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Abstract

Background: Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable developmental disorder
resulting from complex gene-gene and gene-environment interactions. The most widely used animal model, the
spontaneously hypertensive rat (SHR), displays the major symptoms of ADHD (deficits in attention, impulsivity
and hyperactivity) and has a disturbance in the noradrenergic system when compared to control Wistar-Kyoto
rats (WKY). The aim of the present study was to determine whether the ADHD-like characteristics of SHR were
purely genetically determined or dependent on the gene-environment interaction provided by the SHR dam.

Methods: SHR/NCrl (Charles River, USA), WKY/NCrl (Charles River, USA) and Sprague Dawley rats (SD/Hsd,
Harlan, UK) were bred at the University of Cape Town. Rat pups were cross-fostered on postnatal day 2 (PND
2). Control rats remained with their birth mothers to serve as a reference for their particular strain phenotype.
Behavior in the open-field and the elevated-plus maze was assessed between PND 29 and 33. Two days later, rats
were decapitated and glutamate-stimulated release of [3H]norepinephrine was determined in prefrontal cortex
and hippocampal slices.

Results: There was no significant effect of "strain of dam" but there was a significant effect of "pup strain" on all
parameters investigated. SHR pups travelled a greater distance in the open field, spent a longer period of time in
the inner zone and entered the inner zone of the open-field more frequently than SD or WKY. SD were more
active than WKY in the open-field. WKY took longer to enter the inner zone than SHR or SD. In the elevated-
plus maze, SHR spent less time in the closed arms, more time in the open arms and entered the open arms more
frequently than SD or WKY. There was no difference between WKY and SD behavior in the elevated-plus maze.
SHR released significantly more [3H]norepinephrine in response to glutamate than SD or WKY in both
hippocampus and prefrontal cortex while SD prefrontal cortex released more [3H]norepinephrine than WKY.
SHR were resilient, cross-fostering did not reduce their ADHD-like behavior or change their neurochemistry.
Cross-fostering of SD pups onto SHR or WKY dams increased their exploratory behavior without altering their
anxiety-like behavior.

Conclusion: The ADHD-like behavior of SHR and their neurochemistry is genetically determined and not
dependent on nurturing by SHR dams. The similarity between WKY and SD supports the continued use of WKY
as a control for SHR and suggests that SD may be a useful additional reference strain for SHR. The fact that SD
behaved similarly to WKY in the elevated-plus maze argues against the use of WKY as a model for anxiety-like
disorders.
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Background

Attention-deficit/hyperactivity disorder (ADHD) is a het-
erogeneous disorder resulting from complex gene-gene
and gene-environment interactions which give rise to var-
iable expression of the defining symptoms of impaired
sustained attention, impulsivity and hyperactivity [1-5].
ADHD is highly heritable [4-6]. A genome-wide associa-
tion scan of quantitative traits for ADHD identified a wide
range of genes implicating the GABA transporter, sodium/
hydrogen exchanger, noradrenergic, serotonergic,
dopaminergic and nicotinic receptors as well as genes that
encode proteins involved in the synthesis and transport of
norepinephrine, strongly implicating the noradrenergic
system in ADHD [6]. In addition to playing a critical role
in the regulation of attention and arousal, the noradrener-
gic system promotes secondary behaviors such as vigi-
lance, exploratory activity, and behavioral flexibility,
disturbance of which could give rise to symptoms of
ADHD [7-10]. To explain the heterogeneous nature of
ADHD, it has been suggested that different combinations
of genetic and environmental factors may be required to
produce individual clusters of behavioral symptoms [11-
15]. Environmental risk factors that contribute signifi-
cantly to ADHD, include prenatal exposure to drugs such
as alcohol and nicotine, obstetric complications, head
injury and psychosocial adversity, suggesting that the
early postnatal environment may be an important con-
tributory factor [16-18].

Neurophysiological and imaging studies have shown that
ADHD is associated with alterations in several brain struc-
tures involved in the regulation of behavior, including the
prefrontal cortex and its connections to the striatum, pari-
etal cortex and cerebellum [19-25]. The prefrontal cortex
is important for sustaining attention over a delay, inhibit-
ing distraction and dividing attention, while the parietal
cortex is essential for perception and the allocation of
attentional resources [25]. There is compelling evidence
that both noradrenergic and dopaminergic systems are
altered in ADHD, norepinephrine enhances neural signal-
ling by acting on a.,,-adrenoceptors in prefrontal cortex to
strengthen functional connectivity in neural networks
while dopamine decreases "noise" through modest levels
of DRD1 activation [25,26]. Deficient norepinephrine or
dopamine modulation of the strength of connections in
sensorimotor networks may impair or delay their matura-
tion which is thought to occur in patients with ADHD as
evidenced by increased latency of evoked potentials in the
auditory and visual systems, increased theta relative to
alpha or beta power in the EEG and reduced coherence of
EEG waveforms between the cerebral hemispheres [27-
31].

Development of the brain follows a precise genetically
determined programme that is subject to modification by
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the environment [32]. Sensory stimulation and experi-
ence affect norepinephrine and dopamine release and ini-
tially increase the number of synaptic connections
between neurons [32]. Dendritic pruning and synapse
elimination produce more efficient neural circuits that
continue to be remodelled throughout life [32]. Any dis-
ruption of this process can result in impaired brain func-
tion. Consistent with ADHD being a developmental
disorder, rat models of ADHD are either genetically deter-
mined or require pre- or postnatal intervention [33,34].
Early postnatal conditions can be manipulated experi-
mentally by altering the maternal environment of the
pups. Cross-fostering and maternal separation are widely
used to study the influence of early postnatal environ-
ment on rat pups [35-39].

Similar to children with ADHD, there is considerable evi-
dence to suggest that disturbances in the noradrenergic
system may contribute to the development of ADHD-like
behavior in a widely used rat model of ADHD, the spon-
taneously hypertensive rat (SHR). SHR display the major
symptoms of ADHD such as deficits in attention, impul-
sivity and hyperactivity when compared to Wistar-Kyoto
rats (WKY), the strain from which they were derived, as
well as other rat strains [40-44]. SHR have been shown to
have poor autoreceptor-mediated feedback control of
norepinephrine release and increased glutamate-stimu-
lated release of norepinephrine from terminals of locus
coeruleus neurons, in addition to disturbances in the
dopaminergic system [45-51]. However, the use of WKY
as a control for SHR has recently been questioned because
of instability in its behavioral characteristics [44]. WKY
obtained from certain suppliers have been suggested to
model the inattentive subtype of ADHD, while other stud-
ies have suggested that WKY may be used as a model of
anxiety or depression [44,52-54|. Sprague Dawley rats
(SD) were therefore included in the present study as an
additional control for SHR.

The aim of the present study was to investigate whether
the early postnatal environment determines behavioral
and neurochemical outcomes in SHR, WKY and SD rat
strains. Rat pups were subjected to cross-fostering and the
effects on their exploratory behavior and anxiety-like
behavior determined in an open-field apparatus and ele-
vated-plus maze. These studies were performed when the
rats were 4 weeks of age since SHR are hyperactive at this
age and have not yet developed signs of hypertension [54-
56]. Glutamate-stimulated release of norepinephrine in
hippocampal and prefrontal cortical slices was also meas-
ured to indicate whether change in the early postnatal
environment had altered glutamate regulation of the
locus coeruleus noradrenergic system, since this is altered
in SHR and these brain areas are involved in processing
and responding to sensory input from the environment
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during the early stages of development. The hypothesis
tested in this study was that the ADHD-like characteristics
of SHR, specifically hyperactivity and lack of anxiety, were
purely genetically determined and not the result of inter-
action between the pup and the environment provided by
the SHR dam.

Methods

Animals

SHR/NCil (Charles River Laboratories, USA), WKY/NCil
(Charles River Laboratories, USA) and SD/Nsd (Harlan
Laboratories, UK) were bred by the University of Cape
Town Animal Unit. Rats obtained from the Animal Unit
were housed in plastic cages with sawdust bedding in a 12
hr light/dark cycle (lights on from 06h00 to 18h00). Food
and water were provided ad libitum and the temperature
was maintained between 21 and 23°C. The rats were
transferred to a clean cage three times per week. All exper-
iments were approved by the Research Ethics Committee
of the University of Cape Town.

Cross-fostering protocol

Two or three SHR, WKY or SD adult female rats were
placed with a male (harem mating) of the same strain for
four days (the duration of the oestrous cycle of the rat,
thereby increasing the likelihood of successful mating).
The females were housed individually when signs of preg-
nancy became evident. The pregnant dams were moni-
tored daily and the date of birth of pups (PND 0) was
noted. All pups were treated identically to avoid the con-
founding effects of handling. On PND 2, pups were sexed
and litters were culled to eight. All pups were transferred
to clean cages. Each dam was gently placed in the cage that
held the litter that it would rear (either its own pups or
cross-fostered pups). Cross-fostering took place on PND 2
to minimize the possibility of cannibalism, which could
possibly occur as a result of (1) human handling at too
early an age, (2) insufficient time allowed for grooming
and removal of traces of delivery, and (3) heightened
maternal sensitivity during the first few PNDs. This
method of cross-fostering on PND 2 was found to be
highly successful in all three rat strains. Pups born in one
litter were cross-fostered as one litter. The litters were not
mixed at any stage. Control rats remained with their birth
mothers, to closely mimic normal rats. Litters were culled
to 8 pups per litter. Litters of less than 5 pups were not
included in the study. On PND 21 the rats were weaned
and paired with a litter mate of the same strain and rearing
condition. Rat pups (n = 10 to 15 per group, 5 to 6 litters,
2 to 4 rats from each litter) were assessed for their behav-
ior in the open-field and the elevated-plus maze between
PND 29 and 33. Two days after the behavioral recordings,
the rats were decapitated to determine glutamate-stimu-
lated release of [3H]norepinephrine in prefrontal cortex
and hippocampal slices.
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Maternal separation protocol

A second model frequently used to study the effects of
altered maternal environment on brain development
makes use of chronic maternal separation (3 h per day for
14 days) which causes long-lasting changes in brain func-
tion [57]. SD dams were harem mated as described above.
Females were housed individually when signs of preg-
nancy became evident. The date of birth (PND 0) of the
pups was noted. On PND 2 litters were culled to 8 pups.
From PND 2 through to PND 14 the dams were removed
from the litters (the pups were not handled) for 3 h per
day. The separation occurred between 09h00 and 12h00.
Cages containing the pups were transferred to a separate
room where the temperature was maintained at 31°C to
prevent hypothermia. At 12h00 the cages with pups were
returned to the communal rat room and maternal dams
were returned to their pups. Rats belonging to the control
group were raised normally. Pups were weaned in litters
on PND 21. From PND 30 to PND 35, rats were housed
in pairs. On PND35 rats were decapitated to determine
glutamate-stimulated release of [3H|norepinephrine in
prefrontal cortex and hippocampal slices.

Behavioral measures

Between PND 29 and 33 behavior in the open-field and
elevated-plus maze was assessed. The rats were taken to a
room adjacent to the behavioral room at least 1 h prior to
behavioral recording which took place between 10h00
and 14h00. Since novelty is a major contributor to behav-
ior in the open-field, this test was performed initially, at
least 2 h prior to the elevated-plus maze. Illumination of
the behavioral room was 50 lux to encourage exploration
of the open-field apparatus [37]. The elevated-plus maze
provided a robust measure of anxiety-like behavior which
was not sensitive to changes in illumination [58]. The rats'
behavior was recorded with video cameras and analyzed
with Ethovision software (version 3.1, Noldus Informa-
tion Technology, Wageningen, Netherlands). Each appa-
ratus was cleaned with 20% ethanol between rat
recordings.

Open-field behavior

The inner zone (0.70 m x 0.70 m) of the open-field (1.0
m x 1.0 m black wooden box with 0.5 m high walls) was
demarcated with a white line. Each rat was individually
placed in the outer zone of the open-field facing into a
corner, parallel to a wall. The positioning of the rat within
the open-field in this manner was to limit locomotion
resulting from the stress of handling and placement into
the novel environment, which may have yielded a false
locomotor response. The rat's behavior was recorded for
15 min. Parameters analysed in the open-field apparatus
were (a) total distance travelled, (b) time taken to enter
the inner zone, (c) number of entries into the inner zone,
and (d) time spent in the inner zone [37].
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Elevated-plus maze behavior

Each rat's behavior in the elevated-plus maze (1.0 m x 1.0
m black plastic plus-shaped apparatus, raised above the
ground by 0.5 m) was recorded for 5 min after a 2-h
period of rest after exploring the open-field apparatus.
Rats were placed in the centre of the elevated-plus maze
facing an open arm. Parameters analyzed in the elevated-
plus maze included (a) time spent in the closed arms, (b)
time spent in the open arms, and (c) number of entries
into the open arms [58].

Neurochemistry

Two days after the behavioral measures (PND31 to
PND35), rats were transferred to a room adjacent to the
laboratory 1 h prior to decapitation. Rats were killed by
decapitation in their light cycle, between 09h00 and
12h00. Their brains were rapidly removed and submerged
in ice-cold Krebs buffer (NaCl 118 mM, KCl 4.7 mM,
NaH,PO,.H,0 1.0 mM, MgCl,.6H,0 1.2 mM, NaHCO,
23 mM, D-Glucose 11 mM, EDTA 37.6 puM and
CaCl,.H,0 1.3 mM) and aerated with carbogen (95% O,/
5% CO,) for 15 min as previously described [48,49,51].

Prefrontal cortex was dissected from three anterior 0.9 mm
coronal brain sections and chopped into 0.3 mm by 0.3 mm
slices with a Mcllwain tissue chopper. Hippocampi were
removed and similarly chopped into 0.3 mm by 0.3 mm
slices. The tissue slices were transferred to ice-cold Krebs
buffer (1 ml) containing ascorbic acid (5.7 mM, to reduce
free radical damage) and transferred to a waterbath main-
tained at 37°C. After 10 min, radioactively labelled nore-
pinephrine (2.67 pl, 1-[7,8-3H]norepinephrine, 37 MBq/ml,
1.0 mCi/ml, Amersham International, UK) was added and
incubated with the tissue for 15 min to allow uptake of
[*H]norepinephrine by vesicles in noradrenergic axons
within the tissue slices. After 15 min, the supernatant was
removed and fresh Krebs buffer was added to the tissue. The
slices were transferred to superfusion chambers and perfused
with Krebs buffer for 1 h. Two 5-min baseline fractions of
eluate were collected from the columns. Upon initiation of
collection of the third fraction, the inlet tubes of the super-
fusion columns were transferred to a 1 mM glutamate-con-
taining Krebs buffer solution. The inlet tubes were kept in the
glutamate-containing Krebs buffer solution for 1 min, and
then returned to the Krebs buffer solution for the remaining
4 min of the fraction. This fraction served as the glutamate-
stimulated fraction. An additional 5-min baseline fraction
and a final fraction were collected. The brain slices were
removed from the superfusion columns, 1 ml 0.1 M NaOH
was added and radioactivity remaining in the slices deter-
mined.

Calculation of glutamate-stimulated release of
[BH]norepinephrine

The radioactivity in baseline and stimulation fractions as
well as radioactivity in the brain slices at the end of the
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experiment was analyzed using a Packard 1900 CA TRI-
CARB liquid scintillation analyzer. To determine gluta-
mate-stimulated release relative to baseline, release of
radioactivity was calculated as a fraction of the total
amount of radioactivity present in the slices at the time of
release of that 5-min fraction, and baseline fractional
release was subtracted from the stimulation fractional
release, to obtain glutamate-stimulated release of radioac-
tivity.

Statistics

A two-way analysis of variance (ANOVA) with factors
"strain of dam" and "pup strain" was applied to the data.
This was followed by Tukey's HSD post-hoc test where
appropriate, using Statistica 8 software. Results are
expressed as mean + SEM.

Results

A two-way ANOVA revealed a significant effect of "pup
strain" (F(;,100) > 6, P < 0.005) for all parameters investi-
gated and a significant interaction between "strain of
dam" and "pup strain" for various behavioral parameters
including latency to enter the inner zone of the open-field
(F(a,100) = 2.81, P < 0.05, Figure 1), frequency of entries
into the inner zone of the open-field (F(4 190 = 3.96, P <
0.005, Figure 1) and frequency of entries into the open
arms of the elevated-plus maze (F 4,100y = 3.67, P < 0.01,
Figure 2), as well as glutamate-stimulated release of
[*H|norepinephrine in rat pup hippocampus (F 100y =
2.55, P < 0.05, Figure 3). There was no significant effect of
"strain of dam" (F(, 109y < 2.1, P> 0.1).

Pup strain differences

In the open-field, SHR pups travelled a greater distance (P
< 0.01), spent a longer period of time in the inner zone (P
< 0.005) and entered the inner zone more frequently (P <
0.005) than SD and WKY (Figure 1). SD pups travelled a
greater distance (P < 0.0005), spent more time in the
inner zone (P < 0.0005) and entered the inner zone more
frequently (P < 0.0005) than WKY pups (Figure 1). WKY
took longer to enter the inner zone (P < 0.0005) than SHR
or SD pups.

In the elevated-plus maze, SHR spent less time in the
closed arms (P < 0.001), more time in the open arms (P <
0.05) and entered the open arms more frequently (P <
0.0005) than SD or WKY pups (Figure 2). There was no
difference between WKY and SD behavior in the elevated-
plus maze.

Post-hoc Tukey's HSD test revealed that SHR released sig-
nificantly more [3H|norepinephrine in response to gluta-
mate than SD or WKY pups in both hippocampus (P <
0.0005) and prefrontal cortex (P < 0.001) while SD pre-
frontal cortex released more [3H]norepinephrine than
WKY (P < 0.0005, Figure 3).
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Effect of cross-fostering on behavior in the open-field apparatus. *SHR pups (n = |12 — 14) travelled a greater distance
(two-way ANOVA, significant effect of "pup strain”, F(, |45 = 46, P < 0.0001, post-hoc Tukey's HSD test, P < 0.01), spent a
longer period of time in the inner zone (two-way ANOVA, F; ;o) = 31, P < 0.0001, post-hoc Tukey's HSD test, P < 0.005) and
entered the inner zone more frequently (two-way ANOVA, %2 100) = 52, P < 0.0001, post-hoc Tukey's HSD test, P < 0.005)
than WKY (n =11 - 12) and SD (n = 10 — I5). SHR also entered the inner zone more rapidly than WKY (two-way ANOVA,
F(2,100 = 30, P < 0.0001, post-hoc Tukey's HSD test, P < 0.0005). fSD pups travelled a greater distance (P < 0.0005), spent
more time in the inner zone (P < 0.0005) and entered the inner zone more frequently (P < 0.0005) than WKY pups. SD
entered the inner zone more rapidly than WKY (P < 0.0005). §Signifcantly different from SD reared by SHR or WKY (two-way
ANOVA, significant interaction between "strain of dam" and "pup strain", F4 o0 > 2.8, P < 0.05, post-hoc Tukey's HSD test, P
< 0.005). 1Significantly less than SD reared by SHR, and SHR reared by WKY or SD (two-way ANOVA, significant dam*pup
interaction, F4 o0 = 4.0, P < 0.005, post-hoc Tukey's HSD test, P < 0.005).
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Interactions between pup strain and strain of dam
Cross-fostering appeared to increase the exploratory
behavior of SD pups in the open-field. SD pups cross-fos-
tered onto WKY or SHR dams displayed shorter latencies
to enter the inner zone of the open-field and entered the
inner zone of the open-field more frequently than WKY
pups reared by WKY or SHR dams (P < 0.005) while SD
pups reared by SD dams were not significantly different
from WKY pups (P > 0.1, Figure 1).

SD pups reared by SD dams entered the inner zone of the
open-field less frequently than SD pups cross-fostered
onto SHR dams (P < 0.05) and SHR pups reared by SD or
WKY dams (P < 0.005). SD pups reared by SHR dams
entered the inner zone as frequently as SHR pups reared
by SHR dams. SHR dams appeared to have opposite
effects on SHR and SD pups in the open-field.

SHR pups cross-fostered onto WKY or SD dams entered
the open arms of the elevated-plus maze more frequently
than SD pups reared by WKY or SD dams (P < 0.005, Fig-
ure 2). SD pups cross-fostered onto SHR dams behaved
similar to SHR pups reared by SHR dams. SHR dams
tended to have opposite effects on SD and SHR behavior
in the elevated-plus maze.

SHR reared by either SHR or SD dams released more hip-
pocampal [3H]norepinephrine in response to glutamate
than SD pups reared by either SHR or SD dams (P <
0.0005, Figure 3). SHR pups reared by WKY dams did not
differ from SD pups reared by WKY dams (P > 0.3). Cross-
fostering onto WKY dams had opposite effects on gluta-
mate-stimulated release of [3H|norepinephrine in hippoc-
ampus of SD and SHR.

Maternal separation

Maternal separation did not effect glutamate-stimulated
release of [3H|norepinephrine from either hippocampal
or prefrontal cortical slices of SD rats (ANOVA, P > 0.3).

Discussion

The strain of the dam did not alter the behavior of SHR in
the open-field and elevated-plus maze. It also did not
affect glutamate release in hippocampus or prefrontal cor-
tex of SHR, WKY or SD rats. However, there was a signifi-
cant effect of "pup strain" on all parameters measured and
a significant interaction between "strain of dam" and
"pup strain" in several behavioral parameters related to
exploratory activity, namely latency to enter the inner
zone of the open-field, frequency of entries into the inner
zone of the open-field and frequency of entries into the
open arms of the elevated-plus maze as well as glutamate-
stimulated release of [3H|NE in hippocampal slices. There
was no interaction between the "strain of the dam" and
"pup strain" in anxiety-like behaviors, namely, time spent
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in the inner zone of the open-field and time spent in the
open arms of the elevated-plus maze, suggesting no effect
on anxiety-like behavior. There was also no difference
between the strains in the effect of maternal environment
on distance travelled by the pups in the open-field, sug-
gesting no effect on locomotor activity. SHR dams tended
to decrease hippocampal release of NE in response to
glutamate in SD and WKY relative to rats reared by WKY
dams while SHR did not show this trend. These changes
in glutamate regulation of NE release were accompanied
by an increase in exploratory behavior in SD reared by
SHR dams evidenced by a decrease in latency to enter the
inner zone of the open-field and an increase in frequency
of entries into the inner zone of the open-field and open
arms of the elevated-plus maze. SD rats cross-fostered
onto WKY dams also showed increased exploratory
behavior when compared to SD rats reared by SD dams,
reflected by decreased latency to enter the inner zone and
increased frequency of entry into the inner zone of the
open-field but not the elevated-plus maze, possibly
because of the increased element of anxiety caused by the
elevation of the plus maze. In contrast, SHR were not
affected by cross-fostering onto SD or WKY dams, their
phenotype did not appear to be affected by maternal envi-
ronmental changes in the early stages of development.

Of the three rat strains, SD appeared to be the most
severely affected by cross-fostering significantly increasing
their exploratory behavior. The effect of cross-fostering
was greater in SD possibly because SD rats differ from the
two Wistar-Kyoto derived rat strains that are genetically
more closely related to each other than to the SD rat
strain. It was therefore decided to investigate whether a
second model of altered postnatal environment would
cause neurochemical changes in the brains of SD rats. The
mild postnatal stress of maternal separation has been
shown to induce anxiety-like behavior in SD rats causing
long-term changes in neural circuits that control behavior
and reactivity to stress [35,57]. However, when SD rats
were subjected to chronic maternal separation there was
no change in glutamate-stimulated release of norepine-
phrine in prefrontal cortex or hippocampus of SD rats,
suggesting that these neuronal circuits were not affected
by maternal separation stress.

In agreement with previous reports, SHR displayed
increased locomotor activity and increased exploratory
behavior when compared to WKY in the open field, evi-
denced by reduced time to enter the inner zone of the
open-field, greater frequency of entries into the inner zone
and increased time spent in the inner zone of the open-
field [59-63]. SD were intermediate between SHR and
WKY in terms of exploratory behavior in the open field
and hippocampal release of norepinephrine.
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Figure 2

Effect of cross-fostering on behavior in the elevated-plus maze. *SHR pups (n = 12 — 14) spent less time in the closed
arms (two-way ANOVA, significant effect of "pup strain" F, o) = 13.9, P < 0.0001, post-hoc Tukey's HSD test, P < 0.001),
more time in the open arms (two-way ANOVA, F, ;o) = 6.0, P < 0.005, post-hoc Tukey's HSD test, P < 0.05) and entered the
open arms more frequently (two-way ANOVA, F; ;o) = 22, P < 0.0001, post-hoc Tukey's HSD test, P < 0.0005) than WKY (n
= 11-12) and SD (n = 10 — I5). $Significantly greater than SD reared by WKY or SD (two-way ANOVA, significant interaction
between "strain of dam" and "pup strain”, F(4 ;o0) = 3.7, P < 0.01, post-hoc Tukey's HSD test, P < 0.005).
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Figure 3

Effect of cross-fostering on [2H]norepinephrine release in prefrontal cortex and hippocampus of SHR (n = 12 -
14), WKY (n=11 =12) and SD (n = 10 - I5). *SHR released significantly more [3H]norepinephrine in response to gluta-
mate than SD or WKY in hippocampus (two-way ANOVA, significant effect of "pup strain" F, o0 = 52, P < 0.0001, post-hoc
Tukey's HSD test, P < 0.0005) and prefrontal cortex (two-way ANOVA, significant effect of "pup strain” F( ;o0 = 32, P <
0.0001, post-hoc Tukey's HSD test, P < 0.001). TSD pups released more [3H]norepinephrine than WKY in prefrontal cortex (P
< 0.0005). $Significantly greater than SD reared by SHR or SD dams (two-way ANOVA, significant interaction between "strain
of dam" and "pup strain”, F(4 ;o9 = 2.6, P < 0.05, post-hoc Tukey's HSD test, P < 0.0005).
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SHR displayed the ADHD-like characteristic of decreased
anxiety-like behavior in the elevated-plus maze relative to
both WKY and SD. SHR pups spent less time in the closed
arms, more time in the open arms and entered the open
arms more frequently than WKY and SD pups. The differ-
ence in the pattern of behavior of SHR, SD and WKY
observed in the elevated-plus maze may be due to the
increased anxiety-inducing effect of the elevated maze rel-
ative to the open-field. The fact that there were no differ-
ences between WKY and SD behavior in the elevated-plus
maze suggests that WKY are not abnormally anxious and
supports the use of WKY as a control for SHR. The results
of the present study further support the use of SD as an
additional reference strain for SHR.

An interesting finding was the pattern of glutamate-stim-
ulated release of norepinephrine in prefrontal cortex (but
not hippocampus) of SHR, SD and WKY which was simi-
lar to the pattern of their behavior in the open-field (but
not the elevated-plus maze). SD were intermediate
between SHR and WKY in terms of norepinephrine release
in response to glutamate and also in their exploratory
behavior in the open-field. It is possible that glutamate-
stimulated release of norepinephrine in the prefrontal
cortex reflects activity of working memory and that behav-
ior in the open-field involves activation of working mem-
ory in a novel environment. Increased neural activity
would lead to glutamate release in the prefrontal cortex.
One of its effects is to stimulate astrocytes to release lactate
as the preferred substrate for ATP production by neurons
undergoing rapid and/or sustained firing [64,65]. Gluta-
mate also stimulates norepinephrine release [49,66].
Norepinephrine is known to stimulate glycolysis and lac-
tate production in astrocytes [64]. It is therefore not
unlikely that glutamate-stimulated release of norepine-
phrine in prefrontal cortex is upregulated in rats that dis-
play increased exploratory behavior.

Limitations

Limitations to interpretation of the results in terms of a rat
model for ADHD include the fact that the SHR begin to
develop hypertension from 4-weeks of age which is a con-
founding factor for most behavioral studies that have
been used to characterize the ADHD-like behavior of
SHR. This complication was avoided in the present study
by performing the experiments when the rats were 4
weeks of age since SHR are hyperactive at this age and
have not yet developed signs of hypertension. Another
concern that has emerged in recent times, is the failure to
demonstrate "impulsivity" in SHR [44]. Nevertheless,
Sagvolden and colleagues have shown that SHR provide a
robust model for ADHD-like hyperactivity and failure to
learn complex tasks [42,44]. Perhaps a more severe limi-
tation to studies of the SHR rat model of ADHD lies in the
instability in the behavioral characteristics of its normo-

http://www.behavioralandbrainfunctions.com/content/5/1/24

tensive control rat, the WKY [44]. WKY obtained from cer-
tain suppliers have been suggested to model the
inattentive subtype of ADHD, while other studies have
suggested that WKY may be used as a model of anxiety or
depression [44,52-54]. Although not ideal, SD were
included in the present study as an additional control for
SHR.

Conclusion

Cross-fostering did not alter the behavioral characteristics
of SHR, suggesting that the ADHD-like behavior of SHR is
genetically determined and not the result of gene-environ-
ment interactions provided by SHR dams. Cross-fostering
of SD pups onto SHR or WKY dams increased exploratory
behavior without altering their anxiety-like behavior. The
evidence presented in this paper provides support for the
use of WKY as a control strain for SHR. The fact that the
behavior of SD was similar to WKY in the elevated-plus
maze argues against the use of WKY as a model for anxi-
ety-like disorders.

In general, SHR and WKY represent the extreme ends of
behavioral variation in tests of anxiety, locomotor activity
and exploratory behavior, consistent with the use of SHR
as an animal model for ADHD and also with the use of
WKY as a model for anxiety-like disorders when compared
to SHR. However, locomotor activity and exploratory
behavior of SD was intermediate between SHR and WKY,
and SD were similar to WKY in terms of anxiety-like
behavior in the elevated-plus maze. These findings do not
support the use of WKY as a model of anxiety-like behav-
ior and supports the use of WKY as an appropriate control
for SHR as a model for ADHD. Since SD were so similar to
WKY, they could be used as an additional control for SHR
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