




































































1.2 Principle of operation of the Statscan system

A parrow and vertical fan beam 3-6 mm in width and 700 mm long (at detector) is scanned
linearly over the patient and detected by a radiographic screen of similar size and shape as the fan
beam. The beam shape is set by two slits or “collimators” as shown in Figure 1-1. A post-
collimator at the detector removes any scattered radiation outside of the primary main beam area.
The entire primary beam is detected — no radiation is “lost” outside the sensitive area of the
detector. The source and detector are mounted on a C-arm (see Figure 1-2) that can rotate up to 90
degrees — allowing lateral scans to be taken without repositioning of the patient. Three scans

speeds can be selected: 35, 70 and 140 mmy/s.

The detector consists of a screen (Gd;0,5:Tb, 130 mg/cmz) optically coupled by fibre optic taper
(FOT) to twelve scientific grade CCDs operated in Time Delay and Integrate mode (TDI) [14].
This configuration is illustrated in Figure 1-8 and Figure 1-9. The CCD pixel pitch is 27 pm and
the basic image pixel pitch is 60 pm due to the FOT demagnification of 2.3. For each image
acquisition, pixels can be binned at the CCD line register level to allow selection of an image
pixel pitch of for example 60, 120, 240, 360 or 480 um. The FOT butts are arranged diagonally so
that neighboring CCD’s receive overlapping data. This allows an “unbutting” software algorithm-

to completely remove buiting artefacts.
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Figure 1-8 Schematic of detector. In the current configuration, the detector has the following
parameters: CCD pixel size: 27 um, Image pixel size 60 um, FOT demagnification: 2.3, Screen
type: Gdx02S:Tb 130 mg/cm?, Detector length 690 mm, Detector width 15 mm, Number of
CCDr’s: 12. '
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Figure 1-9 Illustration of image acquisition by the TDI effect in the CCD.

Multiplicative structured noise due to spatial variation of sensitivity in the screen, FOT and CCD
are compensated for by a gain and offset correction algorithm similar to that described by Samei
[15]. The structured noise is less pronounced in the scan direction due to the TDI integration

effect.

In slit scanning systems, tube output fluctuations and scan speed variations introduce banding in
the scan direction. These effects are lessened by designing the C-arm to dampen anode vibration
and the linear drive induction motor was chosen to allow a high degree of scan speed accuracy.
The TDI integration effect serves to further lessen image banding in the scan direction. The x-ray
tube is mounted with the plane of the rotating anode in the slit direction. As a result, the Heel
effect occurs in the scan direction and is of no consequence since the slit is open only to a narrow
portion of the beam. Image post-processing includes log compensation, dynamic range
compression, geometric distortion correction, camera overlap unbutting and various noise

reduction and filtering image processing algorithms.



2 Literature Review

2.1 Detector and System quality metrics

2.1.1 Definition and interpretation of NPS, MTF and DQE

The Modulation Transfer Function (MTF) and Detective Quantum Efficiency (DQE) are
commonly used metrics for quantification of the signal and noise transfer properties of detectors
in radiographic imaging systems [11]. The metrics are intended to describe linear, shift invariant
systems with wide sense cyclo-stationary noise properties. In situations where the system is not
shift invariant — for example in digitally sampled systems with aliasing, the MTF and DQE need

to be interpreted with caution [16].

The signal transfer properties of the detector up to but not including the sampling stage are

described by the spatial frequency dependant pre-sampled MTF which is defined as:

|3[PSF(x,)]
S[PSF(x,y)]fzol ,

MTF,,, (f)=l (2-1)

where PSF(x,y) is the pre-sampled output response of the detector defined in Cartesian
coordinates to a Dirac-Delta function at the input plane of the detector.

In digitally sampled systems, the sampling operation can be modelled as a convolution in the
frequency domain with a train of impulses spaced at the sampling frequency. As a result, the

spatial frequency dependant digital MTF can be defined as:
MTF,, (f)=MIF, (/)*I1(f.a™") (2-2)

Where [I(f,a™)is a train of impulses in the frequency domain spaced at the sampling

frequencya ' . The digital MTF is essenﬁally the sum of several copies of the pre-sampled MTF
that have been shified along the frequency axis by the sampling frequency. If the pre-sampled
MTF modulated signal, contains information above the Nyquist frequency (equal to half the

sampling frequency), aliasing occurs which is the contamination of data below the Nyquist
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frequency by data above the Nyquist frequency. Such a system where aliasing occurs is termed an
under-sampled system. An under-sampled system described by the digital MTF can no longer be
defined as shift invariant since the digital MTF depends on the phase of the input Dirac-Delta
function with respect to the sampling function [16, 17]. For this reason investigators have defined
an Expectation MTF (EMTF) [18] that is the average of the digital MTF over all phases and is a
shift invariant descriptor of digitally sampled systems.

The spatial frequency dependant Noise Power Spectrun} of the digital output image is a measure
of the variance of the image noise at each spatial ﬁ*équency [16]. The digital NPS (NPSy;) can be
calculated from a flat field image by dividing the image into M partially overlapping rectangular
regions of interest (ROIs) of width R pixels and applying the following equation [11]:

2
NPSd,g(u,,,uk)— AxAy Zi i(l(x,, ¥;) — Mean,, Jx e """ (2-3)

m=1|i=l  j=1

Where u and v are the orthogonal spatial frequency variables with units of cycles/mm, Ax and Ay

are the mean pixel spacings in the x and y directions respectively, /(x;,y,) is the image intensity

at pixel coordinate (7, j) and Mean,, is the mean pixel value of the M, region of interest.
The spatial frequency dependant DQE of a linear, shift invariant detector is defined as:

SNRZ,
DQE(f)= SNR pr—— (2-4)
ideal

and is a measure of the extent that the squared signal to noise ratio is increased by a detector at
each spatial frequency. The denominator represents the maximum squared signal to noise ratio
that could be obtained given the quantum image at the input to the detector and is equal to the
mean number of input photons per unit area at the detector input § (for the case of a Poisson
distributed quantum image at the input). The numerator in equation 2-4 represents the actual
squared SNR at the output of the detector and is given by:

d? 2
i“ - M (2-5)
NPS 4, (f)



Where NPS,, (f)is the digital Noise Power Spectrum measured at the output of the detector with

dig
sampling and aliasing effects included. By combining equations 2-4 and 2-5, the DQE can be

rewritten as:

pos( s~ d ML) | 06
gNPS . (f) ’ -

where d is the mean output signal.

It should be noted that the effects of sampling and aliasing of the noise power spectrum are
included, but the effects of signal aliasing are not since it is the pre-sampled MTF and not the
digital MTF that appears in the definition of the DQE. Although signal aliasing is a form of image
noise, it is not included since it is not a shift invariant effect and is dependant not purely on the

detector properties, but also on the signal present in the input image [16].

2.1.2 Measurement of MTF and DQE

The International Electro-technical Commission (IEC) has recently introduced IEC 62220-01 [11]
— a document that stipulates a standard for the measurement of the MTF and DQE of digital
radiography detectors. The methodology described in IEC 62220-01 is based on previous
measurements carried out in laboratories and has been described in detail elsewhere [20, 21]. It is
interesting to note that it is stated in the IEC standard that the methodology described therein does
not apply to scanning radiography systems. However as shown by other investigators [9, 22], the
method required to take DQE measurements in slit scanning systems requires only slight

modification of the IEC standard.

The working equation for the calculation of DQE is Equation 2-6 above and is based on
measurable quantities. Quantities required for the calculation are the digital NPS at the detector
output, the pre-sampled detector MTF and the mean number of quanta per unit area at the detector
input plane used to create the image. The MTF and DQE measurement method is described in

more detail in Section 4.2 of this thesis.



Several other investigators made DQE measurements using this method for the purposes of rank-
ordering of digital detectors found in the real world [9, 15, 18, 23, 24]. It is however pointed out
in IEC 62220-01 and elsewhere [23, 25, 26] that the relationship between DQE and image quality
and the performance of human observers is not yet fully understood and that image quality in the
real world depends on many factors including the display, anatomic noise, the detection task and

the radiographic system itself — not just the éfficiency of the detector.

2.1.3 System quality metrics: System MTF and System DQE

The DQE and MTF metrics described above do not fully describe the signal and noise properties
of a radiographic system since they pertain only to the detector [13, 26]. System level effects [27]
such as geometric blurring resulting from finite focal spot size, the presence of scattered radiation
at the detector input and the use of a primary beam attenuating grid [7, 28, 29, 30] affect the
resolution and noise properties of the final output image. However they are not included in the
formulation of the DQE and the MTF. This problem has been previously recognized and figures
of merit for the quantification of system noise and resolution properties have been developed [13,
26]. The system quality metric analogue to the detector DQE has variably been named the
“Effective DQE” [7], “Generalized DQE” (gDQE) [26] or “System DQE” (SDQE) [12] and is
referred to by the latter name in this study. Kyprianou et al. [26] have included specific system
level effects such as the scatter MTF, scatter noise and focal spot blur effects into an expression
for the Generalized DQE. Also, previous investigators have derived the relationship between the
System DQE and Detector DQE when the effects of grid attenuation and scatter radiation noise

are included in the analysis [25].

A general expression for the System DQE can be found by considering Equation 2-6 and taking ¢
as the number of image forming primary quanta per unit area at the object plane (i.e. at the plane
where the image is formed) and by defining the pre-sampled MTF as the response of the system to
a Dirac-Delta function input at the object plane. The digital NPS measured at the detector output
is task dependant and is the combination of noise arising from the primary and scattered fluences
incident on the detector and additive detector noise. The amount of scattered radiation incident on
the detector is dependaht on the scattering object, hence the task dependency. In order to take
magnification effects into account, the pre-sampled MTF and NPS should be referred to the object

plahe where the image is formed.
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2.2 Image quality and system optimization - SNEQ

An established absolute measure of image quality that applies to linear, shift invariant imaging
systems in terms of the SNR at each spatial frequency is the Noise Equivalent Quanta or NEQ
[31, 32]. The NEQ at the output of a real detector is the number of Poisson distributed quanta per
unit area at each spatial frequency that would be required at the input of an ideal detector to

produce at its output the SNR measured at the output of the real detector and can be written as:

NEQ(f) = §,DOE(f) | | 2-7)
Or as:
g, MrF(NHF )
NEQU) =5 (2-8)

where g, is the mean number of input quanta per unit area, G is the large area detector gain factor

and NPS(#) is the output image Noise Power Spectrum.

Kyprianou et al. [13, 26] have extended the concept of NEQ to include system level effects and
define a Generalized NEQ (which is referred to as the System NEQ or SNEQ in this thesis) as:

SNEQ(f) = 4,SDPE(f) - (@9
where f is the spatial frequency variable referred to the object plane (i.e. spatial frequency at the
detector plane divided by the geometric magnification). The SNEQ(/) is then an absolute measure
of image quality which can be expressed in terms of physical machine parameters and optimised.
Furthermore, it has been shown that for the specific imaging task of detecting a known object

against a noisy background, a figure of merit or Detectability Index D/ can be defined as [25, 31,
33, 34, 35].

DI = ﬂObjecx( f) - Background ()| SNEQ(f)df (2-10)
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where Object(f) is the spatial frequency distribution of the object to be detected and
Background(f) is the spatial frequency distribution of the background noise. The Detectability
Index is a measure of the detection performance of an ideal observer and is an upper bound on the

performance of a human observer in a similar detection task [31].

2.3 Cascaded Linear-Systems theory

Cascaded linear modeling of detectors in radiography is a well established method for analyzing
detector performance in terms of physical parameters. Investigators [33, 34, 37, 38, 39, 40, 41, 42,
43] have used the Cascaded Linear-systems theory to predict Detector MTF and DQE and System
quantities such as the SMTF and SDQE [13, 25, 26, 27, 35] to a high degree of accuracy.

In the theory of Cascaded Linear-Systems analysis the imaging system is divided into discrete
stages that have an effect on the signal and noise as they propagate through the system [10, 32,
44]. Cascaded Linear-Systems analysis relies heavily on frequency domain analysis and requires
that the system be Linear, Shift Invariant, Ergodic, and should have wide sense cyclo-stationary
noise properties. The system under study is assumed to approximately meet the last two
requirements and is shown to be approximately linear and shift invariant in the results and

discussions section.

At the i th stage in the Cascaded Linear-Systems Model, the signal and noise are represented by a
distribution of quanta ¢,(x,y)and by the frequency domain Noise Power Spectrum NPS,(f)

respectively, where f =(f,,f,) is the two dimensional spatial frequency variable. Each stage

modifies the signal and noise in a specific way and the output from each stage serves as the
effective input to the next stage. Five different stage types in a cascaded linear model can be
identified [10, 32, 44]: |

2.3.1 Quantum gain

The number of quanta representing the quantum image is increased by a factor g; where g; is the

quantum gain of the stage. The gain may be stochastic with a greater than unity variance or it
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may be deterministic with unity variance. The mean number of quanta and NPS are transferred

according to:

q; = 89 | (2-11)

and
NPS,(f)=8NPS_(f)+§.0.. (2-12)

where o is the variance of the gain and 7, is the mean number of quanta at the i th stage. The
fluctuations in the gain can also be described by a Poisson excess term &, which is how much the

gain fluctuation exceeds a Poisson distributed gain fluctuation (in a Poisson distributed gain
fluctuation, the variance is equal to the mean number of quanta). The Poisson excess is defined as

follows:

g =21 1, (2-13)
g,

The NPS transfer of a Gain Stage can then be restated as:

NPS,(f)=8/"NPS,(f)+3,1,(e, +1). | 2-14)

2.3.2 Binary selection:

The binary selection stage isa special case of the quantum Gain Stage with g <1. Input quanta
either interact with probability g or are discarded with probability (1-g). The mean number of

quanta and NPS are transferred according to the following relations:
g, = £, (2-15)
and

NPS, =g (NPS_, —q., )+ 3,48, (2-16)

o
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The term §,_, to the right of the plus sign Equation 2-16 refers to the uncorrelated component of

the input noise power spectrum and the bracketed expression refers to the correlated component.
So in a binary selection stage the correlated component of the NPS is transferred through the

mean gain squared and the uncorrelated component through the mean gain.

233 | Quantum scatter

Quanta are redistributed randomly in the spatial domain with a probability distribution described

by the stage Point Spread Function (PSF). The NPS is transferred according to:

NPS, =(NPS£_1 -§i~1)A'ITFz2(ﬁ+§;-1 2-17)
where MT. Ff (f) is the Fourier transform of the stage PSF.

Only the correlated component is modulated by the squared MTF meaning .that an uncorrelated
distribution of quanta will have an NPS unaffected by a Quantum Scatter Stage alone. The mean
number of quanta is unaffected by a Quantum Scatter Stage.

2.3.4 Deterministic blur

In a deterministic blur stage the input NPS is modulated by the square of the stage MTF giving:

NPS,(f)=NPS,,(/YMTF}(f) (2-18)

The mean number of quanta is unaffected by a deterministic blur stage (unless the quanta are

integrated in an aperture with area differing from unity).

2.3.5 Additive noise:

The NPS of the additive noise is added to the stage NPS according to
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