Design, Synthesis and Biological evaluation of Verapamil analogues, Reversed Isoniazids and Hybrid efflux pump inhibitors against *Mycobacterium tuberculosis*

Malkeet Kumar

University of Cape Town

October 2015

Supervisor: Signed by candidate
Student: Signed by candidate
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Design, Synthesis and Biological evaluation of Verapamil analogues, Reversed Isoniazids and Hybrid efflux pump inhibitors against *Mycobacterium tuberculosis*

A thesis submitted to the

University of Cape Town

in fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Malkeet Kumar

Supervisor: Professor Kelly Chibale

Department of Chemistry,
University of Cape Town,
South Africa
Declaration

I know the meaning of plagiarism and declare that all of the work in the document, “Design, synthesis and biological evaluation of verapamil analogues, reversed isoniazids and hybrid efflux pump inhibitors against Mycobacterium tuberculosis”, is my own work and to the best of my knowledge has never been submitted for examination for any degree at any university. All sources of information are cited and fully referenced.

Malkeet Kumar

Signed by candidate

Date 2nd October 2015
Acknowledgement

Firstly, I would like to thank my supervisor, Professor Kelly Chibale, for his assistance, guidance, support and infinite patience throughout my PhD project. The important lesson that he taught me during my PhD is value to the journey. His guidance helped me in acquiring the medicinal chemistry knowledge.

Secondly, I acknowledge the contribution of our collaborators at the University of Cape Town (Associate Professor Digby Warner and Dr. Krupa Naran), Saint Louis University (Dr. Peter Ruminski and Dr. Getahun Abate) and Stellenbosch University (Dr. Andile Ngwane and Prof. Paul van Helden).

Next, I would like to thank past and present members of the UCT Drug discovery and Development Centre (H3D), Chibale MedChem group and the Chemistry Department at UCT. A special thanks to Dr. Kawaljit Singh, Karis Moxley, Peter Cheuka and Shakeela Sayed for helping in my thesis write up and proofreading my drafts. I laud the important role played by Saroja Naicker and Elaine Rutherfoord-Jones, the administrative and support staff in the Department of Chemistry at UCT in making our work environment efficient and enjoyable.

I wish to thank Peter Roberts for recording NMR spectra as well as for training and supporting me in the use of the Varian (300 MHz) and Brucker (400 and 600 MHz) NMR spectrometers. The contribution of Gianpiero Benincasa (LRMS) and the Stellenbosch University MS Unit (HRMS) is also acknowledged.

Finally, I cannot thank enough my family and friends for their emotional support throughout my PhD journey. A special thanks to Dr. Taigh Anderson, Shankari Nair, Gurminder Kaur, Dr. Tzu-Shean Feng, Dr. Richard Gessner, Dr. Diego Gonzalez Cabrera, Dr. Claire Le Manach, and Dr. Tanya Paquet for providing wonderful moments in the lab and at various outings. Colleagues from various groups in the UCT department of chemistry are also thanked for their support and company.
Abstract

Tuberculosis (TB) is one of the major infectious diseases and epidemics in the world. It is responsible for severe morbidity and mortality rates, especially in poor and resource-deficient countries. According to the World Health Organization 2014 report, about one third of the world’s population is infected with tuberculosis and about 10-15% is co-infected with HIV, which further complicates the TB epidemic. Tuberculosis claims 2-3 million lives every year and is one of the biggest social and financial burdens on many countries. The disease is treatable but has been hampered by the emergence of drug resistance in the causative bacterium, *Mycobacterium tuberculosis* (*Mtb*).

Resistant strains of *Mtb* counter the efficacy of various anti-TB drugs via mechanisms that help it overcome the toxic and inhibitory effects of these drugs. These mechanisms include mutation, enzymatic drug degradation, target modification and drug efflux. Drug efflux by efflux pumps (EPs) is one of the major mechanisms responsible for the development of drug tolerance leading to the emergence of drug resistance. These efflux pumps are regulated by the house keeping proteins present in the cell membrane of *Mtb* and perform a pre-existing role of rescuing the *Mtb* from toxic agents. These EPs extrude structurally unrelated compounds from the cell including anti-TB drugs and reduce the drug concentration to sub-inhibitory levels and aid *Mtb* in developing resistance. Therefore, development of antimycobacterials that target EPs and reduce their activity can be a viable strategy to reduce the global TB burden and counter the emergence of resistance.

Many strategies have been used to counter the EP-mediated resistance in *Mtb*. In this study, two strategies were employed: (i) the development of efflux pump inhibitors (EPIs) via structural modification of a known efflux pump inhibitor, verapamil (VER), and the development of hybrid efflux pump inhibitors (HEPIs) incorporating a VER motif; and (ii) the development of antimycobacterial agents based on covalent linking or attachment of efflux pump inhibitor moieties to an anti-TB drug. These agents are termed reversed anti-TB agents and are based on isoniazid for this study.
For the development of potential EPIs, various structural modifications were carried out on the VER core structure in order to explore structure activity relationship (SAR) studies (Figure 1). Biological screening of synthesized compounds led to the identification of VER analogues with low cytotoxicity, and high potentiating potential. Some VER analogues showed high potentiating effects by exhibiting 4-, 8- and 32-fold reduction in the minimal inhibitory concentration (MIC) of the anti-TB drugs rifampicin (RIF), moxifloxacin (MOX) and bedaquiline (BDQ), respectively, and demonstrated reduced interactions with *Mtb*-specific T-cells relative to VER. The SAR 1 study identified the cyclohexyl substituted analogue 3.13n, which showed low cytotoxicity against the THP-1 cell lines, *in vitro* potentiation of RIF when used in combination (4-fold reduction in the MIC\textsubscript{90} of RIF), and increased the susceptibility of *Mtb* towards sub-inhibitory concentrations of RIF and INH in macrophages. The SAR 2 study revealed *N*-benzyl analogues (3.13h and 3.17a) that exhibited potentiating effects on RIF *in vitro*, comparable to verapamil (4-fold reduction in the MIC\textsubscript{90} of RIF) but at a lower concentration relative to VER. The benzyl analogue 3.13h also showed lower *ex vivo* cytotoxicity than VER, both individually and in combination with various anti-TB drugs, and exhibited synergistic interaction with RIF. The SAR 3 study demonstrated that variation in the alkyl chain length between the basic nitrogen atom and stereogenic centre of VER was more tolerated than the chain length variation between this nitrogen atom and the dimethoxyphenyl group. The evaluation of frontrunner compounds in the ethidium bromide assay demonstrated that EP inhibition is one of the plausible mechanisms for the potentiating of various anti-TB drugs by VER analogues. A 2-4-fold potentiation of RIF *in vitro* was shown by rigid VER analogues but no significant effect was observed in macrophages and in the EB assay.

Within the context of HEPIs, a dimethoxyphenyl group of verapamil was replaced with various potential EPI moieties (Figure 1). A series of 11 HEPIs was designed and synthesized for biological evaluation. Among the synthesized HEPIs, four compounds (4.57a, 4.57b, 4.59a and 4.60b) showed low cytotoxicity (IC\textsubscript{20} \(\geq 25 \mu M\)) and a superior (4-fold) potentiating effect on RIF *in vitro* compared to verapamil. Two HEPIs (4.59a and 4.60b) demonstrated high potency (MIC\textsubscript{90} \(\leq 5 \mu M\)) and a potentiating effect (4-fold) on RIF *in vitro*.
at a 100-fold lower concentration than VER. HEPIs 4.59a and 4.60b also exhibited a high potentiating effect on sub-inhibitory concentrations of RIF in macrophages along with low cytotoxicity against THP-1 cell lines. The EP inhibitory activity of 4.59a and 4.60b was confirmed by the inhibition of EB efflux in the EB assay.

Reversed anti-TB agents based on isoniazid, termed RINHs, were designed by covalently linking the anti-TB drug isoniazid with various potential EPI moieties via a three carbon alkyl chain linker (Figure 2). A total of 15 RINH agents were designed and synthesized. Antimycobacterial screening revealed that most of the RINHs were potent (MIC ≤ 10 µM) against a drug sensitive strain (H37Rv) of Mtb with a good selective index (SI ≥ 10). In addition to phenothiazine-based RINHs (4.3a, 4.3b and 4.17b), some compounds (4.46, 4.49 and 4.53) containing non-tricyclic EPI moieties also showed excellent potency (MIC ≤ 1.25 µM) against the H37Rv strain of Mtb. The screening of potent RINH agents against resistant Mtb strains revealed eight compounds (4.14a, 4.17b, 4.23a, 4.23b, 4.23c, 4.46, 4.49, and 4.53) with good to moderate potency (0.625 µM ≤ MIC99 ≤ 5 µM) against a low level INH mono-resistant (R5401) strain of Mtb. Most of these potent RINHs also exhibited encouraging potency against extremely drug resistant clinical isolates (X_60 and X_61; MIC ≤ 10 µM). The brief SAR study demonstrated the importance of the pyridyl nitrogen atom for antimycobacterial activity in vitro and in macrophages. The macrophage evaluation of a selected number of RINH agents also revealed potency against intracellular Mtb, while screening in an ethidium bromide assay revealed that RINH agents possess EP inhibitory activity.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>Mtb</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>EP</td>
<td>Efflux pump</td>
</tr>
<tr>
<td>EPI</td>
<td>Efflux Pump Inhibitor</td>
</tr>
<tr>
<td>HEPI</td>
<td>Hybrid Efflux Pump Inhibitor</td>
</tr>
<tr>
<td>VER</td>
<td>Verapamil</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>RIF</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>MOX</td>
<td>Moxifloxacin</td>
</tr>
<tr>
<td>BDQ</td>
<td>Bedaquiline</td>
</tr>
<tr>
<td>INH</td>
<td>Isoniazid</td>
</tr>
<tr>
<td>RINH</td>
<td>Reversed Isoniazid</td>
</tr>
<tr>
<td>MTBC</td>
<td>Mycobacterium Tuberculosis Complex</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>HBC</td>
<td>High Burden Country</td>
</tr>
<tr>
<td>SEAR</td>
<td>South East Asia Region</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistant</td>
</tr>
<tr>
<td>XDR</td>
<td>Extremely drug resistant</td>
</tr>
<tr>
<td>TDR</td>
<td>Total Drug Resistant</td>
</tr>
<tr>
<td>DOT</td>
<td>Direct Observed Treatment</td>
</tr>
<tr>
<td>LTB</td>
<td>Latent Tuberculosis</td>
</tr>
<tr>
<td>DS-TB</td>
<td>Drug Sensitive Tuberculosis</td>
</tr>
<tr>
<td>DR-TB</td>
<td>Drug Resistant Tuberculosis</td>
</tr>
</tbody>
</table>
PZA Pyrazinamide
ETB Ethambutol
FQ Fluoroquinolone
DNA Deoxyribonucleic acid
CFZ Clofazimine
FDA Food and Drug Administration
BTZ Benzothiazinones
ATP Adenosine Triphosphate
ABC ATP-Binding Cassette
RNA Ribonucleic Acid
PDE-Is Phosphodiesterase Inhibitors
QBP Quinolone Binding Pocket
TET Tetracycline
MFS Major Facilitator Superfamily
MATE Multidrug And Toxic compounds Extrusion family
SMR Small Multidrug Resistance family
RND Resistance Nodulation Division
PMF Proton Motive Force
EB Ethidium Bromide
CIP Ciprofloxacin
CPZ Chlorpromazine
THZ Thioridazine
FICI Fractional Inhibitory Concentration Index
FIC Fractional Inhibitory Concentration
CCCP Carbonyl Cyanide m-Chlorophenyl Hydrazone
TIM Timcodar
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOX</td>
<td>Doxorubicin</td>
</tr>
<tr>
<td>CYPs</td>
<td>Cytochrome P450s</td>
</tr>
<tr>
<td>RATA</td>
<td>Reversed anti-TB Agents</td>
</tr>
<tr>
<td>RCQ</td>
<td>Reversed Chloroquine</td>
</tr>
<tr>
<td>CQ<sup>S</sup></td>
<td>Chloroquine sensitive</td>
</tr>
<tr>
<td>CQ<sup>R</sup></td>
<td>Chloroquine resistant</td>
</tr>
<tr>
<td>RAs</td>
<td>Reversal Agents</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium Diisopropyl Amide</td>
</tr>
<tr>
<td><i>n</i>-BuLi</td>
<td><i>n</i>-Butyl Lithium</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>DCE</td>
<td>Dichloroethane</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectroscopy</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>EC-ESI/MS</td>
<td>Electrochemical oxidation online with Electrospray Mass Spectrometry</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>NBS</td>
<td>N–Bromosuccinimide</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid Chromatography</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
</tbody>
</table>
DCM Dichloromethane
ppm Parts per million
SAR Structure Activity Relationship
SI Selectivity Index
TLC Thin Layer Chromatography
UCT University of Cape Town
SLU Saint Louis University
MABA Microplate Alamar Blue Assay
CFSE Carboxyfluorescein Succinimidyl Ester
PBMC Peripheral Blood Mononuclear Cells
BCG Bacillus Chalmette Guerin
MFI Mean Fluorescence Intensity
s Singlet
d Doublet
t Triplet
dd Doublet of doublets
td Triplet of doublets
q Quadruplet
quin Quintet
br Broad
Table of content

Abstract .. iii
Abbreviations .. vi

Chapter 1: Introduction ... 1
 1.1 Chapter overview ... 1
 1.2 Tuberculosis ... 1
 1.3 Epidemiology of tuberculosis ... 2
 1.4 Stages of \textit{Mtb} infection ... 2
 1.5 Global distribution of tuberculosis .. 3
 1.6 The role of drug resistance in TB epidemiology .. 4
 1.7 Treatment of Tuberculosis .. 5
 1.7.1 Tuberculosis Chemotherapy ... 6
 1.7.2 Challenges in Tuberculosis Chemotherapy .. 6
 1.8 Classification of anti-TB drugs ... 7
 1.8.1 First line anti-TB drugs ... 8
 1.8.2 Second line anti-TB drugs ... 11
 1.9 Tuberculosis drug Pipeline ... 14
 1.9.1 Clinical candidates ... 15
 1.9.2 Preclinical candidates .. 16
 1.10 Main anti-TB drug targets and development of resistance ... 19
 1.10.1 Inhibitors of cell wall synthesis ... 20
 1.10.2 DNA metabolism, transcription and translation .. 21
 1.11 Adjunctive chemotherapy .. 24
 1.12 Conclusion ... 25

References: ... 26

Chapter 2: Efflux pumps and Efflux pump inhibitors-An approach to Anti-Tuberculosis Drug Discovery .. 38
2.1 Introduction .. 38

2.2 Resistance in *Mycobacterium tuberculosis* ... 38

2.2.1 Mechanism of intrinsic resistance in *Mycobacterium tuberculosis* 40

2.2.1.1 Enzymatic degradation of drugs ... 40

2.2.1.2 Inactivation of drugs ... 40

2.2.1.3 Target mimicry ... 41

2.3 Efflux pump mechanism ... 41

2.3.1 Classification of efflux pumps .. 42

2.3.2 Efflux pumps in macrophages .. 45

2.4 Strategies to counter efflux pump mediated resistance .. 46

2.5 Efflux pump inhibitors (EPIs) .. 47

2.5.1 Efflux pump inhibitors: proof-of-concept ... 48

2.5.2 Ideal characteristics of an EPI: ... 49

2.5.3 Efflux pump inhibitors in *Mycobacterium tuberculosis* .. 50

2.5.4 Efflux pump inhibition in *Mtb*-infected macrophages .. 52

2.6 Drug discovery strategies applied in this study to counter efflux pumps 53

2.6.1 Repositioning of verapamil ... 55

2.6.2 Reversed anti-TB agents ... 60

2.6.3 Hybrid efflux pump inhibitors ... 68

2.7 Research question ... 69

2.8 Specific aims and objectives: ... 69

References: ... 70

Chapter 3: Design, synthesis and characterization of verapamil analogues as potential efflux pump Inhibitors ... 84

3.1 Introduction .. 84

3.2 Verapamil and related analogues .. 84

3.2.1 Rationale .. 84
Chapter 3: Chemical synthesis of verapamil analogues

3.2.2 Chemical synthesis .. 86
3.2.2.1 Retrosynthetic analysis .. 86
3.2.2.2 Synthesis of 2-(3,4-dimethoxyphenyl)acetonitrile intermediates (3.6) 87
3.2.2.4 Synthesis of 2-(3,4-dimethoxyphenyl)amine intermediates (3.2) 89
3.2.2.5 Mechanism for Boc-deprotection ... 90
3.2.2.6 Synthesis of verapamil analogues (3.13) .. 91
3.2.2.7 Characterization of representative verapamil analogue from SAR 1 92
3.2.2.8 Synthesis of piperazine analogues of verapamil (3.15) 95
3.2.2.9 Characterization of piperazine analogue of verapamil 3.15i 96
3.2.2.10 Synthesis of N-benzylated verapamil analogues (3.17) 98
3.2.2.11 Synthesis of rigid verapamil analogues .. 99

3.3 Conclusion ... 105

Reference: ... 106

Chapter 4: Design, synthesis and characterization of Reversed isoniazid anti-TB agents
and Hybrid efflux pump inhibitors ... 108

4.1 Introduction .. 108
4.2 Background .. 108
4.3 Reversed isoniazid anti-TB agents ... 109
4.3.1 Rationale .. 109
4.3.2 Selection of EPI moieties for the synthesis of RINH agents 111
4.3.2.1 Tricyclic efflux pump inhibitor moieties .. 111
4.3.2.2 Design of RINH agents with tricyclic EPI moieties .. 112
4.3.3 Synthesis of RINHs with tricyclic EPIs ... 113
4.3.3.1 Synthesis of RINH anti-TB agents of series A (4.3) ... 113
4.3.3.2 Synthesis of RINH anti-TB agents of series B .. 114
4.3.3.3 Synthesis of RINH anti-TB agents of series C .. 120
4.3.3.4 Synthesis of RINH anti-TB agents of series D using the McMurry reaction (4.23)
4.3.3.5 Synthesis of RINH-E (4.27) ... 128
4.3.3.6 Benzhydrazide-based reversed anti-TB agents 129
4.3.4 RINH anti-TB agents with non-tricyclic efflux pump inhibitor moieties 130
4.3.4.1 Rationale ... 130
4.3.4.2 Design of RINH agents with non-tricyclic EPIs 131
4.3.4.3 Synthesis of dihydropyridine based RINH-F using the Hantzsch reaction .. 131
4.3.4.4 Synthesis of RINH-G (4.46) ... 136
4.3.4.5 Synthesis of RINH-H (4.50) ... 140
4.3.4.6 Synthesis of RINH-I (4.54) ... 141
4.4 Hybrid efflux pump inhibitors ... 142
4.4.1 Rationale ... 142
4.4.2 Synthesis of hybrid efflux pump inhibitors .. 143
4.4.2.1 Synthesis of verapamil substructure motif (4.56) 143
4.4.2.2 Synthesis of hybrid efflux pump inhibitors .. 144
4.4.2.3 Characterization of HEPIs ... 146
4.5 Conclusion ... 150
References: .. 151

Chapter 5: Antimycobacterial activity of verapamil analogues, reversed isoniazid anti-TB agents and hybrid efflux pump inhibitors 154
5.1 Introduction ... 154
5.2 Assays for Antimycobacterial testing ... 154
5.2.1 Chequerboard synergy assay .. 154
5.2.2 Ex vivo assay for cytotoxicity and intracellular inhibition 156
5.2.3 Mtb-specific T-cell assay ... 156
5.2.4 Ethidium bromide assay ... 156
5.3 Screening cascades for verapamil analogues: 157
5.3.1 Screening cascade for \textit{in vitro} \textit{Mtb} and \textit{ex vivo} cytotoxicity evaluation157
5.3.2 The screening cascade for macrophage and T-cell inhibition testing158
5.4 Antimycobacterial activities of VER analogues ..160
5.4.1 Antimycobacterial activities of VER analogues 3.13a-o ..160
5.4.2 Antimycobacterial activities of VER analogues 3.15a-l ..162
5.4.3 Antimycobacterial activities of VER analogues 3.17a-j ..164
5.4.4 Structure activity relationship studies of VER analogues (3.13a-o, 3.15a-l and 3.17a-j) ..165
5.4.5 Combination evaluation of selected VER analogues (3.13h, 3.13k, 3.13l, and 3.15c) with bedaquiline and moxifloxacin ...166
5.4.6 Selection of non-cytotoxic VER analogues ...167
5.4.7 Intracellular evaluation of VER analogues in macrophages: A comparative study ...169
5.4.8 Antimycobacterial evaluation of rigid VER analogues ..172
5.4.9 Discussion ..174
5.4.10 Conclusion ...175
5.5 Reversed isoniazid anti-TB agents ..176
5.5.1 Classification, genotyping and susceptibility status of clinical isolates176
5.5.2 Antimycobacterial activity of RINH agents ..177
5.5.3 Structure activity relationship ...178
5.5.4 \textit{In vitro} activities of equimolar mixtures ..183
5.5.5 Antimycobacterial activities of selected intermediates (EPI moieties and benzhydrazide) ..185
5.5.6 Macrophage evaluation of RINH agents ...187
5.5.7 Discussion and conclusion ...190
5.5.8 Conclusion ...190
5.6 Hybrid efflux pump inhibitors ..192
Chapter 6: Summary, conclusion and recommendations for future work

6.1 General

6.2 Verapamil analogues

6.3 Reversed isoniazid (RINH) anti-TB agents

6.4 Hybrid efflux pump inhibitors

6.5 Recommendations for future work

Chapter 7: Experimental

7.1 Chemistry

7.1.2 Reagents and solvents

7.1.3 Chromatography

7.1.4 Physical and Spectroscopic characterization

7.1.4.1 Verapamil Analogues

7.1.4.2 Reversed anti-TB agents

7.1.4.3 Hybrid Efflux Pump inhibitors

7.2 Procedures for Biological assays

7.2.1 Antibodies, media and reagents

7.2.2 Chequerboard synergy assay for combination Antimycobacterial screening

7.2.3 MGIT BACTEC 960 assay: For MIC determination against sensitive and resistant strains of Mtb

7.2.4 Monocytes and bacterial cultures for macrophage evaluations (THP-1 cell line, BCG, Erdman and Mtb)

7.2.5 Method to determine cytotoxicity against THP-1 cell line

7.2.6 CFSE-based flow cytometry assay
7.2.7 Ethidium bromide assay .. 286

References .. 287
Chapter 1: Introduction

1.1 Chapter overview
This chapter introduces tuberculosis (TB) with respect to epidemiology, geographical distribution, and chemotherapy. Thereafter, it continues with the classification of anti-Tuberculosis drugs followed by a brief discussion on the associated main drug targets as well as the development of drug resistance.

1.2 Tuberculosis
Tuberculosis (TB) is a disease caused by the pathogen Mycobacterium tuberculosis (Mtb), which was discovered by Robert Koch in 1882. This pathogen belongs to the genus Mycobacterium, which consists of 85 species of which, only five (M. tuberculosis, M. bovis, M. africanum, M. microti, and M. canetti) commonly infect humans. These bacteria are collectively referred to as Mycobacterium tuberculosis complex (MTBC). The word Mycobacterium is derived from two words, Myo and bacterium, where Myo is a Greek word meaning fungus and refers to the fashion in which Mtb grows when cultured on the surface of a liquid (Figure 1.1). The bacteria have a unique waxy cell wall coating consisting of mycolic acids, which allows the bacteria to stay dormant for extended periods of time. Tuberculosis is a contagious and airborne disease mostly affecting women and children.¹

![Figure 1.1: The foam like growth pattern of M. tuberculosis.](image)
1.3 Epidemiology of tuberculosis

Tuberculosis is one of the major epidemics causing morbidity and mortality in the world. TB is second only to Acquired Immune Deficiency Syndrome (AIDS) as the greatest killer worldwide. The origin of TB has been traced to ancient times dating back to about 3 million years ago.³ This disease has claimed millions of lives especially in the early 18th and 19th century in Europe and North America. In the early 19th century, TB was known as the white plague and was said to be “the captain of all men of death”. The severity of TB has continued with 9 million people getting infected and 1.5 million dying in 2014.⁴ TB mainly affects the lungs but can also affect other parts of the body.⁵

1.4 Stages of Mtb infection

TB is considered a disease of the poor and is more severe in densely populated areas where hygiene standards are low, with 95% of the cases occurring in poor and developing countries.⁴ It has been reported that one third of the world’s population is infected with Mtb. However, only a small portion (5-10%) with weakened immune systems suffer from active TB (Figure 1.2).⁶ The pathogen cannot be spread by people infected with latent TB as only the active form is contagious.

![Figure 1.2: Stages of Mtb infection.](image)

The synergy of TB with Human Immunodeficiency Virus (HIV) infections makes patients 15 times more susceptible to active TB compared to healthy individuals. This is due to the decrease in the CD4 cell count of these patients, which are responsible for signal responses of the immune system (Figure 1.2). As shown in Figure 1.2, drug susceptible TB can be treated
with an estimated 95% of patients recovering with a 5% possibility of a relapse (denoted by single asterisk) while untreated patients have a high mortality rate.

1.5 Global distribution of tuberculosis

The global distribution of TB is testimony to the above statements as it is more severe in developing and under developed countries (Figure 1.3, green regions, consultation countries, 89% of estimated TB cases). According to the 2014 WHO global TB report, there were an estimated 11 million (uncertainty range 9-13 millions) prevalence cases and 9 million (uncertainty range 7-9 millions) incidences in 2013. The average prevalence per 100 000 sample population was 159, which is likely to be greater in high burden countries (HBCs) like India, China and African countries.

The South East Asia Region (SEAR) and western pacific regions accounted for the highest incidents (56% of the total TB cases in 2013) (Figure 1.4). On the other hand, India and China alone accounted for 35% of the new TB cases in 2013. Of the 9 million incident cases in 2013, women and children accounted for 37% and 6% cases, respectively. The six countries with the highest number of reported incidences in 2013 were India (2.0-2.3 million), China (0.9-1.1 million), Nigeria (340-880 thousand), Pakistan (370-650 thousand), Indonesia (410-520 thousand) and South Africa (410-520 thousand). The underdeveloped African region had one quarter of TB cases in 2013.
Of the 9 million incident cases in 2013, 1.2 million (approximately 13%) were co-infected with HIV. HIV co-infected patients are three times more likely to succumb to this disease compared to their HIV negative counterparts (11.4% versus 3.4%). The synergy of Mtb and HIV reduce immunological responses and results in death if untreated. A total of 1.5 million deaths were reported in 2013 with 360 thousand occurring in the HIV positive population. Of the 1.5 million deaths in 2013, 0.5 million were women. The co-infection of TB with HIV has increased the mortality rate among women and children in Africa and the SEAR. Approximately 70% of these deaths occur in the SEAR and Africa where the majority affected are women and children aged between 15 and 44 years. Nigeria and India alone accounted for one third of global mortality.

Figure 1.4: Estimated TB incidence rates in 2013.

1.6 The role of drug resistance in TB epidemiology

HIV is not the only factor amplifying the TB epidemic. The development of resistance by Mtb leading to multidrug resistant TB (MDR-TB) and extremely drug resistant TB (XDR-TB) are upcoming challenges, which are threatening to destabilize control of this disease. Current regimen guidelines recommend at least 20 months of treatment. However, such regimens are toxic, poorly tolerated, and inadequately effective, with cure rates as low as 36% and default rates as high as 50%.

Malkeet Kumar_PhD Thesis_2015
MDR-TB:- This is an infection caused by \textit{Mtb} strains that have developed resistance to at least two of the most important first-line anti-TB drugs, rifampicin (RIF) and isoniazid (INH).

XDR-TB:- This is a less common form of drug resistant TB where \textit{Mtb} becomes resistant to first line anti-TB drugs, INH and RIF, as well as drugs used for the treatment of MDR-TB i.e. second-line drugs including any fluoroquinolone, and at least one of the other three injectable anti-TB drugs amikacin, kanamycin, or capreomycin.12,13 Recently few patients with resistance to a wider range of drugs have been reported with their infection termed as total drug resistant tuberculosis (TDR-TB).14,15

The main factors favouring infection with these resistant strains are contact with infected patients, inhalation of M/XDR bacteria, and relapse of the TB treatment.15 On the basis of reliable data available from 194 countries on MDR-TB, in 2011 there were an estimated 3.5% of new TB cases and 20.5% of old TB cases of MDR-TB. XDR-TB was recorded from 100 countries, on average 9% (uncertainty range 6.7 to 11.2%) of MDR cases were XDR-TB.4 These resistant forms of TB are more fatal and challenging to treat. The inadequate facilities for diagnosis coupled with expensive and lengthy treatment durations make the situation worse.16,17 In addition, these expensive treatments are at times not available at the required places.

1.7 Treatment of Tuberculosis
The initial treatment was launched in 1946 using streptomycin (STP).18 The wonder drug isoniazid (INH) was introduced in treatment of TB in 1952 and proved to be a breakthrough in TB treatment. It has a very low minimum inhibitory concentration (MIC) and low toxicity. This drug helped in circumventing resistance to treatment by streptomycin and resulted in reduction of the dose required when used in combination therapy.19,20

The main objectives of TB treatment are to:

(i) Reduce TB mortality rate.
(ii) Minimise cases of relapse.
(iii) Block transmission of TB.
(iv) Prevent development of acquired resistance.
1.7.1 Tuberculosis Chemotherapy

Initial TB treatment was 18 months long using a drug regimen composed of anti-TB drugs, STP, INH and \textit{para}-aminosalicylic acid.21 Over time, various drugs have been developed and used in TB treatment. The main aim was to shorten the treatment duration and achieve efficacious treatment.22 The current chemotherapy is administered as direct observed treatment (DOT) and has been divided into two phases, an intensive phase and a continuation phase. The intensive phase is the initial phase of two months where bacteria grows at a very high rate and are treated with a combination of rifampicin, isoniazid and pyrazinamide in combination with either ethambutol or streptomycin (\textbf{Figure 1.5}).

![Figure 1.5: Mode of TB treatment.23](image)

The second phase is a continuous phase of four months, where bacilli are in slow growing persister form (\textbf{Figure 1.5}), with a combination of rifampicin and isoniazid.24–26 The actively multiplying bacteria are killed very quickly by the initial treatment phase. However, slow multiplying bacilli require longer treatment phases to eliminate all bacteria, which can require up to 6 months of treatment.

1.7.2 Challenges in Tuberculosis Chemotherapy

The treatment of tuberculosis faces many challenges even with the availability of many drugs in the drug armamentarium. The lengthy duration and complexity of treatment leads to high rates of relapse followed by failure of treatment.27 Sometimes medical facilities are remote, inadequate, and too expensive for patients leading to high mortality rates, relapse of treatment, and development of resistant forms of \textit{Mtb}.28,29
Development of resistance is one of the major challenges in the TB eradication campaign. The M/XDR-TB requires second line anti-TB drugs, which are less efficacious, more toxic, expensive and require longer periods of administration compared to first line anti-TB drugs. The demand far outweighs the supply of these drugs, which makes availability a big problem particularly in poorer countries. These deficiencies result in high prevalence of resistant TB cases and higher mortality rates.

The co-infection of HIV and TB poses a serious challenge causing high mortality rates. The treatment of HIV-TB co-infections suffers from serious diagnostic and therapeutic shortcomings. These include drug-drug interactions, high pill burden causing adherence problems, toxicity overlap of anti-TB and antiviral drugs as well as immune reconstruction risk.

Active tuberculosis results from activation of latent forms of tuberculosis (LTB) in most cases. Hence chemotherapeutic treatment of LTB may reduce the probability of reactivation and development of active TB. The current treatment method involves the use of INH over a period of 9 months where it has been noted that this course of treatment has a low success rate. The development of drugs against LTB, which have high efficacy, low toxicity and a shorter duration of treatment, will increase the success rate. This will play a very important role in the eradication of TB.

In light of these challenges and requirements, new drugs are required with the following characteristics:

(i) Shorter and simpler treatment
(ii) More effective, less toxic and less expensive drugs for resistant TB
(iii) No drug-drugs interactions.
(iv) Potent against latent and non-replicating Mtb.

1.8 Classification of anti-TB drugs

There are more than twenty anti-TB drugs, which are available for the treatment of infected individuals. These drugs have been categorized on the basis of their mode of administration, efficacy, potency, their use as line of defence, structural identity and past experiences during their use. The groups are as follows:
Chapter 1

Introduction

1.8.1 First line anti-TB drugs

The first line anti-TB drugs are used as a front line defence against *Mtb* and employed for the treatment of drug sensitive tuberculosis (DS-TB). These mainly consist of group 1 drugs and streptomycin from group 2 and are administered orally except streptomycin, which is administered intravenously. These drugs were discovered during the 1950s and 60s and used for initial confrontation of TB, were very efficacious and proved to be an asset for TB patients. These were used as combination regimens for 6 months and showed greater than 95% cure rate when administered under DOT for DS-TB.\(^{37}\)

Isoniazid (INH) (**Figure 1.7**) is one the most active drugs in current use. It was discovered in 1946. INH is bactericidal against fast replicating and bacteriostatic to slow-replicating *Mtb*, also known as persisters, hence included in the 6 months DOTs chemotherapy.\(^{22}\) INH is a prodrug and is activated by a peroxidase enzyme KatG of *Mtb*, which converts INH to its active form, nicotinic acid, nitric radical (NO) along with different active species (**Figure 1.6**).\(^{38,39}\) It acts on *Mtb* by inhibiting mycolytic acid, an important component in cell wall synthesis.\(^{40}\)
One of its mechanisms of action is the interaction of the INH activated product with mycothiol of \textit{Mtb} to produce S-nitromycothiol, which in turn affects the biosynthesis of many intracellular molecules (Figure 1.6). In the absence of mycothiol, NO gets effluxed and quenched in the medium to the corresponding nitrate or nitrite anion. One side effect due to overdose of INH is peripheral neuritis as it leads to quantitative reduction in vitamin B6 through urine excretions.41,42

Pyrazinamide (PZA) (Figure 1.7) is another important member of DOTS chemotherapy. PZA is also a prodrug and is activated by the enzyme pyrazinamidase coded by the \textit{pncA} gene of \textit{Mtb} into its active form pyrazinoic acid. PZA shortened the complex chemotherapy from nine months to six months when added to the drug regimen in the 1980s.43 PZA accumulates in \textit{Mtb} by disrupting the energetics and membrane transport leading to bactericidal activity. Its potency against non-replicating bacteria has added an advantage to chemotherapy leading to the shortening of treatment duration.44 The combination of PZA with rifampicin can also be used for treatment of persisters and latent TB.45

Ethambutol (ETB) (Figure 1.7) is another important member of current chemotherapy. It is bactericidal against fast multiplying \textit{Mtb} but bacteriostatic against slow growing bacilli. ETB targets the cell wall synthesis of \textit{Mtb} similar to INH. However, it does so via a different mechanism. ETB disturbs biosynthesis of arabinogalactan by targeting arabinosyl transferase, which is responsible for arabinogalactan biosynthesis, an essential requirement for cell wall synthesis.46,47 The synergy with other frontline drugs and low toxicity of ETB makes it a suitable candidate as a member of first line chemotherapy.
Another cornerstone of the front line drug regimen is rifampicin (RIF) (Figure 1.7). RIF is the most potent sterilizing agent in DOTs and keeps on killing the persisters throughout the course of chemotherapy. The inclusion of the highly potent RIF in DOTS reduced the dose frequency. Recent studies have revealed that RIF monotherapy or its combination with PZA for 3-4 months is equally effective as 9-12 months of INH monotherapy for latent TB infection. RIF targets the β-subunit of DNA dependent RNA polymerase, which is an essential product of \textit{rpoB} gene. The cyclopentyl substituted analogue of RIF called Rifapentin (RIP) (Figure 1.7) has been developed from the rifamycin class. It has shown encouraging results in recent evaluation in combination and individual studies against LTB infection and active TB in HIV negative patients. RIP has shown potential to reduce cost and increase the adherence to chemotherapy treatment because as a once a week dose of RIP and INH has shown the same efficacy as twice a week dose of RIF and INH in the continuation phase of pulmonary tuberculosis. RIP is a very strong contender to replace rifampicin from the DOTs chemotherapy. However, complete evaluation of its efficacy and pharmacokinetics still needs to be done.
1.8.2 Second line anti-TB drugs

Second line anti-TB drugs are a second line defence against tuberculosis infection and used against resistant strains of TB (M/XDR TB) where first line anti-TB drugs are ineffective.57 The second line drugs are both oral and injectable, which include drugs from group 2, 3 and 4.37

Fluoroquinolones (FQs) (Figure 1.8) are an emerging class of drugs for TB treatment due to their good pharmacokinetic profile and good potency against \textit{Mtb}, particularly against resistant \textit{Mtb}. These FQ drugs are repurposed drugs for TB and have shown good activity against both extracellular rapidly multiplying bacteria as well as intracellular, non-multiplying bacteria. These drugs are efficacious and well distributed throughout the body and cells.58 FQ drugs have been suggested for the treatment of MDR-TB by the WHO,37 and categorised as second line anti-TB drugs. They were also assessed as first line regimens after showing reduction in the duration of TB treatment in the murine model.59 These drugs are currently used as anti-TB agents in the treatment of MDR-TB.

Moxifloxacin (MOX) and Gatifloxacin (Gfx) (Figure 1.8) are new and very potent FQ anti-TB drugs with similar efficacy.60,61 MOX and Gfx seem to have potential to shorten the treatment duration of TB as they have shown high bactericidal activity with low MIC and high efficacy.62,63 They are currently undergoing phase 3 clinical trials for evaluation of the possibility of shortening the treatment duration of DS-TB from 6 months to 4 months by substituting Gfx for ethambutol or MOX for ethambutol or isoniazid.64,65 MOX has recently been approved for the treatment of respiratory and other infections. It is also included in the WHO guidelines for treatment of drug-resistant TB in combination with other drugs although it has not been approved by any other regulatory authority.66

Ofloxacin and its levo isomers levofloxacin, and ciprofloxacin (Figure 1.8) are old FQ drugs, which are repurposed for the treatment of TB and have shown potency against \textit{Mtb}.67 Levofloxacin is the most potent among these drugs and has shown an excellent safety and tolerance profile.68 All the FQ drugs target the DNA gyrase enzyme of \textit{Mtb} and inhibit the DNA replication process.69 Having a common target, cross resistance has been observed between the different FQ drugs and hence administration of more than one FQ drug to one patient has not been advised. There is a growing concern about the development of acquired
FQ resistance in undiagnosed TB patients due to the extensive use of these drugs for other infectious diseases or when FQ is the only active drug in a failing TB regimen.\(^{70}\)

Figure 1.8: Fluoroquinolone drugs.

Drugs of group 2 are injectable aminoglycosides and polypeptides and are the second most important drugs after FQ drugs in the treatment of MDR-TB. Streptomycin was the first discovered aminoglycoside in the early 1940s and proved to be the first breakthrough in TB treatment. Streptomycin was replaced by ethambutol in first line chemotherapy due to its poor toxicity profile and oral absorption. Later members of this group include kanamycin and amikacin. Group 2 also includes members of the polypeptide family,\(^{71,72}\) capreomycin and viomycin. An unexpected pattern of cross resistance has been observed among group 2 drugs belonging to different families. This can be attributed to the fact that these drugs all target the 30 ribosomal unit, which affects polypeptide synthesis leading to the inhibition of translation.

Group 4 drugs are used for the treatment of MDR and XDR-TB. Some of these drugs have been used as first line drugs in the past. Toxicity, lower potency, and higher cost led to their replacement by the current first line drugs. For example, 4-aminosalicylic acid and ethionamide (Figure 1.9) were discovered in the 1950s after streptomycin, and used in TB treatment but later on replaced by rifamycin, ethambutol and pyrazinamide.\(^{73}\)
Thiacetazone (Figure 1.9) has similar properties to ethambutol, thereby controlling the development of resistance against frontline drugs (INH and RIF) in a treatment regimen. However, it is not recommended for frequent use due to severe skin reactions reported, especially in patients with HIV co-infections. It is only used in some parts of Africa in the treatment of DS-TB as it is a cheaper alternative.74

Group 5 drugs are classified as third line anti-TB agents and used against XDR-TB, when other drugs become ineffective. The efficacy and role of these drugs is poorly understood, therefore they are not recommended for general use. Clofazimine (CFZ) (Figure 1.10) is considered as an important prospective drug for the shortening of the drug resistant TB (DR-TB) regimen as it has shown good efficacy and low toxicity in a murine model.75,76 A CFZ containing drug regimen was reported to show a 80\% cure rate of DR-TB in nine months, a relatively short treatment duration compared to the standard treatment regimen.77,78

Linezolid (Figure 1.9) is used for the treatment of XDR-TB, albeit a high rate of adverse effects has been a major concern. Nevertheless the side effects are absent at lower dosage levels.79
1.9 Tuberculosis drug Pipeline

The TB drug pipeline is a set of drug candidates in developmental stages. The pipeline typically includes four stages: discovery, pre-clinical, clinical trial and marketing. This includes completely new drugs, variants of existing drugs and new applications of existing drugs. It also highlights the advancement, achievement and potential of success of drug candidates for chemotherapy. The current drugs for tuberculosis are inefficient to overcome many inherent and emerging challenges of treatment due to resistance and long treatment durations. As already mentioned, drug resistance occurs due to reasons such as gene mutations and selection, drug-efflux mechanisms or due to drug modifying enzymes. Therefore, to combat the emerging challenges, new drugs, novel drug combinations, and drugs with novel targets are required.

Information compiled by the Stop TB Partnership Working Group on New Drugs has shown a steady increase in the global TB drug pipeline over the past few years (Figure 1.11). There are approximately 26 projects and 19 compounds in the current global portfolio, among which 10 compounds are in different stages of clinical development and 9 compounds are in preclinical development.

![Figure 1.11: Global TB drug pipeline.](source_image)
1.9.1 Clinical candidates
Among 10 compounds in clinical development, four are in phase 3 evaluation. Two other compounds (Gfx and MOX) from the FQ class have already completed phase 3 clinical trials for development of a new regimen for drug sensitive TB (DS-TB) to shorten the treatment duration (Section 1.8.2).

Delamanid also known as OPC-67683 and PA-824 (Figure 1.12) are from the nitroimidazole class. OPC-67683 has been submitted for registration to regulatory authorities such as the Food and Drug Administration (FDA), European Medicine Agency (EMA) and World Health Organisation (WHO). In addition to good in vitro and in vivo activity against DS-TB and DR-TB,82 it has shown similar early bactericidal activity (EBA) as RIF over 14 days. Delamanid has displayed a reduced mortality rate among MDR and XDR TB patients, when treated with it along with the standard regimen for six months.83 PA-824 has shown good potency against both DS and DR strains of TB both in vitro and in vivo experiments. It was also effective against non-replicating bacteria under anaerobic conditions. In addition, it is well tolerated on daily dosing and has suitable pharmacokinetics for daily administration. It was reported that the combination of PA-824 with PZA and MOX has the potential to shorten the duration of treatment of DS and MDR-TB. As discussed earlier, RIP (Section 1.8.1) has shown potency against LTB infection and is currently in phase 3 clinical trials for the inclusion of this drug in the TB treatment regimen.84

Figure 1.12: Clinical candidates in the TB drug pipeline.
The family of oxazolidinones (Figure 1.12) currently has three members in advanced stages of development namely, Linezolid, Sutezolid (PNU 100480) and AZD5874. Sutezolid and AZD5874 have been developed following reports of toxicity and adverse effects of linezolid (section 1.7.2). Both these compounds have shown promising in vitro activity and efficacy in murine models. They are currently in the phase 2 stage of development.

SQ-109: (Figure 1.12) is a synthetic diamine derivative of ethambutol with a novel mechanism of action. It has shown good in vitro and in vivo activity against both DS and DR Mtb. The in vitro synergistic results with TMC207, PNU100480, INH and RIF make it a suitable candidate for a new drug regimen for MDR-TB and DS-TB. It has also shown an additive effect when used in combination with EMB and STP. It was also found to be safe, tolerable, and having suitable pharmacokinetics for evaluation in phase 2 of clinical development for different combination regimens with or without RIF.

TMC207: (Figure 1.12) is the first TB drug to be approved in over 40 years. It had been recommended that this drug be accelerated for approval by FDA for treatment of MDR-TB. This drug belongs to the diarylquinoline class, and is currently in phase 2 clinical development for the treatment of DS TB and in phase 3 clinical development for MDR-TB. In addition to its effectiveness against DS and DR Mtb, it is also potent against replicating and dormant Mtb. The long half-life of BDQ and synergistic interaction with PZA make it a suitable candidate in intermittent drug regimens.

1.9.2 Preclinical candidates
As mentioned earlier, there are approximately 26 projects with a number of compounds in discovery, preclinical and clinical development stages for TB treatment. In addition, there are 14 candidates in lead optimization and 12 in the screening stages of development. However, there is a gap between late preclinical development and phase 1 trials, which needs to be addressed so that continuity in clinical trials can be maintained and any attrition can be countered. These developments are focused on addressing two main challenges in TB drug therapy: drug resistance and drug persistence. To effectively address these challenges, novel combinations of drugs with novel mechanisms, which are also equipotent against DS and DR-TB (including MDR and XDR TB) are under way. These novel combinations should have minimal interaction with metabolic enzymes such as cytochrome P450s so that the
regimens can be used for the treatment of HIV co-infected patients. Among the 9 compounds in preclinical development 5 possess new chemical identities, 2 are from the benzothiazone class and one each from the fluoroquinolones and nitroimidazole classes (Figure 1.13). The biological profiles of some of these compounds are summarised below:

CAPZEN-45: (Figure 1.13) is a lipo-nucleoside antibiotic which is isolated from *Streptomyces sp*. It has shown *in vitro* activity with MIC = 3.13-12.5 µM (DS-*Mtb*); MIC = 6.25-12.5 µM, (DR-*Mtb*) and good potency against replicating as well as non-replicating *Mtb*. Animal studies in mice revealed its efficacy against both DS and XDR-TB infections.

SQ609: (Figure 1.13) is a dipiperidine compound with good *in vitro* and *in vivo* activity against *Mtb*. It exhibited an *in vitro* MIC of 7.8 µM and low mammalian toxicity with desirable lipophilicity and solubility characteristics (LogP <4.0). It also showed 90% inhibition of intracellular growth of *Mtb* in infected macrophages and mice. An extended therapeutic effect of two weeks was observed in murine models, suggesting that it is well tolerated and not eliminated immediately after termination of dosages.

SQ641 (Figure 1.13) is an analogue of the naturally occurring nucleoside capuramycin from the culture filtrate of *Streptomyces griseus*. It has shown *in vitro* activity against *Mtb* (MIC = 1.0 µg/ml) and a greater bactericidal rate compared to many anti-TB drugs including INH and
RIF.\cite{96} It has shown synergistic interactions and an enhanced killing rate when used in combination with STP, INH, RIF and EMB. However, SQ641 has very limited solubility in water and high susceptibility to PgP-mediated efflux pumps. These limitations led to modest potency against intracellular \textit{Mtb} and poor \textit{in vivo} activity.\cite{97} However, by associating SQ641 with water soluble vitamin E (\(\alpha\)-tocopheryl polyethylene glycol 1000 succinate-TPGS), a significant increase in activity against \textit{Mtb} in the mouse model of tuberculosis was observed.\cite{98}

DC-159a (Figure 1.13) is a highly potent FQ analogue active against both DS and DR-TB. It is one of the most active FQ drugs against quinolone resistant strains (MIC = 0.5 \(\mu\)M) and drug susceptible isolates (MIC = 0.6 \(\mu\)g/ml).\cite{99} It has a similar pharmacokinetics profile to MOX but showed greater activity in the initial as well as continuation phases of the treatment in a murine model.\cite{100} Thus, **DC-159a** is a suitable prospective member of a drug regimen combination against DS and FQ resistant \textit{Mtb}.

Benzothiazinones (BTZ) (Figure 1.13) are a new developing class of anti-TB agents and have shown the most promising anti-TB potencies as they inhibit \textit{Mtb} in the nanomolar (MIC = 2.3 nM) range, both \textit{in vivo} and \textit{ex vivo} models of TB.\cite{101} BTZ043 and PBTZ169 are two of the most potent BTZ derivatives currently in preclinical development. BTZ043 is relatively less efficacious in animal model compared to its \textit{in vitro} potency (MIC = 1.0 nM), due to its hydrophobic nature. Subsequent Structure Activity Relationship (SAR) studies furnished the piperidine analogue, PBTZ169, which has improved solubility required for inclusion in the treatment regimens for DS and DR-TB. Both analogues inhibit cell wall synthesis. As such cross resistance has been observed although PBTZ169 proved to be less susceptible to nitroreductase NfnB than BTZ043. NfnB nitroreductase is responsible for reduction of the nitro group of BTZ. PBTZ169 showed \textit{in vivo} bactericidal activity equivalent to INH and greater than BTZ043. The synergism was observed between PBTZ169 and BDQ in \textit{in vivo} murine models. These drugs showed superior efficacy in drug regimens, when included with BDQ and PZA, to the standard triple therapy of INH, RIF and PZA in the chronic model of TB. The compatibility with other drugs shows promise for the development of novel combinations including PZA169.\cite{102}
1.10 Main anti-TB drug targets and development of resistance

Every anti-TB drug kills \textit{Mtb} by blocking specific biological pathways or targets having an important contribution to the survival of bacteria. In this section, an overview of some important drug targets will be presented followed by a discussion of factors leading to the development of resistance in \textit{Mtb} against specific drugs.

The main drug targets (\textbf{Figure 1.14}) with corresponding drugs are classified as follow:

1. Cell wall biosynthesis (INH, EMB, BTZ03, PBTZ169, DNB1, SQ109, SQ641)
2. Cell membrane (PZA)
3. Folate synthesis (\textit{p}-aminoglycoside)
4. Transcription (rifampicin)
5. Translation (aminoglycoside)
6. DNA metabolism (Fluorquinolones)

\textbf{Figure 1.14:} Different drug targets in \textit{Mycobacterium tuberculosis}.103
1.10.1 Inhibitors of cell wall synthesis

The cell wall of \textit{Mtb} is an important component for its survival, especially within constrained conditions such as those inside of human macrophages. The cell wall of \textit{Mtb} consists of covalently linked macromolecule peptidoglycan, arabinogalactan and mycolic acids. The biosynthesis of these cell wall macromolecules is a complex biological process and includes various enzymes. The potency of current anti-TB drugs such as INH, EMB and D-cycloserine is due to the targeting one of these biological processes. The additional advantage of targeting cell wall enzymes is the absence of homology within mammalian cells104.

The table 1.1 presents an overview of various drugs targeting various cell wall targets and cause of resistance in \textit{Mtb} against these drugs:

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|}
\hline
\textbf{Pathway} & \textbf{Drugs class or drug/s} & \textbf{Target and mechanism of action} & \textbf{Cause of resistance} \\
\hline
Mycolic acid synthesis & INH & Activated form of INH binds to the NADPH dependent carrier protein reductase \textit{InhA} responsible for fatty acid elongation105 & 1. Mutation in \textit{KatG} and \textit{InhA} causes high and low levels of resistance respectively106 \\
& & & 2. Active efflux pumps contribute for low level of resistance107 \\
Arabinogalactan biosynthesis & EMB & Disrupts arabinogalactan synthesis required for the formation of the cell wall by inhibiting the enzyme arabinosyl transferase108 & Mutation in the regions of gene \textit{embB} encoding the enzyme arabinosyl transferase109 \\
\hline
\end{tabular}
\end{table}
### Pathway	Drugs class or drug/s	Target and mechanism of action	Cause of resistance
Arabinose synthesis | Benzothiazin-ones: BTZ043 and PBTZ 169. DNB1 | Binds to the subunit of decaprenylphosphoryl-b-o-ribose 2’-epimerase (DprE1) responsible for biosynthesis of decaprenylphosphoryl arabinose an important component of cell wall. | The mutation in MSMEG_6503 leading to overexpression of nitroreductase enzyme NfnB, responsible for inactivation of drugs results in the development of resistance.\(^{101}\)\(^{110}\)
Mycolic acid incorporation in cell wall | SQ109 | This drug binds to the protein MmpL3 resulting in inhibition of ATP powered mycolate translocation\(^{88}\); hence disturbing cell wall mycolate synthesis and decreasing cell wall biosynthesis. | Considered to be the upregulation of gene ahpC however, the complete mechanism of resistance is yet to be proven.\(^{113}\)
Biosynthesis of peptidoglycan | SQ641 | It blocks the enzyme translocase I (TL1)\(^{114}\) required for peptidoglycan biosynthesis. | Overexpression of PgP protein coding for efflux pumps.\(^{98}\)

1.10.2 DNA metabolism, transcription and translation

DNA replication and transcription are the most important biological processes involved in multiplication and protein synthesis required for survival of bacteria. There are numerous targets, which can be targeted by drugs for bactericidal activity and one of the targets is thymidin monophosphate (TMP) kinase. TMP kinase is an ideal drug target in Mtb as it differs from its counterpart in mammalian cell lines.\(^{116}\) The table 1.2 presents an overview of various drugs and their targets during DNA metabolism, transcription and translation as well as the cause of resistance in Mtb against these drugs.
Table 1.2: Drugs targeting DNA metabolism, transcription and translation and cause of resistance.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Drug class or drug/s</th>
<th>Target and mechanism of action</th>
<th>Cause of resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition of DNA biosynthesis</td>
<td>Fluoroquinolones; Gfx, MOX, and DC159a</td>
<td>Inhibition of Topoisomerase II (DNA gyrase) required for DNA supercoiling (^{117})</td>
<td>1. Mutation at position 90 and 94 of gyrase A (^{118,119}), 2. ABC transporters (efflux pumps) (^{120,121})</td>
</tr>
<tr>
<td>Inhibition of RNA biosynthesis</td>
<td>Rifamycins: RIF, RIP and Rifabutin</td>
<td>By binding with β-subunit of rpoB gene that codes for β-subunit of RNA polymerase responsible for elongation of mRNA (^{122})</td>
<td>1. Mutation in the rpoB gene specially in codon 507-533 causes 95% of resistance, 2. The low level of resistance is also caused by efflux pumps (^{123})</td>
</tr>
<tr>
<td>Protein synthesis</td>
<td>Aminoglycosides: STP</td>
<td>It binds to the 30S unit of ribosome at ribosomal protein S12 and 16S rRNA and inhibits the initiation of translation (^{124}) in protein synthesis</td>
<td>Mutation in genes rpsl and rrs encode for ribosomal protein S12 and 16S rRNA (^{125,126})</td>
</tr>
<tr>
<td>Protein synthesis</td>
<td>Oxazolidinone: Linezolid, sutezolid and AZD5847</td>
<td>It bind to the A site of peptidyl transferase (PTC) responsible for enzymatic function of ribosomes during the translation process of protein biosynthesis</td>
<td>Resistance is less frequent but arises due to the 1. Mutation in 23S rRNA (^{86}), 2. Efflux pumps (^{121})</td>
</tr>
</tbody>
</table>
PA824 and OPC-67638: are nitroimidazole drugs and inhibit mycolic acid synthesis in replicating bacteria and inhibit ATP synthesis in non-replicating Mtb.127 The nitroimidazoles are prodrugs and require activation by a nitroreductase.128 The main mechanism of resistance arises due to the mutation in the gene coding for the enzyme deazaflavin (cofactor 420).129

Pyrazinamide (PZA): is a prodrug activated by the enzyme pyrazinamidase/nicotinamidase (PZase) encoded by the \textit{pncA}130 gene and converted to pyrazinoic acid. It gets effluxed out by efflux pumps but gets reabsorbed in the acidic pH. PZA acts on \textit{Mtb} by inhibiting membrane transport arising from disturbing the membrane energetics131 (Figure 1.15). The most common cause of resistance to pyrazinamide, is a mutation in the gene \textit{pncA}, which decreases the probability of activation.132 Other mechanisms of resistance have also been proposed such as a mutation in the unidentified regulatory gene or a mutation leading to up regulation of efflux pumps. These have been suggested since some PZA resistant mutants are lacking the mutation in the \textit{pncA} gene.133

Figure 1.15: Mode of action of Pyrazinamide (PZA),131 POA = Pyrazonic acid, HPOA = protonated POA, NAD = nicotinamide adenine dinucleotide.

Bedaquiline (TMC207) is a new antibacterial drug with a novel mode of action.134 It targets the c subunit of ATP synthase, hence decreasing the intracellular adenosine triphosphate (ATP) concentration.90 It is highly selective since human ATP synthase is 20, 000 times less sensitive than \textit{Mtb} ATP synthase.135 The mechanism of resistance to BDQ is not well
established. However, 15 of 53 isolated mutants have shown the mutation in the \textit{apE} gene responsible for encoding \textit{c} part of the F0 and F1 subunit of the ATP synthase. This suggests the possibility of alternative mechanisms of action.136

![Figure 1.16: ATP synthase and the proton-conducting subunit c. (A) Schematic view of ATP synthase subunits. The bacterial enzyme consists of a membrane-bound F0 part (subunits $\alpha_3\beta_3\gamma\delta\varepsilon$) for conduction of protons, and a hydrophilic F1 part (subunits $\alpha_3\beta_3\gamma\delta\varepsilon$) responsible for synthesis of ATP. The oligomeric subunit c (AtpE) is shown in gray.148]

1.11 Adjunctive chemotherapy

Adjunctive chemotherapy is an addition to primary or main chemotherapy. Adjunctive agents are incorporated to enhance or maximize the effectiveness of primary or main agents. The concept of adjunctive immunotherapy is well explored in tuberculosis and has shown encouraging results with potential for further development as a tool to combat the growing threats of MDR and XDR-TB. The use of interleukin 2, interferon γ, and interleukin 7 immunotherapeutic agents as adjuncts to drug treatment presents a bright future outlook for adjunctive immunotherapy.137

Various chemical agents can also be employed as adjunctive chemotherapeutic agents to achieve enhanced results.138,139 The use of various therapeutic agents like anti-diabetic drugs as adjunctive agents has also shown encouraging results.140 Moreover, the use of metformin, a well known anti-diabetic agent, as an adjunctive agent has shown enhancement in efficacy of conventional TB drugs in mouse models.141 The observed shortening of treatment duration by phosphodiesterase inhibitors (PDE-Is) in mice is a motivation to evaluate such inhibitors in humans.142 An additional class of compounds, which can also be used for adjunctive chemotherapy are the efflux pump inhibitors or chemosensitizers. This is due to the fact that the efflux of drugs has been one of the underlying mechanisms for the emergence of resistance in \textit{Mtb} and has been highlighted in section 1.9. Therefore the inhibition of these
efflux pumps has the potential to overcome the emerging resistance.143 In addition, MDR clinical isolates exhibiting efflux pump (EP)-mediated resistance can be made more sensitive to the relevant antibiotics. These adjunctives may also present an alternative option to decrease the cytotoxicity of the second-line antibiotics when used in combination therapy. The development of various efflux pump inhibitor (EPIs) has been accelerated recently due to the achievement of better efficacy and potency \textit{in vitro} and in animal models when EPIs are used as adjunctives.144 Verapamil is a well known FDA approved calcium channel blocker and is an efflux pump inhibitor. It has shown acceleration of both bactericidal and bacteriostatic activity of standard TB drugs \textit{in vitro}, in macrophages,145 and in mouse models. The development of adjunctive agents presents an opportunity for overcoming the emerging resistance, which can potentially lead to reduction in treatment relapse and shortening of treatment duration. These adjunctive agents can also be used to reduce the probability of development of resistance in newly developed drugs like BDQ and FQ class of drugs146 and give new life to old anti-TB agents that were put aside due to various pharmacological challenges of cytotoxicity and resistance.147

\textbf{1.1.2 Conclusion}

The high epidemiology of tuberculosis and emerging resistance against various anti-TB agents suggest that the development of new antimycobacterial agents remains a key priority. The importance of efflux pump-mediated resistance has highlighted the requirement for the development of new antimycobacterial agents, which can counter the efflux pump and efflux pump-mediated resistance.

This project therefore seeks to contribute to these aspects, and is an attempt to identify new agents effective against these efflux pumps and overcome efflux pump-mediated resistance. Chapter two provides a brief discussion of efflux pumps and various approaches to counter the resistance mediated by efflux pumps.
References:

(28) Van den Boogaard, J.; Kibiki, G. S.; Kisanga, E. R.; Boeree, M. J.; Aarnoutse, R. E.

(66) Results of Phase 3 Clinical Trial of New Tuberculosis Drug Regimen Published in New England Journal of Medicine - http://www.tbality.org/newscenter/view-brief.php?id=1106#sthash.5s7KBg9E.dpuf.

(95) Bogatcheva, E.; Hanrahan, C.; Nikonenko, B.; de los Santos, G.; Reddy, V.; Chen, P;

(117) Khisimuzi Mdlul.; Zhenkun Ma. *Mycobacterium tuberculosis* DNA Gyrase as a Target

(130) Scorpio, A.; Zhang, Y. Mutations in pncA, a Gene Encoding Pyrazinamidase/nicotinamidase, Cause Resistance to the Antituberculous Drug

Chapter 1

Introduction

Chapter 2: Efflux pumps and Efflux pump inhibitors—An approach to Anti-Tuberculosis Drug Discovery

2.1 Introduction
This chapter presents a brief overview of efflux pumps and various strategies to overcome efflux pump-mediated resistance. A discussion of efflux pumps (EPs) and efflux pump inhibitors (EPIs) is also included followed by a description of various efflux pump inhibitors evaluated against *Mycobacterium tuberculosis*. The chapter concludes with a description of different methods used in this study to potentially counter EP-mediated resistance in TB.

2.2 Resistance in *Mycobacterium tuberculosis*
The phenomenon of resistance in *Mtb* is as old as its discovery. *Mtb* responds to the stress of the inhibiting drug by developing resistance. This resistance in *Mtb* is developed by different mechanisms and can be divided into two types; acquired and intrinsic resistance.

Acquired resistance is developed with time as *Mtb* becomes less susceptible to the drug’s inhibitory activity. The acquired resistance in *Mtb* is generated by spontaneous mutation in a specific target gene, causing *Mtb* resistance to a specific drug. Resistance in *Mtb* does not emerge by horizontal gene transfer as is the case with other bacteria due to the absence of plasmids in *Mtb*.

The modification of drug targets ([Figure 2.1](#)) by gene mutation is the most common form of acquired resistance in *Mtb*. For example alteration of the *tlyA* gene causes resistance against aminoglycosides like capreomycin and viomycin in *Mtb*. The *tlyA* gene is known to code for the enzyme 2’-O-methyltransferase enzyme, which is responsible for the methylation of 16S and 23S ribosomal RNA at nucleotide C1409 and C1920, respectively. The mutation of this gene disturbs the methylation of ribosomes affecting the susceptibility of the ribosomes to selected drugs.

The second example is the alteration in DNA encoded proteins causing FQ resistance. The mutation in *gyrA* and *gyrB* genes encoding for DNA gyrase leads to changes in the structure of the quinolone binding pocket (QBP) resulting in reduction of its affinity for FQ drugs.
Intrinsic resistance is a phenotypic property of *Mtb* to resist the activity of a drug through its inherent structural or functional characteristics. The other term used for this type of resistance is insensitivity as this causes *Mtb* to remain insensitive to some drugs. Intrinsic resistance mainly causes restricted influx of drugs due to the highly impermeable cell wall, which is composed of mycolic acids and reduced intracellular accumulation due to putative EPs (Figure 2.1).

Figure 2.1: Mechanism of resistance in *Mtb*: 1) Modification of drug target; 2) Degradation of drug; 3) Inactivation of drug; 4) Efflux pump.

Cell wall impermeability is the first line of defence of *Mtb* and restricts the entrance of drugs thereby protecting the *Mtb* from the inhibitory activity of the drugs. The *Mtb* cell wall is composed of covalently linked peptidoglycan, arabinogalactan and mycolic acid molecules. The first two components resist the entrance of hydrophobic drugs like RIF and FQs while the mycolic acid resists the influx of both hydrophobic and hydrophilic drugs like INH and PYZ.
Efflux pumps (EPs) (Figure 2.1) synergise with cell wall impermeability to provide additional resistance to anti-TB drugs in \textit{Mtb}. This leads to a reduction in the intracellular concentration to suboptimal levels with attendant reduction in the potency of drugs. These EPs are encoded by different \textit{Mtb} genes leading to resistance to FQs, erythromycin (ERY) and tetracycline (TET). The EPs also contribute toward the low level resistance to INH, RIF and other drugs. The EP mechanism of resistance is also a main contributor to resistance in cancer chemotherapy. This topic will be discussed in sections 2.3.

2.2.1 Mechanism of intrinsic resistance in \textit{Mycobacterium tuberculosis}

Intrinsic resistance cannot be explained completely on the basis of cell wall permeability and EPs, but other aspects have to be considered (Figure 2.1). These include:

a) Enzymatic degradation of drugs.
b) Drug inactivation.
c) Target mimicry.

The resistance towards a particular antimycobacterial agent arises either due to a single or a combination of these mechanisms.

2.2.1.1 Enzymatic degradation of drugs

Enzyme degradation is another method used by \textit{Mtb} to avoid the antibacterial activity of drugs by directly degrading them to non-effective forms. The degradation is usually carried out by various enzymes encountered during transportation of the drugs to their intended targets. This mode of resistance is well studied in the case of β-lactams. The β-lactamase enzyme hydrolys the β-lactam ring and makes the drug ineffective. This is the main reason for the resistance against β-lactam drugs like ampicillin, amoxicillin, and imipenem in \textit{Mtb}.

2.2.1.2 Inactivation of drugs

The ability of \textit{Mtb} to inactivate anti-TB drugs via direct chemical modification is also responsible for resistance against various drugs. For example, the recent findings of resistance against aminoglycosides has been attributed to the modification caused by various acetyltransferases. In vitro studies showed that multiple amino groups were acetylated by acetyl-coenzyme, which acts as acetyl donors, making the drugs ineffective.
2.2.1.3 Target mimicry

Molecular mimicry of certain drug targets is another mechanism of intrinsic resistance in *Mtb*. This defence tactic can be explained using the example of the failure of certain FQ drugs due to the resistance caused by the MfpA protein. The FQs act on bacteria by inhibiting the transcription, replication, and repair of DNA by interfering with DNA gyrase. The MfpA protein has many similarities with DNA in respect of shape, size, and electronic nature, and is considered to acts as a DNA mimic. Due to these similarities, MfpA is able to bind to the DNA gyrase inhibiting its normal activity and thereby rescuing it from the activity of the FQ drugs.

2.3 Efflux pump mechanism

EPs are expressed in all living cells, including gram positive and negative bacteria. *Mtb* expresses the largest number of putative EPs in comparison to its genome. These EPs are encoded and regulated by housekeeping genes of *Mtb*. A pre-existing role for EPs is known, as the protection of bacillus from low level intracellular concentrations of toxic substances and metabolites by extruding them out of the cell, for example saving *Mtb* from dyes, bile salts and fatty acids (Figure 2.2) in the host’s body. EPs are also very important in maintaining homeostasis and physiological balance of *Mtb* growth in the host environment.

![Figure 2.2: Some non-antibiotic Efflux pump substrates](image)

EP-mediated resistance may have evolved due to the overexpression of EPs or alteration in the EP expressing proteins leading to more efficient EPs. The resistance caused by EPs can be considered as an “accidental and opportunistic” side effect of the transport of unidentified physiological substrates in bacterial and mycobacterial species. Some EPs are substrate specific while others transport functionally dissimilar compounds (including drugs from different classes), and hence are also called multidrug transporters or multidrug EPs.

These EPs reduce the intracellular concentration of various antibacterial agents, resulting in
the survival of bacteria. The EPs assist *Mtb* to survive in the presence of an anti-TB drug until resistance is acquired leading to the development of resistant clones.

2.3.1 Classification of efflux pumps

EPs are classified into different classes and families on the basis of their energetics and structural characteristics. Primarily, EPs are classified into primary and secondary transporters.\(^{19,20}\)

![Figure 2.3: Schematic representation of the two major classes of multidrug transporters. (A) ABC-type multidrug transporters are driven by energy generated from ATP hydrolysis. (B) Secondary multidrug transporters manage the extrusion via coupling the exchange of substrate with protons or sodium ions.\(^{21}\)](image)

Primary transporters are energised by adenosine triphosphate (ATP) hydrolysis (Figure 2.3) and named as ATP-binding cassette (ABC) family. These EPs are responsible for the transport of many toxins, metabolites and drugs.\(^{22}\) The ABC cytoplasmic domain is divided into two pairs, one ATP binding domain and a hydrophobic trans domain.\(^{23}\) The nucleotide binding domains are highly homologous and consist of Walker A and Walker B motifs, regular for all ATP binding proteins and an ABC transporter specific signature motif.\(^{24}\) In *Mtb*, 2.5% of the entire genome encodes for the ABC transporters and comprises 37 completely and incompletely identified ABC transporters.\(^{25}\) These ABC transporters confer low level resistance to many drugs (summarised in Table 2.1) including INH, FQs, β-lactams, STP, chloramphenicol, vancomycin and tetracycline.\(^{25-28}\) A recently characterized ABC transporter is known to contribute towards the efflux of many substrates including...
novobiocins, pyrazolones, biaryl piperazines, bisanilinopyrimidines, pyrroles, and pyridones resulting in the increase in their corresponding MIC values by four to eight fold.29

Secondary transporters are multidrug transporters, which work on a proton or sodium driven energy gradient (\textbf{Figure 2.3}). Secondary transporters are subdivided into four families on the basis of size and similarities in their protein structure. These are; a) Major facilitator superfamily (MFS); b) Multidrug and toxic compounds extrusion family (MATE); c) Small multidrug resistance family (SMR); and d) Resistance nodulation division (RND).

The MFS is the largest characterized family of secondary transporters. The MFS transporters are involved in symport, uniport, and antiport of various substrates like sugars, Kreb cycle intermediates, phosphate esters, oligosaccharides and antibiotics in bacteria.30 Bioinformatics tools have identified 20 EP genes in \textit{Mtb} encoding for MFS drug transporters.31 MFS efflux protein can be divided into the domains of 12 or 14 transmembrane segments (TMS). Most transporters are substrate specific while six are non-specific and MDR transporters.32 Various EPs from the MFS family confer resistance to aminoglycosides, tetracycline, FQs, INH, RIF, KAN, and erythromycin (Table 2.1) (\textbf{Figure 2.3}).

MATE-EPs are responsible for extrusion of various toxic compounds such as metabolites and xenobiotic organic cations,33 and have been found in various kinds of bacteria mainly in \textit{Vibrio cholerae} (VcrM; VcmA),34 \textit{Bacterioides thetaiotaomicron} (BexA), \textit{Haemophilus} (HmrM), and \textit{Staphylococcus aureus} (MepA).35 MATE transporters function on energy driven from the sodium gradient (\textbf{Figure 2.3}). The presence of MATE EPs is not reported for \textit{Mtb} and hence no contribution towards resistance of any anti-TB drugs has been reported (Table 2.1).36

SMR is the smallest known family of secondary bacterial transporters. The SMR transporter proteins consist of approximately 100-140 amino acids in the form of four α-helices. The SMR transporters are driven by a proton motive force (PMF),37,38 and are responsible for extruding a wide variety of substrates like sugars, peptides, complex carbohydrates, drugs, and metals in various ionic states.39 The contribution of SMR transporters to \textit{Mtb} drug resistance is very minimal as only one multidrug transporter (Mmr) is known to confer resistance in \textit{Mtb} and extruding drugs like tetracycline, acriflavine, ethidium bromide and erythromycin (Table 2.1) (\textbf{Figure 2.3}).40
RND transporters are the most studied transporters in gram negative bacteria where they play a crucial role in resistance. The RND transporters consist of polypeptide chains with approximately 700-1300 amino acids. These transporters operate on PMF energy, and exclude a wide range of substrates including neutral, positively or negatively charged molecules, hydrophobic, and hydrophilic compounds (Figure 2.3).18,19 Approximately 15 transmembrane putative EP proteins in \textit{Mtb} are predicted from the RND family and named as MmpL (Mycobacterial membrane protein, Large), since they are only found in \textit{Mtb}.41
Table 2.1: List of efflux pump genes, transporters and corresponding drug substrates in Mtb (adapted from Louw G.E. et al., Viveiros, Martins, Rodrigues et al. and Rahul et. al.)

<table>
<thead>
<tr>
<th>Family</th>
<th>Efflux Pump</th>
<th>Drug Substrates</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>pstB</td>
<td>INH, RIF, EMB, CIP</td>
<td>44</td>
</tr>
<tr>
<td>ABC</td>
<td>Rv2686c-Rv2687c-Rv2688c</td>
<td>FQs</td>
<td>27</td>
</tr>
<tr>
<td>ABC</td>
<td>drrA-drrB-drrC</td>
<td>STP, TET, EMB, CIP</td>
<td>26</td>
</tr>
<tr>
<td>ABC</td>
<td>Rv1747</td>
<td>INH</td>
<td>25</td>
</tr>
<tr>
<td>ABC</td>
<td>Rv0194</td>
<td>β-lactam, STP, TET, CIP, VAN</td>
<td>28</td>
</tr>
<tr>
<td>ABC</td>
<td>Rv1456c-Rv1457v-Rv1458c</td>
<td>One of first line drug INH, RIF, STP, EMB</td>
<td>45</td>
</tr>
<tr>
<td>MFS</td>
<td>Rv1258c</td>
<td>INH, RIF, EMB, OFL</td>
<td>46–48</td>
</tr>
<tr>
<td>MFS</td>
<td>Rv1877</td>
<td>TET, KAN, ERY</td>
<td>49</td>
</tr>
<tr>
<td>MFS</td>
<td>Rv1634</td>
<td>FQs</td>
<td>50</td>
</tr>
<tr>
<td>MFS</td>
<td>P55</td>
<td>TET, RIF, Aminoglycosides</td>
<td>51–54</td>
</tr>
<tr>
<td>MFS</td>
<td>Rv2333c</td>
<td>TET</td>
<td>55</td>
</tr>
<tr>
<td>SMR</td>
<td>Mmr</td>
<td>EB, ERY</td>
<td>40</td>
</tr>
<tr>
<td>RND</td>
<td>MpL7</td>
<td>INH</td>
<td>56–59</td>
</tr>
</tbody>
</table>

FQs: Fluoroquinolones; INH: Isoniazid; EMB: Ethambutol; CIP: Ciprofloxacin; STP: Streptomycin; TET: Tetracycline; VA: Viomycin; OFL: Ofloxacin; ERY: Erythromycin; KAN: Kanamycin; EB: Ethidium bromide.

2.3.2 Efflux pumps in macrophages

Mtb in the host body resides in a complex environment of granulomas consisting of macrophages and different immune cells such as T-cells, B-cells, CD4, and CD8 cells. It has been shown that the presence of granulomas reduces the replication and metabolic activities of *Mtb* and sequesters it into a dormant state.60,61 The slow growing *Mtb* lesions in granulomas initiates different defence mechanisms to counter the immune and drug stress. The induction and regulation of several EPs has been reported as one of the defence...
mechanisms post macrophage infection.52,62–64 Adams and co-workers have shown that induction of EPs immediately after macrophage infection is one of the primary defence mechanisms employed by \textit{Mtb}.65 The tolerance developed during the non-replicating dormant phase while residing in the macrophage has been reported to be retained in bacteria even after the resumption to growth phase. The EP-mediated resistance during the macrophage invasion leads to acquired and higher levels of resistance.66,67 Many EPs are known to contribute to the resistance of drugs \textit{in vitro} (Table 2.1) and during macrophage residence. \textit{Rv1258c} is a well known EP of \textit{Mtb} and mainly targets RIF.47 The overexpression of \textit{Rv1258c} has been observed during macrophage invasion at sub-inhibitory concentrations of RIF. The hypersensitivity of \textit{Rv1258c} increases the RIF MIC by three times while corresponding mutants shows 2 to 2.5 fold reduction in MIC. This EP dependent tolerance was also shown to be retained in the growth phase.65

2.4 Strategies to counter efflux pump mediated resistance

As pointed out in section 2.3, active EPs are well known mechanisms for resistance in bacteria. These pumps present attractive prospects for the development of anti-TB agents targeting EPs to counter the development of resistance. There are many methods to counter EP-related mechanisms of resistance. These include bypassing EPs as well as their biological and pharmacological inhibition.

Bypassing EPs is an attractive strategy to counter EP-mediated resistance, and has been widely employed during the development of various FQ drugs. The molecular mechanisms of recognising the substrates for EPs in bacteria are still not completely understood. However, structural modification has shown reduction of efflux of antibacterials belonging to a specific family. The third and fourth generation FQs are less susceptible to EPs as compared to first and second generation FQs.68,69 Thus, optimization of the structure of a drug class might provide a potent antimycobacterial with less susceptibility to EPs.

The biological inhibition of proteins regulated by EPs through neutralizing specific proteins is an emerging approach and presents an opportunity to counter EP-mediated resistance. The translation step of the EP proteins can be targeted using antisense therapy, in which antisense oligonucleotide or small interfering ribonucleic acid (RNA) are selectively used to prevent the transcription of the gene coding for the EPs. The well explored example is the inhibition
of AcrAB EPs in *E. coli*. Deletion of the corresponding gene leads to restoration of susceptibility to FQs in *E coli*. There is always the possibility that this approach can be expanded to other EPs.

The development of pharmacological efflux pump inhibitors (EPIs) is the most widely explored strategy to counter EP-mediated resistance. These EPIs are developed as adjunctive agents and are intended to be used in combination with the known antibacterial agents, which are expected to be the substrates of EPs. The EPIs are used as competitive and non-competitive inhibitors of EPs to overcome the EP-mediated drug resistance. The concept of efflux pump inhibitors is discussed in detail in the following section.

2.5 Efflux pump inhibitors (EPIs)

A decline in anti-infective research has been observed in the past decade resulting in very few anti-infective molecules getting through the drug pipeline. To overcome this drawback in drug development, and pace down the development of resistance in *Mtb* and other bacteria, different strategies need to be employed. The development of novel molecules, which can overcome the resistance mechanisms involving genetic mutations, various enzymes, and EPs is an alternative approach to counter the increasing disease burden. Drug efflux is a common theme known to affect the efficacy of old and new drugs. Hence the approach of developing antibacterial agents to overcome drug efflux can offer new opportunities to combat antibacterial resistance emerging across a wide spectrum of drugs in clinical use. Bacterial EPIs are novel “non-antimicrobial” agents, which have shown potential to shorten TB treatment and shown promise to successfully treat MDR TB. As mentioned earlier, (Section 2.3), drug tolerance due to EPs is considered one of the major contributing factors to *Mtb* persistence, leading to the emergence of other forms of resistance. Therefore, the development of EPIs presents enormous potential for a breakthrough in drug development.

The mechanism of action of EPIs is not well understood. It has been indicated that an EPI may block EPs by binding directly to the EP in a competitive or non-competitive manner or may form complexes with the antibacterial agent and facilitate the influx and inhibit the efflux of drugs.
2.5.1 Efflux pump inhibitors: proof-of-concept

The mechanism of antibiotic efflux was first discovered in 1980 when it was suggested as one of the factors for tetracycline resistance in enterobacteria. However, EP proteins have been characterised and found to have low homology with human proteins. This makes them suitable targets for drug development.

The concept of using efflux pump inhibitors to accumulate desired antibacterial agents also exists in nature and has been observed in several Berberis plants (Berberis repen, B. aquifola, and B. fremontii). In addition to berberine (Figure 2.5), which is an antibacterial and substrate to the Nor MDR EPs, Berberis plants also synthesize 5’-methoxyhydnocarpin (5’-MHC) (Figure 2.5), which inhibits the EP and shows the potentiating effect for berberine in bacteria. This finding led to the evaluation of 5’-MHC as an EPI for a variety of drugs in different bacteria. It was found that 5’-MHC also inhibits efflux of berberine in Staphylococcus aureus by inhibiting the Nor-A MDR-EP, which also confers resistance to quinolone drugs.

The development of EPIs as a strategy to potentiate drugs is not new and has been studied for several decades, highlighting the importance of EPIs in the treatment of diseases. Microcide and Daiichi pharmaceutical started a comprehensive development of EPIs against multiple homologous tripartite RND-EPs (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM) in gram negative bacteria Pseudomonas aeruginos to potentiate levofloxacin. A
sample strategy led to the identification of a broad spectrum EP inhibitor, **MC-210,110** (Figure 2.6) which is also known to inhibit similar RND-EPs in other gram negative bacteria.\(^{80}\) It was also shown that the selection frequency of FQ-resistant bacteria can be reduced *via* reducing bacterial tolerance due to EPs. In addition, the reduction of both EP-based and target-based resistance was observed in the presence of **MC-207,110**. Hence, the concept of reversing resistance and slowing down its development by use of EPIs was validated.\(^{81–83}\)

![Diagram of MexAB-OprM](image)

Figure 2.6: MexAB-OprM in *Pseudomonas aeruginosa* and **MC-207,110**.\(^{84}\)

The success of **MC-207,110** inspired the development of a range of EPIs with many pharmaceutical companies initiating numerous development programmes.\(^{85}\)

2.5.2 Ideal characteristics of an EPI:

1. It should potentiate multiple substrates of EPs.
2. It should not potentiate non-EP substrates.
3. It should not show any effects in the strains lacking EPs.
4. It should decrease the extrusion and increase the accumulation of EP substrates.
5. It should not affect the ion gradient in bacteria.
2.5.3 Efflux pump inhibitors in *Mycobacterium tuberculosis*

EPs have been shown to reduce the inhibitory concentration of many anti-TB drugs *in vitro*, in macrophages, and in mouse models.\(^8\)\(^,\)\(^86\)\(^,\)\(^87\) The encouraging success from the development of EPIs for other bacteria has also inspired the quest to develop EPIs in *Mtb*. The screening of known bacterial EPIs in *Mtb* has led to the identification of many potential EPIs (*Figure 2.7*) shown to also be effective in *Mtb*.

Phenothiazine analogues, chlorpromazine (CPZ) and thioridazine (THZ) (*Figure 2.7*), have shown EP inhibition activity in *Mtb*. CPZ showed potential to inhibit *Mtb* growth directly *in vitro* (MIC\(_{50}\) = 6-12 mg/L) but its anti-psychotic side effect led to its structural modification giving rise to THZ.\(^88\) This drug (MIC\(_{50}\) = 2.5 mg/L) is the most potent antimycobacterial among all the phenothiazine analogues and is considered as a non-antibiotic helper compound, which synergizes its mode of action with other drugs to facilitate better antibiotic activity for the co-administered drugs.\(^89\) THZ exerts a synergistic effect by antagonising the mechanism responsible for low drug potency. Moreover, THZ is effective against *Mtb* infected human macrophages, and *in vivo Mtb* in mice with multiple targets. Hence, THZ shows good prospects as a molecule with dual action being an EPI and having good antimycobacterial activity. THZ is currently considered for the treatment of MDR and XDR-TB.\(^90\)\(^,\)\(^91\)

The isoflavonoid compound biochanin A (*Figure 2.7*) has shown EP inhibition in *Mycobacterium smegmatis* (*M. smeg*) in an *M. smeg* mc\(^2\) assay. Biochain A exhibited weak antimycobacterial activity but 4-8 fold reduction in the MIC\(_{50}\) of ethidium bromide (EB) in an ethidium bromide assay. The synergism with EB (Fractional inhibitory concentration index = 0.25) was also observed.\(^92\)

Piperine (Pip) (*Figure 2.7*) has shown a two-fold potentiating effect on RIF when tested in combination in *Mtb*.\(^93\) Pip also restricts the emergence of resistance against RIF in *Mtb* up to a clinically achievable concentration of 2 mg/ml. In addition, accumulation of EB in the presence of Pip and interaction with binding sites of putative EPs substantiates the efflux pump inhibition property of piperine.\(^94\)
Farsenol (Figure 2.7) is a 15-carbon isoprenoid, which also exhibited EP inhibition in *M. smeg*. In addition to better synergistic interaction (FICI = 0.375), compared to CPZ (FICI = 0.75), it has shown a 2-8 fold potentiation of EB.95

Reserpine (RSP) (Figure 2.7) is a plant alkaloid, an antihypertensive, and a well known inhibitor of ATP-dependent EPs in bacteria.96 It has been found to possess potentiating effects on FQ drugs in many bacteria including *Mtb*.97,98 RSP is the second most potent EPI after CPZ and has shown potentiation of various drugs at sub-inhibitory concentrations in *Staphylococcus aureus*. RSP showed an 8-128 fold potentiation of β-lactams in *S. aeurus*.99 The importance of RSP is highlighted by its ability to potentiate INH in *M. smeg* by inhibiting the EP coded by the mmL7 gene.56

Timcodar (TIM) (Figure 2.7) is a well characterized mammalian EP inhibitor. It has moderate in vitro potency (MIC₉₀ = 18.7 µg/ml) against *Mtb*. TIM also exhibited a pronounced adjunctive effect with anti-TB drugs in vitro, in macrophages, and in an in vivo mouse model. A drug synergy was exhibited with RIF, BDQ and MOX in H37Rv infected THP-1 macrophages while an additive effect was observed with PA-824, LZD, INH and CFZ. In the in vivo mouse model, a combination of TIM and RIF showed a ten-fold reduction in bacilli load compared to RIF alone with improved efficacy. A faster sterilization effect was also observed in mice treated with a combination of TIM-RIF-INH as compared to a combination of RIF-INH.100

Carbonyl cyanide *m*-chlorophenyl hydrazone (CCCP) (Figure 2.7) is a protonophore and potentiates antimycobacterial drugs by dissipation of proton motive force (PMF) of the bacterial membrane. It has been shown to inhibit the EP encoded by the *mml7* gene in *M. smeg*. and potentiates INH.56

Verapamil (Figure 2.7) is a well known calcium channel antagonist, which has been repurposed as an EPI for different EPs as an adjunctive TB agent. It has also shown inhibition of broad spectrum MDR bacterial EPs in vitro as well as in experimental models of infection.65,101 Verapamil has been found to reverse the resistance due to EPs and restore activity of first-line anti-TB drugs in mice infected with a MDR *Mtb* strain.86
2.5.4 Efflux pump inhibition in *Mtb*-infected macrophages

Mtb resides intracellularly in macrophages especially in the case of pulmonary TB. Therefore, prospective anti-TB drugs are expected to show their bactericidal activity at the intracellular sites where *Mtb* is sequestered. As already pointed out in section 2.3.2, various MDR EPs are invoked after macrophage invasion by *Mtb* and are responsible for the establishment of high levels of acquired resistance. Hence, an antimycobacterial agent with capabilities to kill *Mtb* in macrophages or potentiates killing in combination with known anti-TB drugs in macrophages will mitigate the problem of drug resistance. On the basis of this, the development of drugs, which can promote intracellular killing of *Mtb via* inhibition of EPs presents good prospects to counter the development of resistance in *Mtb*.

The EPIs known to disturb the ion gradient in bacteria have shown the most promising modulation effect in *Mtb* infected macrophages. Thioridazine (THZ), and verapamil are two such compounds. As already mentioned, THZ has shown both antimycobacterial and EP inhibition properties. Verapamil has specifically exhibited EPI properties and synergistic effects both *in vitro* and in macrophages with first and second line anti-TB drugs as well as with some newly developed drugs.

Figure 2.7: Representative compounds which have shown efflux pump inhibition in *Mtb*.
Figure 2.8 shows the stepwise mode of action of EPIs in macrophages. A phagosome is formed by the macrophage after invagination of *Mtb*. The *Mtb*-containing phagosome, then fuses with the lysosome and forms phagolysosome.\(^{104}\) Inside the phagolysosome, the Ca\(^{2+}\) and K\(^{+}\) concentration gets reduced due to their extrusion by EPs from the cytoplasm to the macrophage resulting in non-acidic conditions, which do not allow the activation of hydrolytic enzymes. Therefore, *Mtb* survives and results in the development of persister and resistant forms of *Mtb*. The presence of an EPI like THZ inhibits the EP and accumulates the Ca\(^{2+}\) and K\(^{+}\) inside the phagolysosome. The accumulation of ions causes the activation of V-ATPase to maintain osmolarity, and proton ions start accumulating in the phagolysosome and causing an acidic pH. The acidic pH activates the hydrolase, resulting in the degradation of the *Mtb*.\(^{104}\)

2.6 Drug discovery strategies applied in this study to counter efflux pumps

All the EPIs with potentiating effects in *Mtb* are associated with unwanted side effects. Hence there is not a single EPI in clinical development. The encouraging *in vitro*, *ex-vivo* and *in vivo* results shown by various EPIs have revitalized the importance and potential of the development of new EPIs. The EPIs devoid of the side effects are required for successful development to counter the emergence of drug resistance.

Three approaches are employed in this study towards new chemical entities to counter EP-mediated resistance, as follows:

1. Development of verapamil analogues (repositioning).
3. Development of hybrid efflux pump inhibitors.
Figure 2.8: The effect of thioridazine on killing of alveolar macrophages infected with *M. tuberculosis*.104
2.6.1 Repositioning of verapamil

2.6.1.1 Introduction
Drug repurposing and repositioning of existing antimicrobials and other drugs for non-infectious indications are common approaches used to fast-track drug discovery and development. Drug repurposing is defined as the investigation of existing drugs (which may or may not be in clinical use) for new uses. This does not involve structural modification of the original drug. On the other hand, drug repositioning refers to the structural modification of known drugs (which, also, may or may not be in clinical use) to improve their activity and effectiveness. The application of these approaches may lead to the development of new efflux pump inhibitors (EPIs) for the treatment of tuberculosis.

Verapamil (VER) belongs to the phenylalkylamine prototype and is a well known calcium channel antagonist. It is currently used for the clinical treatment of angina and hypertension. This compound has also been used in the prevention of migraine headaches. VER is a class four antiarrhythmic, and was approved by the FDA in 1982. VER has also been repurposed for different indications, such as oncolytic adenovirus co-infected with cancer, peyronies, Huntington’s disease (HD), hypertrophic cardiomyopathy, diabetes, bipolar disorder, and different types of cancers. Many studies, including phase 3 randomized clinical trials, have shown the possibility of developing VER as a chemosensitizer in different types of cancers.

2.6.1.2 Verapamil as a MDR modulator in cancer
VER has also proven to be an inhibitor of permeability glycoprotein (Pgp), which is an ATP-binding cassette transporter that affects the cellular accumulation of antiviral, anticancer and anti-TB drugs. In the recent past, VER has been repurposed as a chemosensitizer for different diseases, especially for cancer and tuberculosis. In cancer, the use of VER as a MDR reversal agent progressed up to phase 3 clinical trials. However, VER is associated with various cardiovascular activities, which are major hurdles in its development as a multi-drug resistance (MDR) modulator. The R-enantiomer of VER possesses lower cardiovascular activity in addition to equipotent MDR modulating activity compared to the S-enantiomer. Hence, the R-isomer was also tested in clinical trials with encouraging results. Nor-VER also showed potentiation similar to VER along with lower cytotoxicity than VER. Towards the development of more selective MDR modulators, various analogues of VER
were synthesized, which are summarised below:

LU48895 (Figure 2.9) was synthesised by replacing the dimethoxyphenylethyl motif of VER with an aliphatic chain. This new compound showed a two-fold higher potentiation of doxorubicin (DOX) compared to VER, along with a four-fold reduction in cytotoxicity.\(^\text{116}\)

![Figure 2.9: Verapamil related MDR modulators for cancer.](image)

The tiapamil-related analogues of VER (Figure 2.9) were developed to reverse the Pgp-mediated MDR in cancer cell lines.\(^\text{117}\) Many tiapamil analogues, including **Ro10-6852**,
Ro11-5160 and Ro11-2933 (Figure 2.9), showed significantly higher activity in reversing resistance than VER in some selected cell lines. The S-enantiomer of Ro-5160 (Figure 2.9) possesses slightly better potency than the R-enantiomer and was, therefore, selected for further studies and development.118

Another series of analogues was synthesized by replacing the isopropyl group with various thioethers and changing the amine substituents. This led to the identification of potent molecules such as CL 329,753, and CL 347,099 (Figure 2.9) with good pharmacological profiles. These drugs reversed MDR by a ten-fold higher margin than VER and were 70 times less potent as calcium channel antagonists.119 Similar results were also observed with another series of MDR modulators among which KR30026 and KR30031 (Figure 2.9) were the most potent analogues with good pharmacological properties.120 KR30031 was comparatively less cytotoxic than KR30026 and 70 times less cytotoxic than VER. Further studies showed that \textit{R}-KR30031 was two-fold less cytotoxic as a cardiovascular antagonist but equipotent to \textit{S}-KR30031 as a MDR reversal agent.121 In vivo evaluation in a mouse model showed a 7 times increase in bioavailability of the cancer drug, paclitaxel, when co-administered with KR30031.122

A large set of VER analogues with reduced molecular flexibility were developed as calcium channel antagonists, and these also showed excellent MDR reversal activity against erythroleukemia cell lines \textit{in vitro}.123,124 In addition to comparable MDR reversal activity with VER, some analogues also showed reduced to negligible calcium channel antagonism. For example, EDP42 and 2.1 (Figure 2.9) were inactive as cardiovascular agents.125

\textbf{2.6.1.3 Development of verapamil in tuberculosis}

As already mentioned, verapamil has also been repurposed as a chemosensitizer in tuberculosis. It has shown encouraging results both \textit{in vitro} and \textit{in vivo} mouse models of tuberculosis. These encouraging results have led to the recommendation of clinical evaluation of VER in humans in combination with different drug regimens.126 The various developments of VER in TB as an EPI are briefly discussed below:

VER restored a significant amount of \textit{in vitro} susceptibility to RIF mono-resistant as well as MDR strains of \textit{Mtb}.127,128 The potentiating effect of VER has also been observed in the case
Chapter 2

Efflux pumps and Efflux pump inhibitors

of STP, INH and clofazimine.129,130 VER also exhibited a modulation effect with new developing drugs. For instance, an 8-16 fold reduction in the MIC of BDQ was observed in different clinical isolates irrespective of the resistance pattern. A combination of suboptimal concentrations of BDQ and VER in a mouse model has shown equivalent efficacy as the human bioequivalent of BDQ. Therefore, a combination regimen of VER and BDQ presents an attractive drug regimen with the potential to reduce the toxic effects of BDQ and shorten the treatment duration.131 VER reduced the load of bacilli in mice infected with MDR-TB and restored susceptibility to first line anti-TB drugs (INH, RIF, PYZ) when used as an adjunctive agent.132 VER also accelerated the bactericidal activity of the standard TB regimen (INH + PYZ + RIF) and achieved persistent sterilization.133

In addition to various \textit{in vitro} and \textit{in vivo} studies in mouse models, a model of \textit{Mycobacterium marinum (Mm)} in zebrafish was employed by Ramakrishnan and co-workers for the evaluation of VER individually, and in combination with known anti-TB drugs in \textit{Mycobacteria}-infected macrophages.134 VER showed inhibition of specifically induced efflux pumps after the invasion of macrophages by the mycobacteria. This resulted in reduced intracellular growth of \textit{Mtb}. VER in combination with INH and RIF showed reduced \textit{Mm} survival rate by 15.6 and 9.2 fold, respectively.

VER has also showed intracellular potency in \textit{Mtb} infected THP-1 macrophage cell lines and potentiating effects on multiple drugs. VER impaired the growth of both RIF sensitive and RIF resistant \textit{Mtb} strains in macrophages and reduced RIF survival by 1.4 fold, and inhibited the tolerance against MOX.86

2.6.1.4 Solutions to pharmacological concerns of verapamil

There are some serious concerns regarding VER being used as an adjunctive agent in TB chemotherapy. The most prominent issues are the cardiovascular related properties of VER and the high susceptibility toward cytochrome P450, mainly CYP3A4, leading to reduced bioavailability of VER. CYP3A4 is induced by RIF and reduces the bioavailability of VER through rapid metabolism resulting in various metabolites (\textbf{Figure 2.10}).135 Therefore, it is less common to use VER in combination with RIF. Higher doses or replacement of RIF with rifabutin may be an alternative to overcome these problems because rifabutin does not induce CYP 450s to the same extent as RIF.133
It has been observed that the potency of VER is independent of its enantiomeric forms. However, cardiovascular activity is dependent on its stereochemistry. As already mentioned, the R-enantiomer has reduced cardiovascular properties but equivalent potentiating ability as S-VER or the racemic mixture. Therefore, the R-enantiomer of VER presents an opportunity to substitute VER as a potentiating agent with attendant reduction in calcium channel antagonism. The metabolite of VER, Nor-VER, has also shown comparable potentiating effects to VER along with reduced calcium channel antagonism and presents a possible alternative.\(^8^6\)

Figure 2.10: Major metabolites of verapamil.\(^{13^6}\)

Structural modification of VER is another strategy, which can be employed to identify analogues with the desired pharmacological properties and devoid of unwanted side effects. This strategy delivered promising results in cancer studies, as discussed in section 2.6.1.2. However, to our knowledge, there are no literature reports on the structural modification of VER towards identification of chemosensitizers that can reverse drug resistance in Mtb against existing and emerging anti-TB drugs.

Hence, structure activity relationship studies have been performed in this PhD study towards identifying VER analogues with superior potentiating effects in combination with existing and emerging anti-TB drugs, and which are devoid of undesirable side effects.
2.6.2 Reversed anti-TB agents

2.6.2.1 Introduction
Reversed anti-TB agents (RATAs) are dual action hybrid molecules in which an EPI moiety is covalently linked to a complete anti-TB drug or its molecular framework. These RATAs are designed to reverse the EP-mediated resistance to the corresponding linked anti-TB drugs in the hybrid molecule. The RATAs may present an alternative solution to the various challenges presented by the probable combination therapy of EPIs and anti-TB drugs. These challenges include the requirement of synergy of pharmacokinetic and physiochemical properties of structurally unrelated co-administered compounds, and balancing drug-drug interactions and other dosing related challenges. A strategic design and development of RATAs for various properties may present a solution to the challenges related to physical combination therapy of an EPI and anti-TB drug.

2.6.2.2 Concept of dual action hybrid molecules
The concept of hybrid molecules or dual action drugs is a well-explored strategy to counter the development of drug resistance in various diseases.\(^{137}\) In a hybrid molecule, two pharmacological molecules or their structural motifs with different functional domains are linked in a single molecular entity in such a way that the resulting molecule can deliver enhanced pharmacological properties. The linking structural motifs are either complete molecules or molecular frameworks consisting of structural features thought to be responsible for the observed pharmacological activity of the original compounds.

The constituents of hybrid molecules are selected in such a way that their desired pharmacological features can be maintained after the fusion to produce hybrid molecules. The linkers used to couple the native molecule/pharmacophoric units can be labile or biologically cleavable, like prodrugs, or they can be stable entities. These linkers are also designed to incorporate various desired pharmacokinetics and physiochemical properties into the hybrid molecule and can be selected via various screening methods including modelling and synergistic evaluation of molecules by checker board assays.\(^{138,139}\) These linkers may cleave hydrolytically or enzymatically in vivo to release individual compounds. The site directed delivery of a pharmacological molecule can also be achieved by designing the linkers to be cleaved at desired sites.\(^ {140}\) In addition to these advantages, there are some benefits of administering a hybrid molecule rather than a cocktail of drugs, which is
discussed in the following section.

2.6.2.3 Advantages of hybrid molecules

a) Low cost and reduction in pill burden: The administration of a cocktail of drugs is much more expensive than mono-therapy and presents a higher risk of relapse. Therefore, hybrid drugs present alternative approaches to overcome this challenge.\(^\text{141,142}\)

b) Broad spectrum of activity: Hybrid molecules can be designed to manage multiple targets for broad spectrum activity.\(^\text{143}\) The multi targeting hybrid can show sensitivity in different resistant strains as well as different bacterial species. This advantage can be illustrated by the following example of AU-FQ hybrid molecule.

![Figure 2.11](image)

Figure 2.11: Hybrid (AU-FQ) of DNA polymerase and topoisomerase inhibitor

The hybrid molecule (AU-FQ) (**Figure 2.11**) of 6-(3-ethyl-4-methylanilino)uracil unit (AU), a known potent inhibitor of DNA polymerase III in Gram positive bacterium *Bacillus subtilis*, and a fluoroquinolone (FQ) unit known to inhibit bacterial DNA topoisomerase, shows good potencies in Gram positive bacteria (*S. aureus*) and moderate activity in Gram negative bacteria (*E. coli*).\(^\text{144}\) In addition to broad spectrum activity against the infection caused by Gram negative and Gram positive bacteria, this hybrid molecule also delayed the development of resistance against two linked antibacterial agents.

c) Enhanced potency and synergy. As mentioned earlier, linkers can be tailored to reduce the toxicity of linking moieties (as in the case of non-toxic prodrug linkers). These linkers can be designed to mask the cytotoxic site of constituent molecules in a transient manner. These prodrug linkers are then cleaved at a site of action and show good prospects for the delivery of a cytotoxic antibacterial agent with enhanced safety and selectivity.\(^\text{140,145}\) Therefore, hybrid molecules designed with appropriate linkers may exhibit low cytotoxicity with higher
potency, synergy and safety as compared to their constituent agents.

An example of the above mentioned application of a prodrug is the hybrid molecule developed by Albrecht and co-workers, in which a FQ drug was linked to a β-lactam antibiotic (Figure 2.12).146,147 The most promising analogue was a hybrid of third generation FQ (fleroxacin) and third generation cephalosporin (desacetylceforaxime) linked via an ester prodrug (Figure 2.12). This analogue showed potent \textit{in vitro} and \textit{in vivo} activity against varieties of gram negative (\textit{E. coli}; MIC = 0.125 µg/ml) and gram positive (\textit{S. aureus}; MIC = 1.0 µg/ml) bacteria.147

![Figure 2.12: Hybrid molecule developed by Albrecht and co-workers with prodrug linkers.147](image)

d) Reduction in development of acquired resistance: Hybrid molecules can also be designed to counter the development of acquired resistance. The Oxazolidinone-quinolone hybrid and FQ-aminoglycoside hybrids (Figure 2.13) are ideal examples.148,149

![Figure 2.13: Oxazolidinone and fluoroquinolone hybrid.](image)

The hybrid molecule shown in Figure 2.13 has demonstrated a dual mode of action and strong inhibition of protein synthesis by inhibiting both targets i.e. DNA gyrase and topoisomerase IV in Gram positive and Gram negative bacteria. It showed a 4-16 fold higher potency than linezolid and overcame all the clinically resistant Gram positive bacteria.148
Other examples of dual action drugs (Section 2.6.2.2) with potential to counter the emergence of acquired resistance are reversed chloroquine (RCQs) agents. These RCQs are hybrids of chloroquine (CQ) and a chemosensitizer. This concept will be briefly discussed in the next section.

2.6.2.4 Reversed chloroquine concept

As mentioned earlier, reversed chloroquine (RCQ)-like molecules are one of the illustrative examples of dual action hybrid molecules in which a chemosensitizer and an anti-malarial drug, CQ has been covalently linked. These RCQ molecules were designed to counter the emerging resistance in the human malaria parasite \textit{Plasmodium falciparum} due to mutation in the \textit{pfcrt} gene. This gene codes for the \textit{P. falciparum} chloroquine resistance transporter (PfCRT) protein located in the digestive vacuole (DV), which is responsible for the regulation and expression of various transporters of drugs or metabolites. The mutation in the \textit{pfcrt} gene causes over expression of PfCRT-regulated EPs which leads to a reduction in the accumulation of CQ inside the DV.

The reversion of EP-mediated resistance in this parasite was observed by well known chemosensitizers like verapamil and desipramine. Therefore, hybrids of CQ and various chemosensitizers were developed with the aim of reducing cytotoxicity, cost and increasing drug accumulation required for an effective dose (Figure 2.14).
Figure 2.14: First generation RCQ.

The prototype RCQ (Figure 2.14) showed a lower IC_{50} value than CQ against both CQ sensitive (CQ^S) and CQ resistant (CQ^R) strains of *P. falciparum*. The good viability and potency of RCQs, *in vitro* and *in vivo* against CQ^S and CQ^R strains demonstrated a proof-of-concept of reversing resistance by RCQ-like molecules. Therefore, various RCQ molecules were developed with various reversal agents (RAs) to optimize the various pharmacological properties.\(^{151}\)

The success of prototype RCQs led to the development of many second generation RCQ molecules (Figure 2.15) with improved pharmacological properties.\(^{159,160}\)
The various RAs for RCQs were selected on the basis of the pharmacophore identified by Bhattacharjee et al (Figure 2.15). This pharmacophore is characterised by “two aromatic hydrophobic sites and a hydrogen bond acceptor site, preferably at a side chain nitrogen atom”. Therefore, various RAs with open structures i.e. removing the tricyclic nature of imipramine molecule with the expectation of removing central nervous system (CNS) related properties, were selected. The new RCQs were more effective with better pharmacokinetics and pharmacodynamics properties. The RCQ molecule 2.5 showed excellent in vivo activity after oral administration, low ClogP values and no obvious cytotoxicity.
2.6.2.5 Dual action antibacterial agents

As explained earlier, EPs are one of the major contributors to MDR resistance in bacteria. Therefore, the potential of dual-action hybrid-like RCQ molecules was also explored for the development of antibacterial agents by Prof. Kim Lewis for the treatment of infection caused by MDR bacterial pathogens. One such example of a dual action antibacterial is the hybrid of an antibacterial berberine and an EPI INF55. The berberine is known as a NorA-EP substrate and INF55 (5-nitro-2-phenylindole) has been identified as inhibitor of NorA-EP. These were covalently linked via a non-cleavable methylene spacer to form the SS14 hybrid (Figure 2.16).

![Figure 2.16: Dual action anti-bacterial hybrid SS14.]

SS14 hybrid was more active than the equivalent combination of biberine and INF55, and showed enhanced accumulation of biberine in bacteria. SS14 indicated the viability of the concept of dual action-based antibacterial drugs by incorporating a bacterial EPI and an antibacterial agent.

2.6.2.6 Design of dual action reversed anti-TB agents

The promising results shown by RCQ molecules and the antibacterial hybrid SS14 demonstrates the potential to exploit this innovative approach to design novel anti-TB agents for potential treatment of MDR-TB and XDR-TB.

It has been explained that many anti-TB drugs are substrates of EPs including RIF, INH and STP. Therefore, the development of dual action hybrid anti-TB agents by covalently linking an EPI and an anti-TB drug is a viable strategy to potentially counter EP-mediated resistance. The reversal agents used in the development of various RCQs also include some
bacterial resistance reversal agents.164 These reversal agents have shown potentiation of anti-TB drugs in \textit{Mtb} when used in combination.

In this study, these dual action hybrids are referred to as reversed anti-TB agents (RATAs) which are expected to reverse the resistance of corresponding anti-TB drugs in resistant strains of \textit{Mtb}. These reversed anti-TB agents were designed by replacing the CQ moiety in RCQ molecules with various anti-TB drug moieties (\textbf{Figure 2.17}).

\textbf{Figure 2.17:} Design of reversed anti-TB agents based on the RCQ concept.

In this project, the anti-TB drug isoniazid was covalently linked to various chemosensitizers or EPIs moieties \textit{via} a three carbon alkyl chain (\textbf{Figure 2.17}). This approach was employed to develop first generation RATAs towards establishing proof-of-principle.
2.6.3 Hybrid efflux pump inhibitors

2.6.3.1 Introduction

As described earlier (Section 2.6.2.2), hybrid molecules are synthesised by covalently linking two or more chemical entities with different functional characteristics. In the recent past, the strategy of hybridization was also applied to EPIs with an enhanced potentiation effect. A typical example is the development of an anticancer drug modulator against Pgp.

2.6.3.2 Hybrid efflux pump inhibitors for cancer chemotherapy

Hybrid efflux pump inhibitors (HEPIs) are designed by covalently linking two chemosensitizer or their pharmacophoric subunits. The two units or their motifs are joined in such a way that the structural and functional requirements of a chemosensitizer are not disturbed, such as lipophilicity and the presence of a basic nitrogen.\(^{165}\)

In order to construct an EPI with enhanced potentiating potential and potentially reduced unwanted side effects, the VER template was used to develop hybrid efflux pump inhibitors by replacing the dimethoxyphenyl group with aromatic pharmacophoric units of various chemosensitizers (Figure 2.18).

![Figure 2.18: Hybrid efflux pump inhibitor developed for cancer chemotherapy.](image)

Many HEPIs, as shown in figure 2.18, have been synthesised for cancer chemotherapy. These compounds were evaluated against the human leukaemia cell line K-562/doxR with
increased Pgp expression and AM-I blast cells. Among these, MM36, CTS27 and CTS41 were the most potent modulators, compared to VER, and displayed good MDR-reversal activity.\(^\text{165}\) In comparison to VER, these compounds also had a reduced effect on cardiovascular activity in the order MM36 > CTS27 > CTS41 was devoid of cardiovascular activity. Hence, these analogues were selected for further clinical evaluation.\(^\text{166}\)

In this study, a brief investigation of the replacement of the dimethoxyphenyl group of VER with a pharmacophoric framework of various chemosensitizers was conducted towards the identification of an EPI with better potentiating potential and which is devoid of undesirable properties found in VER.

2.7 Research question
The research question that this study aimed to answer was whether it would be possible to develop a potential efflux pump inhibitor by structural modification of verapamil, and an antimycobacterial agent from the reversed anti-TB approach as well as a hybrid chemosensitizer for maximum potentiation of anti-TB drug activity in MDR strains

2.8 Specific aims and objectives:
- To design and synthesise verapamil analogues and hybrid efflux pump inhibitors for structure activity relationship studies as potential efflux pump inhibitors, which can potentiate various anti-TB drugs in drug sensitive and drug resistant strains of \textit{Mtb}.
- To pharmacologically evaluate verapamil analogues and hybrid efflux pump inhibitors \textit{in vitro} individually and in combination with various anti-TB drugs.
- To evaluate potent, less cytotoxic verapamil analogues in \textit{Mtb}-infected macrophages, individually and in combination with various anti-TB drugs.
- To design and synthesise a series of reversed anti-TB (isoniazid) molecules as potential antimycobacterial agents able to circumvent drug resistance.
- To pharmacologically evaluate synthesised reversed isoniazids against DS and DR \textit{Mtb} in \textit{in vitro} for antimycobacterial activity, and potent molecules in macrophages for intracellular potency against \textit{Mtb}.
Chapter 2

Efflux pumps and Efflux pump inhibitors

References:

52, 2503–2511.

(79) Neyfakh, A. A.; Borsch, C. M.; Kaatz, G. W. Fluoroquinolone Resistance Protein NorA of Staphylococcus Aureus Is a Multidrug Efflux Transporter. Antimicrob. Agents

(91) Amaral, L.; Viveiros, M.; Molnar, J.; Kristiansen, J. E. Effective Therapy with the Neuroleptic Thioridazine as an Adjunct to Second Line of Defence Drugs, and the

(103) Amaral, L.; Kristiansen, J. E.; Viveiros, M.; Atouguia, J. Activity of Phenothiazines against Antibiotic-Resistant Mycobacterium tuberculosis: A Review Supporting Further Studies That May Elucidate the Potential Use of Thioridazine as Anti-

(140) Wermuth, C.; Ganellin, C. Glossary of Terms Used in Medicinal Chemistry (IUPAC...
Chapter 2

Efflux pumps and Efflux pump inhibitors

Chapter 2

Efflux pumps and Efflux pump inhibitors

Chapter 3: Design, synthesis and characterization of verapamil analogues as potential efflux pump Inhibitors

3.1 Introduction
This chapter presents an account of the design, synthesis, and characterization of various verapamil analogues as potential efflux pump inhibitors. These inhibitors have the potential to counter the efflux pump (EP)-mediated resistance that DS and DR strains of \(Mtb \) have developed against various anti-TB drugs.

3.2 Verapamil and related analogues
As outlined in chapter 2, section 2.6.1, verapamil (VER) is an encouraging and viable template for the development of efflux pump inhibitors (EPIs). It has been clinically widely used for a number of years and, therefore, repositioning of this compound presents the advantage of a fast-track development process based on prior knowledge of various properties that need to be manipulated to make analogues with favourable pharmacological profiles. The various VER related MDR modulators for cancer mentioned in section 2.6.1.2 also serve as a guide to indicate which pharmacological functionalities can be incorporated to improve the various properties of VER as a chemosensitizer.

3.2.1 Rationale
As discussed in section 2.6.1, VER, a well known calcium channel blocker, has also been shown to inhibit \(Mtb \) efflux pumps \textit{in vitro, ex vivo}, and in mouse models of tuberculosis.1 VER is also known to enhance the sensitivity of various resistant cancer cell lines towards chemotherapy through inhibition of Pgp-related EPs. It has also been reported that the inhibition of Pgp-related EPs may increase drug accumulation in cellular layers of pulmonary granulomas, and increase the efficacy of various drugs.2 However, inhibition of Pgp by VER may be accompanied by altered cytokine secretion, enhanced apoptosis, and reduction in the \(Mtb \)-specific T-cells. These disadvantageous properties are the bottleneck, which must be overcome in order to reposition VER as a MDR modulator in TB treatment.

Structural modifications of VER have shown promising improvements in its pharmacological properties against cancer. This approach can also be employed to develop VER analogues as EPIs to chemosensitize resistant strains of \(Mtb \). It is important to note that a synergy between
the immune system of the human body and the action of antimycobacterial agents is required for enhanced drug activity. Hence, structural modifications of VER should not lead to the development of new analogues with unfavourable properties that may limit the application in clinical stages by negatively impacting on the human host immune system.

In order to synthesize new VER analogues for SAR studies, the guidelines proposed by Bhattarjee et al.3 for achieving chemosensitization in the reversal of CQ-resistance in \textit{Plasmodium falciparum} were considered. In this regard, it has been reported that high lipophilicity and the presence of an amino group, which can be protonated under acidic conditions, are favourable features for a chemosensitizer.4 Indeed various studies have found that the lipophilic terminus of verapamil (Figure 3.1, SAR 1) is important for its EP inhibition properties.3,5 Therefore, our SAR1 studies focused on investigating the effects of replacing the \textit{iso}-propyl moiety with various alkyl groups with equivalent or enhanced lipophilicity.

![Figure 3.1: Designing of various SAR studies on verapamil to develop potential EPIs to potentiate various anti-TB drugs](image)

The basic nitrogen of VER acts as a proton acceptor and is a structural requirement for the chemosensitization property. It has also been reported that spatial arrangements of the molecule, and weak polar interactions produced by the phenyl groups due to their \(\pi \) orbitals, affect VER’s efflux pump inhibitory properties in cancer.6 Thus a part of SAR 2 has been
designed to explore the effect of lipophilicity and polar interactions of π orbitals, by replacing the methyl group on the basic nitrogen with various benzyl groups. The potent analogues of VER with a benzyl substituent on the nitrogen can also provide the option of exploring Craig plot substituents on the aromatic rings to potentially develop analogues with enhanced efflux pump inhibition properties. Additional analogues of VER were designed by replacing the methyl group on the nitrogen with various alkyl groups to investigate the effect of these changes on activity (Figure 3.1, SAR 2).

SAR 3 (Figure 3.1) involves the modification of the alkyl chain lengths between nitrogen and each hydrophobic dimethoxyphenyl ring, and assessing the effect of various VER spatial arrangements.

SAR 4 (Figure 3.1) was designed by replacing the 2-(3,4-dimethoxyphenyl)ethan-1-amino part of the VER with various piperazinyl moieties. These analogues were used to investigate the effect of incorporating additional protonatable nitrogens and substituted aromatic moieties.

3.2.2 Chemical synthesis

3.2.2.1 Retrosynthetic analysis

Scheme 3.1 shows the retrosynthetic analysis of target VER analogues, which can be envisioned from coupling of intermediates 3.2 and 3.6. The intermediate 3.2 with desired substituents on nitrogen were envisioned from Boc-deprotection of the N-Boc-protected intermediate 3.3, which can be obtained by alkylation of Boc protected amine 3.4, which would in turn be obtained by Boc protection of starting amine 3.5. The alkylation of intermediate 3.6 was envisioned from sequential alkylation of nitriles 3.7 and 3.8.
3.2.2.2 Synthesis of 2-(3,4-dimethoxyphenyl)acetonitrile intermediates (3.6)

The synthesis of 2-(3,4-dimethoxyphenyl)acetonitrile intermediates 3.6 was achieved using a method described by Zhongxu et al.8 with some modifications. As outlined in scheme 3.2, the synthesis of intermediate 3.7 was achieved in moderate yield (Table 3.1) via alkylation of commercially available 2-(3,4-dimethoxyphenyl)acetonitrile 3.8, with various alkyl halides in THF in the presence of n-butyllithium at 0 °C, under an atmosphere of nitrogen. This intermediate was further reacted with commercially available 1-bromo-3-chloropropane/1,2-dibromoethane using lithium diisopropyl amide (LDA) in dry THF under an atmosphere of nitrogen at -78 °C, to afford 3.6 in moderate to good yields (Table 3.1).

Scheme 3.2: Reagents and reaction conditions: (i) Bromoalkane (1.5 eq.), n-BuLi (1.1 eq.), THF, 0 °C to 25 °C, 1.5-2 h; (ii) 1-Bromo-3-chloropropane/1,2-dibromoethane (1.5 eq.), LDA (1.2 eq.), THF, -78 °C to 25 °C, 1-2 h.
Table 3.1: Yields of isolated intermediates 3.7 and 3.6.

![Chemical structures](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R_2</th>
<th>3.7 Yield %</th>
<th>3.6y Yield %</th>
<th>3.6x Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$\text{CH(CH}_3\text{)}_2$</td>
<td>69</td>
<td>81</td>
<td>76</td>
</tr>
<tr>
<td>b</td>
<td>H</td>
<td>*</td>
<td>41</td>
<td>*</td>
</tr>
<tr>
<td>c</td>
<td>CH_3</td>
<td>46</td>
<td>66</td>
<td>*</td>
</tr>
<tr>
<td>d</td>
<td>CH_2CH_3</td>
<td>48</td>
<td>68</td>
<td>*</td>
</tr>
<tr>
<td>e</td>
<td>$\text{CH}_2\text{CH}_2\text{CH}_3$</td>
<td>53</td>
<td>65</td>
<td>*</td>
</tr>
<tr>
<td>f</td>
<td>Cyclohexane</td>
<td>60</td>
<td>46</td>
<td>*</td>
</tr>
<tr>
<td>g</td>
<td>Cyclohexane</td>
<td>50</td>
<td>43</td>
<td>*</td>
</tr>
</tbody>
</table>

*Compound not synthesised.
3.2.2.4 Synthesis of 2-(3,4-dimethoxyphenyl)amine intermediates (3.2)

The 2-(3,4-dimethoxyphenyl)amine intermediates 3.2 were synthesized from various commercially available 3,4-dimethoxyphenylamines 3.5 (Scheme 3.3). The controlled alkylation of amines is not feasible with straight forward alkylation methods due to an increase in the nucleophilic character of the substituted amine, which reacts further to form various side products.\(^\text{10}\)

\[\text{Scheme 3.5: Reagents and reaction conditions:} (i) \text{Boc}_2\text{O} (1.2 \text{ eq.}), \text{DCM}, \text{Et}_3\text{N} (1.5 \text{ eq.}), 0 \degree \text{C}, 20 \text{ min}; (ii) \text{Alkyl halide} (1.3 \text{ eq.}), \text{NaH} (1.5), \text{DMF}, 0 \degree \text{C}, 6-8 \text{ h}; (iii) \text{TFA} (10 \text{ eq.}), \text{Amberlyst A-21}, \text{DCM}, 25 \degree \text{C}, 1-2 \text{ h}.\]

To overcome this challenge and obtain the desired mono-alkylated intermediate, the nucleophilicity of nitrogen is reduced with the use of a protecting group. In this method, the amines were protected with di-tert-butyl dicarbonate [(Boc)\(_2\)O] in DCM at 0 \degree C in the presence of triethylamine, to obtain intermediates 3.4 (Scheme 3.3).\(^\text{11}\) These intermediates were subjected to reaction with various alkyl halides in DMF in the presence of NaH at 0 \degree C to produce 3.3. The subsequent deprotection of 3.3 with TFA in DCM and neutralization with amberlyst A-21 produced intermediate 3.2 in good yield (Table 3.2).

\[\text{Table 3.2: Yields of isolated intermediates 3.3, 3.4 and 3.5.}\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R(_1)</th>
<th>n</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4a</td>
<td>(\text{CH}_3)</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>3.4b</td>
<td>(\text{CH}_3)</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>3.4c</td>
<td>(\text{CH}_2\text{CH}_3)</td>
<td>2</td>
<td>54</td>
</tr>
</tbody>
</table>

\[\begin{array}{ccc}
<table>
<thead>
<tr>
<th>Entry</th>
<th>n</th>
<th>Yield %</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>54</td>
<td>87</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>84</td>
<td>90</td>
</tr>
</tbody>
</table>
\]
3.2.2.5 Mechanism for Boc-deprotection

Boc-deprotection of the amine can be achieved by various methods, which include basic deprotection with strong to weak bases, like potassium hydroxide and carbonates, or acidic deprotection with TFA and acetic acid (Scheme 3.4).

Scheme 3.4: Proposed mechanism of Boc-deprotection.

Boc deprotection mediated by acid requires an excess of acid. The first step in the deprotection is the protonation of the protected amine, followed by the release of the tert-butyl carbocation and deprotected amine. Within an acidic medium, the deprotected amine abstracts a proton from TFA and forms the trifluoroacetate salt, which can be neutralized with various bases to obtain the free amine. The polymer-bound basic resin can be used to avoid the aqueous workup.
3.2.2.6 Synthesis of verapamil analogues (3.13)

The target verapamil analogues of SAR 1, 2, and 3 were obtained by coupling the previously synthesised intermediates 3.2 and 3.6 (Schemes 3.5 and 3.2) in the presence of potassium carbonate in DMF at 80 °C. The target compounds 3.13 were obtained in low to moderate yields (Scheme 3.5 Table 3.3).

In order to incorporate a cyclopropyl substituent on the nitrogen, a copper-promoted coupling reaction of the amine with a boronic acid, reported by Chan and Larn, and further modified by Sebastien et al., was used to synthesize the desired target molecule 3.13o (Scheme 3.6). A mixture of 3.13e, and an equimolar amount of cyclopropyl boronic acid and 2,2’-bipyridine were refluxed in dichloroethane (DCE) for two hours in the presence of sodium carbonate to obtain the desired compound 3.13o in low yield (Table 3.3).
Table 3.3: Yields of isolated target compounds 3.13.

<table>
<thead>
<tr>
<th>Compound</th>
<th>n</th>
<th>m</th>
<th>R¹</th>
<th>R²</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.13a</td>
<td>0</td>
<td>3</td>
<td>−CH₃</td>
<td>−CH(CH₃)₁</td>
<td>29</td>
</tr>
<tr>
<td>3.13b</td>
<td>1</td>
<td>3</td>
<td>−CH₃</td>
<td>−CH(CH₃)₂</td>
<td>34</td>
</tr>
<tr>
<td>3.13c</td>
<td>1</td>
<td>2</td>
<td>−CH₃</td>
<td>−CH(CH₃)₂</td>
<td>29</td>
</tr>
<tr>
<td>3.13d</td>
<td>2</td>
<td>2</td>
<td>−CH₃</td>
<td>−CH(CH₃)₂</td>
<td>40</td>
</tr>
<tr>
<td>3.13e</td>
<td>2</td>
<td>3</td>
<td>−H</td>
<td>−CH(CH₃)₂</td>
<td>37</td>
</tr>
<tr>
<td>3.13f</td>
<td>2</td>
<td>3</td>
<td>−CH₂CH₃</td>
<td>−CH(CH₃)₂</td>
<td>37</td>
</tr>
<tr>
<td>3.13g</td>
<td>2</td>
<td>3</td>
<td>−CH₂CH₂CH₃</td>
<td>−CH(CH₃)₂</td>
<td>17</td>
</tr>
<tr>
<td>3.13h</td>
<td>2</td>
<td>3</td>
<td>−CH₂Ph</td>
<td>−CH(CH₃)₂</td>
<td>26</td>
</tr>
<tr>
<td>3.13i</td>
<td>2</td>
<td>3</td>
<td>−CH₃</td>
<td>−H</td>
<td>32</td>
</tr>
<tr>
<td>3.13j</td>
<td>2</td>
<td>3</td>
<td>−CH₃</td>
<td>−CH₃</td>
<td>49</td>
</tr>
<tr>
<td>3.13k</td>
<td>2</td>
<td>3</td>
<td>−CH₃</td>
<td>−CH₂CH₃</td>
<td>49</td>
</tr>
<tr>
<td>3.13l</td>
<td>2</td>
<td>3</td>
<td>−CH₃</td>
<td>−CH₂CH₂CH₃</td>
<td>53</td>
</tr>
<tr>
<td>3.13m</td>
<td>2</td>
<td>3</td>
<td>−CH₃</td>
<td>−</td>
<td>36</td>
</tr>
<tr>
<td>3.13n</td>
<td>2</td>
<td>3</td>
<td>−CH₃</td>
<td>−</td>
<td>32</td>
</tr>
<tr>
<td>3.13o</td>
<td>2</td>
<td>3</td>
<td>−</td>
<td>−CH(CH₃)₂</td>
<td>19</td>
</tr>
</tbody>
</table>

3.2.2.7 Characterization of representative verapamil analogue from SAR 1

The verapamil analogues were characterized using ¹H-NMR, ¹³C-NMR and mass spectroscopy (MS). The purity of compounds was checked using high performance liquid chromatography (HPLC) and more than 95% purity was recorded for all the analogues.

The ¹H-NMR chemical shifts were assigned with the aid of ¹H-¹H COSY and ¹H-¹³C NOSY spectroscopy. The ¹H-NMR spectrum of the verapamil analogue 3.13k, having an ethyl substituent at the stereogenic centre, is shown in figure 3.3. The key signals in the ¹H-NMR
spectrum are a triplet resonating at δ 0.92 ppm corresponding to the three methyl protons H-2’ and the presence of multiplets in the aliphatic region between δ 1.80-1.95 ppm, corresponding to methylene protons H-1’, which confirmed the presence of the ethyl group.

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Multiplicity</th>
<th>J (Hz)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.91</td>
<td>dd</td>
<td>5.4 & 2.0</td>
<td>H-2B</td>
</tr>
<tr>
<td>6.86</td>
<td>d</td>
<td>2.4</td>
<td>H-3B</td>
</tr>
<tr>
<td>6.84</td>
<td>d</td>
<td>8.4</td>
<td>H-1B</td>
</tr>
<tr>
<td>6.79</td>
<td>d</td>
<td>8.4</td>
<td>H-1A</td>
</tr>
<tr>
<td>6.66-6.71</td>
<td>m</td>
<td>-</td>
<td>H-2A & H-3A</td>
</tr>
<tr>
<td>2.70</td>
<td>t</td>
<td>7.2</td>
<td>H-8</td>
</tr>
<tr>
<td>2.55</td>
<td>t</td>
<td>7.6</td>
<td>H-7</td>
</tr>
<tr>
<td>2.36</td>
<td>m</td>
<td>-</td>
<td>H-6</td>
</tr>
<tr>
<td>2.20</td>
<td>s</td>
<td>-</td>
<td>H-9</td>
</tr>
<tr>
<td>0.92</td>
<td>t</td>
<td>7.2</td>
<td>H-2’</td>
</tr>
</tbody>
</table>

Figure 3.3: 1H-NMR spectrum of verapamil analogue 3.13k in CDCl$_3$ at 400 MHz.

The aromatic region of the 1H-NMR spectrum contains signals corresponding to the six aromatic protons of 3.13k. These signals appeared as one doublet of doublet at 6.91 ppm corresponding to H-2B, one doublet with a coupling constant of $J = 2.4$ Hz representing H-3B, two doublets with an equal coupling constant of $J = 8.4$ Hz corresponding to H-1B and H-1A, and a multiplet in the range of 6.71-6.66 ppm corresponding H-2A and H-3A. These aromatic signals were found to exist in the 1H-NMR spectrum of all the VER analogues as no
modification of the phenyl rings were carried out during the synthesis of the VER analogues in this study.

An anomalous splitting pattern for protons (H-4 and H-5), adjacent to the stereogenic centre was observed. The methylene protons H-5 appeared as two separate, one proton multiplets at δ 1.33 and 1.63 ppm. The methylene protons H-4 also resonated as broad multiplets at δ 1.88 ppm. Speculatively, this may be attributed to through space coupling or could be indicative of the diastereotopic nature of these protons in 3.13k. An additional set of two triplets, one multiplet and one singlet were also observed at δ 2.70, 2.55, 2.36 and 2.20 ppm corresponding to H-8, H-7, H-6 and H-9 protons, respectively.

The 13C-NMR spectrum (Figure 3.4) of compound 3.13k showed 22 non-equivalent signals, whose total intensity correlated with the 26 carbons of compound 3.13k. The key signals to support the presence of the ethyl group at the stereogenic centre are the appearance of two signals corresponding to methyl and methylene carbons at δ 9.66 and 33.19 ppm, respectively.

![Figure 3.4: 13C-NMR spectrum of verapamil analogue 3.13k in CDCl$_3$ at 101 MHz.](image)
3.2.2.8 Synthesis of piperazine analogues of verapamil (3.15)

The piperazinyl analogues of verapamil, according to SAR 4 (Figure 3.1), were synthesised by reaction of intermediate 3.6c with various commercially available piperazinyls 3.14 in DMF in the presence of potassium carbonate at 80 °C (Scheme 3.7) to afford target compounds 3.15 in poor to moderate yield (Table 3.4).

Scheme 3.7: Reagents and condition: (i) K₂CO₃ (2.5 eq.), DMF, 80 °C, 12 h.

Table 3.4: Yields of isolated target compounds 3.15.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Yield %</th>
<th>Compound</th>
<th>R</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.15a</td>
<td>CH₃</td>
<td>60</td>
<td>3.15g</td>
<td>CF₃</td>
<td>37</td>
</tr>
<tr>
<td>3.15b</td>
<td>Ph</td>
<td>49</td>
<td>3.15h</td>
<td>F</td>
<td>37</td>
</tr>
<tr>
<td>3.15c</td>
<td>py</td>
<td>24</td>
<td>3.15i</td>
<td>O</td>
<td>28</td>
</tr>
<tr>
<td>3.15d</td>
<td>py</td>
<td>58</td>
<td>3.15j</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>3.15e</td>
<td>PhOMe</td>
<td>47</td>
<td>3.15k</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>3.15f</td>
<td>PhOMe</td>
<td>28</td>
<td>3.15l</td>
<td>CN</td>
<td>30</td>
</tr>
</tbody>
</table>
3.2.2.9 Characterization of piperazine analogue of verapamil 3.15i

The structural confirmations of piperazinyl analogues of VER were achieved with the aid of various spectroscopic techniques (1H-NMR, 13C-NMR and mass spectroscopy). The purity of compounds was checked with the aid of HPLC, which showed more than 95% purity for all the analogues. Electrospray ionization (ESI) mass spectroscopy showed pseudomolecular ion peaks as m/z [M+H], corresponding to the required masses of the analogues 3.15. Figures 3.5 and 3.6 show the 1H-NMR and 13C-NMR spectra of a representative piperazinyl analogue of verapamil, 3.15i. The piperazine motif attached to the verapamil substructure was confirmed with the appearance of two broad triplets at δ 3.36 and 2.51 ppm with an identical coupling constant of $J = 4.8$ Hz, corresponding to H-8 and H-7 protons, respectively.

![Figure 3.5: 1H-NMR spectrum of verapamil analogue 3.15i in CDCl₃ at 400 MHz.](image)
In addition to the expected number of aromatic protons, the splitting pattern of aromatic
signals varied according to the substituent on the phenyl group of the piperazinyl moiety. In
the case of 3.15i, two doublets at δ 6.87 and 7.88 ppm with an identical coupling constant of
\(J = 8.8 \text{ Hz} \) were observed, corresponding to H-9 and H-10 protons, respectively. Among other
key signals, three multiplets were observed for H-1’, H-4, and H-5 protons in the region δ
2.30-1.60 ppm. The diastereotopic nature of these protons could account for these anomalous
splitting patterns.

The \(^{13}\text{C-NMR} \) spectrum showed 24 non-equivalent signals corresponding to the 28 carbons
of compound 3.15i (Figure 3.6). The presence of the characteristic carbonyl carbon peak at δ
196.4 ppm confirms the synthesis of the desired derivative. Additional key signals appeared
at δ 52.6, 42.2, and 26.0 ppm corresponding to C-8, C-7 and C-11 carbons of the piperazine
moiety, respectively.

![Figure 3.6: \(^{13}\text{C-NMR} \) spectrum of verapamil analogue 3.15i in CDCl\(_3\) at 101 MHz.](image-url)
3.2.2.10 Synthesis of N-benzylated verapamil analogues (3.17)
The synthesis of verapamil analogues 3.17 (Scheme 3.8), with various benzyl substituents on the basic nitrogen, began with the synthesis of Nor-verapamil 3.13e (Section 3.2.2.6). Nor-verapamil 3.13e was then reacted with various benzyl halides in DMF using potassium carbonate at 80 °C (Scheme 3.8) to obtain target compounds 3.17 in low to moderate yields (Table 3.5).

![Scheme 3.8: Reagents and condition: (i) K$_2$CO$_3$ (2.5 eq.), DMF, 80 °C, 8 h.]

Table 3.5: Isolated yields of target compounds 3.17.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.17a</td>
<td>4-CH$_3$</td>
<td>28</td>
</tr>
<tr>
<td>3.17b</td>
<td>4-Cl</td>
<td>21</td>
</tr>
<tr>
<td>3.17c</td>
<td>2-CN</td>
<td>58</td>
</tr>
<tr>
<td>3.17d</td>
<td>3-OCH$_3$</td>
<td>20</td>
</tr>
<tr>
<td>3.17e</td>
<td>3-CF$_3$</td>
<td>33</td>
</tr>
<tr>
<td>3.17f</td>
<td>2-OCF$_3$</td>
<td>28</td>
</tr>
<tr>
<td>3.17g</td>
<td>4-OCF$_3$</td>
<td>34</td>
</tr>
<tr>
<td>3.17h</td>
<td>4-SCH$_3$</td>
<td>61</td>
</tr>
<tr>
<td>3.17i</td>
<td>4-CN</td>
<td>21</td>
</tr>
<tr>
<td>317j</td>
<td>3-COCH$_3$</td>
<td>27</td>
</tr>
</tbody>
</table>
3.2.2.11 Synthesis of rigid verapamil analogues

3.2.2.11.1 Rationale

As described in chapter 2, section 2.6.2.1, the spatial arrangements of VER play an important role in the modulation of Pgp-mediated resistance. A number of VER analogues with restricted flexibility have been developed and have shown reversal of resistance to 4'-O-tetrahydropyranyl Adriamycin, comparable to the activity of VER against a K562 erythroleukemia cell line but with reduced calcium channel antagonism. Therefore, the design of rigid VER analogues and investigating their potentiating properties on anti-TB drugs against *Mtb* may lead to the identification and development of potent chemosensitizers devoid of calcium channel blocking properties. In this study, two reported VER analogues, EDP42 and MKVR1 (Figure 3.11), with reduced rotational degree of freedom were synthesised to investigate the effect of rigidity on the activity of anti-TB drugs against *Mtb*.

![Figure 3.11: Rigid VER analogues with reduced calcium channel antagonism.](image)

3.2.2.11.2 Synthesis of verapamil analogue MKVR1

The synthesis of MKVR1 was preceded by the synthesis of the cyclohexyl precursor 3.20 by using a method established previously (Scheme 3.9). The synthesis of 3.20 commenced with the reaction of commercially available 2-(3,4-dimethoxyphenyl)acetonitrile 3.8, with methylacrylate using an organic base triton-B in tertiary-butyl alcohol, resulting in the intermediate 3.18. This compound was cyclized in the presence of sodium hydride in dimethoxy ethane (DME) under a nitrogen atmosphere at 70 °C to produce 3.19 in 65% yield. Subsequent decarboxylation of 3.19 by refluxing in 10% aqueous sulphuric acid for 10 hours produced the cyclohexanone intermediate 3.20 in 54% yield.

![Scheme 3.9: Reagents and reaction conditions:](image)
3.2.2.11.2.1 Synthesis of (R,Z)-4-((3,4-dimethoxyphenethyl)imino)-1-(3,4-dimethoxyphenyl) cyclohexane-1-carbonitrile

The synthesis of the target compound 3.22 (MKVR1) commenced with reductive amination of the cyclohexanone intermediate 3.20 with 2-(3,4-dimethoxyphenyl)ethan-1-amine 3.5 (Scheme 3.10) to obtain imine 3.21. This intermediate 3.21 was reduced in situ without further purification to obtain target compound 3.22 in moderate yield (Table 3.6). This method stereoselectively produced the target compound as a cis isomer, which was confirmed by 1H-NMR as discussed in the following section.

![Scheme 3.10: Reagents and reaction conditions: (d) (i) para-toluene sulfonic acid (p-TSA), toluene, reflux, 45 h (ii) NaBH$_4$ (1.1 eq.), MeOH, reflux, 0.5 h.](image)

Table 3.6: Percentage yields of intermediates (3.18, 3.19, and 3.20) and target compound 3.22.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Yield (%)</th>
<th>m.p (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.18</td>
<td>72</td>
<td>60-62</td>
</tr>
<tr>
<td>3.19</td>
<td>65</td>
<td>118-120</td>
</tr>
<tr>
<td>3.20</td>
<td>60</td>
<td>109-112</td>
</tr>
<tr>
<td>3.22</td>
<td>22</td>
<td>59-61</td>
</tr>
</tbody>
</table>

3.2.2.11.2.2 Characterization of target compound 3.22

The target compound 3.22 was characterized using 1H-NMR and 13C-NMR spectroscopy as well as LC-MS. The LC-MS chromatogram showed more than 99% purity of 3.22 and a pseudomolecular ion mass peak of m/z 425.2 [M+H]. The 1H-NMR spectrum (Figure 3.7) correlates with the reported spectrum of 3.22.17 The characteristic signals include four multiplets in the range of δ 2.25-1.68 ppm, corresponding to the eight hydrogens (H-4, H-5,
H-6 and H-7) of the cyclohexyl moiety. A triplet of triplets was observed at \(\delta = 2.60 \text{ ppm} \) with coupling constants of \(J = 11.2 \) and \(3.4 \text{ Hz} \) for H-8, thus confirming its axial orientation and the \textit{cis} conformation of the molecule with respect to the nitrile group.

![NMR spectrum](image)

Figure 3.7: \(^1H\)-NMR spectrum of compound 3.22 in CDCl\(_3\) at 400 MHz.

The \(^{13}C\)-NMR spectrum of the target compound 3.22 (Figure 3.8) showed 25 non-equivalent signals with some signals resonating for two carbons and correlated with the spectrum reported by Romanelli \textit{et al.}17 The characteristic signals corresponding to the cyclohexyl carbons C-5 to C-7 were observed in the aliphatic region.
3.2.2.11.3 Synthesis of verapamil analogue EDP42

3.2.2.11.3.1 Synthesis of 6,7-dimethoxy-3,4-dihydronaphthalen-2(1H)-one

The synthesis of the rigid verapamil analogue EDP42 was preceded by the synthesis of a key precursor, 6,7-dimethoxy-3,4-dihydronaphthalen-2(1H)-one 3.28. Scheme 3.11 presents the outline of the synthesis of 3.28 from 6,7-dimethoxy-3,4-dihydronaphthalen-1(1H)-one 3.23. The synthesis was achieved through the reduction of 3.23 with sodium borohydride in ethanol, followed by acid-catalysed dehydration by refluxing intermediate 3.24 in the presence of para-toluene sulfonic acid (p-TSA) in toluene to obtain the alkene intermediate 3.25. The synthesis of 3.28 from intermediate 3.25 was envisioned by epoxidation of 3.25 in the presence of meta-chloroperbenzoic acid (m-CPBA) in DCM at 0 to 25 °C, followed by a 1,2-oxygen shift to afford the desired 6,7-dimethoxy-3,4-dihydronaphthalen-2(1H)-one 3.28.

Scheme 3.11: Reagents and reaction conditions: (i) NaBH₄ (2 eq.), EtOH, 25 °C, 10 h; (ii) p-TsOH (0.1), toluene, reflux (115 °C), 2 h; (iii) m-CPBA (1.1 eq.), DCM, 0-25 °C, 1 h; (iv) 2M NaOH, MeOH, reflux, 2 h; (v) BF₃ (cat.), diethyl ether, 0-25 °C, 2 h; (vi) NH₂CH₂ (5.5 eq.), NaCNBH₃ (3 eq.), EtOH, NaHCO₃, 25 °C, 24 h.

It is known that tetralines with electron-donating substituents on aromatic rings are very...
sensitive to epoxidation with m-CPBA, which leads to many side products. Therefore, the reaction of the alkene intermediate 3.25 with m-CPBA produced many side products, with α-hydroxy benzoate ester 3.26 as the major product. This intermediate was converted to 3.28 by sodium hydroxide-mediated basic hydrolysis, followed by acid-catalysed dehydration with boron trifluoro etherate in diethyl ether. The reductive amination of 3.28 with methylamine in the presence of sodium cyanoborohydride in ethanol furnished the desired advanced intermediate 3.29.

3.2.2.11.3.2 The mechanism of acid-catalysed regioselective dehydration

It is known that both epoxide isomerization and diol dehydration proceed through a common pathway of the enol intermediate (Scheme 3.12). The tautomerization of the enol intermediate produces the desired 6,7-dimethoxy-3,4-dihyronaphthalen-2(1H)-one.

![Scheme 3.12](image)

Scheme 3.12: Proposed mechanistic pathway for diol-dehydration and epoxide isomerization.

3.2.2.11.3.3 Synthesis of target compound EDP42

The target compound EDP42 was obtained through a multicomponent Mannich reaction of 3.30, 3.29 and formaldehyde in 40% aqueous ethanol in the presence of copper sulfate as a catalyst under slightly basic conditions (pH = 8) (Scheme 3.13). A Mannich base is expected to be formed by the reaction of 3.29 and formaldehyde, and subsequent addition of alkyne 3.30 to this base leads to the formation of EDP42.

![Scheme 3.13](image)

Scheme 3.13: Reagents and reaction conditions: (i) Propargylbromide (1.5 eq.), n-BuLi (1.1 eq.), THF, 0-25 °C, 1 h, (55%); (ii) CH₂O (40% in water) (1.1 eq.), CuSO₄ (cat.), EtOH/H₂O (1:1), reflux (85 °C), 24 h, (20%).
3.2.11.3.4 Characterization of EDP42
The LCMS chromatogram of EDP42 showed 99% purity of the compound and a pseudomolecular ion mass peak of m/z 491.3 [M+H]. The 1H-NMR spectrum (Figure 3.9) correlates well with that reported.20

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{δ (ppm)} & \textbf{Multiplicity} & \textbf{J (Hz)} & \textbf{H} \\
\hline
6.98-7.03 & m & - & H-1 \\
6.97 & d & 1.6 & H-3 \\
6.76 & dd & 8.4 & 2.8 & H-2 \\
6.59 & 6.61 & two d & 1.6 & 2.0 & H-11 \\
3.49 & s & - & H-5 \\
2.33 & d & 14.0 & H-6 \\
\hline
\end{tabular}
\end{center}

Figure 3.9: 1H-NMR spectrum of EDP42 in CDCl$_3$ at 400 MHz.

The characteristic signals include a singlet at δ 3.49 ppm, and a doublet at δ 2.33 ppm, corresponding to H-5, and H-6 protons, respectively. Other characteristic signals are two doublets at δ 6.59 and 6.61 ppm with coupling constants of $J = 1.6$ and 2.0 Hz, corresponding to the two aromatic protons H-11 of the 6,7-dimethoxy-3,4-dihydronaphthalen-2(1H)-one substructure. The splitting of H-11 may be attributed to the long range coupling of benzylic
protons H-10/H-8. All the remaining aliphatic protons appeared as multiplets scattered in the aliphatic region due to the diastereotopic nature of the compound. The presence of the lipophilic head of verapamil was confirmed by the presence of aromatic signals, and aliphatic signals as one multiplet (δ 2.26 ppm), and two doublets of doublets (δ 0.87, and 1.2 ppm) corresponding to H-1’ and H-2’ protons, respectively.

The 13C-NMR spectrum (Figure 3.10) correlated well with 1H-NMR spectral data and showed 26 singlets corresponding to the expected 30 carbons of the compound EDP42. The characteristic signals are two low intensity peaks at δ 79.8 and 80.1 ppm, corresponding to the quaternary carbons of the alkyne. The additional key signals at δ 57.6 and 43.4 ppm corresponded to C-5 and C-7 carbons, respectively.

Figure 3.10: 13C-NMR spectrum of EDP42 in CDCl$_3$ at 101 MHz.

3.3 Conclusion
The design, synthesis and characterization of various verapamil analogues was successfully carried out. The spectroscopic data confirmed the structures of the expected compounds. The biological evaluation of the synthesized analogues will be presented and discussed in chapter 5 of this thesis.
Reference:

Chapter 4: Design, synthesis and characterization of Reversed isoniazid anti-TB agents and Hybrid efflux pump inhibitors

4.1 Introduction

In this chapter, the design, synthesis, and characterization of various reversed isoniazid (RINH) anti-TB agents and hybrid efflux pump inhibitors (HEPIs) is presented. As discussed in chapter 2, efflux pumps (EPs) of *Mycobacterium tuberculosis* (*Mtb*) are one of the major factors contributing to the development of low to higher levels of drug resistance in this microorganism. The development of EPIs and the structural modification of various classes of drugs are some of the methods which have been successfully employed to counter EP-mediated resistance.1–3

4.2 Background

As discussed in chapter 2, efflux pumps (EPs) are one of the major causes of resistance. These EPs reduce intracellular concentrations to sub-inhibitory levels, which leads to the emergence of resistance in *Mtb* and various agents causing different infections. Isoniazid (INH) is also known to be a substrate of EPs, which reduce the intracellular concentration and potency of this drug against *Mtb*.4 The evaluation of various EPIs in combination with INH against sensitive and resistant strains of *Mtb* has shown enhanced potency and efficacy of INH both in vitro and in mouse models of tuberculosis.5

In the past, a comprehensive structure activity relationship study of isoniazid has shown that the potentiating agent linked to it enhances the antimycobacterial activity. The linking moieties leading to increased lipophilicity and Schiff bases have also shown a positive effect on the potency of INH as well as enhanced efficacy as compared to isoniazid alone.6,7 Therefore, development of dual-action hybrid molecules as exemplified by reversed anti-TB agents presents an attractive strategy to overcoming INH resistance in *Mtb*. The development of reversed isoniazid (RINH) anti-TB agents could also be used as a strategy to overcome the challenges presented by the administration of INH and EPIs. In addition to efflux pump inhibition properties, some EPIs are also known to have antimycobacterial activity with their own specific mechanisms of action. Therefore, the reversed isoniazid anti-TB agents developed by covalently linking INH and an EPI or EPI moiety may show enhanced antimycobacterial activity with synergy of two different mechanisms targeting *Mtb*.8,9
In addition to various other methods used for the development of new EPIs, the concept of hybridization presents a good prospective as this strategy is well explored in cancer research with promising results.10,11 Therefore, development of novel efflux pump inhibitors (EPIs) is a viable strategy to counter the emergence of EP-mediated resistance in \textit{Mtb}.12,13 In this regard, hybrid efflux pump inhibitors (HEPIs) have been produced following the covalent attachment of aromatic moieties/molecular frame works of one EPI to another (such as verapamil) via appropriate linkers.

Although many hybrid and dual-action drugs, including numerous highly active molecules, have been explored in the recent past, hybrid molecules are not yet used as anti-TB drugs. Therefore, the exploration of the RINH and HEPI strategy may lead to the development of a novel antimycobacterial and EPI with a novel mechanism of action and good pharmacological profile.

\section*{4.3 Reversed isoniazid anti-TB agents}

\subsection*{4.3.1 Rationale}

As mentioned in chapter 2, the strategy for the development of reversed anti-TB agents has been derived from the concept of hybrid strategies explored in malaria drug discovery, which led to the development of chloroquine-based reversed agents, also known as reversed chloroquine (RCQ) agents (\textbf{Figure 4.1}).14,15 These RCQs have achieved better potency and efficacy against sensitive and resistant strains of \textit{Plasmodium falciparum}, both \textit{in vitro} and \textit{in vivo}. These RCQs have shown a number of advantages compared to the parent drug (CQ) in terms of potency, efficacy and dose lowering.

In this work, various EPIs were covalently linked to isoniazid to develop first generation RINH anti-TB agents (\textbf{Figure 4.1}). The development of first generation RINH agents can potentially provide a “proof-of-concept” and possibly lead to the development of a reversed antimycobacterial agent in the future.
Figure 4.1: The design of RATAs and RINH anti-TB agents based on the RCQ concept. CQ moiety can be replaced with various anti-TB drugs and can be linked with various EPIs/EPI moieties to generate RATAs. In this study, INH has been linked with various EPIs/EPI moieties to design first generation RINHs.
4.3.2 Selection of EPI moieties for the synthesis of RINH agents

4.3.2.1 Tricyclic efflux pump inhibitor moieties

The EPIs or EPI moieties were selected from various journal articles published by Peyton and co-workers on RCQs.16,17 Some EPIs and EPI moieties used in the development of RCQs had also shown chemosensitization of resistant \textit{Mtb} in combination with various anti-TB drugs.18 Therefore, RINH agents developed with these EPIs and EPI moieties are hypothesized to show enhanced antimycobacterial activity.

As discussed in chapter 2, tricyclic molecules, such as phenothiazines, dibenzazepines and their analogues, are also known for their ability to reverse efflux pump-mediated resistance in \textit{Mtb}. These chromophores are used for various indications and are well explored for different pharmacological properties such as antibacterial and antimalarial action.13,19 These various findings can be useful in designing RINH agents with good pharmacological properties. The phenothiazine analogues, such as thioridazine, have shown stereospecific antibacterial activity over CNS activity. The racemic (+/−) thioridazine showed strong antimycobacterial activity but (−) thioridazine is devoid of CNS effects.9 Therefore, various phenothiazine (\textit{Figure 4.2}, series A, B and C, D) and dibenzazepine analogues (\textit{Figure 4.2}, RINH-E) were selected for initial exploration.20
4.3.2.2 Design of RINH agents with tricyclic EPI moieties

All the EPI moieties were linked to isoniazid via a three carbon chain linker (Figure 4.2).

Figure 4.2: Design of first generation RINH anti-TB agents with tricyclic EPI/EPI moieties containing a phenothiazine/dibenzazepine nucleus.
4.3.3 Synthesis of RINHs with tricyclic EPIs

4.3.3.1 Synthesis of RINH anti-TB agents of series A (4.3)

The synthesis of target compounds of series A was a two-step procedure (Scheme 4.1). This commenced with the alkylation of commercially available phenothiazines 4.1 to obtain 4.2 (a and b), according to a procedure reported by Kubota et. al. In the procedure for 4.2 (a and b), 1.5 equivalents of 1-bromo-3-chloropropane and 2.5 equivalents of sodium hydride and one equivalent of the appropriate phenothiazine were stirred in DMF at room temperature (25 °C) for 4 to 6 hours in an atmosphere of nitrogen. Addition of an excess of sodium hydride did not result in completion of the reaction in the case of unsubstituted phenothiazine 4.2a. However, the reaction involving 2-chlorophenothiazine 4.2b went to completion (Scheme 4.1). For the synthesis of intermediate 4.2c, commercially available iminodibenzyl 4.1c was reacted with 1-bromo-3-chloropropane in the presence of excess sodium amide in toluene under reflux. The synthesis of target compounds 4.3 (a and b) was achieved by the coupling of intermediate 4.2 (a and b) with an equimolar amount of isoniazid using sodium hydride in DMF at 25 °C. The target compound 4.3 (a and b) were produced as minor products while major product 4.4 was formed by further alkylation of 4.3. The target compound 4.3c with an iminodibenzyl moiety as an EPI chromophore was obtained by refluxing a mixture of intermediate 4.2c and isoniazid in iso-propanol in the presence of excess triethylamine (4 equivalents). The reaction did not go to completion even with longer reflux times and a low yield was obtained (Table 4.1) with the recovery of the intermediate 4.2c.

![Scheme 4.1: Reagents and reaction conditions](image)

<table>
<thead>
<tr>
<th>Reaction Scheme 4.1</th>
<th>Reagents and reaction conditions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) 1-Bromo-3-chloropropane (1 eq.), NaH (1 eq.), DMF, 25 °C, 4-6 h (4.2a and 4.2b); 1-Bromo-3-chloropropane (2 eq.), NaNH₂ (2.5 eq.), toluene, reflux (115 °C), 12 h, (4.2c); (ii) Isoniazid (1.2 eq.), NaH (1.2 eq.), DMF, 25 °C, 5-6 h, (4.3a and 4.3b); Isoniazid (4 eq.), Et₃N (4 eq.), iso-propanol, reflux (95 °C), 12 h, (4.3c).</td>
<td></td>
</tr>
</tbody>
</table>

Malkeet Kumar_PhD Thesis_2015
Table 4.1: Yields and melting points (m.p.) of isolated intermediate 4.2, target compound 4.3, and by-product 4.4.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2a</td>
<td>63</td>
<td>61</td>
</tr>
<tr>
<td>4.2b</td>
<td>75</td>
<td>66</td>
</tr>
<tr>
<td>4.2c</td>
<td>40</td>
<td>*</td>
</tr>
<tr>
<td>4.3a</td>
<td>18</td>
<td>*</td>
</tr>
<tr>
<td>4.3b</td>
<td>24</td>
<td>*</td>
</tr>
<tr>
<td>4.3c</td>
<td>15</td>
<td>*</td>
</tr>
<tr>
<td>4.4a</td>
<td>27</td>
<td>*</td>
</tr>
<tr>
<td>4.4b</td>
<td>26</td>
<td>*</td>
</tr>
</tbody>
</table>

*Compound isolated as an oil.

4.3.3.2 Synthesis of RINH anti-TB agents of series B

4.3.3.2.1 Synthesis of alkylated intermediates of phenothiazine (4.6)

Synthesis of intermediates 4.6 (a and b) followed a three-step procedure (Scheme 4.2), which commenced with the alkylation of commercially available phenothiazines 4.1 to obtain 4.2, as described previously in scheme 4.1. Intermediate 4.2 was further reacted with 3-aminopropanol in the presence of potassium carbonate in DMF at 80 °C to obtain 4.5 in moderate yield (Table 4.2). A by-product was also formed by further alkylation of 4.5 with 4.2. The intermediate 4.5 was N-protected in DCM in the presence of triethylamine and a slight excess of di-tert-butyl carbonate (1.2 equivalents) at room temperature (25 °C) to afford 4.6 in quantitative yield (Table 4.2).

Scheme 4.2: Reagents and reaction conditions: (i) 1-Bromo-3-chloropropane (1 eq.), NaH (1 eq.), DMF, 0-25 °C, 11-12 h; (ii) 3-Aminopropanol (1.5 eq.), K$_2$CO$_3$ (1.3 eq.), DMF, 80 °C, 10-12 h; (iii) (Boc)$_2$O (1.1 eq.), Et$_3$N (1.1 eq.), DCM, 25 °C, 30-40 min.
Table 4.2: Yields and melting points of isolated intermediate (4.5 and 4.6).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5a</td>
<td>65</td>
<td>100-103</td>
</tr>
<tr>
<td>4.5b</td>
<td>68</td>
<td>61-64</td>
</tr>
<tr>
<td>4.6a</td>
<td>95</td>
<td>*</td>
</tr>
<tr>
<td>4.6b</td>
<td>93</td>
<td>*</td>
</tr>
</tbody>
</table>

*Compound isolated as an oil

4.3.3.2.2 Synthesis of target compounds of series B via the Appel reaction (4.10)

4.3.3.2.2.1 The Appel reaction

The Appel reaction was named after Rolf Appel. It is a facile method of converting an alkyl alcohol to an alkyl halide under mild reaction conditions using tetrahalomethane and triphenylphosphine (Scheme 4.3).

![Scheme 4.3: The Appel reaction.](image)

The mechanism of the reaction is shown in scheme 4.4. The reaction is initiated by the formation of a carbanion generated for the reaction between triphenyl phosphine and tetrahalomethane, followed by alkoxide ion formation by abstraction of the hydroxyl proton by the carbanion. An alkoxide ion subsequently reacts with the phosphonium salt releasing the halide ion. The nucleophilic substitution reaction takes place by the attack of a halide ion on the electrophilic carbon of the resulting complex leading to the formation of an alkyl halide and triphenylphosphine oxide.

![Scheme 4.4: Proposed mechanism of the Appel reaction.](image)
4.3.3.2.2 Synthesis of target compounds (4.10)
The synthesis of target molecules of series B from intermediate 4.6 was achieved in three steps outlined in scheme 4.5. Firstly, the hydroxyl group of intermediate 4.6 was converted to a bromide via the above-mentioned Appel reaction. An excess of carbon tetrabromide (1.5 equivalents) and triphenylphosphine (1.5 equivalents) were used in DCM at room temperature (25 °C) to obtain intermediate 4.7 in good yields (Table 4.4). The product 4.7 appeared less-polar on TLC than the triphenylphosphine oxide formed in the reaction, and was easily purified by flash chromatography.

Scheme 4.5: Reagents and reaction conditions: (i) Ph₃P (1.5 eq.), CBr₄ (1.5 eq.), DCM, 25 °C, 1.5-2 h; (ii) Isoniazid (5 eq.), Et₃N (3 eq.), DMF, 55 °C, 12 h; (iii) TFA/DCM (10% v/v), 25 °C, NaHCO₃, 1-1.5 h.

The bromide intermediate 4.7 was then reacted with isoniazid (Scheme 4.5). This reaction proved to be challenging and often resulted in low yields of 4.8 and was accompanied by double alkylation to give 4.9a as a by-product (Scheme 4.6). Attempts to further optimize the reaction yield for 4.8 were made by exploring combinations of various bases in different solvents at variable temperatures (Table 4.3). The reaction of 4.7a with isoniazid in the presence of NaH in DMF did not afford the desired hybrid molecule but led to the formation of 4.9a as major product (Scheme 4.6). The use of potassium carbonate in DMF with equimolar amounts of reactants (4.7a and isoniazid) at 80 °C showed no reaction as indicated by TLC. The reaction, with a combination of triethylamine (1 to 5 equivalents) in various organic solvents at room temperature (25 °C), did not give any indication of progress as evidenced by TLC while heating under reflux led to target product formation in very low yield (5%), with excess side product (4.9a) formation. The final attempt was made by using 5
equivalents of isoniazid and 3 equivalents of triethylamine in DMF and heating at 55 °C for 12 hour. This resulted in an improved yield (35%) of 4.8a. The target compound was obtained by removal of the Boc group from N-Boc-protected intermediate 4.8a using 10% TFA in DCM (by volume) followed by neutralization with a saturated solution of sodium bicarbonate.

Table 4.3: Various reaction conditions explored for synthesis of 4.8a.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction conditions</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INH, NaH (1:1), DMF, 25 °C, 30 min</td>
<td>4.9 as only product</td>
</tr>
<tr>
<td>2</td>
<td>INH, K₂CO₃ (1:2.5), DMF, 25-80 °C, 6-12h</td>
<td>No reaction</td>
</tr>
<tr>
<td>3</td>
<td>INH, TEA (1:2.3), THF, 25-66 °C,1-6h</td>
<td>No reaction</td>
</tr>
<tr>
<td>4</td>
<td>INH, TEA (1:5), Toluene, reflux, 1-6h</td>
<td>4.9 as major product</td>
</tr>
<tr>
<td>5</td>
<td>INH, TEA (1:3), DMF, 55 °C, 12 h</td>
<td>4.8a in 35% yield</td>
</tr>
</tbody>
</table>

4.3.3.2.3 Reaction of 4.7 with isoniazid

Scheme 4.6: Alkylation of isoniazid with bromide intermediate 4.7 accompanied with the formation of by-product 4.9a.

Table 4.4: Yields and melting points of isolated intermediates (4.7 and 4.8) and target compound 4.10.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield%</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7a</td>
<td>82</td>
<td>*</td>
</tr>
<tr>
<td>4.7b</td>
<td>88</td>
<td>*</td>
</tr>
<tr>
<td>4.8a</td>
<td>35</td>
<td>55-57</td>
</tr>
<tr>
<td>4.8b</td>
<td>30</td>
<td>63-65</td>
</tr>
<tr>
<td>4.10a</td>
<td>66</td>
<td>48-50</td>
</tr>
<tr>
<td>4.10b</td>
<td>83</td>
<td>61-64</td>
</tr>
</tbody>
</table>

* Compound was isolated as an oil.
4.3.3.2.4 Characterization of target compound 4.10a

The target molecule 4.10a was fully characterized using 1H-NMR and 13C-NMR spectroscopy as well as LC-MS. The LC-MS chromatogram showed 99% purity and a pseudomolecular ion mass peak of m/z 434.2 [M+H], which is expected for compound 4.10a. NMR spectra were recorded in deuterated DMSO. Among the key signals identified in the 1H-NMR spectrum (Figure 4.3) are two doublets corresponding to four isoniazid moiety protons H-12 and H-11 resonating downfield at δ 8.72 and 7.71 ppm, respectively, which confirmed the successful attachment of the isoniazid motif to the molecule. The coupling constants ($J = 4.4$ and 6.0 Hz) are less than the expected value and may be attributed to the distortion signals caused by the overlapping of NH signals with the signal of aromatic protons.

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Multiplicity</th>
<th>J (Hz)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.72</td>
<td>d</td>
<td>4.4</td>
<td>H-12</td>
</tr>
<tr>
<td>7.71</td>
<td>d</td>
<td>6.0</td>
<td>H-11</td>
</tr>
<tr>
<td>7.19</td>
<td>m</td>
<td></td>
<td>H-1 & H-3</td>
</tr>
<tr>
<td>7.06</td>
<td>d</td>
<td>8.0</td>
<td>H-4</td>
</tr>
<tr>
<td>6.96</td>
<td>t</td>
<td>8.4</td>
<td>H-2</td>
</tr>
<tr>
<td>3.99</td>
<td>t</td>
<td>6.8</td>
<td>H-5</td>
</tr>
<tr>
<td>3.04</td>
<td>m</td>
<td></td>
<td>H-7 & H-8</td>
</tr>
<tr>
<td>2.89</td>
<td>t</td>
<td>6.4</td>
<td>H-10</td>
</tr>
<tr>
<td>2.06</td>
<td>quin</td>
<td>6.8</td>
<td>H-6</td>
</tr>
<tr>
<td>1.73</td>
<td>quin</td>
<td>6.8</td>
<td>H-9</td>
</tr>
</tbody>
</table>

Figure 4.3: 1H-NMR spectrum of 4.10a in DMSO-d_6 at 400 MHz.
Other key signals in the downfield aromatic region are representative of a phenothiazine nucleus and resonate in the range from δ 7.22 to 6.93 ppm. These signals include a multiplet (overlapping triplet and doublet) at δ 7.19 ppm (corresponding to H-1 and H-3), a doublet at δ 7.06 ppm (corresponding to H-4) and a triplet at δ 6.96 ppm (corresponding to H-2). Two broad signals at δ 10.32 and 8.78 ppm are observed for two N-H protons. The upfield region contains the representative signals of expected aliphatic protons, which include two triplets at δ 3.99 and 2.89 ppm, two quintets at δ 2.06 and 1.73 ppm and one multiplet at δ 3.04 ppm corresponding to H-5, H-10, H-6, H-9, H-7 and H-8 protons, respectively. The multiplet at δ 3.04 ppm and corresponding to H-7 and H-8 is the result of an overlap of two triplets corresponding to the two methylene protons adjacent to nitrogen as they have similar electronic environments.

The 13C-NMR spectrum of 4.10a showed 16 distinct signals corresponding to 24 carbons as some signal intensities are equivalent to two carbons. The characteristic signals include those for the carbonyl carbon and two isoniazid carbons C-12 and C-11 at δ 164.3, 150.2, and 122.7 Hz, respectively.
4.3.3.3 Synthesis of RINH anti-TB agents of series C

4.3.3.3.1 Synthesis of phenothiazine-piperidine intermediate (4.15)

The synthesis of the piperidine-based phenothiazine intermediate 4.15 is outlined in scheme 4.7 and commenced with the preparation of scaffold 4.13 by Boc-protection of commercially available 4-hydroxyl piperidine 4.11 and subsequent mesylation using methane sulfonyl chloride in DCM at 0 °C in the presence of triethylamine to afford 4.13 in 95% yield (Scheme 4.7). This intermediate was then reacted with phenothiazine (4.1a and 4.1b). The adopted protocol described in a patent using sodium hydride in DMSO successfully delivered the intermediate 4.14. This was achieved by the treatment of phenothiazine with an equimolar amount of NaH at 70 °C in DMF with stirring for 50 minutes, followed by the addition of compound 4.13 at 100 °C and further stirring for 24 hours. The reaction was monitored over 24 hours by HPLC as both the reactant and product were found to have the same retention factor on TLC, regardless of the solvent system used. Complete consumption of phenothiazine could not be achieved even at high temperatures and after a long reaction time of 24 hours. The reaction was accompanied by the formation of many coloured impurities, which were removed by column chromatography to leave a light pink solid product 4.14 in moderate yield (Table 4.5). This compound showed various colour changes (pink, red, and brown) in the presence of light due to the photosensitive nature of the phenothiazine nucleus. Boc-deprotection of 4.14 was conducted using TFA in DCM (50% v/v) with excess TFA being removed with 1N-NaOH to afford 4.15a and 4.15b in 30 and 32% yield, respectively, over three steps.

Scheme 4.7: Reagents and reaction conditions: (i) (Boc)₂O (1.3 eq.), Et₃N (1.3 eq.), DCM, 0-25 °C, 1.5 h; (ii) Methanesulfonyl chloride (1.2 eq.), Et₃N (1.2 eq.), DCM, 0-25 °C, 6 h; (iii) NaH (1 eq.), DMSO, 25-70 °C, 50 min-24 h; (iv) TFA (50% v/v in DCM), 1N-NaOH, 1-1.5 h.
Table 4.5: Yields and melting points of isolated intermediate (4.14 and 4.15).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14a</td>
<td>30</td>
<td>120-122</td>
</tr>
<tr>
<td>4.14b</td>
<td>32</td>
<td>157-158</td>
</tr>
<tr>
<td>4.15a</td>
<td>87</td>
<td>100-103</td>
</tr>
<tr>
<td>4.15b</td>
<td>95</td>
<td>131-133</td>
</tr>
</tbody>
</table>

4.3.3.3.2 Synthesis of target compounds of series C (4.17)

The synthesis of target molecules 4.17 from the key intermediate 4.15 commenced with the alkylation of 4.15 with 1-bromo-3-chloropropane in toluene in the presence of triethylamine (Scheme 4.8). The final step involves N-alkylation of isoniazid with intermediate 4.16. A modified method, reported by Hoover and co-workers, for the alkylation of various acyl hydrazones was used.24 A mixture of four equivalents of isoniazid and triethylamine relative to 4.16 were refluxed in iso-propanol, which delivered 4.17 in moderate yield (Table 4.6).

![Scheme 4.8: Reagents and reaction conditions](image)

Scheme 4.8: Reagents and reaction conditions: (i) 1-Bromo-3-chloropropane (2 eq.), Et₃N (2.5 eq.), toluene, 65 °C, 6-8 h; (ii) Isoniazid (4 eq.), Et₃N (4 eq.), iso-propanol, reflux (95 °C), 10-12h.

Table 4.6: Yields and melting points of isolated intermediate 4.16 and target compound 4.17.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.16a</td>
<td>75</td>
<td>*</td>
</tr>
<tr>
<td>4.16b</td>
<td>72</td>
<td>*</td>
</tr>
<tr>
<td>4.17a</td>
<td>30</td>
<td>54-56</td>
</tr>
<tr>
<td>4.17b</td>
<td>32</td>
<td>85-87</td>
</tr>
</tbody>
</table>

Compound isolated as an oil.
4.3.3.3.3 Characterization of target compound 4.17b.
The targeted compounds 4.17a and 4.17b were characterized by 1H-NMR and 13C-NMR spectroscopy as well as LC-MS. The LC-MS chromatogram showed 99.9% purity of the compound and a pseudomolecular ion mass peak of m/z 494.1 [M+H] for 4.17b. Figures 4.5 and 4.6 show the 1H-NMR and 13C-NMR spectra of the representative compound 4.17b.

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Multiplicity</th>
<th>J (Hz)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.72</td>
<td>d</td>
<td>6.4</td>
<td>H-12</td>
</tr>
<tr>
<td>7.77</td>
<td>d</td>
<td>6.0</td>
<td>H-11</td>
</tr>
<tr>
<td>3.78</td>
<td>m</td>
<td>-</td>
<td>H-3</td>
</tr>
<tr>
<td>2.99</td>
<td>t</td>
<td>6.4</td>
<td>H-10</td>
</tr>
<tr>
<td>2.55</td>
<td>t</td>
<td>6.8</td>
<td>H-8</td>
</tr>
<tr>
<td>1.78</td>
<td>quin</td>
<td>6.8</td>
<td>H-9</td>
</tr>
</tbody>
</table>

Figure 4.5: 1H-NMR spectrum of 4.17b in CD$_3$OD at 400MHz.

The presence of all the signals corresponding to the isoniazid moiety, aliphatic chain and intermediate 4.15b confirmed that the desired coupling of 4.15b and isoniazid had occurred. Two doublets at δ 8.72 and 7.77 ppm, corresponding to H-11 and H-12, confirmed the presence of an attached isoniazid moiety. The additional signals were a group of multiplets between δ 6.70 and 7.40 ppm and corresponded to the 2-chlorophenothiazine nucleus. The
upfield region from δ 3.90 to 1.60 ppm, containing two triplets and one quintet at δ 2.99, 2.55 and 1.78 ppm, respectively, accounted for the attached propyl linker in addition to the signals corresponding to the piperidine ring.

Figure 4.6: 13C-NMR spectrum of 4.17b in CD$_3$OD at 101 MHz.

A total of 22 distinct signals were observed in the 13C-NMR spectrum corresponding to 26 carbons of 4.17b. Among these, some signals showed intensities equivalent to two carbons. The characteristic signals arise from isoniazid ring carbons C-12 and C-11 and one accounted for a carbonyl carbon. Additional signals in the aliphatic region were also observed corresponding to C-1, C-2 and C-3.

4.3.3.4 Synthesis of RINH anti-TB agents of series D using the McMurry reaction (4.23)

4.3.3.4.1 The McMurry reaction

Named after John E. McMurry, the McMurry reaction is a reaction used to couple two carbonyl compounds to form an alkene using the titanium chloride reagents (TiCl$_3$ or TiCl$_4$) and a reducing agent such as zinc (Scheme 4.9).25

![Scheme 4.9: McMurry reaction.]

This reaction can be related to the pinacolate coupling as it also proceeds via a reductive coupling reaction. The various titanium-based reagents have been developed for this reaction and originally, TiCl$_3$ coupled with lithium aluminium hydride was used. The use of TiCl$_3$ and TiCl$_4$ along with reducing agents like potassium, zinc and magnesium has been extensive in practice.26

Malkeet Kumar_PhD Thesis_2015 123
The mechanism of the reaction can be divided into two parts: (i) formation of pinacolate and (ii) deoxygenation of pinacolate to generate an alkene (Scheme 4.10).\(^{27}\)

![Scheme 4.10: Proposed mechanism of McMurry reaction.](image)

It has been proposed that it is the low valent titanium generated via in situ reduction of Ti(III) or Ti(IV) in the presence of reducing agents like zinc, which co-ordinates to the carbonyl oxygen and forms pinacolate at room temperature (25 °C). This pinacolate then gets reduced to produce the alkene under reflux (Scheme 4.10).

4.3.3.4.2 Synthesis of xanthone-piperidinoneylde intermediate (4.21)

The synthesis of intermediate 4.21 is outlined in scheme 4.11 and began with the N-Boc-protection of commercially available piperidinone hydrochloride 4.18 in DCM in the presence of triethylamine and a catalytic amount of 4-dimethylaminopyridine (DMAP) at room temperature (25 °C) to obtain 4.19 in good yield (Table 4.7). The key intermediate 4.21 was synthesised by coupling 4.19 with commercially available ketones 4.20 using the above-mentioned McMurry reaction.\(^{28,29}\)

![Scheme 4.11: Reagents and reaction conditions](image)

An excess of zinc (4 equivalents) and titanium(IV) chloride (2 equivalents) was stirred for 24 hours at 40 °C under an atmosphere of nitrogen to reduce the titanium from Ti(IV) to Ti(II). The addition of a solution of two ketones 4.20 and 4.19 in dioxane to the mixture of zinc and titanium produced the desired alkene 4.21 after refluxing for an additional two hours.
Table 4.7: Yields and melting points of isolated intermediate (4.19 and 4.21).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.19</td>
<td>95</td>
<td>75-78</td>
</tr>
<tr>
<td>4.21a</td>
<td>43</td>
<td>188-190</td>
</tr>
<tr>
<td>4.21b</td>
<td>40</td>
<td>216-218</td>
</tr>
<tr>
<td>4.21c</td>
<td>55</td>
<td>250-252</td>
</tr>
</tbody>
</table>

4.3.3.4.3 Synthesis of target compounds of series D

The synthesis of target compounds of series D from intermediate 4.21 was achieved via alkylation of 4.21 with 1-bromo-3-chloropropane in toluene at 65 °C in the presence of triethylamine (Scheme 4.12) to obtain 4.22 in moderate yield (Table 4.8). The final product 4.23 was obtained using the previously described method (Section 4.3.3.2) of refluxing a mixture of 4.22 and four equivalents each of triethylamine and isoniazid in *iso*-propanol for 10-12 hours.

![Scheme 4.12: Reagents and reaction conditions](image)

Scheme 4.12: Reagents and reaction conditions: (i) 1-Bromo-3-chloropropane (2 eq.), Et₃N (2.5 eq.), toluene, 65 °C, 6-8 h; (ii) Isoniazid (4 eq.), Et₃N (4 eq.), *iso*-propanol, reflux (95 °C), 10-12 h.
Table 4.8: Yields and melting points of isolated intermediate (4.22) and target compound (4.23).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.22a</td>
<td>65</td>
<td>136-138</td>
</tr>
<tr>
<td>4.22b</td>
<td>60</td>
<td>*</td>
</tr>
<tr>
<td>4.22c</td>
<td>56</td>
<td>*</td>
</tr>
<tr>
<td>4.23a</td>
<td>37</td>
<td>105-107</td>
</tr>
<tr>
<td>4.23b</td>
<td>32</td>
<td>99-102</td>
</tr>
<tr>
<td>4.23c</td>
<td>40</td>
<td>120-122</td>
</tr>
</tbody>
</table>

*Compound isolated as an oil.

4.3.3.4.4 Characterization of target compound 4.23c
The target compounds 4.23 (a-c) were characterized by 1H-NMR and 13C-NMR spectroscopy as well as LC-MS. Figures 4.7 and 4.8 represent the 1H-NMR and 13C-NMR spectra of representative compound 4.23c, respectively. The presence of all the signals corresponding to isoniazid, aliphatic chain and intermediate 4.22c confirmed that the desired coupling of 4.23c and isoniazid had occurred. Two doublets at δ 8.72 and 7.76 ppm confirmed the presence of the isoniazid ring. The additional signals between δ 6.75 and 7.50 ppm corresponded to aromatic protons H-3, H-4, H-5 and H-6. In addition to piperidine protons (H-1 and H-2), the upfield region from δ 3.70 to 1.71 ppm also contain two triplets and one quintet at δ 2.98, 2.59 and 1.77 ppm, respectively, accounting for the attached carbon chain.

The 13C-NMR spectrum also supported the expected structure of 4.23c. A total of 17 distinct signals were observed corresponding to 29 carbons of 4.23c. The characteristic signals include those for the carbonyl carbon and the isoniazid ring carbons C-13 and C-12. Signals corresponding to piperidine carbons C-1 and C-2, and three carbon linker chain C-9, C-10 and C-11 are also observed.
Chapter 4
Design, synthesis and characterization of reversed isoniazids and hybrid efflux pump inhibitors

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Multiplicity</th>
<th>J (Hz)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.72</td>
<td>d</td>
<td>6.0</td>
<td>H-13</td>
</tr>
<tr>
<td>7.76</td>
<td>d</td>
<td>6.4</td>
<td>H-12</td>
</tr>
<tr>
<td>2.98</td>
<td>t</td>
<td>6.8</td>
<td>H-11</td>
</tr>
<tr>
<td>2.59</td>
<td>t</td>
<td>6.8</td>
<td>H-9</td>
</tr>
<tr>
<td>1.77</td>
<td>quin</td>
<td>7.2</td>
<td>H-10</td>
</tr>
</tbody>
</table>

Figure 4.7: 1H-NMR spectrum of 4.23c in CD$_3$OD at 400 MHz.

Figure 4.8: 13C-NMR spectrum of 4.23c in CD$_3$OD at 101 MHz.
4.3.3.5 Synthesis of RINH-E (4.27)

The synthesis of target compound 4.27 (Scheme 4.13) commenced with the reaction of commercially available dibenzosuberyl chloride 4.24 and piperazine in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and molecular sieves of 4 A° under an atmosphere of argon to afford intermediate 4.25 in moderate yield (Table 4.9). This intermediate was alkylated with 1-bromo-3-chloropropane in toluene in the presence of triethylamine at 65 °C to afford 4.26 in good yield. The final product 4.27 was obtained by refluxing a mixture of 4.26 and four equivalents each of isoniazid and triethylamine in iso-propanol.

Scheme 4.13: Reagents and reaction conditions: (i) Piperazine (1.1 eq.), DBU (0.25 eq.), MS-4 A°, 0-25 °C, toluene, 12 h; (ii) 1-Bromo-3-chloropropane (2 eq.), Et₃N (2.5 eq.), toluene, 65 °C, 8 h; (iii) Isoniazid (4 eq.), Et₃N (4 eq.), iso-propanol, reflux (95 °C), 12 h.

Table 4.9: Yield and melting point of isolated intermediates (4.25 and 4.26) and target compound 4.27.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.25</td>
<td>67</td>
<td>246-246</td>
</tr>
<tr>
<td>4.26</td>
<td>72</td>
<td>*</td>
</tr>
<tr>
<td>4.27</td>
<td>42</td>
<td>155-157</td>
</tr>
</tbody>
</table>

*Compound isolated as an oil.
4.3.3.6 Benzhydrazide-based reversed anti-TB agents

4.3.3.7.1 Rationale

The synthesised RINH anti-TB agents 4.3 (Figure 4.9) showed good in vitro potency against the Mtb H37Rv strain (MIC₉₀ = 0.625 µM). To investigate the contribution of the pyridyl motif to the antimycobacterial and EPI activities of these compounds, this motif was replaced with a phenyl group.

![Figure 4.9: The design of benzoylhydrazine-based RATAs based on the phenothiazine core.](image)

4.3.3.7.2 Synthesis of benzhydrazide-based RATAs (4.28)

![Scheme 4.14: Reagents and reaction conditions: (i) Et₂N, iso-propanol, reflux (95 °C), 10-12 h (20-25%).](image)

The synthesis of benzhydrazide-based hybrid molecules commenced with the previously described intermediate 4.2 (Scheme 4.1). The target molecule was obtained in low yield by
refluxing intermediate 4.2 and four equivalents of benzoylhydrazine and triethylamine in iso-
propanol (Scheme 4.14).

4.3.4 RINH anti-TB agents with non-tricyclic efflux pump inhibitor moieties

4.3.4.1 Rationale

The non-tricyclic EPI moieties found in cancer MDR modulators (Figure 4.10) were also
considered for inclusion in RINHs. These non-tricyclic moieties have previously been
explored for their multi drug resistance (MDR) reversion activity in cancer.\(^{20}\) For example
dihydropyridines (DHP) showed excellent MDR modulation against cancer cell lines and
displayed a reduced affinity for the calcium channel. In addition, the potent DHP
dexniguldipine was also evaluated in phase II clinical trials. The analogue PAK-104P was
the most active against Pgp and MRP-dependent MDR. The quinine related compounds were
also explored for MDR reversion activity and various compounds exemplified by MS-209
were developed.\(^{20}\)

![Figure 4.10: Some potent DHP and quinine related MDR modulator synthesized for cancer.](image)

On the basis of the excellent results obtained in reversion of resistance in cancer, some of
these structural motifs were selected for incorporation into RINHs (Figure 4.11).
4.3.4.2 Design of RINH agents with non-tricyclic EPIs

![Chemical Structures]

Figure 4.11: RINH agents with non-tricyclic EPI moieties.

4.3.4.3 Synthesis of dihydropyridine based RINH-F using the Hantzsch reaction

4.3.4.3.1 The Hantzsch reaction

The Hantzsch reaction is a multi-component reaction of a non-enolizable aldehyde (formaldehyde or benzaldehyde), a β-ketoester (ethyl acetoacetate) and a nitrogen donor (ammonium acetate or ammonia) to obtain a dihydropyridine (DHP) (Scheme 4.15). The reaction was first reported and named after Arthur Rudolf Hantzsch. The product obtained as a DHP dicarboxylate is also called the Hantzsch compound. The acid form of these DHP can be easily obtained using basic hydrolysis.

![Reaction Scheme]

Scheme 4.15: Multi-component Hantzsch reaction.
The multistep mechanism of this reaction is outlined in scheme 4.16 (a-c). The reaction can be divided in two separate parts. The first part can be visualized as a condensation of the aldehyde and β-ketoester to form one of the key intermediates I. This condensation takes place via the Knoevenagel condensation reaction (Scheme 4.16a).

Scheme 4.16a: The formation of first key intermediate by condensation of the β-ketoester and non-enolizable aldehyde.

The second part of the reaction can be considered to be the formation of the ester amine by the condensation of an amine and a second equivalent of the β-ketoester (Scheme 4.16b) to form intermediate II.

Scheme 4.16b: The formation of second key intermediate by condensation of the β-ketoester and an amine.

The condensation of these two intermediates I and II furnishes the dihydropyridine. This condensation follows a multistep mechanistic pathway.

Scheme 4.16c: The mechanism of condensation of two intermediates (I and II) in the Hantzsch reaction.

First, a transient state is formed by the conjugate addition and tautomeration of the two above...
mentioned intermediates. The resulting intermediate product then further rearranges after intramolecular condensation in the presence of ammonia to produce the dihydropyridine (Scheme 4.16c).

4.3.4.3.2 Synthesis of dihydropyridine (4.32)
The synthesis of RINH-F includes the synthesis of the key precursor dihydropyridine (DHP) and its coupling with isoniazid. The synthesis of DHP commenced with the reaction of ethyl acetoacetate \(4.29\) and ammonium acetate to afford \(4.30\). This intermediate was subsequently reacted with ethyl acetoacetate \(4.29\) and 2-nitro benzaldehyde \(4.31\) in the presence of a catalytic amount of acetic acid in ethanol (Scheme 4.17) to afford \(4.32\) in good yield.

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O} \\
\text{4.29} & \quad \text{4.30} & \quad \text{4.31} \\
\text{CHO} & \quad \text{EtO} & \quad \text{EtO} \\
\text{NO}_2 & \quad & \\
\text{NH}_2 & \quad & \\
\end{align*}
\]

Scheme 4.17: Reagents and reaction conditions: (i) \(\text{NH}_4\text{OAc (5.5 eq.), MeOH, 25 °C, 12 h, 95%}; \) (ii) \(\text{CH}_3\text{COOH (cat), EtOH, reflux (85 °C), 24 h, 90%}.\)

4.3.4.3.3 Synthesis of target compound (4.36)
The asymmetric hydrolysis of ester groups of DHPs cannot be achieved via direct acidic or basic hydrolysis.\(^{30}\) Firstly, the DHP was \(N\)-protected with ethyl chloroacetate in THF using sodium hydride in an atmosphere of nitrogen at room temperature (25 °C). Next, an anion was generated at 0 °C before the addition of ethyl chloroacetate and transfer to room temperature (25 °C). Thereafter, the asymmetric DHP was obtained by the method optimized by Masaru Iwanami and co-workers.\(^{30}\) The reaction of DHP \(4.32\) with dimethylaminoethanol in benzene in the presence of sodium furnished a mixture of symmetric and asymmetric esters, which afforded a good yield of the asymmetric ester after purification (Scheme 4.18). Subsequent deprotection with dilute hydrochloric acid (1\(N\)) afforded unsubstituted DHP \(4.35\).
in good yield (Table 4.10). The target compound 4.36 was finally obtained by the coupling of the unsymmetric DHP 4.35 with commercially available isoniazid in DMF using coupling reagents 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) and hydroxybenzotriazole (HOBt). The target compound was obtained in a low yield of 36% (Table 4.10).

Scheme 4.18: Reagents and reaction conditions: (i) ClCH_2COOEt (1.5 eq.), NaH (1.5 eq.), THF, 0-25 °C; (ii) (Me)_2NCH(OH)CH_3 (1.1 eq.), Na (1 eq.), H_2O, Benzene, 25 °C; (iii) 1N HCl, acetone, 25 °C; (iv) Isoniazid (1 eq.), EDCI (2.5 eq.), HOBt (2.5 eq.), DMF, 25 °C.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Yield%</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.33</td>
<td>68</td>
<td>188-189</td>
</tr>
<tr>
<td>4.34</td>
<td>28</td>
<td>175-176</td>
</tr>
<tr>
<td>4.35</td>
<td>23</td>
<td>157-159</td>
</tr>
<tr>
<td>4.36</td>
<td>36</td>
<td>172-174</td>
</tr>
</tbody>
</table>

4.3.4.3.4 Characterization of target molecule RINH-F (4.36)
The characterization of target compound 4.36 was accomplished using \(^1H\)-NMR, \(^{13}C\)-NMR and mass spectroscopy (MS). The HPLC chromatogram showed 97% purity and MS confirmed the molecular mass of 4.36 (a pseudomolecular ion mass peak of m/z 466.3 [M+H]). Figures 4.11 and 4.12 represent the \(^1H\)-NMR and \(^{13}C\)-NMR spectra of 4.36, respectively. The \(^1H\)-NMR spectrum confirmed the expected structure of target compound.
4.36. The characteristic signals include two doublets at δ 8.74 and 7.76 ppm, which correspond to isoniazid protons H-9 and H-10 thus confirming the presence of the isoniazid moiety.

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Multiplicity</th>
<th>J (Hz)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.74</td>
<td>d</td>
<td>6.0</td>
<td>H-10</td>
</tr>
<tr>
<td>8.05</td>
<td>t</td>
<td>2.0</td>
<td>H-4</td>
</tr>
<tr>
<td>8.02</td>
<td>ddd</td>
<td>11.6, 3.6 & 1.2</td>
<td>H-1</td>
</tr>
<tr>
<td>7.76</td>
<td>d</td>
<td>6.0</td>
<td>H-9</td>
</tr>
<tr>
<td>7.70</td>
<td>d</td>
<td>8.0</td>
<td>H-3</td>
</tr>
<tr>
<td>7.57</td>
<td>t</td>
<td>8.4</td>
<td>H-2</td>
</tr>
<tr>
<td>4.99</td>
<td>s</td>
<td>-</td>
<td>H-8</td>
</tr>
<tr>
<td>4.01</td>
<td>m</td>
<td>-</td>
<td>H-5</td>
</tr>
<tr>
<td>1.15</td>
<td>t</td>
<td>6.8</td>
<td>H-6</td>
</tr>
</tbody>
</table>

Additional signals in aromatic regions confirmed the presence of the DHP moiety in the target compound. These signals include a triplet, a doublet of doublet of doublet, a broad doublet and a well-defined triplet at δ 8.05, 8.02, 7.70 and 7.57 ppm corresponding to H-4, H-1, H-3, and H-2 protons, respectively. The upfield aliphatic region showed three signals corresponding to six methyl protons H-7 and five ethyl protons (H-5 and H-6) on the DHP moiety.

Figure 4.11: 1H-NMR spectrum of 4.36 in DMSO-d6 at 400 MHz.
The 13C-NMR spectrum also supported the expected structure of 4.36. The characteristic signals include three peaks between δ 164-167 ppm, which confirm the presence of three carbonyl carbons of 4.36. Additional signals were also observed at δ 150.8 and 121.8 ppm, which correspond to the ring carbons C-9 and C-10 of the isoniazid moiety.

![Figure 4.12: 13C-NMR spectrum of 4.36 in DMSO-d_6 at 101 MHz.](image)

4.3.4.4 Synthesis of RINH-G (4.46)

4.3.4.4.1 Synthesis of piperazine intermediate (4.41)

The synthesis of target molecule 4.46 included the synthesis of an important piperazine precursor 4.41 as shown in scheme 4.19. The intermediate 4.39 was successfully produced in good yield by the reaction of 2-chloroacetophenone 4.37 and benzylpiperazine 4.38 using triethylamine in dichloromethane (DCM). The subsequent reaction of this intermediate with phenylmagnesium bromide proved to be challenging and could not be achieved with a good yield of 4.40 in various solvents (THF, diethyl ether, toluene and dioxane) at variable temperatures (0 °C to reflux).

The LC-MS showed conversion of only 40% of intermediate 4.39 to product 4.40. The difference in retention factors on TLC between 4.39 and 4.40 was less than 0.1 in various solvent systems, and this presented purification challenges. The low yield has also been reported by Zaugg and co-workers for this type of reactions. Removal of the benzyl group of 4.40 using a crude mixture was also accompanied by the formation of various by-products, which further intensified the difficulty in purification. Therefore, to obtain a high yield and avoid laborious purification, an alternative pathway was pursued (Scheme 4.20), which successfully delivered the desired precursor 4.41.
Scheme 4.19: Reagents and reaction conditions: (i) Et₃N (1.1 eq.), DCM, 0-25 °C, 1 h; (ii) PhMgBr (1.1 eq.), THF, 25 °C-reflux (70 °C), 12 h; (iii) Trifluoroacetic acid, reflux (85 °C), 12 h.

The synthesis of intermediate 4.41 with the alternative route commenced with the treatment of commercially available diphenylethen 4.42 with 1.1 equivalents of N-bromosuccinimide (NBS) in a mixture of acetone and water (5:1), which afforded intermediate 4.43 in 90% yield (Table 4.11) (Scheme 4.20). This intermediate was then reacted with 1-Boc-piperazine in DMSO in the presence of cesium carbonate to afford 4.44 in 40% yield with recovery of starting material. Removal of the Boc group from 4.44 was accomplished by treating with TFA in DCM, resulting in a high yield of 4.41.

To obtain target compound 4.46, intermediate 4.41 was alkylated by reaction with 1-bromo-3-chloropropane in toluene using triethylamine at 65 °C to obtain intermediate 4.45. The subsequent reaction of this intermediate with isoniazid in the presence of excess triethylamine in iso-propanol under reflux delivered the target molecule 4.46 in 35% yield (Scheme 4.20).
Scheme 4.20: Reagents and reaction conditions: (i) NBS (1.1 eq.), H₂O, Acetone, 25 °C, 2 h; (ii) 1-Boc-piperazine (1.1 eq.), DMSO, CsCO₃ (2 eq.), 60 °C, 8 h; (iii) TFA (10 eq.), DCM, 25 °C, 1 h; (iv) 1-Bromo-3-chloropropane (2 eq.), Et₃N (2.5 eq.), toluene, 65 °C, 8 h; (v) Isoniazid (4 eq.), Et₃N (4 eq.), iso-propanol, reflux (95 °C), 12 h.

Table 4.11: Yields and melting points of isolated intermediates (4.41 and 4.43-4.45) and target compound 4.46.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.43</td>
<td>90</td>
<td>70-72</td>
</tr>
<tr>
<td>4.44</td>
<td>40</td>
<td>100-102</td>
</tr>
<tr>
<td>4.41</td>
<td>96</td>
<td>66</td>
</tr>
<tr>
<td>4.45</td>
<td>72</td>
<td>77-79</td>
</tr>
<tr>
<td>4.46</td>
<td>35</td>
<td>115-117</td>
</tr>
</tbody>
</table>

4.3.4.4.2 Characterization of target compound 4.46

Target compound 4.46 was characterized using ¹H- and ¹³C-NMR spectroscopy as well as LC-MS. The LC-MS chromatogram showed 97% purity of the compound and a pseudomolecular ion mass peak of m/z 460.3 [M+H], as expected for the target compound 4.46. Figure 4.13 and 4.14 represent the ¹H-NMR and ¹³C-NMR spectra of 4.46, respectively. The appearance of two doublets at δ 8.75 and 7.63 ppm corresponding to four isoniazid protons H-11 and H-10 confirmed the presence of an isoniazid moiety in 4.46. A typical pattern of two phenyl moieties also appeared as one doublet, one triplet and one triplet of triplet corresponding to H-1, H-2 and H-3 phenyl protons, respectively. A broad singlet at δ 5.10 ppm and a sharp singlet at δ 3.27 ppm were also observed. These correspond to the OH
proton and the H-4 protons, respectively. The confirmatory signals for the three carbon alkyl linker appeared as two triplets and one quintet at δ 2.99, 2.56 and 1.76 corresponding to H-7, H-9 and H-8 protons, respectively. The second triplet at δ 2.56 appeared to be overlapping with the broad singlet representing eight piperazine protons.

\[
\begin{array}{|c|c|c|c|}
\hline
\delta (ppm) & Multiplicity & J (Hz) & H \\
\hline
8.75 & d & 6.0 & H-11 \\
7.63 & d & 6.0 & H-10 \\
7.50 & d & 8.4 & H-1 \\
7.32 & t & 8.0 & H-2 \\
7.21 & tt & 7.6 & H-3 \\
5.10 & s & - & OH \\
3.27 & s & - & H-4 \\
2.99 & t & 6.4 & H-9 \\
1.76 & quin & 6.0 & H-8 \\
\hline
\end{array}
\]

Figure 4.13: 1H-NMR spectrum of 4.46 in CDCl$_3$ at 400 MHz.

The 13C-NMR spectrum showed 15 distinct singlets corresponding to 27 carbons of 4.46 as some signal intensities being equivalent to two and four carbons. The characteristic signals included peaks at δ 164.3, 150.6 and 120.9 ppm corresponding to a carbonyl carbon and isoniazid ring carbons C-11 and C-10, respectively. Additional signals appeared in the upfield aliphatic region corresponding to the propyl linker and piperazine ring carbons C-5 to C-9, including C-4.
4.3.4.5 Synthesis of RINH-H (4.50)

The synthesis of the target molecule 4.50 was achieved via a straightforward three step synthesis (Scheme 4.21) and commenced with the reaction of commercially available trityl bromide 4.47 with an excess of piperazine at room temperature (25 °C) for one hour in DCM to afford 4.48 in 70% yield. The intermediate 4.48 was then alkylated with 1-bromo-3-chloropropane in toluene using triethylamine to afford the advanced intermediate 4.49. The desired compound 4.50 was obtained by reacting 4.49 with isoniazid in iso-propanol using an excess of isoniazid and triethylamine (Table 4.12).

Scheme 4.21: Reagents and reaction conditions: (i) Piperazine (6 eq.), DCM, 25 °C, 1 h; (ii) 1-Bromo-3-chloropropane (2 eq.), Et3N92.5 eq.), toluene, 65 °C, 8 h; (iii) Isoniazid (4 eq.), iso-propanol, Et3N (4 eq.), 95 °C, 12 h.
Table 4.12: Yields and melting points of isolated intermediate (4.48 and 4.49) and target compound 4.50.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.48</td>
<td>70</td>
<td>94-96</td>
</tr>
<tr>
<td>4.49</td>
<td>62</td>
<td>114-116</td>
</tr>
<tr>
<td>4.50</td>
<td>40</td>
<td>199-200</td>
</tr>
</tbody>
</table>

4.3.4.6 Synthesis of RINH-I (4.54)

The synthesis of the target compound commenced with the reaction of commercially available diphenyl bromomethane 4.51 with piperazine to obtain intermediate 4.52 in good yield (Scheme 4.22). This intermediate was then reacted with 1-bromo-3-chloropropane in toluene in the presence of triethylamine at 65 °C to afford 4.53 in high yield. The target compound 4.54 was obtained in low yield (Table 4.13) by reaction of 4.53 with an excess of isoniazid and triethylamine in iso-propanol under reflux.

Scheme 4.22: Reagents and reaction conditions: (i) Piperazine (2 eq.), K$_2$CO$_3$ (1 eq.), NaI (0.2 eq.), acetonitrile, reflux (90 °C), 8 h; (ii) 1-Bromo-3-chloropropane (2 eq.), Et$_3$N (2.5 eq.), toluene, 65 °C, 8 h; (iii) Isoniazid (4 eq.), Et$_3$N (4 eq.), iso-propanol, reflux (95 °C), 10 h.

Table 4.13: Yields and melting points of intermediates (4.52 and 4.53) and target compound 4.54.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.52</td>
<td>65</td>
<td>70-72</td>
</tr>
<tr>
<td>4.53</td>
<td>90</td>
<td>*</td>
</tr>
<tr>
<td>4.54</td>
<td>42</td>
<td>55-57</td>
</tr>
</tbody>
</table>

Compound isolated as an oil.
4.4 Hybrid efflux pump inhibitors

4.4.1 Rationale

The rationale behind the design of HEPIs is based on SAR studies of known EPIs, which have revealed the importance of an aromatic moiety and a basic nitrogen atom appropriately spaced via an alkyl chain linker. It was hypothesised that replacement of one or both aromatic moieties of verapamil might produce novel EPIs with potentially superior potency profiles to that of verapamil.10,11

During the course of writing this PhD thesis, an article describing a related but different concept appeared in the literature.33 This concept is based on the chemical modification of thioridazine (THZ) in such a way that the phenothiazine core was replaced by bicyclic and tricyclic flat structures while keeping the \(N\)-methyl piperidine moiety of THZ intact. Among the various reported HEPIs, H-1, H-2, H-3, and H-4 (Figure 4.15) displayed the most promising results.

![Figure 4.15: The reported HEPIs with EPI properties.][33]

In addition to low antimycobacterial activity (\textit{M. smegmatis} mc2155 and H37Rv; MIC \(\geq\) 128 \(\mu\)g/mL) and low cytotoxicity against a human monocyte cell line (IC\textsubscript{50} \(\geq\) 84.8 \(\mu\)g/mL), all these compounds (H-1, H-2, H-3, and H-4; Figure 4.15) showed comparable or superior inhibition of EB efflux in \textit{M. smegmatis} cells and H37Rv strain of \textit{Mtb}. A combination screening of these compounds with anti-TB drugs, INH, RIF, amikacin (AMK), and ofloxacin (OFX) \textit{in vitro} demonstrated their synergistic and potentiating effect, with the exception of H-4, which was inactive in the combination assay. However, all the compounds were reported to potentiate sub-inhibitory concentrations of INH and RIF in macrophages at a concentration lower than their cytotoxic concentrations.33 Compound H-3 was selected for
further development as it exhibited superior synergistic interactions (FIC \leq 0.25) with various anti-TB drugs (INH, RIF, AMK and OFX) in combination against \textit{Mtb} H37Rv strain.

In the present preliminary study, the dimethoxyphenyl moiety of verapamil is replaced with other known bacterial EPI moieties (Figure 4.16).

![Figure 4.16: Design of hybrid efflux pump inhibitors of verapamil template. A dimethoxyphenyl moiety has been replaced with various EPIs/EPI moieties for the development of HEPIs.](image-url)

4.4.2 Synthesis of hybrid efflux pump inhibitors

The synthesis of hybrid efflux pump inhibitors involved reaction of the verapamil substructure intermediate 4.56 with various commercially available EPIs or EPI moieties synthesised in section 4.3.3.

4.4.2.1 Synthesis of verapamil substructure motif (4.56)

The synthesis of the key intermediate 4.56 is outlined in scheme 4.23, and commenced with the synthesis of intermediate 3.6c, using methods described in chapter 3 (Section 3.2.2.2). In the process, commercially available 2-(3,4-dimethoxyphenyl)acetonitrile 3.8 was reacted with iso-propyl bromide, according to an established method, followed by reaction with 1-bromo-3-chloropropane in THF in the presence of LDA to afford intermediate 3.6c. This intermediate was further reacted with 2-(methylamine)ethanol in DMF using potassium carbonate at 80 °C to obtain intermediate 4.55, which, upon reaction with an excess of thionyl chloride (1.5 equivalents) at room temperature (25 °C), produced 4.56 in high yield.
Scheme 4.23: Reagents and reaction conditions: (i) 2-Bromopropane (1.5 eq.), n-BuLi (1.1 eq.), THF, 0-25 °C, 2 h; (ii) 1-Bromo-3-chloropropane (1.5 eq.), LDA (1.2 eq.), THF, -78-25 °C, 2 h; (iii) 2-(methylamino)ethan-1-ol (1 eq.), K$_2$CO$_3$ (1.7 eq.), DMF, 80 °C, 12 h; (iv) SOCl$_2$ (10 eq.), DCM, 25 °C, 14 h.

4.4.2.2 Synthesis of hybrid efflux pump inhibitors

The desired HEPIs (4.57-4.61 and 4.63) were obtained in poor to moderate yields by the coupling of intermediate 4.56 with various EPI moieties synthesised in section 4.3.3 using different reaction conditions (Scheme 4.24).

The piperazine and piperidine-containing EPI moieties (4.15, 4.21, 4.25, and 4.51) were reacted with 4.56 in DMF using potassium carbonate at 80 °C to obtain target compounds 4.58-4.61 in low to moderate yields (Table 4.14).

The diphenylmethylamine 4.62 was reacted with 4.56 in ethanol in the presence of potassium carbonate at reflux temperature to afford 4.63 in low yield (Table 4.14).

The HEPIs 4.57a and 4.57b were obtained in poor yield by reacting 4.56 with phenothiazine 4.1a, and 2-chlorophenothiazine 4.1b, respectively, in DMF using sodium hydride at room temperature (25 °C). The target compound 4.57c was obtained by refluxing 4.56 with dibenzazepine 4.1c in the presence of sodium amide in toluene, which produced the desired compound 4.57c (Table 4.14).
Scheme 4.24: Reagents and reaction conditions: (i) NaH (1 eq.), DMF, 25 °C, 6-8 h; (ii) NaNH₂ (1.5 eq.), toluene, reflux (115 °C), 12 h; (iii) K₂CO₃ (2 eq.), DMF, 80 °C, 8-12 h; (iv) K₂CO₃ (1 eq.), EtOH, reflux (85 °C), 12 h.
Table 4.14: Yield and melting points target compounds indicated in scheme 4.24.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield %</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.57a</td>
<td>16</td>
<td>*</td>
</tr>
<tr>
<td>4.57b</td>
<td>29</td>
<td>*</td>
</tr>
<tr>
<td>4.57c</td>
<td>24</td>
<td>*</td>
</tr>
<tr>
<td>4.58</td>
<td>57</td>
<td>*</td>
</tr>
<tr>
<td>4.59a</td>
<td>24</td>
<td>70-72</td>
</tr>
<tr>
<td>4.59b</td>
<td>20</td>
<td>60-62</td>
</tr>
<tr>
<td>4.59c</td>
<td>36</td>
<td>85-87</td>
</tr>
<tr>
<td>4.60a</td>
<td>25</td>
<td>35-37</td>
</tr>
<tr>
<td>4.60b</td>
<td>21</td>
<td>50-52</td>
</tr>
<tr>
<td>4.61</td>
<td>34</td>
<td>60-61</td>
</tr>
<tr>
<td>4.63</td>
<td>30</td>
<td>*</td>
</tr>
</tbody>
</table>

*Compound obtained as an oil.

4.4.2.3. Characterization of HEPIs

HEPIs 4.57-4.61 and 4.63 were characterized with the aid of 1H-NMR, 13C-NMR, NOSY and COSY spectroscopy as well as LC-MS.

4.4.2.3.1 Characterization of 4.63

An expected pseudomolecular ion peak of m/z 500.6 [M+H] was observed, which corresponds to 4.63. Figures 4.16 and 4.17 represent the 1H-NMR and 13C-NMR spectra of 4.63. The number of protons in the aromatic region was equal to the expected number of aromatic protons of 4.63. A doublet and two triplets at δ 7.40, 7.32 and 7.24 ppm corresponding to H-12, H-13 and H-14 protons, respectively, were observed. These signals were further split through long range couplings, albeit secondary couplings were not well resolved. In addition, a doublet of doublets, one multiplet and a doublet corresponding to H-2, H-3 and H-1 protons of the 3,4-dimethoxy phenyl group of 4.63 were also observed at δ 7.02, 6.99 and 6.95 ppm, respectively.

The signals observed in the aliphatic region of the molecule correlated well with the expected protons of 4.63. Two unresolved triplets corresponding to H-11 and H-10 protons appeared as multiplets at δ 2.65 and 2.61 ppm. Additionally, one multiplet, two singlets and two doublets at δ 2.49, 4.84, 2.21, 1.99 and 0.77 ppm, corresponding to H-8, H-15 and H-9, and H-5 protons, respectively, were also observed. An anomalous pattern of signals was observed corresponding to protons adjacent to the stereogenic centre. This pattern appeared as three...
multiplets integrating for one proton each (H-6 and H-7), and a multiplet integrating for two protons (H-4 and H-6). This anomalous pattern may be attributed to the diastereotopic nature of these protons.

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Multiplicity</th>
<th>J (Hz)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.40</td>
<td>d</td>
<td>8.4</td>
<td>H-12</td>
</tr>
<tr>
<td>7.32</td>
<td>t</td>
<td>7.6</td>
<td>H-13</td>
</tr>
<tr>
<td>7.24</td>
<td>t</td>
<td>7.6</td>
<td>H-14</td>
</tr>
<tr>
<td>7.02</td>
<td>dd</td>
<td>7.6 & 2.0</td>
<td>H-2</td>
</tr>
<tr>
<td>6.99</td>
<td>m</td>
<td>-</td>
<td>H-3</td>
</tr>
<tr>
<td>6.95</td>
<td>d</td>
<td>2.0</td>
<td>H-1</td>
</tr>
<tr>
<td>4.84</td>
<td>s</td>
<td>-</td>
<td>H-15</td>
</tr>
<tr>
<td>2.21</td>
<td>s</td>
<td>-</td>
<td>H-9</td>
</tr>
</tbody>
</table>

Figure 4.16: 1H-NMR spectrum of 4.63 in CD$_3$OD at 400 MHz.

The 13C-NMR spectra of 4.63 showed 23 distinct signals corresponding to 32 carbons of 4.63. Some signals showed intensity equal to two or four carbons. The aliphatic region contains signals corresponding to all the aliphatic carbons, including C-15, C-6, C-7 and C-5.
4.4.2.3.2 Characterization of HEPI-4.59c

Figures 4.18 and 4.19 represent the 1H-NMR and 13C-NMR spectra of 4.59c, respectively. The LCMS chromatogram showed a purity of 97% and a pseudomolecular ion mass peak of m/z 630.2 [M+H]. The aromatic region of the 1H-NMR spectrum showed signals corresponding to the protons expected for 4.59c. Two doublets, one multiplet and one triplet were observed at δ 7.50, 7.34 and 7.24 ppm, respectively, corresponding to protons of a 2-chlorophenothiazine nucleus. Three multiplets were observed in the range of δ 2.55-2.33 ppm, corresponding to eight protons of the piperidine moiety (H-12 and H-13) of 4.59c.

The 13C-NMR spectrum of 4.59c showed 32 distinct signals corresponding to 37 carbons with some signals showing intensity equal to two or four carbons of 4.59c and correlated well with the 1H-NMR spectrum. In addition to the signals corresponding to the all the aromatic and nitrile carbons in the aromatic region, two signals also appeared corresponding to two alkene carbons. The aliphatic region also showed two signals for C-12 and C-13 carbons.
Figure 4.18: 1H-NMR spectrum of 4.59c in CD$_3$OD at 400 MHz.

<table>
<thead>
<tr>
<th>δ (ppm)</th>
<th>Multiplicity</th>
<th>J (Hz)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50</td>
<td>two d</td>
<td>7.8</td>
<td>H-17 & H-17'</td>
</tr>
<tr>
<td>7.34</td>
<td>m</td>
<td>-</td>
<td>H-14', H-16' & H-14</td>
</tr>
<tr>
<td>7.24</td>
<td>t</td>
<td>7.8</td>
<td>H-15 & H-16</td>
</tr>
<tr>
<td>2.55-2.11</td>
<td>m</td>
<td>-</td>
<td>H-12 & H-13</td>
</tr>
<tr>
<td>2.20</td>
<td>s</td>
<td>-</td>
<td>H-9</td>
</tr>
</tbody>
</table>

Figure 4.19: 13C-NMR spectrum of 4.59c in CD$_3$OD at 101 MHz.

Figure 4.18: 1H-NMR spectrum of 4.59c in CD$_3$OD at 400 MHz.

Figure 4.19: 13C-NMR spectrum of 4.59c in CD$_3$OD at 101 MHz.
4.5 Conclusion

The synthesis of various designed RINHs and HEPIs was accomplished via a range of synthetic protocols. They were characterized using various analytical and spectroscopic techniques, which confirmed the structures of the expected compounds. The biological evaluation of the synthesised analogues will be discussed in chapter 5 of this thesis.
References:

Chapter 4
Design, synthesis and characterization of reversed isoniazids and hybrid efflux pump inhibitors

(34) Zhongxu Ren, Bo-Liang Deng, Jennifer Riggs-Sauthier, M. H. Oligomer-Calcium Channel Blocker Conjugates. PCT/ US **2008/ 010385**.
Chapter 5: Antimycobacterial activity of verapamil analogues, reversed isoniazid anti-TB agents and hybrid efflux pump inhibitors

5.1 Introduction
This chapter describes the biological results of various compounds synthesized in chapters 3, and 4. The chapter begins with a description of the various assays and screening cascade used followed by the results and their discussion in three different sections.

5.2 Assays for Antimycobacterial testing
All in vitro screening was performed in Associate Professor Digby Warner’s laboratory by Dr. Krupa Naran of the MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, University of Cape Town (UCT), South Africa. The macrophage studies were conducted at two independent laboratories; Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University (SLU), USA and Assoc. Prof. Digby Warner’s laboratory at UCT.

5.2.1 Chequerboard synergy assay
The synthesized compounds were evaluated against the Mtb H37Rv strain individually as well as in combination with various anti-TB drugs, both in vitro and ex vivo. The individual screening was aimed at investigating the antimycobacterial potency while combination screening was conducted in order to evaluate the potentiating effect of VER analogues on anti-TB drugs against Mtb.

The combination screening against the H37Rv strain of Mtb was performed in a 96-well plate format using Microplate Alamar Blue Assay (MABA). An adaptation of the broth microdilution method was used, in which the antimicrobial agent (compound A) and the EPI (compound B), were 2-fold serially diluted across and down the plate, respectively (Figure 5.1). The fluorometric method was used to monitor the growth of Mtb in the 96-well plate. The growth of Mtb is indicated by the change in colour of the well from blue to pink, and the lowest concentration of antimycobacterial agent that prevent this colour change is considered as minimum inhibitory concentration (MIC). The first horizontal row is drug only (from A3 to A11) while second column is the efflux pump inhibitor (EPI) only (from B2 to H2) and A2 well of the plate is ‘no drug’ control. The first and last column was assigned for minimum
and maximum inhibition control as no drug was added to the first column and a very high concentration of drug (Rifampicin > MIC₉₉) in last column was added.

![Checkerboard synergy assay plate layout in 96-well microtitre plate.](image)

Figure 5.1: Checkerboard synergy assay plate layout in 96-well microtitre plate. Column 1 used as minimum inhibition control (no drug/EPI) and column 12 used as maximum inhibition control (rifampicin). The drug (compound A) was 2-fold serially diluted across the plate (column 3 – 11) and the EPI (compound B) was 2-fold serially diluted down the plate (row B – H). Well A2 serves as the “no drug” control.

The Fractional Inhibitory Concentration Index (FICI) values of the combination of the EPI and the anti-TB drug is a sum of the Fractional Inhibitory Concentration (FIC) of each of the agents tested in combination:

\[
FIC(A) = \frac{\text{MIC of compound A in combination with compound B}}{\text{MIC of compound A}}
\]

\[
FIC(B) = \frac{\text{MIC of compound B in combination with compound A}}{\text{MIC of compound B}}
\]

\[
FICI(AB) = FIC(A) + FIC(B)
\]

The FICI values are used to define synergistic, additive, and antagonist interactions between the agents used in the combination testing. By definition, a FICI value of ≤ 0.5 indicates synergy, a value FICI = 4.0 indicates antagonism while FICI values between 0.5 to 4.0 points to an additive effect. The experimental details related to this assay are given in the experimental section.
5.2.2 Ex vivo assay for cytotoxicity and intracellular inhibition

The macrophage evaluation of VER analogues was performed in order to investigate the potentiating effect of synthesized EPI candidates on various anti-TB drugs against intracellular \textit{Mtb}. The human monocyte cell lines (THP-1) were used to screen VER analogues for cytotoxicity prior to evaluation in macrophages. The experimental details for cytotoxicity and macrophage assays are captured in the experimental section. A strict screening cut off of IC$_{20}$ > 10 µM was used as a criteria to shortlist the verapamil analogues for further testing on intracellular \textit{Mtb}.

A checkerboard assay as described in section 5.2.1 was also used for the toxicity evaluation of EPI-anti-TB drug combinations. The EPIs with an \textit{in vitro} MIC$_{90}$ in combination with RIF lower than the toxicity against THP-1 cell lines (IC$_{20}$) were analysed in \textit{ex vivo} checkerboard synergy assays with RIF and BDQ in Assoc. Prof. Digby Warner’s laboratory. The laboratory at SLU also evaluated the selected analogues for intracellular inhibition in macrophages individually and in combination with sub-inhibitory concentrations of RIF and INH.

5.2.3 \textit{Mtb}-specific T-cell assay

Since VER is also a known autophagy inducer, the effect of VER and selected analogues on \textit{Mtb}-specific T-cells was investigated. An assay consisting of carboxyfluorescein succinimidyl ester (CFSE) labelled peripheral blood mononuclear cells (PBMC) infected with Bacillus Chalmette Guerin (BCG) was used. The number of proliferated and IFN-γ producing T-cells was measured using a flow cytometer.4 The experimental details are described in the experimental section.

5.2.4 Ethidium bromide assay

As described in chapter 2, ethidium bromide (EB) (\textbf{Figure 5.2}) is a well known substrate of efflux pumps.5 Therefore, a semi-automated flow cytometry-based method using EB-stained BCG was employed for the determination of efflux pump inhibition potential of the various VER analogues.6 Efflux pump inhibitors (EPIs) are expected to increase the intracellular accumulation of EB in BCG micro growth dilution assays. A mean fluorescence intensity (MFI) was recorded with and without the EPI in the EB containing BCG micro growth dilution assay. The EP inhibition capability of various VER analogues was indicated by recorded intensity. The detailed description of the method employed has been provided in the experimental section (Chapter 7).7
5.3 Screening cascades for verapamil analogues:

As mentioned in section 5.2, VER analogues were screened at two separate laboratories. Therefore, two screening cascades were adopted, which are described below:

5.3.1 Screening cascade for in vitro Mtb and ex vivo cytotoxicity evaluation

The Warner laboratory at UCT performed various in vitro and ex vivo experiments with the aim of exploring VER analogues for their potentiating effect as well as the development of novel EPIs devoid of cytotoxicity. These analogues were screened via cascade 1 (Figure 5.3).

All the VER analogues were first screened against the H37Rv strain of Mtb for their individual antimycobacterial activities. Classically EPIs are expected to show low potency on their own but exhibit potentiating effects on drugs when used in combination. Therefore, VER analogues with low potency (MIC$_{90}$ ≥ 50 µM) were further evaluated in combination with the front line anti-TB drug rifampicin (RIF). The various parameters recorded during combination screening are fold reduction in RIF MIC$_{90}$, FICI values, and the MIC$_{90}$ of analogues in combination with RIF.

The most important parameter is fold-reduction in the RIF MIC$_{90}$, which indicates the potentiation of RIF by analogues against Mtb. As explained in chapter 2, two to four fold reductions in the MIC$_{90}$ of an anti-TB agent, which are susceptible to EPs can be caused by the efflux pump inhibition property of chemosensitizers used in combination. Another parameter is the MIC$_{90}$ values of analogues in combination with RIF. This indicates the concentration of analogues required to achieve the respective potentiation of RIF. An EPI showing potentiation of an anti-TB drug at a low concentration is desired as high concentration may lead to various cytotoxic and unwanted effects on host human cells.

Another important parameter is the FICI value. As mentioned earlier in section 5.2.1, FICI
values are used to identify the type of interaction (synergistic, additive or antagonist) between VER analogues and RIF when used in combination.

The analogues potentiating RIF by four-fold were further evaluated in combination with BDQ and MOX against H37Rv. Those showing potentiating effects on the chosen drugs were further selected for ex vivo cytotoxicity evaluation against THP-1 cell lines. Less cytotoxic analogues (IC$_{20}$ > in vitro MIC$_{90}$ in combination with BDQ) were evaluated for cytotoxicity in combination with BDQ against THP-1 cell lines. Analogues demonstrating a low cytotoxicity profile in combination with BDQ (IC$_{20}$ in combination with BDQ > in vitro MIC$_{90}$ in combination with BDQ) were screened in macrophages in combination with BDQ and with other front line anti-TB drugs (BDQ and MOX).

5.3.2 The screening cascade for macrophage and T-cell inhibition testing
An approach to develop novel EPIs which are less cytotoxic and devoid of interaction with the Mtb-specific T-cells was undertaken by the SLU laboratory of Dr. Getahun Abate.

The analogues exhibiting low cytotoxicity against THP-1 cell lines were first evaluated for individual antimycobacterial activity on intracellular Mtb in macrophages. Macrophages infected with BCG and Mtb were used in this study. BCG is a less virulent strain of Mtb and is easier to work with. Therefore, less cytotoxic analogues were screened against BCG-infected macrophages followed by evaluation of potent analogues (inhibition ≥ 30%) against Mtb infected macrophages. Those analogues showing comparable intracellular inhibition to VER (inhibition ≥ 30%) were further evaluated in the T-cell assay. The analogues with minimum interaction with Mtb-specific T-cells were further tested in combination with RIF and INH against Mtb in infected macrophages after evaluation in the ethidium bromide assay.
Figure 5.3: The screening cascades for verapamil analogues: Cascade 1 was used by the laboratory at UCT and cascade 2 was used by the laboratory at SLU for antimycobacterial evaluation of VER analogues \textit{in vitro} and \textit{ex vivo}.
5.4 Antimycobacterial activities of VER analogues

5.4.1 Antimycobacterial activities of VER analogues 3.13a-o

The synthesized VER analogues according to SAR 1, SAR 2, SAR 3 and SAR 4 (Chapter 3), were screened via cascade 1 (Figure 5.3). Generally speaking, most of the VER analogues showed low in vitro potency against the H37Rv strain of Mtb (MIC$_{90}$ > 50 µM) (Table 5.1). The exceptions were, analogues 3.13m-o, which exhibited superior antimycobacterial activity relative to VER, with 3.13n being the most potent analogue (MIC$_{90}$ = 62.5 µM) (Table 5.1). Furthermore, all the analogues (3.13) were screened in combination with RIF to investigate their potentiating effects (fold reduction in the RIF MIC$_{90}$) and synergistic indications (FICI ≤ 0.5) (Table 5.1). The initial concentration of analogues used in combination was half of their individual MIC$_{90}$. This was in order to avoid any inhibitory effect of the analogues on the viability of Mtb. VER reduced the RIF MIC$_{90}$ by four-fold and exhibited synergistic interactions (FICI = 0.5) at a concentration of 125 µM (Table 5.1).

VER analogues (3.13i-n) synthesized by replacing an iso-propyl moiety at the stereogenic centre with various substituents (SAR 1), showed variable effects on the susceptibility of Mtb to RIF. The unsubstituted (3.13i), methyl-substituted (3.13j), and cyclopentyl-substituted (3.13m) analogues decreased the RIF MIC$_{90}$ by two-fold. However, a four-fold reduction in the RIF MIC$_{90}$ was observed with ethyl (3.13k), propyl (3.13l) and cyclohexyl (3.13n) substituted analogues (Table 5.1). All these analogues exhibited FICI values in the range of 0.75 to 1.25, indicating an additive effect (0.5 < FICI ≤ 4.0) with RIF. Among these analogues, 3.13n reduced the RIF MIC$_{90}$ by four-fold at half (62.5 µM) the concentration of VER (125 µM) (Table 5.1).

The derivatives 3.13e-h and 3.13o synthesized by varying substituents on the nitrogen (SAR 3) demonstrated varying potentiating effects on RIF (Table 5.1). Nor-VER (3.13e) a known metabolite of VER, exhibited a two-fold reduction in the RIF MIC$_{90}$ but did not exhibit synergistic interactions (FICI = 0.56). The N-ethyl (3.13f) and N-propyl (3.13g) substituted analogues did not exhibit any reduction in the RIF MIC$_{90}$ (Table 5.1). The VER analogue with a benzyl substituent on nitrogen, 3.13h showed a four-fold reduction in the RIF MIC$_{90}$ with a synergistic interaction (FICI = 0.3) at a four-fold lesser concentration (31.25 µM) as compared to VER (125 µM) (Table 5.1).
Table 5.1: *In vitro* combination activity of VER analogues (SAR 1 SAR 2 and SAR 3) with RIF against *Mtb*.

![Diagram](chart.png)

<table>
<thead>
<tr>
<th>Comp</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>n</th>
<th>m</th>
<th>MIC<sub>90</sub> (µM)</th>
<th>FICI</th>
<th>Fold reduction of RIF MIC</th>
<th>Anal (in combination with RIF)</th>
<th>Anal (in combination with Anal)</th>
<th>RIF (in combination with Anal)</th>
<th>NC</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER</td>
<td>–CH<sub>3</sub></td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2</td>
<td>3</td>
<td>500</td>
<td>125</td>
<td>0.002</td>
<td>4</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13a</td>
<td>–CH<sub>3</sub></td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>0</td>
<td>3</td>
<td>>1000</td>
<td>ND</td>
<td>0.008</td>
<td>NC</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13b</td>
<td>–CH<sub>3</sub></td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>1</td>
<td>3</td>
<td>>1000</td>
<td>ND</td>
<td>0.008</td>
<td>NC</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13c</td>
<td>–CH<sub>3</sub></td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>1</td>
<td>2</td>
<td>500</td>
<td>250</td>
<td>0.002</td>
<td>4</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13d</td>
<td>–CH<sub>3</sub></td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2</td>
<td>2</td>
<td>1000</td>
<td>125</td>
<td>0.002</td>
<td>4</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13e</td>
<td>–H</td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2</td>
<td>3</td>
<td>500</td>
<td>31.25</td>
<td>0.004</td>
<td>2</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13f</td>
<td>–CH<sub>2</sub>CH<sub>3</sub></td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2</td>
<td>3</td>
<td>1000</td>
<td>ND</td>
<td>0.008</td>
<td>NC</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13g</td>
<td>–(CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub></td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2</td>
<td>3</td>
<td>500</td>
<td>ND</td>
<td>0.008</td>
<td>NC</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13h</td>
<td>–CH<sub>2</sub>Ph</td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2</td>
<td>3</td>
<td>1000</td>
<td>31.25</td>
<td>0.002</td>
<td>4</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13i</td>
<td>–CH<sub>3</sub></td>
<td>–H</td>
<td>2</td>
<td>3</td>
<td>1000</td>
<td>500</td>
<td>0.004</td>
<td>2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13j</td>
<td>–CH<sub>3</sub></td>
<td>–CH<sub>3</sub></td>
<td>2</td>
<td>3</td>
<td>1000</td>
<td>500</td>
<td>0.004</td>
<td>2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13k</td>
<td>–CH<sub>3</sub></td>
<td>–CH<sub>2</sub>CH<sub>3</sub></td>
<td>2</td>
<td>3</td>
<td>1000</td>
<td>250</td>
<td>0.002</td>
<td>4</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13l</td>
<td>–CH<sub>3</sub></td>
<td>–(CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub></td>
<td>2</td>
<td>3</td>
<td>500</td>
<td>125</td>
<td>0.002</td>
<td>4</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13m</td>
<td>–CH<sub>3</sub></td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>125</td>
<td>62.5</td>
<td>0.004</td>
<td>2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13n</td>
<td>–CH<sub>3</sub></td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>62.5</td>
<td>62.5</td>
<td>0.002</td>
<td>4</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13o</td>
<td>–</td>
<td>–CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2</td>
<td>3</td>
<td>125</td>
<td>31.25</td>
<td>0.004</td>
<td>2</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aComp: Compound; ^bAnal.: Analogue; ^cND: Not determined as RIF MIC₉₀ in combination was equal to individual RIF MIC₉₀ and effect of analogues could not be observed; ^dNC: No change in RIF MIC₉₀ in combination with analogue; ^eRIF MIC₉₀ = 0.008 µM; ^fND: Not possible to calculate as FIC of analogue could not be determined; *Data are representative of 3 replicate assays.*
VER analogues, 3.13a-d were synthesized by varying the carbon chain length between the nitrogen atom and the two phenyl moieties. Among these analogues, 3.13a and 3.13b did not show any effect on the susceptibility of Mtb to RIF. On the other hand, analogues 3.13c and 3.13d reduced the RIF MIC\textsubscript{90} by four-fold and exhibited an additive effect with RIF (FICI > 0.5).

5.4.2 Antimycobacterial activities of VER analogues 3.15a-l

The analogues 3.15a-l (Table 5.2) were synthesized by replacing the aminoethyl aromatic group of VER with various piperazinyl moieties. The positive control, VER, used in this batch reduced the RIF MIC\textsubscript{90} by two-fold. The two-fold difference in potentiation of RIF by VER in comparison to section 5.4.1 (Table 5.1) can be accounted for by the experimental conditions and the slow growing nature of Mtb. This variation in the antimycobacterial MIC\textsubscript{90} of VER against the H37Rv laboratory strain of Mtb has been widely observed.

The piperazinyl analogues 3.15a-l exhibited varying effects on the susceptibility of Mtb to RIF. While most piperazinyl analogues exhibited low potency (MIC\textsubscript{90} > 50 µM) (Table 5.2), derivatives, 3.15h and 3.15j were found to be the most potent analogues exhibiting MIC\textsubscript{90} values of 62.5 and 125 µM respectively (Table 5.2). The majority of the analogues reduced the RIF MIC\textsubscript{90} by two-fold just like VER except 3.15a, 3.15h and 3.15j, which did not show any effect on the susceptibility of Mtb to RIF (Table 5.2). However, none of these analogues exhibited synergistic interactions with RIF. Among the analogues which reduced the RIF MIC\textsubscript{90} by two-fold, 3.15b, 3.15e, and 3.13l showed potentiating effects at concentrations of 62.5, 31.25 and 62.5 µM, respectively. These effects were two to four-fold lower than the concentration effect of VER required for a similar level of potentiation of RIF. Other analogues 3.15c, 3.15d, 3.15f, 3.15g, and 3.15k exhibited potentiation at a concentration of 125 µM similar to VER (Table 5.2). 3.15a-l exhibited an additive effect when used in combination with RIF (0.6 ≤ FICI ≤ 1.0) (Table 5.2)
Table 5.2: Antimycobacterial activity of verapamil analogues 3.15.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>MIC<sub>90</sub> (µM)</th>
<th>H37Rv</th>
<th>Fold reduction in RIF MIC<sub>90</sub></th>
<th>FICI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Anal (in combination with RIF)</td>
<td>RIF (in combination with Anal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VER</td>
<td>500</td>
<td>125</td>
<td>0.002</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>3.15a</td>
<td>1<sup>1</sup>-CH<sub>3</sub></td>
<td>>1000</td>
<td>ND</td>
<td>0.004</td>
<td>NC</td>
</tr>
<tr>
<td>3.15b</td>
<td></td>
<td>250</td>
<td>62.5</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>3.15c</td>
<td></td>
<td>250</td>
<td>125</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>3.15d</td>
<td></td>
<td>250</td>
<td>125</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>3.15e</td>
<td></td>
<td>250</td>
<td>31.25</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>3.15f</td>
<td></td>
<td>250</td>
<td>125</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>3.15g</td>
<td></td>
<td>>1000</td>
<td>ND</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>3.15h</td>
<td></td>
<td>62.5</td>
<td>ND</td>
<td>0.004</td>
<td>NC</td>
</tr>
<tr>
<td>3.15i</td>
<td></td>
<td>500</td>
<td>250</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>3.15j</td>
<td></td>
<td>125</td>
<td>ND</td>
<td>0.004</td>
<td>NC</td>
</tr>
</tbody>
</table>
Antimycobacterial activity

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>MIC$_{90}$ (µM)</th>
<th>H37Rv</th>
<th>Fold reduction in RIF MIC$_{90}$</th>
<th>FICI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.15k</td>
<td></td>
<td>250</td>
<td>125</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>3.15l</td>
<td></td>
<td>>1000</td>
<td>62.5</td>
<td>0.002</td>
<td>2</td>
</tr>
</tbody>
</table>

*Anal.: Analogue; RIF MIC$_{90}$ = 0.004 µM; ND: Not determined as RIF MIC$_{90}$ in combination was equal to individual RIF MIC$_{90}$ and effect of analogues could not be observed; NC: No change in RIF MIC$_{90}$ in combination with analogue; ND: Not determined as FIC of analogue could not be determined; *Data are representative of 3 replicate assays.

5.4.3 Antimycobacterial activities of VER analogues 3.17a-j

The favourable potentiating effect on RIF by the benzyl analogue, 3.13h at a low concentration of 31.25 µM with a synergistic effect (FICI = 0.3) led to the synthesis of various VER analogues 3.17(a-j) with various substituents on the benzyl group.

All the analogues showed poor antimycobacterial activity (MIC > 50 µM). Among these analogues, the 4-CH$_3$ substituted benzyl analogue, 3.17a showed a 4-fold reduction in the RIF MIC$_{90}$ and exhibited synergistic interactions (FICI = 0.5) (Table 5.3). However, substituted benzyl analogues 3-OCH$_3$ (3.17d), 4-OCF$_3$ (3.17g), 4-SCH$_3$ (3.17h) and 3-COCH$_3$ (3.17j) also displayed a two-fold reduction in the RIF MIC$_{90}$ but did not produce a synergistic interaction (Table 5.3).
Table 5.3: Antimycobacterial activity of analogues 3.17a-j.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>MIC<sub>90</sub> (µM)</th>
<th>Fold reduction in RIF MIC</th>
<th>FICI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><sup>a</sup>Anal.</td>
<td>Anal (in comb with RIF)</td>
<td><sup>b</sup>RIF (in comb with Anal)</td>
</tr>
<tr>
<td>VER</td>
<td><sup>c</sup>NA</td>
<td>500</td>
<td>125</td>
<td>0.001</td>
</tr>
<tr>
<td>3.13h</td>
<td>H</td>
<td>1000</td>
<td>31.25</td>
<td>0.001</td>
</tr>
<tr>
<td>3.17a</td>
<td>4-CH<sub>3</sub></td>
<td>500</td>
<td>125</td>
<td>0.001</td>
</tr>
<tr>
<td>3.17b</td>
<td>4-Cl</td>
<td>>1000</td>
<td><sup>d</sup>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>3.17c</td>
<td>2-CN</td>
<td>>1000</td>
<td><sup>d</sup>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>3.17d</td>
<td>3-OCH<sub>3</sub></td>
<td>>1000</td>
<td>62.5</td>
<td>0.002</td>
</tr>
<tr>
<td>3.17e</td>
<td>3-CF<sub>3</sub></td>
<td>>1000</td>
<td><sup>d</sup>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>3.17f</td>
<td>2-OCF<sub>3</sub></td>
<td>>1000</td>
<td><sup>d</sup>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>3.17g</td>
<td>4-OCF<sub>3</sub></td>
<td>500</td>
<td>250</td>
<td>0.002</td>
</tr>
<tr>
<td>3.17h</td>
<td>4-SCH<sub>3</sub></td>
<td>>1000</td>
<td>31.25</td>
<td>0.002</td>
</tr>
<tr>
<td>3.17i</td>
<td>4-CN</td>
<td>>1000</td>
<td><sup>d</sup>ND</td>
<td>0.004</td>
</tr>
<tr>
<td>3.17j</td>
<td>3-COCH<sub>3</sub></td>
<td>>1000</td>
<td>62.5</td>
<td>0.002</td>
</tr>
</tbody>
</table>

^aAnal.: Analogue; Comb: Combination; ^bRIF MIC₉₀ = 0.004 µM; ^cNA: Not applicable; ^dNC: Not determined as RIF MIC₉₀ in combination was equal to individual RIF MIC₉₀ and effect of analogues could not be observed; ^eNC: No change in RIF MIC₉₀; ^fND: Not determined as FIC of analogue could not be determined; *Data are representative of 3 replicate assays.

5.4.4 Structure activity relationship studies of VER analogues (3.13a-o, 3.15a-l and 3.17a-j)

A conclusive SAR cannot be deduced from the various antimycobacterial evaluations due to limited structural explorations. However, localised SAR studies can be interpreted. The lipophilic aromatic substituents on the basic nitrogen did not affect the potentiating effect of
VER on RIF while aliphatic substituents led to loss in potentiating properties. This observation was further supported by *in vitro* combination results of benzyl containing analogues 3.17. Further structure activity relationships among various substituents on the benzyl group (3.17a-j), cannot be delineated as data on more analogues is needed for in-depth analysis.

Aliphatic substituents at the stereogenic centre (3.13i-n) were more tolerated than on the basic nitrogen (3.13e-h and 3.13o). This was evidenced by the fact that all analogues with various aliphatic substituents at this position showed results comparable to VER with respect to potentiation of RIF against *Mtb* (Table 5.1). In addition, variation in chain length between the stereogenic centre (3.13c and 3.13d) and the nitrogen atom did not reduce the ability of analogues to increase the susceptibility of *Mtb* to RIF, while a change in chain length between the dimethoxy phenyl group (3.13a-c) and nitrogen led to complete loss of potentiating properties.

5.4.5 Combination evaluation of selected VER analogues (3.13h, 3.13k, 3.13l, and 3.15c) with bedaquiline and moxifloxacin

As discussed in section 5.4.1, analogues 3.13h, 3.13k, 3.13l, and 3.15c increased the susceptibility of *Mtb* to RIF comparable to VER (Tables 5.1 and 5.2). These analogues were shortlisted for further investigation in combination with newer anti-TB drugs (BDQ and MOX). The analogues were evaluated *in vitro* against the H37Rv strain of *Mtb* individually and in combination with bedaquiline (BDQ) and moxifloxacin (MOX) using the checkerboard assay. The reported *in vitro* MIC$_{90}$ values of BDQ and MOX against the H37Rv strain of *Mtb* are 1.12 and 0.56 µM, respectively (Table 5.4). Both VER and Nor-VER reduced the MIC$_{90}$ of BDQ and MOX significantly (4-8 fold) but did not produce synergistic interactions (FICI > 0.5) (Table 5.4). However, VER analogues increased the susceptibility of H37Rv to BDQ and MOX and exhibited synergistic interactions (Table 5.4).

A varying effect on potentiation of BDQ and MOX by analogues was observed. A maximum of 16- and 32-fold reduction in the BDQ MIC$_{90}$ was observed with 3.13h and 3.13l, respectively, along with synergistic interactions (FICI < 0.4) (Table 5.4). However, only a maximum of an 8-fold reduction in the MIC$_{90}$ of MOX could be achieved by 3.13k and 3.13l along with synergistic interactions (FICI = 0.49) (Table 5.4).
Table 5.4: Antimycobacterial activity of VER analogues in combination with BDQ and MOX

<table>
<thead>
<tr>
<th>Anal</th>
<th>bMIC<sub>90</sub> (µM)</th>
<th>cBDQ</th>
<th>dMOX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC<sub>90</sub> (µM) in combination with Anal</td>
<td>Fold reduction in MIC<sub>90</sub></td>
<td>FICI</td>
</tr>
<tr>
<td>VER</td>
<td>500</td>
<td>0.14</td>
<td>8</td>
</tr>
<tr>
<td>Nor-VER</td>
<td>500</td>
<td>0.28</td>
<td>4</td>
</tr>
<tr>
<td>3.13h</td>
<td>1000</td>
<td>0.07</td>
<td>16</td>
</tr>
<tr>
<td>3.13k</td>
<td>1000</td>
<td>0.14</td>
<td>8</td>
</tr>
<tr>
<td>3.13i</td>
<td>500</td>
<td>0.035</td>
<td>32</td>
</tr>
<tr>
<td>3.15c</td>
<td>500</td>
<td>0.28</td>
<td>4</td>
</tr>
</tbody>
</table>

aAnal : Analogue; bMIC₉₀ of analogues against H37Rv strain of Mtb; cBDQ MIC₉₀ = 1.12 µM, dMOX MIC₉₀ = 0.56 µM; *Data is representative of 3 replicate assays.

5.4.6 Selection of non-cytotoxic VER analogues

VER analogues, which demonstrated comparable activity to VER with respect to increasing the susceptibility of Mtb to various drugs, and showing synergistic interaction with RIF, were evaluated for their cytotoxicity against THP-1 monocyte cell lines. All the selected analogues displayed higher cytotoxicity than VER (IC₂₀ = 125 µM) except 3.13h and 3.17a (IC₂₀ ≥ 250 µM) (Table 5.5). Additionally, the IC₂₀ values of these analogues were two-fold higher than their concentration required for the four-fold potentiation of RIF in vitro (Table 5.5). On this basis, these compounds were selected for further cytotoxicity evaluation in combination with RIF and BDQ against THP-1 cell lines. VER and Nor-VER were used as the controls. RIF and BDQ were selected on the basis of their superior interaction with VER analogues (Table 5.1 and 5.4). Among the two potential analogues, 3.13h was found to be less cytotoxic (IC₂₀ ≤ 250 µM) in combination with RIF and BDQ as compared to VER (IC₂₀ = 125 µM) (Table
5.5). Analogue 3.13h was two-fold less cytotoxic in combination with RIF than VER with RIF, and four-fold less cytotoxic in combination with BDQ than VER with BDQ (Table 5.5).

\[\text{Table 5.5: Ex vivo combinatorial cytotoxicity of selected VER analogues (3.13h, 3.13k, 3.13l, 3.15c, and 3.17a)}\]

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Anal & IC\(_{20}\) (µM) & IC\(_{20}\) (µM) in combination with RIF & IC\(_{20}\) (µM) in combination with BDQ \\
\hline
VER & 125 & 125 & <62.5 \\
Nor-VER & <62.5 & <62.5 & <62.5 \\
3.13h & 250 & <250 & 500 \\
3.13k & <62.5 & ND & ND \\
3.13l & <62.5 & ND & ND \\
3.15c & <62.5 & ND & ND \\
3.17a & 500 & 500 & ND \\
\hline
\end{tabular}
\end{table}

*Anal: Analogue; BDQ IC\(_{20}\) = 56.2 µM; RIF IC\(_{20}\) = 0.4 µM; *Data are representative of 2 replicate assays.
5.4.7 Intracellular evaluation of VER analogues in macrophages: A comparative study

As explained in chapter 2, VER has attractive prospects for repurposing and repositioning as an EPI. In this section, a comparative study of selected VER analogues with VER is presented, with respect to intracellular potency against \textit{Mtb}, interaction with \textit{Mtb}-specific T-cells, EP inhibition and potentiating effects on INH as well as RIF against intracellular \textit{Mtb} in macrophages.

The aim of this study was to identify new VER analogues, which are devoid of various undesirable effects such as cytotoxicity and interaction with \textit{Mtb}-specific T-cells. A screening cascade 2, described in section 5.3.2 was adopted for these studies.

5.4.7.1 Ex vivo cytotoxicity and intracellular inhibition

As described in chapter 2, EP-induction is one of the major defence mechanisms adopted by \textit{Mtb} after macrophage residence. Therefore, a moderate inhibition of \textit{Mtb} in macrophages by EPIs has been reported and was also observed for VER (Figure 5.4).12 Thus, all VER analogues described in section 5.4.5, and 3.13n were investigated for their intracellular potency against BCG after cytotoxicity screening against THP-1 cell lines. VER showed concentration dependent inhibition of BCG and \textit{Mtb} in macrophages.

Among the analogues tested against BCG in macrophages, only 3.13h, 3.13l, and 3.13n showed comparable inhibition to VER (Table 5.6) at equivalent concentrations below their IC\textsubscript{20} values. The analogue 3.13n showed the best profile with moderate inhibition at 2.5 µM. Potent analogues 3.13h, 3.13l and 3.13n were further tested for potency against intracellular \textit{Mtb} at a concentration of 2.5 µM. Retention in activity was observed with 3.13n, which showed the highest inhibition (Figure 5.4). The analogues were further evaluated for their effect on expansion of \textit{Mtb}-specific T-cells along with VER. VER and 3.13l significantly inhibited the proliferation of \textit{Mtb} specific T-cells (Figure 5.4), while 3.13h and 3.13n did not exhibit any effect on \textit{Mtb} specific T-cells at a concentration of 2.5 µM (Figure 5.4).
Table 5.6: Ex vivo cytotoxicity and intracellular antimycobacterial assessment of selected VER analogues

<table>
<thead>
<tr>
<th>Analogues</th>
<th>IC(_{20}) (µM) THP-1</th>
<th>Maximum % Inhibition*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER</td>
<td>>100</td>
<td>50</td>
</tr>
<tr>
<td>3.13h</td>
<td>>90</td>
<td>40</td>
</tr>
<tr>
<td>3.13k</td>
<td>>20</td>
<td>25</td>
</tr>
<tr>
<td>3.13l</td>
<td>>25</td>
<td>35</td>
</tr>
<tr>
<td>3.13n</td>
<td><5</td>
<td>30</td>
</tr>
<tr>
<td>3.15c</td>
<td>>30</td>
<td>0</td>
</tr>
</tbody>
</table>

*Maximum intracellular growth inhibition of BCG in macrophages at concentration lower than IC\(_{20}\)

Figure 5.4: (A) Antimycobacterial activity of VER analogues on intracellular Mtb in macrophages at concentration of 2.5 µM along with VER at 6 and 50 µM; (B) Effect of VER analogues on proliferation of Mtb-specific T-cells in CFSE-labelled assay at 2.5 µM along with VER at 6 and 50 µM.
5.4.7.2 EP inhibition of VER analogues 3.13n and 3.13h

The EP inhibitory activity of VER analogues, 3.13h and 3.13n, was investigated in a modified EB-stained BCG assay. *Mtb* is known to extrude EB using EPs thereby reducing its intracellular concentration, which is monitored by a fluorescence activity measurement. EPIs are expected to increase the intracellular concentration thereby maintaining the fluorescence intensity.

![Figure 5.5: EP inhibitory indication by EB assay, inhibition of EB efflux leading to an increase in fluorescence intensity: (a) 3.13n inhibited the efflux of EB at 40 µM comparable to VER at 100 µM; (b) 3.13h failed to show any significant effect up to a concentration of 100 µM.](image)

Compound 3.13n at a concentration of 40 µM exhibited comparable fluorescence intensity to VER at 100 µM (Figure 5.5). This suggested that the EP inhibition may be a key mechanism of potentiation of RIF and INH in *Mtb* infected macrophages. On the other hand, compound 3.13h did not exhibit any effect on the efflux of EB even up to a concentration of 100 µM, indicating the possibility that this analogue could be exerting its potentiation effect via a different mechanism.

5.4.7.3 Combination evaluation of 3.13n with INH and RIF against *Mtb* in macrophages

The frontrunner analogue 3.13n, with the desired properties of low cytotoxicity, high potency against intracellular *Mtb* and absence of interaction with *Mtb*-specific T-cells was evaluated against *Mtb* in macrophages in combination with sub-inhibitory concentrations of INH and RIF. A concentration of 2.5 µM enhanced the potency of sub-inhibitory concentrations of INH and RIF against *Mtb* in macrophages (Figure 5.6).
Chapter 5 Antimycobacterial activity

5.4.8 Antimycobacterial evaluation of rigid VER analogues

Two synthesized rigid VER analogues (Chapter 3) were tested via cascade 1 and cascade 2.

As expected, both analogues (EDP42 and MKVR1) showed low antimycobacterial activity (MIC$_{90}$ \geq 250 µM) (Table 5.7). A four-fold reduction in the RIF MIC$_{90}$ was observed with MKVR1 and was comparable to VER, while EDP42 increased the susceptibility of Mtb to RIF by two-fold. A high concentration of 500 µM was required for four-fold potentiation of RIF by MKVR1.

EDP42 was also found to have low cytotoxicity individually (IC$_{20}$ = 500 µM) and in combination with RIF (IC$_{20}$ = 125 µM) which is comparable to VER (Table 5.7). The EB assay indicated that EDP42 reduced the susceptibility of EB to EPs, leading to an increase in the fluorescence intensity, which was comparable to 3.13n (Figure 5.7). However, negligible fluorescence intensity in the presence of MKVR1 indicated that the analogue was devoid of any effect on EB susceptibility to EPs.
Table 5.7: Combination results of rigid VER analogues EDP42 and MKVR1

<table>
<thead>
<tr>
<th>Anal</th>
<th>MIC$_{90}$ (µM) H37Rv</th>
<th>Fold-reduction in RIF MIC$_{90}$</th>
<th>FICI</th>
<th>IC$_{20}$ (µM) THP-1 cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anal in comb with RIF</td>
<td>RIF in comb with Anal</td>
<td></td>
<td>Anal in comb with RIF</td>
</tr>
<tr>
<td>VER</td>
<td>500</td>
<td>125</td>
<td>0.001</td>
<td>4</td>
</tr>
<tr>
<td>MKVR1</td>
<td>1000</td>
<td>500</td>
<td>0.001</td>
<td>4</td>
</tr>
<tr>
<td>EDP42</td>
<td>250</td>
<td>125</td>
<td>0.002</td>
<td>2</td>
</tr>
</tbody>
</table>

*Anal: Analogue; RIF MIC$_{90}$ = 0.004; Comb: Combination; ND: A very high concentration of analogue is required for reduction in RIF MIC$_{90}$, therefore not evaluated further; *Data are representative of 3 biological replicates.

Figure 5.7: EP inhibition indication of MKVR1 and EDP42 with 3.13n at 20 µM in EB assay. EDP42 significantly limited the efflux of EB while MKVR1 did not exhibit any effect.

A previous report on EDP42 indicating its negligible calcium channel antagonism, and superior in vitro potentiation to MKVR1 at a low concentration prompted further testing in combination with sub-inhibitory concentrations of INH and RIF against intracellular Mtb in macrophages. However, no significant effect on the potency of sub-inhibitory concentrations of RIF and INH was observed in the presence of EDP42 up to a maximum tested concentration of 40 µM (Figure 5.8)
5.4.9 Discussion

A total of 40 VER analogues (3.13, 3.15 and 3.17) were designed, synthesized and evaluated in vitro and (selectively) ex vivo for their potential to inhibit EPs as well as potentiating effect on various anti-TB drugs (Table 5.1-5.7). The promising analogues were also investigated for their effect on proliferation of *Mtb*-specific T-cells (Table 5.6 and Figure 5.4).

Antimycobacterial evaluation of the analogues in combination with RIF revealed 27 analogues with the potential to increase the susceptibility of *Mtb* to RIF. Among these analogues, 17 analogues showed a reduction in the RIF MIC \(_{90}\) comparable or superior to VER. Out of these analogues 10 exhibited potentiating effects at lower concentrations than the required concentration of VER for equivalent reduction in the RIF MIC \(_{90}\) (Table 5.1-5.3).

Additionally, two analogues 3.13h and 3.17a also exhibited a synergistic interaction with RIF, and 3.13h showed superior synergistic interactions (FICI = 0.3) compared to VER (FICI = 0.5) (Table 5.1). Selected analogues also showed potentiation of MOX and BDQ in combination and a 32-fold reduction in the BDQ MIC \(_{90}\) was achieved (Table 5.4).

Ex vivo cytotoxicity evaluation (THP-1 cell lines) revealed two VER analogues (3.13h and 3.17a) with lower cytotoxicity than VER. The benzyl analogues 3.13h displayed lower cytotoxicity compared to VER and *Nor*-VER both individually and in combination with RIF and BDQ (Table 5.5).
The macrophage evaluation of analogues exhibiting low cytotoxicity against THP-1 cell lines revealed three analogues, which showed potency against intracellular \textit{Mtb} comparable to \textit{VER} (Table 5.6). Among these analogues, two did not show any effect on \textit{Mtb}-specific immunity. However, only one analogue potentiated the sub-inhibitory concentration of RIF and INH in macrophages when used in combination (Figure 5.4).

The rigid \textit{VER} analogues reported to be devoid of calcium channel blocking antagonism did not show promising results against TB compared to indications in cancer. A potentiation of two- and four-fold was not accompanied by the synergistic interaction (Table 5.7). The rigid \textit{VER} analogues also failed to show any potentiation activity on RIF and INH against intracellular \textit{Mtb} in macrophages (Figure 5.8). These observations may be indicative of the involvement of various EPs for efflux of anti-TB drugs which may be different from the ones responsible for the reduction of intracellular concentrations of anti-cancer agents.

5.4.10 Conclusion

The various biological results suggest that the strategy of structural modification of verapamil has the potential to deliver an EPI with an improved pharmacological profile. The identification of \textit{VER} analogues 3.13h, 3.13k, 3.13l, and 3.13n (Table 5.1) with potentiating effects on RIF, BDQ, and MOX \textit{in vitro}, including antimycobacterial potency in macrophages, and lower interaction with \textit{Mtb}-specific T-cells compared to \textit{VER} demonstrated the viability of the approach. Furthermore, potentiation of sub-inhibitory concentrations of RIF and INH in macrophages as well as inhibition of EB efflux in the EB assay by analogue 3.13n confirms the efflux pump inhibition activity.14 The increase in susceptibility of \textit{Mtb} towards the new drugs, BDQ and MOX, in the presence of analogues (3.13h, 3.13k, 3.13l, and 3.13n, Table 5.1) demonstrate the possibility of developing adjunctive agents which can aid in overcoming the emergence of resistance against newly developed antimycobacterial agents. However, further studies are required on compound 3.13n to generate analogues with potential to advance further in the drug development process. In addition, screening against EP over expressing strains, and in macrophages infected with RIF and INH resistant strains of \textit{Mtb} can add more precise indications of EP inhibitory activity of potential analogues.14 Furthermore, the metabolic stability and evaluation of calcium channel antagonism in a calcium channel assay may further add value to the pharmacological profile of these analogues.
5.5 Reversed isoniazid anti-TB agents

In this section, a summary of various biological activities of reversed isoniazid anti-TB agents against various strains of *Mtb* is presented. All in vitro antimycobacterial assays were performed at Stellenbosch University in the laboratory of Prof. P. Van Helden. Evaluation against intracellular *Mtb* in macrophages was conducted at SLU in the laboratory of Dr. Getahun Abate.

Antimycobacterial activity of reversed isoniazid (RINH) anti-TB agents was evaluated against drug sensitive (H37Rv) and various drug resistant strains of *Mtb* (Table 5.8) using the BACTEC 460 system. The primary screening was performed against the drug sensitive strain of *Mtb* (H37Rv). Potent compounds (MIC\textsubscript{99} ≤ 10 µM) were evaluated for cytotoxicity against the THP-1 cell line. Compounds exhibiting high selectivity indices (SI ≥ 10) were selected for testing against various low to high level isoniazid mono-resistant strains of *Mtb* and various clinical isolates to investigate reversal of resistance and the possibility of cross-resistance.

Short listed RINH agents were further tested for intracellular *Mtb* inhibition in macrophages and EP inhibitory activity in the EB assay.

5.5.1 Classification, genotyping and susceptibility status of clinical isolates

Three isoniazid mono-resistant strains (R5401, R72, and R4965) and four XDR clinical isolates (TT135, X_3, X_60 and X_61) were used to investigate the potency and cross resistance of RINH agents (Table 5.8). Isoniazid was used as a positive control.

Any clinical isolate that is resistant to 0.73 µM but sensitive to 2.92 µM of INH is regarded as a low level INH resistant strain (e.g. R5401), but resistance at MIC\textsubscript{99} ≥ 2.91 µM of INH is regarded as high level INH resistance as in strains R72 and R4965. These isolates have the following mutations: R72 (*inhA* promoter and *katG*); R4965 (*katG*); and R5401 (*inhA* promoter). These mutations are responsible for low to high levels of INH resistance. Controls used include INH (2.92 and 0.73 µM), rifampicin, and solvent (DMSO). These strains were susceptible towards rifampicin at a concentration of 0.0012 µM, which is an indication of the isoniazid mono-resistance nature of these isolates.
The classification, genotyping and susceptibility status of the various XDR clinical isolates used to investigate the potency of RINH agents are summarised in table 5.8.

Table 5.8: *Mtb* clinical isolates classification, genotyping and susceptibility status:

<table>
<thead>
<tr>
<th>Clinical isolate</th>
<th>Genotype</th>
<th>Resistance profile</th>
<th>Susceptibility status</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT135</td>
<td>Atypical Beijing</td>
<td>H;R;ET;S;A;C;O;M;</td>
<td>XDR</td>
</tr>
<tr>
<td>X_3</td>
<td>Beijing</td>
<td>H;R;E;K;S;C;O;</td>
<td>XDR</td>
</tr>
<tr>
<td>X_60</td>
<td>Beijing</td>
<td>H;R;E;A;ET;O;S;C;K</td>
<td>XDR</td>
</tr>
<tr>
<td>X_61</td>
<td>Beijing</td>
<td>H;R;ET;A;O;K;S;</td>
<td>XDR</td>
</tr>
</tbody>
</table>

H: isoniazid; R: rifampicin; E: ethionamide; ET: ethambutol; S: streptomycin; A: amikacin; C: capreomycin; O: ofloxacin; M: moxifloxacin.

5.5.2 Antimycobacterial activity of RINH agents

Based on the sequence mentioned in section 5.5, all the synthesized RINH agents (Chapter 4) were first tested against a drug sensitive strain of *Mtb* (H37Rv), followed by cytotoxicity evaluation against THP-1 or CHO cell lines.

All the RINH agents were found to be active against the H37Rv strain of *Mtb* (MIC$_{99}$ < 10 µM) except 4.36 (MIC$_{99}$ > 10 µM) (Table 5.9). Among the active compounds 4.3a, 4.3b, 4.3c, 4.17b and 4.23b were found to be the most potent (MIC$_{99}$ ≤ 1 µM).

All potent RINH compounds showed low cytotoxicity (IC$_{50}$ ≥ 10 µM) against tested cell lines (THP-1 or CHO) except 4.3b and 4.10b (IC$_{50}$ ≤ 5 µM) (Table 5.9). The compounds exhibiting a high selectivity index (SI ≥ 10) were further subjected to testing against *Mtb* strains having low to high levels of INH mono-resistance as mentioned in section 5.5.1.

All the selected compounds were found to be inactive up to the highest tested concentration (10 µM) against the high level INH-resistant strains (R72 and R4965) while compounds 4.23a, 4.23b, 4.23c, 4.46, 4.49 and 4.53, exhibited some potency (MIC$_{99}$ < 10 µM) against a low level isoniazid resistant strain (R5401) (Table 5.9). All these compounds were further
evaluated against various clinical isolates (Table 5.8). Most of these RINH agents were found to be inactive against clinical isolates TT135 and X_3 (MIC > 10 µM), while some potency was observed against X_61 and X_60 (MIC < 10 µM) (Table 5.9). All the tested compounds showed potency against strain X_61 (MIC_{99} < 10 µM) except 4.17b (MIC_{99} > 10 µM), while only one compound, 4.49 was found to be active against the X_60 strain (MIC_{99} < 10 µM) (Table 5.9).

Reversed anti-TB agents 4.28a and 4.28b, synthesized by replacing the isoniazid moiety with benzhydrazide, did not display any activity up to the highest tested concentration of 10 µM. (Table 5.9). The low antimycobacterial activity of compounds 4.28a and 4.28b (MIC > 10 µM) as compared to RINH agents 4.3a and 4.3b (MIC ≤ 1 µM) highlighted the importance of the nitrogen in the pyridyl moiety of the latter for potency against Mtb.

5.5.3 Structure activity relationship

Generally, it was observed that the 2-chloro-substituted phenothiazine-based RINH agents (4.17b and 4.23b, Table 5.9) exhibited superior antimycobacterial activity relative to unsubstituted phenothiazine-based counterparts with the exception of 4.3b and 4.10b (Table 5.9). The compound 4.10b and its unsubstituted counterpart 4.10a were equipotent while 4.3b was found to be less potent than the corresponding unsubstituted RINH agent 4.3a (Table 5.9). The nitrogen atom in the pyridyl moiety of RINH agents is important for antimycobacterial activity and a drastic loss in antimycobacterial activity was observed with its absence in 4.28 (a and b) (Table 5.9).

The importance of a sulphur atom of the phenothiazine nucleus in compounds 4.3a and 4.3b (Table 5.9) for antimycobacterial potency was also demonstrated by replacing it with a two carbon alkyl moiety in 4.3c (Table 5.9), which causes a four-fold reduction in potency against Mtb (H37Rv).

The antimycobacterial results of 4.3, 4.10, and 4.17 revealed that addition of a piperidine moiety to the 2-chlorophenothiazine RINH agent 4.3b, did not affect the antimycobacterial activity while incorporation of aminopropyl moiety reduced the potency against the H37Rv strain of Mtb (MIC_{99} changed from 1.0 to 5.0 µM, Table 5.9). The incorporation of both of these moieties reduced the Mtb potency of phenothiazine compound 4.3a (MIC_{99} changed
from 0.625 to 5.0 µM, Table 5.9). However, an increase in potency against resistant strains (R5401 and X_61) was observed (MIC ≤ 10 µM) with the introduction of the piperidine moiety in 4.3a.

Furthermore, the removal of a nitrogen atom from the phenothiazine nucleus of 4.17 and introduction of a ylidine bond (4.23a and 4.23b) increased the antimycobacterial potency against the drug sensitive and resistant strains. However, varying effects were observed against the INH mono-resistant strain. No change in the MIC\textsubscript{99} value was observed with unsubstituted phenothiazine-based RINH agent 4.23a while increase in potency of the 2-chlorosubstituted phenothiazine containing compound 4.23b was observed (MIC\textsubscript{99} changed from 1.0 µM to 0.625 µM, Table 5.9)

Most of the synthesized tricyclic (4.23c, 4.27 and 4.49) as well bicyclic (4.46 and 4.53) EPI containing RINH agents also showed good potency (MIC\textsubscript{99} ≤ 5 µM, Table 5.9) against the H37Rv strain of \textit{Mtb}. Most of these compounds exhibited good to moderate potency against the R5401 strain of \textit{Mtb} except 4.27 and DHP-based compound 4.36, which were inactive up to the highest tested concentration (10 µM). Among the potent compounds, bicyclic (4.46 and 4.53) and non-fused tricyclic 4.49 moiety containing RINH agents were the most potent.

In general, both tricyclic-(phenothiazine and non-phenothiazine-based) and bicyclic-based EPI containing RINH agents showed good to moderate potency against sensitive (H37Rv) and INH mono-resistant strains of \textit{Mtb}. In addition, the piperidine group bonded \textit{via} N-C and ylidine bonds to phenothiazine nucleus enhanced the activity of the phenothiazine-based RINH agents against the R5401 strain of \textit{Mtb} and retained potency against the H37Rv strain. A minor reduction in activity of unsubstituted phenothiazine-based RINH agents was observed.
Table 5.9: Antimycobacterial activity results of RINH agents and RATAs.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>R</th>
<th>MIC<sub>99</sub> (µM)</th>
<th>IC<sub>50</sub> (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H37Rv</td>
<td>R5401</td>
<td>X<sub>_61</sub></td>
</tr>
<tr>
<td>INH</td>
<td>0.25</td>
<td><2.91</td>
<td><10</td>
</tr>
<tr>
<td>VER + INH (1:1)</td>
<td>5.0</td>
<td><0.625</td>
<td><5.0</td>
</tr>
<tr>
<td>4.3a</td>
<td>0.25</td>
<td>>10</td>
<td>aND</td>
</tr>
<tr>
<td>4.3b</td>
<td>1.0</td>
<td>>10</td>
<td>aND</td>
</tr>
<tr>
<td>4.3c</td>
<td>1.0</td>
<td>>10</td>
<td>aND</td>
</tr>
<tr>
<td>4.10a</td>
<td>5.0</td>
<td>>10</td>
<td>aND</td>
</tr>
<tr>
<td>4.10b</td>
<td>5.0</td>
<td>>10</td>
<td>aND</td>
</tr>
</tbody>
</table>
Compounds

<table>
<thead>
<tr>
<th>Compounds</th>
<th>R</th>
<th>MIC$_{99}$ (µM)</th>
<th>IC$_{50}$ (µM)</th>
<th>H37Rv</th>
<th>R5401</th>
<th>X_61</th>
<th>X_60</th>
<th>CHO Cell lines</th>
<th>THP-1 Cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.17a</td>
<td></td>
<td>5.0</td>
<td>2.5</td>
<td><5</td>
<td>>10</td>
<td>122</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.17b</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>>10</td>
<td>>10</td>
<td>37.4</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.23a</td>
<td></td>
<td>1.25</td>
<td>2.5</td>
<td><10</td>
<td>>10</td>
<td>152</td>
<td></td>
<td>cND</td>
<td></td>
</tr>
<tr>
<td>4.23b</td>
<td></td>
<td>0.625</td>
<td>0.625</td>
<td><10</td>
<td>>10</td>
<td>296</td>
<td></td>
<td>cND</td>
<td></td>
</tr>
<tr>
<td>4.23c</td>
<td></td>
<td>1.25</td>
<td>2.5</td>
<td><10</td>
<td>>10</td>
<td>148</td>
<td></td>
<td>cND</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td></td>
<td>5.0</td>
<td>>10</td>
<td>aND</td>
<td>aND</td>
<td>bND</td>
<td>84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5

Antimycobacterial activity

<table>
<thead>
<tr>
<th>Compounds</th>
<th>R</th>
<th>MIC$_{99}$ (µM)</th>
<th>IC$_{50}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H37Rv</td>
<td>R5401</td>
<td>X$_{61}$</td>
</tr>
</tbody>
</table>

4.46	![Structure of 4.46]	1.25	1.25	<10	>10	>174	ND
4.49	![Structure of 4.49]	1.25	1.25	<10	<10	97.6	ND
4.53	![Structure of 4.53]	5.0	2.5	<10	>10	48.1	173
4.36	![Structure of 4.36]	>10	dND	dND	dND	dND	dND
4.28a	![Structure of 4.28a]	>10	dND	dND	dND	dND	dND
4.28b	![Structure of 4.28b]	>10	dND	dND	dND	dND	dND

*ND: Not determined as MIC$_{99}$ > 10 µM against R5401 strain of *Mtb*; aND: Not determined as cytotoxicity has been evaluated against THP-1 cell lines; cND - Not determined as cytotoxicity has been evaluated against CHO cell lines; dND: Not determined as MIC$_{99}$ > 10 µM against H37Rv strain of *Mtb*.
5.5.4 *In vitro* activities of equimolar mixtures

A selected number of equimolar mixtures (1:1) of INH and chemosensitizer/EPI moiety were also tested *in vitro* (Table 5.10). This was done in order to investigate whether or not covalently linking an EPI/EPI moiety to an anti-TB drug was advantageous over administration of the combination in equimolar amounts. A sequence of testing similar to that employed for RINH agents was used. Firstly, evaluation was performed against the drug sensitive H37Rv strain of *Mtb* followed by INH mono-resistant strains and lastly clinical isolates. A combination of VER and INH in equimolar amounts was also used to investigate the effect of VER on the *in vitro* susceptibility of various *Mtb* strains towards INH.

All the equimolar (1:1) mixtures of isoniazid and EPI/EPI moiety proved to be highly active against the H37Rv strain of *Mtb* (MIC₉₉ ≤ 5 µM) and displayed low cytotoxicity against THP-1 cell lines (IC₅₀ > 10 µM and SI > 10) (Table 5.10). The exception was equimolar mixtures (1:1) of VER/INH and 4.17_{ax}, which exhibited a low selectivity index of 8.4 and 0.08, respectively (Table 5.10). Shortlisted mixtures were then tested against low to high level isoniazid mono-resistant strains of *Mtb* (R5401, R72 and R4965).

All the mixtures were inactive against isoniazid mono-resistant strains up to a maximum tested concentration of 10 µM. However, the mixture of VER and INH exhibited an MIC₉₉ of 0.625 µM (Table 5.10) against low level INH resistant strain (R5401). This correlates with various reports of the chemosensitization of INH by VER. An MIC₉₉ < 5 was also observed against the X_61 strain of *Mtb* by an equimolar (1:1) mixture of VER and INH but failed to show any potency against other clinical isolates.

A comparison of antimycobacterial activities of RINH agents and equimolar mixtures revealed the advantages of covalently linking the EPI moieties with INH over administration as physical mixtures. Generally, equimolar mixtures were found to be more potent than corresponding hybrid compounds against the H37Rv. However, equimolar mixtures failed to retain potency against INH mono-resistant and XDR strains while RINH agents retained the H37Rv potency against the R5401 (MIC ≤ 2.5 µM), and also exhibited some potency against the XDR strain (X_61) of *Mtb* (MIC₉₉ < 10 µM). For example, equimolar mixtures 4.17_{ax} and x, Table 5.10) were more potent than the corresponding hybrids 4.17 (Table 5.9) against the H37Rv while they failed to show any activity against any of the resistant strains of *Mtb*.

Malkeet Kumar_PhD Thesis_2015 183
On the other hand, hybrid 4.17 retained potency against R5401 and one of the compounds 4.17a also showed some activity against the resistant strain (X_61).

A similar pattern was also observed with bicyclic hybrid 4.53 as it exhibited potency against the H37Rv (MIC_99 = 5.0 µM), R5401 (MIC_99 = 2.5 µM) and X_61 (MIC_99 < 10 µM) while the corresponding equimolar mixture was more potent against the H37Rv (MIC_99 = 0.5 µM) but did not show any potency against R5401 and X_61 (MIC_99 > 10 µM).

Table 5.10: Antimycobacterial activity of equimolar mixtures of selected EPI/EPI moieties and isoniazid.

<table>
<thead>
<tr>
<th>Mixture Code</th>
<th>EPI</th>
<th>MIC_99 (µM)</th>
<th>IC_50 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INH + EPI 1:1</td>
<td>H37Rv</td>
<td>R5401</td>
</tr>
<tr>
<td>VER + INH 1:1</td>
<td>5.0</td>
<td>0.625</td>
<td><5</td>
</tr>
<tr>
<td>4.10ax</td>
<td>1.0</td>
<td>>10</td>
<td>ND</td>
</tr>
<tr>
<td>4.10bx</td>
<td>0.5</td>
<td>>10</td>
<td>ND</td>
</tr>
<tr>
<td>4.17ax</td>
<td>0.5</td>
<td>>10</td>
<td>ND</td>
</tr>
<tr>
<td>4.17bx</td>
<td>1.0</td>
<td>>10</td>
<td>ND</td>
</tr>
</tbody>
</table>
5.5.5 Antimycobacterial activities of selected intermediates (EPI moieties and benzhydrazide)

A selected number of EPI/EPI moieties (intermediates) and benzhydrazide were also evaluated against H37Rv for their *in vitro* activity and found to be inactive at the highest tested concentration (10 µM) (Table 5.11). However, most of the tested EPI/EPI moieties showed varying levels of cytotoxicity against CHO cell lines. The EPI moieties 4.21a, 4.41 and benzhydrazide showed low cytotoxicity (IC$_{50}$ > 50 µM) while EPI moieties 4.47 and MKN-62 were found to be more cytotoxic (IC$_{50}$ < 10 µM) (Table 5.11).
Table 5.11: *In vitro* activities of selected EPI/EP-moieties:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>MIC<sub>99</sub> (µM) H<sub>37Rv</sub></th>
<th>IC<sub>50</sub> (µM) CHO cell line</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.21a</td>
<td></td>
<td>>10</td>
<td>65.2</td>
</tr>
<tr>
<td>4.41</td>
<td></td>
<td>>10</td>
<td>284</td>
</tr>
<tr>
<td>4.47</td>
<td></td>
<td>>10</td>
<td>6.52</td>
</tr>
<tr>
<td>4.29</td>
<td></td>
<td>>10</td>
<td>>734</td>
</tr>
<tr>
<td>MKN-62</td>
<td></td>
<td>>10</td>
<td>22.9</td>
</tr>
<tr>
<td>MKN-63</td>
<td></td>
<td>>10</td>
<td>7.9</td>
</tr>
</tbody>
</table>
5.5.6 Macrophage evaluation of RINH agents

Potent RINH agents were shortlisted after the screening of initial compounds against the H37Rv strain of *Mtb*. These shortlisted compounds (4.3a, 43.b, 4.3c, 4.17b, 4.28a and 4.28b) were re-evaluated for cytotoxicity against THP-1 cell lines followed by testing against intracellular *Mtb* in macrophages at concentrations lower than IC$_{20}$ value. Thereafter, potent analogues were tested for EP inhibition activity in the EB assay.

5.5.6.1 *Ex vivo* cytotoxicity and antimycobacterial evaluation of RINH agents

INH and chlorpromazine (CPZ) were used as controls for the comparison of antimycobacterial and EPI-like properties in macrophages. CPZ showed concentration-dependent inhibition of intracellular *Mtb* in macrophages with maximum inhibition being achieved at 40 µM while INH was highly potent (MIC$_{90}$ = 0.015 µM) (Table 5.12). All the compounds inhibited (>90%) the growth of intracellular *Mtb* in macrophages (Table 5.12) at concentrations lower than their IC$_{20}$ values (MIC$_{90}$ < 3 µM). On the other hand, 4.28a and 4.28b only exhibited a maximum of 40% inhibition at the highest tested concentration of 26.6 and 12.2 µM, respectively (Table 5.12). This further confirmed the importance of the nitrogen atom in the pyridyl moiety of RINH agents for antimycobacterial activity both *in vitro* and in macrophages.
Table 5.12: *Ex vivo* antimycobacterial activity of selected RINH agents (4.3a, 4.3b, 4.3c, 4.17b, 4.28a and 4.28b):

<table>
<thead>
<tr>
<th>Comp</th>
<th>R</th>
<th>X</th>
<th>IC_{20} (µM)</th>
<th>THP-1 cell line</th>
<th>% Inhibition of BCG in macrophages</th>
<th>IC (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPZ</td>
<td>-</td>
<td>>300</td>
<td>>90</td>
<td>31.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INH</td>
<td>-</td>
<td>>40</td>
<td>>90</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3a</td>
<td></td>
<td>N</td>
<td>>40</td>
<td>>90</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>4.3b</td>
<td></td>
<td>N</td>
<td>>10</td>
<td>>90</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td>4.3c</td>
<td></td>
<td>N</td>
<td>>40</td>
<td>>90</td>
<td>13.42</td>
<td></td>
</tr>
<tr>
<td>4.17b</td>
<td></td>
<td>N</td>
<td>1.0</td>
<td>>90</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>4.28a</td>
<td></td>
<td>C</td>
<td>>40</td>
<td>40</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>4.28b</td>
<td></td>
<td>C</td>
<td>>40</td>
<td>40</td>
<td>12.2</td>
<td></td>
</tr>
</tbody>
</table>

Comp: compound; IC: inhibitor concentration corresponding to maximum inhibition of BCG in macrophages.
5.5.6.2 Efflux pump inhibition activity of RINH agents

All the short listed compounds (Table 5.12) were also evaluated for their EP inhibition activity in the EB assay. The recorded mean fluorescence intensity signifies the concentration of EB present in the BCG-EB assay. Therefore, a higher intensity indicates superior inhibition of EPs responsible for efflux of EB in BCG.

All the compounds were tested in the EB assay at 20 µM except 4.17b, which was tested at 10 µM due to its low IC₂₀ value against the THP-1 cell lines. Most of the RINH compounds inhibited the efflux of EB to a greater degree than CPZ. Among these, compounds 4.28a, 4.28b, 4.17b and 4.3b were more efficient than CPZ at inhibiting EB efflux. Low intensity was exhibited by 4.57a and INH, which indicated the lower efficacy towards inhibition of EB efflux than CPZ (Figure 5.9). These observations highlighted the dual action of RINH agents as inhibitors of efflux pumps (as suggested by the EB assay, Figure 5.9) and antimycobacterial agents per se (demonstrated by in vitro and macrophage antimycobacterial data in table 5.9 and 5.12).

![Figure 5.9](image-url)
Figure 5.9 EP inhibition evaluations of selected RINH agents in the EB assay.
5.5.7 Discussion and conclusion

A total of 15 RINH agents and two benzhydrazide-based anti-TB agents were synthesized and evaluated against *Mtb* in vitro and ex vivo (Table 5.9).

Antimycobacterial results showed that RINH agents containing a 2-chloro substituted phenothiazine moiety (4.3b, 4.10b, 4.17b and 4.23b) exhibited greater potency than unsubstituted analogues (4.3a, 4.10a, 4.17a and 4.23a) (Table 5.9). An enhanced antimycobacterial activity in resistant strains was achieved by linking both tricyclic as well as non-tricyclic EPI moieties to INH via a three carbon alkyl chain linker (Table 5.9). Superior antimycobacterial activity was exhibited by RINH agents (Table 5.9) compared to their equimolar (1:1) mixtures (Table 5.10), revealing the advantage of covalently linking the EPI moieties. The importance of the pyridyl nitrogen atom was validated as its replacement with a carbon atom led to loss of antimycobacterial activity both in vitro and in macrophages (Table 5.9 and 5.12).

The macrophage and EB evaluation indicated the dual action nature of the RINH agents. All the shortlisted RINH compounds inhibited the efflux of EB in the ethidium bromide assay and displayed good potency against intracellular *Mtb* in macrophages (Table 5.12). The pyridyl nitrogen was also found to be essential for intracellular growth inhibition of *Mtb* by RINH compounds while the EP inhibition activity of the EPI moiety was retained even in the absence of the pyridyl nitrogen atom in reversed anti-TB agents 4.28a and 4.28b (Table 5.9 and Figure 5.9).

5.5.8 Conclusion

In this study, the potency of RINH agents against the sensitive and resistant (INH monoresistant and XDR) strains demonstrated the viability of the reversed anti-TB agent strategy for the development of antimycobacterials targeting EPs. The potent compounds (4.17a, 4.23a, 4.23b, 4.23c, 4.46, 4.49, and 4.53, Table 5.9) require further evaluation in macrophage assay, *Mtb*-specific T-cell assay, metabolic stability studies and in vivo PK studies for advanced development of these compounds. The efficacy of hybrid compounds against resistant strains over the ineffectiveness of equimolar mixtures against these strains provided a “proof-of-principle” with respect to the advantage of covalently linking an EPI to an anti-TB agent over administration as a physical mixture. In addition to phenothiazine-based RINH
agents, demonstration of good to moderate potency by tricyclic (iminodibenzyl 4.3c, cyproheptadine 4.23c and trityl 4.49) and bicyclic EPI (diphenylmethane 4.49) based compounds further expanded the set of EPI motifs, which can be explored for further development of other classes of RINH agents. The brief SAR studies also revealed the effect of introduction of various structural motifs, including piperidine, aminoalkyl linker, and ylidine bond, into RINH agents. The deletion of the nitrogen atom from the pyridyl moiety of RINH agents 4.3(a and b) demonstrated its importance for antimycobacterial activity.

To conclude, we believe that dual action RINH agents have potential for development as antimycobacterial agents effective against MDR and XDR strains of Mtb.
5.6 Hybrid efflux pump inhibitors

In this section, a summary of various biological activities of hybrid efflux pump inhibitors (HEPIs) against various strains of *Mtb* is presented. All HEPIs were evaluated against *Mtb in vitro* for their potential to sensitize the first line anti-TB drug RIF. A sequence of testing as described in cascade 1 (Figure 5.3) for VER analogues (Section 5.3.1) was followed. VER was used as a positive control.

5.6.1 Antimycobacterial activity of hybrid efflux pump inhibitors

Firstly, HEPIs were evaluated for their cytotoxicity against THP-1 cell lines with the aim of screening then in macrophages. A strict cut off limit (IC\textsubscript{20} ≥ 10 µM) was employed for short listing the non-toxic compounds. Most of the HEPIs showed high toxicity (IC\textsubscript{20} < 10 µM) except 4.57a, 4.57b, 4.59a and 4.60b (Table 5.13). Among these, 4.57a and 4.57b were the least cytotoxic and exhibited IC\textsubscript{20} > 50 µM, while 4.59a and 4.60b showed IC\textsubscript{20} values in the range of 12.5 and 50 µM. These HEPIs were further evaluated *in vitro* against the replicating H37Rv strain of *Mtb* as individual agents and in combination with rifampicin (RIF) for their potentiating effect. As expected, a very low potency (MIC\textsubscript{90} = 250 µM) was observed for 4.57a and 4.57b. On the other hand, high potency (MIC\textsubscript{90} of 2.5 and 5.0 µM) was displayed by 4.59a and 4.60b, respectively (Table 5.13).

In addition to the varying potency, these HEPIs also increased the susceptibility of *Mtb* towards RIF and reduced the RIF MIC\textsubscript{90} by four-fold in combination, which is two-fold higher than the potentiation shown by VER (2-fold reduction in RIF MIC\textsubscript{90}) (Table 5.13). HEPIs 4.57a and 4.57b reduced the RIF MIC\textsubscript{90} by two-fold at a lower concentration than that required for VER (125 µM) to achieve the same reduction. Moreover, much lower concentrations of 4.59a and 4.60b (1.25 µM) were required for four-fold potentiation of RIF. In addition to potentiation of RIF, three HEPIs (4.57a, 4.57b and 4.60b) showed a synergistic interaction with RIF (FICI ≤ 0.5) while 4.59a exhibited an additive effect (FICI = 0.75) (Table 5.13).
Table 5.13: Antimycobacterial activity of HEPIs in combination with RIF against *Mtb* (H37Rv).

<table>
<thead>
<tr>
<th>ÊComp</th>
<th>R</th>
<th>IC<sub>20</sub> (µM) THP-1 cell lines</th>
<th>MIC<sub>90</sub> (µM)</th>
<th>Fold reduction in RIF MIC<sub>90</sub></th>
<th>FICI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER</td>
<td>>50</td>
<td>500</td>
<td>125</td>
<td>0.002</td>
<td>2</td>
</tr>
<tr>
<td>4.57a</td>
<td>>50</td>
<td>250</td>
<td>62.5</td>
<td>0.001</td>
<td>4</td>
</tr>
<tr>
<td>4.57b</td>
<td>>50</td>
<td>250</td>
<td>62.5</td>
<td>0.001</td>
<td>4</td>
</tr>
<tr>
<td>4.57c</td>
<td><6.25 bND</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
</tr>
<tr>
<td>4.58</td>
<td><6.25 bND</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
</tr>
<tr>
<td>4.59a</td>
<td>>25 <50</td>
<td>2.5</td>
<td>1.25</td>
<td>0.001</td>
<td>4</td>
</tr>
<tr>
<td>4.59b</td>
<td><10 bND</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
</tr>
<tr>
<td>Comp</td>
<td>R</td>
<td>IC<sub>20</sub> (µM) THP-1 cell lines</td>
<td>MIC<sub>90</sub> (µM)</td>
<td>Fold reduction in RIF MIC<sub>90</sub></td>
<td>FICI</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HEPI</td>
<td>HEPI in comb with RIF</td>
<td>RIF in comb with HEPI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.59c</td>
<td></td>
<td><10</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
</tr>
<tr>
<td>4.60a</td>
<td></td>
<td><10</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
</tr>
<tr>
<td>4.60b</td>
<td></td>
<td>>12.5</td>
<td>5.0</td>
<td>1.25</td>
<td>0.001</td>
</tr>
<tr>
<td>4.61</td>
<td></td>
<td><6.25</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
</tr>
<tr>
<td>4.63</td>
<td></td>
<td><10</td>
<td>bND</td>
<td>bND</td>
<td>bND</td>
</tr>
</tbody>
</table>

^aComp: Compound; Comb: combination; ^bND: Not determined as toxicity against THP-1 cell line is high (IC₂₀ < 10 µM), therefore not selected for further evaluations. RIF MIC₉₀ = 0.004 µM.
5.6.2 Intracellular evaluation of HEPIs in macrophages
The good *in vitro* potentiating potential of selected HEPIs (4.57a, 4.57b, 4.59a and 4.60b) led to their further evaluation against intracellular *Mtb* in macrophages and efflux pump inhibitory activity in the ethidium bromide assay.

5.6.2.1 Antimycobacterial activity of HEPIs against BCG and *Mtb* in macrophages
A sequence of testing similar to that shown in cascade 2 was followed for this study. The selected HEPIs were first evaluated against intracellular BCG followed by testing potent HEPIs against intracellular *Mtb*.

Since EPIs are expected to increase the susceptibility of *Mtb* in macrophages by countering the EP-mediated tolerance, this was confirmed by three of the four selected HEPIs, which showed greater than 40% inhibition of BCG in macrophages (Figure 5.10). HEPIs 4.59a and 4.60b displayed the highest potency by inhibiting intracellular BCG by more than 60%. However, 4.57a did not exhibit significant inhibition of BCG in macrophages. The potent HEPIs (4.57b, 4.59a and 4.60b) were shortlisted for further evaluation against intracellular *Mtb* in macrophages.

Figure 5.10: Antimycobacterial activity of HEPIs (4.57a, 4.57b, 4.59a and 4.60b) against intracellular BCG in macrophages at 0.4, 2, 10 and 50 µM concentrations.
All the tested HEPIs retained potency and displayed more than 40% inhibition (Figure 5.11). Furthermore, these HEPIs were evaluated in the EB assay in order to investigate their EP inhibition activities. Among the three tested HEPIs, only two (4.59a and 4.60b) inhibited EB efflux and displayed increase in fluorescence (Figure 5.12). These two analogues were further tested in combination with RIF and INH against intracellular *Mtb* to investigate their potentiating potential.

Figure 5.11: Antimycobacterial activity of selected HEPIs (4.57b, 4.59a, and 4.60b) against intracellular *Mtb* in macrophages at 12.5, 25, and 50 or 100 µM concentrations.

Figure 5.12: EP inhibitory indications of HEPIs (4.60b, 4.59a and 4.57b).
5.6.2.2 Potentiating effect of HEPIs (4.59a and 4.60b) on RIF and INH against intracellular *Mtb*

The frontrunner HEPIs with the highest potency and ability to inhibit the efflux of EB where selected for evaluation in combination with RIF and INH against intracellular *Mtb*.

Various concentrations of INH and RIF (0.04, 0.008, 0.004 and 0.0008 µM) were first evaluated for individual potency against intracellular *Mtb*. A moderate potency (inhibition > 40%) was observed at 0.04 µM of INH and RIF while no significant inhibition was observed at other tested concentrations ([Figure 5.13 and 5.14](#)). These drugs were then tested in combination with 4.59a and 4.60b at concentrations of 3.125 and 6.25 µM respectively. Both HEPIs failed to show any significant potentiating effects on INH ([Figure 5.13](#)). However, a significant enhancement in the inhibitory activities of RIF was observed in combination with 4.59a and 4.60b at 3.125 and 6.25 µM concentrations, respectively ([Figure 5.14](#)).

![Figure 5.13: Potentiating effect of 4.59a and 4.60b on INH against Mtb in macrophages.](#)

The specific potentiation of sub-inhibitory concentrations of RIF by HEPIs suggests that both 4.59a and 4.60b might be specifically inhibiting EPs implicated in RIF resistance and less effective against EPs responsible for the efflux of INH.
5.6.3 Discussion and conclusion

A set of 11 HEPIs were synthesized and evaluated for cytotoxicity and antimycobacterial activity as individual agents and in combination with RIF (Table 5.13).

Antimycobacterial activities revealed two HEPIs (4.59a and 4.60b) as potential EPIs. These compounds increased the susceptibility of Mtb towards RIF when used in combination both in vitro (Table 5.13) and ex vivo (Figure 5.13 and 5.14). These two analogues also showed activity against Mtb (MIC$_{90} \leq 5$ µM) and a potentiating effect at a lower concentration (MIC$_{90} \leq 2.5$ µM) (Table 5.13). The inhibition of EB efflux in the ethidium bromide assay confirmed the EP inhibition property of these two analogues (Figure 5.12).

In conclusion, the various results demonstrated that developing HEPIs around a VER template is a viable strategy and can be further explored to develop various dual acting EPIs and antimycobacterial agents with potentially enhanced pharmacological profiles.
References:

Chapter 6: Summary, conclusion and recommendations for future work

6.1 General

Efflux pumps (EPs) present in *Mtb* have been associated with drug resistance in this bacterium. EPs reduce the potency of anti-TB drugs and assist *Mtb* in overcoming the toxic and inhibitory effects of these drugs. One of the objectives of this study was to develop novel efflux pump inhibitors (EPIs) by structural modification of verapamil (VER) with attendant structure activity relationship (SAR) studies of resulting analogues, and synthesis of hybrid efflux pump inhibitors (HEPIs) by incorporation of various EPI moieties into the VER substructure. In addition, this study set out to identify reversed isoniazid (RINH) anti-TB agents by covalently linking isoniazid (INH) with various EPI moieties.

6.2 Verapamil analogues

As discussed in chapter 2, verapamil is a compound well known for its calcium channel blocking properties and has been shown to inhibit efflux pump activity. Although a promising candidate for the development of EPIs, VER has liabilities that need to be considered. In particular, the cardiovascular antagonism and microsomal metabolic instability in the presence of cytochrome P450 (CYPs) are two major hurdles that need to be overcome.

The first objective was to design and synthesize analogues of VER able to potentiate the activity of various anti-TB drugs by efflux pump inhibition but potentially lacking undesired properties such as calcium channel antagonism and with *Mtb*-specific T-cells. Sets of compounds in four different series were designed and synthesized with various structural modifications as reflected in SAR 1, SAR 2, SAR 3 and SAR 4 (Chapter 3). The chemistry mainly involved alkylation reactions using various bases including *n*-butyllithium and lithium diisopropyl amide. These syntheses were carried out via modified and relatively straightforward synthetic methods using affordable starting materials.

The next objective was to evaluate the synthesized analogues, both individually and in combination with the first line anti-TB drug rifampicin (RIF) *in vitro*. The initial screening showed that as expected, most of the analogues exhibited low potency (MIC$_{90}$ ≥ 50 µM). When tested in combination with RIF, some of the analogues (3.13c, 3.13d, 3.13h, 3.13k, 3.13l and 3.13n) showed a 4-fold reduction in the MIC$_{90}$ of RIF, which was comparable to VER. The encouraging potentiating potential of the benzyl analogues 3.13h led to further
exploration of various substituents on the phenyl group of the benzyl moiety and identification of analogues 3.17a with comparable potentiating effects as VER. The complete in vitro antimycobacterial and ex vivo cytotoxicity screening led to the identification of analogues with low cytotoxicity, good potentiating potential at low concentration, and which exhibited synergistic interactions with RIF, moxifloxacin (MOX) and bedaquiline (BDQ). The analogues 3.13h, 3.13n (Table 5.1) and 3.17a (Table 5.3) showed the most promising results as potential EPIs.

The final objective was to investigate the potentiating effect of frontrunner analogues on intracellular Mtb in macrophages as well as their cytotoxic effects on Mtb-specific T-cell proliferation. Analogues 3.13n and 3.13h showed no effect on Mtb-specific T-cells and displayed potency against intracellular Mtb comparable to VER. One of the analogues (3.13n) further potentiated the sub-inhibitory concentrations of RIF and INH in macrophages at a low concentration (2.5 µM). The ethidium bromide assay also demonstrated that EP inhibition is one of the plausible underlying mechanisms responsible for potentiation. The results concerning VER analogues from various assays revealed that structural modification is a viable strategy toward novel EPIs with improved pharmacological properties.

6.3 Reversed isoniazid (RINH) anti-TB agents

The first objective was to design and synthesize first generation reversed isoniazid (RINH) anti-TB agents. A total of 15 RINH agents (Table 5.9) were designed and synthesized by covalently linking tricyclic and non-tricyclic moieties from known EPIs with INH using a three carbon alkyl chain linker. The chemistry involved a range of standardizations and modifications of various known reaction conditions, which were carried out with relative ease and using affordable starting materials.

Synthesized RINH agents were screened for antimycobacterial activity against drug sensitive (H37Rv), INH mono-resistant (R5401, R72 and R4965), and extremely drug resistant (X_60 and X_61) strains of Mtb. Generally, RINH agents exhibited good antimycobacterial activity (MIC₉₀ ≤ 10 µM) and selectivity (SI ≥ 10 µM) against the H37Rv strain of Mtb. In particular, phenothiazine-based RINH agents (4.3a, 4.3b, 4.17b, 4.23a, and 4.23b) along with iminodibenzyl 4.3c, cyproheptadine 4.23c, diphenylmethane 4.49, and trityl 4.49 based RINH agents were the most potent (MIC₉₀ ≤ 1.25 µM; Table 5.9). In some instances, RINH agents...
were potent against both low level INH mono-resistant strain (R5401; MIC$_{99} \leq 2.5$ µM; Table 5.9) and XDR strains (X_60 and X_61; MIC$_{99} < 10$ µM; Table 5.9). This suggests the absence of cross resistance in these RINH agents.

The poor (MIC$_{99} > 10$ µM) antimycobacterial activity of reversed anti-TB agents 4.28a and 4.28b (Table 5.9) possessing a phenyl group in place of the pyridyl moiety of RINH agents 4.3a and 4.3b (Table 5.9) demonstrated the importance of the latter for antimycobacterial activity. Generally speaking, the covalently linked hybrid of EPI precursors and INH demonstrated increased potency against drug sensitive (DS) and drug resistant (DR) strains of Mtb in comparison to the equimolar mixture (1:1) of the EPI precursor and INH which were ineffective against DR strains up to a maximum concentration of 10 µM. These results revealed the advantages of covalently linking an EPI or its precursors with an anti-TB drug rather than administering them as separate compounds in an equimolar mixture (1:1).

The third objective was to investigate the potency of selected RINH agents against intracellular Mtb in macrophages and EP inhibition using an ethidium bromide (EB) assay. Most of the tested RINH agents exhibited low ex vivo cytotoxicity (THP-1 cell line), good intracellular potency against Mtb in macrophages (Table 5.12) and superior inhibition of EB efflux than the known EPI chlorpromazine (Figure 5.9). The limited SAR studies in both the macrophage and EB assays revealed that structural modifications on the phenothiazine nucleus is tolerated in respect of both antimycobacterial and EP inhibition activities, as well as the essentiality of the pyridyl moiety for antimycobacterial potency (Table 5.12).

6.4 Hybrid efflux pump inhibitors

The first objective was to design and synthesize hybrid efflux pump inhibitors (HEPIs) in an attempt to develop novel EPIs. Structural modification of VER was achieved by replacing one of the dimethoxyphenyl groups of VER with various EPI moieties. A total of 11 HEPIs were synthesized via relatively straightforward synthetic methods using affordable starting materials.

Secondly, the potentiating potential of HEPIs with low cytotoxicity on various anti-TB drugs in vitro and in macrophages was investigated. Screening of HEPIs against the THP-1 cell
lines led to the identification of four compounds \((4.57a, 4.57b, 4.59a\) and \(4.60b)\); Table 5.13) with low toxicity (IC\(_{20} \geq 25 \mu\text{M}\)). *In vitro* evaluation of these HEPIs in combination with RIF revealed their potentiating potential at a lower concentration (\(\leq 65 \mu\text{M}\)) compared to that required for VER (125 \(\mu\text{M}\)). Two HEPIs (\(4.59a\) and \(4.60b\)) showed unexpectedly high antimycobacterial potency (MIC \(\leq 5.0 \mu\text{M}\)) along with a good potentiating effect on RIF (4-fold reduction in the MIC\(_{90}\) of RIF) at a 100-fold lower concentration than VER.

Finally, selected HEPIs were investigated for their potency and potentiating effect on RIF and INH against intracellular *Mtb* in macrophages. One of the HEPIs, \(4.59a\), increased the susceptibility of *Mtb* to the sub-inhibitory concentrations of RIF and INH in macrophages (*Figure 5.13* and *5.14*).

6.5 Recommendations for future work

Work undertaken in this PhD research study has demonstrated the potential for the future development of chemical compounds that can inhibit the functioning of efflux pumps in various strains of *Mtb* while displaying desired pharmacological profiles.

Structural modification of VER demonstrated the possibility of improving the pharmacological profile of new VER analogues. Further structural modifications may lead to the successful development of analogues devoid of liabilities associated with VER such as calcium channel blocking activity, microsomal instability in presence of CYPs, and interaction with *Mtb*-specific T-cells. The improved profile of compound exhibited by \(3.13n\), which showed no interaction with *Mtb*-specific T-cells, as well as its excellent potentiating effect on RIF and INH both *in vitro* and in macrophages, provides a rationale basis for its further investigation in order to assess the cardiovascular properties as well as *in vivo* efficacy of these compounds. In addition to compound \(3.13n\), further evaluation of analogues \(3.15\) and \(3.17\) in macrophages and on *Mtb*-specific T-cells may reveal additional potential EPIs superior to VER.

The generation of analogues with good microsomal metabolic stability will be important for future strategies to deliver novel EPIs which may be progressed to clinical stages of development. This is in view of the fact that the dimethoxyphenyl groups of VER (*Figure 6.1*) are metabolic hot spots, which make VER highly susceptible to CYP-mediated
metabolism. Therefore, SAR studies around the dimethoxyphenyl groups may lead to the generation of VER analogues with enhanced metabolic stability.

![Dimethoxyphenyl groups](image)

Figure 6.1: Dimethoxyphenyl groups of verapamil.

As mentioned previously, the first generation RINH agents led to the identification of various potent antimycobacterial agents, which showed *in vitro* potency against *Mtb* strains with low to high level drug resistant strains. Macrophage evaluation, microsomal metabolic stability and *in vivo* efficacy studies are required to demonstrate the lead potential of potent RINH agents. The encouraging *in vitro* results have shown that this approach can be explored further with other anti-TB drugs to develop antimycobacterial agents with superior efficacy against multi drug resistant strains of *Mtb*.

The identification of HEPIs with potential EPI properties holds promise for the future development of EPIs with potentially novel mechanisms of action. The *in vitro* and intracellular potentiation of RIF by 4.59a warrants further investigation using *Mtb*-specific T-cell and cardiovascular assays. The various phenothiazine-, iminodibenzyl-, cyproheptadine-, dibenzosuberane-, and diphenylmethane-based EPI moieties used in the development of HEPIs are known to be associated with different undesirable properties such as anti-psychotic effects and cardiovascular antagonism. Therefore, it is essential that these liabilities are addressed as part of the future lead optimization campaign.
Chapter 7: Experimental

7.1 Chemistry

7.1.2 Reagents and solvents

All the commercially available chemicals and reagents used in this project were purchased either from Sigma Aldrich or Combi block in South Africa. Anhydrous solvents DMF, MeOH and dioxane were purchased from Sigma Aldrich, South Africa. Ethyl acetate, hexane, dichloromethane and acetone were purchased from Kimix Chemicals or Protea chemicals as Analytical Reagent (AR) grade solvents. The High Performance Liquid Chromatography (HPLC) grade solvents were bought from Sigma Aldrich (Ammonium Acetate and DMSO), Merck (glacial Acetic Acid) and Microsep (Acetonitrile and Methanol) for Chromatography and Mass spectrometry and HPLC usages.

7.1.3 Chromatography

Thin layer chromatographic (TLC) plates were purchased from Merck with specificity as F254 aluminium-backed pre-coated silica gel 60 plates. Detection and visualization of spots were done using (a) ultra violet (UV) lights (254/366 nm), (b) iodine vapours and (c) ninhydrin spray reagent. The purifications of products were done with column chromatography by using Merck kieselgel 60:70-230 mesh by gravity column chromatography and biotage flash chromatography.

7.1.4 Physical and Spectroscopic characterization

Melting points were determined on a Reichert-Jung Thermovar hot-stage microscope, and are uncorrected.

Reported compounds were characterized using 1H-NMR whereas novel compounds were characterized using 1H-NMR, 13C-NMR as well as LC-MS.

HPLC: Compound peak purity of some compounds was determined by preparatory HPLC using a thermo separation system comprising of a Spectra series P200 pump, AS100 automated sampler and UV 100 variable wavelength detector. The UV detector was set to monitor the wavelength at 254 nm. The stationary phase used for Waters preparatory HPLC was a Waters® X-bridge C18 5.0 μm column (4.6 x 150 mm) (Phenomenex, Torrance, CA)
fitted with a Supelguard® Ascentis™ guard cartridge C18 (2cm × 40 mm, 3µm) (Supelco Analytical, Bellefonte, PA).

The mobile phase consisted of 0.4% acetic acid in 10 mM ammonium acetate in HPLC grade (Type 1) water; with flow rate = 1.20 mL/min; and acetonitrile (B) delivered at a flow rate 1.20 ml/min. detector: photo diode array (PDA) and all compounds were confirmed to have ≥ 95% purity.

Table 7.1: One of the gradients used for investigation of the purity of compounds with preparatory HPLC:

<table>
<thead>
<tr>
<th>Time</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>9.00</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>14.00</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>14.10</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>20.00</td>
<td>75</td>
<td>25</td>
</tr>
</tbody>
</table>

Peak purity is reported as the integrated area of the compound peak as a percentage of total peak areas observed

LC-MS: Liquid chromatograph with mass spectrometer (LC-MS) analysis was performed using an Agilent® 1260 Infinity Binary Pump, Agilent® 1260 Infinity Diode Array Detector (DAD), Agilent® 1290 Infinity Column Compartment, Agilent® 1260 Infinity Standard Autosampler, and a Agilent® 6120 Quadrupole (Single) mass spectrometer, equipped with APCI and ESI multimode ionisation source. Purities were determined by Agilent® LC-MS using a Kinetex Core C18 2.6 µm column (50 x 3 mm); organic phase (Mobile Phase B): 0.4% acetic acid, 10 mM ammonium acetate in a 9:1 ratio of HPLC grade methanol and Type 1 water, aqueous phase (Mobile Phase A): 0.4% acetic acid in 10 mM ammonium acetate in HPLC grade (Type 1) water; with flow rate = 0.9 mL/min; detector: diode array (DAD) and all compounds were confirmed to have ≥ 95% purity.
Table 7.2: One of the gradients used for investigation of the purity and mass of compounds with LC-MS:

<table>
<thead>
<tr>
<th>Time</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>1.00</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>3.00</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4.50</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5.20</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>6.00</td>
<td>75</td>
<td>25</td>
</tr>
</tbody>
</table>

All NMR spectra were recorded on Varian Mercury (¹H-300 MHz; ¹³C-75 MHz), Varian Unity (¹H-400 MHz; ¹³C-101 MHz), or Brucker Ultrashield-Plus Spectrometer (¹H-300 MHz; ¹³C-75 MHz), and Brucker Ultrashield-Plus Spectrometer (¹H-600 MHz; ¹³C-151 MHz). All the spectra were recorded in deuterated chloroform (CDCl₃) or deuterated dimethylsulfoxide (DMSO-d₆) or deuterated methanol (MeOH-d₄) using tetramethylsilane as an internal standard. All the chemical shifts (δ) are recorded in ppm and are rounded off to two decimal place; coupling constants (J) are recorded in hertz (Hz) and rounded off to one decimal place. Abbreviations used in the assigning of ¹H-NMR signals are: br (broad), d (doublet or doublets), m (multiplets) s (singlet), t (triplet), dd (doublet of doublets), ddd (doublet of doublet of doublets) and td (triplet of doublets).
7.1.4.1 Verapamil Analogues

General method 1: Procedure for synthesis of 2-(3,4-dimethoxyphenyl)acetonitrile intermediates (3.7a-g)

n-Butyllithium (12.4 ml of a 2.5 M solution in hexane, 13.44 mmol) was added drop-wise to a stirred solution of 2-(3,4-dimethoxyphenyl)acetonitrile 3.8 (2.0 g, 11.2 mmol) in dry THF (25 ml) under an inert atmosphere of nitrogen at 0 °C. The reaction mixture was allowed to warm to room temperature (25 °C) and stirred for 30 minutes, then after again cooled to 0 °C and corresponding alky halide (16.96 mmol) dissolved in dry THF (15 ml) was added drop-wise to it over 5-7 minutes. The resulting reaction mixture was stirred at room temperature (25 °C) for 2 hours. Upon completion of reaction (TLC), cooled to 0 °C and quenched with saturated aqueous solution of NH$_4$Cl. The organic phase was extracted with ethyl acetate, dried over anhydrous Na$_2$SO$_4$ and concentrated *in vacuo*. The crude residue was purified by column chromatography to obtain 3.7.

2-(3,4-dimethoxyphenyl)-3-methylbutanenitrile (3.7a)1

![Structure of 2-(3,4-dimethoxyphenyl)-3-methylbutanenitrile](image)

White solid (1.7 g, 69%); m.p. 50-52 °C; R$_f$ 0.40 (25% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.87 (1H, dd, $J = 8.0$ and 2.0 Hz, H-2), 6.86 (1H, d, $J = 8.0$ Hz, H-1), 6.85 (1H, d, $J = 2.0$ Hz, H-3), 3.89 (3H, s, OCH$_3$), 3.87 (3H, s, OCH$_3$), 3.59 (1H, d, $J = 6.4$ Hz, H-3''), 2.10 (1H, m, H-1''), 1.05 (6H, d, $J = 6.8$ Hz, H-2'').

2-(3,4-dimethoxyphenyl)propanenitrile (3.7c)2

![Structure of 2-(3,4-dimethoxyphenyl)propanenitrile](image)

White solid (1.0 g, 46%); m.p. 72-74 °C; R$_f$ 0.40 (20% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.83 (1H, dd, $J = 8.0$ and 2.0 Hz, H-2), 6.81 (1H, d, $J = 8.0$ Hz, H-1), 6.79 (1H, d, $J = 2.0$ Hz, H-3), 3.84 (3H, s, OCH$_3$), 3.82 (3H, s, OCH$_3$), 3.79 (1H, q, $J = 7.2$ Hz, H-2''), 1.57 (3H, d, $J = 7.2$ Hz, H-1'').
2-(3,4-dimethoxyphenyl)butanenitrile (3.7d)

![Structure](image)

Oil (1.1 g, 48%); Rf 0.35 (15% EtOAc-Hexane); \(^1^H\)-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.79 (1H, dd, \(J = 7.6\) and 1.6 Hz, H-2), 6.79 (1H, d, \(J = 8.0\) Hz, H-1), 6.75 (1H, m, H-3), 3.83 (3H, s, OCH\(_3\)), 3.81 (3H, s, OCH\(_3\)), 3.61 (1H, t, \(J = 6.8\) Hz, H-3’), 1.86 (2H, m, H-1’), 1.0 (3H, t, \(J = 7.2\) Hz, H-2’).

2-(3,4-dimethoxyphenyl)pentanenitrile (3.7e)

![Structure](image)

Oil (1.3 g, 53%); Rf 0.45 (20% EtOAc-Hexane); \(^1^H\)-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.76 (2H, m, H-1 and H-2), 6.73 (1H, d, \(J = 1.6\) Hz, H-3), 3.80 (3H, s, OCH\(_3\)), 3.78 (3H, s, OCH\(_3\)), 3.64 (1H, dd, \(J = 8.4\) and 6.4 Hz, H-3’), 1.75 (2H, m, H-1’), 1.41 (2H, m, H-2’), 0.87 (3H, t, \(J = 7.2\) Hz, H-4’).

2-cyclopentyl-2-(3,4-dimethoxyphenyl)acetonitrile (3.7f)

![Structure](image)

White solid (1.66 g, 60%); m.p. 90-93 °C; Rf 0.50 (20% EtOAc-Hexane); \(^1^H\)-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.86 (2H, m, H-2 and H-1), 6.84 (1H, m, H-3), 3.91 (3H, s, OCH\(_3\)), 3.89 (3H, s, OCH\(_3\)), 3.66 (1H, d, \(J = 8.0\) Hz, H-4’), 2.32-1.37 (9H, m, H-1’, H-2’ and H-3’); \(^1^3^C\)-NMR (101 MHz, CDCl\(_3\)) \(\delta\) 149.3, 148.8, 128.3, 120.7, 119.9, 111.4, 111.4, 110.7, 56.0, 55.9, 45.2, 42.1, 30.9, 30.3, 24.9 and 24.8.

2-cyclohexyl-2-(3,4-dimethoxyphenyl)acetonitrile (3.7g)

![Structure](image)

White solid (0.70 g, 50%); m.p. 84 - 86 °C; Rf 0.50 (25% EtOAc-Hexane); \(^1^H\)-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.85 (2H, m, H-2 and H-1), 6.80 (1H, m, H-3), 3.91 (3H, s, OCH\(_3\)), 3.89 (3H, s, OCH\(_3\)), 3.58 (1H, d, \(J = 6.8\) Hz, H-5’), 1.89-1.19 (11H, m, H-1’, H-2’, H-3’ and H-4’); \(^1^3^C\)-
NMR (101 MHz, CDCl₃) δ 149.2, 148.7, 127.1, 120.3, 120.2, 111.3, 111.0, 56.0, 55.9, 43.9, 42.8, 31.1, 29.7 (2C), 25.9 and 25.8.

General method 2: Synthesis intermediates 3.6y(a-g)

Diisopropylamine (0.68 ml, 4.6 mmol) in 20 ml of THF was cooled to -78 °C and 2.7N n-BuLi in hexanes (2.86 ml, 7.72 mmol) was introduced drop-wise using a syringe. After stirring the resulting mixture for 15 minutes, compound 3.7 (4.55 mmol) dissolved in anhydrous THF (5 ml) was added drop-wise over 8-10 min. The resulting reaction mixture was further stirred at -78 °C for 0.5 h before 1-bromo-3-chloropropane (4.8 g, 6.81 mmol) dissolved in THF (5 ml) was added drop-wise. The resulting reaction mixture was continued to be stirred at -78 °C for 20 min and then allowed to warm to room temperature (25 °C) and stirred for another 1 h. After completion of reaction (TLC), the reaction mixture was cooled to 0 °C and quenched with 20 ml of water added drop-wise, and extracted with ethyl acetate (3 × 20 ml). The extracts were dried over anhydrous MgSO₄ and evaporated in vacuo. The residue was purified by column chromatography to afford 3.6y. To obtain 3.6x, a solution of 1-2-dibromoethane in anhydrous THF (5 ml) was added instead of 1-bromo-3-chloropropane.

5-chloro-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.6ya)

![Image of 5-chloro-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.6ya)]

Oil (1.10 g, 81%); R₇ 0.40 (25% EtOAc-Hexane); ¹H-NMR (400 MHz, CDCl₃) δ 6.92 (1H, dd, J = 8.0 and 2.0 Hz, H-2), 6.85 (1H, d, J = 8.0 Hz, H-1), 6.84 (1H, d, J = 2.0 Hz, H-3), 3.89 (3H, s, OCH₃), 3.88 (3H, s, OCH₃), 3.49 (2H, m, H-6), 2.22 (1H, m, H-4), 2.05 (2H, m, H-1’ and H-4), 1.86 (1H, m, H-5), 1.46 (1H, m, H-5), 1.21 (3H, d, J = 6.8 Hz, H-2’), 0.80 (3H, d, J = 6.8 Hz, H-2’).

5-chloro-2-(3,4-dimethoxyphenyl)pentanenitrile (3.6yb)

![Image of 5-chloro-2-(3,4-dimethoxyphenyl)pentanenitrile (3.6yb)]

Oil (0.47 g, 41%); R₇ 0.20 (20% EtOAc-Hexane); ¹H-MR (400 MHz, CDCl₃) δ 6.80 (1H, dd, J = 8.0 and 2.0 Hz, H-2), 6.76 (1H, d, J = 8.0 Hz, H-1), 6.74 (1H, d, J = 1.6 Hz, H-3), 3.81 (3H, s,
OC\textsubscript{3}H\textsubscript{3}), 3.79 (3H, s, OCH\textsubscript{3}), 3.70 (1H, t, \(J = 7.2\) Hz H-1’), 3.47 (2H, t, \(J = 6.0\) Hz, H-6), 1.97 (2H, m, H-4), 1.85 (2H, m, H-5); \(^{13}\)C-NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 149.6, 148.7, 127.7(2C), 119.6, 112.0, 110.3, 56.1 9 (2C), 43.9, 36.3, 33.5, 29.7; LRMS (EI): \(m/z\) 253.31 [M]\(^+\).

\textbf{5-chloro-2-(3,4-dimethoxyphenyl)-2-methylpentanenitrile (3.6yc)}

![Chemical Structure](attachment:structure.png)

Oil (0.80 g, 66%); \(R_f\) 0.20 (20% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 6.92 (1H, dd, \(J = 8.0\) and 2.4 Hz, H-2), 6.86 (1H, d, \(J = 1.6\) Hz, H-3), 6.80 (1H, d, \(J = 8.0\) Hz, H-1), 3.84 (3H, s, OCH\textsubscript{3}), 3.82 (3H, s, OCH\textsubscript{3}), 3.44 (2H, t, \(J = 6.2\) Hz, H-6), 2.01 (2H, m, H-4), 1.90 (2H, m, H-5), 1.66 (3H, t, H-1’). \(^{13}\)C-NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 149.4, 148.8, 132.1, 123.2, 117.7, 111.5, 109.0, 56.1, 56.0, 44.4, 41.8, 39.3, 28.6 and 28.3; LRMS (EI): \(m/z\) 267.22 [M]\(^+\).

\textbf{5-chloro-2-(3,4-dimethoxyphenyl)-2-ethylpentanenitrile (3.6yd)}

![Chemical Structure](attachment:structure.png)

Oil (0.87 g, 68%); \(R_f\) 0.45 (20% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 6.85 (1H, dd, \(J = 8.0\) and 2.0 Hz, H-2), 6.76 (1H, d, \(J = 2.0\) Hz, H-3), 6.75 (1H, d, \(J = 8.0\) Hz, H-1) 3.81 (3H, s, OCH\textsubscript{3}), 3.79 (3H, s, OCH\textsubscript{3}), 3.43 (2H, t, \(J = 6.4\) Hz, H-6), 2.06 (2H, m, H-4), 1.85 (2H, m, H-1’), 1.55 (1H, m, H-5), 1.15 (1H, m, H-5), 0.82 (3H, t, \(J = 6.8\) Hz, H-2’); \(^{13}\)C-NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 149.4, 149.1, 130.3, 121.8, 119.0, 112.2, 109.7, 56.1, 56.0, 44.5, 43.6 (2C), 38.2, 28.3 and 12.1; LRMS (EI): \(m/z\) 281.20 [M]\(^+\).

\textbf{5-chloro-2-(3,4-dimethoxyphenyl)-2-propylpentanenitrile (3.6ye)}

![Chemical Structure](attachment:structure.png)

Oil (0.89 g, 66%); \(R_f\) 0.20 (20% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 6.88 (1H, dd, \(J = 8.4\) and 2.4 Hz, H-2), 6.80 (1H, d, \(J = 2.0\) Hz, H-3), 6.80 (1H, d, \(J = 8.0\) Hz, H-1), 3.83 (3H, s, OCH\textsubscript{3}), 3.81 (3H, s, OCH\textsubscript{3}), 3.41 (2H, t, \(J = 6.4\) Hz, H-6), 2.02 (2H, m, H-4), 1.87 (2H, m, H-1’), 1.75 (1H, m, H-2’), 1.53 (1H, m, H-5), 1.41 (1H, m, H-2’), 1.12 (1H, m, H-5), 0.82 (3H, t, \(J = 7.2\) Hz, H-3’).

Malkeet Kumar_PhD Thesis_2015
5-chloro-2-cyclopentyl-2-(3,4-dimethoxyphenyl)pentanenitrile (3.6yf)

Oil (0.18 g, 46%); R$_f$ 0.50 (20% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.97 (1H, dd, $J = 8.4$ and 2.4 Hz, H-2), 6.87 (2H, m, H-1 and H-3), 3.90 (3H, s, OCH$_3$), 3.89 (3H, s, OCH$_3$), 3.47 (2H, m, H-6), 2.30 (1H, m, H-4), 1.99-1.30 (10H, m, H-5, H-2’ and H-3’).

5-chloro-2-cyclohexyl-2-(3,4-dimethoxyphenyl)pentanenitrile (3.6yg)

Oil (0.17 g, 43%); R$_f$ 0.60 (25% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.92 (1H, dd, $J = 8.4$ and 2.4 Hz, H-2), 6.85 (2H, m, H-1 and H-3), 3.90 (3H, s, OCH$_3$), 3.89 (3H, s, OCH$_3$), 3.48 (2H, m, H-6), 2.26 (1H, m, H-1’), 2.05 (2H, m, H-4), 1.87-1.08 (12H, m, H-5, H-2’, H-3’ and H-4’).

4-bromo-2-(3,4-dimethoxyphenyl)-2-isopropylbutanenitrile (3.6xa)

White solid (76%); m.p. 76-78 °C; R$_f$ 0.60 (30% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.91 (1H, dd, $J = 8.4$ and 2.4 Hz, H-2), 6.86 (1H, d, $J = 8.4$ Hz, H-1), 6.84 (1H, d, $J = 2.0$ Hz, H-3), 3.88 (3H, s, OCH$_3$), 3.87 (3H, s, OCH$_3$), 3.31 (1H, m, H-5), 2.88 (1H, m, H-5), 2.66 (1H, m, H-4), 2.34 (1H, m, H-4), 2.31 (1H, m, H-1’), 1.21 (3H, d, $J = 6.8$ Hz, H-2’), 0.79 (3H, d, $J = 6.8$ Hz, H-2’). 13C-NMR (101 MHz, CDCl$_3$) δ 149.5, 148.9, 128.9, 120.2, 118.6, 111.5, 109.5, 56.1, 55.9, 41.3, 38.1, 32.7, 27.2, 18.6 and 18.4.

General method 3: Boc protection and synthesis of intermediate 3.4 (a-c)

Et$_3$N (1.98 g, 2.73 ml, 19.6 mmol) was added to a solution of 3,4-dimethoxyamine 3.2 (13.1 mmol) in DCM (15 ml) at 0 °C. After 10 minutes, a solution of di-tert-butyl dicarbonate (3.39 g, 15.6 mmol) in DCM was added drop-wise to the reaction mixture. After completion
of reaction (TLC), DCM was removed under reduced pressure and the residue was taken in EtOAc (15 ml). The organic phase was washed with brine (3 × 10 ml), dried over anhydrous sodium sulphate and concentrated in vacuo to obtain desired compound 3.4.

tert-butyl (3,4-dimethoxyphenyl)carbamate (3.4a)

![Structural formula of tert-butyl (3,4-dimethoxyphenyl)carbamate (3.4a)]

Grey solid (2.21 g, 67%); m.p. 84-86 °C; Rf 0.20 (20% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.76 (1H, d, $J = 8.0$ Hz, H-1), 6.72 (1H, m, H-3), 6.71 (1H, dd, $J = 8.0$ and 2.4 Hz, H-2), 3.86 (3H, s, OCH$_3$), 3.83 (3H, s, OCH$_3$), 1.51 (9H, s, H-4).

tert-butyl (3,4-dimethoxybenzyl)carbamate (3.4b)

![Structural formula of tert-butyl (3,4-dimethoxybenzyl)carbamate (3.4b)]

White solid (2.96 g, 85%); m.p. 55-58 °C; Rf 0.35 (20% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.83 (1H, d, $J = 8.0$ Hz, H-1), 6.81 (1H, d, $J = 1.2$ Hz, H-3), 6.71 (1H, m, H-2), 4.80 (1H, br s, NH), 4.23 (2H, br d, $J = 6.0$ Hz, H-5), 3.86 (3H, s, OCH$_3$), 3.84 (3H, s, OCH$_3$), 1.46 (9H, s, H-4).

tert-butyl (3,4-dimethoxyphenethyl)carbamate (3.4c)

![Structural formula of tert-butyl (3,4-dimethoxyphenethyl)carbamate (3.4c)]

White solid (3.45 g, 94%); m.p. 64-66 °C; Rf 0.45 (20% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.80 (1H, d, $J = 8.0$ Hz, H-1), 6.73 (1H, d, $J = 1.6$ Hz, H-3), 6.73 (1H, dd, $J = 8.0$ and 1.6 Hz, H-2), 3.86 (3H, s, OCH$_3$), 3.85 (3H, s, OCH$_3$), 3.34 (2H, t, $J = 6.8$ Hz, H-6), 2.73 (2H, t, $J = 6.8$ Hz, H-5), 1.42 (9H, s, H-4).
General method 4: Synthesis of intermediates 3.3(a-d)

NaH (60% in mineral oil, 19.2 mmol) was added to a solution of compound 3.4 (7.6 mmol) in anhydrous DMF (6 ml) at 0 °C. After 15 minutes, reaction mixture was charged with corresponding bromoalkane (11.5 mmol). After completion of reaction (TLC), DMF was removed under reduced pressure and the residue was taken in EtOAc (20 ml), washed with brine (3 × 15 ml), dried over anhydrous MgSO$_4$ and concentrated in vacuo to obtain crude product. Purification by column chromatography afforded pure 3.3.

tert-butyl (3,4-dimethoxyphenyl)(methyl)carbamate (3.3a)

Oil (1.31 g 65%); R$_f$ 0.20 (20% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.76 (1H, d, J = 2.4 Hz, H-3), 6.70 (1H, d, J = 8.0 Hz, H-1), 6.40 (1H, dd, J = 8.0 and 2.4 Hz, H-2), 3.75 (6H, s, 2 × OCH$_3$), 3.11 (3H, s, H-1’), 1.33 (9H, s, H-4).

tert-butyl (3,4-dimethoxybenzyl)(methyl)carbamate (3.3b)

Oil (1.10 g, 51%); R$_f$ 0.25 (20% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.78 (2H, m, H-2 and H-3), 6.75 (1H, d, J = 8.0 Hz, H-1), 4.34 (2H, s, H-5), 3.86 (6H, s, 2 × OCH$_3$), 2.78 (3H, s, H-1’), 1.48 (9H, s, H-4).

tert-butyl (3,4-dimethoxyphenethyl)(ethyl)carbamate (3.3c)

Oil (1.26 g, 54%); R$_f$ 0.60 (20% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.72 (1H, d, J = 8.0 Hz, H-1), 6.65 (1H, d, J = 2.0 Hz, H-3), 6.65 (1H, dd, J = 8.0 and 2.0 Hz, H-2), 3.79 (3H, s, OCH$_3$), 3.78 (3H, s, OCH$_3$), 3.28 (2H, t, J = 6.4 Hz, H-6), 3.11 (2H, m, H-1’), 2.69 (2H, t, J = 6.4 Hz, H-5), 1.38 (9H, s, H-4), 1.01 (3H, t, J = 7.2 Hz, H-2’).
tert-butyl (3,4-dimethoxyphenethyl)(propyl)carbamate (3.3d)

![Chemical Structure](image)

Oil (2.05 g, 84%); \(R_f\) 0.30 (10% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.79 (1H, d, \(J = 8.0 \text{ Hz}, \text{H-1}\)), 6.65 (2H, m, H-2 and H-3), 3.87 (3H, s, OCH\(_3\)), 3.85 (3H, s, OCH\(_3\)), 3.35 (2H, t, \(J = 7.2 \text{ Hz}, \text{H-6}\)), 3.10 (2H, t, \(J = 8.4 \text{ Hz}, \text{H-1'}\)), 2.80 (2H, t, \(J = 7.6 \text{ Hz}, \text{H-5}\)), 2.30 (2H, m, H-2’), 1.45 (9H, s, H-4), 0.86 (3H, t, \(J = 8.4 \text{ Hz}, \text{H-3'}\)).

General method 5: Boc deprotection and synthesis of intermediate 3.2(a-d)

A 10% solution TFA (3.69 g, 2.48 ml, 32.4 mmol) in DCM (v/v) was added to a solution of compound 3.3 (3.24 mmol) in DCM (10 ml), and stirred for 2 hour. After completion of the reaction (TLC), the solvent was removed *in vacuo* and the residue was dissolved in MeOH. The solution was charged with excess of Amberlyst A-21 for neutralisation and stirred for 30 minutes. After complete neutralisation (pH ≥ 7), the mixture was filtered, and filtrate was concentrated to obtain compound 3.2.

3,4-dimethoxy-N-methylaniline (3.2a)

![Chemical Structure](image)

Oil (0.36 g, 67%); \(R_f\) 0.35 (20% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.70 (1H, d, \(J = 7.2 \text{ Hz}, \text{H-1}\)), 6.16 (1H, d, \(J = 2.4 \text{ Hz}, \text{H-3}\)), 6.10 (1H, dd, \(J = 8.0 \text{ and } 2.4 \text{ Hz}, \text{H-2}\)), 3.75 (3H, s, OCH\(_3\)), 3.72 (3H, s, OCH\(_3\)), 2.72 (3H, s, H-1’).

1-(3,4-dimethoxyphenyl)-N-methylmethylamine (3.2b)

![Chemical Structure](image)

Oil (0.34 g, 58%); \(R_f\) 0.40 (20% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.83 (1H, d, \(J = 1.6 \text{ Hz}, \text{H-3}\)), 6.78 (1H, dd, \(J = 8.0 \text{ and } 1.6 \text{ Hz}, \text{H-2}\)), 6.74 (1H, d, \(J = 8.0 \text{ Hz}, \text{H-1}\)), 3.82 (3H, s, OCH\(_3\)), 3.80 (3H, s, OCH\(_3\)), 3.62 (2H, s, H-4), 2.39 (3H, s, H-1’).
2-(3,4-dimethoxyphenyl)-N-ethylethan-1-amine (3.2c)

![Structural formula of 2-(3,4-dimethoxyphenyl)-N-ethylethan-1-amine](image)

Oil (0.59 g, 87%); Rf 0.80 (20% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta \) 6.72 (1H, d, \(J = 8.0\) Hz, H-1), 6.72 (1H, d, \(J = 2.0\) Hz, H-3), 6.72 (1H, dd, \(J = 8.0\) and 2.0 Hz, H-2), 3.78 (3H, br s, OCH\(_3\)), 3.77 (3H, s, OCH\(_3\)), 3.0 (2H, t, \(J = 6.8\) Hz, H-5), 2.87 (2H, t, \(J = 7.2\) Hz, H-1’), 2.87 (2H, t, \(J = 6.4\) Hz, H-4), 1.22 (3H, t, \(J = 7.2\) Hz, H-2’).

N-(3,4-dimethoxyphenethyl)propan-1-amine (3.2d)

![Structural formula of N-(3,4-dimethoxyphenethyl)propan-1-amine](image)

Yellow Solid (0.65 g, 90%); m.p. 89-92 °C; Rf 0.65 (20% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta \) 9.38 (1H, s, NH), 6.72 (1H, d, \(J = 8.0\) Hz, H-1), 6.64 (2H, m, H-2 and H-3), 3.75 (3H, s, OCH\(_3\)), 3.77 (3H, s, OCH\(_3\)), 3.07 (2H, t, \(J = 6.4\) Hz, H-5), 2.87 (4H, m, H-4 and H-1’), 1.69 (2H, m, H-2’), 0.91 (3H, t, \(J = 7.2\) Hz, H-3’).

General method 6: Coupling of 3.6 and 3.2 to synthesise target compound 3.13

K\(_2\)CO\(_3\) (0.53 g, 3.82 mmol) and 3.2 (1.50 mmol) were added to a solution of compound 3.6y (2.0 mmol) in anhydrous DMF (5 ml). The reaction mixture was stirred at 80 °C for 12 h. After completion of reaction (TLC), DMF was removed under reduced pressure and the residue was taken in EtOAc (20 ml), washed with brine (3×15 ml), dried over anhydrous MgSO\(_4\) and concentrated \textit{in vacuo}. The residue was purified by flash chromatography on silica gel using DCM-MeOH to afford the product 3.13.

2-(3,4-dimethoxyphenyl)-5-((3,4-dimethoxyphenyl)(methyl)amino)-2-isopropylpentanenitrile (3.13a)

![Structural formula of 2-(3,4-dimethoxyphenyl)-5-((3,4-dimethoxyphenyl)(methyl)amino)-2-isopropylpentanenitrile](image)

White solid (0.19 g, 29%); m.p. 115-117 °C; Rf 0.25 (5% MeOH-DCM); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta \) 6.85 (1H, dd, \(J = 8.4\) and 2.4 Hz, H-2B), 6.75 (1H, d, \(J = 2.4\) Hz, H-3B), 6.75 (1H, d, \(J = 8.4\) Hz, H-1B), 6.68 (1H, d, \(J = 8.4\) Hz, H-1A), 6.22 (1H,
5-((3,4-dimethoxybenzyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.13b)

Oil (0.25 g, 34%); Rf 0.55 (10% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 6.86 (1H, dd, J = 7.6 and 2.0 Hz, H-2B), 6.78 (1H, d, J = 2.0 Hz, H-3B), 6.76 (1H, d, J = 8.0 Hz, H-1B), 6.74 (1H, d, J = 8.0 Hz, H-1A), 6.70 (1H, d, J = 1.6 Hz, H-3A), 6.70 (1H, dd, J = 8.0 and 1.6 Hz, H-2A), 3.81 (3H, s, OCH₃), 3.80 (3H, s, OCH₃), 3.79 (3H, s, OCH₃), 3.78 (3H, s, OCH₃), 3.28 (2H, s, H-7), 2.22 (2H, t, J = 8.4 Hz, H-6), 2.10 (1H, m, H-4), 2.03 (3H, s, H-8), 1.98 (1H, m, H-1’), 1.77 (1H, m, H-4), 1.52 (1H, m, H-5), 1.14 (1H, m, H-5), 1.14 (3H, d, J = 6.4 Hz, 3H, H-2’), 0.73 (3H, d, J = 6.8 Hz, H-2’); ¹³C-NMR (101 MHz, CDCl₃) δ 150.2, 149.1, 148.9, 148.4, 130.7, 121.5, 121.0, 118.8 (2C), 112.1, 111.2, 110.9, 109.8, 61.9, 56.4, 56.1, 56.0 (3C), 53.3, 42.1, 38.0, 35.6, 23.4, 19.0 and 18.6; LRMS (EI): m/z 440.24 [M⁺]; HPLC purity 98% (tᵣ = 10.2 min).

4-((3,4-dimethoxybenzyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylbutanenitrile (3.13c)

Oil (0.19 g, 29%); Rf 0.50 (10% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 6.91 (1H, dd, J = 8.4 and 2.4 Hz, H-2B), 6.86 (1H, m, H-3B), 6.83 (1H, d, J = 8.4 Hz, H-1B), 6.78 (1H, d, J = 8.8 Hz, H-1A), 6.74 (1H, d, J = 2.4 Hz, H-3A), 6.70 (1H, dd, J = 8.4 and 2.0 Hz, H-2A), 3.91 (6H, s, 2 × OCH₃),
3.89 (3H, s, OCH₃), 3.87 (3H, s, OCH₃), 3.34 (2H, m, H-6), 2.41 (2H, m, H-5), 2.18 (3H, s, H-7), 2.10 (2H, m, H-4), 2.01 (1H, m, H-1’), 1.21 (3H, d, J = 6.8 Hz, H-2’), 0.82 (3H, d, J = 6.8 Hz, H-2’). ¹³C-NMR (101 MHz, CDCl₃) δ 149.1, 149.0, 148.4, 148.2, 131.3, 130.2, 121.1, 121.2, 118.6, 112.2, 111.2, 110.9, 109.7, 62.3, 56.0, 55.9, 55.8, 55.9, 53.8, 51.6, 42.2, 38.4, 35.4 and 18.2 (2C); LRMS (EI): m/z 426.22 [M]⁺; HPLC purity 98% (tᵣ = 10.2 min).

2-(3,4-Dimethoxy-phenyl)-2-(2-[(2-(3,4-dimethoxy-phenyl)-ethyl]-methyl-amino]-ethyl)-3-methyl-butyronitrile (3.13d)

Oil (0.27 g, 40%); Rᵣ 0.55 (10% MeOH-DCM);
¹H-NMR (400 MHz, CDCl₃) δ 6.96 (1H, dd, J = 8.4 and 2.4 Hz, H-2B), 6.90 (1H, d, J = 2.0 Hz, H-3B), 6.88 (1H, d, J = 8.4 Hz, H-1B), 6.80 (1H, d, J = 8.8 Hz, H-1A), 6.70 (2H, m, H-2A and H-3A), 3.91 (6H, s, 2 × OCH₃), 3.89 (3H, s, OCH₃), 3.87 (3H, s, OCH₃), 2.69 (2H, m, H-6), 2.57 (2H, m, H-7), 2.51 (1H, m, H-5), 2.40 (1H, m, H-5), 2.31 (3H, s, H-8), 2.10 (3H, m, H-4 and H-1’), 1.21 (3H, d, J = 6.4 Hz, H-2’), 0.84 (3H, d, J = 6.4 Hz, H-2’); ¹³C-NMR (101 MHz, CDCl₃) δ 149.2, 149.0, 148.5, 147.5, 132.8, 130.2, 121.1, 120.5, 118.8, 112.2, 111.5, 111.2, 109.6, 59.72, 56.1, 56.0 (2C), 55.9 (2C), 53.9, 51.7, 42.2, 38.3, 35.2, 33.3 and 18.1; LRMS (EI): m/z 441.48 [M+H]⁺; HPLC purity 98% (tᵣ = 10.3 min).

5-((3,4-dimethoxynitrophenethyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.13e)

Oil (0.27 g, 37%); Rᵣ 0.45 (10% MeOH-DCM);
¹H-NMR (400 MHz, CDCl₃) δ 6.89 (1H, dd, J = 8.0 and 2.0 Hz, H-2B), 6.83 (1H, d, J = 2.4 Hz, H-3B), 6.83 (1H, d, J = 8.0 Hz, H-1B), 6.78 (1H, d, J = 8.0 Hz, H-1A), 6.70 (1H, d, J = 2.0 Hz, H-3A), 6.70 (1H, dd, J = 8.0 and 2.0 Hz, H-2A), 3.84 (3H, s, OCH₃), 3.83 (3H, s, OCH₃), 3.81 (6H, s, 2 × OCH₃), 2.75 (2H, t, J = 6.4 Hz, H-7), 2.68 (2H, t, J = 6.4, H-8), 2.56 (2H, m, H-6), 2.05 (1H, m, J = 6.4, H-1’), 2.06 (1H, td, J = 12.0 and 4.4 Hz, H-4), 1.80 (1H, td, J =
8.8 and 4.4 Hz, H-4), 1.51 (1H, m, H-5), 1.15 (1H, m, H-5), 1.13 (3H, d, \(J = 6.79 \) Hz, H-2'), 0.75 (3H, d, \(J = 6.79 \) Hz, H-2'); \(^{13}\)C-NMR (101 MHz, CDCl\(_3\)) \(\delta \) 149.4, 149.1, 148.0, 147.1, 132.5, 130.6, 121.4, 120.6, 118.7, 112.1, 111.5, 111.3, 109.8, 56.1, 55.9 (3C), 53.3, 50.8, 49.2, 37.9, 35.6 (2C), 25.8, 18.9 and 18.6; LRMS (EI): \(m/z \) 441.28 [M+H]+; HPLC purity 97% (\(t_r = 7.8 \) min).

5-((3,4-dimethoxyphenethyl)(ethyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.13f)

Oil (0.22 g, 33%); \(R_f \) 0.50 (10% MeOH-DCM); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta \) 6.84 (1H, dd, \(J = 8.0 \) and 2.0 Hz, H-2B), 6.81 (1H, d, \(J = 2.0 \) Hz, H-3B), 6.76 (1H, d, \(J = 8.0 \) Hz, H-1B), 6.71 (1H, d, \(J = 8.0 \), H-1A), 6.62 (1H, d, \(J = 2.0 \), H-3A), 6.60 (1H, dd, \(J = 8.0 \) and 2.0 Hz, H-2A), 3.83 (3H, s, OCH\(_3\)), 3.82 (3H, s, OCH\(_3\)), 3.81 (3H, s, OCH\(_3\)), 3.80 (3H, s, OCH\(_3\)), 2.55 (2H, t, \(J = 4.4 \) Hz, H-7), 2.50 (2H, t, \(J = 4.4 \) Hz, H-8), 2.43 (4H, m, H-6 and H-9), 2.05 (2H, m, H-1' and H-4), 1.78 (1H, m, H-4), 1.49 (1H, m, H-5), 1.13 (3H, d, \(J = 6.8 \) Hz, H-2'), 1.11 (1H, m, H-5), 0.94 (3H, t, \(J = 7.2 \) Hz, H-10), 0.75 (3H, d, \(J = 6.8 \) Hz, H-2'); \(^{13}\)C-NMR (101 MHz, CDCl\(_3\)) \(\delta \) 148.9, 148.3, 147.3, 146.5, 133.3, 130.8, 121.5, 120.5, 118.7, 112.2, 111.4, 111.2, 109.9, 56.0, 55.9 (2C), 55.3 (2C), 52.9, 47.3, 37.8, 35.7 (2C), 33.0, 23.4, 18.9, 18.6 and 11.7; LRMS (EI): \(m/z \) 469.31 [M+H]+; HPLC purity 98% (\(t_r = 8.2 \) min).

5-((3,4-dimethoxyphenethyl)(propyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.13g)

Oil (0.11 g, 17%); \(R_f \) 0.20 (70% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta \) 6.90 (1H, dd, \(J = 8.0 \) and 2.4 Hz, H-2B), 6.86 (1H, d, \(J = 2.0 \) Hz, H-3B), 6.84 (1H, d, \(J = 8.0 \) Hz, H-1B), 6.79 (1H, d, \(J = 8.0 \) Hz, H-1A), 6.67 (1H, d, \(J = 2.0 \) Hz, H-3A), 6.67 (1H, dd, \(J = 8.0 \) and 2.0 Hz, H-2A), 3.84 (3H, s, OCH\(_3\)), 3.83 (3H, s, OCH\(_3\)), 3.82 (3H, s, OCH\(_3\)), 3.81 (3H, s, OCH\(_3\)), 2.54
(4H, m, H-7 and H-9), 2.39 (2H, t, J = 6.8 Hz, H-8), 2.30 (2H, t, J = 7.2 Hz, H-6), 2.10 (1H, td, J = 12.0 and 4.8 Hz, H-4), 2.05 (1H, m, H-1’), 1.77 (1H, td, J = 4.8 and 2.0 Hz, H-4), 1.48 (1H, m, H-5), 1.37 (2H, m, H-10), 1.14 (3H, d, J = 6.8 Hz, H-2’), 1.08 (1H, m, H-5), 0.81 (3H, t, J = 7.2 Hz, H-11), 0.75 (3H, d, J = 6.72 Hz, H-2’); 13C-NMR (101 MHz, CDCl$_3$) δ 150.1, 149.2, 148.9, 148.7, 133.8, 130.7, 121.5, 120.4, 118.7, 112.7, 111.3, 111.1, 109.8, 56.0 (3C), 55.9, 54.4, 53.5, 53.3, 41.1, 37.9, 35.8, 33.1, 23.4, 20.3, 18.9 (2C) and 11.9; HRMS (ESI): m/z 483.3221 [M+H]$^+$; HPLC purity 97% (t$_r$ = 8.5 min).

5-((benzyl(3,4-dimethoxyphenethyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.13h)

Oil (0.16 g, 26%); R$_f$ 0.65 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 7.21 (5H, m, H-10, H-11 and H-12), 6.86 (1H, dd, J = 8.4 and 2.0 Hz, H-2B), 6.81 (1H, d, J = 2.0 Hz, H-3B), 6.81 (1H, d, J = 8.0 Hz, H-1B), 6.76 (1H, d, J = 8.8 Hz, H-1A), 6.63 (1H, d, J = 2.4 Hz, H-3A), 6.63 (1H, dd, J = 8.0 and 2.4 Hz, H-2A), 3.82 (3H, s, OCH$_3$), 3.80 (3H, s, OCH$_3$), 3.77 (6H, s, 2 × OCH$_3$), 3.49 (2H, s, H-9), 2.60 (4H, m, H-8 and H-7), 2.49 (2H, t, J = 6.8 Hz, H-6), 2.00 (2H, m, H-1’ and H-4), 1.72 (1H, m, H-4), 1.40 (2H, m, H-5), 1.11 (3H, d, J = 6.62 Hz, H-2’), 0.74 (3H, d, J = 6.69 Hz, H-2’); 13C-NMR (101 MHz, CDCl$_3$) δ 149.1, 148.9, 148.4, 147.4, 137.8, 133.5, 133.0, 130.7, 128.9, 128.2, 127.0 (2C), 121.5, 120.6, 118.8, 112.2, 111.3, 111.2, 109.8, 58.3, 56.0 (2C), 55.9 (2C), 55.5, 53.3, 53.0, 38.0, 35.5, 32.9, 23.1, 18.9 and 18.6; LRMS (EI): m/z 531.32 [M+H]$^+$; HPLC purity 98% (t$_r$ = 8.2 min).

5-((3,4-dimethoxyphenethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)pentanenitrile (3.13i)

Oil (0.20 g, 32%); R$_f$ 0.30 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 6.82 (3H, m, H-1B, H-2B and H-3B), 6.77 (1H, d, J = 8.0 Hz, H-1A), 6.71 (2H, m, H-3A and H-2A), 3.88 (3H, s, OCH$_3$), 3.86 (3H, s, OCH$_3$), 3.85 (3H, s, OCH$_3$), 3.83 (3H, s, OCH$_3$), 3.75 (1H, dd, J = 14.8 and 6.8 Hz, H-1’), 2.69 (2H, t, J = 6.8 Hz,
H-7), 2.57 (2H, t, J = 6.8 Hz, H-8), 2.43 (2H, t, J = 7.6 Hz, H-6), 2.27 (3H, s, H-9), 1.90 (2H, m, H-5), 1.64 (2H, m, H-4); 13C-NMR (101 MHz, CDCl$_3$) δ 149.5, 149.0, 148.9, 147.5, 133.1, 128.3, 121.0, 120.6, 119.6, 112.2, 111.4 (2C), 110.4, 59.7, 56.7, 56.1, 56.0, 55.9, 55.8, 42.1, 36.8, 33.8, 33.5 and 24.7; LRMS (EI): m/z 412.09 [M$^+$]; HPLC purity 96% (t$_r$ = 6.8 min).

5-((3,4-dimethoxyphenethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-methylpentanenitrile (3.13j)

Oil (0.32 g, 49%); R$_f$ 0.35 (10% MeOH-DCM);
1H-NMR (400 MHz, CDCl$_3$) δ 7.00 (1H, dd, J = 8.0 and 2.4 Hz, H-2B), 6.98 (1H, d, J = 2.4 Hz, H-3B), 6.87 (1H, d, J = 8.0 Hz, H-1B), 6.82 (1H, d, J = 8.0 and 2.0 Hz, H-2A), 3.93 (3H, s, OCH$_3$), 3.91 (3H, s, OCH$_3$), 3.89 (3H, s, OCH$_3$), 3.88 (3H, s, OCH$_3$), 2.74 (2H, t, J = 8 Hz, H-7), 2.61 (2H, t, J = 8 Hz, H-8), 2.45 (2H, t, J = 6.4 Hz, H-6), 2.29 (3H, s, H-9), 1.96 (2H, m, H-4), 1.72 (3H, s, H-1’), 1.68 (1H, m, H-5), 1.48 (1H, m, H-5); 13C-NMR (101 MHz, CDCl$_3$) δ 149.2, 148.7, 147.5, 146.1, 132.7, 132.5, 123.5, 120.4, 117.7 (2C), 112.0, 111.4, 109.2, 59.2, 56.6, 56.1 (2C), 56.0 (2C), 42.1, 41.9, 39.5, 33.1, 27.9 and 23.0; LRMS (EI): m/z 427.26 [M+H$^+$]; HPLC purity 98% (t$_r$ = 7.2 min).

5-((3,4-dimethoxyphenethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-ethylpentanenitrile (3.13k)

Oil (0.62 g, 49%); R$_f$ 0.40 (10% MeOH-DCM);
1H-NMR (400 MHz, CDCl$_3$) δ 6.91 (1H, dd, J = 8.0 and 2.0 Hz, H-2B), 6.87 (1H, d, J = 1.6 Hz, H-3B), 6.85 (1H, d, J = 8.0 Hz, H-1B), 6.78 (1H, d, J = 8.0 Hz, H-3A), 6.70 (1H, dd, J = 8.0 and 2.0 Hz, H-2A), 6.70 (1H, d, J = 2.0 Hz, H-3A), 3.89 (3H, s, OCH$_3$), 3.87 (3H, s, OCH$_3$), 3.86 (3H, s, OCH$_3$), 3.85 (3H, s, OCH$_3$), 2.68 (2H, t, J = 6.4 Hz, H-7), 2.54 (2H, t, J = 6.8 Hz, H-8), 2.38 (2H, t, J = 6.0 Hz, H-6), 2.22 (3H, s, H-9), 1.99 (2H, m, H-4), 1.88 (2H, m, H-1’),
1.65 (1H, m, H-5), 1.33 (1H, m, H-5), 0.91 (3H, t, J = 7.2 Hz, H-2'); \(^{13}\text{C-NMR (101 MHz, CDCl}_3\)) \(\delta\) 149.4, 148.9, 148.5, 147.4, 133.0, 130.7, 122.5, 120.6, 118.3 (2C), 112.2, 111.4, 109.5, 59.4, 56.8, 56.0, 55.9 (2C), 48.5, 41.9, 38.4, 34.4 (2C), 33.2, 23.1 and 9.7; HRMS (ESI): \(m/z\) 441.2761 [M+H]^+; HPLC purity 98% (\(t_r = 6.9\) min).

5-((3,4-dimethoxyphenethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-propylpentanenitrile (3.13l)

Oil (0.36 g, 53%); \(R_f\) 0.45 (10% MeOH-DCM); \(^1\text{H-NMR (400 MHz, CDCl}_3\)) \(\delta\) 6.87 (1H, dd, \(J = 8.0\) and 1.6 Hz, H-2B), 6.87 (1H, d, \(J = 2.0\) Hz, H-3B), 6.72 (1H, d, \(J = 8.0\) Hz, H-1B), 6.70 (1H, d, \(J = 8.0\) Hz, H-1A), 6.62 (2H, m, H-2A and H-3A), 3.92 (3H, s, OCH\(_3\)), 3.90 (3H, s, OCH\(_3\)), 3.89 (3H, s, OCH\(_3\)), 3.88 (3H, s, OCH\(_3\)), 2.71 (2H, t, \(J = 6.4\) Hz, H-7), 2.57 (2H, t, \(J = 6.8\) Hz, H-8), 2.40 (2H, t, \(J = 6.0\) Hz, H-6), 2.25 (3H, s, H-9), 1.96 (2H, m, H-4), 1.83 (1H, m, H-5), 1.67 (2H, m, H-1’), 1.51 (1H, m, H-5), 1.35 (1H, m, H-2’), 1.20 (1H, m, H-2’), 0.92 (3H, t, \(J = 7.4\) Hz, H-3’); \(^{13}\text{C-NMR (101 MHz)}\) \(\delta\) 150.1, 149.3, 148.9, 148.5, 135.5, 131.0, 122.7, 120.6, 118.2 (2C), 112.2, 111.4, 109.4, 59.4, 56.9, 56.1, 55.9 (2C), 47.8, 43.5, 41.9, 38.6, 33.2 (2C), 23.0, 18.4 and 13.9; HRMS (ESI): \(m/z\) 455.2910 [M+H]^+; HPLC purity 97% (\(t_r = 7.5\) min).

2-Cyclopentyl-5-((3,4-dimethoxyphenethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)pentanenitrile (3.13m)

Oil (0.27 g, 36%); \(R_f\) 0.25 (5% MeOH-DCM); \(^1\text{H-NMR (400 MHz, CDCl}_3\)) \(\delta\) 6.90 (1H, dd, \(J = 8.4\) and 2.4 Hz, H-2B), 6.85 (1H, d, \(J = 2.0\) Hz, H-3B), 6.78 (1H, d, \(J = 8.0\) Hz, H-1B), 6.74 (1H, dd, \(J = 7.2\) and 1.6 Hz, H-2A), 6.65 (2H, m, H-3A and H-1A), 3.84 (3H, s, OCH\(_3\)), 3.83 (3H, s, OCH\(_3\)), 3.82 (3H, s, OCH\(_3\)), 3.81 (3H, s, OCH\(_3\)), 2.61 (2H, m, H-7), 2.45 (2H, m, H-8), 2.29 (2H, m, H-6), 2.22 (1H, m, H-1’), 2.14 (3H, s, H-9), 2.0 (1H, m, H-4), 1.92 (1H, m, H-2’), 1.83 (1H, m, H-4), 1.72 - 1.25 (8H, m, H-2’, H-3’ and H-5), 1.14 (1H, m, H-5); \(^{13}\text{C-NMR (101 MHz, CDCl}_3\)) \(\delta\) 149.9, 149.0, 148.5,
148.1, 133.1, 131.4, 121.8, 118.4, 112.2, 111.3, 111.2, 109.6, 59.4, 56.9, 56.0, 55.9, 52.5 (2C), 50.1, 41.9, 37.2, 33.2, 29.5, 29.2, 25.4, 24.8 (2C) and 23.1; LRMS (EI): m/z 480.1 [M]+; HPLC purity 98.5% (t_r = 12.47).

2-Cyclohexyl-5-((3,4-dimethoxyphenethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)pentanenitrile (3.13n)

Oil (0.24 g, 32%); R_f 0.20 (50% EtOAc-Hexane); ^1H-NMR (400 MHz, CDCl_3) δ 6.84 (1H, dd, J = 8.4 and 2.4 Hz, H-2B), 6.81 (1H, d, J = 2.0 Hz, H-3B), 6.76 (2H, m, H-1B and H-3A), 6.66 (2H, dd, J = 6.4 and 2.0 Hz, H-2A and H-1A), 3.84 (3H, s, OCH_3), 3.83 (3H, s, OCH_3), 3.82 (s, 3H, OCH_3), 3.81 (3H, s, OCH_3), 2.62 (2H, m, H-7), 2.46 (2H, m, H-8), 2.30 (2H, m, H-6), 2.14 (3H, s, H-9), 2.07 (2H, m, H-4 and H-1'), 1.78-1.0 (13H, m, H-4, H-5, H-2', H-3' and H-4'); ^13C-NMR (101 MHz, CDCl_3) δ 149.6, 149.0, 148.1, 147.3, 133.1, 130.6, 121.9, 120.5, 118.7, 112.2, 111.3, 111.2, 109.9, 59.4 (2C), 56.9, 56.0, 55.9, 55.8, 52.7, 47.3, 42.0, 35.0, 33.2, 28.7, 26.3 (2C), 25.9 (2C) and 23.2; LRMS (EI): m/z 494.42 [M]+; HPLC purity 99% (t_r = 13.11).

5-(cyclopropyl(3,4-dimethoxyphenethyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.13o)

A stirred solution of 3.13o (0.30 g, 1.2 mmol) in DCE was charged with cyclopropylboronic acid (0.2 g, 2.3 mmol), copper(II)acetate (0.23 g, 1.2 mmol), bipyridyl (0.18 g, 1.2 mmol) and sodium carbonate (0.24 g, 2.4 mmol). The reaction mixture was refluxed at 70 °C for 2 hours. After completion of reaction (TLC), water (10 ml) was added and organic layer was extracted with ethyl acetate (3 × 15), dried over anhydrous MgSO_4 and concentrated to obtain 3.13o as an oil (0.11 g, 19%); R_f 0.30 (10% MeOH-DCM); ^1H-NMR (400 MHz, CDCl_3) δ 6.82 (1H, dd, J = 8.4 and 2.0 Hz, H-2B), 6.79 (1H, d, J = 2.4 Hz, H-3B), 6.75 (1H, d, J = 8.0 Hz, H-1B), 6.70 (1H, d, J = 8.0 Hz, H-1A), 6.63 (1H, d, J = 2.4 Hz, H-3A), 6.63 (1H, dd, J = 8.0 and 2.4 Hz, H-2A).
Hz, H-2A), 3.80 (3H, s, OCH₃), 3.79 (3H, s, OCH₃), 3.78 (3H, s, OCH₃), 3.77 (3H, s, OCH₃), 2.60 (6H, m, H-7, H-8 and H-6), 2.01 (2H, m, H-1’ and H-4), 1.71 (1H, m, H-4), 1.66 (1H, m, H-9), 1.53 (1H, m, H-5), 1.16 (1H, m, H-5), 1.11 (3H, d, J = 6.8 Hz, H-2’), 0.72 (3H, d, J = 6.8 Hz, H-2’), 0.36 (2H, d, J = 6.4 Hz, H-10), 0.27 (2H, s, H-10); ¹³C-NMR (101 MHz, CDCl₃) δ 149.1, 148.9, 148.4, 147.3, 130.8, 121.5, 120.5, 118.7 (2C), 112.2, 111.4, 111.2, 109.9, 57.0, 56.0, 55.9 (2C), 54.9, 53.4, 37.8, 36.4, 36.0, 32.7 (2C), 23.1, 18.9, 18.6, 7.0 and 6.7; LRMS (EI): m/z 480.26 [M]+; HPLC purity 98.5% (tᵣ = 6.8 min).

General method 7: Piperazinyl analogues of verapamil 3.15(a-l)

Potassium carbonate (5.0 mmol), and piperazine (2.0 mmol) was added to a solution of compound 3.6a (2.4 mmol) in anhydrous DMF (5 ml). The reaction mixture was stirred at 80 °C for 12 h. After completion of reaction (TLC), DMF was removed under reduced pressure and the residue was taken in EtOAc (20 ml). The resulting solution was washed with brine (3×15 ml), dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel using mixture DCM and MeOH as eluent to afford the product 3.15.

2-(3,4-dimethoxyphenyl)-2-isopropyl-5-(4-methylpiperazin-1-yl)pentanenitrile (3.15a)

Oil (0.43 g, 60%); Rᵣ 0.40 (10% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 6.93 (1H, dd, J = 8.4 and 2.0 Hz, H-2), 6.88 (2H, m, H-3 and H-1), 3.91 (3H, s, OCH₃), 3.90 (3H, s, OCH₃), 2.79 (4H, bs, H-7), 2.63 (4H, bs, H-8), 2.69 (3H, s, H-9), 2.51 (2H, t, J = 6.0 Hz, H-6), 2.18 (1H, m, H-4), 2.09 (1H, m, H-1’), 1.90 (1H, m, H-4), 1.58 (1H, m, H-5), 1.29 (1H, m, H-5), 1.19 (3H, d, J = 6.4 Hz, H-2’), 0.80 (3H, d, J = 6.4 Hz, H-2’). ¹³C-NMR (101 MHz, CDCl₃) δ 149.2, 148.6, 130.2, 121.1, 118.7, 111.3, 109.9, 56.8, 56.2, 56.0, 53.3, 53.2 (2C), 49.9 (2C), 43.8, 38.0, 35.3, 22.5, 18.9 and 18.6. LRMS (EI): 359.30 [M]+; HPLC purity 95% (tᵣ = 12.11 min).
2-(3,4-Dimethoxyphenyl)-2-isopropyl-5-(4-phenylpiperazin-1-yl)pentanenitrile (3.15b)

Oil (0.25 g, 49%); R_f 0.70 (10% MeOH-DCM); ^1^H-NMR (400 MHz, CDCl_3) δ 7.20 (2H, m, H-1 and H-2), 6.85 (6H, m, H-3, H-9, H-10 and H-11), 3.86 (3H, s, OCH_3), 3.85 (3H, s, OCH_3), 3.12 (4H, t, J = 4.4 Hz, H-7), 2.45 (4H, t, J = 4.4 Hz, H-8), 2.30 (2H, m, H-6), 2.12 (1H, m, H-4), 2.04 (1H, m, H-1’), 1.85 (1H, m, H-4), 1.56 (1H, m, H-5), 1.22 (1H, m, H-5), 1.16 (3H, d, J = 6.80 Hz, H-2’), 0.76 (3H, d, J = 6.60 Hz, H-2’); ^13^C-NMR (101 MHz, CDCl_3) δ 151.2, 149.1, 148.4, 130.7, 129.0, 121.3, 119.7 (2C), 118.7, 116.0 (2C), 111.2, 109.7, 57.8, 56.0, 55.9, 53.4, 53.0 (2C), 49.0 (2C), 37.8, 35.6, 22.8, 18.9 and 18.6; LRMS (EI): m/z 421.32 [M]^+; HPLC purity 98.5% (t_r = 12.47).

2-(3,4-dimethoxyphenyl)-2-isopropyl-5-(4-(pyridin-4-yl)piperazin-1-yl)pentanenitrile (3.15c)

Oil (0.12 mg, 24%); R_f 0.40 (10% MeOH-DCM); ^1^H-NMR (400 MHz, CDCl_3) δ 8.14 (2H, d, J = 7.2 Hz, H-10), 7.16 (2H, d, J = 6.8 Hz, H-9), 7.0 (3H, m, H-1, H-2 and H-3), 3.91 (3H, s, OCH_3), 3.55 (4H, bs, H-7), 2.50 (4H, bs, H-8), 2.37 (2H, t, J = 5.2 Hz, H-6), 2.20 (1H, m, H-4), 2.10 (1H, m, H-1’), 1.90 (1H, m, H-4), 1.59 (1H, m, H-5), 1.27 (1H, m, H-5), 1.22 (3H, d, J = 6.4 Hz, H-2‘), 0.80 (3H, d, J = 6.4 Hz, H-2’); ^13^C-NMR (101 MHz, CDCl_3) δ 156.5, 149.2, 148.6, 141.6, 139.6, 130.5, 121.3, 118.7 (2C), 111.3, 109.9, 107.5, 57.4, 56.2, 56.0, 52.1 (2C), 46.1 (2C), 38.0, 35.4, 29.7, 22.9, 19.0 and 18.6; LRMS (EI): m/z 422.42 [M]^+; HPLC purity 96.7% (t_r = 12.10 min).
2-(3,4-dimethoxyphenyl)-2-isopropyl-5-(4-(pyridin-2-yl)piperazin-1-yl)pentanenitrile (3.15d)

Oil (0.25 g, 58%); R$_f$ 0.40 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 8.20 (1H, ddd, J = 4.80, 2.0 and 1.10 Hz, H-12), 7.48 (1H, m, H-11), 6.96 (1H, dd, J = 8.0 and 2.4 Hz, H-2), 6.81 (2H, m, H-1 and H-3), 6.64 (2H, m, H-10 and H-9), 3.93 (3H, s, OCH$_3$), 3.92 (3H, s, OCH$_3$), 3.54 (4H, m, H-8), 2.48 (4H, t, J = 4.60 Hz, H-7), 2.38 (2H, m, H-6), 2.19 (1H, m, H-1’), 2.11 (1H, m, H-4), 1.93 (1H, m, H-4), 1.64 (1H, m, H-5), 1.27 (1H, m, H-5), 1.23 (3H, d, J = 6.80 Hz, H-2’), 0.84 (3H, d, J = 6.60 Hz, H-2’); 13C-NMR (101 MHz, CDCl$_3$) δ 159.4, 149.1, 148.4, 147.9, 137.4, 130.6, 121.3, 118.7, 113.3, 111.2, 109.8, 107.0, 57.9, 56.0, 55.9, 52.8, 35.6, 22.8, 18.9 and 18.6; LRMS (EI): m/z 422.38 [M$^+$]; HPLC purity 99% (t$_r$ = 11.87).

2-(3,4-dimethoxyphenyl)-2-isopropyl-5-(4-(3-methoxyphenyl)piperazin-1-yl)pentanenitrile (3.15e)

Oil (0.22 g, 47%); R$_f$ 0.40 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 7.17 (1H, t, J = 8.4 Hz, H-11), 6.97 (1H, dd, J = 8.4 and 2.4 Hz, H-2), 6.90 (1H, d, J = 2.0 Hz, H-3), 6.89 (1H, d, J = 7.6 Hz, H-1), 6.55 (1H, dd, J = 8.0 and 1.6 Hz, H-10), 6.47 (1H, t, J = 2.0 Hz, H-9), 6.43 (1H, dd, J = 8.0 and 2.0 Hz, H-12), 3.93 (3H, s, OCH$_3$), 3.92 (3H, s, OCH$_3$), 3.81 (3H, s, OCH$_3$), 3.20 (4H, bs, H-7), 2.52 (4H, bs, H-8), 2.38 (2H, t, J = 4.0 Hz, H-6), 2.31 (1H, m, H-4), 2.18 (1H, m, H-1’), 1.94 (1H, m, H-4), 1.63 (1H, m, H-5), 1.29 (1H, m, H-5), 1.23 (3H, d, J = 6.4 Hz, H-2’), 0.82 (3H, d, J = 6.0 Hz, H-2’); 13C-NMR (101 MHz, CDCl$_3$) δ 160.6, 152.6, 149.2, 148.4, 130.6, 129.8, 121.4, 118.8, 111.3, 109.8, 108.9, 104.6, 102.6, 57.9, 56.1, 56.0, 55.2, 53.4, 53.0 (2C), 48.9 (2C), 37.9, 35.6, 22.9, 19.0 and 18.6; LRMS (EI): m/z 451.10 [M$^+$]; HPLC purity 95.2% (t$_r$ = 13.55 min).
2-(3,4-dimethoxyphenyl)-2-isopropyl-5-(4-(4-methoxyphenyl)piperazin-1-yl)pentanenitrile (3.15f)

Oil (0.13 g, 28%); Rf 0.50 (10% MeOH-DCM);
1H NMR (400 MHz, CDCl$_3$) δ 6.98 (1H, dd, $J = 8.4$ and 2.4 Hz, H-2), 6.90 (4H, m, H-1, H-3 and H-9), 6.96 (2H, m, H-10), 3.92 (3H, s, OCH$_3$), 3.91 (3H, s, OCH$_3$), 3.79 (3H, s, OCH$_3$), 3.10 (4H, t, $J = 5.2$ Hz, H-7), 2.53 (4H, t, $J = 4.8$ Hz, H-8), 2.37 (2H, t, $J = 6.8$ Hz, H-6), 2.20 (1H, m, H-4), 2.15 (1H, m, H-1’), 1.92 (1H, m, H-4), 1.63 (1H, m, H-5), 1.20 (1H, m, H-5), 1.24 (3H, d, $J = 6.8$ Hz, H-2’), 0.83 (3H, d, $J = 6.4$ Hz, H-2’); 13C-NMR (101 MHz, CDCl$_3$) δ 153.9, 149.2, 148.4, 145.7, 130.7, 121.4, 118.8 (2C), 118.2, 114.4 (2C), 111.3, 109.8, 57.9, 56.1, 56.0, 55.6, 53.4, 53.2 (2C), 50.5 (2C), 37.8, 35.6, 22.9, 19.0 and 18.6; LRMS (EI): m/z 451.17 [M]$^+$; HPLC purity 95.2% (t$_r$ = 12.98 min).

2-(3,4-dimethoxyphenyl)-2-isopropyl-5-(4-(4-(trifluoromethyl)phenyl)piperazin-1-yl)pentanenitrile (3.15g)

Oil (0.16 g, 37%); Rf 0.70 (10% MeOH-DCM);
1H-NMR (400 MHz, CDCl$_3$) δ 7.45 (2H, d, $J = 9.2$ Hz, H-10), 6.97 (1H, dd, $J = 8.4$ and 2.4 Hz, H-2), 6.91 (3H, m, H-1 and H-9), 6.90 (1H, d, $J = 2.0$ Hz, H-3), 3.93 (3H, s, OCH$_3$), 3.90 (3H, s, OCH$_3$), 3.30 (4H, t, $J = 5.2$ Hz, H-7), 2.52 (4H, t, $J = 4.8$ Hz, H-8), 2.39 (2H, t, $J = 6.0$ Hz, H-6), 2.23 (1H, m, H-4), 2.12 (1H, m, H-1’), 1.92 (1H, m, H-4), 1.64 (1H, m, H-5), 1.27 (1H, m, H-5), 1.24 (3H, d, $J = 6.4$ Hz, H-2’), 0.83 (3H, d, $J = 6.8$ Hz, H-2’); 13C-NMR (101 MHz, CDCl$_3$) δ 153.2, 149.2, 148.5, 130.7, 126.4 (2C), 121.4, 118.8, 114.5 (2C), 111.3 (2C), 109.6 (2C), 57.8, 56.1, 56.0, 53.4, 52.8 (2C), 47.8 (2C), 37.9, 35.6, 22.9, 19.0 and 18.6; LRMS (EI): m/z 489.13 [M]$^+$; HPLC purity 95% (t$_r$ = 15.24 min).
2-(3,4-dimethoxyphenyl)-5-(4-(2-fluorophenyl)piperazin-1-yl)-2-isopropylpentanenitrile

(3.15h)

Oil (0.12 g, 37%); R_{f} (10% MeOH : DCM) 0.45; 1H NMR (400 MHz, CDCl\textsubscript{3}) \delta 7.35 (1H, dd, J = 8.0 and 1.6 Hz, H-12), 7.20 (1H, ddd, J = 8.0, 7.2 and 1.6 Hz, H-11), 7.04 (1H, dd, J = 8.0 and 1.6 Hz, H-9), 6.96 (1H, ddd, J = 7.6, 7.2 and 1.2 Hz, H-10), 6.94 (1H, m, H-2), 6.88 (1H, d, J = 2.0 Hz, H-3), 6.84 (1H, d, J = 8.4 Hz, H-1), 3.90 (3H, s, OCH\textsubscript{3}), 3.89 (3H, s, OCH\textsubscript{3}), 3.07 (4H, bs, H-7), 2.57 (4H, bs, H-8), 2.42 (2H, t, J = 6.4 Hz, H-6), 2.21 (1H, m, H-4), 2.15 (1H, m, H-1’), 1.95 (1H, m, H-4), 1.63 (1H, m, H-5), 1.26 (1H, m, H-5), 1.20 (3H, d, J = 6.4 Hz, H-2’), 0.81 (3H, d, J = 6.8 Hz, H-2’); 13C NMR (101 MHz, CDCl\textsubscript{3}) \delta 156.9, 149.1, 148.4, 130.6, 124.1, 121.3, 118.9, 118.7, 116.1, 115.9, 111.2, 109, 57.9, 56.0, 55.9 (2C), 53.1 (2C), 50.3 (2C), 37.8, 35.6, 22.8, 18.9 and 18.6; LRMS: m/z 439.21 [M]+; HPLC purity 98.5% (t\textsubscript{r} = 12.78).

5-(4-(4-acetylphenyl)piperazin-1-yl)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile

(3.15i)

Oil (0.12 g, 28%); R_{f} 0.50 (10% MeOH-DCM); 1H NMR (400 MHz, CDCl\textsubscript{3}) \delta 7.89 (2H, d, J = 9.2 Hz, H-10), 7.00 (1H, dd, J = 8.4 and 2.4 Hz, H-2), 6.91 (1H, d, J = 2.4 Hz, H-3), 6.88 (3H, m, H-1 and H-9), 3.93 (3H, s, OCH\textsubscript{3}), 3.92 (3H, s, OCH\textsubscript{3}), 3.37 (4H, t, J = 4.4 Hz, H-7), 2.53 (4H, t, J = 4.0 Hz, H-8), 2.54 (3H, s, H-11), 2.39 (2H, t, J = 8.0 Hz, H-6), 2.21 (1H, m, H-4), 2.12 (1H, m, H-1’), 1.93 (1H, m, H-4), 1.65 (1H, m, H-5), 1.28 (1H, m, H-5), 1.24 (3H, d, J = 6.8 Hz, H-2’), 0.83 (3H, d, J = 6.8 Hz, H-2’); 13C NMR (101 MHz, CDCl\textsubscript{3}) \delta 196.3, 154.0, 149.2, 148.5, 130.6, 130.4 (2C), 121.4, 118.8 (2C), 113.4 (2C), 111.3, 109.8, 57.8, 56.1, 56.0, 53.4, 52.7 (2C), 47.2 (2C), 37.9, 35.6, 26.1, 22.9, 19.0 and 18.6; LRMS (EI): m/z 463.29 [M]+; HPLC purity 95% (t\textsubscript{r} = 13.37 min).
5-(4-cyclohexylpiperazin-1-yl)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.15j)

Oil (0.12 g, 32%); R_f 0.50 (10% MeOH- DCM); ^1^H-NMR (400 MHz, CDCl_3) δ 6.95 (1H, dd, J = 8.0 and 2.4 Hz, H-2), 6.91 (1H, d, J = 8.4, H-1), 6.88 (1H, d, J = 2.4 Hz, H-3), 3.92 (3H, s, OCH_3), 3.91 (3H, s, OCH_3), 3.60 (4H, bs, H-7), 2.42 (4H, bs, H-10), 2.31 (2H, t, J = 7.2 Hz, H-6), 2.26 (1H, m, H-9), 2.13 (1H, m, H-4), 2.10 (1H, m, H-1’), 1.96-1.61 (8H, m, H-10 and H-11), 1.56 (1H, m, H-4), 1.30-1.03 (4H, m, H-12 and H-5), 1.20 (3H, d, J = 6.4 Hz, H-2’), 0.83 (3H, d, J = 6.4 Hz, H-2’); ^1^C-NMR (101 MHz, CDCl_3) δ 149.1, 148.4, 130.7, 130.4, 118.8, 111.3, 109.8, 63.6, 58.0, 56.0, 55.9, 53.4 (3C), 48.9 (2C), 37.9, 35.7, 28.9 (2C), 26.3, 25.9 (2C), 23.0, 19.0 and 18.6; LRMS (EI): m/z 427.30 [M]^+; HPLC purity 98.5% (t_r = 12.77 min).

2-(3,4-dimethoxyphenyl)-2-isopropyl-5-(4-(p-tolyl)piperazin-1-yl)pentanenitrile (3.15k)

Oil (0.12 g, 35%); R_f 0.20 (10% MeOH-DCM); ^1^H-NMR (400 MHz, CDCl_3) δ 7.01 (2H, d, J = 8.0 Hz, H-10), 6.97 (1H, dd, J = 8.4 and 2.0 Hz, H-2), 6.91 (1H, d, J = 2.0 Hz, H-3), 6.90 (1H, d, J = 8.4 Hz, H-1), 6.85 (2H, d, J = 8.8 Hz, H-9), 3.93 (3H, s, OCH_3), 3.92 (3H, s, OCH_3), 3.13 (4H, t, J = 4.0 Hz, H-7), 2.50 (4H, t, J = 4.4 Hz, H-8), 2.37 (2H, t, J = 6.4 Hz, H-6), 2.29 (3H, s, H-11), 2.21 (1H, m, H-4), 2.12 (1H, m, H-1’), 1.90 (1H, m, H-4), 1.64 (1H, m, H-5), 1.29 (1H, m, H-5), 1.23 (3H, d, J = 6.4 Hz, H-2’), 0.84 (3H, d, J = 6.8 Hz, H-2’); ^1^C-NMR (101 MHz, CDCl_3) δ 149.3, 149.1, 148.4, 130.8, 129.6 (2C), 129.2, 121.4, 118.8, 116.4 (2C), 111.3, 109.8, 58.0, 56.1, 56.0, 53.4, 53.2 (2C), 49.7 (2C), 37.9, 35.7, 23.0, 20.4, 19.0 and 18.6; LRMS (EI): m/z 435.25 [M]^+; HPLC purity 98.6% (t_r = 13.91 min).
4-(4-(4-cyano-4-(3,4-dimethoxyphenyl)-5-methylhexyl)piperazin-1-yl)benzonitrile (3.15j)

Oil (0.12 g, 30%); R_f 0.20 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 7.51 (2H, d, $J = 8.8$ Hz, H-10), 6.96 (1H, dd, $J = 8.4$ and 2.4 Hz, H-2), 6.91 (1H, d, $J = 2.0$ Hz, H-3), 6.88 (1H, d, $J = 8.4$ Hz, H-1), 6.85 (2H, d, $J = 9.2$ Hz, H-9), 3.92 (3H, s, OCH$_3$), 3.91 (3H, s, OCH$_3$), 3.37 (4H, t, $J = 4.0$ Hz, H-7), 2.57 (4H, t, $J = 4.4$ Hz, H-8), 2.45 (2H, t, $J = 6.4$ Hz, H-6), 2.21 (1H, m, H-4), 2.11 (1H, m, H-1’), 1.95 (1H, m, H-4), 1.66 (1H, m, H-5), 1.31 (1H, m, H-5), 1.22 (3H, d, $J = 6.4$ Hz, H-2’), 0.82 (3H, d, $J = 6.8$ Hz, H-2’); 13C-NMR (101 MHz, CDCl$_3$) δ 149.2, 149.1, 148.5, 133.5, 129.6 (2C), 129.2, 121.4, 118.8, 114.4 (2C), 111.3, 109.8, 58.0, 56.1, 56.0, 53.4, 53.2 (2C), 49.7 (2C), 37.9, 35.7, 23.0, 19.0 and 18.6; LRMS (EI): m/z 446.29 [M]$^+$; HPLC purity 98.6% ($t_r = 13.80$ min).

General procedure 8: Procedure for the synthesis of benzyl analogues of verapamil 3.17(a-l)

Potassium carbonate (0.094 g, 0.68 mmol), and benzyl bromide or benzyl chloride (0.51 mmol) were added to a solution of Nor-VER (3.13e) (0.15 g, 0.34 mmol) in anhydrous DMF (3 ml) and the reaction mixture was stirred at 80 °C for 10 h. After completion of reaction (TLC), DMF was removed under reduced pressure and the residue was taken in EtOAc (20 ml). The organic phase was washed with brine (3×15 ml), dried over anhydrous sodium sulphate and concentrated in vacuo. The residue was purified by flash chromatography on silica gel using DCM-MeOH to afford the product 3.17.

5-((3,4-dimethoxyphenethyl)(4-methylbenzyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.17a)

Oil (52 mg, 28%); R_f 0.30 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 7.17 (2H, d, $J = 8.0$ Hz, H-11), 7.10 (2H, d, $J = 8.0$ Hz, H-10), 6.88 (1H, dd, $J = 8.0$ and 2.4 Hz, H-2B), 6.84 (2H, m, H-3A and H-3B), 6.78 (1H, d, $J = 8.0$ Hz, H-1B), 6.65 (2H, d, $J = 8.0$ Hz, H-2A and
(3.17b) 5-((4-chlorobenzyl)(3,4-dimethoxyphenethyl)amino)-2-(3,4-dimethoxyphenyl)-2-
 isopropylpentanenitrile

Oil (40 mg, 21%); R_f 0.40 (10% MeOH-DCM);
^1^H-NMR (300 MHz, CDCl_3) δ 7.28 (2H, d, J = 9.0 Hz, H-11), 7.19 (2H, d, J = 8.1 Hz, H-10), 6.88 (1H, dd, J = 8.1 and 2.0 Hz, H-2B), 6.80 (2H, m, H-1B and H-3B), 6.79 (1H, d, J = 8.1 Hz, H-1A), 6.64 (2H, m, H-2A and H-3A), 3.89 (3H, s, OCH_3), 3.87 (3H, s, OCH_3), 3.86 (3H, s, OCH_3), 3.85 (3H, s, OCH_3), 3.51 (2H, s, H-9), 2.65 (4H, m, H-7 and H-8), 2.46 (2H, t, J = 5.7 Hz, H-6), 2.15-1.99 (2H, m, H-1’ and H-4), 1.76 (1H, m, H-4), 1.56 (1H, m, H-5), 1.22 (1H, m, H-5), 1.19 (3H, d, J = 6.6 Hz, H-2’), 0.79 (3H, d, J = 6.6 Hz, H-2’); ^1^C-NMR (101 MHz, CDCl_3) δ 149.1, 148.8, 148.3, 147.4, 130.6, 130.1 (2C), 128.3 (2C), 121.5 (2C), 120.6 (2C), 118.7 (2C), 112.1, 111.3, 111.1, 109.7, 57.7, 56.1, 56.0, 55.9, 55.8, 55.5, 55.5, 38.0 (2C), 35.6, 33.0, 23.1, 18.9 and 18.6; LC-ESI-MS (+ve ion mode): m/z 565.3 [M+H]^+, purity 99.9% (t_r = 4.91 min).

(3.17c) 2-(((4-cyano-4-(3,4-dimethoxyphenyl)-5-methylhexyl)(3,4-
dimethoxyphenethyl)amino)methyl)benzonitrile

Oil (0.19 g, 58%); R_f 0.25 (10% MeOH-DCM);
^1^H-NMR (300 MHz, CDCl_3) δ 7.62 (1H, dd, J = 8.7 and 0.9 Hz, H-13), 7.51 (1H, td, J = 7.8 and
1.2 Hz, H-12), 7.42 (1H, d, J = 7.5 Hz, H-10), 7.34 (1H, td, J = 7.5 and 1.2 Hz, H-11), 6.90 (1H, dd, J = 8.4 and 2.4 Hz, H-2B), 6.89 (1H, d, J = 2.1 Hz, H-3B), 6.81 (1H, d, J = 8.4 Hz, H-1B), 6.77 (1H, d, J = 8.7 Hz, H-1A), 6.63 (2H, m, H-2A and H-3A), 3.88 (3H, s, OCH3), 3.86 (6H, s, 2 × OCH3), 3.84 (3H, s, OCH3), 3.76 (2H, s, H-9), 2.65 (4H, m, H-7 and H-8), 2.50 (2H, t, J = 6.0 Hz, H-6), 2.13-1.99 (2H, m, H-1’ and H-4), 1.86 (1H, m, H-4), 1.53 (1H, m, H-5), 1.23 (1H, m, H-5), 1.16 (3H, d, J = 6.6 Hz, H-2’), 0.79 (3H, d, J = 6.6 Hz, H-2’); 13C-NMR (75 MHz, CDCl3) δ 149.0, 148.7, 148.3, 147.4, 132.9 (2C), 132.8, 130.6, 130.0 (2C), 127.3, 121.5, 120.6, 118.7, 117.9, 112.6, 112.2, 111.3, 111.1, 109.8, 57.7, 56.1, 56.0, 55.9, 55.8, 55.5, 53.0, 38.0 (2C), 35.6, 33.0, 23.1, 18.9 and 18.6; LC-ESI-MS (+ve ion mode): 556.3 [M+H]+, purity 97.2% (t_r = 4.83 min).

5-((3,4-dimethoxyphenethyl)(3-methoxybenzyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.17d)

Oil (40 mg, 20%); R_f 0.50 (10 % MeOH-DCM);
1H-NMR (400 MHz, CDCl3) δ 7.10 (1H, t, J = 7.6 Hz, H-11), 6.77 (3H, m, H-10, H-12 and H-2B), 6.73 (1H, s, H-13), 6.72 (1H, d, J = 2.0 Hz, H-3B), 6.69 (1H, d, J = 8.0 Hz, H-1B), 6.67 (1H, d, J = 8.4 Hz, H-1A), 6.54 (2H, m, H-2A and H-3A), 3.76 (3H, s, OCH3), 3.75 (3H, s, OCH3), 3.73 (3H, s, OCH3), 3.72 (3H, s, OCH3), 3.68 (3H, s, OCH3), 3.42 (2H, s, H-9), 2.54 (4H, m, H-7 and H-8), 2.34 (2H, t, J = 6.0 Hz, H-6), 2.02-1.88 (2H, m, H-1’ and H-4), 1.78 (1H, m, H-4), 1.45 (1H, m, H-5), 1.06 (3H, d, J = 6.8 Hz, H-2’), 1.02 (1H, m, H-5), 0.70 (3H, d, J = 6.8 Hz, H-2’); 13C-NMR (101 MHz, CDCl3) δ 162.5, 151.9, 151.7, 151.1, 150.2, 144.3, 136.0, 133.5, 133.9, 124.3, 123.9, 123.4, 121.5, 117.1, 115.1 (2C), 114.2, 114.0, 112.7, 61.2, 58.8 (2C), 58.7 (2C), 58.3, 58.0, 56.1, 56.0, 40.8, 38.4, 35.8, 26.1, 21.7 and 21.1; LC-ESI-MS (+ve ion mode): 561.2 [M+H]+, purity 96.5% (t_r = 4.51 min).
5-((3,4-dimethoxyphenethyl)(3-(trifluoromethyl)benzyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.17e)

Oil (35 mg, 33%); R_{f} 0.50 (10% MeOH-DCM);
{1}H-NMR (400 MHz, CDCl\textsubscript{3}) δ 7.60 (1H, m, H-11), 7.51 (1H, m, H-12), 7.40 (2H, m, H-10 and H-13), 6.86 (2H, m, H-2B and H-3B), 6.82 (1H, d, J = 6.0 Hz, H-1B), 6.78 (1H, d, J = 6.4 Hz, H-1A), 6.48 (2H, m, H-2A and H-3A), 3.87 (3H, s, OCH\textsubscript{3}), 3.86 (3H, s, OCH\textsubscript{3}), 3.85 (3H, s, OCH\textsubscript{3}), 3.84 (3H, s, OCH\textsubscript{3}), 3.60 (2H, s, H-9), 2.66 (4H, m, H-7 and H-8), 2.45 (2H, t, J = 6.0 Hz, H-6), 2.16-1.96 (2H, m, H-1’ and H-4), 1.77 (1H, m, H-4), 1.57 (1H, m, H-5), 1.17 (3H, d, J = 6.8 Hz, H-2’), 1.10 (1H, m, H-5), 0.81 (3H, d, J = 6.8 Hz, H-2’); {13}C-NMR (101 MHz, CDCl\textsubscript{3}) δ 171.5, 149.01, 148.9, 148.3, 141.2, 133.0, 130.8, 130.7, 128.6, 124.1, 123.5, 123.6, 121.3, 117.3, 116.2, 115.5 (2C), 114.5, 113.6, 112.1, 60.3, 58.0 (2C), 57.6 (2C), 56.0, 55.9, 55.9, 55.8, 37.9, 35.5, 33.1, 23.3, 21.0, 18.9 and 18.5; LC-ESI-MS (+ve ion mode): 599.3 [M+H]+, purity 96.5% (t\textsubscript{r} = 4.51 min).

5-((3,4-dimethoxyphenethyl)(2-(trifluoromethoxy)benzyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.17f)

Oil (60 mg, 28%); R_{f} 0.70 (10% MeOH-DCM);
{1}H-NMR (400 MHz, CDCl\textsubscript{3}) δ 7.32 (1H, d, J = 6.0 Hz, H-13), 7.20-7.08 (3H, m, H-12, H-11 and H-10), 6.76 (1H, dd, J = 8.0 and 2.4 Hz, H-2B), 6.72 (1H, d, J = 2.0 Hz, H-3B), 6.68 (1H, d, J = 8.4 Hz, H-1B), 6.66 (1H, d, J = 8.4 Hz, H-1A), 6.54 (2H, m, H-2A and H-3A), 3.76 (3H, s, OCH\textsubscript{3}), 3.75 (3H, s, OCH\textsubscript{3}), 3.73 (3H, s, OCH\textsubscript{3}), 3.72 (3H, s, OCH\textsubscript{3}), 3.51 (2H, s, H-9), 2.53 (4H, m, H-7 and H-8), 2.37 (2H, t, J = 6.4 Hz, H-6), 2.01-1.90 (2H, m, H-1’ and H-4), 1.68 (1H, m, H-4), 1.45 (1H, m, H-5), 1.10 (1H, m, H-5), 1.07 (3H, d, J = 6.8 Hz, H-2’), 0.69 (3H, d, J = 6.8 Hz, H-2’); {13}C-NMR (101 MHz, CDCl\textsubscript{3}) δ 151.9, 151.7, 151.2, 150.5, 150.2, 135.9, 135.4, 133.6, 133.5 (2C), 130.1, 129.4, 124.3, 123.3, 121.5, 115.0, 114.2, 114.0, 112.7, 58.8 (2C), 58.6 (3C), 56.3, 56.1,
54.8, 40.8, 38.4, 35.8, 26.3, 21.7 and 21.4; LC-ESI-MS (+ve ion mode): 615.1 [M+H]⁺, purity 96.2% (tᵣ = 5.10 min).

5-((3,4-dimethoxyphenethyl)(4-(trifluoromethoxy)benzyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.17g)

Oil (70 mg, 34%); Rᵣ 0.80 (10% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 7.15 (2H, d, J = 8.4 Hz, H-11), 7.02 (2H, d, J = 8.0 Hz, H-10), 6.76 (1H, dd, J = 8.0 and 2.0 Hz, H-2B), 6.72 (2H, d, J = 2.0 Hz, H-3B), 6.70 (1H, d, J = 8.4 Hz, H-1B), 6.67 (1H, d, J = 8.0 Hz, H-1A), 6.52 (2H, m, H-3A and H-2A), 3.76 (3H, s, OCH₃), 3.75 (3H, s, OCH₃), 3.73 (3H, s, OCH₃), 3.72 (3H, s, OCH₃), 3.41 (2H, s, H-9), 2.54 (4H, m, H-7 and H-8), 2.35 (2H, t, J = 6.4 Hz, H-6), 2.02-1.90 (2H, m, H-1’ and H-4), 1.65 (1H, m, H-4), 1.46 (1H, m, H-5) 1.10 (1H, m, H-5), 1.06 (3H, d, J = 6.8 Hz, H-2’), 0.70 (3H, d, J = 6.8 Hz, H-2’); ¹³C-NMR (101 MHz, CDCl₃) δ 151.9, 151.7, 151.2, 150.2, 141.4 (2C), 135.8,133.5, 132.7 (2C),131.0, 124.3, 123.5 (3C), 121.5, 115.0, 114.2, 114.0, 112.0, 60.4, 58.8 (2C), 58.7 (2C), 58.4, 56.1, 56.0, 40.8, 38.4, 36.0, 26.1, 21.7 and 21.4; LC-ESI-MS (+ve ion mode): 615.3 [M+H]⁺, purity 95.1% (tᵣ = 4.50 min).

5-((3,4-dimethoxyphenethyl)(4-(methylthio)benzyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.17h)

Oil (0.12 g, 61%); Rᵣ 0.30 (10% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 7.08 (4H, m, H-10 and H-11), 6.77 (1H, dd, J = 8.4 and 2.0 Hz, H-2B), 6.73 (2H, d, J = 2.0 Hz, H-3B), 6.71 (1H, d, J = 7.6 Hz, H-1B), 6.67 (1H, d, J = 8.0 Hz, H-1A), 6.52 (2H, m, H-2A and H-3A), 3.77 (3H, s, OCH₃), 3.76 (3H, s, OCH₃), 3.74 (3H, s, OCH₃), 3.73 (3H, s, OCH₃), 3.40 (2H, s, H-9), 2.53 (4H, m, H-7 and H-8), 2.43 (3H, s, H-12), 2.34 (2H, t, J = 6.4 Hz, H-6), 2.02-1.89 (2H, m, H-1’ and H-4), 1.66 (1H, m, H-4), 1.44 (1H, m, H-5), 1.12 (1H, m, H-5), 1.07 (3H, d,
\[J = 6.8 \text{ Hz, H-2'} \], 0.69 (3H, d, \(J = 6.8 \text{ Hz, H-2'} \)); \(^{13}\text{C-NMR (101 MHz, CDCl}_3\) \(\delta \) 151.9, 151.7, 151.2, 150.2, 139.5, 136.0, 133.5, 132.2 (2C), 129.5 (2C), 124.3, 123.4, 121.6, 115.0, 114.2, 114.0, 112.6; 61.0, 58.7, 58.8, 58.4 (2C), 58.5, 56.0, 55.90, 40.9, 38.2, 35.6, 29.7, 26.2, 21.3 21.5 and 15.1; LC-ESI-MS (+ve ion mode): 577.32 \([\text{M+H}]^+\), purity 97.6\% (\(t_r = 4.57 \text{ min} \)).

4-(((4-cyano-4-(3,4-dimethoxyphenyl)-5-methylhexyl)(3,4-dimethoxyphenethyl)amino)methyl)benzonitrile (3.17i)

Oil (70 mg, 21\%); \(R_f 0.6 \) (10\% MeOH-DCM); \(^1\text{H-NMR (400 MHz, CDCl}_3\) \(\delta \) 7.46 (2H, d, \(J = 8.0 \text{ Hz, H-11} \), 7.23 (2H, d, \(J = 7.6 \text{ Hz, H-10} \), 6.74 (1H, dd, \(J = 8.4 \text{ and 2.0 Hz, H-2B} \), 6.71 (2H, d, \(J = 2.0 \text{ Hz, H-3B} \), 6.70 (1H, d, \(J = 8.4 \text{ Hz, H-1B} \), 6.67 (1H, d, \(J = 8.0 \text{ Hz, H-1A} \), 6.50 (2H, m, H-3A and H-2A), 3.77 (3H, s, OCH\(_3\)), 3.75 (3H, s, OCH\(_3\)), 3.74 (3H, s, OCH\(_3\)), 3.72 (3H, s, OCH\(_3\)), 3.46 (2H, s, H-9), 2.51 (4H, m, H-7 and H-8), 2.34 (2H, t, \(J = 6.4 \text{ Hz, H-6} \), 2.02-1.88 (2H, m, H-1’ and H-4), 1.78 (1H, m, H-4), 1.40 (1H, m, H-5), 1.06 (3H, d, \(J = 6.8 \text{ Hz, H-2'} \), 1.02 (1H, m, H-5), 0.80 (3H, d, \(J = 6.8 \text{ Hz, H-2'} \)); \(^{13}\text{C-NMR (101 MHz, CDCl}_3\) \(\delta \) 151.9, 151.7, 151.2, 150.3, 148.6, 135.6 (2C), 134.8, 133.4, 132.0 (2C), 124.2, 123.4, 121.7, 121.5, 115.0, 114.2, 114.0, 113.5, 112.7, 61.0, 58.9, 58.8, 58.7, 58.6, 56.2 (2C), 56.1, 40.8, 38.4, 36.0, 26.1, 21.7 and 21.5; LC-ESI-MS (+ve ion mode): 556.2 \([\text{M+H}]^+\), purity 95.1\% (\(t_r = 4.73 \text{ min} \)).

5-((3-acetylbenzyl)(3,4-dimethoxyphenethyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (3.17j)

Oil (50 mg, 27\%); \(R_f 0.30 \) (10\% MeOH-DCM); \(^1\text{H-NMR (400 MHz, CDCl}_3\) \(\delta \) 7.76 (1H, s, H-13), 7.71 (1H, d, \(J = 7.6 \text{ Hz, H-12} \), 7.33 (1H, d, \(J = 6.8 \text{ Hz, H-10} \), 7.27 (1H, t, \(J = 7.6 \text{ Hz, H-11} \), 6.77 (1H, dd, \(J = 8.4 \text{ and 2.0 Hz, H-2B} \), 6.73 (1H, d, \(J = 2.0 \text{ Hz, H-3B} \), 6.69 (1H, d, \(J = 2.0 \text{ Hz, H-1B} \), 6.67 (1H, d, \(J = 8.0 \text{ Hz, H-1A} \), 6.50 (2H, m, H-3A and H-2A), 3.77 (3H, s, OCH\(_3\)), 3.75 (3H, s, OCH\(_3\)), 3.74 (3H, s, OCH\(_3\)), 3.72 (3H, s, OCH\(_3\)), 3.46 (2H, s, H-9), 2.51 (4H, m, H-7 and H-8), 2.34 (2H, t, \(J = 6.4 \text{ Hz, H-6} \), 2.02-1.88 (2H, m, H-1’ and H-4), 1.78 (1H, m, H-4), 1.40 (1H, m, H-5), 1.06 (3H, d, \(J = 6.8 \text{ Hz, H-2'} \), 1.02 (1H, m, H-5), 0.80 (3H, d, \(J = 6.8 \text{ Hz, H-2'} \)); \(^{13}\text{C-NMR (101 MHz, CDCl}_3\) \(\delta \) 151.9, 151.7, 151.2, 150.3, 148.6, 135.6 (2C), 134.8, 133.4, 132.0 (2C), 124.2, 123.4, 121.7, 121.5, 115.0, 114.2, 114.0, 113.5, 112.7, 61.0, 58.9, 58.8, 58.7, 58.6, 56.2 (2C), 56.1, 40.8, 38.4, 36.0, 26.1, 21.7 and 21.5; LC-ESI-MS (+ve ion mode): 556.2 \([\text{M+H}]^+\), purity 95.1\% (\(t_r = 4.73 \text{ min} \)).
8.2 Hz, H-1B), 6.66 (1H, d, J = 8.0 Hz, H-1A), 6.51 (2H, m, H-2A and H-3A), 3.76 (3H, s, OCH$_3$), 3.74 (3H, s, OCH$_3$), 3.73 (3H, s, OCH$_3$), 3.71 (3H, s, OCH$_3$), 3.48 (2H, s, H-9), 2.53 (4H, m, H-7 and H-8), 2.48 (3H, s, H-14), 2.35 (2H, t, J = 6.4 Hz, H-6), 2.02-1.89 (2H, m, H-1’ and H-4), 1.70 (1H, m, H-4), 1.45 (1H, m, H-5), 1.10 (1H, m, H-5), 1.05 (3H, d, J = 6.8 Hz, H-2’), 0.69 (3H, d, J = 6.8 Hz, H-2’); 13C-NMR (101 MHz, CDCl$_3$) δ 200.9, 151.9, 151.7, 151.2, 150.2, 143.4, 140.0, 136.2, 135.9, 133.5, 131.2, 129.8, 124.3, 123.4, 121.5, 115.0, 114.2, 114.0, 112.7, 61.0, 58.8, 58.7, 58.6 (2C), 58.3, 56.1, 56.0, 40.8, 38.4, 35.9, 29.4, 26.1, 21.7 and 21.4; LC-ESI-MS (+ve ion mode): 573.1 [M+H]$^+$, purity 98.3% (t$_r$ = 4.37 min).

4-Cyano-4-(3,4-dimethoxy-phenyl)-heptanedioic acid dimethyl ester (3.18)

A solution of 40% methanolic Triton B (0.8 mL) was rapidly added to a stirred boiling solution of the commercially available 2-(3,4-dimethoxyphenyl)acetonitrile (1.5 g, 8.5 mmol) and methyl acrylate (2.27 g, 27.0 mmol) in tert-butyl alcohol (20 mL). The resulting reaction mixture was refluxed for 18 h. After completion of reaction (TLC), solvent was distilled off under reduced pressure and residue was dissolved in DCM (40 ml). The solution was washed with dilute HCl and water, dried with anhydrous sodium sulphate and concentrated in vacuo to obtain crude product as yellow solid. Purification by column chromatography (20% EtOAc-Hexane) afforded a white solid 2.1 g (72%). m.p. 60-62 °C; R$_f$ 0.30 (40% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 6.93 (1H, dd, J = 8.4 and 2.4 Hz, H-2), 6.85 (1H, d, J = 8.4 Hz, H-1), 6.83 (1H, d, J = 2.4 Hz, H-3), 3.88 (3H, s, OCH$_3$), 3.86 (3H, s, OCH$_3$), 3.60 (6H, s, H-8), 2.47 (2H, m, H-4 and H-5), 2.31 (2H, m, H-6 and H-7), 2.27 (2H, m, H-6 and H-7), 2.34 (2H, m, H-4 and H-5).
5-Cyano-5-(3,4-dimethoxy-phenyl)-2-oxocyclohexanecarboxylic acid methyl ester (3.19)

A solution of compound 3.18 (1.0 gram, 2.87 mmol) in dry DME was added to the suspension of NaH (60% in oil, 105 mg, 4.29 mmol) in dry DME (20 ml) under an atmosphere of nitrogen. The reaction mixture was stirred at 60 °C for one hour. After completion of reaction (TLC), cooled to room temperature (25 °C), quenched with 1M HCl (aq) solution and concentrated under reduced pressure. The crude was taken in water and acidified to pH = 3, extracted with DCM, dried over sodium sulphate and concentrated under reduced pressure. Purification was done by column chromatography at (20% EtOAc-Hexane) to obtain a white solid 0.6 g (65%). m.p 118-120 °C; Rf 0.30 (30% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl3) δ 12.40 (1H, s, OH), 7.04 (1H, dd, J = 5.6 and 2.4 Hz, H-2), 7.0 (1H, d, J = 2.4 Hz, H-3), 6.91 (1H, m, H-1), 3.95 (3H, s, OCH3), 3.92 (3H, s, OCH3), 3.81 (3H, s, H-8), 3.03 (1H, d, J = 16.0 Hz, H-4), 2.90 (1H, m, H-6), 2.69 (1H, d, J = 16.0 Hz, H-4), 2.52 (1H, m, H-6), 2.31 (1H, m, H-7), 2.21 (1H, m, H-7).

1-(3,4-Dimethoxy-phenyl)-4-oxo-cyclohexanecarbonitrile (3.20)

A suspension of 3.19 (0.3 g, 0.96 mmol) in mixture acetic acid (6.5 mL) and 10% sulphuric acid (3.5 mL) were heated to reflux for 5 h. After completion of reaction (TLC), the mixture was extracted with toluene. The extracts were washed with saturated Na2CO3 solution, water and dried over anhydrous sodium sulphate. Removal of the organic solvent in vacuo afforded a white solid, which was recrystallized from ethanol. Yield 0.15 g (60%); m.p. 109-112 °C; Rf 0.4 (40% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl3) δ 7.08 (2H, m, H-2 and H-3), 6.91 (1H, d, J = 8.4 Hz, H-1), 3.94 (3H, s, OCH3), 3.92 (3H, s, OCH3), 2.95 (2H, td, J = 14.8 and 6.0 Hz, H-4 and H-5), 2.61 (2H, m, H-6 and H-7), 2.51 (2H, m, H-6 and H-7), 2.28 (2H, td, J = 14.8 and 6.0 Hz, H-4 and H-5).
1-(3,4-Dimethoxy-phenyl)-4-[2-(3,4-dimethoxy-phenyl)-ethylamino]cyclohexanecarbonitrile (3.22)

A toluene (50 ml) solution of 3.20 (0.5 g, 1.93 mmol), homoveratrylamine (0.39 g, 2.13 mmol), and p-toluene sulfonic acid monohydrate (0.06 g) was reflux for 45 h. The water was removed from the reaction with the aid of a Dean-Stark trap. After completion of reaction (TLC), solvent was removed in vacuo and residue was dissolved in ethyl acetate, washed with water, and dried over anhydrous sodium sulphate. Evaporation of the solvent in vacuo afforded 0.75 g of 3.21 as an oil that was quite unstable and was used as such in the next reaction.

NaBH₄ (70 mg) was cautiously added to a solution of immine 3.21 (0.7 g) in hot methanol (15 ml) over 0.5 h and reflux for 2 h. After completion of reduction (TLC), reaction mixture was cooled to 0 °C, treated with a few drops of water and excess of solvent was removed in vacuo. The residue was dissolved in chloroform, washed with water, and dried over anhydrous sodium sulphate. Removal of solvent in vacuo afforded 0.5 g of crude as an oil, which was purified by column chromatography (10% MeOH-DCM) to afford 3.22 as a white solid. Yield 0.15 g (22%); m.p. 59-61 °C; Rᶠ 0.46 (10% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 7.02 (2H, m, H-2 B and H-3B), 6.88 (1H, m, H-1 B), 6.85 (1H, m, H-1A) 6.81 (2H, m, H-2A and H-3A), 3.93 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 3.90 (3H, s, OCH₃), 3.89 (3H, s, OCH₃), 2.97 (2H, t, J = 8.0 Hz, H-9), 2.82 (2H, t, J = 7.2 Hz, H-10), 2.60 (1H, tt, J = 11.2 and 3.4 Hz, H-8), 2.26 (2H, m, H-4 and H-6), 2.15 (2H, m, H-5 and H-7), 1.84 (2H, m, H-4 and H-6), 1.73 (2H, m, H-5 and H-7); ¹³C-NMR (101 MHz, CDCl₃) δ 149.2, 149.1, 148.2, 147.7, 133.2, 132.4, 122.4, 120.6, 117.4, 112.2, 111.6, 111.4, 109.4, 56.1, 56.0, 55.9 (2C), 55.8, 48.2, 43.7, 36.5 (2C), 36.2 and 30.6 (2C). LC-ESI-MS (+ve ion mode): m/z 425.2 [M+H]^⁺, 447.1 [M+Na]^⁺, 463.1 [M+K]^⁺, purity 99.1% (tₑ = 9.97 min).
NaBH₄ (0.46 g, 12.12 mmol) was added to a stirred solution of 3.23 (1.25 g, 6.06 mmol) in portions over ten minutes at room temperature (25 °C). The resulting reaction mixture was stirred for another 6 hours and monitored by TLC. After completion of reaction, ethanol was removed in vacuo and excess of NaBH₄ was quenched with saturated solution of ammonium chloride. The extraction was done with DCM (3×15 ml), dried over sodium sulphate and concentrated in vacuo to obtain 3.24 in 95% yields as white solid. m.p. 173-175 °C; Rᵣ 0.30 (30% EtOAc-Hexane); ¹H-NMR (300 MHz, CDCl₃) δ 6.95 (1H, s, H-1), 6.59 (1H, s, H-1), 4.72 (1H, t, J = 4.8 Hz, H-2), 3.88 (3H, s, OC₃H₃), 3.86 (3H, s, OC₃H₃), 2.82-2.59 (2H, m, H-5), 2.06-1.68 (4H, m, H-3 and H-4).

6,7-dimethoxy-1,2-di­hydronaphthalene (3.25)⁹

A mixture of 3.24 (1.2 g, 5.76 mmol) in toluene was heated to reflux and a few crystals of p-toluene sulfonic acid (10 mg, 0.057 mmol) was added. The resulting reaction mixture was refluxed for 1.5 hours. After completion of reaction (TLC), solvent was removed in vacuo and residue was dissolved in ethyl acetate. The solution was washed with saturated solution of sodium bicarbonate and brine. The combined extract was dried over sodium sulphate and concentrated to obtain crude product. Purification by column chromatography afforded 3.25 as an oil, yield 1.0 gram (90%). Rᵣ 0.3 (50% EtOAc-Hexane); ¹H-NMR (300 MHz, CDCl₃) δ 6.76 (1H, s, H-1), 6.66 (1H, s, H-1), 6.40 (1H, d, J = 9.6 Hz, H-2), 5.93 (1H, dt, J = 9.6 and 4.8 Hz, H-3), 3.89 (3H, s, OCH₃), 3.87 (3H, s, OCH₃), 2.99 (2H, t, J = 6.9 Hz, H-5), 2.60-2.51 (2H, m, H-4).
1-hydroxy-6,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl 3-chlorobenzoate (3.26)*

\[\text{C}_{19}\text{H}_{15}\text{ClO}_5 \quad \text{Ex. Mass: 362.09} \]

\(m \text{CPBA} \) (1.0 g, 5.79 mmol) was added to a solution of 3.25 (1.0 g, 5.26 mmol) in DCM and saturated solution of NaHCO\(_3\) at 0 °C over 10 minutes in portions. The resulting reaction mixture was stirred at 0 °C for another 10 minutes, and then transferred to room temperature (25 °C) and stirred for another 2.5 hours. After completion of reaction (TLC), DCM layer was washed with saturated solution of sodium carbonated, dried over sodium sulphate and concentrated to obtain 3.26 as yellow solid in 75% yield. \(R_f \) 0.50 (50% EtOAc-Hexane); \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta \) 8.04 (1H, m, H-6), 7.97 (1H, m, H-7), 7.55 (1H, m, H-9), 7.41 (1H, m, H-8), 6.67 (2H, m, H-1), 4.23 (1H, m, H-3), 3.89 (3H, s, OCH\(_3\)), 3.84 (3H, s, OCH\(_3\)), 3.10-2.76 (2H, m, H-5), 2.31-1.90 (2H, m, H-4).

6,7-dimethoxy-3,4-dihydronaphthalen-2(1H)-one (3.28)*

\[\text{C}_{12}\text{H}_{14}\text{O}_3 \quad \text{Ex. Mass: 206.09} \]

A mixture of solutions of 3.26 in methanol and excess of aqueous NaOH (2M) was refluxed for 10 hour. After completion of reaction (TLC), methanol was removed \textit{in vacuo} and organic content were extracted with ethyl acetate. The combined EtOAc extracts were dried over sodium sulphate and concentrated \textit{in vacuo} to obtain 3.27. The crude product was used in next step without further purification.

Boron(III) fluoride etherate (2 drops) was added to a solution of diol 3.27 in ether (3 mL). The solution was stirred at 30 °C for 20 min, washed with water and dried over magnesium sulphate and concentrated. Purification by column chromatography afforded 3.28 (55%); \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta \) 6.76 (1H, s, H-1), 6.64 (1H, s, H-1), 3.90 (3H, s, OCH\(_3\)), 3.88 (3H, s, OCH\(_3\)), 3.53 (2H, s, H-2), 3.03 (2H, t, \(J = 6.6 \) Hz, H-4), 2.58 (2H, t, \(J = 6.3 \) Hz, H-3).
6,7-dimethoxy-N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine (3.29)

Compounds 3.29 was added to a solution of methyl amine in methonal and acetic acid. The reaction mixture was stirred for 15 minute followed with the addition of Sodium cyanotrihydroborate in portions under an atmosphere of nitrogen. After completion of addition, reaction was further stirred at room temperature (25 °C) for 16 hours. After completion of reaction (TLC), solvent was removed in vacuo and residue was acidified with 1M HCl and extracted with diethyl ether. The aqueous layer was basified with Na₂CO₃ and extracted with DCM. The combined DCM layers were dried over sodium sulphate and concentrated to obtain 3.29 as an oil (0.30 g, 55%); \(R_f \) 0.30 (10% MeOH-DCM); \(^1\text{H-NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta 6.61 (1\text{H, s, H-1}), 6.54 (1\text{H, s, H-1}), 3.83 (3\text{H, s, OCH}_3), 3.82 (3\text{H, s, OCH}_3), 2.92 (3\text{H, s, H-6}), 2.80-1.80 (7\text{H, m, H-2, H-3, H-4 and H-5}).

2-(3,4-dimethoxyphenyl)-2-isopropylpent-4-ynenitrile (3.30)\(^1\text{I}\)

The general method 1 was adopted using 3.7a (0.5 g, 2.28 mmol) and propargyl bromide (0.5 ml of 80% in toluene, 2.28 mmol) to obtain 3.30 as an oil (0.35 g, 60%). \(R_f \) 0.20 (10% EtOAc-Hexane); \(^1\text{H-NMR} (300 \text{ MHz, CDCl}_3) \delta 7.05 (1\text{H, dd, } J = 8.0 \text{ and } 2.0 \text{ Hz, H-2}), 6.84 (2\text{H, m, H-1 and H-3}), 3.91 (3\text{H, br s, OCH}_3), 3.89 (3\text{H, s, OCH}_3), 2.91 (1\text{H, m, H-5}), 2.38 (1\text{H, m, H-1'}), 2.08 (2\text{H, m, H-4}), 1.21 (3\text{H, d, } J = 6.6 \text{ Hz, H-2'}), 0.89 (3\text{H, d, } J = 6.6 \text{ Hz, H-2'}).

6-((6,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-2-yl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylhex-4-ynenitrile (EDP42)\(^1\text{I}\)

A solution of formaldehyde (0.035 ml of 40% in water, 0.46 mmol), 3.30 (0.11 g, 0.42 mmol) and CuSO₄ (0.01 g) was added to a
solution of 3.29 (0.12 g, 0.53 mmol) in mixture of ethanol and water (1:1). The pH of the solution was adjusted to 8 with 50% sulphuric acid. The resulting reaction mixture was refluxed for 24 hours. After completion of reaction (TLC), quenched with 5 ml of saturated NH₄OH and extracted with DCM. The combined DCM layer were dried over sodium sulphate and concentrated to afford crude EDP42. Purification was done by column chromatography at 1-2% MeOH-DCM to obtain EDP42 as an oil. Yield (40 mg, 20%); Rf 0.60 (10% MeOH-Hexane); ¹H-NMR (400 MHz, CDCl₃) δ 7.05 (1H, m, H-1), 6.84 (1H, d, J = 2.0 Hz, H-3), 6.73 (1H, dd, J = 8.0 and 2.4 Hz, H-2), 6.60 (2H, two doublets, J = 2.0 Hz, H-11), 3.89 (3H, s, OCH₃), 3.87 (3H, s, OCH₃), 3.86 (3H, s, OCH₃), 3.83 (3H, s, OCH₃), 3.45 (2H, s, H-5), 3.10-2.51 (7H, H-8, H-7 and H-4 and H-10), 2.31 (3H, d, J = 14.0, H-6), 2.27 (1H, m, H-1’), 2.06 (1H, m, H-9), 1.55 (1H, m, H-9), 1.20 (3H, J = 6.8 Hz, H-2’), 0.84 (3H, J = 6.4 Hz, H-2’); ¹³C-NMR (101 MHz, CDCl₃) δ 149.0, 148.7, 147.3, 147.2, 130.1, 127.9, 126.9, 120.9, 119.1, 112.3, 111.5, 111.0, 110.8, 80.7, 78.9, 57.6, 56.0, 55.9, 55.8, 52.7, 43.4, 38.8, 38.7, 36.5, 32.9, 29.7, 29.2, 28.1, 26.6, 18.8 and 18.5; LC-ESI-MS (+ve ion mode): m/z 491.3 [M+H]^+, purity 98.2% (tᵣ = 4.078 min).
7.1.4.2 Reversed anti-TB agents

General procedure 9: Procedure for the synthesis of compound 4.2(a and b)

1-bromo-3-chloropropane (30.15 mmol) and NaH (30.15 mmol) was added to a solution of compound 4.1 (25.1 mmol) in anhydrous DMF (10 ml). The resulting reaction mixture was stirred at room temperature (25 °C) for 12 hours. After completion of reaction (TLC), DMF was removed *in vacuo* and the residue was taken in EtOAc (30 ml). The organic phase was washed with brine (3×20 ml), dried over anhydrous sodium sulphate and concentrated *in vacuo*. Purification by flash chromatography on silica gel using EtOAc-Hexane as eluent afforded product 4.2a and 4.2b.

10-(3-chloropropyl)-10H-phenothiazine (4.2a)

White solid (4.5 g, 63%); m.p. 61-63 °C; R_f 0.60 (10% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl₃) δ 7.20 (4H, m, H-2 and H-3), 6.98 (2H, dd, J = 7.2 and 1.2 Hz, H-4), 6.94 (2H, dd, J = 7.2 and 1.2 Hz, H-1), 4.12 (2H, t, J = 6.8 Hz, H-5), 3.70 (2H, t, J = 6.8 Hz, H-7), 2.27 (2H, quin, J = 6.4 Hz, H-6).

2-chloro-10-(3-chloropropyl)-10H-phenothiazine (4.2b)

White solid (4.95 g, 75%); m.p. 66-68 °C; R_f 0.50 (10% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl₃) δ 7.20 (2H, m, H-1 and H-3), 7.07 (1H, d, J = 8.0 Hz, H-1’), 6.99 (1H, td, J = 7.6 and 0.8 Hz, H-2), 6.93 (2H, dd, J = 8.4 and 2.4 Hz, H-4 and H-2’), 6.85 (1H, d, J = 2.0 Hz, H-4’), 4.08 (2H, t, J = 6.4 Hz, H-5), 3.69 (2H, t, J = 6.0 Hz, H-7), 2.27 (2H, quin, J = 6.4 Hz, H-6).
5-(3-chloropropyl)-10,11-dihydro-5H-dibenzo[b,f]azepine (4.2c)12

A solution of azapine (1.0 g, 5.12 mmol) in dry toluene was added to the suspension of sodium amide (0.5 g, 12.80 mmol) in dry toluene. After stirring at room temperature (25 °C) for 30 minutes, 1-bromo-3-chloropropane (0.94 g, 1.23 ml, 10.14 mmol) was added drop-wise to the reaction mixture. The resulting reaction mixture was further stirred for another 24 hours at room temperature (25 °C). After completion of reaction (TLC), cooled to 0 °C, quenched with brine and extracted with ethyl acetate (3 × 15 ml). The combined ethylacetate extracts were dried over sodium sulphate and concentrated \textit{in vacuo} to obtain \textbf{4.2c} as an oil (0.83 g, 60%). \(R_f\) 0.65 (5% EtOAc-Hexane); \(^1\)H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.22-7.10 (6H, m, H-1, H-3 and H-4), 6.99 (2H, td, \(J = 7.6\) and 1.2 Hz, H-2), 3.96 (2H, t, \(J = 6.4\) Hz, H-5), 3.62 (2H, t, \(J = 6.4\) Hz, H-7), 3.21 (4H, s, H-8 and H-9), 2.27 (2H, quin, \(J = 6.4\) Hz, H-6).

General procedure 10: Procedure for the synthesis of target compound 4.3

NaH (3.87 mmol) was added to a cooled solution (0 °C) of compound \textbf{4.2} (3.22 mmol) and isoniazid (3.87 mmol) in anhydrous DMF (3 ml). The resulting reaction mixture was stirred at room temperature (25 °C) for 24 h. After completion of reaction (TLC), DMF was removed \textit{in vacuo} and the residue was taken in EtOAc (25 ml). The organic phase was washed with brine (3×15 ml), dried over anhydrous sodium sulphate and concentrated \textit{in vacuo}. Purification by flash chromatography on silica gel using MeOH-DCM as eluent afforded product \textbf{4.3}.

\textit{N’-(3-(10H-phenothiazin-10-yl)propyl)isonicotinohydrazide} (4.3a)

Oil (0.24 g, 18%); \(R_f\) 0.20 (5% MeOH-DCM); \(^1\)H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.71 (2H, d, \(J = 6.0\) Hz, H-9), 7.45 (2H, d, \(J = 6.4\) Hz, H-8), 7.19 (4H, m, H-2 and H-3), 6.98 (2H, dd, \(J = 7.2\) and 1.2 Hz, H-1), 6.94 (2H, dd, \(J = 7.2\) and 1.2 Hz, H-4), 4.08 (2H, t, \(J = 6.4\) Hz, H-5), 3.13 (2H, t, \(J = 6.4\) Hz, H-7), 2.06 (2H, m, H-6); \(^{13}\)C-NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 165.2, 150.2 (2C), 145.2 (2C), 140.1, 127.7 (2C), 127.4 (2C),
125.5 (2C), 122.8 (2C), 120.8 (2C), 115.7 (2C), 49.6, 44.7 and 25.3; LRMS (EI): \(m/z \) 377.32 [M+H]^+; HPLC purity 96% (\(t_r = 13.77 \)).

\[N'-(3-(2-chloro-10H-phenothiazin-10-yl)propyl)isonicotinohydrazide \ (4.3b) \]

\[
\begin{align*}
\text{Oil (0.32 g, 24%); } & R_f 0.20 (5\% \text{ MeOH-DCM}); \quad ^1\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta 8.70 (2H, d, J = 6.0 Hz, H-9), 7.44 (2H, d, J = 6.0 Hz, H-8), 7.16 (2H, m, H-1 and H-3), 7.02 (1H, d, J = 8.0 Hz, H-1'), 6.92 (1H, td, J = 7.6 and 0.8 Hz, H-2), 6.89 (2H, dd, J = 8.4 and 2.4 Hz, H-4 and H-2'), 6.83 (1H, d, J = 2.0 Hz, H-4'), 4.01 (2H, t, J = 6.4 Hz, H-5), 3.09 (2H, t, J = 6.4 Hz, H-7), 2.03 (2H, quin, J = 6.4 Hz, H-6). \quad ^{13}\text{C-NMR (101 MHz, CDCl}_3\text{)} \delta 165.1, 150.5 (2C), 144.9 (2C), 142.1, 133.4, 128.5, 127.9 (2C), 125.9, 123.8 (2C), 120.8 (3C), 115.6 (2C), 49.5, 44.6 and 25.1; LRMS (EI): \(m/z \) 411.54 [M+H]^+; HPLC purity 96% (\(t_r = 17.00 \)).
\end{align*}
\]

\[N'-(3-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)propyl)isonicotinohydrazide \ (4.3c) \]

\[
\begin{align*}
\text{Oil (0.11 g, 15%); } & R_f 0.65 (5\% \text{ EtOAc-Hexane}); \quad ^1\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta 7.16 - 7.08 (4H, m, H-2 and H-3), 7.60 (2H, d, J = 7.2 Hz, H-1), 6.99 (2H, m, H-4), 3.88 (2H, t, J = 6.8 Hz, H-5), 2.99 (2H, t, J = 6.4 Hz, H-7), 3.12 (4H, s, H-8 and H-9), 2.27 (2H, quin, J = 6.8, Hz, H-6); \quad ^{13}\text{C-NMR (101 MHz, CDCl}_3\text{)} \delta 165.1, 149.4 (2C), 147.3, 140.6, 134.1, 129.4, 126.1, 122.2, 121.4, 119.6, 49.0 (2C), 31.9 (2C), 26.0; \quad \text{LC-ESI-MS (+ve ion mode) : } m/z 373.1 [M+H]^+, \text{ purity 95.1\% (} t_r = 4.73 \text{ min).}
\end{align*}
\]
N',N'-bis(3-(10H-phenothiazin-10-yl)propyl)isonicotinohydrazide (4.4a)

Oil (0.30 g, 27%); R_f 0.45 (5% MeOH-DCM); ^1H NMR (400 MHz, CDCl_3) δ 8.64 (2H, d, J = 6.0 Hz, H-9), 7.30 (2H, d, J = 6.4 Hz, H-8), 7.11 (8H, m, H-2 and H-3), 6.87 (2H, dd, J = 7.2 and 1.2 Hz, H-1), 6.83 (4H, dd, J = 7.2 and 1.2 Hz, H-4), 4.08 (4H, t, J = 6.4 Hz, H-5), 3.13 (4H, t, J = 6.4 Hz, H-7), 2.06 (4H, m, H-6); ^13C-NMR (101 MHz, CDCl_3) δ 165.0, 150.1 (2C), 145.2 (4C), 140.8 (2C), 127.7 (4C), 127.3 (4C), 125.1 (4C), 122.5 (4C), 120.9 (2C), 115.9 (2C), 55.6 (2C), 44.4 (2C) and 24.5 (2C); LRMS: m/z 615.90 [M]^+; HPLC purity 94.3% (t_r = 13.18).

N',N'-bis(3-(2-chloro-10H-phenothiazin-10-yl)propyl)isonicotinohydrazide (4.4b)

Oil (0.14 g, 26%); R_f 0.20 (5% MeOH-DCM); ^1H NMR (400 MHz, CDCl_3) δ 8.64 (2H, d, J = 6.0 Hz, H-9), 7.38 (2H, d, J = 6.0 Hz, H-8), 7.13 (4H, m, H-1 and H-3), 6.95 (2H, d, J = 8.0 Hz, H-1'), 6.90 (2H, td, J = 7.6 and 0.8 Hz, H-2), 6.87 (4H, dd, J = 8.4 and 2.4 Hz, H-4 and H-2'), 6.80 (2H, d, J = 2.0 Hz, H-4'), 3.91 (4H, t, J = 6.4 Hz, H-5), 2.99 (4H, t, J = 6.4 Hz, H-7), 1.88 (4H, m, H-6); ^13C NMR (101 MHz, CDCl_3) δ 164.8, 149.9 (2C), 146.4 (4C), 144.5 (2C), 140.9 (2C), 133.3 (2C), 127.9 (4C), 127.6 (2C), 125.9 (2C), 123.8 (4C), 120.8 (2C), 115.6 (2C), 55.4 (2C), 44.4 (2C) and 24.5 (2C); LRMS: m/z 684.1 [M]^+; HPLC purity 98.2% (t_r = 15.65).

General Procedure 11: Procedure for the synthesis of 4.5

1-Amino-3-propanol (4.77 mmol) was added to a solution of 4.2 (3.21 mmol) and potassium carbonate (4.26 mmol) in DMF (5 ml). The reaction mixture was stirred at 80 °C for 10 hours. After completion of reaction (TLC), DMF was evaporated under reduced pressure and residue was taken in ethyl acetate. The organic layer was washed with water (20 ml × 5),
dried over sodium sulphate and concentrated. The crude product was purified by biotage flash column chromatography using 1-10% methanol in DCM as eluent to afford 4.5.

3-((3-(10H-phenothiazin-10-yl)propyl)amino)propan-1-ol (4.5a)

White solid (0.64 g, 65%); m.p. 100-103 °C; Rf 0.20 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl3) δ 7.19 (4H, m, H-1 and H-3), 6.95 (2H, td, J = 7.6 and 1.2 Hz, H-2), 6.91 (2H, dd, J = 8.4 and 1.2 Hz, H-4), 3.98 (2H, t, J = 6.8 Hz, H-5), 3.73 (2H, t, J = 5.2 Hz, H-10), 2.84 (2H, t, J = 5.6 Hz, H-8), 2.81 (2H, t, J = 6.8 Hz, H-7), 2.04 (2H, quin, J = 6.8 Hz, H-6), 1.70 (2H, quin, J = 5.6 Hz, H-9); 13C-NMR (101 MHz, CDCl3) δ 145.0 (2C), 127.6 (2C), 127.4 (2C), 125.6 (2C), 122.7 (2C), 115.7 (2C), 63.3, 49.2, 47.1, 45.9, 30.3 and 26.4; LC-ESI-MS (+ve ion mode): m/z 315.1 [M+H]+.

3-((3-(2-chloro-10H-phenothiazin-10-yl)propyl)amino)propan-1-ol (4.5b)

White solid (0.77 g, 68%); m.p. 61-64 °C; Rf 0.20 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl3) δ 7.15 (2H, m, H-1 and H-3), 7.05 (1H, d, J = 8.4 Hz, H-1’), 6.95 (1H, td, J = 7.6 and 1.2 Hz, H-2), 6.90 (1H, dd, J = 8.4 and 2.0 Hz, H-4), 6.88 (1H, dd, J = 8.4 and 1.2 Hz, H-2’), 6.85 (1H, d, J = 2.0 Hz, H-4’), 3.93 (2H, t, J = 6.8 Hz, H-5), 3.73 (2H, t, J = 5.6 Hz, H-10), 2.82 (2H, t, J = 6.0 Hz, H-8), 2.81 (2H, t, J = 6.8 Hz, H-7), 2.04 (2H, quin, J = 6.0 Hz, H-6), 1.70 (2H, quin, J = 5.6 Hz, H-9). 13C NMR (101 MHz, CDCl3) δ 146.6, 144.5, 133.2, 128.1, 127.7 (2C), 127.6, 125.2, 124.1, 123.1, 122.5, 116.0, 63.5, 49.4, 47.0, 45.3, 30.5 and 26.5; LC-ESI-MS (+ve ion mode): m/z 349.4 [M+H]+, 350.1 [M+1+H]+ and 351.1 [M+2+H]+.

General Procedure 12: Procedure for the synthesis of 4.6

Di-tert-butyl dicarbonate anhydride (1.83 mmol) was added in portions over 3-5 minute to a solution of compound 4.5 (1.44 mmol) and triethylamine (1.73 mmol) in DCM at 0 °C. After
completion of addition, the reaction mixture was stirred at room temperature (25 °C) and monitored by TLC. After completion of reaction, quenched with water and extracted with ethyl acetate, dried over sodium sulphate and concentrated to obtain 4.6.

tert-butyl (3-(10H-phenothiazin-10-yl)propyl)(3-hydroxypropyl)carbamate (4.6a)

![Chemical structure of 4.6a](image)

Oil (0.75 g, 95%); Rf 0.60 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl3) δ 7.17 (4H, m, H-1 and H-3), 6.93 (2H, m, H-2), 6.91 (2H, d, J = 8.0 Hz, H-4), 3.90 (2H, t, J = 7.2 Hz, H-5), 3.73 (2H, t, J = 5.6 Hz, H-10), 3.25 (4H, m, H-8 and H-7), 2.04 (2H, quin, J = 6.8 Hz, H-6), 1.57 (2H, m, H-9), 1.41 (9H, s, Boc). 13C-NMR (101 MHz, CDCl3) δ 156.8, 145.2 (2C), 127.7 (2C), 127.2 (2C), 126.2 (2C), 122.1 (2C), 115.7 (2C), 80.1, 58.3, 44.6 (2C), 43.1, 30.5, 28.3 (3C) and 25.8; LC-ESI-MS (+ve ion mode): m/z 415.2 [M+H]+.

tert-butyl (3-(2-chloro-10H-phenothiazin-10-yl)propyl)(3-hydroxypropyl)carbamate (4.6b)

![Chemical structure of 4.6b](image)

Oil (60.0 g, 93%); Rf 0.60 (10% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 7.26 (1H, td, J = 8.0 and 1.6 Hz, H-3), 7.20 (1H, dd, J = 7.6 and 1.6 Hz, H-1), 7.11 (1H, d, J = 8.0 Hz, H-1'), 7.0 (3H, m, H-2, H-4 and H-4'), 6.97 (1H, dd, J = 8.4 and 1.2 Hz, H-2'), 3.94 (2H, t, J = 6.8 Hz, H-5), 3.50 (2H, t, J = 6.4 Hz, H-10), 3.32 (2H, t, J = 6.4 Hz, H-8), 3.23 (2H, t, J = 7.2 Hz, H-7), 2.04 (2H, quin, J = 7.2 Hz, H-6), 1.70 (2H, quin, J = 6.8 Hz, H-9), 1.41 (s, 9H, Boc). 13C-NMR (101 MHz, CD3OD) δ 154.4, 145.6, 143.4, 131.8, 126.3 (2C), 125.9 (2C), 125.7, 121.5, 120.7, 114.6, 114.3, 78.3, 57.6, 43.3, 42.9 (2C), 28.3, 25.9 (3C) and 25.8; LC-ESI-MS (+ve ion mode): m/z 449.2 [M+H]+, 450.2 [M+1+H]+ and 451.2 [M+2+H]+.

General Procedure 13: Procedure for the synthesis of 4.7

A solution of 4.6 (1.23 mmol) in DCM was charged with triphenyl phosphine (1.84 mmol) and carbon tetrabromomethane (1.84 mmol). The reaction mixture was stirred at room temperature (25 °C) for 6 hour. After completion of reaction (TLC), quenched with water and
extracted with DCM. The combine DCM layer was dried over anhydrous sodium sulphate and concentrated in vacuo. The crude product was purified by column chromatography using 20-40% ethyl acetate in hexane as eluent.

4.7a

tert-butyl (3-(10H-phenothiazin-10-yl)propyl)(3-bromopropyl)carbamate

Oil (0.53 g, 83%); R_f 0.6 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 7.17 (4H, m, H-1 and H-3), 6.93 (2H, m, H-2), 6.91 (2H, d, J = 8.0 Hz, H-4), 3.91 (2H, t, J = 6.8 Hz, H-5), 3.31 (4H, m, H-8 and H-10), 3.21 (2H, t, J = 6.8 Hz, H-7), 2.06 (2H, quin, J = 6.8 Hz, H-6), 1.57 (2H, quin, J = 6.8 Hz, H-9), 1.43 (9H, s, Boc). 13C-NMR (101 MHz, CDCl$_3$) δ 156.6, 144.6 (2C), 127.6 (2C), 127.3 (2C), 125.7 (2C), 122.8 (2C), 115.8 (2C), 79.7, 46.3, 45.1, 44.7, 31.6, 30.6, 28.4 (3C) and 25.9; LC-ESI-MS (+ve ion mode): m/z 477.5 [M+H]$^+$.

4.7b

tert-butyl(3-bromopropyl)(3-(2-chloro-10H-phenothiazin-10-yl)propyl)carbamate

Oil (0.55 g, 88%); R_f 0.6 (10% MeOH-DCM); 1H-NMR (400 MHz, CD$_3$OD) δ 7.20 (1H, td, J = 8.0 and 1.6 Hz, H-3), 7.19 (1H, dd, J = 7.6 and 1.6 Hz, H-1), 7.11 (1H, d, J = 8.0 Hz, H-1$'$), 7.0 (3H, m, H-2, H-4 and H-4$'$), 6.97 (1H, dd, J = 8.4 and 1.2 Hz, H-2$'$), 3.94 (2H, t, J = 6.4 Hz, H-5), 3.50 (2H, t, J = 6.4 Hz, H-10), 3.32 (2H, t, J = 6.4 Hz, H-8), 3.23 (2H, t, J = 7.2 Hz, H-7), 2.04 (2H, quin, J = 7.2 Hz, H-6), 1.70 (2H, quin, J = 6.8 Hz, H-9), 1.41 (9H, s, Boc); 13C-NMR (101 MHz, CD$_3$OD) δ 154.4, 145.6, 143.4, 131.8, 126.3 (2C), 125.9 (2C), 125.7, 121.5, 120.7, 114.6, 114.3, 78.3, 57.6, 43.3, 42.9 (2C), 28.3, 25.9 (3C) and 25.8; LC-ESI-MS (+ve ion mode): m/z 511.1 [M+H]$^+$.

General Procedure 14: Procedure for the synthesis of 4.8

A solution of compound 4.7 (0.3 g, 0.628 mmol) in DMF (1 ml) was added to a mixture of isoniazid and triethylamine under an atmosphere of nitrogen at room temperature (25 °C). The reaction mixture was continuously stirred for an additional hour, after which it was
heated to 55 °C and stirred for another 6 hours. After completion of reaction (TLC), DMF was removed in vacuo, dried over sodium sulphate and concentrated in vacuo. The crude product was purified by biotage flash chromatography.

tert-butyl (3-(10H-phenothiazin-10-yl)propyl)(3-isonicotinoylhydrazinyl)propyl) carbamate (4.8a)

White solid (0.18 g, 35%); m.p. 55-58 °C; Rf 0.35 (10% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 8.67 (2H, d, J = 6.0 Hz, H-12), 7.73 (2H, d, J = 6.4 Hz, H-11), 7.18 (2H, td, J = 7.2 and 1.6 Hz, H-3), 7.12 (2H, dd, J = 7.6 and 1.2 Hz, H-1), 6.96 (2H, dd, J = 7.6 and 0.8 Hz, H-4), 6.95 (2H, td, J = 7.2 and 1.2 Hz, H-2), 3.90 (2H, t, J = 6.4 Hz, H-5), 3.35 (2H, t, J = 7.2 Hz, H-8), 2.81 (2H, t, J = 7.2 Hz, H-7), 2.78 (2H, t, J = 6.8 Hz, H-10), 2.01 (2H, quin, J = 6.4 Hz, H-6), 1.80 (2H, quin, J = 7.2 Hz, H-9), 1.40 (9H, bs, Boc); 13C-NMR (101 MHz, CD3OD) δ 164.5 (2C), 156.1, 149.6 (2C), 145.4, 141.3, 127.1 (2C), 126.9 (2C), 122.6 (2C), 121.7 (2C), 121.4, 115.7 (2C), 79.8, 48.5, 44.6 (2C), 44.0, 27.3 (3C), 26.5 and 26.4; LC-ESI-MS (+ve ion mode): m/z 534.2 [M+H]⁺.

tert-butyl(3-(2-chloro-10H-phenothiazin-10-yl)propyl)(3-(2-isonicotinoylhydrazinyl)propyl)carbamate (4.8b)

White solid (0.15 g, 30%); m.p. 62-64 °C; Rf 0.40 (10% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 7.20 (1H, td, J = 7.6 and 2.0 Hz, H-3), 7.18 (1H, dd, J = 8.0 and 1.6 Hz, H-1), 7.13 (1H, d, J = 8.0 Hz, H-1’), 7.01 (3H, m, H-2, H-4 and H-3’), 6.99 (1H, dd, J = 8.0 and 1.6 Hz, H-2’), 3.93 (2H, t, J = 6.8 Hz, H-5), 3.33 (2H, t, J = 7.2 Hz, H-7), 2.84 (2H, t, J = 7.2 Hz, H-8), 2.80 (2H, t, J = 6.4 Hz, H-10), 2.07 (2H, quin, J = 6.4 Hz, H-6), 1.70 (2H, quin, J = 7.2 Hz, H-9), 1.36 (9H, bs, Boc); 13C-NMR (101 MHz, CD3OD) δ 165.2, 156.5, 148.3 (2C), 145.3, 142.9, 139.1, 132.1, 126.2, 126.1, 126.0, 124.1,
123.3, 121.8, 121.0, 120.1 (2C), 114.8 and 114.7, 79.5, 48.4, 44.2 (2C), 44.0, 27.1 (3C), 26.5 and 26.4; LC-ESI-MS (+ve ion mode): m/z 568.1 [M+H]$^+$ and 570.1 [M+2+H]$^+$.

General Procedure 15: Procedure for the synthesis of 4.10

10 ml of a 10% mixture of TFA in DCM by volume was added to compound 4.8 (0.94 mmol) in a round bottom flask and stirred at room temperature (25 °C) for one hour. After completion of reaction (TLC), excess of TFA was removed *in vacuo* and residue was dissolved in 10% MeOH in DCM. The amberlyst A-21 was added to scavenger the residual TFA and stirred for one hour, after which reaction mixture was filtered through the bed of celite silica and washed with a 20% mixture of methanol in DCM. The combined organic layer was concentrated under reduced pressure to obtain 4.10.

N’-(3-((3-(10H-phenothiazin-10-yl)propyl)amino)propyl)isonicotinohydrazide (4.10a)

White solid (0.40 g, 66%); m.p. 48-50 °C; R$_f$ 0.50 (10% MeOH-DCM); 1H-NMR (400 MHz, DMSO-d_6) δ 10.30 (1H, s, NH), 8.70 (2H, d, $J = 5.2$ Hz, H-12), 7.73 (2H, d, $J = 6.0$ Hz, H-11), 7.18 (4H, m, H-1 and H-3), 6.96 (2H, d, $J = 8.0$ Hz, H-4), 6.95 (2H, t, $J = 6.8$ Hz, H-2), 3.91 (2H, t, $J = 6.8$ Hz, H-5), 3.01 (4H, m, H-7 and H-8), 2.89 (2H, t, $J = 6.0$ Hz, H-10), 2.04 (2H, quin, $J = 7.2$ Hz, H-6), 1.70 (2H, quin, $J = 6.8$ Hz, H-9); 13C-NMR (101 MHz, DMSO-d_6) δ 164.3, 150.2 (2C), 144.5 (2C), 140.0, 127.6 (2C), 127.2 (2C), 124.2 (2C), 122.7 (2C), 121.2 (2C), 115.9 (2C), 48.4, 45.8, 44.7, 43.6, 23.7 and 23.3; LC-ESI-MS (+ve ion mode): m/z 434.2 [M+H]$^+$, purity 99% (t$_r$ = 3.969 min).
N’-(3-((3-(2-chloro-10H-phenothiazin-10-yl)propyl)amino)propyl)isonicotinohydrazide (4.10b)

White solid (0.37 g, 83%); m.p. 61-64 °C; R$_f$ 0.20 (10% MeOH-DCM); 1H-NMR (400 MHz, CD$_3$OD) δ 8.74 (2H, dd, J = 6.4 and 2.0 Hz, H-12), 7.74 (2H, dd, J = 6.4 and 1.6 Hz, H-11), 7.15 (2H, m, H-1 and H-3), 7.05 (1H, d, J = 8.0 Hz, H-1’), 6.90 (2H, m, H-4 and H-4’), 6.95 (1H, td, J = 7.6 and 1.2 Hz, H-2), 6.88 (1H, dd, J = 8.4 and 2.0 Hz, H-2’), 4.18 (2H, t, J = 6.4 Hz, H-5), 3.22 (4H, m, H-7 and H-8), 3.09 (2H, t, J = 6.0 Hz, H-10), 2.04 (2H, quin, J = 6.4 Hz, H-6), 1.70 (2H, quin, J = 6.0 Hz, H-9); 13C-NMR (101 MHz, CD$_3$OD) δ 165.1, 148.3 (2C), 145.7, 142.9, 139.2, 132.1, 126.5, 126.1, 125.9, 124.4, 123.3, 121.9, 121.0, 120.1 (2C), 114.8, 114.7, 49.3, 44.1, 42.4 (2C), 22.9 and 21.9; LC-ESI-MS (+ve ion mode): m/z 468.1 [M+H]$^+$, 469.1 [M+1+H]$^+$ and 470.1 [M+2+H]$^+$, purity 97.1% (t$_r$ = 3.545 min.).

tert-butyl 4-((methylsulfonyl)oxy)piperidine-1-carboxylate (4.13)

Di-tert-butyl dicarbonate anhydride (12.83 mmol) was added in portions to a solution of triethylamine (1.30 g, 1.80 ml, 12.83 mmol) and 4-hydroxypiperidine 4.11 (9.88 mmol) in DCM (15 ml) at 0 °C. After completion of addition, the reaction mixture was warmed to room temperature (25 °C) and stirred for one hour. After completion of reaction (TLC), quenched with water and extracted with dichloromethane, dried over sodium sulphate and concentrated under reduced pressure to obtain 4.12 as white solid which was used in the next step without further purification.

Methanesulfonyl chloride (0.85 g, 0.58 ml, 7.44 mmol) was added drop-wise to a solution of tert-Butyl 4-hydroxypiperidine-1-carboxylate 4.12 (1.25 g, 6.21 mmol) and triethylamine (0.75 g, 1.10 ml, 7.41 mmol) in DCM at 0 °C. After completion of addition, the reaction mixture was stirred at room temperature (25 °C) for 1 hour. After completion of reaction
(TLC), the reaction was quenched with water and extracted with DCM. The combined DCM layer was washed with brine, dried over sodium sulphate and concentrated in vacuo to obtain 4.13 as light yellow solid (1.34 g, 97%). \(R_f 0.70 \) (5% MeOH-DCM), m.p. 193-195 °C; \(^1H \)-NMR (400 MHz, CD$_2$OD) \(\delta 4.80 \) (1H, m, H-3), 3.62-3.23 (4H, m, H-1), 2.96 (3H, s, H-4), 1.88-1.39 (4H, m, H-2), 1.39 (9H, s, Boc).

General procedure 16: Procedure for the synthesis of 4.14

Phenothiazine 4.1 (6.54 mmol) was added to the suspension of NaH (7.21 mmol) in DMSO under an atmosphere of nitrogen. The mixture was stirred at room temperature (25 °C) for ten minutes, then at 70 °C for 50 minutes. A solution of compound 4.13 (7.21 mmol) in DMSO (5 ml) was added to the reaction mixture at 70 °C. The resulting reaction mixture was then stirred at 100 °C under an atmosphere of nitrogen for 18 hours, however reaction did not go to completion. After 18 hours, the reaction mixture was diluted with DCM, washed with 1N NaOH (2 × 5ml), dried over sodium sulphate and concentrated in vacuo. Purification was done by column chromatography at 2% DCM in Hexane as eluent to afford 4.14.

tert-butyl 4-(10H-phenothiazin-10-yl)piperidine-1-carboxylate (4.14a)

- Pink solid (0.75 g, 30%); m.p. 120-122 °C; \(R_f 0.50 \) (20% EtOAc-Hexane);
- \(^1H \)-NMR (400 MHz, CD$_2$OD) \(\delta 7.19 \) (2H, dd, \(J = 1.6 \) and 6.8 Hz, H-7), 7.18 (2H, m, H-6), 7.15 (2H, m, H-5), 7.03 (2H, m, H-4'), 4.08 (2H, dt, \(J = 12.8 \) and 4.4 Hz, H$_{e-1}$), 4.90 (1H, tt, \(J = 11.2 \) and 3.6 Hz, H-3), 2.90 (2H, m, H$_{a-1}$), 2.09 (2H, bd, \(J = 12.8 \) Hz, H$_{e-2}$), 1.98 (2H, qd, \(J = 12.8 \) and 4.4 Hz, H$_{e-2}$), 1.91 (9H, s, Boc).
- \(^13C \)-NMR (101 MHz, CD$_2$OD) \(\delta 153.9, 144.4 \) (2C), 128.1 (2C), 125.4 (4C), 122.0 (2C), 120.8 (2C), 78.0, 61.5, 41.3 (2C), 30.5 (3C) and 30.0 (2C); LC-ESI-MS (+ve ion mode): \(m/z 383.2 \) [M+H]$^+$ and 283.2 [M-Boc+ H].

tert-butyl 4-(2-chloro-10H-phenothiazin-10-yl)piperidine-1-carboxylate (4.14b)

- White Solid (0.90 g, 32%); m.p. 157-158 °C; \(R_f 0.20 \) (10% DCM-Hexane);
- \(^1H \)-NMR (400 MHz, CDCl$_3$) \(\delta 7.21 \) (1H, d, \(J = 8.0 \) Hz, H-7'), 7.04 (2H, m, H-7 and H-5), 7.15 (1H, d, \(J = 2.0 \) Hz, H-4'); 7.09
(1H, d, J = 7.6 Hz, H-4), 7.00 (1H, m, H-6), 6.95 (1H, dd, J = 8.4 and 2.0 Hz, H-6'), 4.20 (2H, d, J = 12.8 Hz, H-e-1), 3.83 (1H, t, J = 8.8 Hz, H-3), 2.84 (2H, m, H-r-1), 2.08 (4H, m, H-2), 1.49 (9H, s, Boc). 13C-NMR (101 MHz, CDCl$_3$) δ 154.7, 146.0, 143.5, 132.7, 129.7, 128.5, 127.9, 127.5, 127.3, 124.4, 124.0, 122.1, 121.1, 79.8, 63.7, 43.6, (2C), 32.12 (2C) and 28.4 (3C); LC-ESI-MS (+ve ion mode): m/z 417.1 [M+1]$^+$, 318.1 [M-Boc +1+H]$^+$ and 319.1 [M-Boc +2+ H]$^+$.

General Procedure 17: Procedure for the synthesis of 4.15

Compound 4.14 (1.83 mmol) was dissolved in 2 ml of a mixture 10% TFA in DCM (v/v) and stirred for one hour. After completion of reaction (TLC), solvent was removed under reduced pressure. The residue was dissolved in DCM, basified with 1N NaOH. The combined DCM layers were dried over anhydrous sodium sulphate and concentrated to afford 4.15.

10-(piperidin-4-yl)-10H-phenothiazine (4.15a)

Grey solid (0.45 g, 87%); m.p. 100-103 °C; R$_f$ 0.10 (10% MeOH-DCM); 1H-NMR (400 MHz, CD$_3$OD) δ 7.20 (2H, m, H-6), 7.19 (2H, m, 2H, H-5), 7.15 (2H, ddd, J = 7.6, 1.2 and 0.4 Hz, H-7), 7.03 (2 H, dd, J = 7.6 and 0.8 Hz, H-4), 4.90 (1H, m, H-3), 4.08 (2 H, dt, J = 12.8 and 2.8 Hz, H-e-1), 2.90 (2H, ddd, J = 16.0, 12.4 and 4.0 Hz, H-a-1), 2.13 (4H, m, H-2). 13C-NMR (101 MHz, CD$_3$OD) δ 143.8 (2C), 128.3 (2C), 125.4 (4C), 122.1 (2C), 120.3 (2C), 61.3, 43.8 (2C) and 30.9 (2C); LC-ESI-MS (+ve ion mode): m/z 283.1 [M+H]$^+$.

2-chloro-10-(piperidin-4-yl)-10H-phenothiazine (4.15b)

White solid (0.51 g, 95%); 131-133 °C R$_f$ 0.15 (10% MeOH-DCM); 1H-NMR (400 MHz, DMSO-d_6) δ 7.23 (2H, m, H-7 and H-5), 7.16 (3H, m, H-6, H-7' and H-4'), 7.05 (1H, dd, J = 8.4 and 2.4 Hz, H-6'), 7.01 (1H, m, H-4), 3.80 (1H, m, H-3), 3.03 (2H, d, J = 12.8 Hz, H-e-1), 2.59 (2H, m, H-a-1), 2.00 (4H, m, H-2); 13C-NMR (101 MHz, CDCl$_3$) δ 146.9, 144.7, 132.4, 128.5, 128.0, 127.6, 127.3, 126.7, 124.2, 123.4, 120.8, 120.0, 63.6, 46.5 and 33.6; LC-ESI-MS(+ve ion mode): m/z 317.1 [M+H]$^+$, 318.1 [M+1+H]$^+$ and 319.1 [M+2+H]$^+$.

Malkeet Kumar_PhD Thesis_2015 255
General procedure 17: Procedure for reaction of various intermediates with 1-bromo-3-chloropropane

A solution of piperazine or piperidine intermediate (1 equivalent), triethylamine (2.5 equivalent) and 1-bromo-3-chloropropane (2.0 equivalent) was stirred at 68 °C for 6 hour. After completion of reaction (TLC), toluene was removed in vacuo and residue was dissolved in DCM. The DCM layer was washed with water (3 × 15 ml), dried over sodium sulphate and concentrated. The crude product was purified by column chromatography.

10-(1-(3-chloropropyl)piperidin-4-yl)-10H-phenothiazine (4.16a)

The general method 17 was adopted and 1.13 mmol of 4.15a was used to obtain 4.16a as an oil (0.48 g, 75%); R_f 0.80 (10% MeOH-DCM); ¹H-NMR (400 MHz, CD₃OD) δ 7.20 (2H, m, H-6), 7.19 (2H, m, H-5), 7.15 (2H, dd, J = 7.0 and 0.8 Hz, H-7), 7.03 (2H, m, H-6), 3.74 (1H, m, H-3), 3.61 (2H, t, J = 6.4 Hz, H-10), 3.0 (2H, m, H_e-1), 2.55 (2H, t, J = 7.2 Hz, H-8), 2.90 (2H, d, J = 11.2 Hz, H_a-1), 2.17 (6H, m, H_e-1 and H-2), 1.96 (2H, quin, J = 6.8 Hz, H-9); ¹³C-NMR (101 MHz, CD₃OD) δ 145.2 (2C), 129.8 (2C), 126.8 (4C), 123.4 (2C), 121.6 (2C), 62.6, 58.5, 55.2, 53.0 (2C), 42.5 and 31.4 (2C); LC-ESI-MS (+ve ion mode): m/z 359.1 [M+H]^+, 360.1 [M+1+H]^+ and 361.1 [M+2+H]^+.

2-chloro-10-(1-(3-chloropropyl)piperidin-4-yl)-10H-phenothiazine (4.16b)

The general method 17 was adopted and 1.02 mmol of 4.15b was used to obtain 4.16b as an oil (0.41 g, 72%), R_f 0.60 (10% DCM-Hexane); ¹H-NMR (400 MHz, DMSO-d₆) δ 7.19 (2H, m, H-7 and H-5), 7.16 (1H, dd, J = 8.0 and 2.4 Hz, H-4), 7.09 (2H, m, H-7' and H-4'), 7.02 (1H, m, H-6), 6.99 (1H, dd, J = 8.4 and 2.4 Hz, H-6'), 3.78 (1H, m, H-3), 3.63 (2H, t, J = 6.4 Hz, H-10), 3.01 (2H, bd, J = 8.0 Hz, H_e-1), 2.61 (2H, t, J = 6.4 Hz, H-8), 2.32 (4H, m, H_a-1 and H_e-2), 2.05 (4H, m, H_a-2), 2.05 (2H, quin, J = 6.8 Hz, H-9); ¹³C-NMR (101 MHz, CDCl₃) δ 146.6, 144.3,
132.9, 128.3, 128.0, 127.9, 127.6, 127.3, 123.9, 123.6, 121.6, 121.2, 55.4, 53.0 (2C), 43.0, 31.4 (2C) and 29.7 (2C); LC-ESI-MS (+ve ion mode): m/z 393.1 [M+H]+, 394.1 [M+1+H]+, and 395.1 [M+2+H]+.

General Procedure 18: Procedure for the synthesis of target compound by reaction of corresponding chloro-intermediate and isoniazid.

Triethylamine (4 equivalent) was added to a solution of isoniazid (4 equivalent) and chloro-intermediate (1 equivalent) in isopropanol, and resulting mixture was refluxed for 24 hours. After completion of reaction (TLC), iso propanol was removed in vacuo and residue was taken in DCM (40 ml), and washed with water (5 x 15 mL). The aqueous layer was extracted with DCM (5 x 10 mL) and the combined DCM extracts was washed with brine (1 x 20 ml), dried over sodium sulphate and concentrated in vacuo. The crude was purified by column chromatography to afford the target compound.

N’-(3-(4-(10H-phenothiazin-10-yl)piperidin-1-yl)propyl)isonicotinohydrazide (4.17a)

The general method 18 was adopted and 0.726 mmol of 4.16a was used to obtain 4.17a as white solid (0.136 g, 30%); m.p. 54-56 °C; Rf 0.20 (10% MeOH-DCM), only distinguished after 3 runs of TLC; 1H-NMR (400 MHz, DMSO-d6) δ 8.74 (2H, d, J = 6.0 Hz, H-12), 7.75 (2H, d, J = 6.0 Hz, H-11), 7.20 (2H, m, H-6), 7.19 (2H, m, H-5), 7.15 (2H, d, J = 7.0 Hz, H-7), 7.03 (2H, m, H-4), 3.75 (1H, t, J = 12.8 Hz, H-3), 3.00 (2H, bd, J = 9.2 Hz, H-1), 2.87 (2H, t, J = 6.8 Hz, H-10), 2.44 (2H, t, J = 7.2 Hz, H-8), 2.18 (4H, m, Hc-1 and Hc-2), 2.1 (2H, bd, J = 10.0 Hz, Hc-2), 1.65 (2H, quin, J = 6.8 Hz, H-9); 13C-NMR (101 MHz, DMSO-d6) δ 163.8, 150.4 (2C), 145.3 (2C), 140.7, 130.0 (2C), 127.8 (2C), 127.5 (2C), 123.8 (2C), 121.5 (2C), 120.8 (2C), 62.5, 56.2, 53.2 (2C), 50.2, 31.6 (2C) and 25.4; LC-ESI-MS (+ve ion mode): m/z 460.2 [M+H]+, purity 99.8% (t = 4.032 min).
N’-(3-(4-(2-chloro-10H-phenothiazin-10-yl)piperidin-1-yl)propyl)isonicotinohydrazide (4.17b)

The general method 18 was adopted and 0.791 mmol of 4.16b was used to obtain 4.17b as white solid (0.17 g, 30%), m.p. 85-87 °C; R_f 0.20 (10% DCM-Hexane); 1H-NMR (400 MHz, CD_3OD) δ 8.74 (2H, d, J = 6.4 Hz, H-12), 7.75 (2H, d, J = 6.0 Hz, H-11), 7.19 (2H, m, H-7 and H-5), 7.17 (1H, d, J = 2.0 Hz, H-4’), 7.13 (1H, d, J = 7.2 Hz, H-7’), 7.09 (1H, d, J = 7.6 Hz, H-4), 7.02 (1H, m, H-6), 6.99 (1H, dd, J = 8.4 and 2.4 Hz, H-6’), 3.79 (1H, m, H-3), 3.10 (2H, bd, J = 10.0 Hz, H_e-1), 3.00 (2H, t, J = 6.4 Hz, H-10), 2.61 (2H, t, J = 6.8 Hz, H-8),
2.32 (4H, m, H_e-2 and H_a-1), 2.05 (4H, m, H-2), 2.05 (2H, quin, J = 7.2 Hz, H-9); 13C-NMR (101 MHz, CD_3OD) δ 164.5, 149.6 (2C), 146.3, 144.6, 141.3, 132.5, 129.0, 128.4, 127.6, 127.1, 126.9, 123.7, 123.2, 121.4 (2C), 121.3, 121.0, 62.5, 56.1, 52.8 (2C), 50.0, 31.1 (2C) and 24.5; LC-ES-MS (+ve ion mode): m/z 494.1 [M+H]^+, 495.1 [M+1+H]^+, 496.1 [M+2+H]^+, and 516.1 [M+Na]^+, purity 99.5% (t_r = 3.772).

tert-butyl 4-oxopiperidine-1-carboxylate (4.19)

Triethylamine was added to a stirring solution of 4-piperidone monohydrochloride 4.18 (2.0 g, 13.09 mmol) in methanol and continued stirred for 5 minutes. Boc_2O (3.5 g, 17.29 mmol) was added in portions over a period of 5 minutes, followed by addition of DMAP (40 mg, 1.32 mmol). The resulting reaction mixture was stirred at ambient temperature (25 °C) for 20 hour. After completion of reaction (TLC), the methanol was removed in vacuo and crude was dissolved in DCM, washed with 2M HCl (2 × 10 ml), sat. NaHCO_3 and sat. NaCl (1.5 m × 2), respectively. The combined DCM layer was dried over sodium sulphate and concentrated to afford 4.18 as a white solid (3.9 g, 97 %), R_f 0.50 (30% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl_3) δ 3.74 (4H, t, J = 6.0 Hz, 4H, H-1), 2.46 (4H, t, J = 6.4 Hz, 2H, H-2), 1.52 (9H, s, Boc).
General Procedure 19: Procedure for the synthesis of 4.21

Titanium tetrachloride (1.84 g, 9.7 ml, 9.70 mmol, 1 M in toluene) was added drop-wise to the suspension of zinc (1.43 g, 21.86 mmol) under nitrogen atmosphere. The resulting reaction mixture was stirred for one hour at 40 °C and then cooled to 0 °C, followed by the drop wise addition of a solution of 4.19 (1.26 g, 6.33 mmol) and 4.20 (4.8497 mmol). After completion of addition, the reaction mixture was the refluxed for 12 hours. After completion of reaction (TLC), crude was filtered through celite silica. The dioxane was removed in vacuo, residue was dissolved in ethyl acetate and washed with 2 M HCl, dried over sodium sulphate and concentrated to obtain crude condensed alkene 4.21. Purification was done by column chromatography.

4-(9H-thioxanthen-9-ylidene)piperidine (4.21a)

![Chemical Structure of 4.21a](image)

White solid (0.54 g, 40%); m.p. 188-190 °C; R_f 0.10 (5% MeOH-DCM); ^1^H-NMR (400 MHz, DMSO-d_6) δ 9.10 (1H, s, NH), 7.90 (2H, dd, J = 7.6 and 1.2 Hz, H-6), 7.46 (2H, dd, J = 7.6 and 1.2 Hz, H-3), 7.32 (2H, td, J = 7.6 and 1.6 Hz, H-4), 7.30 2H, (2H, td, J = 7.6 and 16 Hz, H-5), 3.30 (2H, m, H_e-1), 2.96 (2H, m, H_a-1), 2.88 (2H, m, H_e-2), 2.62 (2H, m, H_a-2); ^1^C-NMR (101 MHz, DMSO-d_6) δ 137.0, 136.9 (2C), 134.9 (2C), 129.5, 129.3 (2C), 127.63 (2C), 126.9 (2C), 126.6 (2C), 48.0 (2C) and 31.8 (2C); LC-ESI-MS (+ve ion mode): m/z 280.1 [M+H]^+.

4-(2-chloro-9H-thioxanthen-9-ylidene)piperidine (4.21b)

![Chemical Structure of 4.21b](image)

White solid (0.54 g, 40%); m.p. 216-218 °C; R_f 0.30 (5% MeOH-DCM); ^1^H-NMR (400 MHz, CD_3OD) δ 7.55 (1H, dd, J = 7.6, and 1.2 Hz, H-6), 7.51 (1H, d, J = 8.0 Hz, H-6’), 7.42 (2H, m, H-5’ and H-3’), 7.37 (2H, td, J = 7.6 and 1.2 Hz, H-4), 7.30 (2H, td, J = 7.6 and 1.2 Hz, H-5), 7.28 (1H, dd, J = 7.6 and 1.2 Hz, H-3), 3.44 (2H, m, H_e-1), 2.99 (2H, m, H_a-1), 2.92 (2H, m, H_e-2), 2.88 (2H, m, H_a-2); ^1^C-NMR (101 MHz, DMSO-d_6) δ 137.9, 135.5, 134.5, 134.0, 132.6, 131.7, 130.7, 129.4 (2C), 128.6, 127.8, 127.6, 127.3,
127.1, 44.7 (2C) and 27.5 (2C); LC-ESI-MS (+ve ion mode): m/z 314.1 [M+H]^+, 315.1 [M+1+H]^+ and 316.1 [M+2+H]^+.

4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidine (4.21c)

White solid (0.73 g, 55%); m.p. 250-252 °C; Rf 0.10 (10% MeOH-DCM); \(^1\)H-NMR (400 MHz, CD\(_3\)OD) \(\delta\) 7.42 (2H, m, H-5 and H-4), 7.40 (2H, m, H-3), 7.28 (2H, dd, \(J = 8.4\) and 1.6 Hz, H-6), 6.99 (2H, s, H-7 and H-8), 3.30 (2H, m, H-e-1), 2.93 (2H, m, H-a-1), 2.60 (2H, m, H-e-2), 2.38 (2H, m, H-c-2); LC-ESI-MS (+ve ion mode): m/z 274.2 [M+H]^+.

1-(3-chloropropyl)-4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidine (4.22a)

The general method 17 was adopted and 0.621 mmol of 4.21b was used to obtain 4.22b as yellow solid (0.15 g, 65%); m.p. 136-138 °C; Rf 0.65 (10% MeOH-DCM); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.52 (2H, ddd, \(J = 8.0, 1.2\) and 0.4 Hz, H-3), 7.34 (2H, ddd, \(J = 8.4, 1.6\) and 0.8 Hz, H-6), 7.27 (2H, td, \(J = 7.2\) and 1.2 Hz, H-4), 7.20 (2H, td, \(J = 7.6\) and 1.6 Hz, H-5), 3.63 (2H, t, \(J = 6.8\) Hz, H-9), 2.76 (2H, m, H-e-1), 2.72 (2H, m, H-a-1), 2.70 (2H, m, H-c-2), 2.51 (2H, t, \(J = 6.8\) Hz, H-7), 2.17 (2H, m, H-a-2), 1.99 (2H, m, H-8); \(^13\)C-NMR (101 MHz, CDCl\(_3\)) \(\delta\) 137.0 (2C), 135.5, 135.4 (2C), 130.4, 128.8 (2C), 127.2 (2C), 126.2 (2C), 125.8 (2C), 55.3, 55.0 (2C), 43.3, 30.6 (2C) and 30.1; LC-ESI-MS (+ve ion mode): m/z 356.1 [M+H]^+.
4-(2-chloro-9H-thioxanthen-9-ylidene)-1-(3-chloropropyl)piperidine (4.22b)

The general method 17 was adopted and 0.958 mmol of 4.21c was used to obtain 4.22c as oil (0.22 g, 60%), Rf 0.7 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl₃) δ 7.50 (1H, dd, J = 8.0 and 1.2 Hz, H-6), 7.43 (1H, d, J = 8.4 Hz, H-6'), 7.30 (2H, m, H-5' and H-4'), 7.29 (1H, td, J = 7.6 and 1.2 Hz, H-4), 7.21 (1H, td, J = 8.0 and 1.6 Hz, H-5), 7.28 (1H, dd, J = 8.0 and 2.4 Hz, H-3), 3.63 (2H, t, J = 6.8 Hz, H-9), 2.88 (2H, m, H-a-1), 2.71 (4H, m, H-e-1 and H-e-2), 2.51 (2H, t, J = 6.8 Hz, H-7), 2.16 (2H, m, H-a-2), 1.99 (2H, quin, J = 6.8 Hz, H-8); 13C-NMR (101 MHz, CDCl₃) δ 138.6, 136.5, 135.1, 134.0, 131.8, 129.6, 129.0, 128.6, 128.3, 127.3 (2C), 126.4, 126.2, 126.0, 55.2, 54.9 (2C), 54.8, 43.0, and 30.5 (2C); LC-ESI-MS (+ve ion mode): m/z 390.0 [M+H]+, 391.1 [M+1+H]+ and 392.0 [M+2+H]+.

1-(3-chloropropyl)-4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidine (4.22c)

The general method 17 was adopted and 1.13 mmol of 4.21a was used to obtain 4.22a as an oil (0.22 g, 55%); Rf 0.6 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl₃) δ 7.33-7.37 (4H, m, H-5 and H-4), 7.25-7.29 (2H, m, H-3), 7.21 (2H, dd, J = 8.4 and 1.2 Hz, H-6), 6.95 (2H, s, H-7 and H-8), 3.61 (2H, t, J = 6.4 Hz, H-11), 2.70 (2H, m, H-e-1), 2.55 (2H, t, J = 6.8 Hz, H-9), 2.12-2.27 (4H, m, H-a-1 and H-a-2), 2.20 (2H, m, H-a-2), 2.02 (2H, quin, J = 6.4 Hz, H-10); 13C-NMR (101 MHz, CDCl₃) δ 139.0 (2C), 134.8 (2C), 131.0 (2C), 128.4 (2C), 128.2 (2C), 127.8 (4C), 126.4 (2C), 55.4, 55.1 (2C), 43.1 and 29.6 (3C); LC-ESI-MS (+ve ion mode): m/z 350.2 [M+H]+, 351.2 [M+1+H]+ and 352.2 [M+2+H]+.
N’-(3-(4-(9H-thioxanthen-9-ylidene)piperidin-1-yl)propyl)isonicotinohydrazide (4.23a)

The general method 18 was adopted and 0.421 mmol of 4.22a was used to obtain 4.23a as white solid (70 mg, 37%); m.p. 105-107 °C; Rf 0.30 (10% MeOH-DCM); ¹H-NMR (400 MHz, DMSO-d₆) δ 8.76 (2H, bs, H-11), 7.67 (2H, d, J = 5.6 Hz, H-10), 7.49 (2H, dd, J = 7.6 and 1.2 Hz, H-3), 7.29 (2H, dd, J = 7.6 and 1.6 Hz, H-6), 7.25 (2H, td, J = 7.6 and 1.6 Hz, H-5), 7.02 (2H, J = 5.6 Hz, H-9), 2.92 (2H, m, H-e-1), 2.92-2.60 (4H, m, H-a-1 and H-e-2), 2.55 (2H, t, J = 5.6 Hz, H-7), 2.18 (2H, m, H-a-2), 1.80 (2H, quin, J = 6.4 Hz, H-8); ¹³C-NMR (101 MHz, CDCl₃) δ 164.2, 150.6 (2C), 140.5, 136.6 (2C), 135.3 (2C), 134.1, 130.9, 128.7 (2C), 127.3 (2C), 126.3 (2C), 125.9 (2C), 121.0 (2C), 56.6, 54.7 (2C), 51.1, 30.1 (2C) and 25.5; LC-ESI-MS (+ve ion mode): m/z 457.2 [M+H]⁺, purity 96.5% (tᵣ = 4.12 min).

N’-(3-(4-(2-chloro-9H-thioxanthen-9-ylidene)piperidin-1-yl)propyl)isonicotinohydrazide (4.23b)

The general method 18 was adopted and 0.384 mmol of 4.22b was used to obtain 4.23b as white solid (0.06 g, 32%); m.p. 99-102 °C; Rf 0.30 (10% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 8.50 (2H, d, J = 5.2 Hz, H-11), 7.70 (2H, d, J = 5.6 Hz, H-10), δ 7.48 (1H, d, J = 8.0 Hz, H-6), 7.43 (1H, d, J = 8.4 Hz, H-6'), 7.30 (3H, m, H-5', H-3' and H-4), 7.21 (1H, m, H-5), 7.28 (1H, dd, J = 8.4 and 2.0 Hz, H-3), 3.02 (2H, t, J = 6.0 Hz, H-9), 2.97 (2H, m, H-e-1), 2.76 (4H, m, H-a-1 and H-e-2), 2.62 (2H, t, J = 6.4 Hz, H-7), 2.23 (1H, m, H-a-2), 1.82 (2H, quin, J = 6.4 Hz, H-8); ¹³C-NMR (101 MHz, CDCl₃) δ 164.5, 150.6 (2C), 140.3, 138.2, 136.0, 135.0, 134.6, 133.9, 131.9, 130.4, 128.8, 128.5, 128.4, 127.3, 126.7, 126.4, 126.2, 121.0 (2C), 56.3, 54.6, 54.4, 52.0, 50.7, 29.8 and 22.0; LC-ESI-MS (+ve ion mode): 491.2 [M+H]⁺, 492.2 [M+1+H]⁺ and 493.2 [M+2+H]⁺, purity 96.8% (tᵣ = 4.248 min).
\[N'-(3-(4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidin-1-yl)propyl)isonicotinohydrazide \] (4.23c)

The general method 18 was adopted and 0.515 mmol of 4.22c was used to obtain 4.23c as white solid (90 mg, 40%), m.p. 120-122 °C; \(R_f \) 0.20 (10% MeOH-DCM); \(^1\)H-NMR (400 MHz, CD\(_3\)OD) \(\delta \) 8.70 (2H, dd, \(J = 6.0 \) and 1.6 Hz, H-13), 7.66 (2H, dd, \(J = 6.4 \) and 1.6 Hz, H-12), 7.34-7.39 (4H, m, H-5 and H-4), 7.27-7.30 (2H, m, H-3), 7.22 (2H, dd, \(J = 8.0 \) and 1.2 Hz, H-6), 6.95 (2H, s, H-7 and H-8), 2.99 (2H, t, \(J = 6.8 \) Hz, H-11), 2.80 (2H, m, H-1), 2.59 (2H, t, \(J = 6.8 \) Hz, H-9), 2.45 (4H, m, H-1 and H-2), 2.23 (1H, m, H-2), 1.82 (2H, quin, \(J = 6.8 \)Hz, H-10); \(^1\)C-NMR (101 MHz, CDCl\(_3\)) \(\delta \) 164.2, 150.5 (2C), 140.3, 138.7 (2C), 134.7 (2C), 134.3, 134.1, 131.0 (2C), 128.3 (4C), 127.6 (2C), 126.4 (2C), 121.0 (2C), 56.4, 55.0 (2C), 50.8, 29.4 (2C) and 25.3; LC-ESI-MS (+ve ion mode): \(m/z \) 451.2 [M+H]+, purity 95.5% (t\(_r\) = 4.257 min).

1-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)piperazine (4.25)

A solution of piperazine (37.6 mg, 2.19 mmol) in dry toluene (6 mL) was drop-wise added to a mixture of dibenzosuberanyl chloride 4.24 (0.5 g, 0.437 mmol) and MS-4A\(^\circ\) in dry toluene (5 mL), under argon at 0 °C. Then DBU (0.082 ml, 0.55 mmol) was added and the reaction mixture was stirred for 10 hours. After completion of reaction (TLC), the reaction mixture was filtered through a pad of celite. The solvent was evaporated \textit{in vacuo} and the residue was dissolved in MeOH. The by product was insoluble in the methanol and filtered off. The filtrate was evaporated to dryness to yield 4.25 as a yellow solid (0.4 mg, 67%); m.p. 246-246.5 °C; \(R_f \) 0.30 (15% MeOH-DCM); \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.09 (4H, t, \(J = 7.2 \) Hz, H-2), 7.01 (4H, m, H-1), 3.96 (2H, m, H-4 and H-5), 3.89 (1H, s, H-3), 2.73 (6H, bm, H-4, H-5 and H-7), 2.03 (4H, bs, H-6).
1-(3-Chloro-propyl)-4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-piperazine (4.26)

The general method 17 was adopted and 0.0.72 mmol of 4.25 was used to obtain 4.26 as oil (0.185 g, 72%); Rf 0.6 (8% MeOH-DCM); 1H-NMR (400 MHz, CDCl₃) δ 7.19 (4H, td, J = 7.6 and 1.6 Hz, H-2), 7.11 (4H, m, H-1), 4.03 (2H, m, H-4 and H-5), 4.0 (1H, s, H-3), 3.60 (2H, t, J = 6.8 Hz, H-10), 2.82 (2H, m, H-4 and H-5), 2.43 (2H, t, J = 7.2 Hz, H-8), 2.42-2.36 (8H, two br s, H-6 and H-7), 1.95 (2H, quin, J = 7.2 Hz, H-9).

Isonicotinic acid N’-{3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl)-piperazin-1-yl]-propyl}-hydrazide (4.27)

The general method 18 was adopted and 0.31 mmol of 4.26 was used to obtain 4.27 as white solid (0.2 g, 42%); m.p. 155-157 ºC; Rf 0.60 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl₃) δ 8.68 (2H, d, J = 5.6 Hz, H-12), 7.67 (2H, d, J = 5.6 Hz, H-11), 7.02 (8H, m, H-1 and H-2), 3.87 (1H, s, H-5), 3.85 (2H, m, H-3 and H-4), 2.91 (2H, t, J = 5.6 Hz, H-10), 2.68 (2H, m, H-3 and H-4), 2.65-2.49 (8H, two br s, H-6 and H-7), 2.65 (2H, t, J = 6.4 Hz, H-8), 1.76 (1H, quin, J = 6.4 Hz, H-9); 13C-NMR (101 MHz, CDCl₃) δ 164.3, 150.5 (2C), 140.5, 139.6, 138.5, 130.9 (2C), 130.8 (3C), 128.10 (3C), 125.7 (2C), 121.2 (2C), 56.1, 53.3 (2C), 50.6 (2C), 50.2, 31.8 (2C), 29.6 and 25.0; LRMS (EI) m/z 456.20 [M+H]+; HPLC purity 99.8% (tᵣ = 11.52 min).
N’-(3-(10H-phenothiazin-10-yl)propyl)benzohydrazide (4.28a)

The general method 18 was adopted and 0.25 mmol of 4.3a was used to obtain 4.28a as an oil (80 mg, 20%); Rf 0.6 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl3) δ 7.72 (2H, d, J = 8.4 Hz, H-8), 7.52 (1H, tt, J = 7.6 and 1.6 Hz, H-10), 7.43 (2H, t, J = 8.0 Hz, H-9), 7.15 (2H, m, H-3), 7.10 (2H, dd, J = 7.6 and 1.2 Hz, H-1), 6.99 (2H, dd, J = 7.6 and 1.2 Hz, H-4), 6.90 (2H, td, J = 7.2 and 1.2 Hz, H-2), 4.05 (2H, t, J = 6.4 Hz, H-5), 3.04 (2H, t, J = 6.4 Hz, H-7), 2.02 (2H, quin, J = 6.8 Hz, H-6); 13C-NMR (101 MHz, CDCl3) δ 167.8, 145.4 (2C), 132.9, 131.3 (2C), 128.2 (2C), 127.1 (2C), 126.9 (2C), 126.8 (2C), 125.3, 122.2 (2C), 115.6 (2C), 48.8, 44.4 and 25.0; LC-ESI-MS (+ve ion mode): 376.1 [M+H]+, purity 96.8% (t_r = 4.672 min).

N’-(3-(2-chloro-10H-phenothiazin-10-yl)propyl)benzohydrazide (4.28b)

The general method 18 was adopted and 0.31 mmol of 4.3b was used to obtain 4.28b as an oil (75 mg, 25%); Rf 0.2 (5% MeOH-DCM); 1H-NMR (400 MHz, CDCl3) δ 7.72 (2H, d, J = 7.2 Hz, H-8), 7.52 (1H, t, J = 7.6 Hz, H-10), 7.43 (2H, t, J = 7.2 Hz, H-9), 7.15 (1H, td, J = 8.0 and 1.6 Hz, H-3), 7.11 (1H, dd, J = 8.0 and 1.6 Hz, H-1), 7.05-7.01 (2H, m, H-1’ and H-4), 7.00 (2H, d, J = 2.0, H-4’), 6.95 (1H, td, J = 7.6 and 1.2 Hz, H-2), 6.90 (1H, dd, J = 8.4 and 2.4 Hz, H-2’), 4.04 (2H, t, J = 6.4 Hz, H-5), 3.05 (2H, t, J = 6.4 Hz, H-7), 2.02 (2H, quin, J = 6.8 Hz, H-6); 13C-NMR (101 MHz, CDCl3) δ 167.8, 146.8, 144.6, 133.1, 132.9, 131.4, 128.1 (2C), 127.6, 127.2, 126.9, 126.8 (2C), 125.0, 124.1, 122.7, 121.9, 116.0, 115.7, 48.7, 44.6 and 24.9; LC-ESI-MS (+ve ion mode): 410.1 [M+H]+, 411.1 [M+1+H]+, 412.1 [M+2+H]+, purity 97% (t_r = 4.543 min).
diethyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (4.32)13

\begin{center}
\includegraphics[width=0.3\textwidth]{diethyl_26dimethyl_4_3nitrophenyl_14dihydropyridine_35dicarboxylate.png}
\end{center}

A solution of ethyl 3-oxobutanoate (2.0 g, 18.24 mmol) and ammonium acetate (8.0 g, 100 mmol) was stirred for 10 hour at room temperature (25 °C). After completion of reaction (TLC), methanol was distilled of and the residue was dissolved in ethyl acetate and washed with water, dried over sodium sulphate and concentrated to obtain 4.30 (2.4 g, 75%) as yellow solid. This compound was used in next step without further purification.

A catalytic amount of acetic acid was added to a solution of ethyl 3-oxobutanoate (1.8 g, 14.0 mmol), benzaldehyde (1.96 g, 13.92 mmol) and 4.30 (1.6 g, 12.4 mmol) in ethanol. The reaction mixture was refluxed (85 °C) for 24 hours. After completion of reaction (TLC), solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate, washed with water, dried over sodium sulphate and concentrated to obtain 4.32 as yellow solid. The crude was recrystallized from mixture of DCM/Hexane to afford a yellow solid (3.0 g, 65%); m.p. 160-162 °C; R\textsubscript{f} 0.30 (30\% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl\textsubscript{3}) δ 8.0 (1H, dd, $J = 2.3$ and 1.8 Hz, H-4), 7.98 (1H, ddd, $J = 8.2$, 2.3 and 1.1 Hz, H-1), 7.58 (1H, m, H-3), 7.36 (1H, m, H-2), 5.17 (1H, s, H-8), 4.15 (4H, m, H-5), 2.54 (6H, s, H-7), 1.20 (6H, t, $J = 7.0$ Hz, H-6).

diethyl 1-(2-ethoxy-2-oxoethyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (4.33)14

\begin{center}
\includegraphics[width=0.3\textwidth]{diethyl_1_2ethoxy_2oxoethyl_26dimethyl_4_3nitrophenyl_14dihydropyridine_35dicarboxylate.png}
\end{center}

A solution of compound 4.32 (3.2 g, 8.6 mmol) in anhydrous THF (15 ml) was added to a suspension of NaH (0.29 g, 13.0 mmol) in anhydrous THF (20 ml) under a nitrogen atmosphere at 0 °C and stirred for 30 minutes at room temperature (25 °C). Reaction mixture was cooled to 0 °C and solution of chloromethyl ethyl ether (1.22 g, 13.0 mmol) in THF (10 ml) was added drop-wise to the reaction mixture and stirred at
room temperature (25 °C) for 2 h. After completion of reaction (TLC), quenched with water (10 ml) at 0 °C and extracted with EtOAc (3×15). The organic extracts were dried over anhydrous MgSO$_4$ and removed under reduced pressure. Purification through column chromatography afforded a yellow solid (2.5 g, 68%); m.p. 188-189 °C; R$_f$ 0.5 (40% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 8.07 (1H, dd, J = 2.3 and 1.8 Hz, H-4), 7.99 (1H, ddd, J = 8.2, 2.3 and 1.1 Hz, H-1), 7.58 (1H, m, H-3), 7.36 (1H, m, H-2), 5.17 (1H, s, H-8), 4.86 (2H, s, H-9), 4.15 (4H, m, H-5), 3.48 (2H, q, J = 7.0 Hz, H-10), 2.54 (6H, s, H-7), 1.25 (9H, m, H-6 and H-11).

I-(2-ethoxy-2-oxoethyl)-5-(ethoxycarbonyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylic acid (4.34)14

Sodium (Na) (0.86 g) was added to 1-dimethylamino-2-propanol (10 ml) and reaction mixture was stirred for 1 h at room temperature (25 °C). A solution of H$_2$O (0.25 ml) in 1-dimethylamino-2-propanol (2.7 ml) was added drop-wise to the mixture. The resulting reaction mixture was stirred until Na was completely dissolved with warming. Solution of compound 4.32 (2.5 g) in benzene (12.5 ml) was added to the reaction mixture under cooling in an ice bath and the reaction mixture was stirred at room temperature (25 °C) for 3 h. The solvent was then evaporated off and residue acidified to pH 2 by careful addition of 3N HCl under cooling. The aqueous solution was extracted with DCM. The extracts were washed with water and dried over anhydrous MgSO$_4$. The solvent was removed under reduced pressure and purification by column chromatography afforded a yellow solid (0.65 g, 28%); m.p. 175-176 °C; R$_f$ 0.25 (40% EtOAc-Hexane); 1H-NMR (400 MHz, CDCl$_3$) δ 8.04 (1H, m, H-4), 7.99 (1H, ddd, J = 8.0, 2.4 and 1.2 Hz, H-1), 7.61 (1H, m, H-3), 7.35 (1H, ddd, J = 9.0, 7.7 and 1.1 Hz, H-2), 5.19 (1H, s, H-8), 4.86 (2H, s, H-9), 4.17 (2H, m, H-10), 3.47 (2H, q, J = 6.96 Hz, H-5), 2.58 (3H, s, H-7), 2.54 (3H, s, H-7), 1.25 (6H, m, H-6 and H-11).
1N HCl (4 ml) was added to a solution of compound 4.34 (0.65 g) in acetone (15 ml) and the solution was stirred at room temperature (25 °C) for 2 h. After completion of reaction (TLC), acetone was removed in vacuo, dissolved in EtOAc (30 ml) and washed with water (3 × 10 ml). The organic extract was dried over anhydrous MgSO₄ and concentrated to obtain 4.35 as a yellow solid (0.13 g, 23%); m.p. 157-159 °C; Rf 0.40 (50% EtOAc-Hexane); ¹H-NMR (400 MHz, DMSO-d₆) δ 8.96 (1H, s, NH), 8.00 (2H, m, H-1 and H-4), 7.61 (1H, m, H-3), 7.55 (1H, t, J = 7.70 Hz, H-2), 4.99 (1H, s, H-8), 4.02 (2H, m, H-5), 2.30 (3H, s, H-7), 2.29 (3H, s, H-7), 1.15 (3H, m, H-6).

ethyl 5-(2-isonicotinoylhydrazine-1-carbonyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylate (4.36)

HOBt (0.049 g, 0.36 mmol), EDCI (0.069 g, 0.36 mmol) and isoniazid (0.02 g, 0.144 mmol) were added to a solution of compound 4.35 (0.05 g, 0.144 mmol) in DMF (5 ml) and reaction mixture was stirred at room temperature (25 °C) for 24 h. After completion of reaction (TLC), solvent was removed under reduced pressure and residue was taken in EtOAc (15 ml) and washed with brine (2×10). The organic extract was dried over anhydrous MgSO₄, concentrated under reduced pressure and purification by column chromatography afforded a yellow solid (25 mg, 36%); m.p. 172-174 °C; Rf 0.5 (20% MeOH-DCM); ¹H-NMR (400 MHz, DMSO-d₆) δ 10.51 (1H, br s, NH), 9.71 (1H, br s, NH), 8.74 (2H, dd, 6.0 Hz, H-10), 8.68 (1H, br s, NH), 8.05 (1H, t, J = 2.0 Hz, H-4), 8.02 (1H, ddd, J = 11.6, 3.6 and 1.2 Hz), 7.76 (2H, d, J = 6.0 Hz, H-9), 7.70 (1H, d, J = 8.0 Hz, H-3), 7.57 (1H, t, J = 8.4 Hz, H-2), 4.99 (1H, s, H-8), 4.01 (2H, m, H-5), 2.30 (3H, s, H-7), 2.24 (3H, s, H-7), 1.15 (3H, t, J = 7.2 Hz, H-6); ¹³C-NMR (101 MHz, DMSO-d₆) δ 167.9, 167.1, 164.6, 150.8, 150.1, 148.1(2C), 148.3, 147.5, 147.8, 140.0, 138.4, 134.7, 129.9, 122.4, 121.7 (2C), 121.5, 105.8,
99.1, 59.4, 19.0, 17.6, and 14.6; LRMS (EI): m/z 466.15 [M+H]+; HPLC purity 96% (t_r = 11.05).

2-bromo-1,1-diphenylethan-1-ol (4.43)

![Structure of 2-bromo-1,1-diphenylethan-1-ol](image)

Compound 4.42 (3.08 g, 11.11 mmol) and NBS (2.17 g, 12.19 mmol) were stirred in acetone-H_2O (10 mL; 5:1) at room temperature (25 °C). After completion of reaction (TLC), acetone was removed in vacuo and residue was dissolved in ethyl acetate. The organic layer was washed with water (2 × 20 ml), dried over sodium sulphate and concentrated. The crude was purified by column chromatography using 10% ethyl acetate in hexane as eluent to obtain 4.43 as a yellow solid (3.0 g, 90%); m.p. 70-72 °C; R_f 0.50 (10% EtOAc-Hexane); ^1^H-NMR (400 MHz, CD_3OD) δ 7.50 (4H, d, J = 7.2 Hz, H-1), 7.38 (4H, t, J = 7.2 Hz, H-2), 7.33 (2H, t, J = 6.8 Hz, H-3), 4.18 (2H, s, H-4), 3.16 (1H, s, OH);

tert-butyl 4-(2-hydroxy-2,2-diphenylethyl)piperazine-1-carboxylate (4.44)

![Structure of tert-butyl 4-(2-hydroxy-2,2-diphenylethyl)piperazine-1-carboxylate](image)

The compound 4.43 (1.0 g, 3.37 mmol) was added to a solution of 1-boc-piperazine (0.7 g, 3.76 mmol) and cesium carbonate in 3 ml DMSO and stirred at 80 °C for 8 hour. Reaction did not go to completion (TLC), the reaction was quenched with water and extracted with ethyl acetate. The organic layer was dried over sodium sulphate and concentrated to obtain crude product which was purified by column chromatography using 15% ethyl acetate in hexane as eluent to obtain 4.44 as a white solid (0.45 g, 40%); m.p. 100-102 °C; R_f 0.60 (40% EtOAc-Hexane); ^1^H-NMR (400 MHz, CD_3OD) δ 7.53 (4H, d, J = 7.6 Hz, H-1), 7.33 (4H, t, J = 7.2 Hz, H-2), 7.33 (2H, t, J = 7.6 Hz, H-3), 5.15 (1H, s, OH), 3.33 (6H, bs, H-4 and H-6), 2.37 (4H, bs, H-5), 1.46 (9H, s, Boc); ^13^C-NMR (101 MHz, CDCl_3) δ 154.6, 146.8, 128.2 (4C), 126.8 (2C), 125.6, 128.2 (4C), 79.8, 74.2, 67.5, 54.2 (2C), 43.5 (2C), 28.4 (3C).
1,1-diphenyl-2-(piperazin-1-yl)ethan-1-ol (4.41)

A 10 ml of 10% mixture of TFA in DCM by volume was added to compound 4.44 in a round bottom flask and stirred at room temperature (25 °C) for one hour. After completion of reaction (TLC), remaining of TFA was vacuumed off and residue was redissolved in DCM followed by the addition of a saturated solution of sodium bicarbonate to basify until the pH 8. The DCM layer was separated, dried over sodium sulphate and concentrated to obtain 4.41 as a white solid (0.25 g, 97%); m.p. 66 °C; Rf 0.10 (10% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 7.50 (4H, d, J = 7.6 Hz, H-1), 7.32 (4H, t, J = 7.2 Hz, H-2), 7.23 (2H, t, J = 7.6 Hz, H-3), 3.33 (2H, s, H-4), 3.03 (4H, bs, H-6), 2.65 (4H, bs, H-5); 13C-NMR (101 MHz, CDCl3) δ 146.5 (2C), 127.6 (4C), 126.5 (2C), 126.0 (4C), 76.6, 66.9, 51.5 (2C), 43.8 (2C).

2-(4-(3-chloropropyl)piperazin-1-yl)-1,1-diphenylethan-1-ol (4.45)

The general method 17 was adopted and 0.88 mmol of 4.41 was used to obtain 4.45 as a yellow solid (0.23 g, 72%); m.p. 77-79 °C; Rf 0.30 (5% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 7.50 (4H, dd, J = 7.6 and 1.2 Hz, H-1), 7.32 (4H, td, J = 7.2 and 1.2 Hz, H-2), 7.23 (2H, tt, J = 7.6 and 1.2 Hz, H-3), 5.25 (1H, s, OH), 3.58 (2H, t, J = 6.8 Hz, H-9), 3.30 (2H, s, H-4), 2.45 (6H, m, H-6 and H-7) 2.39 (4H, bs, H-5), 1.92 (2H, quin, J = 7.2 Hz, H-8); 13C-NMR (101 MHz, CDCl3) δ 147.9 (2C), 128.2 (4C), 126.7 (2C), 125.4 (4C), 73.8, 67.5, 55.2, 54.4 (2C), 53.2 (2C), 42.9, 29.8.
The general method 18 was adopted and 0.56 mmol of 4.45 was used to obtain 4.46 as a white solid (0.1 g, 35%); m.p. 115-117 °C; R_f (10% MeOH-DCM) 0.20; 1H-NMR (400 MHz, CDCl$_3$) δ 8.75 (2H, dd, $J = 6.0$ and 1.6 Hz, H-11), 7.52 (2H, dd, $J = 6.4$ and 1.6 Hz, H-10), 7.50 (4H, dd, $J = 7.2$ and 1.2 Hz, H-9), 7.32 (4H, td, $J = 6.4$ and 1.2 Hz, H-2), 7.23 (2H, tt, $J = 7.6$ and 1.2 Hz, H-3), 5.14 (1H, s, OH), 3.29 (2H, s, H-4), 2.99 (2H, t, $J = 6.0$ Hz, H-9), 2.52 (2H, t, $J = 6.8$ Hz, H-7), 2.40-2.54 (8H, m, H-5 and H-6) 1.76 (2H, quin, $J = 6.4$ Hz, H-8); 13C-NMR (101 MHz, CDCl$_3$) δ 164.3, 150.6 (2C), 146.8 (2C), 140.3, 128.0 (4C), 126.7 (2C), 125.3 (2C), 120.9 (2C), 74.3, 67.5, 56.6, 54.0 (2C), 53.1 (2C), 51.0 and 25.2; LC-ESI-MS (+ ve ion mode): 460.3 [M+H]$^+$, purity 99.8% ($t_r = 4.03$ min).

1-tritylpiperazine (4.48)

A solution of trityl bromide (1.0 g, 3.10 mmol) in 6 ml of mixture of toluene and methanol (5:1 toluene/methanol (v/v)) was added drop-wise to a cooled solution of piperazine (2.67 g, 30.96 mmol) in 13 ml of mixture of toluene and methanol (5:1 toluene/methanol (v/v)) at 0 °C. After completion of addition, the reaction mixture was stirred at ambient temperature (25 °C) for one hour. After completion of reaction (TLC), reaction mixture was washed with water (5 × 20 ml) to remove excess of piperazine. The organic layer was dried over sodium sulphate and concentrated under reduced pressure to obtain white solid (0.75 g, 73.5%); m.p. 94-96 °C; R_f 0.45 (10% MeOH-DCM); 1H-NMR (300 MHz, CDCl$_3$) δ 7.47 (6H, m, H-1), 7.29 (6H, t, $J = 7.8$ Hz, H-2), 7.18 (3H, t, $J = 7.2$ Hz, H-3), 3.23–2.95 (6H, bm, Pip-H), 1.90-1.43 (2H, bm, Pip-H).
1-(3-chloropropyl)-4-tritylpiperazine (4.49)

The general method 17 was adopted and 2.44 mmol of 4.48 was used to obtain 4.49 as white solid (0.65 g, 66%); m.p. 114-116 °C; Rf 0.80 (10% MeOH-DCM); δ 7.51 (6H, m, H-1), 7.29 (6H, t, J = 7.2 Hz, H-2), 7.18 (3H, t, J = 7.8 Hz, H-3), 3.56 (2H, t, J = 6.6 Hz, H-8), 3.23 – 2.95 (6H, bm, Pip-H), 3.56 (2H, t, J = 7.2 Hz, H-6), 1.95 (2H, quin, J = 6.6 Hz, H-7), 1.90-1.43 (2H, bm, Pip-H).

N’-(3-(4-tritylpiperazin-1-yl)propyl)isonicotinohydrazide (4.50)

The general method 18 was adopted and 0.89 mmol of 4.49 was used to obtain 4.50 as white solid (0.2 g, 40%); m.p. 199-200 °C; Rf 0.20 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl3) δ 8.65 (2H, dd, J = 6.0 and 1.6 Hz, H-10), 7.52 (8H, m, H-9 and H-1), 7.27 (6H, t, J = 7.2 Hz, H-2), 7.16 (3H, t, J = 7.2 Hz, H-3), 3.37 – 2.27 (8H, bm, Pip-H), 2.96 (2H, t, J = 6.0 Hz, H-8), 2.64 (2H, t, J = 6.4 Hz, H-6), 1.82 (2H, quin, J = 6.4 Hz, H-7), 13C-NMR (101 MHz, CDCl3) δ 163.8, 150.4 (3C), 148.7, 140.3 (3C), 129.2 (6C), 127.6 (6C), 126.4 (2C), 120.9 (2C), 76.8, 57.1 (2C), 53.9 51.0 (2C), 47.0 and 25.6; LRMS (EI): m/z 505.07 [M]+.

1-Benzhydrylpiperazine (4.52)

Solid potassium carbonate (0.56 g, 4.04 mmol) and catalytic NaI (0.12 g, 0.81 mmol) was added to a solution of piperazine (0.7 g, 8.1 mmol) in acetonitrile and stirred with heating until all the solids were dissolved. Bromodiphenylmethane 4.51 was added and the reaction mixture was heated at reflux at 90 °C for 8 hour. After completion of
the reaction (TLC), the reaction was quenched with water (10 ml), extracted with ethyl acetate (2 × 15 ml), dried over anhydrous sodium sulphate and evaporated to afford a crude yellow solid. Purification was performed by column chromatography at 2.5% MeOH-DCM to afford 4.52 as white solid (0.65 g, 65%); m.p.: 70-72 °C; R_f 0.30 (20% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 7.35 (4H, dd, J = 8.4 and 1.2 Hz, H-3), 7.19 (4H, t, J = 7.6 Hz, H-4), 7.10 (2H, tt, J = 7.6 and 1.2 Hz, H-5), 4.15 (1H, s, H-6), 2.82 (4H, t, J = 4.8 Hz, H-1), 2.30 (4H, bs, H-2), 1.80 (1H, bs, NH).

I-Benzhydryl-4-(3-chloro-propyl)-piperazine (4.53)

![I-Benzhydryl-4-(3-chloro-propyl)-piperazine (4.53)](image)

The general method 17 was adopted and 2.34mmol of 4.51 was used to obtain 4.53 as oil (0.7 0 g, 90%); R_f 0.30 (20% MeOH-DCM); δ ¹H-NMR (400 MHz, CDCl₃) 7.35 (4H, dd, J = 7.6 and 1.2 Hz, H-3), 7.20 (4H, t, J = 7.6 Hz, H-4), 7.11 (2H, tt, J = 7.2 Hz and 1.2 Hz, H-5), 4.16 (1H, s, H-6), 3.51 (2H, t, J = 6.8 Hz, H-9), 2.42 (2H, t, J = 6.8 Hz, H-7), 2.37 (8H, bs, H-1 and H-2), 1.87 (2H, quin, J = 6.8 Hz, H-8).

Isonicotinic acid N’-[3-(4-benzhydryl-piperazin-1-yl)-propyl]-hydrazide (4.54)

![Isonicotinic acid N’-[3-(4-benzhydryl-piperazin-1-yl)-propyl]-hydrazide (4.54)](image)

The general method 18 was adopted and 2.34 mmol of 4.53 was used to obtain 4.54 as white solid (0.2 g, 42%); m.p. 55-57 °C; R_f 0.60 (10% MeOH-DCM); ¹H-NMR (400 MHz, CDCl₃) δ 8.75 (2H, d, J = 4.0 Hz, H-11), 7.65 (2H, d, J = 5.6 Hz, H-10), 7.35 (4H, d, J = 7.6 Hz, H-3), 7.30 (4H, t, J = 7.2 Hz, H-4), 7.11 (2H, t, J = 7.2 Hz, H-5), 4.21 (1H, s, H-6), 3.01 (2H, t, J = 6.0 Hz, H-9), 2.64 (4H, bs, H-1), 2.47 (4H, bs, H-2), 2.65 (2H, t, J = 6.4 Hz, H-7), 1.83 (2H, quin, J = 6.4 Hz, H-8); ¹³C-NMR (101 MHz, CDCl₃) δ 164.1, 150.5 (2C), 142.3 (2C), 140.5, 128.5 (4C), 127.9 (4C), 127.1 (2C), 121.1 (2C), 76.0, 56.4, 53.6(2C), 51.0 (2C), 50.07, and 25.6; LRMS (EI): m/z 430.20 [M+H]⁺; HPLC purity 98.8% (t_r = 13.91 min).
7.1.4.3 Hybrid Efflux Pump inhibitors

2-(3,4-Dimethoxyphenyl)-5-((2-hydroxyethyl)(methyl)amino)-2-isopropylpentanenitrile

(4.55)

2-(Methylamino)ethan-1-ol (0.21 g, 3.38 mol) and K_2CO_3 (0.78 g, 5.64 mol) were added to a solution of compound 3.6c (1.0 g, 3.38 mol) in anhydrous DMF (10 ml) and stirred at 80 °C for 12 h. After completion of reaction (TLC), DMF was removed in vacuo and the residue was dissolved in EtOAc (25 ml). The organic phase was washed with brine (3×15 ml), dried over anhydrous MgSO$_4$ and concentrated in vacuo. Purification was done by column chromatography to afford 4.55 as an oil (0.35 g, 31%); R_f 0.30 (5% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 6.89 (1H, dd, $J = 8.4$ and 2.0 Hz, H-2), 6.81 (2H, m, H-1 and H-3), 3.86 (3H, s, OCH_3), 3.85 (3H, s, OCH_3), 3.59 (2H, m, H-11), 2.48 (2H, m, H-10), 2.41 (2H, m, H-8), 2.18 (3H, s, H-9), 2.10 (2H, H-4 and H-6), 1.90 (m, 1H, H-6), 1.57 (1H, m, H-7), 1.13 (1H, m, H-7), 1.14 (3H, d, $J = 6.6$ Hz, H-5), 0.75 (3H, d, $J = 6.80$ Hz, H-5); 13C-NMR (101 MHz, CDCl$_3$) δ 149.1, 148.4, 148.3, 130.5, 121.3, 118.7, 111.2, 109.6, 58.7, 58.2, 57.1, 56.0, 55.9, 53.3, 41.2, 37.9, 35.4, 23.2, 18.9 and 18.5; LRMS (EI): m/z 334.20 [M]$^+$.

5-((2-Chloroethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile

(4.56)

Solution of compound 4.55 (0.80 g, 2.39 mmol) in DCM (10 ml) was cooled to 0 °C and SOCl$_2$ (2.85 g, 23.95 mmol) was added drop-wise to it. The reaction mixture was stirred at room temperature (25 °C) for 14 h and then washed with water. The organic layer was dried over anhydrous MgSO$_4$ and concentrated in vacuo. Purification by flash chromatography on silica gel using DCM-MeOH as eluent afforded product 4.56 as an oil (0.70 g, 83%); R_f 0.50 (5% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 6.87 (1H, dd, $J = 8.4$ and 2.2 Hz, H-2), 6.81 (2H, m, H-1 and H-3), 3.84 (3H, s, OCH_3), 3.83 (3H, s, OCH_3), 3.46 (2H, t, $J = 6.8$ Hz, H-11), 2.59 (2H, m, H-10), 2.34 (2H, m, H-8), 2.13 (3H, s, H-9), 2.02 (2H, m, H-4 and H-6),
1.85 (1H, m, H-6) 1.47 (1H, m, H-7), 1.11 (1H, m, H-7), 1.12 (3H, d, \(J = 6.4 \) Hz, H-5), 0.75 (3H, d, \(J = 6.4 \) Hz, H-5); \(^{13}\)C-NMR (101 MHz, CDCl\(_3\)) \(\delta \) 149.5, 148.8, 129.4, 121.0, 118.9, 111.3, 109.5, 56.4 (2C), 55.9 (2C), 53.2, 46.8, 38.1, 36.7, 34.8, 20.4, 18.8 and 18.7; LRMS (EI): \(m/z \) 352.13 [M]\(^+\).

General 19: Procedure for the synthesis of compound 4.57 (a and b)

To a solution of compound 4.56 (1.0 equiv) in anhydrous DMF (5 ml), phenothiazine 4.1 (1.0 equiv) and NaH (2.5 equiv) were added and the reaction mixture was stirred at room temperature (25 °C) for 48 h. After completion of reaction (TLC), DMF was removed in vacuo and the residue was taken in EtOAc (25 ml). The organic phase was washed with brine (3 × 15 ml), dried over anhydrous MgSO\(_4\) and concentrated in vacuo. Purification by flash chromatography on silica gel using MeOH-DCM as eluent afforded product 4.57.

5-((2-(10H-phenothiazin-10-yl)ethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (4.57a)

Oil (0.12 g, 16%); \(R_f \) 0.40 (5% MeOH-DCM); \(^1\)H-NMR (400 MHz, CD\(_3\)OD) \(\delta \) 7.13 (4H, m, H-14 and H-15), 6.95 (1H, d, \(J = 1.2 \) Hz, H-3), 6.92 (2H, d, \(J = 8.0 \) Hz, H-12), 6.90 (4H, m, H-13, H-2 and H-1), 3.96 (2H, t, \(J = 6.4 \) Hz, H-11), 3.80 (3H, s, OCH\(_3\)), 3.76 (3H, s, OCH\(_3\)), 2.66 (2H, m, H-10), 2.35 (2H, m, H-8), 2.14 (3H, s, H-9), 2.05 (2H, m, H-4 and H-6), 1.91 (1H, m, H-6), 1.41 (1H, m, H-7), 1.12 (3H, d, \(J = 6.8 \) Hz, H-5), 1.06 (1H, m, H-7), 0.73 (3H, d, \(J = 6.6.8 \) Hz, H-5); \(^{13}\)C-NMR (101 MHz, CD\(_3\)OD) \(\delta \) 149.2, 148.5, 145.0 (2C), 130.6, 127.1 (2C), 126.9 (2C), 125.0 (2C), 122.3 (2C), 121.1, 119.0, 115.3 (2C), 111.5, 109.9, 56.7, 55.3, 55.1, 53.8, 53.3, 45.0, 41.3, 37.3, 34.9, 23.2, 17.9 and 17.5; LRMS (EI): \(m/z \) 515.35 [M]\(^+\); HPLC purity 97% (\(t_r = 15.48 \)).
5-((2-(2-chloro-10H-phenothiazin-10-yl)ethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (4.57b)

Oil (0.23 g, 29%); R\textsubscript{f} 0.50 (5% MeOH-DCM); 1H-NMR (400 MHz, CD\textsubscript{3}OD) δ 7.13 (1H, m, H-13), 7.07 (1H, dd, J = 8.0 and 2.0 Hz, H-14b), 7.00 (1H, d, J = 8.4 Hz, H-15b), 6.98 (1H, d, J = 2.0 Hz, H-12b), 6.90 (6H, m, H-12, H-14, H-15, H-1, H-2 and H-3), 3.90 (2H, t, J = 6.0 Hz, H-11), 3.79 (3H, s, OCH\textsubscript{3}), 3.76 (3H, s, OCH\textsubscript{3}), 2.60 (2H, t, J = 6.0 Hz, H-10), 2.31 (2H, t, J = 6.8 Hz, H-8), 2.10 (3H, s, H-9), 2.04 (2H, m, H-4 and H-6), 1.90 (1H, m, H-6), 1.41 (1H, m, H-7), 1.11 (3H, d, J = 6.8 Hz, H-5), 1.05 (1H, m, H-7), 0.72 (3H, d, J = 6.8 Hz, H-5); 13C-NMR (101 MHz, CD\textsubscript{3}OD) δ 149.3, 148.6, 146.4 (2C), 133.1, 130.8, 127.6, 127.3, 127.0, 124.4, 123.4, 122.8, 122.0, 121.0, 119.0, 115.7, 115.5, 111.5, 109.9, 56.8, 55.3, 55.1, 54.0, 53.3, 45.5, 41.2, 37.3, 34.9, 23.3, 18.0 and 17.6; LRMS (EI): m/z 549.20 [M+]; HPLC purity 97% (t\textsubscript{r} = 16.70).

5-[(2-(10,11-Dihydro-dibenzo[b,f]azepin-5-yl)-ethyl]-methyl-amino)-2-(3,4-dimethoxyphenyl)-2-isopropyl-pentanenitrile (4.57c)

Compound 4.56 (0.164 g, 0.85 mmol) and 4.1c (0.25 g, 0.71 mmol) were dissolved in benzene and charged with sodium amide. The reaction mixture was refluxed for 24 hour but the reaction did not go to completion. The solvent was evaporated in vacuo and purification was done by column chromatography at 0-1% MeOH-DCM to afford an oil (80 mg, 24%); R\textsubscript{f} 0.6 (5% MeOH-DCM); 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.12 (1H, dd, J = 8.0 and 1.6 Hz, H-2), 7.10 (5H, m, ArH), 6.94 (5H, m, ArH), 3.91 (3H, s, OCH\textsubscript{3}), 3.90 (3H, s, OCH\textsubscript{3}), 3.86 (2H, t, J = 7.6 Hz, H-11), 3.17 (4H, s, H-12 and H-13), 2.48 (2H, t, J = 6.0 Hz, H-10), 2.28 (2H, m, H-8), 2.13 (3H, s, H-9), 2.06 (2H, m, H-4 and H-6), 1.92 (1H, m, H-6), 1.55 (1H, m, H-7), 1.19 (3H, d, J = 6.4 Hz, H-5), 1.16 (1H, m, H-7), 0.83 (3H, d, J = 6.80 Hz, H-5). 13C-NMR (101 MHz, CDCl\textsubscript{3}) δ 149.1, 148.3, 146.1, 134.4, 129.7 (3C), 126.4 (3C), 122.5 (3C), 120.1 (3C), 118.8, 111.2, 109.9, 57.6, 56.1, 55.9 (2C), 49.2, 42.2, 37.9, 35.5, 32.2 (3C), 23.6, 19.0 and 18.6;
LRMS (EI) m/z 511.69 [M]$^+$; HPLC purity 97.9% ($t_r = 3.83$ min).

General method 20: Procedure for the synthesis of 4.58-4.61

Potassium carbonate (2.0 equivalent), and 4.56 (1.5 equivalent) were added to a solution of piperazine or piperidine containing intermediates (1 equivalent) in anhydrous DMF (5 ml). The resulting reaction mixture was stirred at 80 °C for 12 h. After completion of reaction (TLC), DMF was removed under reduced pressure and the residue was taken in EtOAc (20 ml). The organic phase was washed with brine (3×15 ml), dried over anhydrous MgSO$_4$ and concentrated in vacuo. Purification by column chromatography afforded the target compounds.

5-[(2-(4-Benzhydryl-piperazin-1-yl)-ethyl]-methyl-amino]-2-(3,4-dimethoxy-phenyl)-2-isopropyl-pentanenitrile (4.58)

The general method 20 was adopted and 1.23 mmol of 4.51 was used to obtain 4.58 as an oil (0.25 g, 57%); R_f 0.60 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 7.42 (4H, d, $J = 6.8$ Hz, H-15), 7.29 (4H, t, $J = 7.2$ Hz, H-16), 7.19 (2H, tt, $J = 7.2$ and 1.2 Hz, H-17), 6.94 (1H, dd, $J = 8.4$ and 1.6 Hz, H-2), 6.88 (1H, d, $J = 2.0$ Hz, H-3), 6.85 (1H, d, $J = 8.4$ Hz, H-1), 4.23 (1H, s, H-14), 3.91 (3H, s, OCH$_3$), 3.87 (3H, s, OCH$_3$), 2.65-2.42 (11H, bm, H-6, H-11, H-12 and H-13), 2.38 (2H, m, H-10), 2.26 (2H, m, H-8), 2.18 (3H, s, H-9), 2.09 (2H, m, H-4 and H-6), 1.92 (1H, m, H-6), 1.55 (1H, m, H-7), 1.19 (3H, d, $J = 6.4$ Hz, H-5), 1.16 (1H, m, H-7), 0.83 (3H, d, $J = 6.8$ Hz, H-5); 13C-NMR (101 MHz, CDCl$_3$) δ 149.1, 148.4, 142.7, 130.7, 128.5 (5C), 128.0 (4C), 127.0 (2C), 121.5, 118.8, 111.2, 109.8, 76.2, 57.5, 56.1, 55.9 (2C), 54.5, 53.9 (2C), 53.4, 51.6 (2C), 42.2, 37.9, 35.6, 23.2, 19.0 and 18.6; LRMS (EI) m/z 568.31 [M]$^+$; purity 96.5% ($t_r = 3.78$ min).
5-((2-(4-(5H-dibenzo[a,d][7]annulen-5-ylidene)piperidin-1-yl)ethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (4.59a)

The general method 20 was adopted and 0.0.274 mmol of 4.21c was used to obtain 4.59a as white solid (80 mg, 24%), m.p. 70-72 °C; Rf 0.50 (10% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 7.37 (2H, m, H-14), 7.40 (2H, m, H-16), 7.28 (2H, td, J = 8.4 and 1.6 Hz, H-15), 7.21 (2H, dd, J = 7.6 and 1.6 Hz, H-17), 7.00 (1H, dd, J = 8.4 and 2.0 Hz, H-2), 6.98-6.93 (2H, m, H-1 and H-3), 6.95 (2H, s, H-18), 3.30 (2H, m, H-e-1), 2.93 (2H, m, H-a-1), 2.60 (2H, m, H-e-2), 2.38 (2H, m, H-a-2), 3.91 (3H, s, OCH3), 3.90 (3H, s, OCH3), 2.68 (2H, t, J = 6.0 Hz, H-11), 2.52 (2H, m, H-10), 2.38 (2H, m, H-8), 2.14 (3H, s, H-9), 2.12 (1H, m, H-6), 2.03 (1H, m, H-4), 1.92 (1H, m, H-6) 1.56 (1H, m, H-7), 1.20 (1H, m, H-7), 1.19 (3H, d, J = 6.4 Hz, H-5), 0.75 (3H, d, J = 6.8 Hz, H-5); 13C-NMR (101 MHz, CD3OD) δ 149.5 (2C), 148.41 (2C), 138.7 (2C), 134.5, 134.1, 130.4 (2C), 128.0 (4C), 127.5 (2C), 126.1 (2C), 121.1, 119.1 (2C), 111.6, 110.0, 56.8, 55.4, 55.1, 54.9, 54.8, 54.3, 53.4 (2C), 41.8, 37.3, 35.0, 29.1 (2C), 22.7, 17.9 and 17.5; LC-ESI-MS (+ve ion mode): m/z 590.3 [M+H]+, purity 98.4% (t_r = 4.632 min).

5-((2-(4-(9H-thioxanthen-9-ylidene)piperidin-1-yl)ethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (4.59b)

The general method 20 was adopted and 0.358 mmol of 4.21a was used to obtain 4.59b as white solid (40 mg, 20%), m.p. 60-62 ºC; Rf 0.65 (10% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 7.48 (2H, dd, J = 7.6 and 1.2 Hz, H-17), 7.34 (2H, dd, J = 7.6 and 1.2 Hz, H-14), 7.29 (2H, m, H-16), 7.22 (2H, td, J = 7.2 and 1.6 Hz, H-15), 7.00 (1H, dd, J = 8.4 and 1.2 Hz, H-2), 6.95 (1H, d, J = 8.4 Hz, H-1), 6.94 (1H, d, J = 2.0 Hz, H-3), 3.83 (3H, s, OCH3), 3.79 (3H, s, OCH3), 2.79 (2H, m, H-11), 2.65 (6H, m, H-10, H-8 and H-e-12), 2.52 (4H, m, H-a-12 and H-e-13), 2.33 (3H, s, H-9), 2.18 (5H, m, H-4, H-6 and H-a-13), 2.04 (3H, s, H-9), 2.03 (1H, m, H-6), 1.92 (1H, m, H-6) 1.56 (1H, m, H-7), 1.20 (1H, m, H-7), 1.19 (3H, d, J = 6.4 Hz, H-5), 0.75 (3H, d, J = 6.8 Hz, H-5).
1.56 (1H, m, H-7), 1.20 (3H, d, J = 6.6 Hz, H-5), 1.16 (1H, m, H-7), 0.79 (3H, d, J = 6.6 Hz, H-5); 13C-NMR (101 MHz, CD$_3$OD) δ 149.6 (2C), 148.8 (2C), 136.8 (2C), 135.3, 130.4, 128.5 (2C), 126.8 (2C), 126.2 (2C), 125.7 (2C), 121.3, 119.2 (2C), 111.7, 111.0, 56.6, 55.4, 55.2, 54.6, 54.5, 53.8, 53.4, 53.2, 41.1, 37.3, 34.9, 29.7 (2C), 22.3, 18.0 and 17.5; LC-ESI-MS (+ve ion mode): m/z 596.2 [M+H]$^+$, purity 95.1% (t$_r$ = 4.672 min).

5-((2-(4-(2-chloro-10H-phenothiazin-10-yl)piperidin-1-yl)ethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (4.59c)

The general method 20 was adopted and 0.447 mmol of 4.21b was used to obtain 4.59c as white solid (0.10 g, 36%); m.p. 85-87 °C; R$_f$ 0.65 (10% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 7.49 (1H, d, J = 7.8 Hz, H-17), 7.46 (1H, d, J = 8.4 Hz, H-17'), 7.33 (3H, m, H-14, H-14' and H-16'), 7.24 (2H, t, J = 7.8 Hz, H-15 and H-16), 7.02 (1H, d, J = 7.8 Hz, H-2), 7.00 (2H, m, H-1 and H-3), 3.84 (3H, s, OCH$_3$), 3.08 (3H, s, OCH$_3$), 2.76 (2H, m, H-8), 2.64 (4H, m, H-10 and H-11), 2.50 (2H, m, H$_e$-12), 2.42 (4H, m, H$_a$-12 and H$_e$-13), 2.21 (3H, s, H-9), 2.16 (2H, m, H$_a$-13), 2.05 (2H, m, H-6 and H-4), 1.94 (1H, m, H-6), 1.53 (1H, m, H-7), 1.20 (3H, d, J = 6.6 Hz, H-5), 1.16 (1H, m, H-7), 0.79 (3H, d, J = 6.6 Hz, H-5); 13C-NMR (101 MHz, CD$_3$OD) δ 149.5 (2C), 148.8 (2C), 138.5 (2C), 138.5 (2C), 136.2, 135.8 (2C), 134.8, 134.1, 131.5, 130.8, 129.8, 128.7, 128.1, 128.0, 126.8, 126.4, 126.1, 126.0, 56.8, 55.3, 55.1, 54.6 (3C), 53.7, 53.4, 41.3, 37.3, 35.1, 29.8 (2C), 22.8, 18.0 and 17.6; LC-ESI-MS (+ve ion mode): 630.2 [M+H]$^+$, 631.2 [M+1+H]$^+$, 632.2 [M+2+H]$^+$; purity 95.2% (t$_r$ = 4.895 min).

5-(4-(9H-thioxanthen-9-yl)piperidin-1-yl)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (4.60a)

The general method 20 was adopted and 0.319 mmol of 4.15a was used to obtain 4.60a as white solid (90 mg, 25%); m.p.
35-37 °C; Rf 0.40 (10% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 7.21 (1H, dd, J = 8.0 and 1.6 Hz, H-2), 7.18 (3H, m, H-3 and H-15), 7.17 (2H, dd, J = 8.4 and 1.2 Hz, H-18), 6.96 - 7.03 (5H, m, H-17, H-16 and H-1), 3.86 (3H, s, OCH3), 3.83 (3H, s, OCH3), 3.76 (1H, m, H-14), 2.95 (2H, t, J = 7.2 Hz, H-8), 2.38-2.54 (6H, m, H-10, H-11 and H-e-12), 2.23 (3H, s, H-9), 2.18 (6H, m, H-a-12, H-e-13 and H-a-13), 2.09 (2H, m, H-4 and H-6), 1.96 (1H, m, H-6), 1.55 (1H, m, H-7), 1.21 (3H, d, J = 6.4 Hz, H-5), 1.16 (1H, m, H-7), 0.80 (3H, d, J = 6.4 Hz, H-5); 13C-NMR (101 MHz, CDCl3) δ 149.5, 148.8 (2C), 145.3, 130.8 (2C), 129.9 (2C), 126.8(4C), 123.4 (2C), 121.7 (2C), 119.2, 111.4, 110.0, 62.38, 56.8, 55.4, 55.1, 54.5, 53.7, 53.1, 53.0 (2C), 41.3, 37.3, 35.1, 31.2 (2C), 22.8, 18.0, 17.5; LC-ESI-MS (+ve ion mode): 599.3 [M+H]+, purity 96.6% (t_r = 4.473 min).

5-((2-(4-(2-chloro-10H-phenothiazin-10-yl)piperidin-1-yl)ethyl)(methyl)amino)-2-(3,4-dimethoxyphenyl)-2-isopropylpentanenitrile (4.60b)

The general method 20 was adopted and 0.379 mmol of 4.15b was used to obtain 4.60b as white solid (60 mg, 21%), m.p. 50-52 °C; Rf 0.60 (10% MeOH-DCM); 1H-NMR (400 MHz, CD3OD) δ 7.21 (1H, dd, J = 8.4 and 1.6 Hz, H-2), 7.12-7.18 (3H, m, H-3, H-15’ and H-15), 7.09 (1H, d, J = 8.4 Hz, H-1), 7.03-7.00 (2H, m, H-17’ and H-17), 6.96 (2H, m, H-18 and H-18’), 3.86 (3H, s, OCH3), 3.83 (3H, s, OCH3), 3.73 (m, 1H, H-14), 2.95 (2H, m, H-8), 2.50-2.42 (6H, m, H-10, H-11 and H-e-12), 2.22 (3H, s, H-9), 2.16 (5H, m, H-a-12, H-e-13 and H-7), 2.07 (2H, m, H-a-13), 1.96 (1H, m, H-6), 1.55 (1H, m, H-7), 1.21 (3H, d, J = 6.4 Hz, H-5), 1.16 (1H, m, H-7), 0.80 (3H, d, J = 6.4 Hz, H-5); 13C-NMR (101 MHz, CDCl3) δ 149.4, 148.8, 146.4, 144.7, 132..5, 130.7, 129.1, 128.3, 127.6, 127.1, 126.9, 123.8, 123.2, 121.3, 121.1, 121.0, 119.2, 111.6, 111.0, 60.5, 56.8, 55.4, 55.2, 54.5, 53.6, 53.4, 53.1, 53.0, 41.3, 37.3, 35.1, 31.1 (2C), 22.8, 18.0 and 17.6; LC-ESI-MS (+ve ion mode): 633.3 [M+H]+, 634.3 [M+1+H]+ and 635.3 [M+2+H]+, purity 96.2 (t_r = 4.631 min).
The general method was adopted and 0.360 mmol of 4.25 was used to obtain 4.61 as yellow solid (0.70 g, 34%); Rf 0.25 (10% MeOH-DCM); m.p. 60-61 °C; 1H-NMR (400 MHz, CDCl$_3$) δ 7.25-7.00 (8H, m, ArH), 6.94 (1H, dd, $J = 8.0$ and 2.8 Hz, H-2), 6.89 (1H, d, $J = 2.4$ Hz, H-3), 6.84 (1H, d, $J = 8.4$ Hz, H-1), 4.01 (1H, s, H-14), 4.0 (4H, m, H-15 and H-16), 3.91 (3H, s, OCH$_3$), 3.87 (3H, s, OCH$_3$), 2.81 (2H, m, H-8), 2.70-2.25 (12H, bm, H-10, H-11, H-12 and H-13), 2.18 (3H, s, H-9), 2.09 (2H, m, H-4 and H-6), 1.89 (1H, m, H-6), 1.54 (1H, m, H-7), 1.23 (1H, m, H-7), 1.19 (3H, d, $J = 6.4$ Hz, H-5), 0.82 (3H, d, $J = 6.8$ Hz, H-5). 13C-NMR (101 MHz, CDCl$_3$) δ 149.1, 148.4, 139.7 (2C), 139.2 (2C), 130.8 (2C), 130.7 (2C), 130.6, 127.7 (2C), 125.5 (2C), 121.4, 118.8, 111.2, 109.8, 57.4, 56.1, 55.9 (2C), 55.7, 54.4, 54.0 (2C), 53.4, 51.5 (2C), 42.1, 37.9, 35.5, 31.8 (2C), 23.2, 19.0 and 18.6; LRMS (El) m/z 595.3 [M+H]+; HPLC purity 93.5% (t, = 4.04 min).

5-([2-(Benzhydryl-amino)-ethyl]-methyl-amino)-2-(3,4-dimethoxy-phenyl)-2-isopropyl-pentanenitrile (4.63)

A suspension of 4.56 (1.0 g, 2.84 mmol), benzylhydrylamine 4.62 (0.57 g, 3.12 mmol) and potassium carbonate (1.18 g, 8.401 mmol) in ethanol 30 ml was heated to reflux for 48 hour. The reaction mixture was cooled to room temperature (25 °C) and filtered. The filtrate was reduced in vacuo and residue was purified by column chromatography at 1% MeOH-DCM to get 4.63 as an oil (0.42 g, 30%); Rf 0.45 (5% MeOH-DCM); 1H-NMR (400 MHz, CDCl$_3$) δ 7.43 (4H, m, H-12), 7.30 (4H, t, $J = 8.0$ Hz, H-13), 7.23 (2H, t, $J = 7.2$ Hz, H-14), 6.95 (1H, dd, $J = 8.4$ and 2.0 Hz, H-2), 6.88 (1H, d, $J = 2.4$ Hz, H-3), 6.87 (1H, d, $J = 8.4$ Hz, H-1), 5.32 (1H, s, H-15), 3.91 (3H, s, OCH$_3$), 3.90 (3H, s, OCH$_3$), 2.68 (2H, t, $J = 6.0$ Hz, H-11), 2.52 (2H, m, H-10), 2.38 (2H, m, H-8), 2.14 (3H, s, H-9), 2.12 (1H, m, H-6), 2.03 (1H, m, H-
4), 1.92 (1H, m, H-6) 1.56 (1H, m, H-7), 1.20 (1H, m, H-7), 1.19 (3H, d, \(J = 6.4 \) Hz, H-5), 0.75 (3H, d, \(J = 6.8 \) Hz, H-5). \(^{13}\)C-NMR (101 MHz, CDCl\(_3\)) \(\delta 149.2, 148.4, 144.1, 128.5 (5C), 127.8 (5C), 127.0 (3C), 118.9, 111.2, 109.8, 67.7, 57.0, 56.7, 56.1, 55.9 (2C), 45.1, 41.5, 38.0, 35.4, 23.0, 18.9 and 18.6; LRMS (EI): \(m/z \) 500.2 \([\text{M+H}]^+\); HPLC purity 94.5\% (\(t_r = 11.52 \) min).

7.2 Procedures for Biological assays

7.2.1 Antibodies, media and reagents

Ethidium bromide, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), saponin, human AB (HAB) serum, fetal calf serum (FCS), tween-80 and apoptosis detection kit were purchased from Sigma (Saint Louis, USA). Components of mycobacteria growth media such as Middlebrook 7H9, Middlebrook7H10, and supplements [albumin, dextraose, catalase (ADC) and oleic acid with ADC (OADC)] were purchased from Becton-Dickinson. \(^{3}\)H]-uridine was obtained from Perkin-Elmer, Inc USA. Carboxyfluorescein diacetate succinimidyl ester (CFSE) was purchased from Life Technologies. IL-1\(\beta \), TNF-\(\alpha \), IFN-\(\gamma \) primary and secondary antibodies for ELISA were obtained from R&D.

Antibiotic-free RPMI 1640 (Gibco 11875) supplemented with 10\% heat-inactivated human AB serum and 200 mM L-glutamine (Lonza BioWhittaker) was used for cell culture. MTT working solutions were prepared in phosphate buffer saline (PBS). MTT is converted into a blue formazan in the presence of live cells. A 10\% sodium dodecyl sulphate in a 40\% aqueous solution of dimethyl formamide was used as a formazan solubilisation buffer.

7.2.2 Chequerboard synergy assay for combination Antimycobacterial screening

The fractional inhibitory concentration index (FICI) was determined in a 96-well plate format using the microplate alamar blue assay (MABA).\(^{15-17}\) Briefly, a 10 ml culture of *Mycobacterium tuberculosis* MA\(^{12}\) was grown to an OD\(_{600}\) of 0.6 - 0.7. The culture was then diluted 1:500 in liquid 7H9 medium. Rifampicin (RIF) was prepared to a working concentration of 0.2\(\mu \)M (25x MIC) and Verapamil (VER) and subsequent derivatives were diluted to a working concentration of 3\(\mu \)M (6x MIC).

In two 96-well microtitre plates (plate A and plate B), 50 \(\mu \)l of 7H9 medium was added to all
wells. In plate A, VER (or derivatives) was serially diluted down the plate (B-H) using a multichannel pipette. Similarly, in plate B, Rif was serially diluted across the plate (2-12). Using a multichannel pipette, all 50µl of row 2 in plate B was transferred to row 2 in plate A. This was done for all the rows from plate B to plate A bringing the final volume in plate A to 100µl (chequerboard synergy assay plate). Finally, 50 µl of the 1:500 diluted *M. tuberculosis* cultures was added to all wells. Each chequerboard synergy assay plate included 3 controls: Rif only control in A2-A12; VER/derivatives only in 1B-1H and a media only control in well A1.

The microtitre plates were sealed in a ziplock bag and incubated at 37 °C with a humidifier to prevent evaporation of liquid, for 14 days. On day 14 alamar blue was added to each well (10% of the final volume in each well, thus, 15µl) and the plate was further incubated at 37 °C for 24H, after which observations were made. The lowest concentration of drug that inhibits growth of more than 99% of the bacterial population is considered to be the MIC$_{99}$ (blue well).

The fractional inhibitory concentration (FIC) for each compound was calculated as follows:10 FIC$_{RIF}$ (MIC of RIF in the presence of VER/Derivative)/(MIC of RIF alone). Similarly, the FIC$_{VER}$ for VER/derivative was calculated. The FICI was calculated as FIC$_{RIF}$ plus FIC$_{VER}$. Synergy was defined by FICI values of ≤ 0.5, antagonism by FICI values of ≥ 4.0, and no interaction by FICI values from 0.5 to 4.0 according to the recommended classification.18

7.2.3 MGIT BACTEC 960 assay: For MIC determination against sensitive and resistant strains of *Mtb*.

For drug-resistant strains from South Africa, mycobacterial growth was measured by using mycobacterial growth indicator tubes (MGIT). Mycobacterial inocula were prepared from cultures of all strains grown on Lowenstein Jensen (LJ) slants. Cell suspensions were prepared in saline and the turbidity adjusted to 0.5 McFarland units. A 1:5 dilution of the bacterial suspension was prepared, and 0.5 ml of the suspension was inoculated into MGIT tubes containing test and control compounds. For *mycobacterial* growth evaluation, the MGIT 960 system (Becton Dickinson, Sparks, MD) was used, where *M. tuberculosis* growth is observed through fluorescent changes due to oxygen consumption during mycobacterial growth19 (Becton Dickinson and Company 1999. Bactec MGIT 960 system user’s manual,
catalog number 445876. Becton Dickinson and Company, Franklin Lakes, NJ). One-tenth milliliter of serially diluted compound was added to the MGIT tube containing 7H9 culture medium, with the final DMSO concentration not exceeding 1.2%. Incubation at 37°C was continued in the MGIT system, and the growth units (GU) were monitored daily. For MIC\textsubscript{99} evaluations, a 1% bacterial control culture was prepared in a drug-free MGIT tube and the MIC\textsubscript{99} of the compound determined relative to the growth units of the control (GU\textsubscript{400}). When the GU of the growth control were 400 and the GU of the drug-containing tube were more than 100, the results were defined as showing resistance, and when the GU of the drug-containing tube were equal to or less than 100, the results were considered to show susceptibility.

7.2.4 Monocytes and bacterial cultures for macrophage evaluations (THP-1 cell line, BCG, Erdman and Mtb)

Mycobacterium bovis BCG Connaught strain (ATCC 35745) and *M. tuberculosis* Erdman (ATCC 35801) were grown in suspension with constant gentle rotation in roller bottles containing Middlebrook 7H9 broth supplemented with 10% ADC enrichment and 0.05% Tween 80 (Sigma-Aldrich). Stock vials of BCG and Mtb were prepared from 2 week logarithmic phase cultures and aliquots were frozen at -80°C until needed for the different experiments. The number of bacteria (CFU/ml) in the frozen vials was quantified by plating samples on 7H10 Middlebrook agar supplemented with OADC. On the day of macrophage infection, bacteria were thawed and sonicated for 1 min in a water bath sonicator (W385; Heat Systems Ultrasonics, Farmingdale, NY) to obtain a single-cell suspension and diluted appropriately in complete RPMI 1640 medium.

A leukemic monocyte line (THP-1) obtained from the ATCC (TIB-202) was cultured in RPMI medium supplemented with 200 mM L-glutamine and 10% FCS and used for cytotoxicity assays.

Human peripheral blood mononuclear cells (PBMCs) stored in liquid nitrogen were used to generate monocyte cultures and to study the effects of drugs on Mtb-specific immunity. These PBMC were obtained from six healthy purified protein derivative (PPD) skin test positive donors following a protocol approved by the Saint Louis University Institutional Review Board. Monocytes were purified from PBMCs by plastic adherence based on the
unique adhesion properties of monocytes/macrophages. Briefly, 1.5×10^5 cells were plated in each well of 96-well round-bottom microtiter plates (Corning Inc., USA). Non-adherent cells were washed off with complete RMPI medium after overnight incubation at 37 °C and 5% CO$_2$. In general, approximately 10% of the initial number of PBMCs plated were retained as adherent monocytes (>90% CD14$^+$ [data not shown]), which were then cultured for 2-4 days before infection with *M. bovis* BCG or *Mtb* (Erdman).

7.2.5 Method to determine cytotoxicity against THP-1 cell line
THP-1 cells in RPMI with L-glutamine were cultured in round-bottom 96-well plates at a concentration of 1.5×10^4/well. Drugs were added at different concentrations and cultures were incubated at 37 °C. After 24 h, MTT assay was performed as described previously. The amount of formazan formation was quantified by measuring the absorbance at 570 nm using an SLT Rainbow plate reader (Tecan, U.S., Inc). Percent cytotoxicity was calculated using relative optical densities as follows: 100 – $\{100 \times \frac{OD \text{ with drug}}{OD \text{ without drug}}\}$.

7.2.6 Measuring effects of verapamil, norverapamil and analogs on intracellular *Mtb*
Adherent monocytes were infected with BCG or Mtb for 4 hours at an MOI of 3. Unphagocytosed bacteria were removed by washing three times with warm serum-free RPMI. Infected monocytes were cultured in complete RPMI media with and without drugs for 72h, and then lysed with a 0.2% saponin (Sigma) in RPMI 1640 medium. After cell lysis, residual bacteria were quantified by culturing aliquots on 7H10 media and counting colony forming units (CFU) every week for 3 weeks or using an [3H]-uridine incorporation assay as described previously. Briefly, the uridine incorporation assay was performed by adding 1 μCi [3H]-uridine in 7H9 Middlebrook broth into each well, and incubating plates for another 72 h at 37 °C and 5% CO$_2$. Bacteria were then harvested on glass fiber filtermats (PerkinElmer Wallac Inc), using a Tomtec Mach III cell harvester 96 (Tomtec Inc., Hamden, CT). Filtermats were air dried, scintillation fluid added, and mycobacterial incorporation of tritiated uridine was quantified using a Microbeta scintillation counter (PerkinElmer Wallac Inc.). Mycobacterial growth inhibition was determined using the following formula: percent inhibition = 100 – $\{100 \times (\text{dpm or CFU in the drug-treated cultures/dpm or CFU in the untreated cultures})\]$.

Malkeet Kumar_PhD Thesis_2015
7.2.6 CFSE-based flow cytometry assay

A CFSE-based flow cytometry assay was performed as described previously using *Mtb*-whole cell lysate (WL) at a final concentration of 10 μg/ml to stimulate *Mtb*-specific T cells during 7 days of culture.21,22 Flow-cytometric acquisition was performed by use of a FACSCalibur (BD) instrument, and analyses were done using CellQuest (version 3.3; BD) and FlowJo (version 6.2.1; Tree Star) softwares. A minimum of 10,000 CD3+ events were acquired. The proliferating cells were identified as populations with decreased mean FL1 fluorescence intensity and are labeled as CFSE-low (CFSElo). The total number of viable cells recovered was determined by counting cell aliquots resuspended in trypan blue using hemocytometer and light microscope.

7.2.7 Ethidium bromide assay

Efflux pump activity was measured based on methods described previously.23 Conditions for this assay were first optimized using in vitro BCG cultures. Briefly, the turbidity of logarithmic phase cultures of BCG in 7H9 Middlebrook broth was adjusted to the standard turbidity of McFarland 0.5. Aliquots of 100 μl were transferred into three sets of 2 ml sarstedt tubes. Ethidium bromide and verapamil were added (1μg/ml and 250 μg/ml, respectively) and cultures were incubated at room temperature (25 °C) for 1h. Bacteria were pelleted by centrifugation, washed once with 1 ml PBS, and resuspended in PBS with 0.4% glucose with and without various efflux pump inhibitors or analogs. These cultures were incubated at 37 °C for 1 hour. Bacteria suspensions were sonicated for 15 seconds in a water bath sonicator and aliquots were transferred to a round-bottom 96-well plate. Flow-cytometric acquisition was performed using a Guava easy Cyte instrument (Guava Technology, Hayward, CA), and analyses were done using FlowJo (version 6.2.1; Tree Star) software. A minimum of 5,000 events were acquired.
References

(13) Niaz, H.; Kashtoh, H.; Khan, J.; Khan, A.; Wahab, A.-T.-; Alam, M. T.; Khan, K. M.; Perveen, S.; Choudhary, M. I. Synthesis of Diethyl 4-Substituted-2,6-Dimethyl-1,4-

