfaces with FWs on its distal tip (Fig. 5.2). 

The combined results of the microfracture analysis strongly suggest 

that the impacts on the Gademotta pointed pieces were caused by use of the 

tool tips in a longitudinal manner. As a result, the damage on these pieces 

can be securely attributed to their use as weapon tips rather than the result of 

knapping blows. Furthermore, even relying only on the experimentally set 

threshold of precursory loading rates for different impact types, one of the 

pieces (ETH-72-8B_C6_3) with a C value in the dynamic loading rate is the 

result of impact that has never been documented from any known 

manufacturing process (Hutchings 1997, 2011; Fig. 5.1).  

The fracture velocity approach enables one to distinguish between 

impacts from thrusting spears versus those from javelin use for C values that 

fall outside the range experimentally documented for thrusting spears 

(Hutchings 2011). About three-fourths (72.8%) of the Gademotta pieces 
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exhibit C values that are beyond the range experimentally established for 

thrusting spears (Table 5.1; Fig. 5.1). Due to reasons pointed out above, one 

can distinguish impact from arrows and darts from those produced by other 

weapon delivery mechanisms and manufacturing processes if and only if the 

pieces document C values within the dynamic range. It is impossible to be 

certain, based on C values alone, whether any of the Gademotta pointed 

pieces were used as arrows and/or darts. Ruling out the hypothesis that 

damage on the Gademotta pointed pieces were produced by a reduction 

process makes the documented C values for at least 72.8% of the pieces 

attributable to javelin impact. The remaining ~27% of specimens can be 

considered a result of use of these pieces as thrusting spears and/or javelins. 

The C value of specimen ETH-72-8B_C6_3 makes it attributable to 

arrow/dart impact. However, since this piece appears to be dimensionally 

outside the range documented for ethnographic and experimental 

arrows/darts (Shea 2006; Sisk & Shea 2011; Brooks et al. 2006), it cannot 

securely be ascribed to an arrow/dart tip. Instead, the proximity of its C 

value to the maximum value documented for experimental javelins 

(Hutchings 2011: table 3), and the morphometric range for archaeological 

and experimental spear tips (Shea et al. 2001; Shea 2006; Sisk & Shea 

2011) mean that a more secure interpretation of the function of this piece is 

likely as a javelin tip.  

The assemblage-level pattern observed for the C values from the 

Gademotta points is, in addition, consistent with those of the experimental 
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javelins. The pooled fracture velocity data from the 16 Gademotta pointed 

pieces are statistically indistinguishable from those documented on 

experimental javelins (Brunner-Munzel generalized Wilcoxon [BMgenW] 

test [Neuhäuser & Ruxton 2009] =0.57, p=0.57) (Hutching 1997: table 16).  

 

5.2.2 Macrofracture analysis 

A confident identification of the presence of projectile armatures is 

less likely to come from a single proxy for ancient behavior. Rather, a 

complete assessment of the technology and its behavioral implications 

requires a comprehensive knowledge of other artifact attributes and 

contextual data. A solid case for projectile weapon use in the Stone Age 

record can, hence, be made through the incorporation of multiple lines of 

evidence (e.g., Sisk & Shea 2011; Brooks et al. 2006; Lombard 2005; Rots 

2012). In the interest of obtaining the benefits of such additional 

approaches, a macrofracture analysis was conducted on the 16 Gademotta 

pointed forms on which fracture velocity data were collected. This involved 

the documentation of macroscopic damage patterns and locations on the 

tools. Hand lenses and low-power microscope (offering magnifications 

between 3 and 20x) were used, where necessary, to view fracture initiation 

and termination types in better detail.  

Macroscopic fracture types most commonly depicted as diagnostic of 

impact result from use of a pointed piece in a longitudinal manner (for 

stabbing, thrusting, and ‘distance penetrating’) include: i) burin-like 
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fractures removing pseudo-burin spalls from the lateral margin(s) of the 

distal/distolateral tip of a pointed piece; ii) transverse fractures with 

terminations other than snaps that were inflicted after the tool was 

retouched; iii) unifacial spin-off fractures with a fracture length of >6mm ; 

iv) bifacial spin-off fractures; v) flute-like fractures (Bergman & Newcomer 

1983; Fischer et al. 1984; Odell & Cowan 1986; Ho Ho Committee 1979; 

Sano 2009). Bending fractures with step terminations have often been 

presented as an additional, distinct type of fracture diagnostic of projectile 

impact (Fischer et al. 1984; Lombard 2005). However, according to 

Cotterell and Kamminga (1987), all impact fractures are bending, rather 

than conchoidal, fractures. In order to avoid confusion, bending fractures are 

treated here as part of Sano’s (2009; Fig. 5.3) transverse or flute-like 

fracture category. Fractures that retain negative bulbs and those with feather 

terminations are often indicative of a manufacturing process, rather than 

impact damage, as these are often percussion induced (Bergman & 

Newcomer 1983). As a result, they require a more careful examination (Fig. 

5.3). Furthermore, it has to be noted that impact fractures are not exclusively 

limited to the distal tips of pointed pieces and can be produced along the 

medial or proximal portion of a pointed piece used as a weapon tip. Impact-

induced fractures on the proximal end of a pointed artifact can be 

distinguished from other fractures, such as knapping related percussions 

associated with proximal thinning. These types of removal often have step- 

or hinged-termination (Rots 2012; Villa et al. 2009). Comprehensive 
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summaries of the types of fractures most commonly associated with damage 

from projectile impact are widely available (e.g., Lombard 2005; Sano 

2009). For the present study, a combination of the criteria detailed in the 

above references has been adopted to describe damage patterns. 

Specifically, Sano’s (2009) summary of criteria has been mostly applied 

here due to its comprehensiveness (Fig. 5.3).  

A description of macrofracture patterns on the Gademotta pieces is 

presented in Table 5.1. Edge damage is mostly limited to the distal tips of 

the artifacts. Damage types on these pieces range from burin-like fractures 

to transverse (i.e. including what are also separately called bending 

fractures) and spin-off fractures. Some artifacts document more than one 

type of damage. Bending fractures account for about half of the damage 

patterns evident on the pieces while burin-like fractures are documented on 

about 40% of the pieces. Unifacial spin-off fractures occur on a few pieces 

(Table 5.1). Some of the pieces with bending fractures are snapped 

transversely across their medial-to-basal sections, suggesting that they 

yielded to stress from the impact damage by way of snapping while in the 

haft. Most of the macrofractures on the 16 pieces which yielded fracture 

velocity data are different in overall nature from fractures observed along 

the margins of the artifacts. In two pieces (namely, ETH-72-6_D3_1 and 72-

8B_A3_5; Table 5.1; Fig. 5.4) the measured FWs were found in fracture 

surfaces other than those diagnostic of projectile impact.  
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Figure 5.3 A schematic summary of impact fracture types and their 

interpretation (After Sano 2009: fig 15) 
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Figure 5.4 Images of selected artifacts with macrofractures diagnostic of 

projectile impact. See Table 5.1 for a description of 

macrofracture damage patterns  
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The interpretation of fracture types as diagnostic of projectile impact 

remains a difficult task as is clear from the previous discussion. Following 

the more restrictive and comprehensive criteria forwarded by Sano (2009; 

Fig. 5.3), 13 out of 16 of the Gademotta pieces under discussion bear impact 

fractures that will be considered diagnostic of damage from projectile use 

(Table 5.1; Fig. 5.4). The other 3 specimens retain damage that is not 

diagnostic of impact from weapon use. ETH-72-6_C2_3 and 72-7B_C4_1 

retain spin-off fractures that are too small to be considered diagnostic of 

projectile impact. A single piece (72-8B_A3_4) does not bear any 

discernable damage on its distal tip. FWs on this latter piece were 

documented on the snapped surface near its base (Table 5.1). 

 

5.2.3 Morphometric analysis  

Much of the discourse surrounding the presence of projectile weapons 

in the Paleolithic record involves morphometric analyses that are thought to 

diagnose the ability of pointed artifacts to be used as a projectile weapon 

(e.g., Brooks et al. 2006; Shea 2006). Although these measurements on their 

own are not adequate for understanding the use of tools as projectile 

weapons, they can provide an additional dimension to assessing the 

applicability of certain points as projectile weapons. The most widely used 

morphometric analyses, Tip Cross-Section Area (TCSA) and Tip Cross-

Section Perimeter (TCSP), provide a tool for measuring the likelihood that 

points were hafted for use as effective weapon tips (Shea 2006; Sisk & Shea 
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2011). TCSA and/or TCSP values allow inference as to the suitability of a 

given point assemblage for use as a specific type of hunting weapon. These 

estimates are based on comparisons with thresholds established from 

ethnographic and experimental hunting points (Shea et al. 2001; Shea 2006; 

Sisk & Shea 2011).  

For the present study, dimensional measurements were collected on 

113 out of the 141 pointed pieces from ETH-72-8B, 72-7B, 72-1, 72-6, 

GDM7 and GDM10. The remaining 28 points were deemed unsuitable for 

this analysis because they retain only a small portion of their original tool 

dimensions. In addition to measurements I collected on the Gademotta 

pointed pieces, raw metric data for an experimental spear point assemblage 

were obtained from Dr. Shea. These were used for statistical comparisons 

and a calculation of their TCSP, which was not provided elsewhere (Shea et 

al. 2001; Shea 2006). Similarly, raw metric data for an assemblage of points 

from the Klasies River main site (KRM), South Africa, were obtained from 

Dr. Sarah Wurz. For all assemblages, TCSP was calculated using the 

formula for triangular, rather than rhomboid, cross-section as it provides a 

more restrictive measure (Sisk & Shea 2011: 3). TCSA is calculated as the 

product of maximum width and maximum thickness of a pointed piece 

divided by two (Shea 2006; Sisk & Shea 2011). TCSP, for triangular cross-

section, was calculated using the following formula:  

TCSP = width + (2*

€ 

[width /2]2 + [Thickness]2 ) 
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Statistical summaries of the TCSA and TCSP of the Gademotta 

pointed pieces and comparative experimental and archaeological 

assemblages are provided in Table 5.2. Both TCSA and TCSP for the 

Gademotta point assemblage fall within the range for experimental spear 

points (Shea et al. 2001; Shea 2006; Fig. 5.5). In addition, these values are 

very similar to those documented for point assemblages from much younger 

MSA sites from elsewhere in Africa (e.g., Aterian tanged points from 

Izouzaden and triangular MSA I points from KRM [Shea 2006: table 3; Sisk 

& Shea 2011: table 2]) which are commonly interpreted as hunting weapons 

on the basis of artifact morphology and/or associated fossil fauna.  

Comparisons show that differences between Shea et al.’s (2001) 

experimental assemblage of spear points produced to replicate Middle 

Paleolithic Levantine point assemblages and the Gademotta point 

assemblage are not statistically significant both for TCSA and TCSP (Table 

5.2). Similarly, differences between triangular points from MSA I at KRM 

and those from Gademotta are not statistically significant (Table 5.2). These 

results are interesting considering that the assemblage of experimental 

points has been suggested to represent morphometric attributes ideal for 

successful spear points. Similarly, the KRM MSA I points derive from a 

context as young as 90 ka, and in association with a rich fossil faunal 

assemblage (Milo 1998; Wurz 2002). Pointed pieces from even younger 

contexts at KRM (MSAII Lower and Upper) have even larger TCSA and 

TCSP values in comparison with those for the Gademotta assemblage. 
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Table 5.2 TCSA and TCSP values for the Gademotta versus experimental 

and archaeological points 

 Gademotta (GDM) 
(n=113) 

Experimental 
(n=28) 

KRM MSA I 
(n=71) 

 

TCSA (mm2) 

Mean  

StDev* 

TCSP (mm2) 

Mean  

StDev 

BMgenW Test (vs GDM) 

TCSA 

TCSP 

 

 

171.6 

84.6 

 

72.18 

16.75 

 

 

 

 

 

167.98 

89.3 

 

76.94 

21.22 

 

-0.3242; p=0.7475 

1.0672; p=0.293 

 

 

167.71 

59.39 

 

71.51 

12.59 

 

0.4409; p=0.6598 

-0.1211; p=0.9037 

*StDev = Standard deviation 

 

 

 

 

 

Figure 5.5 A box-plot comparison of TCSA and TCSP values for pointed 

pieces from Gademotta (GDM), Klasies River main site MSA I 

(KRM), and Shea et al.’s (2001) experimental study (Exprm) 
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5.3 Summary and Discussion  

Launched armatures are recognized to be an important component of 

hunter-gatherer lifestyle (e.g., Churchill 1993). Consequently, their presence 

in the Paleolithic record has often been considered an important innovation, 

as these technologies enhance hunting efficiency by increasing hunting 

range and avoiding direct confrontation with dangerous prey species (e.g., 

McBrearty & Brooks 2000 and references therein; Shea & Sisk 2010; 

Wadley et al. 2009). The production and use of such weapons requires 

assembling certain components – the shaft, the haft, and the action piece – 

and the launching of the weapon from a “safe” distance. This indicates 

complex cognitive capacities among users (e.g., Wynn 2009; cf. Lombard 

2011). Based on delivery mechanism, and the associated velocity of the 

specific mechanism, researchers sometimes dichotomize projectile weapons 

into “complex”, and “simpler” forms (Shea & Sisk 2010; Sisk & Shea 

2010). “Complex” forms incorporate the spearthrower-and-dart and the 

bow-and-arrow, which are mechanically projected and provide high velocity 

impacts. “Simpler” projectiles include javelins, i.e. hand-thrown spears, 

with lower velocity and reduced lethal range (Sisk & Shea 2010; Lombard 

& Phillipson 2010; Hutchings 2011). 

Extant studies of Paleolithic projectile technologies focus 

predominantly on artifact tip morphology and overall dimensions, macro-

fracture patterns, and proximal hafting traces of pointed artifacts thought to 

represent weapon armatures (e.g., Shea 2006; Brooks et al. 2006; Sisk & 
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Shea 2011; Wadley et al. 2009; Rots et al. 2011; Lombard & Phillipson 

2010; Sano 2009; Villa et al. 2009). These studies show whether an artifact 

was suitable for hafting or was in fact hafted. However, they fail to provide 

conclusive evidence for the actual use of a hafted tool. Hafted points can be 

used in a variety of ways and for a variety of functions. As a result, 

empirical evidence for the hafting of pointed artifacts is not the same as 

obtaining empirical evidence for hunting at a distance.  

In more recent contexts where projectile technologies are known to 

have existed, hafting traces, macrofractures and morphometric attributes 

may be acceptable evidence for assigning functional interpretations to 

pointed artifacts. In the investigation of archaeological pointed assemblages 

from remote periods, however, data from these methods need to be taken as 

permissive and treated with caution. Arguments for particular delivery 

mechanisms in remote time periods must be supported by additional lines of 

evidence that substantiates a specific pattern, rather than depend largely on a 

single pattern alone (Iovita 2011; cf. the claim for the presence of projectile 

weapons by K. Brown et al. 2012). Even the non-subjective, fracture-

velocity-based approach to assessing whether pointed pieces can be 

considered as tips of hunting armatures (Hutchings 1997, 1999, 2011) 

frequently fails to provide incontrovertible evidence for archaeological 

pieces with precursory loading rates attributable to a number of possible 

impact types (Fig. 5.1). As a result, the best application of this approach 

alone remains restricted to the identification of arrows and darts with 
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loading rates within the dynamic range. C values below the dynamic range 

may have been produced by impact from any of the overlapping 

mechanisms experimentally modeled and so pose the problem of 

equifinality. 

Employing a combination of different approaches to the identification 

of projectile weapons in the archaeological record results in a sound and 

confident interpretation. In the present study, data collected from the 

different approaches outlined above provide a unique position from which 

sound interpretations can be made. In the following few paragraphs, I will 

try to show how the incorporation of the various lines of evidence from the 

approaches employed here has contributed to providing a concrete insight 

into the function of the pointed pieces from Gademotta.   

The measurement of fracture velocity collected on 16 pointed pieces 

from several sites within the Gademotta Fm. yielded conservative estimates 

for C values that span the entire upper ranges of javelin impact established 

using experimental assemblages (Hutchings 1997, 2011; Table 5.1; Fig. 

5.2). As such, the fracture velocity approach works through a justifiable 

exclusion of one or more potential impact types that may have produced 

given microfracture features (Hutchings 2011: 1045). For the Gademotta 

fracture velocity data, the possibility of all impact types other than javelin 

can be ruled out. The absence of microfracture features anywhere on the 

pieces except on the tips and, in two cases, snapped surfaces removing the 

entire base, suggests that the documented FWs were produced by fractures 
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indicating use of these tools in longitudinal fashion. This excludes the 

possibility that the documented microfacture features resulted from 

percussion. This conclusion is further supported by the damage patterns 

documented on the pointed pieces. Impact from use of these pointed forms 

as tips of thrusting spears is a possibility. However, only ~27% of pieces 

record C values within the range of experimental thrusting spears. The 

absence of C values within the dynamic loading range excludes use as arrow 

tips. However, the lines of evidence from multiple avenues of investigation 

are consistent with javelin use during the later Middle Pleistocene at 

Gademotta. 

Macrofracture patterns evident on the measured pieces are also 

diagnostic of projectile impact damage (Sano 2009). This provides strong 

substantiating evidence for the interpretations based on fracture velocity. 

Almost all of these pieces exhibit macrofractures on their distal tips and 

follow a pattern commonly considered diagnostic of impact from projectile 

weapon use. There is one exception to this pattern. Artifact ETH-72-

8B_C15_17 (Fig. 5.4) records a relatively high C (1034 m/s) on a basal 

bending fracture, but bears no discernable macrofracture that can be 

considered a result of impact damage. However, even for this piece, the 

basal bending fracture coupled with the high C suggests the possibility of 

impact fracture from use of this piece as a weapon (cf. Hayens 1980). ETH-

72-8B_A3_4 documents diagnostic macrofractures on its distal tip, although 

FWs were documented on its snapped base (Fig. 5.4; Table 5.1).   
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Morphometric data (i.e. TCSA and TCSP) from a larger assemblage 

of pointed pieces from Gademotta show that they are statistically not 

different from experimental and more recent archaeological assemblages 

interpreted as effective hunting spear points (Shea et al. 2001; Shea 2006; 

Sisk & Shea 2011; Wurz 2002). 

Currently, there is no criterion to distinguish spear points that were 

used for thrusting versus those that were thrown based on morphometric or 

macroscopic approaches (Shea 2006; Lombard et al. 2005; Villa & Lenoir 

2006). More work is needed to understand the biomechanical capabilities of 

African Middle Pleistocene hominins (Churchill & Rhodes 2009). A 

throwing-capable hominin could use spears for both thrusting and throwing 

(Villa & Lenoir 2006), making it difficult to distinguish which spear tip was 

used for what type of weapon delivery. This makes deciphering the timing 

of the technological innovations associated with the earliest forms of hafted 

projectile armatures challenging.  

The multi-stranded data on the Gademotta points provide a unique 

insight into the function of the tools and the innovation of projectile 

armatures. Data from the fracture-velocity-based approach provide a way to 

distinguish between spear tips used for thrusting versus those used as javelin 

tips (Hutchings 2011). Macrofracture analysis documents damage patterns. 

Morphometric data support the assertion that the Gademotta points are 

suitable for use as spear tips. The majority of the Gademotta pointed pieces 

for which evidence from these different approaches provide overlapping 
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insights were used as javelin tips; a smaller number may have been used as 

thrusting spears as well.  

Direct evidence for stone-tipped projectile armatures is not well 

known until late in the Upper Pleistocene (Lombard & Phillipson 2010; 

Lombard 2011; cf. Villa et al. 2009). Because of the unique evolutionary 

advantages pointed out above, the presence of stone-tipped projectile 

armatures at Gademotta as early as >279 ka has implications for discussion 

of hominin lifeways. 
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CHAPTER SIX 
6. AN INTER-ASSEMBLAGE COMPARISON OF COSTS AND 

BENEFITS IN FLAKE PRODUCTION FROM SITES IN THE 

MAIN ETHIOPIAN AND AFAR RIFTS 

 

6.1 Introduction 

At the center of behavioral ecological approaches to human evolution 

is the identification of evolutionarily significant dimensions that can be used 

to understand aspects of hominin behavioral variability (e.g., Shea 2011; 

Minichillo 2005). The measurement of efficiency in flake production 

provides a method to quantitatively infer the behavioral capacities of 

hominin populations across time (Shea 2008, 2011). Efficiency in flake 

production can be quantified by using hypothetical costs and benefits of 

particular technologies within the context of sites across a given period of 

time. In turn, this provides insights into the technological responses of 

hominin populations to ecological necessities (Bird & O’Connell 2006; 

Potts 1998; Shea 2008, 2011).  

The basic idea of the cost-benefit approach is that hominin responses 

to ecological requirements reflect adaptative behaviors. Put otherwise, the 

underlying assumption is that the responses of prehistoric knappers to costs 

and benefits involved in flake production can be discerned from the artifacts 

they produced (Dibble 1997; Shea 2011). Costs and benefits in the 

production and use of artifacts can be measured in several ways. For 
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example, reduction intensity in retouched tools has been widely used as a 

proxy for measuring the amount/degree of curation (i.e. realized relative to 

potential utility [Shott 1996]) with implications for responses of a group(s) 

to costs, benefits and/or risks (e.g., Sahle et al. 2012; Bousman 2005; Kuhn 

1991; Eren et al. 2005). In debitage classes, Shea (2008) has employed a 

methodology for measuring costs and benefits from the various dimensions 

of whole flakes.  

The effectiveness of flake production can be assessed from the 

acquisition of desired flakes from a core using the smallest possible striking 

platform per flake. Accordingly, “efficiently” produced flakes can be 

identified by the small striking platform width (SPW) relative to striking 

platform thickness (SPT) that they retain (Davis & Shea 1998; Dibble 

1997). In other words, the more striking platform a flake takes away from a 

core, the smaller the potential for making subsequent flakes because the 

striking platform on the core has been reduced. More “costly” approaches to 

flake production have greater platform widths (Shea 2008: 476; see also 

Tryon & Potts 2011: 382). Cost in flake production can, therefore, be 

calculated as SPW divided by SPT. Platform variables – such as its width, 

thickness and exterior angle – were most likely actively controlled by MSA 

knappers to obtain flakes of the desired dimension and morphology (Dibble 

1997: 151; Dibble & Rezek 2009). It follows that flakes detached from 

cores using a narrower striking platform relative to SPT involved lower 

production cost, and vice versa.  
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In the model employed by Shea (2008, 2011) benefit in flake 

production can be  estimated as the production of flakes with more cutting 

edge per flake. This model emphasizes that the prime concern of Stone Age 

knappers was attaining the largest possible cutting edge per flake. Benefit 

(i.e. cutting edge) in whole flakes can be calculated as the ratio of flake 

surface area (FSA) to mid-point thickness (T), where FSA is the product of 

technological length (L) and mid-point width (W) (Davis & Shea 1998). 

Accordingly, the higher the FSA-to-T ratio, the more benefit a knapper 

extracted from flake production activities, and vice versa. 

This study collected dimensional measurements on whole flakes that 

are >30mm in their technological length from different sites at Gademotta 

(i.e. GDM7, GDM10, and ETH-72-6) and in the Middle Awash study area 

following protocols detailed in Appendix-1. The Middle Awash 

assemblages studied here come from sites BOU-A19A, A19B, A19HT, 

A26A, A26B, A26C and A29 at Herto, and ADU-VP-1/3 at Aduma (Fig. 

2.3). At Herto, assemblages from BOU-A19B and A19HT were recovered 

through excavation whereas those from the rest of the localities were 

recovered from controlled surface collections whose context was verified 

through the recovery of in situ artifacts exposed by erosion, preservational 

characters, clinging matrix and/or geomorphological makeup (Clark et al. 

2003: 750). In addition, raw whole-flake metric data on MSA assemblages 

from the Kibish Fm. (i.e. sites AHS, KHS and BNS) supplied by Dr. Shea 

are used in the present comparisons. While the comparison of cost and 
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benefit values from the different sites and regions in itself has been shown 

to provide insights into hominin core utilization and cutting edge production 

behavior (e.g., Shea 2008, 2011), a comparison of cost-to-benefit ratios is 

imperative for more comprehensive insights (e.g., Sahle et al. 2012: table 2; 

Fig. 6.1). 

 

6.2 Inter-assemblage comparisons 

Table 6.1 provides a summary of cost (SPW/SPT) and benefit 

(FSA/T) values and ratios for the sites studied here. Comparisons of cost 

and benefit values here are conducted between sites from older versus 

younger contexts within their respective site-complexes. Such intra-regional 

comparison was conducted in order to account for the potential influence of 

paleoecological distinctions between the three different regions. However, 

an inter-regional comparison is also conducted to see what pattern can be 

discerned.  

At first glance, the cost and benefit values at the Gademotta sites 

appear to be low at GDM7, high at GDM10, and high cost, low benefit at 

ETH-72-6 (Table 6.1; Fig. 6.1). Statistical comparisons were carried out 

using non-parametric tests of Mann-Whitney for pair-wise and Kruskal-

Wallis for multi-group comparisons; F-test results show that for all sites 

compared here variances are unequal. Differences in both cost and benefit 

values between the Gademotta sites are not statistically significant (p= 0.087 

for cost; p= 0.187 for benefit). Furthermore, comparisons between the 
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combined GDM7 and GDM10 data versus data from the much younger site 

ETH-72-6 for cost (p=0.132) and benefit (p=0.837) are also not statistically 

significant. Cost-to-benefit ratios are more or less similar for all of these 

sites and differences in these ratios are not statistically significant (H=3.457 

and P=0.178). These results may be taken as strong indications that the 

hominin populations that repeatedly occupied the Gademotta area across the 

later Middle- and earlier Upper Pleistocene possessed substantially similar 

technological behaviors. Results are interesting considering these hominins 

occupied the same geographical area with similar contexts, such as raw 

material availability (within ~2.5 km for all sites) and paleoecological 

settings (an ecotonal, near-shore habitat) (Vogel et al. 2006; Negash et al. 

2010; Basell 2008; Trauth et al. 2010; Fig 1.1.b).  

 Comparison between Herto and Aduma show that differences in both 

cost and benefit between these two sites are not statistically significant 

(p=0.879 for cost; p=0.149 for benefit) (Sahle & Beyene forthcoming). 

Cost-to-benefit ratios for these two sites are also not significantly different 

(p=0.26). Interestingly, these two sites show the most similar values for 

average cost and benefit as well as variation out of all assemblages 

compared here (Table 6.1). Given that these humans occupied the same 

region within a relatively small temporal span, during which the ecology 

remained relatively constant (e.g., Negash et al. 2011; Fig. 2.3), the 

statistically indistinguishable artifactual patterns indicate the presence of 

comparable behavioral capacities among the earliest Herto and the much 
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younger Aduma humans. 

For the Kibish assemblages, Shea (2008) has shown that comparisons 

of costs and benefits provide a complex picture, one where the only 

statistically significant difference is observed when comparing benefit at 

AHS and BNS. Variation in benefit is higher for the older sites of AHS and 

KHS versus BNS. Benefit values are, however, generally small for all of the 

Kibish assemblages and are comparable to similar values documented for 

much older contexts in the Levant (Shea 2011: 27). Differences between 

cost-benefit ratios for the Kibish sites not are statistically significant 

(p=0.158).  

The intra-regional comparisons summarized above are far from 

providing clear-cut pictures of cutting edge production and core exploitation 

patterns across time. For instance, GDM7 shows cost and benefit values that 

are closer to ETH-72-6 than does the relatively younger GDM10 

assemblage (Table 6.1). Differences between GDM7 and GDM10 are not 

statistically significant (p=0.145 for cost; p=0.078 for benefit). Assemblages 

from GDM10 have been shown, in Chapter Four, to contain more 

extensively retouched and utilized tools. Provided occupations in the 

Gademotta area relied on the nearby Worja obsidian source, the presence of 

higher benefit and more utilized retouched tools at GDM10 remains 

intriguing. 
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Figure 6.1 A schematic representation of a flake with various hypothetical 

cost and benefit values (above), adapted from Shea (pers. 

comm.); sites plotted against their respective cost and benefit 

values (below). Sites represented by the red symbols are from 

the Gademotta Fm.; those in black are from the Middle Awash 

region; green ones are from the Kibish Fm. of the Omo Valley 
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Inter-regional comparisons between the Kibish and Herto sites show 

that differences in both cost and benefit between the Herto and BNS 

assemblages are statistically significant (p=0.0078 for cost; p=0.0026 for 

benefit). However, difference in benefit for Herto versus the combined data 

from AHS and KHS does not rise to the level of statistical significance 

(p=0.2677). These are interesting results, especially taking into account 

differences in geographical location (Fig. 1.1a) and ecological settings of 

these sites. For instance, although there is no exclusive reliance on high-

quality material such as obsidian in both regions, raw material types 

exploited by the Herto versus the Kibish humans are different. The Herto 

assemblages are primarily made on fine-grained basalt whereas 

cryptocrystalline silicates, mainly chert, make up the most commonly 

utilized raw material type in the Kibish assemblages (Clark et al. 2003; 

Beyene 2010; Shea 2008: 467). 

More comprehensive inter-site comparisons of costs and benefits 

provide interesting results as all of the site-complexes under discussion are 

located several hundred kilometers away from each other and cover 

different time periods (Fig. 1.1a). In general, BNS and AHS yield the 

highest cost values while BNS, ETH-72-6, and GDM7 yield the lowest 

benefit values among the sites compared (Table 6.1). Differences between 

the combined GDM7 and GDM10 data versus KHS (cost: p=0.125; benefit: 

p=0.387); versus BNS (cost: p=0.22; benefit: p=0.82); and versus Aduma 

(cost: p=0.23; benefit: p=0.528) are not statistically significant. These 
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results provide valuable insights into the technological knowhow of hominin 

populations across time and space. In terms of cost-benefit ratio, the GDM7 

assemblage shows the lowest ratio. The low cost value exhibited by this 

assemblage is also paralleled by the lowest benefit value it retains (Table 

6.1). The Middle Awash sites of Herto and Aduma also show relatively 

smaller cost-benefit ratios due to their relatively medium cost and higher 

benefit values (Table 6.1). The Kibish sites display the highest cost values 

of all assemblages compared here. However, since they also retain relatively 

higher benefits, the older sites of AHS and KHS have medium cost-benefit 

ratios. BNS retains one of the highest costs and one of the lowest benefits, 

hence showing the highest cost-benefit ratio (Table 6.1). 

 

6.3 Summary and Discussion 

The comparisons of costs and benefits, intra- and inter-regionally, are 

difficult to interpret. Some of the lowest cost and highest benefit values are 

collected on assemblages from the oldest sites studied (i.e. GDM7 and 

GDM10). Some of the highest cost and lowest benefit values come from one 

of the youngest sites (i.e. BNS). In addition, as opposed to the pattern seen 

in other assemblages, GDM7 exhibits the lowest variation in both cost and 

benefit (cf. Shea 2008: 27). Statistical comparisons generally show that 

assemblages from different periods within the three regions are substantially 

similar in terms of cutting edge production and core exploitation patterns.  

Raw material sources and other paleoecological settings were 
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substantially similar within a region through time (Vogel et al. 2006; Shea 

2008: 468; Clark et al. 2003; Beyene 2010; Yellen et al. 2005). As a result, 

it remains difficult to parse out what specific factors governed some of the 

complex patterns of tool production behavior observed in the present 

analysis. What factors contributed to the lowest cost in the GDM7 

assemblage? Why are benefit values so small for ETH-72-8B and BNS? 

Why is the cost for BNS so high and benefit values for all of these sites as 

small as that documented for much older Acheulean sites (Shea 2011: 27)? 

Considering a largely similar paleoecological setting for the respective sites, 

it will be difficult to answer these questions with the data at hand.  

Inter-regionally, comparisons provide interesting insights that may be 

used to hypothesize similar behavioral capacities among hominin 

populations from the different regions of the broader rift valley in Ethiopia. 

This is particularly so, taking into account the similarities and differences in 

contexts and evidence among the different site-complexes. In general, the 

Kibish and Middle Awash sites show stronger similarities along 

technological, temporal and paleoecological lines than they do with those 

from Gademotta (Shea 2008: 479). Both at Kibish and in the Middle Awash, 

the early MSA is interstratified with layers containing tools attributed to the 

Acheulean tradition, as is the case in the Kapthurin Fm. of Kenya (Fig. 2.4). 

In contrast, no trace of a final Acheulean occupation has been identified at 

Gademotta (Wendorf & Schild 1974: fig 7; Wendorf et al. 1975: 740). 

Regarding raw material exploitation, the Middle Awash and Kibish sites 
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show a pattern where different types of material are used in different 

proportions (Shea 2008; Clark et al. 2003). The pattern in the Gademotta 

Fm. stands in sharp contrast in that obsidian proves to be almost the only 

raw material exploited. Finally, while the time range that sites in the Kibish 

Fm. and the Middle Awash area cover are largely comparable (~195-105 ka 

for Kibish; 160-80 ka for the Middle Awash), the Gademotta sites span the 

period from as early as 279 ka to as late as 105 ka (Fig. 2.4; McDougall et 

al. 2005; Clark et al. 2003; Morgan & Renne 2008; Sahle et al. 2013; F. 

Brown et al. 2012). 

More comparisons using other parameters, such as tool reduction 

intensity (cf. Sahle et al. 2012; Bousman 2005; Eren et al. 2005; Kuhn 

1991), are needed to better interpret these patterns and infer the 

technological behavior of hominins across the critical time period when our 

species emerged. The measurement of tool reduction intensity as a proxy for 

curation behavior could not be incorporated in the present study due to the 

low frequency of suitable retouched tools, such as end/transverse scrapers 

(Shea 2008; Table 4.2).  

Based on the present cost-benefit data, it can be concluded that 

hominin populations that occupied discrete regions within the rift valley in 

Ethiopia possessed substantially similar behavior in terms of technological 

strategies pertaining to flake utilization and core exploitation.  

Shea (2008: 480) suggests that the typological similarities between the 

Kibish assemblages and those from other Ethiopian MSA sites (such as 
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Gademotta-Kulkuletti, Aduma and Porc Epic [Pleurdeau 2005]) may be 

indicative of cultural continuity and demographic stability in this particular 

part of east Africa. Results of the present comparisons empirically 

substantiate this suggestion, using direct technological comparisons, in that 

cutting edge production and core exploitation patterns across the various 

sites in the Omo Valley, the Main Ethiopia Rift and the Afar Rift remained 

essentially similar across the later Middle- and earlier Upper Pleistocene. 
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CHAPTER SEVEN 
7. SUMMARY, DISCUSSION AND CONCLUSIONS 

 

7.1 Summary 

The emergence of H. sapiens and the transition to cultures that are 

widely accepted as characterizing modern human cognition rank among the 

important evolutionary phenomena that render the African later Middle- and 

earlier Upper Pleistocene the focus of special research attention. In spite of 

the presence of a multitude of evidence that strongly supports an African 

origin of our species (McDougall et al. 2005; Clark et al. 2003; White et al. 

2003; Ingman et al. 2000; Yotova et al. 2007), the behavioral capacities of 

the first H. sapiens and how these compare with their immediate 

predecessors, penecontemporaries as well as Upper Pleistocene descendents 

remain largely unaddressed (Shea 2011).   

The paucity of well-dated sites from the later Middle Pleistocene, and 

greater research focus on the Upper Pleistocene portion of the MSA have 

long limited our understanding of the behavioral context across our species’ 

evolutionary origin. Differences in the theoretical and methodological 

approaches applied to the archaeological records of these periods as well as 

the overall interpretation of the various evolutionary dynamics marking this 

critical timescale account for the current lack of comprehensive knowledge 

(Shea 2011, 2012). The accumulation of paleoanthropological and 

geochronological data over the past decade has contributed greatly to our 
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knowledge of hominin lifeways and evolutionary trajectories across the 

period under discussion. However, comparable methodological frameworks 

are lacking and a comprehensive picture of the behavioral context of 

hominins during this period across the continent is yet to come (Shea 2011 

and comments therein, 2012; Lombard 2012).  

Through the analysis of multiple occupation horizons within the 

Gademotta Fm. of the Main Ethiopian Rift, the present research has 

documented the technological behavior of hominin populations that 

inhabited the area through much of the MSA. Renewed geochronological 

and stratigraphic investigations have not only contributed to refining the 

contexts of the various occupation horizons, but also enabled more 

meaningful comparisons of technological behavior across the later Middle- 

and earlier Upper Pleistocene. 40Ar/39Ar geochronology, conducted as part 

of this dissertation research, now confirms that the cultural horizon 

represented by sites ETH-72-8B and GDM7 directly underlies the Unit 10 

bedded tuff dated to 279 ± 2 ka, making it the world’s oldest-dated MSA 

occupation (Sahle et al. 2013; Morgan & Renne 2008; cf. Deino & 

McBrearty 2002). New dating of localized cemented ash in the Unit 12 

bedded sandstone also provides a combined 40Ar/39Ar isochron age of 260 ± 

7 ka, further constraining occupations represented by ETH-72-7B and 

GDM10 at Gademotta and ETH-72-1 at Kulkuletti. The minimum age for 

these sites thus far came from Unit D, which was recently dated to 185 ± 5 

ka* (Morgan & Renne 2008). Dating of Unit 15, the uppermost tephra bed 
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in the entire Gademotta sequence, is currently in progress. This unit overlies 

two important sites, ETH-72-6 and 72-9 (Laury & Albritton 1975; Wendorf 

& Schild 1974). A recent geochemical correlation has determined that the 

Unit 15 ash matches with the Aliyo Tuff (105 ± 1 ka) in the Kibish Fm., 

thus providing a tentative minimum age for the aforementioned occupations 

(F. Brown et al. 2012).   

Renewed excavations in the Gademotta area have recovered 

assemblages from occupation horizons previously represented by ETH-72-

8B and 72-7B of Wendorf and Schild (1974). Generally, debitage classes 

dominate the non-debris assemblages of the newly excavated sites of GDM7 

and GDM10. The Levallois technique is well represented, as are retouched 

tools. Obsidian proves by far the most extensively exploited raw material 

type. However, rhyolite was also used at GDM7. The exploitation of 

obsidian is obviously attributable to its superior flaking qualities (i.e. 

homogeneity and isotropy) and availability in a nearby source (Vogel et al. 

2006; Negash et al. 2010). The use of the relatively poor-quality rhyolite, 

albeit in a limited amount, remains intriguing. 

Previous research suggested there was technological stasis across 

occupations at ETH-72-8B versus those at ETH-72-7B and 72-1. The new 

geochronological data on Unit 12 help to explain this because the two 

occupations can be separated by a mere 19 ± 8 ka. Modern excavation and 

data recovery mechanisms employed in the new round of research provide 

insights into the artifact distribution patterns at GDM7, which are not 
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consistent with claims of a circular “hut” at the adjoining site of ETH-72-8B 

(Wendorf & Schild 1974: 150-151). 

A comparison of the capacities of hominins for behavioral variability 

across the later Middle- and earlier Upper Pleistocene has been conducted in 

two different ways: i) through an assessment of the capacity for projectile 

weapon use; ii) through the measurement of costs and benefits involved in 

flake production. To investigate the capacity of the Gademotta hominins to 

make and use projectile technologies, the present research conducted 

analyses on an assemblage of retouched pointed tools, identifying and 

measuring velocity-dependent microfracture features, documenting 

macrofracture patterns, and studying morphometrics. Cost and benefit 

analyses measured the technological behavior involved in the production of 

tool cutting edge and the exploitation of cores as inferred from the 

dimensions of whole-flake debitage classes.  

Velocity-dependent microfracture features were documented and 

measured on a total of 16 pointed pieces from several sites at Gademotta 

and in the Kulkuletti area. Most instantaneous fracture velocities on these 

pieces fall within the rapid precursory loading rate regime, meaning that 

fractures could be attributed to impact from hard-hammer percussion, 

thrusting spears, javelins, arrows and/or darts. Additional micro- and 

macroscopic analyses found that the majority of the measured microfracture 

features are indicative of impact from use of the tips of the pointed forms in 

a longitudinal fashion. Similarly, macrofracture analysis showed that the 
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location and morphology of damage is by and large diagnostic of impact 

fractures from use of the pieces as the tips of hunting weapons. Most 

damage occured on the distal and distolateral tips of the pointed forms. In a 

few pieces, bending fractures snapped the medial-basal portion of the 

pieces, a pattern that occurs in projectile weapons (Hayens 1980).  

Morphometric analysis of pointed pieces from several sites within the 

Gademotta Fm. indicate that TCSA and TCSP (as defined by Shea 2006; 

Sisk & Shea 2011), of points from this formation are statistically 

indistinguishable from other assemblages experimentally established as 

effective spear tips (Shea et al. 2001; Shea 2006), or recovered in 

association with hunted fauna from a much younger archaeological context 

at Klasies River, South Africa (Wurz 2002; Milo 1998).  

Taken as a whole, the multiple lines of evidence support the 

conclusion that Gademotta hominins incorporated javelins in their 

technological repertoire as early as >279 ka and continued this technology 

until perhaps as late as 105 ka. It is certainly possible that some of the 

pointed pieces at Gademotta were employed as thrusting spears. However, 

fracture velocity data on the majority of the pointed forms were higher than 

the threshold experimentally established for thrusting spears. Moreover, 

although a single specimen records a fracture velocity value in the dynamic 

loading range (attributed only to arrow/dart impact), its morphological 

features are closer to spear points than to arrows/darts. Therefore, the most 

parsimonious interpretation of the Gademotta points is that the majority of 
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them were used as tips for javelins. 

Costs and benefits in flake production were calculated on whole flake 

assemblages from sites in the Gademotta, Kibish and Middle Awash 

regions. Comparisons of cost, benefit and cost-benefit ratio values were 

conducted between sites from older versus younger contexts within the 

respective site-complexes. Results show that for most variables, differences 

between the later Middle- and earlier Upper Pleistocene sites were not 

statistically significant. Inter-regional comparisons also yielded results that 

confirm that cutting edge production and core exploitation patterns across 

the timescale of >279 ka-80 ka remained substantially similar.  

 

 7.2 Discussion and Conclusions 

A long-standing question in paleoanthopology has been how later 

Middle Pleistocene behavioral contexts compare with Upper Pleistocene 

ones. In particular, behaviors across the broader time marked by the 

emergence of H. sapiens have long attracted enormous research attention. 

The currently most widely applied approach to studying behavioral 

modernity is problematic. This approach focuses on the first appearance 

datums for certain behavioral traits believed to be indicative of modern 

cognition. Unfortunately the hallmarks of modern cognition continue to be 

based on concepts that draw from the archaeological record marking the 

transition into the Upper Paleolithic in Europe, and there is widespread 

discontent with the application of this approach to the Stone Age of sub-
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Saharan Africa (Minichillo 2005; Shea 2011).  

The short-chronology-to-behavioral modernity approach (Klein 2000; 

Klein & Edgar 2002) has been strongly criticized in the face of multiple 

lines of evidence that show that hominin populations in the later Middle- 

and earlier Upper Pleistocene were capable advanced behaviors that were 

common by ca. 50 ka (e.g., Minichillo 2005; Marean et al. 2007; K. Brown 

et al. 2009, 2012; McBrearty & Tryon 2006; Van Peer et al. 2003; 

Henshilwood et al. 2011; Wadley et al. 2011; Krause et al. 2007). The long 

chronology approach, too, has been criticized as merely adopting the trait-

based approach to modern behaviors. The coupling of behavioral with 

anatomical modernity (e.g., Nowell 2010, and references therein), and the 

stochastic appearance of certain so-called traits of modern behavior (Hovers 

& Belfer-Cohen 2006) further complicate how the African Paleolithic 

record has to be studied and interpreted. Despite dissatisfaction with the 

behavioral modernity approach, it is still widely applied.  

In this dissertation, I have taken a different approach comparing the 

range of behavioral expressions among hominin populations across the later 

Middle- and earlier Upper Pleistocene in the Omo Valley, the Main 

Ethiopian Rift and the Afar Rift. This approach also has the advantage of 

drawing on those archaeological remains that are the most abundant and 

have the fewest taphonomic biases – i.e. lithics (Shea 2011, and comments 

therein; Minichillo 2005).  

Currently, no strong evidence has been presented for modern behavior 
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amongst the earliest known H. sapiens (Shea 2008; Clark et al. 2003; 

Beyene 2010). In a recent review, Shea (2011: 10-11) tries to show how far-

fetched interpretations can become dogma in the attempt to fit certain 

behavioral patterns into the trait-list of modern/symbolic behaviors. In his 

examples, Shea suggests that certain evidence, such as the potentially non-

utilitarian transport of opal, can be interpreted as indicative of the capacity 

of the Kibish early H. sapiens populations for symbolic behavior. It has 

been argued that independent evidence from Herto can be used to make an 

even stronger case for the capacity of H. sapiens idaltu populations for 

symbolic thinking (Sahle & Beyene forthcoming). In the most common 

interpretation, the defleshing cutmarks on the Herto crania, together with the 

exploitation of lithic raw material sources ca 290km away from home bases, 

make a strong case for the behavioral modernity of the Herto humans 

(McBrearty & Brooks 2000 and references therein). The location and 

patterns of the cranial cutmarks provide strong evidence that these were the 

result of intentional defleshing while the absence of post-cranial remains in 

an otherwise very good depositional context supports the assumption that 

the crania were curated, most likely as part of a post-mortem ritual (Clark et 

al. 2003; White et al. 2003; Sahle & Beyene forthcoming). The presence of 

lithic raw material quarried from a remote source (Negash et al. 2011) is 

indicative of the presence of knowledge and exploitation of distant 

resources and/or a trade/exchange practice (McBrearty & Brooks 2000). 

The analysis of costs and benefits involved in the behavioral responses 
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of hominins to ecological circumstances has been used as an important tool 

to measure their behavioral capacities (Shea 2011; Potts 1998; Braun et al. 

2005). Costs and benefits calculated from whole flake metric data from the 

Gademotta, Kibish and Middle Awash assemblages show that hominins 

possessed significantly similar technological capacities across the later 

Middle- and earlier Upper Pleistocene. Further comparisons show that 

Middle- and Upper Pleistocene hominin populations inhabiting different 

sites within the rift valley in Ethiopia had substantially similar technological 

behavior as far as flake production and core exploitation patterns are 

concerned. 

Projectile technologies are believed to have significantly improved 

hominin subsistence strategies by way of providing safer, more efficient 

hunting strategies and broader niche/diet (e.g., Churchill 1993; Brooks et al. 

2006; Shea & Sisk 2010). As a result, the presence of such technologies has 

been considered strong evidence for behavioral modernity (e.g., McBrearty 

& Brooks 2000; Lombard & Phillipson 2010; Lombard 2011).  

Velocity-dependent microfracture features documented on an 

assemblage of pointed pieces from several sites within the Gademotta Fm. 

show that nearly three-fourths of the pieces record fracture velocity values 

beyond the threshold experimentally established for thrusting spears. One 

specimen records a fracture velocity value within the dynamic precursory 

loading rate. Macrofracture studies confirm that most of these pointed 

pieces retain fractures that are diagnostic of impact from weapon use. 
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Morphometric data strongly suggest that the Gademotta pieces fit well 

within the range experimentally documented for spear tips. Spear points 

may have been used for both thrusting and throwing (e.g., Villa & Lenoir 

2006). As a result, it can be securely concluded from the various lines of 

evidence that at least the majority of the Gademotta pointed pieces were 

used as javelin tips. This makes them the world’s earliest stone-tipped 

projectile armatures (cf. Thieme 1997; Lombard & Phillipson 2010; 

Lombard 2011). 

A confident identification of prehistoric armatures needs the 

incorporation of more than one method as each method has its own 

strengths and weaknesses. Although one could accept or reject the 

hypothesis that the Gademotta pointed pieces were used as the tips of 

hunting weapons based solely on any one of the approaches employed here, 

the picture derived from the combination of results from all methods 

provides sound and compelling interpretations.  

The dominance of antelopes (possibly A. buselaphus and C. taurinus) 

and the representation of an aquatic species (H. ampibius Linne) in the 

faunal assemblage recovered from a wadi fill tentatively considered 

contemporaneous with the occupation at ETH-72-8B (Gautier 1974: 165) 

has raised the question of whether the makers of the earliest MSA tools 

hunted those animals. The absence of cultural modification marks and any 

faunal remains directly associated with the excavated occupation horizons 

rendered this hypothesis difficult to investigate (see also Brandt 1986). 
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Renewed attempts to establish the stratigraphic relationship of this fossil-

bearing secondary deposit with the other units in the Gademotta area proved 

that this is by no means straightforward. 

Later Middle Pleistocene paleoclimatic and paleoenvironmental data 

for the rift valley in Ethiopia are particularly meager (Gasse et al. 1980; 

Gasse & Street 1978; Brandt & Brook 1984; Revel et al. 2010). Evidence 

suggests that certain regions within and along the margins of the Omo 

Valley, the Main Ethiopian Rift and the Afar Rift provided favorable 

contexts that supported occupations during severe and dramatically 

fluctuating paleoclimatic/ paleoenvironmental phases of the Middle- and 

Upper Pleistocene (e.g. Blome et al. 2012; Basell 2008; Brandt et al. 2012). 

In the Gademotta region extreme paleoclimatic conditions of the Middle- 

and Upper Pleistocene were ameliorated by local conditions such as the 

location of the area at eco-zonal boundaries between woodland and 

“savannah” environments (Basell 2008: 2491; also see Trauth et al. 2010) 

and its relatively high altitude (~1900m asl where the sites are). Together 

with a near-lake paleoecology, and a nearby obsidian flow (Vogel et al. 

2006; Negash et al. 2010), these must have encouraged the repeated 

occupation of sites in the region across the later Middle- and Upper 

Pleistocene (Wendorf & Schild 1974; Sahle et al. 2013). At Herto and 

Aduma, sedimentological and faunal evidence shows that Middle- and 

Upper Pleistocene occupations were in near-lake/river habitats (Clark 2003: 

750-751; Yellen et al. 2005: 37). The faunal evidence from the Kibish sites 
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indicates the paleoenvironment of the area ranged from riverine and closed 

woodland habitats to grassland (Assefa 2008). In all of these site-complexes 

in the rift valley in Ethiopia, local situations likely ameliorated 

regional/continental scale paleoclimatic conditions, creating 

microenvironmental conditions with relatively stable habitat (Blome et al. 

2012). 

The multitude of evidence presented from the Gademotta and other 

MSA sites within the rift valley in Ethiopia afford a strong case that the 

behavior of later Middle Pleistocene hominin populations that lived there 

was not dramatically different from those of Upper Pleitocene ones. As 

indicated already, interpretation of the evidence in light of the 

presence/absence of traits of modernity alone does not contribute to the 

more important goal of reconstructing behavioral context using 

evolutionarily important dimensions. Instead, a comparison of the 

technological behavior of hominin population across the critical time period 

when our lineage emerged promises a more comprehensive picture 

(Minichillo 2005; Shea 2008, 2011; Wurz 2012). 

Shea (2008: 478-480; see also Clark 1988) suggests that typological 

similarities among sites in the east African region may be indicative of 

population isolation, continuity and/or periodic dispersals (e.g. Brandt et al. 

2012; Beyin 2006). Specific models, within the “lengthy process to modern 

human origins” (Weaver 2012) framework, hypothesize that changes in the 

adaptive strategies of hominins are brought about partly by environmental 
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changes (Lahr & Foley 1998). Specifically, the restoration of new 

ecological equilibrium in a given area introduces behavioral changes to 

hominin populations inhabiting the area (Lahr & Foley 1998: 148).  The 

present dissertation has empirically tested these assumptions using 

archaeological data.  

The emergence of a distinctly MSA occupation by >279 ka and the 

repeated occupation of the region across the later Middle- and earlier Upper 

Pleistocene indicate that there were stable adaptations at Gademotta. The 

enormous variability witnessed in the metric attributes of assemblages from 

GDM7 and GDM10 as well as the presence of evolutionarily crucial 

innovations such as stone-tipped projectile weapons in these later Middle 

Pleistocene occupations suggest that environmental conditions were 

sufficiently favorable to supporting stable demographic patterns evidenced 

in the stability of technological adaptations across this time period. The 

Gademotta later MP populations, and those from the broader rift valley in 

Ethiopia (Shea 2008; Clark et al. 2003), must have represented populations 

with successful adaptive strategies in a relatively stable sub-region. These 

later Middle Pleistocene populations/species must have expanded in the sub-

region and been ancestral to H. sapiens. Closer to the Middle-Upper 

Pleistocene divide, the presence of the Nubian Techno-complex at ETH-72-

6 provides a stronger evidence for some form of cultural/demographic 

exchange between this particular region, the Nile Valley, and Arabia (Van 

Peer et al. 2003; Rose et al. 2011). Such a pattern is also consistent with the 
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available evidence that, by 125 ka, humans occupied the Red Sea coast 

north of the Afar Rift and exploited marine food resources (Walter et al. 

2000; Beyin 2006). At Porc Epic, on the southeastern margins of the 

Southern Afar Rift, later MSA humans transported and used perforated 

terrestrial gastropod opercula for symbolic purposes (Assefa et al. 2008). 

Interestingly, these beads show notable similarity in their shape with the 

ostrich eggshell beads from the northern Kenyan site of Enkapune Ya Muto, 

again suggesting demographic exchange/contact (Assefa et al. 2008: 754; 

Ambrose 1998). 

Recently, there is an increasing tendency to depict the South African 

coastal regions as important crucible of modern humans based heavily on 

archaeological evidence for what are commonly accepted as markers of 

sophisticated behavior (Marean et al. 2007; Henshilwood et al. 2011; K. 

Brown et al. 2012). While the strength of the behavioral evidence from 

these contexts is an issue in itself (see, for example, the strength of the 

evidence used to support the claim for the presence of projectile weapons at 

Pinnacle Point [K. Brown et al. 2012] in light of discussions provided in 

Chapter Five of this dissertation regarding a sound identification of such 

technologies), the claims for South Africa as a uniquely important crucible 

of modern humans are poorly-grounded. Such claims downplay the rich data 

on technological, fossil, genetic, and paleoenvironmental records elsewhere 

on the continent spanning the later Middle- and earlier Upper Pleistocene.  

First, the richness of the behavioral evidence in sites from coastal 
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South Africa might be the result of many factors, ranging from greater 

research attention to taphonomic biases and context of occupation (e.g. 

costal/near-coast caves versus open-air sites) (Shea 2012). Second, while 

Marean and colleagues (Marean et al. 2007) have agued that there is likely 

to be a close relation between climatic changes and the development of 

sophisticated behavior in the southern coastal regions of South Africa, other 

authors dispute this (Blome et al. 2012). In contrast, east Africa exhibits a 

pattern whereby microenvironmental conditions and high reliefs may have 

supported relatively persistent hominin occupations regardless of climatic 

changes marking this period (Blome et al. 2012). Third, based on genetic 

evidence, east Africa is the region where the first H. sapiens are most likely 

to have originated, with southern Africa peripheral at best (Ray et al. 2005). 

It is reasonable to assume that different regions on the African continent 

were more suitable for hominins at different periods, and that the origin of 

modern humans was a more complex process. However, data from various 

fields of study suggest that east Africa is the most likely source place for the 

earliest H. sapiens (White et al. 2003; McDougall et al. 2005; Pearson et al. 

2008; Sahle et al. 2013; McBrearty & Tryon 2006; Shea 2008, 2011; Ray et 

al. 2005; Soares et al. 2012; Blome et al. 2012).  

To sum up, based on the data presented in this dissertation, we can 

conclude that later Middle- and earlier Upper Pleistocene hominin 

populations in the Omo Valley, the Main Ethiopian Rift and the Afar Rift 

shared comparable capacities for behavioral variability. In addition, the rich 
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genetic, fossil and paleoenvironmental data strongly suggest that 

microenvironmental and ecological conditions in different areas within this 

region must have allowed stable habitats that supported continuous/repeated 

occupations. This is consistent with such strong models that suggest the 

presence of successful hominin populations during the later Middle 

Pleistocene that must have been ancestral to modern humans (Lahr & Foley 

1998). Hominin populations within the rift system in Ethiopia produced and 

used projectile weapons from as early as >279 ka; exploited resources from 

distant sources, and practiced post-mortem manipulation and curation of 

human remains by 154 ka; inhabited coastal areas and exploited marine 

resources by 125 ka; and shared a regional technological tradition in the 

Upper Pleistocene across MIS 5. This evidence for behavioral variability 

strongly indicates the presence of hominin populations during the later 

Middle Pleistocene with behavioral capacities comparable to earlier Upper 

Pleistocene hominin populations. The earliest H. sapiens appeared in this 

part of the continent in a context where evolutionarily stable adaptations 

may have provided the crucible for the development of behavioral patterns 

that exist in all populations today. 
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Appendix-1 

 

LITHIC ANALYSIS FRAMEWORK 

(modified from Shea 2008: appendix) 

 

RAW MATERIALS 

Raw material type and color was recorded for all artifacts, including debris 

from both renewed excavations. All identifications were made by myself 

and Dr. Braun, based on visual and hand lens inspection. Raw material types 

are by and large dominated by obsidian, for which only the different color 

types (black, gray, and green) were recorded. Rhyolite made up the largest, 

single, non-obsidian raw material type. This varied in color from shades of 

gray to green. The identification of rhyolite was mostly conducted using a 

hand lens, which enabled to see phenocryst inclusions. Other raw material 

types varied from ignimbrite to basalt and were mostly noted in the debris 

class, hence were not specifically documented.  

 

ARTIFACT CLASSIFICATION 

Flaked stone artifacts were divided into five main artifact categories: cores, 

debitage, debris, retouched tools, and hammerstones. More specific 

classifications and measurements differed among these artifact categories. 

Each is discussed below. 

 

All artifact measurements were made in millimeters using digital calipers. 

Classifications and measurements were recorded in the laboratory in the 

NME. Representative samples of artifacts were sketched in the lab and by 

myself. A selection of these have been included in this dissertation. 

 

Cores/flaked pieces 

Cores include most of the artifacts from which flakes longer than 1 cm have 

been struck. Cores were classified into the following artifact categories: 
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Bifacial chopper: a pebble core that has two series of continuous flake scars 

detached on opposite faces of the same portion of its 

circumference, but not for more than 50% of its 

circumference. 

Partial discoid: a pebble core that has bifacial flake scars on more than 50% 

of its circumference. 

Discoid: a pebble core, roughly circular in planform aspect and lenticular 

cross section, whose entire circumference has bifacial 

flake scars, but whose flake scars do not extend past the 

midpoint of the core. 

Core scraper: essentially a discoid with one flat, non-cortical surface and 

another highly convex surface covered by flake scars 

indicating the working edge. 

Asymmetrical discoid: a core on which invasive flake removals are 

predominantly on one side and platform preparation flake 

scars are on the other. Flake scars on the former surface do 

not generally extend beyond the midpoint of the core 

surface. Usually, there is a residual cortical surface at the 

center of the less invasively flaked surface. Yellen et al. 

(2005) coined the term ‘‘Aduma cores’’ for similar 

artifacts from the Middle Awash Valley. 

Levallois core: cores with a hierarchy of flake removal surfaces, a flake 

removal surface on which flake scars extend past the 

midpoint of the core, and a platform preparation surface 

with less invasive flake scars. 

Core-on-flake: a flake that has a flake detachment scar longer than 30 mm 

somewhere on its surface and no other sign of edge-

modification or retouch. 

Other core type: this category encompasses cores that do not fit into one of 

the above categories (e.g., pebbles with a single flake 

removal, prismatic blade cores).  
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Core fragment: fragment of a pebble, flake, or angular rock fragment with 

visible flake scars greater than 20 mm, but for which no 

precise typological assignment could be made.  

 

The principal measurements made on cores included the following: 

Length: the core’s longest dimension. 

Width: the longest dimension perpendicular to length. 

Thickness: the distance between the upper and lower surfaces of the core 

measured at the intersection of length and width and 

perpendicular to the plane defined by the length and width 

dimensions. 

 

Debitage/unretouched flakes and flake fragments 

Debitage includes all unretouched flakes and flake fragments larger than 1 

cm. The debitage types recognized by this study include the following: 

 

Cobble fragment: hemispherical fragment of a cobble or pebble split by a 

shear fracture. 

Initial cortical flake: flake with more than half of its dorsal surface covered 

by cortex. 

Residual cortical flake: flake with less than half of its dorsal surface covered 

by cortex. 

Levallois flake: symmetrical, non-cortical flake with facetted and projecting 

striking platform. 

Levallois blade: symmetrical, non-cortical blade (an elongated rectangular 

flake) with facetted and projecting striking platform. 

Levallois point: symmetrical, non-cortical triangular flake with facetted and 

projecting striking platform. 

Atypical Levallois flake: asymmetrical, non-cortical, or partly cortical flake 

with facetted and projecting striking platform. 
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Atypical Levallois blade: asymmetrical, non-cortical, or partly cortical blade 

with facetted and projecting striking platform. 

Atypical Levallois point: asymmetrical, noncortical, or partly cortical 

triangular flake with facetted and projecting striking 

platform. 

Pseudo-Levallois point: triangular or trapezoidal flake with facetted striking 

platform and whose technological and morphological long 

axes diverge from each other. 

Kombewa flake: a flakewhose dorsal surface preserves the former ventral 

bulbar surface of the flake/core from which it was struck. 

Prismatic blade: flakes whose length is at least twice that of their width, 

which feature parallel lateral edges and distal– proximally 

aligned dorsal flake scars. 

Non-cortical flake: any non-Levallois, non-cortical flake >30mm in any 

dimension and not subsumed by other debitage types. 

Biface-thinning flake: a flake with a facetted striking platform, low external 

platform-dorsal surface angle, and multidirectional flake 

scars on its dorsal surface. 

Core-trimming element: flakes whose lateral or distal edges contain 

substantial amounts of residual core edge (i.e., for more 

than one third of the flake’s circumference). 

Angular fragment: flake fragment that cannot be definitively assigned to a 

flake fragment subtype. 

Flake fragment, proximal: incomplete flake retaining the striking platform 

and bulbar eminence. 

Flake fragment, other: incomplete flake lacking the striking platform and/or 

bulbar eminence.  

More specific notations about the kind of flake fragment (distal, medial, 

lateral, etc.) were noted in cataloging the artifacts, but this aspect of flake 

fragment variation is not presented in this study. 
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Five metric variables were measured on all whole flakes >30mm. These 

measurements, based on definitions in Dibble (1997), were selected because 

they can be related to cost-benefit models of lithic production strategies. 

Values for the following variables were measured on all whole flakes from 

the Gademotta, Herto and Aduma MSA assemblages >30mm. Similar 

values were measured on Kibish MSA assemblages >30mm by Dr. Shea: 

 

Technological length: the distance from the point of percussion on the flake 

striking platform to the most distant point on the distal end 

of the flake perpendicular to the plane of striking platform 

width. 

Midpoint width: flake width measured perpendicularly to technological 

length at the midpoint of technological length. 

Midpoint thickness: the distance between the dorsal and ventral surfaces at 

the mid point of technological length. 

Striking platform Width: the distance between the two most lateral points on 

the striking platform. 

Striking platform thickness: the distance between the point of percussion 

and the nearest point on the opposite edge of the striking 

platform. 

 

Debris/small debitage 

Debris included flakes or flake fragments <30mm in any dimension. Debris 

was cataloged by raw material type and as either ‘cortical’ or ‘non-cortical’.  

 

Retouched tools 

Retouched tools from the Kibish MSA assemblages were classified in terms 

of the following numbered types: 

 

Point: triangular/convergent flake with retouch restricted to its distolateral 

edges (e.g., Mousterian point, retouched Levallois point). 
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Side scraper: flake with invasive retouch along one lateral edge. 

Double scraper: flake with invasive retouch along both lateral edges and 

whose edges do not converge to a point at the distal end of 

the flake. 

Convergent side scraper: flake with invasive retouch along both lateral 

edges and whose edges converge symmetrically to a point 

at the distal end of the flake 

Transverse scraper: flake with invasive retouch on its distal edge. 

Borer/awl: flake with sharp projection formed by two sets of concave flake 

removals. 

Notch: flake with either a single or a small cluster of flake removals creating 

a marked concavity on its edge. 

Denticulate: flake with a series of deep concavities along its edge. 

Bipolar flake: a flake with symmetrical patterns of crushing and/or invasive 

flake scars on opposite sides of the circumference.  

Other retouched flake: retouched flake not subsumed by the other 

categories. 

Foliate point: bifacially flaked artifact with convergent lateral edges that is 

less than 10 cm in length. Fragments of foliate points were 

differentiated from whole pieces. 

 

Measurements of the retouched tools are largely the same as those made for 

debitage (i.e., length, width, thickness, platform width, platform thickness). 

The extent of retouch on each tool was measured by placing the artifact on 

an eight-point polar coordinate grid and recording the number of whole 

segments of the tool’s circumference that intersected with retouched edges. 

 

Hammerstones/pounded pieces 

Pebbles/cobbles with discrete patches of pitting and crushing of the sort 

resulting from hard-hammer percussion were identified as hammerstones. 

Hammerstones were classified as either whole or fragmentary, and their 
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length, width, and thickness were measured in the same way as for cores. 

Cores with signs of percussion damage on them were classified as cores, but 

a note reporting their visible damage was made in the ‘‘Remarks’’ section of 

the database. 
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Appendix-2 
 

RELATIVE ABUNDANCE AND ISOCHRON DATA FOR 40Ar/39Ar 
GEOCHRONOLOGY 

 
 
Complete Ar data, corrected for backgrounds, mass discrimination, and 
radioactive decay. Relative abundances of Ar isotopes are given in 
nanoAmperes (nA) of amplified ionbeam current. The average sensitivity 
of the source/detector system, determined from air pipette analyses 
interspersed with the samples, is 7.39 x 1013 nA/mol. 
 
 
Relative abundances (Samples Trench1Step1 and Trench1Step2 of Unit 12) 
  

Run ID Sample 40Ar ± 40Ar (1σ) 39Ar ± 39Ar (1σ) 38Ar  
61114-01A T1S1 0.1599242 0.0002860 0.0121835 0.0000595 0.0001628  
61114-03A T1S1 0.0210457 0.0002550 0.0068338 0.0000497 0.0000987  
61114-04A T1S1 0.0164226 0.0002140 0.0067762 0.0000743 0.0001113  
61114-05A T1S1 0.0257079 0.0002267 0.0046874 0.0000375 0.0000675  
61114-06A T1S1 0.0290698 0.0002404 0.0055416 0.0000430 0.0000904  
61114-08A T1S1 0.0204238 0.0002404 0.0057869 0.0000669 0.0001009  
61114-10A T1S1 0.0171103 0.0001943 0.0049595 0.0000430 0.0000475  
61114-11A T1S1 0.0326892 0.0002550 0.0038691 0.0000391 0.0000834  
61114-12A T1S1 0.0227993 0.0001928 0.0061611 0.0000734 0.0000909  
61114-13A T1S1 0.0421797 0.0002550 0.0085764 0.0000819 0.0001618  
61114-14A T1S1 0.0458690 0.0002550 0.0058192 0.0000422 0.0001216  
61114-15A T1S1 0.0236133 0.0002404 0.0099134 0.0000532 0.0000844  
61114-17A T1S1 0.0210016 0.0002550 0.0057398 0.0000659 0.0000694  
61114-19A T1S1 0.0159731 0.0002550 0.0035685 0.0000632 0.0000629  
61114-20A T1S1 0.0203766 0.0002202 0.0057964 0.0000696 0.0000438  
61114-22A T1S1 0.0252922 0.0002476 0.0037781 0.0000354 0.0000519  
61114-23A T1S1 0.0222905 0.0002404 0.0068360 0.0000472 0.0001048  
61114-25A T1S1 0.0218339 0.0002404 0.0039197 0.0000422 0.0000898  
61114-26A T1S1 0.0249515 0.0002476 0.0072667 0.0000455 0.0000914  
61114-27A T1S1 0.0295541 0.0002550 0.0070012 0.0000463 0.0000859  
61114-28A T1S1 0.0490523 0.0002860 0.0034583 0.0000447 0.0001304  
61114-29A T1S1 0.1049711 0.0002404 0.0051580 0.0000706 0.0001265  
61114-31A T1S1 0.0184699 0.0002140 0.0042365 0.0000406 0.0000322  
61114-32A T1S1 0.0590149 0.0002860 0.0062400 0.0000472 0.0000952  
61114-33A T1S1 0.0208764 0.0002476 0.0060377 0.0000472 0.0000841  
61114-35A T1S1 0.0187388 0.0002550 0.0049379 0.0000414 0.0000495  
61114-36A T1S1 0.0142532 0.0002267 0.0034467 0.0000375 0.0000381  
61114-37A T1S1 0.0178090 0.0002404 0.0040603 0.0000422 0.0000868  
61114-39A T1S1 0.0857972 0.0002267 0.0140255 0.0000848 0.0002282  
61114-40A T1S1 0.0275653 0.0002267 0.0046949 0.0000568 0.0000619  
61114-41A T1S1 0.0163354 0.0002025 0.0079661 0.0000414 0.0001004  
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61114-42A T1S1 0.0184361 0.0002267 0.0045547 0.0000422 0.0000705  
61114-43A T1S1 0.0366176 0.0002476 0.0080824 0.0000463 0.0000663  
61114-44A T1S1 0.0250542 0.0002267 0.0032228 0.0000524 0.0000354  
61114-47A T1S1 0.0641398 0.0003748 0.0029487 0.0000333 0.0000828  
61114-48A T1S1 0.0282744 0.0003002 0.0046635 0.0000455 0.0000634  
61114-49A T1S1 0.0334722 0.0003342 0.0044221 0.0000398 0.0000880  
61114-50A T1S1 0.0260478 0.0002786 0.0055090 0.0000398 0.0001020  
61114-51A T1S1 0.0482591 0.0002823 0.0060445 0.0000463 0.0001183  
61114-52A T1S1 0.0254718 0.0003053 0.0035526 0.0000383 0.0000597  
61114-53A T1S1 0.0339474 0.0002864 0.0065615 0.0000463 0.0000669  
61114-54A T1S1 0.0749808 0.0004280 0.0072932 0.0000781 0.0001524  
61114-55A T1S1 0.0215116 0.0003002 0.0032562 0.0000368 0.0000780  
61114-56A T1S1 0.0568259 0.0003406 0.0090564 0.0000613 0.0001999  
61114-57A T1S1 0.0313315 0.0003106 0.0088513 0.0000506 0.0001243  
61114-58A T1S1 0.0918796 0.0003106 0.0040712 0.0000398 0.0000995  
61114-59A T1S1 0.0750763 0.0003002 0.0113251 0.0000982 0.0002006  
61114-60A T1S1 0.0232911 0.0003106 0.0052429 0.0000641 0.0000839  

        
61115-01A T1S2 0.1155504 0.0003106 0.0059765 0.0000715 0.0001672  
61115-02A T1S2 0.0452533 0.0003220 0.0071589 0.0000455 0.0000974  
61115-03A T1S2 0.0342665 0.0002823 0.0063665 0.0000669 0.0001072  
61115-04A T1S2 0.0442188 0.0003106 0.0062705 0.0000422 0.0001328  
61115-05A T1S2 0.0472913 0.0003342 0.0082928 0.0000559 0.0001237  
61115-06A T1S2 0.0284099 0.0003053 0.0047986 0.0000541 0.0000419  
61115-07A T1S2 0.0260752 0.0002953 0.0064999 0.0000696 0.0000958  
61115-08A T1S2 0.0349397 0.0003280 0.0050195 0.0000595 0.0000781  
61115-09A T1S2 0.0205593 0.0002864 0.0073813 0.0000455 0.0000683  
61115-10A T1S2 0.0496896 0.0003280 0.0071166 0.0000743 0.0000907  
61115-11A T1S2 0.0217980 0.0003106 0.0034368 0.0000354 0.0001127  
61115-12A T1S2 0.0520017 0.0002864 0.0092889 0.0000515 0.0001345  
61115-13A T1S2 0.0363292 0.0003280 0.0044096 0.0000383 0.0000980  
61115-14A T1S2 0.0463318 0.0002907 0.0083262 0.0000724 0.0000710  
61115-15A T1S2 0.0171943 0.0003002 0.0057884 0.0000447 0.0000860  
61115-16A T1S2 0.0421961 0.0003162 0.0076989 0.0000489 0.0000942  
61115-17A T1S2 0.0860732 0.0003895 0.0039620 0.0000604 0.0000978  
61115-18A T1S2 0.0426169 0.0003280 0.0051355 0.0000375 0.0001039  
61115-19A T1S2 0.0335708 0.0003106 0.0034848 0.0000463 0.0000716  
61115-20A T1S2 0.0843892 0.0003106 0.0070984 0.0000455 0.0001222  
61115-21A T1S2 0.0381908 0.0003280 0.0072873 0.0000438 0.0001223  
61115-22A T1S2 0.0300991 0.0003280 0.0079939 0.0000463 0.0000980  
61115-23A T1S2 0.0240136 0.0003220 0.0073247 0.0000430 0.0001060  
61115-24A T1S2 0.0225902 0.0003106 0.0064626 0.0000604 0.0000333  
61115-25A T1S2 0.0643964 0.0003406 0.0079357 0.0000613 0.0001328  
61115-26A T1S2 0.0392704 0.0003162 0.0042196 0.0000622 0.0000595  
61115-27A T1S2 0.0875766 0.0003748 0.0060149 0.0000715 0.0000905  
61115-28A T1S2 0.0609596 0.0003538 0.0044874 0.0000391 0.0000633  
61115-29A T1S2 0.0483483 0.0003220 0.0059542 0.0000447 0.0000979  
61115-30A T1S2 0.0366566 0.0003162 0.0076334 0.0000724 0.0001332  
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61115-31A T1S2 0.0241408 0.0003053 0.0044940 0.0000375 0.0000766  
61115-32A T1S2 0.0184761 0.0003162 0.0063214 0.0000447 0.0000936  
61115-33A T1S2 0.0971636 0.0003748 0.0064615 0.0000724 0.0001452  
61115-34A T1S2 0.0531059 0.0003471 0.0073543 0.0000715 0.0000731  
61115-35A T1S2 0.0194202 0.0003002 0.0042737 0.0000383 0.0000382  
61115-36A T1S2 0.0268418 0.0003002 0.0084596 0.0000463 0.0001283  
61115-37A T1S2 0.0358531 0.0003002 0.0051972 0.0000406 0.0001375  
61115-38A T1S2 0.0206188 0.0003106 0.0067325 0.0000406 0.0000773  
61115-39A T1S2 0.0416800 0.0002864 0.0071457 0.0000489 0.0001060  
61115-40A T1S2 0.0375463 0.0003053 0.0060742 0.0000678 0.0000833  
61115-41A T1S2 0.0407430 0.0003220 0.0060511 0.0000706 0.0001097  
61115-42A T1S2 0.0566094 0.0003538 0.0069780 0.0000506 0.0001146  
61115-44A T1S2 0.0321956 0.0003053 0.0096313 0.0000532 0.0001526  
61115-45A T1S2 0.0339043 0.0003406 0.0048873 0.0000406 0.0001108  
61115-46A T1S2 0.0330423 0.0003162 0.0060071 0.0000422 0.0000532  
61115-47A T1S2 0.0169080 0.0003002 0.0052973 0.0000604 0.0000661  
61115-48A T1S2 0.0451763 0.0003342 0.0041005 0.0000398 0.0000593  
61115-50A T1S2 0.0536621 0.0002702 0.0053321 0.0000398 0.0000834  
61115-51A T1S2 0.0294187 0.0002476 0.0058969 0.0000507 0.0000725  
61115-52A T1S2 0.0258300 0.0002335 0.0083316 0.0000774 0.0000780  
61115-53A T1S2 0.0248705 0.0002335 0.0071207 0.0000330 0.0000640  
61115-54A T1S2 0.0243007 0.0001910 0.0082692 0.0000425 0.0000828  
61115-55A T1S2 0.0147981 0.0002941 0.0055318 0.0000591 0.0000742  
61115-56A T1S2 0.0307415 0.0002335 0.0079482 0.0000706 0.0001174  
61115-57A T1S2 0.0244158 0.0002202 0.0046066 0.0000372 0.0000732  
61115-58A T1S2 0.0257900 0.0002335 0.0062093 0.0000452 0.0000791  
61115-60A T1S2 0.0320694 0.0002550 0.0076611 0.0000479 0.0000825  

        
Omitted Analyses:       

61114-02A T1S1 0.0114793 0.0002267 0.0026588 0.0000375 0.0000709  
61114-07A T1S1 0.0083326 0.0001933 0.0045732 0.0000422 0.0000816  
61114-09A T1S1 0.0132793 0.0002404 0.0039339 0.0000430 0.0000512  
61114-16A T1S1 0.0129232 0.0002335 0.0048048 0.0000422 0.0000833  
61114-18A T1S1 0.0113603 0.0002267 0.0029762 0.0000340 0.0000227  
61114-21A T1S1 0.0118539 0.0002140 0.0042133 0.0000398 0.0000728  
61114-24A T1S1 0.0089610 0.0002081 0.0035742 0.0000559 0.0000175  
61114-30A T1S1 0.0127323 0.0002335 0.0027371 0.0000347 0.0000345  
61114-34A T1S1 0.0118067 0.0002202 0.0035388 0.0000375 0.0000552  
61114-38A T1S1 0.0128134 0.0002476 0.0022557 0.0000506 0.0000547  
61114-45A T1S1 0.0098630 0.0002025 0.0024049 0.0000347 0.0000817  
61114-46A T1S1 0.0073159 0.0002140 0.0019696 0.0000326 0.0000617  
61114-40aB T1S1 0.0041747 0.0002025 0.0007338 0.0000287 -0.0000102  
61114-41aB T1S1 0.0012797 0.0002025 0.0003652 0.0000277 0.0000000  
61114-42aB T1S1 0.0010477 0.0001972 0.0003465 0.0000277 0.0000116  
        
61115-43A T1S2 0.0053179 0.0002823 0.0038519 0.0000383 -0.0000090  
61115-49A T1S2 0.0077962 0.0002081 0.0004592 0.0000225 0.0000126  
61115-59A T1S2 0.0011058 0.0001972 0.0002512 0.0000220 0.0000002  
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Run ID Sample 
± 38Ar 
(1σ) 37Ar 

± 37Ar 
(1σ) 36Ar ± 36Ar (1σ)  

61114-01A T1S1 0.0000264 0.0000410 0.0000349 0.0001760 0.0000063  
61114-03A T1S1 0.0000264 0.0000159 0.0000362 0.0000266 0.0000056  
61114-04A T1S1 0.0000280 -0.0000231 0.0000377 0.0000130 0.0000066  
61114-05A T1S1 0.0000280 -0.0000271 0.0000372 0.0000530 0.0000065  
61114-06A T1S1 0.0000264 0.0000049 0.0000358 0.0000479 0.0000056  
61114-08A T1S1 0.0000269 -0.0000557 0.0000377 0.0000283 0.0000056  
61114-10A T1S1 0.0000259 0.0000247 0.0000383 0.0000259 0.0000067  
61114-11A T1S1 0.0000286 0.0000109 0.0000377 0.0000371 0.0000055  
61114-12A T1S1 0.0000269 -0.0000113 0.0000377 0.0000419 0.0000069  
61114-13A T1S1 0.0000298 0.0000090 0.0000377 0.0000801 0.0000058  
61114-14A T1S1 0.0000280 -0.0000289 0.0000383 0.0001173 0.0000063  
61114-15A T1S1 0.0000286 0.0000265 0.0000394 0.0000126 0.0000054  
61114-17A T1S1 0.0000269 0.0000496 0.0000367 0.0000274 0.0000052  
61114-19A T1S1 0.0000264 -0.0000038 0.0000394 0.0000262 0.0000056  
61114-20A T1S1 0.0000259 -0.0000251 0.0000412 0.0000303 0.0000065  
61114-22A T1S1 0.0000264 -0.0000271 0.0000372 0.0000113 0.0000055  
61114-23A T1S1 0.0000280 0.0000258 0.0000394 0.0000264 0.0000055  
61114-25A T1S1 0.0000298 -0.0000216 0.0000367 0.0000472 0.0000067  
61114-26A T1S1 0.0000264 -0.0000248 0.0000394 0.0000325 0.0000055  
61114-27A T1S1 0.0000275 -0.0000323 0.0000388 0.0000451 0.0000056  
61114-28A T1S1 0.0000292 -0.0000109 0.0000400 0.0001402 0.0000060  
61114-29A T1S1 0.0000264 -0.0000175 0.0000372 0.0002962 0.0000069  
61114-31A T1S1 0.0000269 -0.0000047 0.0000358 0.0000322 0.0000055  
61114-32A T1S1 0.0000269 -0.0000436 0.0000372 0.0001591 0.0000062  
61114-33A T1S1 0.0000286 0.0000193 0.0000367 0.0000272 0.0000066  
61114-35A T1S1 0.0000269 -0.0000151 0.0000372 0.0000282 0.0000054  
61114-36A T1S1 0.0000269 -0.0000270 0.0000383 0.0000151 0.0000054  
61114-37A T1S1 0.0000286 -0.0000345 0.0000383 0.0000321 0.0000066  
61114-39A T1S1 0.0000318 -0.0000196 0.0000372 0.0001796 0.0000064  
61114-40A T1S1 0.0000269 -0.0000316 0.0000383 0.0000065 0.0000060  
61114-41A T1S1 0.0000280 -0.0000021 0.0000372 0.0000145 0.0000063  
61114-42A T1S1 0.0000255 -0.0000134 0.0000377 0.0000292 0.0000054  
61114-43A T1S1 0.0000264 -0.0000485 0.0000394 0.0000682 0.0000056  
61114-44A T1S1 0.0000259 -0.0000500 0.0000388 0.0000624 0.0000064  
61114-47A T1S1 0.0000275 -0.0000188 0.0000338 0.0001684 0.0000057  
61114-48A T1S1 0.0000269 0.0000199 0.0000338 0.0000600 0.0000064  
61114-49A T1S1 0.0000269 -0.0000181 0.0000333 0.0000828 0.0000058  
61114-50A T1S1 0.0000264 0.0000541 0.0000350 0.0000559 0.0000065  
61114-51A T1S1 0.0000280 0.0000316 0.0000333 0.0001252 0.0000056  
61114-52A T1S1 0.0000269 0.0000264 0.0000350 0.0000646 0.0000062  
61114-53A T1S1 0.0000286 0.0000356 0.0000338 0.0000798 0.0000053  
61114-54A T1S1 0.0000280 0.0000230 0.0000338 0.0001890 0.0000058  
61114-55A T1S1 0.0000255 -0.0000385 0.0000333 0.0000629 0.0000053  
61114-56A T1S1 0.0000370 -0.0000253 0.0000350 0.0001088 0.0000056  
61114-57A T1S1 0.0000264 -0.0000022 0.0000350 0.0000410 0.0000052  
61114-58A T1S1 0.0000259 0.0000171 0.0000369 0.0002664 0.0000063  
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61114-59A T1S1 0.0000259 0.0000177 0.0000344 0.0001750 0.0000074  
61114-60A T1S1 0.0000269 -0.0000414 0.0000362 0.0000274 0.0000051  

        
61115-01A T1S2 0.0000259 0.0000485 0.0000333 0.0003438 0.0000068  
61115-02A T1S2 0.0000340 0.0000309 0.0000338 0.0000915 0.0000068  
61115-03A T1S2 0.0000269 -0.0000249 0.0000356 0.0000884 0.0000069  
61115-04A T1S2 0.0000264 -0.0000023 0.0000350 0.0001065 0.0000057  
61115-05A T1S2 0.0000269 0.0000325 0.0000333 0.0001008 0.0000072  
61115-06A T1S2 0.0000269 -0.0000389 0.0000350 0.0000644 0.0000065  
61115-07A T1S2 0.0000264 0.0000069 0.0000333 0.0000557 0.0000065  
61115-08A T1S2 0.0000286 -0.0000254 0.0000350 0.0000923 0.0000055  
61115-09A T1S2 0.0000264 0.0000004 0.0000338 0.0000375 0.0000052  
61115-10A T1S2 0.0000255 -0.0000417 0.0000328 0.0001231 0.0000073  
61115-11A T1S2 0.0000298 -0.0000152 0.0000309 0.0000559 0.0000054  
61115-12A T1S2 0.0000264 0.0000352 0.0000322 0.0001051 0.0000057  
61115-13A T1S2 0.0000280 0.0000525 0.0000328 0.0000907 0.0000057  
61115-14A T1S2 0.0000311 0.0000097 0.0000369 0.0000824 0.0000068  
61115-15A T1S2 0.0000269 -0.0000026 0.0000328 0.0000147 0.0000050  
61115-16A T1S2 0.0000259 0.0000451 0.0000318 0.0000935 0.0000068  
61115-17A T1S2 0.0000280 -0.0000334 0.0000322 0.0002590 0.0000062  
61115-18A T1S2 0.0000251 0.0000416 0.0000344 0.0001088 0.0000055  
61115-19A T1S2 0.0000275 0.0000507 0.0000328 0.0000607 0.0000068  
61115-20A T1S2 0.0000264 0.0000314 0.0000322 0.0001934 0.0000077  
61115-21A T1S2 0.0000264 0.0000256 0.0000313 0.0000819 0.0000071  
61115-22A T1S2 0.0000255 -0.0000124 0.0000350 0.0000549 0.0000053  
61115-23A T1S2 0.0000255 0.0000137 0.0000350 0.0000276 0.0000053  
61115-24A T1S2 0.0000332 0.0000270 0.0000350 0.0000413 0.0000054  
61115-25A T1S2 0.0000280 0.0000153 0.0000338 0.0001627 0.0000061  
61115-26A T1S2 0.0000292 0.0000019 0.0000328 0.0000966 0.0000055  
61115-27A T1S2 0.0000325 -0.0000262 0.0000350 0.0002658 0.0000066  
61115-28A T1S2 0.0000269 0.0000308 0.0000369 0.0001264 0.0000057  
61115-29A T1S2 0.0000255 0.0000371 0.0000338 0.0001193 0.0000065  
61115-30A T1S2 0.0000259 0.0000154 0.0000333 0.0000772 0.0000065  
61115-31A T1S2 0.0000264 -0.0000446 0.0000318 0.0000389 0.0000053  
61115-32A T1S2 0.0000264 0.0000250 0.0000333 0.0000241 0.0000052  
61115-33A T1S2 0.0000275 -0.0000003 0.0000338 0.0002770 0.0000063  
61115-34A T1S2 0.0000347 -0.0000147 0.0000328 0.0001305 0.0000059  
61115-35A T1S2 0.0000259 0.0000020 0.0000356 0.0000304 0.0000051  
61115-36A T1S2 0.0000275 -0.0000138 0.0000313 0.0000308 0.0000052  
61115-37A T1S2 0.0000264 0.0000235 0.0000322 0.0001044 0.0000055  
61115-38A T1S2 0.0000264 -0.0000280 0.0000338 0.0000284 0.0000052  
61115-39A T1S2 0.0000275 0.0000058 0.0000350 0.0000906 0.0000055  
61115-40A T1S2 0.0000264 -0.0000395 0.0000333 0.0000947 0.0000055  
61115-41A T1S2 0.0000264 0.0000098 0.0000328 0.0000940 0.0000053  
61115-42A T1S2 0.0000280 0.0000897 0.0000350 0.0001394 0.0000057  
61115-44A T1S2 0.0000292 -0.0000028 0.0000350 0.0000514 0.0000050  
61115-45A T1S2 0.0000275 -0.0000216 0.0000356 0.0000905 0.0000067  
61115-46A T1S2 0.0000264 -0.0000126 0.0000344 0.0000743 0.0000055  
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61115-47A T1S2 0.0000292 0.0000293 0.0000338 0.0000199 0.0000062  
61115-48A T1S2 0.0000275 0.0000454 0.0000333 0.0001145 0.0000056  
61115-50A T1S2 0.0000214 -0.0000237 0.0000311 0.0001451 0.0000063  
61115-51A T1S2 0.0000227 -0.0000117 0.0000334 0.0000604 0.0000059  
61115-52A T1S2 0.0000202 0.0000289 0.0000311 0.0000405 0.0000057  
61115-53A T1S2 0.0000220 0.0000179 0.0000341 0.0000225 0.0000059  
61115-54A T1S2 0.0000208 -0.0000012 0.0000334 0.0000476 0.0000059  
61115-55A T1S2 0.0000208 0.0000507 0.0000311 0.0000277 0.0000056  
61115-56A T1S2 0.0000220 -0.0000289 0.0000334 0.0000402 0.0000057  
61115-57A T1S2 0.0000214 -0.0000242 0.0000322 0.0000417 0.0000067  
61115-58A T1S2 0.0000220 -0.0000333 0.0000300 0.0000441 0.0000065  
61115-60A T1S2 0.0000202 0.0000280 0.0000295 0.0000530 0.0000066  

        
Omitted Analyses:       

61114-02A T1S1 0.0000255 -0.0000269 0.0000400 0.0000257 0.0000054  
61114-07A T1S1 0.0000259 0.0000350 0.0000377 0.0000163 0.0000054  
61114-09A T1S1 0.0000355 -0.0000172 0.0000383 0.0000176 0.0000054  
61114-16A T1S1 0.0000298 -0.0000216 0.0000388 0.0000200 0.0000053  
61114-18A T1S1 0.0000362 0.0000139 0.0000362 0.0000193 0.0000056  
61114-21A T1S1 0.0000264 -0.0000093 0.0000358 0.0000112 0.0000053  
61114-24A T1S1 0.0000259 -0.0000334 0.0000362 0.0000070 0.0000054  
61114-30A T1S1 0.0000275 0.0000199 0.0000367 0.0000208 0.0000054  
61114-34A T1S1 0.0000259 0.0000153 0.0000377 0.0000138 0.0000053  
61114-38A T1S1 0.0000259 -0.0000106 0.0000377 0.0000296 0.0000056  
61114-45A T1S1 0.0000259 -0.0000120 0.0000377 0.0000230 0.0000062  
61114-46A T1S1 0.0000264 -0.0001023 0.0000388 0.0000166 0.0000063  
61114-40aB T1S1 0.0000275 -0.0000617 0.0000362 0.0000098 0.0000055  
61114-41aB T1S1 0.0000259 -0.0000158 0.0000367 0.0000045 0.0000060  
61114-42aB T1S1 0.0000264 -0.0000043 0.0000377 0.0000000 0.0000053  

        
61115-43A T1S2 0.0000311 0.0000110 0.0000333 0.0000006 0.0000055  
61115-49A T1S2 0.0000196 -0.0000527 0.0000316 0.0000510 0.0000056  
61115-59A T1S2 0.0000202 0.0000090 0.0000311 -0.0000022 0.0000055  

        
 
Run ID Sample 40Ar*/39Ar ±40Ar*/39Ar (1σ) %40Ar* ±%40Ar* (1σ) 

61114-01A T1S1 8.80758 0.17117 67.15 1.20 
61114-03A T1S1 1.91526 0.24744 62.25 8.05 
61114-04A T1S1 1.84876 0.29237 76.36 12.08 
61114-05A T1S1 2.10179 0.41879 38.36 7.62 
61114-06A T1S1 2.66464 0.30886 50.84 5.87 
61114-08A T1S1 2.06171 0.29234 58.48 8.28 
61114-10A T1S1 1.89186 0.40740 54.89 11.82 
61114-11A T1S1 5.57952 0.43647 66.09 5.13 
61114-12A T1S1 1.66888 0.33582 45.14 9.06 
61114-13A T1S1 2.12796 0.20578 43.31 4.14 
61114-14A T1S1 1.86044 0.33067 23.62 4.14 
61114-15A T1S1 2.00094 0.16358 84.09 6.91 
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61114-17A T1S1 2.23611 0.27834 61.17 7.60 
61114-19A T1S1 2.28279 0.47959 51.05 10.70 
61114-20A T1S1 1.94716 0.33849 55.45 9.62 
61114-22A T1S1 5.78728 0.44067 86.53 6.58 
61114-23A T1S1 2.10636 0.24210 64.66 7.44 
61114-25A T1S1 1.97108 0.51192 35.42 9.18 
61114-26A T1S1 2.09368 0.22802 61.04 6.65 
61114-27A T1S1 2.29360 0.24215 54.39 5.73 
61114-28A T1S1 2.07589 0.53775 14.65 3.71 
61114-29A T1S1 3.19845 0.43077 15.73 1.97 
61114-31A T1S1 2.08848 0.38958 47.95 8.93 
61114-32A T1S1 1.83959 0.30926 19.47 3.19 
61114-33A T1S1 2.11455 0.32867 61.21 9.52 
61114-35A T1S1 2.08460 0.32882 54.99 8.68 
61114-36A T1S1 2.81803 0.46968 68.21 11.39 
61114-37A T1S1 2.01437 0.48834 45.97 11.14 
61114-39A T1S1 2.29136 0.14352 37.49 2.26 
61114-40A T1S1 5.44701 0.39192 92.86 6.62 
61114-41A T1S1 1.50510 0.23743 73.48 11.61 
61114-42A T1S1 2.12999 0.35558 52.67 8.79 
61114-43A T1S1 2.00448 0.21244 44.29 4.66 
61114-44A T1S1 1.97899 0.59681 25.48 7.65 
61114-47A T1S1 4.69415 0.61644 21.60 2.74 
61114-48A T1S1 2.22234 0.41563 36.69 6.84 
61114-49A T1S1 1.97120 0.40264 26.07 5.28 
61114-50A T1S1 1.70530 0.35886 36.10 7.58 
61114-51A T1S1 1.80328 0.28632 22.61 3.52 
61114-52A T1S1 1.74526 0.53319 24.36 7.41 
61114-53A T1S1 1.54227 0.24685 29.84 4.73 
61114-54A T1S1 2.54534 0.25634 24.78 2.39 
61114-55A T1S1 0.83302 0.50109 12.62 7.55 
61114-56A T1S1 2.68169 0.19270 42.78 3.02 
61114-57A T1S1 2.15491 0.17886 60.94 5.06 
61114-58A T1S1 3.03335 0.49990 13.45 2.08 
61114-59A T1S1 2.01549 0.20248 30.43 2.98 
61114-60A T1S1 2.87382 0.29952 64.76 6.74 

      
61115-01A T1S2 2.16431 0.37766 11.20 1.79 
61115-02A T1S3 2.50616 0.28851 39.68 4.53 
61115-03A T1S4 1.23176 0.32990 22.91 6.09 
61115-04A T1S5 1.97975 0.27860 28.10 3.90 
61115-05A T1S6 2.07425 0.26652 36.41 4.64 
61115-06A T1S7 1.90430 0.41353 32.20 6.96 
61115-07A T1S8 1.45306 0.30132 36.26 7.49 
61115-08A T1S9 1.46745 0.33967 21.10 4.83 
61115-09A T1S10 1.26498 0.21544 45.46 7.74 
61115-10A T1S11 1.81023 0.31486 25.95 4.46 
61115-11A T1S12 1.47953 0.48047 23.35 7.55 
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61115-12A T1S13 2.22185 0.19015 39.72 3.35 
61115-13A T1S14 2.10399 0.39527 25.56 4.75 
61115-14A T1S15 2.60909 0.25069 46.93 4.47 
61115-15A T1S16 2.20955 0.26637 74.46 9.04 
61115-16A T1S17 1.85624 0.27093 33.90 4.91 
61115-17A T1S18 2.19634 0.50498 10.12 2.19 
61115-18A T1S19 1.97963 0.32975 23.88 3.92 
61115-19A T1S20 4.44036 0.59169 46.13 6.10 
61115-20A T1S21 3.75205 0.33471 31.59 2.74 
61115-21A T1S22 1.88464 0.29554 35.99 5.61 
61115-22A T1S23 1.71184 0.20286 45.51 5.38 
61115-23A T1S24 2.15331 0.22059 65.75 6.77 
61115-24A T1S25 1.58827 0.25551 45.48 7.31 
61115-25A T1S26 1.99468 0.24004 24.60 2.88 
61115-26A T1S27 2.46916 0.40088 26.55 4.24 
61115-27A T1S28 1.36103 0.35335 9.36 2.30 
61115-28A T1S29 5.17520 0.40079 38.13 2.88 
61115-29A T1S30 2.14090 0.33312 26.39 4.05 
61115-30A T1S31 1.78381 0.26097 37.18 5.40 
61115-31A T1S32 2.77431 0.35925 51.70 6.69 
61115-32A T1S33 1.78739 0.25236 61.22 8.68 
61115-33A T1S34 2.23441 0.31886 14.87 1.98 
61115-34A T1S35 1.91866 0.24859 26.59 3.37 
61115-35A T1S36 2.41573 0.36495 53.21 8.05 
61115-36A T1S37 2.08276 0.18650 65.71 5.90 
61115-37A T1S38 0.90143 0.32739 13.08 4.69 
61115-38A T1S39 1.79899 0.23683 58.80 7.77 
61115-39A T1S40 2.04613 0.23783 35.11 4.03 
61115-40A T1S41 1.51952 0.27728 24.61 4.43 
61115-41A T1S42 2.09667 0.27362 31.17 4.01 
61115-42A T1S43 2.15748 0.25424 26.62 3.06 
61115-44A T1S44 1.74818 0.16095 52.35 4.81 
61115-45A T1S45 1.40317 0.41741 20.25 5.98 
61115-46A T1S46 1.80558 0.27937 32.86 5.05 
61115-47A T1S47 2.07440 0.35672 65.06 11.21 
61115-48A T1S48 2.68458 0.42355 24.39 3.78 
61115-50A T1S49 1.93171 0.36535 19.21 3.56 
61115-51A T1S50 1.92829 0.30394 38.69 6.07 
61115-52A T1S51 1.65086 0.20711 53.30 6.67 
61115-53A T1S52 2.54998 0.25046 73.08 7.19 
61115-54A T1S53 1.21914 0.21524 41.53 7.31 
61115-55A T1S54 1.18524 0.30730 44.35 11.51 
61115-56A T1S55 2.35215 0.21952 60.88 5.65 
61115-57A T1S56 2.59184 0.43509 48.95 8.20 
61115-58A T1S57 2.02812 0.31673 48.88 7.62 
61115-60A T1S58 2.12127 0.26001 50.72 6.20 
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        Omitted Analyses:    
61114-02A T1S1 1.42028 0.60806 32.93 14.09 
61114-07A T1S1 0.76134 0.35222 41.83 19.36 
61114-09A T1S1 2.03687 0.41588 60.40 12.35 
61114-16A T1S1 1.44348 0.33341 53.72 12.43 
61114-18A T1S1 1.88164 0.56568 49.34 14.85 
61114-21A T1S1 2.01343 0.37959 71.64 13.54 
61114-24A T1S1 1.91588 0.45199 76.50 18.09 
61114-30A T1S1 2.38858 0.59144 51.39 12.73 
61114-34A T1S1 2.17363 0.45227 65.21 13.60 
61114-38A T1S1 1.76316 0.75646 31.07 13.31 
61114-45A T1S1 1.24050 0.77767 30.28 18.97 
61114-46A T1S1 1.16126 0.96012 31.30 25.88 
61114-40aB T1S1 1.65961 2.24000 29.21 39.43 
61114-41aB T1S1 -0.24680 4.89679 -7.05 139.93 
61114-42aB T1S1 2.98731 4.60781 98.90 153.46 

      
61115-43A T1S2 1.33676 0.43526 96.95 31.97 
61115-49A T1S2 -16.23921 3.75788 -95.82 21.75 
61115-59A T1S2 7.02705 6.66790 159.77 153.60 

 
 
 

  (Renne et al. 1998; Steiger & Jager 1977) (Renne et al. 2010, 2011) 

Run ID Sample Age (Ma) 
± Age w/o 

J (1σ) ± w/ J (1σ) Age (Ma) 
± (1σ), full 
systematics 

61114-01A T1S1 1.2012 0.0233 0.0235 1.2130 0.0238 
61114-03A T1S1 0.2613 0.0338 0.0338 0.2648 0.0344 
61114-04A T1S1 0.2522 0.0399 0.0399 0.2538 0.0413 
61114-05A T1S1 0.2867 0.0571 0.0571 0.2903 0.0566 
61114-06A T1S1 0.3635 0.0421 0.0421 0.3651 0.0430 
61114-08A T1S1 0.2813 0.0399 0.0399 0.2838 0.0382 
61114-10A T1S1 0.2581 0.0556 0.0556 0.2604 0.0572 
61114-11A T1S1 0.7611 0.0595 0.0595 0.7665 0.0604 
61114-12A T1S1 0.2277 0.0458 0.0458 0.2293 0.0471 
61114-13A T1S1 0.2903 0.0281 0.0281 0.2926 0.0295 
61114-14A T1S1 0.2538 0.0451 0.0451 0.2565 0.0448 
61114-15A T1S1 0.2730 0.0223 0.0223 0.2753 0.0224 
61114-17A T1S1 0.3051 0.0380 0.0380 0.3085 0.0396 
61114-19A T1S1 0.3114 0.0654 0.0654 0.3170 0.0640 
61114-20A T1S1 0.2656 0.0462 0.0462 0.2695 0.0461 
61114-22A T1S1 0.7894 0.0601 0.0601 0.7985 0.0605 
61114-23A T1S1 0.2874 0.0330 0.0330 0.2904 0.0340 
61114-25A T1S1 0.2689 0.0698 0.0698 0.2717 0.0742 
61114-26A T1S1 0.2856 0.0311 0.0311 0.2890 0.0317 
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61114-27A T1S1 0.3129 0.0330 0.0330 0.3165 0.0335 
61114-28A T1S1 0.2832 0.0734 0.0734 0.2869 0.0742 
61114-29A T1S1 0.4363 0.0588 0.0588 0.4417 0.0571 
61114-31A T1S1 0.2849 0.0531 0.0531 0.2888 0.0506 
61114-32A T1S1 0.2510 0.0422 0.0422 0.2558 0.0437 
61114-33A T1S1 0.2885 0.0448 0.0448 0.2903 0.0454 
61114-35A T1S1 0.2844 0.0449 0.0449 0.2824 0.0450 
61114-36A T1S1 0.3844 0.0641 0.0641 0.3894 0.0667 
61114-37A T1S1 0.2748 0.0666 0.0666 0.2783 0.0645 
61114-39A T1S1 0.3126 0.0196 0.0196 0.3169 0.0194 
61114-40A T1S1 0.7430 0.0534 0.0535 0.7480 0.0548 
61114-41A T1S1 0.2053 0.0324 0.0324 0.2087 0.0316 
61114-42A T1S1 0.2906 0.0485 0.0485 0.2937 0.0486 
61114-43A T1S1 0.2735 0.0290 0.0290 0.2756 0.0299 
61114-44A T1S1 0.2700 0.0814 0.0814 0.2733 0.0808 
61114-47A T1S1 0.6403 0.0841 0.0841 0.6501 0.0830 
61114-48A T1S1 0.3032 0.0567 0.0567 0.3077 0.0572 
61114-49A T1S1 0.2689 0.0549 0.0549 0.2707 0.0555 
61114-50A T1S1 0.2326 0.0490 0.0490 0.2352 0.0498 
61114-51A T1S1 0.2460 0.0391 0.0391 0.2443 0.0417 
61114-52A T1S1 0.2381 0.0727 0.0727 0.2432 0.0712 
61114-53A T1S1 0.2104 0.0337 0.0337 0.2128 0.0347 
61114-54A T1S1 0.3472 0.0350 0.0350 0.3517 0.0349 
61114-55A T1S1 0.1136 0.0684 0.0684 0.1150 0.0698 
61114-56A T1S1 0.3658 0.0263 0.0263 0.3700 0.0264 
61114-57A T1S1 0.2940 0.0244 0.0244 0.2968 0.0257 
61114-58A T1S1 0.4138 0.0682 0.0682 0.4150 0.0680 
61114-59A T1S1 0.2750 0.0276 0.0276 0.2791 0.0279 
61114-60A T1S1 0.3920 0.0409 0.0409 0.3953 0.0416 

       
61115-01A T1S2 0.2953 0.0515 0.0515 0.2977 0.0524 
61115-02A T1S2 0.3419 0.0394 0.0394 0.3449 0.0388 
61115-03A T1S2 0.1680 0.0450 0.0450 0.1689 0.0462 
61115-04A T1S2 0.2701 0.0380 0.0380 0.2760 0.0381 
61115-05A T1S2 0.2830 0.0364 0.0364 0.2858 0.0361 
61115-06A T1S2 0.2598 0.0564 0.0564 0.2640 0.0590 
61115-07A T1S2 0.1982 0.0411 0.0411 0.1976 0.0434 
61115-08A T1S2 0.2002 0.0463 0.0463 0.2018 0.0474 
61115-09A T1S2 0.1726 0.0294 0.0294 0.1733 0.0299 
61115-10A T1S2 0.2470 0.0430 0.0430 0.2501 0.0432 
61115-11A T1S2 0.2018 0.0655 0.0655 0.2042 0.0668 
61115-12A T1S2 0.3031 0.0259 0.0259 0.3051 0.0261 
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61115-13A T1S2 0.2870 0.0539 0.0539 0.2891 0.0541 
61115-14A T1S2 0.3559 0.0342 0.0342 0.3578 0.0353 
61115-15A T1S2 0.3014 0.0363 0.0363 0.3043 0.0359 
61115-16A T1S2 0.2532 0.0370 0.0370 0.2585 0.0358 
61115-17A T1S2 0.2996 0.0689 0.0689 0.3036 0.0700 
61115-18A T1S2 0.2701 0.0450 0.0450 0.2718 0.0459 
61115-19A T1S2 0.6057 0.0807 0.0807 0.6089 0.0801 
61115-20A T1S2 0.5118 0.0457 0.0457 0.5157 0.0460 
61115-21A T1S2 0.2571 0.0403 0.0403 0.2597 0.0404 
61115-22A T1S2 0.2335 0.0277 0.0277 0.2363 0.0286 
61115-23A T1S2 0.2938 0.0301 0.0301 0.2964 0.0315 
61115-24A T1S2 0.2167 0.0349 0.0349 0.2194 0.0350 
61115-25A T1S2 0.2721 0.0327 0.0328 0.2746 0.0343 
61115-26A T1S2 0.3368 0.0547 0.0547 0.3400 0.0550 
61115-27A T1S2 0.1857 0.0482 0.0482 0.1869 0.0500 
61115-28A T1S2 0.7059 0.0547 0.0547 0.7141 0.0553 
61115-29A T1S2 0.2921 0.0454 0.0454 0.2947 0.0449 
61115-30A T1S2 0.2434 0.0356 0.0356 0.2476 0.0361 
61115-31A T1S2 0.3785 0.0490 0.0490 0.3792 0.0492 
61115-32A T1S2 0.2438 0.0344 0.0344 0.2477 0.0353 
61115-33A T1S2 0.3048 0.0435 0.0435 0.3085 0.0456 
61115-34A T1S2 0.2618 0.0339 0.0339 0.2664 0.0338 
61115-35A T1S2 0.3296 0.0498 0.0498 0.3356 0.0526 
61115-36A T1S2 0.2841 0.0254 0.0254 0.2867 0.0257 
61115-37A T1S2 0.1230 0.0447 0.0447 0.1238 0.0448 
61115-38A T1S2 0.2454 0.0323 0.0323 0.2486 0.0324 
61115-39A T1S2 0.2791 0.0324 0.0324 0.2818 0.0340 
61115-40A T1S2 0.2073 0.0378 0.0378 0.2108 0.0380 
61115-41A T1S2 0.2860 0.0373 0.0373 0.2900 0.0371 
61115-42A T1S2 0.2943 0.0347 0.0347 0.2972 0.0354 
61115-44A T1S2 0.2385 0.0220 0.0220 0.2407 0.0215 
61115-45A T1S2 0.1914 0.0569 0.0569 0.1961 0.0595 
61115-46A T1S2 0.2463 0.0381 0.0381 0.2491 0.0381 
61115-47A T1S2 0.2830 0.0487 0.0487 0.2879 0.0503 
61115-48A T1S2 0.3662 0.0578 0.0578 0.3676 0.0571 
61115-50A T1S2 0.2635 0.0498 0.0498 0.2655 0.0483 
61115-51A T1S2 0.2631 0.0415 0.0415 0.2645 0.0413 
61115-52A T1S2 0.2252 0.0283 0.0283 0.2267 0.0278 
61115-53A T1S2 0.3479 0.0342 0.0342 0.3508 0.0333 
61115-54A T1S2 0.1663 0.0294 0.0294 0.1697 0.0308 
61115-55A T1S2 0.1617 0.0419 0.0419 0.1650 0.0419 
61115-56A T1S2 0.3209 0.0299 0.0300 0.3244 0.0318 
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61115-57A T1S2 0.3536 0.0593 0.0594 0.3566 0.0601 
61115-58A T1S2 0.2767 0.0432 0.0432 0.2779 0.0436 
61115-60A T1S2 0.2894 0.0355 0.0355 0.2955 0.0361 

       
Omitted Analyses:      

61114-02A T1S1 0.1937635 0.0829505 0.0829516 0.1951 0.0849 
61114-07A T1S1 0.1038696 0.0480515 0.048052 0.1054 0.0502 
61114-09A T1S1 0.2778761 0.0567306 0.0567341 0.2800 0.0584 
61114-16A T1S1 0.1969278 0.045483 0.0454851 0.1994 0.0470 
61114-18A T1S1 0.2566995 0.0771665 0.0771687 0.2601 0.0802 
61114-21A T1S1 0.274678 0.0517802 0.0517839 0.2778 0.0517 
61114-24A T1S1 0.261371 0.0616569 0.0616597 0.2647 0.0620 
61114-30A T1S1 0.3258525 0.0806777 0.080681 0.3240 0.0830 
61114-34A T1S1 0.2965314 0.0616939 0.0616976 0.2991 0.0635 
61114-38A T1S1 0.2405382 0.1031921 0.1031935 0.2419 0.1044 
61114-45A T1S1 0.1692379 0.1060898 0.1060904 0.1750 0.1092 
61114-46A T1S1 0.158428 0.1309803 0.1309808 0.1531 0.1335 
61114-40aB T1S1 0.2264119 0.3055726 0.305573 0.2403 0.3140 

61114-41aB T1S1 
-

0.0336715 0.6680982 0.6680982 0.0067 0.6611 
61114-42aB T1S1 0.4075225 0.6285173 0.628518 0.4135 0.6033 

       
61115-43A T1S2 0.1823693 0.0593782 0.0593796 0.1829 0.0593 
61115-49A T1S2 -2.216932 0.5133299 0.5133543 -2.2558 0.5113 
61115-59A T1S2 0.9584694 0.9092408 0.9092434 0.9520 0.9270 

 
 
 

Isochron (Samples Trench1Step1 and Trench1Step2 of Unit 12) 
 

Run ID Sample 36Ar/40Ar 
±% 36Ar/ 
40Ar (1σ) 39Ar/40Ar 

±% 39Ar/ 
40Ar (1σ) 

61114-01A T1S1 0.0011002 3.680888 0.0762432 0.5714236 
61114-03A T1S1 0.0012643 21.03325 0.3250306 1.463619 
61114-04A T1S1 0.0007916 50.65436 0.4130591 1.756729 
61114-05A T1S1 0.0020646 12.32482 0.1825032 1.237327 
61114-06A T1S1 0.0016465 11.84769 0.1908032 1.17977 
61114-08A T1S1 0.0013908 19.70733 0.2836286 1.700775 
61114-10A T1S1 0.001511 26.06728 0.2901258 1.478269 
61114-11A T1S1 0.0011357 14.9231 0.1184581 1.320942 
61114-12A T1S1 0.0018374 16.46518 0.2704916 1.508033 
61114-13A T1S1 0.0018989 7.273258 0.2035136 1.173995 
61114-14A T1S1 0.0025582 5.460995 0.1269774 0.95766 
61114-15A T1S1 0.0005328 42.59241 0.4202643 1.198852 
61114-17A T1S1 0.0013006 19.2782 0.2735499 1.723277 
61114-19A T1S1 0.0016396 21.62055 0.2236155 2.446743 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 191 

61114-20A T1S1 0.0014923 21.45109 0.2847488 1.666387 
61114-22A T1S1 0.0004512 47.91535 0.1495162 1.401725 
61114-23A T1S1 0.0011837 20.76546 0.306975 1.328828 
61114-25A T1S1 0.0021631 14.16026 0.1796887 1.589823 
61114-26A T1S1 0.0013051 16.83938 0.2915239 1.22056 
61114-27A T1S1 0.0015278 12.42351 0.2371232 1.133205 
61114-28A T1S1 0.0028588 4.417706 0.070561 1.461638 
61114-29A T1S1 0.0028226 2.481986 0.0491774 1.430581 
61114-31A T1S1 0.0017434 17.03787 0.2295861 1.553966 
61114-32A T1S1 0.0026973 4.032187 0.1058292 0.9414577 
61114-33A T1S1 0.0012991 24.31316 0.2894882 1.470256 
61114-35A T1S1 0.0015077 19.02556 0.263772 1.651127 
61114-36A T1S1 0.0010647 35.33774 0.2420571 1.98593 
61114-37A T1S1 0.0018097 20.48563 0.2282136 1.757344 
61114-39A T1S1 0.0020937 3.691821 0.1636188 0.7058521 
61114-40A T1S1 0.0002392 91.35366 0.1704774 1.509735 
61114-41A T1S1 0.0008883 43.42258 0.4882077 1.39471 
61114-42A T1S1 0.0015852 18.38789 0.247292 1.5909 
61114-43A T1S1 0.0018661 8.328886 0.2209384 0.9317111 
61114-44A T1S1 0.002496 10.25634 0.1287554 1.910792 
61114-47A T1S1 0.002626 3.558101 0.0460128 1.315516 
61114-48A T1S1 0.0021206 10.72906 0.165082 1.490454 
61114-49A T1S1 0.0024764 7.124021 0.1322343 1.392244 
61114-50A T1S1 0.0021403 11.79768 0.2116836 1.339132 
61114-51A T1S1 0.0025923 4.594123 0.1253583 1.008011 
61114-52A T1S1 0.0025334 9.769766 0.1395904 1.663124 
61114-53A T1S1 0.0023501 6.730348 0.1934574 1.145781 
61114-54A T1S1 0.0025195 3.238858 0.0973502 1.257265 
61114-55A T1S1 0.0029267 8.647856 0.1515183 1.850314 
61114-56A T1S1 0.0019166 5.246108 0.1595197 0.9487108 
61114-57A T1S1 0.0013083 12.66533 0.2827877 1.191867 
61114-58A T1S1 0.0028989 2.53761 0.0443454 1.077107 
61114-59A T1S1 0.0023302 4.33765 0.1509839 0.9977919 
61114-60A T1S1 0.0011805 18.6398 0.2253313 1.863402 

      
61115-01A T1S2 0.0029742 2.180944 0.0517626 1.268733 
61115-02A T1S2 0.0020203 7.48236 0.1583374 0.9990363 
61115-03A T1S2 0.0025822 7.914094 0.185972 1.38073 
61115-04A T1S2 0.0024083 5.435078 0.1419335 1.017702 
61115-05A T1S2 0.00213 7.277215 0.1755146 1.021526 
61115-06A T1S2 0.002271 10.2183 0.1690693 1.607457 
61115-07A T1S2 0.002135 11.68471 0.2495167 1.609339 
61115-08A T1S2 0.0026426 6.128357 0.1437966 1.560333 
61115-09A T1S2 0.0018266 14.00519 0.359407 1.576099 
61115-10A T1S2 0.0024802 6.042061 0.1433568 1.279912 
61115-11A T1S2 0.0025674 9.805019 0.1578141 1.812386 
61115-12A T1S2 0.0020189 5.55486 0.1787887 0.8268314 
61115-13A T1S2 0.0024933 6.379034 0.1214768 1.299109 
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61115-14A T1S2 0.0017775 8.376711 0.179874 1.116638 
61115-15A T1S2 0.0008554 34.39175 0.3369991 1.968535 
61115-16A T1S2 0.002214 7.41323 0.1826192 1.027443 
61115-17A T1S2 0.0030105 2.56456 0.0460713 1.636401 
61115-18A T1S2 0.0025497 5.164168 0.1206057 1.10655 
61115-19A T1S2 0.0018044 11.23827 0.1038859 1.668709 
61115-20A T1S2 0.0022914 4.066399 0.084185 0.7839013 
61115-21A T1S2 0.0021438 8.735773 0.1909887 1.094619 
61115-22A T1S2 0.0018251 9.717204 0.265854 1.282752 
61115-23A T1S2 0.0011472 19.24173 0.3053341 1.516015 
61115-24A T1S2 0.001826 13.20765 0.2863598 1.716464 
61115-25A T1S2 0.0025254 3.87401 0.1233404 0.9800428 
61115-26A T1S2 0.00246 5.78294 0.1075452 1.72923 
61115-27A T1S2 0.003036 2.661956 0.0687428 1.30666 
61115-28A T1S2 0.0020724 4.654458 0.0736722 1.089584 
61115-29A T1S2 0.0024656 5.523309 0.1232569 1.04738 
61115-30A T1S2 0.0021041 8.556829 0.2084365 1.328796 
61115-31A T1S2 0.0016178 13.61191 0.1863456 1.56685 
61115-32A T1S2 0.001299 21.84669 0.3424944 1.910675 
61115-33A T1S2 0.0028513 2.460001 0.0665585 1.2283 
61115-34A T1S2 0.0024586 4.624254 0.1386113 1.215766 
61115-35A T1S2 0.0015671 16.8728 0.2202753 1.842958 
61115-36A T1S2 0.0011485 16.80934 0.3154934 1.293986 
61115-37A T1S2 0.0029114 5.436432 0.1450871 1.190814 
61115-38A T1S2 0.0013798 18.44047 0.326875 1.677786 
61115-39A T1S2 0.0021734 6.206954 0.1716009 1.014204 
61115-40A T1S2 0.0025252 5.889014 0.1619353 1.426869 
61115-41A T1S2 0.0023055 5.807535 0.1486544 1.455152 
61115-42A T1S2 0.0024579 4.207951 0.1233653 1.001666 
61115-44A T1S2 0.001596 9.912061 0.2994569 1.144534 
61115-45A T1S2 0.0026713 7.501684 0.1442852 1.351193 
61115-46A T1S2 0.0022489 7.472952 0.1819744 1.234085 
61115-47A T1S2 0.0011704 31.55134 0.3136121 2.172256 
61115-48A T1S2 0.0025326 5.023704 0.0908403 1.265785 
61115-50A T1S2 0.0027059 4.468429 0.0994567 0.9443713 
61115-51A T1S2 0.0020535 9.856278 0.2006438 1.248835 
61115-52A T1S2 0.001564 14.15534 0.3228887 1.342585 
61115-53A T1S2 0.0009016 26.38796 0.2866024 1.093975 
61115-54A T1S2 0.0019584 12.4734 0.3406512 0.9849568 
61115-55A T1S2 0.0018639 20.41212 0.3742014 2.322972 
61115-56A T1S2 0.0013104 14.31422 0.2588188 1.213697 
61115-57A T1S2 0.0017099 15.98887 0.1888597 1.257221 
61115-58A T1S2 0.0017122 14.82109 0.2410136 1.207847 
61115-60A T1S2 0.0016504 12.50141 0.2391239 1.057224 
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Omitted Analyses:     

61114-02A T1S1 0.0022465 20.88255 0.2318472 2.495391 
61114-07A T1S1 0.0019483 33.09161 0.5494481 2.569661 
61114-09A T1S1 0.0013263 30.78704 0.2965429 2.177556 
61114-16A T1S1 0.0015499 26.54999 0.3721894 2.070279 
61114-18A T1S1 0.0016968 29.04463 0.2622282 2.365617 
61114-21A T1S1 0.0009499 47.13127 0.3558055 2.099709 
61114-24A T1S1 0.000787 75.98589 0.3993091 2.876064 
61114-30A T1S1 0.001628 25.91708 0.2151637 2.292156 
61114-34A T1S1 0.0011651 38.59885 0.3000201 2.209314 
61114-38A T1S1 0.0023088 19.19135 0.1762027 3.035147 
61114-45A T1S1 0.0023353 27.12632 0.2440734 2.57776 
61114-46A T1S1 0.0023009 37.53001 0.2695623 3.452119 
61114-40aB T1S1 0.0023709 55.45405 0.1760248 6.377171 
61114-41aB T1S1 0.0035856 130.8368 0.2857525 17.99363 
61114-42aB T1S1 0.0000369 13703.13 0.3310583 20.97894 

      
61115-43A T1S2 0.0001021 1019.747 0.7252789 5.548573 
61115-49A T1S2 0.0065586 11.31286 0.0590022 5.692841 
61115-59A T1S2 -0.0020021 -251.3123 0.2273712 20.36417 

 
 
 

Run ID Sample ±% 39Ar/36Ar (1σ) ρ 40Ar/39Ar ρ 36Ar/39Ar 
61114-01A T1S1 3.667357 0.9462024 0.1773031 
61114-03A T1S1 21.00205 0.9962985 0.0604954 

 61114-04A T1S1 50.64588 0.9991785 0.0244712 
61114-05A T1S1 12.30583 0.9912335 0.0783085 
61114-06A T1S1 11.8304 0.9910099 0.0784293 
61114-08A T1S1 19.69744 0.9948207 0.0560469 
61114-10A T1S1 26.05013 0.9975599 0.0445287 
61114-11A T1S1 14.92651 0.9935497 0.0551621 
61114-12A T1S1 16.4775 0.9937294 0.0496681 
61114-13A T1S1 7.290343 0.9763718 0.0989395 
61114-14A T1S1 5.452487 0.9656741 0.1382075 
61114-15A T1S1 42.57937 0.9992924 0.0270778 
61114-17A T1S1 19.26527 0.9944828 0.0591287 
61114-19A T1S1 21.62639 0.992392 0.0596319 
61114-20A T1S1 21.44999 0.9957561 0.046842 
61114-22A T1S1 47.91095 0.9993262 0.020935 
61114-23A T1S1 20.74023 0.99664 0.0560623 
61114-25A T1S1 14.14655 0.990875 0.0750482 
61114-26A T1S1 16.81127 0.9953762 0.0657736 
61114-27A T1S1 12.39757 0.9921694 0.0797365 
61114-28A T1S1 4.536161 0.9189744 0.1392747 
61114-29A T1S1 2.781633 0.7772451 0.182578 
61114-31A T1S1 17.01508 0.9938893 0.0676369 
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61114-32A T1S1 4.036236 0.9381877 0.174884 
61114-33A T1S1 24.28921 0.9972144 0.0507204 
61114-35A T1S1 18.98515 0.9946659 0.0724186 
61114-36A T1S1 35.3129 0.9979677 0.0429789 
61114-37A T1S1 20.45842 0.99497 0.0635853 
61114-39A T1S1 3.690794 0.9404047 0.1756662 
61114-40A T1S1 91.35628 0.9997958 0.0087019 
61114-41A T1S1 43.40351 0.9991844 0.031189 
61114-42A T1S1 18.36019 0.994581 0.0667531 
61114-43A T1S1 8.301557 0.985569 0.105033 
61114-44A T1S1 10.33233 0.9774801 0.0721211 
61114-47A T1S1 3.648561 0.8903911 0.1849523 
61114-48A T1S1 10.70511 0.9854202 0.098882 
61114-49A T1S1 7.087309 0.9696546 0.1446236 
61114-50A T1S1 11.75621 0.9894728 0.0971668 
61114-51A T1S1 4.587156 0.9491703 0.1656128 
61114-52A T1S1 9.737929 0.9795405 0.1176107 
61114-53A T1S1 6.689674 0.9729172 0.1429979 
61114-54A T1S1 3.320461 0.8746218 0.2055865 
61114-55A T1S1 8.587566 0.9693851 0.1520379 
61114-56A T1S1 5.2255 0.9630363 0.151554 
61114-57A T1S1 12.62536 0.9920337 0.0885403 
61114-58A T1S1 2.64575 0.8310138 0.2272722 
61114-59A T1S1 4.372078 0.9440908 0.145883 
61114-60A T1S1 18.62266 0.9933734 0.0657552 

     
61115-01A T1S2 2.419762 0.7470422 0.2292991 
61115-02A T1S2 7.453704 0.9809462 0.1180189 
61115-03A T1S2 7.921455 0.9758018 0.1065833 
61115-04A T1S2 5.40156 0.9631859 0.1593114 
61115-05A T1S2 7.251893 0.9794324 0.1193902 
61115-06A T1S2 10.20805 0.9822078 0.1001083 
61115-07A T1S2 11.66445 0.9863613 0.093462 
61115-08A T1S2 6.146105 0.9527324 0.1454401 
61115-09A T1S2 13.93487 0.9907567 0.1051462 
61115-10A T1S2 6.071846 0.9623255 0.1207214 
61115-11A T1S2 9.73569 0.9769135 0.1404858 
61115-12A T1S2 5.526505 0.9705149 0.1435644 
61115-13A T1S2 6.34843 0.9652571 0.150656 
61115-14A T1S2 8.380169 0.9830834 0.0905615 
61115-15A T1S2 34.3494 0.9978827 0.0515562 
61115-16A T1S2 7.38032 0.9800539 0.1228532 
61115-17A T1S2 2.909374 0.7536113 0.1933855 
61115-18A T1S2 5.126952 0.955627 0.1739322 
61115-19A T1S2 11.26581 0.9845501 0.0745119 
61115-20A T1S2 4.062751 0.9473172 0.1669667 
61115-21A T1S2 8.69473 0.9846963 0.1149387 
61115-22A T1S2 9.654385 0.9852378 0.1239359 
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61115-23A T1S2 19.19353 0.995363 0.0743853 
61115-24A T1S2 13.15456 0.9882818 0.1030375 
61115-25A T1S2 3.875594 0.9305387 0.1871801 
61115-26A T1S2 5.891224 0.9397612 0.1224438 
61115-27A T1S2 2.837006 0.8148315 0.2108385 
61115-28A T1S2 4.667127 0.9467546 0.1565168 
61115-29A T1S2 5.505468 0.9634348 0.148217 
61115-30A T1S2 8.54735 0.9802184 0.105687 
61115-31A T1S2 13.56499 0.9903022 0.0946677 
61115-32A T1S2 21.78057 0.9949821 0.0804363 
61115-33A T1S2 2.624504 0.7985755 0.2274409 
61115-34A T1S2 4.647849 0.9394373 0.1612412 
61115-35A T1S2 16.81344 0.9920306 0.0911511 
61115-36A T1S2 16.76999 0.9950303 0.0736418 
61115-37A T1S2 5.397849 0.9566674 0.1719993 
61115-38A T1S2 18.3772 0.994187 0.0859246 
61115-39A T1S2 6.180702 0.9719077 0.1372721 
61115-40A T1S2 5.913028 0.9545992 0.1384603 
61115-41A T1S2 5.845429 0.9522419 0.1349597 
61115-42A T1S2 4.186649 0.9395841 0.1896191 
61115-44A T1S2 9.864305 0.9875421 0.1099549 
61115-45A T1S2 7.457564 0.9736229 0.1409362 
61115-46A T1S2 7.421497 0.9761272 0.1412755 
61115-47A T1S2 31.51506 0.9970602 0.0534233 
61115-48A T1S2 5.032629 0.946042 0.1602356 
61115-50A T1S2 4.468298 0.949462 0.1607163 
61115-51A T1S2 9.841411 0.9861461 0.092869 
61115-52A T1S2 14.14545 0.9926808 0.0666645 
61115-53A T1S2 26.3686 0.9983288 0.0418291 
61115-54A T1S2 12.44566 0.9932419 0.07778 
61115-55A T1S2 20.33133 0.9921466 0.0943129 
61115-56A T1S2 14.31063 0.9936495 0.0590091 
61115-57A T1S2 15.97341 0.9946962 0.0612463 
61115-58A T1S2 14.7999 0.9941026 0.067869 
61115-60A T1S2 12.47844 0.9928012 0.0758163 

     
Omitted Analyses:    

61114-02A T1S1 20.82602 0.9915474 0.0858898 
61114-07A T1S1 33.01435 0.9964639 0.069853 
61114-09A T1S1 30.74591 0.9968999 0.0564215 
61114-16A T1S1 26.49428 0.9961532 0.0678824 
61114-18A T1S1 28.99014 0.9960083 0.0657372 
61114-21A T1S1 47.10125 0.9987529 0.0377769 
61114-24A T1S1 75.96304 0.9991858 0.0276347 
61114-30A T1S1 25.87468 0.9952423 0.065623 
61114-34A T1S1 38.56231 0.9979816 0.046722 
61114-38A T1S1 19.21682 0.9859827 0.075968 
61114-45A T1S1 27.07829 0.9947102 0.0686963 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 196 

61114-46A T1S1 37.44348 0.995361 0.0720845 
61114-40aB T1S1 55.36998 0.9931952 0.0712394 
61114-41aB T1S1 130.0531 0.9904711 0.1121833 
61114-42aB T1S1 13703.12 0.9999988 0.0013001 

     
61115-43A T1S2 1019.733 0.9999847 0.0052891 
61115-49A T1S2 12.04178 0.87889 0.1260442 
61115-59A T1S2 -250.8037 0.9967034 0.0655576 
 

 

Relative abundances (Sample TerraceB’ of Unit10) 
 

Run # Sample 40Ar ± 40Ar (1σ) 39Ar ± 39Ar (1σ) 

61116-01A TB' 0.0171553 0.0002140 0.0055426 0.0000372 
61116-02A TB' 0.0383827 0.0002025 0.0059704 0.0000407 
61116-03A TB' 0.0225184 0.0002335 0.0050585 0.0000735 
61116-04A TB' 0.0377865 0.0002550 0.0033846 0.0000355 
61116-05A TB' 0.0349438 0.0002404 0.0043160 0.0000355 
61116-06A TB' 0.0469342 0.0002625 0.0091647 0.0000526 
61116-07A TB' 0.0490051 0.0002625 0.0049001 0.0000355 
61116-08A TB' 0.0177772 0.0002202 0.0040444 0.0000355 
61116-09B TB' 0.0316497 0.0002404 0.0066761 0.0000425 
61116-10A TB' 0.0698477 0.0002860 0.0100004 0.0000498 
61116-11A TB' 0.0194541 0.0002202 0.0057250 0.0000398 
61116-12A TB' 0.0382616 0.0002550 0.0049187 0.0000563 
61116-13A TB' 0.0159064 0.0002202 0.0055817 0.0000407 
61116-15A TB' 0.0899903 0.0002335 0.0030445 0.0000498 
61116-16A TB' 0.0297204 0.0002404 0.0070958 0.0000470 
61116-18A TB' 0.0600544 0.0002140 0.0048340 0.0000364 
61116-19A TB' 0.0186321 0.0002202 0.0061832 0.0000389 
61116-20A TB' 0.0155955 0.0002202 0.0034565 0.0000322 
61116-21A TB' 0.0262671 0.0002335 0.0057359 0.0000389 
61116-22A TB' 0.0280127 0.0002335 0.0048545 0.0000347 
61116-23A TB' 0.0342789 0.0002476 0.0058052 0.0000347 
61116-24A TB' 0.0426641 0.0002335 0.0134491 0.0000610 
61116-25A TB' 0.0200575 0.0002476 0.0061382 0.0000443 
61116-26A TB' 0.0926154 0.0002267 0.0326001 0.0001008 
61116-27A TB' 0.0272667 0.0002404 0.0052621 0.0000338 
61116-28A TB' 0.0234748 0.0002404 0.0068924 0.0000434 
61116-29A TB' 0.0289764 0.0002476 0.0061932 0.0000416 
61116-30A TB' 0.0216584 0.0002335 0.0056371 0.0000398 
61116-31A TB' 0.1582730 0.0003801 0.0057626 0.0000582 
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61116-32A TB' 0.0315953 0.0002025 0.0102967 0.0000507 
61116-33A TB' 0.0312022 0.0002202 0.0048336 0.0000563 
61116-35A TB' 0.0291200 0.0002476 0.0059417 0.0000416 
61116-36A TB' 0.0653815 0.0002140 0.0115861 0.0000563 
61116-37A TB' 0.0232593 0.0002335 0.0069070 0.0000347 
61116-38A TB' 0.0179445 0.0002267 0.0048868 0.0000330 
61116-39A TB' 0.0269065 0.0002335 0.0065443 0.0000425 
61116-40A TB' 0.0203448 0.0002267 0.0050925 0.0000372 
61116-41A TB' 0.0281143 0.0002267 0.0065320 0.0000443 
61116-42A TB' 0.0215157 0.0002404 0.0062937 0.0000425 
61116-43A TB' 0.0291765 0.0002202 0.0051707 0.0000398 
61116-44A TB' 0.0193894 0.0002267 0.0058277 0.0000398 
61116-45A TB' 0.0166710 0.0002335 0.0060015 0.0000407 
61116-46A TB' 0.0207666 0.0002476 0.0038344 0.0000355 
61116-47A TB' 0.0283340 0.0002550 0.0064698 0.0000461 
61116-48A TB' 0.0212376 0.0002335 0.0054720 0.0000364 
61116-49A TB' 0.0233527 0.0002267 0.0064648 0.0000407 
61116-50A TB' 0.0242090 0.0001972 0.0059895 0.0000372 
61116-51A TB' 0.0191216 0.0002267 0.0052901 0.0000372 
61116-52A TB' 0.0280092 0.0001914 0.0088219 0.0000498 
61116-53A TB' 0.0297676 0.0002267 0.0079412 0.0000461 
61116-54A TB' 0.1009719 0.0003191 0.0080831 0.0000754 
61116-55A TB' 0.0655057 0.0002702 0.0039321 0.0000610 
61116-56A TB' 0.0301175 0.0002404 0.0058812 0.0000407 
61116-57A TB' 0.0218934 0.0002267 0.0051426 0.0000347 
61116-58A TB' 0.0340777 0.0002476 0.0109214 0.0000582 
61116-59A TB' 0.0248592 0.0002404 0.0064774 0.0000407 
61116-60A TB' 0.0314814 0.0002267 0.0047349 0.0000381 

      
Omitted Analyses:     

61116-09A TB' 0.0008261 0.0002025 0.0000025 0.0000212 
61116-14A TB' 0.0018710 0.0001972 0.0008319 0.0000262 
61116-17A TB' 0.0112186 0.0002025 0.0053179 0.0000434 
61116-34A TB' 0.0099051 0.0002202 0.0043589 0.0000347 

 

 

Run # Sample 38Ar ± 38Ar (1σ) 37Ar ± 37Ar (1σ) 

61116-01A TB' 0.0000411 0.0000208 -0.0000187 0.0000286 
61116-02A TB' 0.0000873 0.0000220 0.0000346 0.0000316 
61116-03A TB' 0.0000785 0.0000227 0.0000371 0.0000334 
61116-04A TB' 0.0000443 0.0000202 0.0000303 0.0000334 
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61116-05A TB' 0.0000660 0.0000214 -0.0000176 0.0000328 
61116-06A TB' 0.0001719 0.0000227 0.0000504 0.0000311 
61116-07A TB' 0.0000950 0.0000240 0.0000204 0.0000300 
61116-08A TB' 0.0000783 0.0000220 0.0000139 0.0000328 
61116-09B TB' 0.0001216 0.0000214 0.0000333 0.0000316 
61116-10A TB' 0.0001704 0.0000227 -0.0000280 0.0000305 
61116-11A TB' 0.0000705 0.0000202 0.0000058 0.0000328 
61116-12A TB' 0.0000597 0.0000233 0.0000045 0.0000305 
61116-13A TB' 0.0000658 0.0000227 0.0000225 0.0000295 
61116-15A TB' 0.0000692 0.0000227 0.0000248 0.0000311 
61116-16A TB' 0.0000736 0.0000208 0.0000098 0.0000322 
61116-18A TB' 0.0001045 0.0000208 0.0000136 0.0000316 
61116-19A TB' 0.0000561 0.0000208 0.0000442 0.0000322 
61116-20A TB' 0.0000314 0.0000233 -0.0000414 0.0000311 
61116-21A TB' 0.0000723 0.0000214 -0.0000306 0.0000316 
61116-22A TB' 0.0000763 0.0000220 0.0000060 0.0000311 
61116-23A TB' 0.0000854 0.0000227 0.0000459 0.0000300 
61116-24A TB' 0.0002200 0.0000248 -0.0000443 0.0000322 
61116-25A TB' 0.0000910 0.0000214 -0.0000057 0.0000322 
61116-26A TB' 0.0004212 0.0000255 -0.0000058 0.0000328 
61116-27A TB' 0.0000755 0.0000214 0.0000122 0.0000316 
61116-28A TB' 0.0001050 0.0000220 0.0000083 0.0000291 
61116-29A TB' 0.0000697 0.0000214 -0.0000316 0.0000305 
61116-30A TB' 0.0000548 0.0000214 0.0000744 0.0000316 
61116-31A TB' 0.0001375 0.0000214 0.0000254 0.0000295 
61116-32A TB' 0.0001347 0.0000227 -0.0000270 0.0000328 
61116-33A TB' 0.0000896 0.0000220 0.0000112 0.0000341 
61116-35A TB' 0.0000660 0.0000202 -0.0000003 0.0000316 
61116-36A TB' 0.0001727 0.0000220 0.0000353 0.0000316 
61116-37A TB' 0.0000721 0.0000214 -0.0000132 0.0000316 
61116-38A TB' 0.0000695 0.0000214 -0.0000769 0.0000328 
61116-39A TB' 0.0000734 0.0000196 0.0000348 0.0000311 
61116-40A TB' 0.0000648 0.0000202 -0.0000453 0.0000322 
61116-41A TB' 0.0000937 0.0000214 -0.0000078 0.0000347 
61116-42A TB' 0.0000787 0.0000220 -0.0000335 0.0000311 
61116-43A TB' 0.0000913 0.0000202 -0.0000239 0.0000328 
61116-44A TB' 0.0000863 0.0000220 0.0000272 0.0000305 
61116-45A TB' 0.0000636 0.0000214 -0.0000247 0.0000311 
61116-46A TB' 0.0000617 0.0000202 0.0000002 0.0000334 
61116-47A TB' 0.0001062 0.0000208 -0.0000256 0.0000305 
61116-48A TB' 0.0000560 0.0000197 -0.0000056 0.0000316 
61116-49A TB' 0.0000941 0.0000202 0.0000251 0.0000291 
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61116-50A TB' 0.0000720 0.0000193 -0.0000332 0.0000322 
61116-51A TB' 0.0000419 0.0000227 -0.0000243 0.0000311 
61116-52A TB' 0.0000997 0.0000208 0.0000032 0.0000322 
61116-53A TB' 0.0001322 0.0000227 0.0000098 0.0000295 
61116-54A TB' 0.0001808 0.0000240 0.0000070 0.0000328 
61116-55A TB' 0.0000966 0.0000208 0.0000001 0.0000322 
61116-56A TB' 0.0001043 0.0000220 -0.0000473 0.0000311 
61116-57A TB' 0.0000644 0.0000214 0.0000080 0.0000300 
61116-58A TB' 0.0001290 0.0000208 -0.0000166 0.0000311 
61116-59A TB' 0.0001223 0.0000196 -0.0000139 0.0000328 
61116-60A TB' 0.0000463 0.0000240 0.0000463 0.0000305 

      
Omitted Analyses:     

61116-09A TB' 0.0000262 0.0000202 0.0000072 0.0000300 
61116-14A TB' 0.0000041 0.0000195 0.0000244 0.0000322 
61116-17A TB' 0.0000496 0.0000208 0.0000205 0.0000334 
61116-34A TB' 0.0000296 0.0000220 0.0000326 0.0000334 

 
   
 

Run # Sample 36Ar ± 36Ar (1σ) 40Ar*/39Ar ±40Ar*/39Ar (1σ) 
61116-01A TB' 0.0000313 0.000006 1.4069 0.3124 
61116-02A TB' 0.0000904 0.000006 1.9086 0.3120 
61116-03A TB' 0.0000292 0.000006 2.7290 0.3422 
61116-04A TB' 0.0001101 0.000006 1.4528 0.5588 
61116-05A TB' 0.0000888 0.000006 1.9472 0.4127 
61116-06A TB' 0.0001096 0.000006 1.5528 0.2031 
61116-07A TB' 0.0001215 0.000007 2.5974 0.4149 
61116-08A TB' 0.0000283 0.000006 2.3062 0.4364 
61116-09B TB' 0.0000601 0.000006 2.0559 0.2659 
61116-10A TB' 0.0001580 0.000007 2.2629 0.2059 
61116-11A TB' 0.0000213 0.000006 2.2839 0.2950 
61116-12A TB' 0.0000482 0.000007 4.8484 0.4247 
61116-13A TB' 0.0000226 0.000006 1.6447 0.2974 
61116-15A TB' 0.0002724 0.000007 2.8506 0.7106 
61116-16A TB' 0.0000497 0.000006 2.0937 0.2455 
61116-18A TB' 0.0001685 0.000006 2.0189 0.3930 
61116-19A TB' 0.0000298 0.000006 1.5800 0.2778 
61116-20A TB' 0.0000239 0.000006 2.4363 0.4884 
61116-21A TB' 0.0000421 0.000006 2.3814 0.3058 
61116-22A TB' 0.0000726 0.000006 1.3071 0.3654 
61116-23A TB' 0.0000659 0.000006 2.5179 0.3238 
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61116-24A TB' 0.0000524 0.000006 2.0036 0.1298 
61116-25A TB' 0.0000236 0.000006 2.1180 0.2882 
61116-26A TB' 0.0000842 0.000006 2.0675 0.0565 
61116-27A TB' 0.0000451 0.000006 2.6230 0.3429 
61116-28A TB' 0.0000323 0.000006 2.0063 0.2544 
61116-29A TB' 0.0000591 0.000006 1.8225 0.2815 
61116-30A TB' 0.0000334 0.000006 2.0815 0.3002 
61116-31A TB' 0.0004782 0.000008 2.6926 0.4575 
61116-32A TB' 0.0000295 0.000006 2.2081 0.1685 
61116-33A TB' 0.0000105 0.000006 5.8059 0.3996 
61116-35A TB' 0.0000614 0.000006 1.8137 0.3043 
61116-36A TB' 0.0001385 0.000006 2.0737 0.1711 
61116-37A TB' 0.0000211 0.000006 2.4492 0.2490 
61116-38A TB' 0.0000165 0.000006 2.6447 0.3547 
61116-39A TB' 0.0000494 0.000006 1.8593 0.2731 
61116-40A TB' 0.0000259 0.000006 2.4668 0.3468 
61116-41A TB' 0.0000532 0.000006 1.8710 0.2711 
61116-42A TB' 0.0000329 0.000006 1.8492 0.2760 
61116-43A TB' 0.0000704 0.000006 1.5696 0.3397 
61116-44A TB' 0.0000308 0.000006 1.7490 0.3030 
61116-45A TB' 0.0000070 0.000006 2.4232 0.2793 
61116-46A TB' 0.0000430 0.000006 2.0685 0.4576 
61116-47A TB' 0.0000419 0.000006 2.4413 0.2768 
61116-48A TB' 0.0000302 0.000006 2.2325 0.3172 
61116-49A TB' 0.0000387 0.000006 1.8257 0.2709 
61116-50A TB' 0.0000441 0.000006 1.8356 0.2919 
61116-51A TB' 0.0000290 0.000006 1.9713 0.3221 
61116-52A TB' 0.0000373 0.000006 1.9118 0.2000 
61116-53A TB' 0.0000528 0.000006 1.7632 0.2251 
61116-54A TB' 0.0002251 0.000008 4.1753 0.3243 
61116-55A TB' 0.0001804 0.000007 2.9571 0.5165 
61116-56A TB' 0.0000564 0.000006 2.2480 0.3044 
61116-57A TB' 0.0000392 0.000006 1.9821 0.3345 
61116-58A TB' 0.0000404 0.000006 2.0107 0.1610 
61116-59A TB' 0.0000411 0.000006 1.9400 0.2783 
61116-60A TB' 0.0000644 0.000006 2.5945 0.3853 

      
Omitted Analyses:     

61116-09A TB' 0.0000008 0.000006 237.3898 2176.2180 
61116-14A TB' 0.0000034 0.000006 1.0688 2.2162 
61116-17A TB' 0.0000094 0.000006 1.5828 0.3251 
61116-34A TB' 0.0000065 0.000006 1.8295 0.3901 
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(Renne et al. 1998; Steiger & Jager 1977) (Renne et al. 2010, 2011) 

Run # Sample %40Ar* 
±%40Ar* 

(1σ) Age (Ma) 
± Age w/o 

J (1σ) 
± w/ J 
(1σ) 

61116-01A TB' 45.504 10.100 0.1928 0.0428 0.0428 
61116-02A TB' 29.715 4.810 0.2615 0.0427 0.0427 
61116-03A TB' 61.361 7.653 0.3739 0.0469 0.0469 
61116-04A TB' 13.024 4.950 0.1990 0.0766 0.0766 
61116-05A TB' 24.073 5.054 0.2668 0.0565 0.0565 
61116-06A TB' 30.349 3.915 0.2127 0.0278 0.0278 
61116-07A TB' 25.994 4.093 0.3558 0.0568 0.0568 
61116-08A TB' 52.518 9.935 0.3160 0.0598 0.0598 
61116-09B TB' 43.407 5.587 0.2817 0.0364 0.0364 
61116-10A TB' 32.430 2.878 0.3100 0.0282 0.0282 
61116-11A TB' 67.281 8.701 0.3129 0.0404 0.0404 
61116-12A TB' 62.386 5.413 0.6642 0.0582 0.0582 
61116-13A TB' 57.776 10.457 0.2253 0.0407 0.0407 
61116-15A TB' 9.652 2.269 0.3905 0.0973 0.0973 
61116-16A TB' 50.037 5.847 0.2868 0.0336 0.0336 
61116-18A TB' 16.265 3.075 0.2766 0.0538 0.0538 
61116-19A TB' 52.487 9.229 0.2165 0.0381 0.0381 
61116-20A TB' 54.054 10.838 0.3338 0.0669 0.0669 
61116-21A TB' 52.055 6.671 0.3262 0.0419 0.0419 
61116-22A TB' 22.674 6.300 0.1791 0.0501 0.0501 
61116-23A TB' 42.680 5.461 0.3450 0.0444 0.0444 
61116-24A TB' 63.230 4.076 0.2745 0.0178 0.0178 
61116-25A TB' 64.888 8.843 0.2902 0.0395 0.0395 
61116-26A TB' 72.855 1.948 0.2833 0.0077 0.0078 
61116-27A TB' 50.669 6.610 0.3594 0.0470 0.0470 
61116-28A TB' 58.969 7.476 0.2749 0.0348 0.0348 
61116-29A TB' 38.993 5.995 0.2497 0.0386 0.0386 
61116-30A TB' 54.227 7.816 0.2852 0.0411 0.0411 
61116-31A TB' 9.812 1.468 0.3689 0.0627 0.0627 
61116-32A TB' 72.038 5.490 0.3025 0.0231 0.0231 
61116-33A TB' 90.025 6.130 0.7953 0.0547 0.0547 
61116-35A TB' 37.045 6.187 0.2485 0.0417 0.0417 
61116-36A TB' 36.783 2.969 0.2841 0.0234 0.0234 
61116-37A TB' 72.807 7.420 0.3355 0.0341 0.0341 
61116-38A TB' 72.106 9.693 0.3623 0.0486 0.0486 
61116-39A TB' 45.268 6.629 0.2547 0.0374 0.0374 
61116-40A TB' 61.814 8.694 0.3380 0.0475 0.0475 
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Isochron (Sample Terrace B’ of Unit 10) 

   

Run # Sample 36Ar/40Ar 
±% 36Ar/40Ar 

(1σ) 39Ar/40Ar 
±% 39Ar/ 
40Ar (1σ) 

61116-01A TB' 0.001825 18.418650 0.323432 1.467487 
61116-02A TB' 0.002354 6.870810 0.155689 0.906314 
61116-03A TB' 0.001294 19.591250 0.224848 1.836554 
61116-04A TB' 0.002913 5.739389 0.089645 1.291927 
61116-05A TB' 0.002543 6.678771 0.123629 1.116836 
61116-06A TB' 0.002333 5.648108 0.195449 0.846354 
61116-07A TB' 0.002479 5.570094 0.100079 0.945050 
61116-08A TB' 0.001590 20.762800 0.227724 1.569546 

 
 
 
 
 
 
 
 
 
 

61116-41A 

 
 
 
 
 
 
 
 
 
 

TB' 

 
 
 
 
 
 
 
 
 
 

43.515 

 
 
 
 
 
 
 
 
 
 

6.282 

 
 
 
 
 
 
 
 
 
 

0.2563 

 
 
 
 
 
 
 
 
 
 

0.0371 

 
 
 
 
 
 
 
 
 
 

0.0371 
61116-42A TB' 54.151 8.080 0.2533 0.0378 0.0378 
61116-43A TB' 27.845 5.989 0.2150 0.0465 0.0465 
61116-44A TB' 52.621 9.115 0.2396 0.0415 0.0415 
61116-45A TB' 87.333 10.116 0.3320 0.0383 0.0383 
61116-46A TB' 38.231 8.440 0.2834 0.0627 0.0627 
61116-47A TB' 55.802 6.315 0.3345 0.0379 0.0379 
61116-48A TB' 57.580 8.183 0.3058 0.0435 0.0435 
61116-49A TB' 50.592 7.498 0.2501 0.0371 0.0371 
61116-50A TB' 45.462 7.211 0.2515 0.0400 0.0400 
61116-51A TB' 54.596 8.922 0.2701 0.0441 0.0441 
61116-52A TB' 60.280 6.293 0.2619 0.0274 0.0274 
61116-53A TB' 47.085 5.989 0.2416 0.0308 0.0308 
61116-54A TB' 33.454 2.502 0.5720 0.0444 0.0444 
61116-55A TB' 17.767 3.003 0.4051 0.0707 0.0708 
61116-56A TB' 43.944 5.925 0.3080 0.0417 0.0417 
61116-57A TB' 46.604 7.854 0.2715 0.0458 0.0458 
61116-58A TB' 64.510 5.158 0.2755 0.0221 0.0221 
61116-59A TB' 50.603 7.250 0.2658 0.0381 0.0381 
61116-60A TB' 39.057 5.767 0.3554 0.0528 0.0528 

       
Omitted Analyses:      

61116-09A TB' 71.252 201.180 32.2364 292.9013 292.9013 
61116-14A TB' 47.565 98.746 0.1464 0.3036 0.3036 
61116-17A TB' 75.116 15.469 0.2169 0.0445 0.0445 
61116-34A TB' 80.598 17.265 0.2506 0.0534 0.0534 
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61116-09B TB' 0.001896 9.825622 0.211136 1.036294 
61116-10A TB' 0.002263 4.314239 0.143311 0.692078 
61116-11A TB' 0.001096 26.291380 0.294587 1.377822 
61116-12A TB' 0.001260 14.274180 0.128672 1.369312 
61116-13A TB' 0.001414 24.518920 0.351281 1.618015 
61116-15A TB' 0.003026 2.646810 0.033859 1.701291 
61116-16A TB' 0.001674 11.616260 0.238991 1.091200 
61116-18A TB' 0.002805 3.760977 0.080565 0.875684 
61116-19A TB' 0.001591 19.267480 0.332197 1.389134 
61116-20A TB' 0.001539 23.378450 0.221872 1.745924 
61116-21A TB' 0.001606 13.806380 0.218592 1.164686 
61116-22A TB' 0.002590 8.157869 0.173462 1.143188 
61116-23A TB' 0.001920 9.491362 0.169505 0.982506 
61116-24A TB' 0.001232 10.985630 0.315575 0.757958 
61116-25A TB' 0.001176 24.865960 0.306357 1.480428 
61116-26A TB' 0.000909 7.140374 0.352379 0.455437 
61116-27A TB' 0.001652 13.299730 0.193171 1.137489 
61116-28A TB' 0.001374 18.029710 0.293915 1.249808 
61116-29A TB' 0.002043 9.782664 0.213952 1.132705 
61116-30A TB' 0.001533 16.912200 0.260515 1.337200 
61116-31A TB' 0.003021 1.830632 0.036440 1.079695 
61116-32A TB' 0.000937 19.453550 0.326249 0.854234 
61116-33A TB' 0.000334 60.702670 0.155058 1.407315 
61116-35A TB' 0.002109 9.791533 0.204244 1.147170 
61116-36A TB' 0.002117 4.751094 0.177374 0.635023 
61116-37A TB' 0.000911 26.920770 0.297274 1.169757 
61116-38A TB' 0.000934 34.317190 0.272640 1.483679 
61116-39A TB' 0.001833 12.043620 0.243463 1.129731 
61116-40A TB' 0.001279 22.543360 0.250582 1.381501 
61116-41A TB' 0.001892 11.070050 0.232573 1.099053 
61116-42A TB' 0.001536 17.453360 0.292836 1.354365 
61116-43A TB' 0.002417 8.305079 0.177400 1.123327 
61116-44A TB' 0.001587 19.083700 0.300872 1.403970 
61116-45A TB' 0.000424 78.479440 0.360405 1.609269 
61116-46A TB' 0.002069 13.581540 0.184824 1.560194 
61116-47A TB' 0.001480 14.144290 0.228577 1.194055 
61116-48A TB' 0.001421 19.099310 0.257923 1.333074 
61116-49A TB' 0.001655 15.065440 0.277114 1.204265 
61116-50A TB' 0.001827 13.169810 0.247670 1.070339 
61116-51A TB' 0.001521 19.471020 0.276955 1.428526 
61116-52A TB' 0.001330 15.750240 0.315302 0.931682 
61116-53A TB' 0.001772 11.260430 0.267047 1.003216 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 204 

61116-54A TB' 0.002229 3.833517 0.080125 1.027367 
61116-55A TB' 0.002754 3.735779 0.060080 1.651955 
61116-56A TB' 0.001878 10.516540 0.195478 1.101941 
61116-57A TB' 0.001789 14.609640 0.235127 1.283475 
61116-58A TB' 0.001189 14.363590 0.320833 0.946724 
61116-59A TB' 0.001655 14.564140 0.260839 1.200412 
61116-60A TB' 0.002041 9.440053 0.150537 1.124180 

      
            Omitted Analyses:     

61116-09A TB' 0.000963 692.111700 0.003002 872.82630 
61116-14A TB' 0.001756 187.258200 0.445045 11.289660 
61116-17A TB' 0.000834 61.510520 0.474573 2.042190 
61116-34A TB' 0.000650 87.755060 0.440554 2.431621 
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Appendix-3 
 

MATERIAL PROPERTIES OF THE WORJA OBSIDIAN 
 
 

Sample ID  
 

P-Distance 
(cm) 

Young's 
Modulus (E) 

Poisson's 
Ratio (v) 

Transit 
Time 

Voltage 
(high/low) 

KUL 1-1 5.4 12.92e+6 psi 0.17 11.2 µ sec H 
KUL 1-2 5.1 12.98e+6 psi 0.17 11.1 µ sec H 
KUL 1-3 5.4 12.76e+6 psi 0.17 11.9µ sec H 
KUL 1-4 5 13.32e+6 psi 0.17 11.4 µ sec H 
KUL 1-5 6.4 12.92e+6 psi 0.17 15.7 µ sec H 
KUL 2-1 6.2 12.99e+6 psi 0.17 11.7 µ sec H 
KUL 2-2 6.3 12.82e+6 psi 0.17 13.1 µ sec H 
KUL 2-3 6 13.2e+6 psi 0.17 11.3 µ sec H 
KUL 2-4 5.4 12.9e+6 psi 0.17 13.8 µ sec H 
KUL 2-5 5.5 12.89e+6 psi 0.17 10.7 µ sec H 
KUL 3-1 6.4 12.94e+6 psi 0.17 11.8 µ sec H 
KUL 3-2 6 12.74e+6 psi 0.17 12.1 µ sec H 
KUL 3-3 5.76 12.88e+6 psi 0.17 11.1 µ sec H 
KUL 3-4 5.8 12.91e+6 psi 0.17 11.1 µ sec H 
KUL 3-5 6.42 12.88e+6 psi 0.17 14.9 µ sec H 
KUL 4-1 5.5  12.92e+6 psi 0.17 11.3 µ sec H 
KUL 4-2 5.2 13.0e+6 psi 0.17 11 µ sec H 
KUL 4-3 5.96 13.1e+6 psi 0.17 11 µ sec H 
KUL 4-4 5.72 12.98e+6 psi 0.17 13.1 µ sec H 
KUL 4-5 5.5 13.13e+6 psi 0.17 11.4 µ sec H 
KUL 5-1 5.9 12.93e+6 psi 0.17 13 µ sec H 
KUL 5-2 4.89 13.12e+6 psi 0.17 11.1 µ sec L 
KUL 5-3 5.83 12.97e+6 psi 0.17 11.6 µ sec H 
KUL 5-4 5.97 12.94e+6 psi 0.17 12.2  µ sec H 
KUL 5-5 4.9 13.1e+6 psi 0.17 1.6 µ sec L 
KUL 6-1 5.58 13.34e+6 psi 0.17 12.3 µ sec H 
KUL 6-2 5.49 12.96e+6 psi 0.17 11.7 µ sec H 
KUL 6-3 5.45 12.98e+6 psi 0.17 10.3  µ sec H 
KUL 6-4 5.2 12.99e+6 psi 0.17 11.8  µ sec H 
KUL 6-5 5.16  12.66e+6 psi 0.17 12.8 µ sec H 

KUL Test_1 5.0 12.91e+6 psi 0.17 11.3  µ sec H 
KUL Test_2 5.0 12.96e+6 psi 0.17 12.1  µ sec H 
AVERAGE    12.97 psi 0.17    

 
 

Remarks:    - For all measurements, instrument was set to 1 pulse per second 

- The average E value was changed to Newton/m2, yielding a value  
   of 8.9425e+10  N/m2 (cf. Hutchings 2011: table 1) 

 




